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A SHARP HEIGHT ESTIMATE FOR THE SPACELIKE
CONSTANT MEAN CURVATURE GRAPH IN THE

LORENTZ–MINKOWSKI SPACE

JINGYONG ZHU

Based on the local comparison principle of Chen and Huang (1982), we
study the local behavior of the difference of two spacelike graphs in a neigh-
borhood of a second contact point. Then we apply it to the spacelike con-
stant mean curvature graph in 3-dimensional Lorentz–Minkowski space L3,
which can be viewed as a solution to the constant mean curvature equation
over a convex domain � ⊂ R2. We get the uniqueness of critical points
for such a solution, which is an analogue of a result of Sakaguchi (1988).
Last, by this uniqueness, we obtain a minimum principle for a functional
depending on the solution and its gradient. This gives us a sharp gradient
estimate for the solution, which leads to a sharp height estimate.

1. Introduction

Spacelike hypersurfaces of constant mean curvature (CMC) and CMC foliations
play an important role in general relativity. Such surfaces are important because they
provide Riemannian submanifolds with properties reflecting those of the spacetime.
For example, if the weak energy condition is satisfied, a maximal hypersurface has
positive scalar curvature. So the geometric properties of such hypersurfaces are
worth researching, and finding conditions for their existence is a fundamental prob-
lem. Under the graph setting and some assumptions, Robert Bartnik and Leon Simon
[1982] got a sufficient and necessary condition for the existence of a solution to

(1-1)

div Du
√

1−|Du|2
= H(x, u), |Du|< 1 in �⊂ Rn,

u = φ on ∂�,

where div stands for the divergence operator in the Euclidean plane Rn and

(1-2) Du = (u1, . . . , un), ui =
∂u
∂xi

.
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In particular, the Theorem 3.6 in [Bartnik and Simon 1982] gives us a solution
u ∈ C∞(�) to

(1-3)

div Du
√

1−|Du|2
= nH, |Du|< 1 in �,

u = 0 on ∂�,

over a bounded C2,α domain � with H being a positive constant. In this case, they
pointed out that νn+1 = 1/

√

1− |Du|2 satisfies following elliptic equation

(1-4) 1Mνn+1 = νn+1‖A‖2,

where 1M and A denote the Laplace operator and the second fundamental form
of the graph M = {(x, u(x)) : x ∈ Rn, u ∈ C∞(Rn)}, respectively. The boundary
gradient estimate is the most important step leading to the existence of u. To do
so, they used the following spherically symmetric barrier functions:

(1-5) w± = w±(ξ)±

∫
|x−ξ |

0

K − Htn√
t2n−2+ (K − Htn)2

dt,

where K is a positive constant. From the proof of their Proposition 3.1, one can
get following boundary gradient estimate:

(1-6) max
∂�
|Du| ≤

1− Hεn+1√
ε2n + (1− Hεn+1)2

,

where ε = ε(�) is a sufficiently small constant. Obviously, this bound is not sharp.
Also, the dependence of ε on � is not specific. Since the graph is spacelike, they
roughly used the diameter of the domain � to control the C0 norm of the solution u.
So the question is, can we give a sharp C0 or C1 estimate for the solution in terms
of the boundary geometry?

Early in 1979, Lawrence E. Payne and Gérard A. Philippin [1979] have used
so-called P-functions to derive sharp C0 and C1 upper bounds for the solution of
the Dirichlet problem

(1-7)

div Du
√

1+|Du|2
=−2H in �,

u = 0 on ∂�,

over a strictly convex domain �⊂ R2 with H being a positive constant. The key is
a maximum principle for the P-function

(1-8) 8(x, α)=
∫ q2

0

g(ξ + 2ξg′(ξ))
ρ

dξ +α
∫ u

0
f (η) dη,
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where u, g, ρ, f, q satisfy

(1-9) (g(q2)ui )i + ρ(q2) f (u)= 0, g(ξ)+ 2ξg′(ξ) > 0, for all ξ ≥ 0,

ρ > 0, g > 0, q2
= |Du|2 =

∑
u2

i .

In the same year, by the uniqueness of critical points for a solution and the strict
convexity of the domain, G. A. Philippin [1979] also got a minimum principle for
8(x, α) provided α > 1 and used it to derive lower bounds for C0 and C1 norms
of the solution. But he did not assert the sharpness of the estimates, since he did
not have a similar minimum principle for 8(x, 1) at that time. In 2000, Xi-Nan
Ma [2000] solved this issue through uniqueness of critical points and analyticity of
the solution. He did a long computation to show that all the derivatives of 8(x, 1)
vanish at the unique critical point if 8(x, 1) takes its minimum value at that point.
By the strong unique continuation of analytic function, 8(x, 1) is a constant. Once
one has this minimum principle, the sharpness is easy to derive.

For our question, the maximum principle in [Payne and Philippin 1979] still
works. So the upper bound of the gradient estimate and the lower bound of the
minimum value are easy to derive, which we will do later in this paper. However,
the minimum principle is not available any more. In this paper, we want to prove a
minimum principle for 8(x, 1) when u is a spacelike CMC graph solving

(1-10)

div
Du

√

1− |Du|2
= 2H, |Du|< 1 in �,

u = 0 on ∂�,

and use it to derive sharp C0 and C1 bounds for the solution to (1-10).
Not only is the uniqueness of critical point the important ingredient to get the

sharpness of the a priori estimate, but is itself worth study. Together with the
convexity [Caffarelli and Friedman 1985; Guan and Ma 2003; Chen 2014] and
curvature estimates [Ma and Zhang 2013] for level sets, they are the most important
geometric properties of solutions to elliptic or parabolic equations. G. A. Philippin
[1979] showed that the solution to (1-7) has only one critical point when � is
strictly convex. His method of proof is based on an idea of L. E. Payne [1973].
Jin-Tzu Chen [1984] proved the uniqueness of the critical point for a solution to

(1-11)


div Du
√

1+|Du|2
= 2H in �,

Du
√

1+|Du|2
· ν = 1 on ∂�,

where �⊂ R2 is a bounded convex domain with outer normal ν on the boundary
∂� and H is a positive constant. His proof is based on a nice comparison technique
and the result in [Chen and Huang 1982] and the method of continuity with respect
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to the contact angle. Later, Shigeru Sakaguchi [1989] showed that the solution to

(1-12)

div Du
√

1+|Du|2
= 2H in �,

u = 0, on ∂�,
or

(1-13)


div Du
√

1+|Du|2
= 2H in �,

Du√
1+|Du|2

· ν = cos γ, γ ∈
(
0, π2

)
on ∂�,

has only one critical point under the hypothesis of the existence of the solution over
a bounded convex domain �⊂ R2.

Another motivation for studying uniqueness of critical points for solutions to
(1-10) is from a recent paper [Albujer et al. 2015]. As we know, CMC spacelike
hypersurfaces are very different from those in Euclidean space. For example,
Corollary 12.1.8 in [López 2013] tells us any compact spacelike surface immersed
in L3 spanning a plane simple closed curve is a graph over a spacelike plane, which
is not true in R3. Therefore, up to an isometry, we only need to consider the solution
to the Dirichlet problem (1-10). Recently, Alma L. Albujer, Magdalena Caballero
and Rafael López proved the following interesting theorem on the convexity of the
solutions to (1-10):

Theorem A [Albujer et al. 2015]. Let 6 be a spacelike compact surface in L3 with
constant mean curvature H 6= 0 (H-surface for short), such that its boundary is a
planar curve which is pseudoelliptic. Then 6 has negative Gaussian curvature at
all its interior points. In particular, 6 is a convex surface.

In their paper, they also proved that pseudoelliptic curves are convex and provided
an example that shows the assumption on the boundary can not be replaced by
convex curves, but they did not show whether there is a critical point of the solution
to (1-10) with nonnegative Gaussian curvature over a convex domain, which is a
so-called saddle point. In this paper, we will show that the nonexistence of such
saddle points is equivalent to the uniqueness of the critical point. Notice that the
Gaussian curvature in [Sakaguchi 1989] is different from that in the Theorem A,
which is defined in the next section.

Theorem 1.1. Any solution to (1-10) in a convex domain for H 6= 0 has only one
critical point.

The proof of this theorem is based on the idea of [Sakaguchi 1989], which mainly
relies on the comparison of a cylinder with the given surface and the continuity
method. In the present result, our comparison surface is a connected component of
a hyperbolic cylinder, which is an entire graph over R2 and, in contrast with the
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Euclidean case, the existence of the solution for any bounded domain is assured by
the necessary and sufficient conditions given in [Bartnik and Simon 1982].

As we said before, Theorem 1.1 can be used to derive sharp C0 and C1 bounds
for the solution to (1-10).

Theorem 1.2. Let u ∈C∞(�) be a solution to (1-10) over a strictly convex domain
� for H > 0 and K be the curvature of the boundary ∂� with respect to the inner
normal direction. Then

(1-14)

max
�

|Du|2 =max
∂�
|Du|2≤

H 2

H 2+ K 2
min
,

−
1
H

(√
H 2
+ K 2

min
Kmin

− 1
)
≤ min

�
u ≤−

1
H

(√
H 2+ K 2

max

Kmax
− 1

)
where Kmin = min∂� K, Kmax = max∂� K, and one of the equality signs holds if
and only if the boundary ∂� is a circle.

At this point, we should give a remark. When H 6= 0 and � is a round disc of
radius R (which is centered at the origin), then

(1-15) u(x, y)=

√
x2+ y2+

1
H 2 −

√
R2+

1
H 2 ,

whose graph is a so-called hyperbolic cap [López 2013].
This article is organized as follows. In Section 3, we will investigate the local

behavior of the difference of two spacelike graphs in a neighborhood of a second
contact point. In Section 4, we will prove a necessary and sufficient condition for
the uniqueness of the minimal point of the solution to (1-10), which is a key step
in the proof of Theorem 1.1 in Section 5. In the end, based on the uniqueness of
the critical point, we will prove a minimum principle and use it to get the sharp
estimates in Theorem 1.2.

2. Notions and local comparison technique

For easier reading, let us recall some background knowledge of Lorentzian geometry.
More details can be found in [López 2013]. Let L3 be the 3-dimensional Lorentz–
Minkowski space, that is R3 endowed with the flat Lorentzian metric

ds2
= dx2

1 + dx2
2 − dx2

3 ,

where (x1, x2, x3) are the canonical coordinates in Rn. The nondegenerate metric
of index one classifies the vectors of R3 into three types.

Definition 2.1 [López 2013]. A vector v ∈ L3 is said to be:

(1) spacelike if 〈v, v〉> 0 or v = 0;
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(2) timelike if 〈v, v〉< 0;

(3) lightlike if 〈v, v〉 = 0 and v 6= 0.

The modulus of v is |v| =
√
|〈v, v〉|.

Definition 2.2 [López 2013]. An immersed surface 6 in L3 is called spacelike if
the induced metric on 6 is positive definite.

Given a spacelike immersed surface 6, by Proposition 12.1.5 in [López 2013], 6
is orientable. We can choose 6 to be future-oriented, which means the unit normal
vector field N satisfies 〈N , e3〉 > 0. Here e3 = (0, 0, 1). Let ∇ and ∇ denote the
Levi-Civita connection in L3 and 6, respectively. If X, Y ∈ X(6), the Gauss and
Weingarten formulae are

(2-1) ∇X Y =∇X Y + σ(X, Y )=∇X Y −〈AX, Y 〉N and AX =−∇X N ,

respectively, where σ is the second fundamental form and A :X(6)→X(6) stands
for the shape operator of 6 with respect to N. The mean curvature and the Gaussian
curvature are defined by

(2-2) H =− 1
2 trace(A)=− 1

2(κ1+ κ2) and K =− det(A)=−κ1κ2.

Let u ∈C2(�) be a function defined on a domain�∈R2 and consider the surface
6u = (x, y, u(x, y)). The coefficients of the first fundamental form are

(2-3) E = 1− u2
x , F =−ux u y and G = 1− u2

y .

Thus EG − F2
= 1− u2

x − u2
y = 1− |∇u|2 and since the immersion is spacelike,

|∇u|2 < 1 on �. The future-directed normal is given by

(2-4) N (x, y, u(x, y))=
(ux , u y, 1)√

1− |∇u|2
=

(∇u, 1)√
1− |∇u|2

.

With this normal, the mean curvature H and Gaussian curvature K satisfy

(2-5) div
∇u√

1− |∇u|2
= 2H and K =−

uxx u yy − u2
xy

(1− |∇u|2)2
,

respectively, where div is the Euclidean divergence in R2.
As mentioned previously, every compact spacelike surface 6 in L3 with simple

closed boundary contained in a hyperplane can be regarded as the graph of a solution
u(x, y) to (1-10). There are more interesting facts on compact spacelike surfaces
in L3 with constant mean curvature spanning a given boundary curve (see [López
2013]).

From now on, we assume u to be a solution to (1-10) with H > 0 in a convex
domain �. For H < 0, we can consider −u and our theorem still holds. By the
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maximum principle, u has a interior minimal point, which is a point of nonpositive
Gaussian curvature.

In the rest of this section, based on the local comparison technique found in
[Chen and Huang 1982], we will investigate the local behavior of the difference of
two spacelike graphs in a neighborhood of the point where they have the second
contact.

Lemma 2.3. Let u(x, y), v(x, y) satisfy the same spacelike constant mean curva-
ture equation (the first equations in (1-10) or (2-5)). Without loss of generality,
we assume that u, v have a second order contact at P0 = (x0, y0, u(x0, y0)) with
(x0, y0)= (0, 0). Then by changing coordinates from (x, y) to (ξ, η) linearly, the
difference u− v around (ξ, η)= (0, 0)= (x, y) is given by

(2-6) u− v = Re(λ · (ξ + ηi)n + o(ξ 2
+ η2)

n
2 ),

where n ≥ 3, λ is a complex number and ξ + ηi is the complex coordinate.

Proof. Let w = u − v. Since u and v solve the same constant mean curvature
equation, we have

0= (1− u2
x − u2

y)(uxx + u yy)+ (u2
x uxx + u2

yu yy + 2ux u yuxy)(2-7)

− 2H(
√

1− |Du|2)3

= (1− u2
y)uxx + (1− u2

x)u yy + 2ux u yuxy − 2H
(√

1− u2
x − u2

y
)3
,

0= (1− v2
y)vxx + (1− v2

x)vyy + 2vxvyvxy − 2H
(√

1− v2
x − v

2
y
)3
.(2-8)

Define r(τ ), s(τ ), t (τ ), p(τ ), q(τ ) for 0≤ τ ≤ 1 by

(2-9)

r(τ )= (1− τ)vxx + τuxx , s(τ )= (1− τ)vxy + τuxy,

t (τ )= (1− τ)vyy + τu yy, p(τ )= (1− τ)vx + τux ,

q(τ )= (1− τ)vy + τu y,

and consider the function

(2-10) F = F(τ )= (1− q2)r + 2pqs+ (1− p2)t − 2H
(√

1− p2
− q2)3

.

Then we get

(2-11) 0= F(1)− F(0)=
∫ 1

0

∂F
∂τ

dτ

= a11wxx + 2a12wxy + a22wyy + b1wx + b2wy,
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with

(2-12) a11 =

∫ 1

0
(1− q2) dτ, a12 =

∫ 1

0
pq dτ, a22 =

∫ 1

0
(1− p2) dτ,

b1 =−2
∫ 1

0

[
(pt − qs)− 3H

√
1− p2

− q2 p
]

dτ,

b2 =−2
∫ 1

0

[
(qr − ps)− 3H

√
1− p2

− q2q
]

dτ.

Since Dw = 0 at (0, 0), there exists a neighborhood, say O(0, 0), such that (p, q)
stays in the unit ball, i.e., p2

+ q2 < 1 over O(0, 0). Therefore, we have

(2-13) a2
12 =

(∫ 1

0
pq dτ

)2

≤

∫ 1

0
(p2) dτ

∫ 1

0
(q2) dτ

<

∫ 1

0
(p2) dτ

∫ 1

0
(1− p2) dτ

<

∫ 1

0
(1− q2) dτ

∫ 1

0
(1− p2) dτ = a11a22.

Hence, w satisfies a homogeneous elliptic equation

(2-14) Lw = a11wxx + 2a12wxy + a22wyy + b1wx + b2wy,

in O(0, 0).
Now, we transform (x, y) into (ξ, η) such that ξ(0, 0)= 0 and η(0, 0)= 0 and

at (0, 0)

(2-15) Lw =
(
∂2

∂ξ 2 +
∂2

∂η2 + b′1
∂

∂ξ
+ b′2

∂

∂η

)
w.

Since the coefficient of Lw and w itself are analytic in (x, y) as well as in (ξ, η),
we have the expansion around (ξ, η)= (0, 0) as follows,

Lw =
{
(1+α11ξ +β11η+ O(ξ 2

+ η2))
∂2

∂ξ 2 + 2(α12ξ +β12η+ O(ξ 2
+ η2))

∂2

∂ξ∂η

+(1+α22ξ +β22η+ O(ξ 2
+ η2))

∂2

∂η2 + (γ1+ δ1ξ + λ1η+ O(ξ 2
+ η2))

∂

∂ξ

+(γ2+ δ2ξ + λ2η+ O(ξ 2
+ η2))

∂

∂η

}
w.

By Theorem I in [Bers 1955], we know

(2-16) w = w(ξ, η)= Pn(ξ, η)+ o(ξ 2
+ η2)n/2,

where Pn(ξ, η) is a nonzero harmonic homogeneous polynomial in (ξ, η) of degree n.
We know n ≥ 3, as u and v have a second contact at (0, 0). Thus the argument in
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page 82 of [Axler et al. 2001] tells us

(2-17) Pn(ξ, η)= Re(λ · (ξ + ηi)n),

where λ is a complex number. This, together with the expansion above, completes
the proof. �

Let u− v to be defined on D ∈ R2 and Z be the zero set of u− v extended to
the closure D of D. By Lemma 2.3, Z divides a neighborhood U of (0, 0) into at
least six components on which the sign of u− v alternate. However, Lemma 2.3
does not tell us that Z ∩U is a union of smooth arcs intersecting at (0, 0). We do
not know if Z may contain cusps at (0, 0). To exclude such irregular possibilities,
we need a lemma from Chen and Huang:

Lemma 2.4 [Chen and Huang 1982, Lemma 2]. Let f = f (x, y) be a nonconstant
solution of a homogeneous quasilinear elliptic equation of the form

(2-18) L f = a11 fxx + 2a12 fxy + a22 fyy + b1 fx + b2 fy = 0

in � having analytic coefficients the ai j and bk in x , y and involving no zero order
term. Then every interior critical point of f is an isolated critical point.

Using the previous two lemmas as well as the implicit function theorem, we see
that the zero set Z ∩U of u− v consists of at least three smooth arcs intersecting
at (0, 0) and dividing U into at least six sectors. Furthermore, the zero set Z is
globally a union of smooth arcs.

3. Nonuniqueness of the minimal point

In this section, by using Lemmas 2.3 and 2.4, we will prove a sufficient and necessary
condition for the nonuniqueness of minimal points of the solutions vt (t ∈ [0, 1]) to

(3-1)

div Dv
√

1−t2
|Dv|2

= 2H, t |Dv|< 1 in �,

v = 0, on ∂�.

Let ut = tvt for t > 0. Then ut satisfies

(3-2)

div Du
√

1−|Du|2
= 2t H, |Du|< 1 in �,

u = 0, on ∂�.

Proposition 3.1. There always exists a unique solution vt to (3-1) satisfying

(3-3) t |Dvt | ≤ 1− θ0 < 1, in �, ‖vt‖C2,α(�) ≤ C, for all t ∈ [0, 1],

where C , θ0, α are positive constants independent of t .
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Proof. By Theorem 3.6 in [Bartnik and Simon 1982], Theorem 13.8 in [Gilbarg and
Trudinger 1983] and Theorem 12.2.2 in [López 2013], there is a unique solution
ut ∈ C2,α(�) to the problem (3-2) with

(3-4) |Dut |< 1− θ0 < 1 in � and ‖ut‖C2,α(�) ≤ C,

where C , θ0, α are positive constants independent of t .
Put vt = t−1ut . Then vt satisfies (3-1). By putting

(3-5) b(x)= (1− |Dut |
2)−1/2,

we regard vt as a unique solution to the linear elliptic Dirichlet problem:

(3-6)
{

div(b(x)Dvt)= 2H in �,
vt = 0 on ∂�.

In view of (3-4), using the Schauder global estimate (see Theorem 6.6 in [Gilbarg
and Trudinger 1983]), we get

(3-7) ‖vt‖C2,α(�) ≤ C(sup
�

|vt | + 2H).

Also, it follows from their Theorem 3.7 that

(3-8) sup
�

|vt | ≤ C.

Therefore, we get (3-3) for t ∈ (0, 1]. When t = 0, (3-1) is a linear problem. Hence
there exists a unique solution v0 ∈ C∞(�) to (3-1). This completes the proof. �

Before proving the sufficient and necessary condition for nonuniqueness of the
minimal point of vt , we need the following lemmas.

Lemma 3.2. Let t belong to (0, 1]. If Dvt = 0 at some point p ∈ �, then the
Gaussian curvature Kt(p) of the graph 6vt = (x, y, vt(x, y)) at p does not vanish.

Proof. Since t is positive, it suffices to show this for ut = tvt . Recall that graph of
ut has constant mean curvature t H. Let p be a critical point of ut with Kt(p)= 0.

Consider the upper connected component of a hyperbolic cylinder in L3, S, with
radius r = 1/(2t H), tangent to6ut at p and such that the line generators are parallel
to the zero principal curvature direction of 6ut at p. Recall that each connected
component of a hyperbolic cylinder is an entire graph over R2 with constant mean
curvature |H | = 1/(2r) and zero Gaussian curvature.

In general, the intersection of S and R2 should be a branch of a hyperbola or two
parallel lines. In our case, it should be the latter one, as S touches ut at its critical
point p. Hence, S ∩R2 divides R2 into three domains, and suppose that the piece
of S with negative height is the graph of a function v ∈ C∞(�′), v < 0.
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Define D =�∩�′. On the one hand, by the convexity of �, we see ∂(�∩�′)
consists of at most four arcs, each of which belongs to ∂� or ∂�′ alternatively.
Consider A = {(x, y) ∈ � ∩�′ | ut(x, y) > v(x, y)}. Since ut = 0 on ∂� and
v = 0 on ∂�′, there are at most two components of A, each of which meets the
boundary �∩�′. On the other hand, by the previous construction, ut and v have
a second order contact at p. Lemma 2.3 and Lemma 2.4 tell us A has at least
three components, each of which meets �∩�′. Thus we get a contradiction. This
completes the proof. �

Now, we see that there is no critical point of vt with Gaussian curvature vanishing
for t ∈ (0, 1]. What about the case of t = 0?

Lemma 3.3. Every critical point p of v0 is a minimal point, i.e., the Gaussian
curvature K0(p) of the graph 6v0 is negative at p.

Proof. Let p be a critical point of v0. Then K0(p) = −((v0)xx(v0)yy − (v0)
2
xy)

by the second equation of (2-5). Suppose that K0(p) ≥ 0. For simplicity, by
translation and rotation of the coordinates, we may assume that p = (0, 0) and
[Di jv0] = diag[λ1, λ2], where λ1 + λ2 = 2H > 0, λ1 > 0 and λ2 ≤ 0. Then
v0(x, y) = w(x, y) + P(x, y), where w(x, y) = v0(0, 0) + 1

2λ1x2
+

1
2λ2 y2 and

P(x, y) is a harmonic function in �. Consider

(3-9) A = {(x, y) ∈� | P(x, y) > 0}, B = {(x, y) ∈� | P(x, y) < 0}.

Since P(x, y) vanishes up to second order derivatives at (0, 0) and P(x, y) is real
analytic, it follows from Lemma 2.3 and Lemma 2.4 that both A and B have at
least three components, each of which meets the boundary ∂�. Put

(3-10) �′ = {(x, y) ∈ R2
| w(x, y) < 0}.

Since � is convex and w is a quadratic function with λ1 > 0 and λ2 ≤ 0, we see
that ∂(�∩�′) consists of at most four arcs each of which belongs to ∂� or ∂�′

alternatively. Let A′ = {(x, y) ∈ �∩�′ | P(x, y) > 0}. Since v0 = 0 on ∂� and
w = 0 on ∂�′, there are at most two components of A′ each of which meets the
boundary ∂(�∩�′). This contradicts the fact that both A and B have at least three
components which meet the boundary of ∂�. This completes the proof. �

Now, we can prove the sufficient and necessary condition for nonuniqueness of
the minimal point of vt .

Theorem 3.4. Let t belong to [0, 1]. The solution vt has more than two minimal
points if and only if there exists a saddle point p∈�, i.e., Dvt(p)=0 and Kt(p)>0.

Proof. It follows from Hopf’s boundary point lemma that Dvt · ν is positive on ∂�.
There vt does not have minimal point on the boundary ∂�.
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“If” part: Let p ∈� be a point with Dvt(p)= 0 and Kt(p) > 0. Then there exists
an open neighborhood U of p in which the zero set of ṽt = vt − vt(p) consists of
two smooth arcs intersecting at p and divides U into four sections. Consider the
open set E = {(x, y) ∈ � | ṽt > 0}. It follows from the maximum principle that
each component of E has to meet the boundary ∂�. Accordingly, we see that the
open set G = {(x, y) ∈� | ṽt < 0} has more than two components. This shows that
vt has more than two minimal points.

“Only if” part: Suppose that vt has more than two minimal points and there is no
point p with Dvt(p)= 0 and Kt(p) > 0. By Lemma 3.2 and Lemma 3.3, we see
that each critical point of vt is a minimal point. Since Dvt does not vanish on ∂�,
then Lemma 3.2 and Lemma 3.3 imply that every critical point of vt is isolated and
the number of critical (minimal) points is finite, say {P1, . . . , PN }. Hence, we have

(3-11) Dvt(x, y) 6= 0, for all (x, y) ∈�−{P1, . . . , PN }.

Put m0 = max{vt(Pj ) | 1 ≤ j ≤ N }. Consider the level set Lm = {(x, y) ∈ � |
vt(x, y) < m} for m0 < m < 0. It follows from (3-11) and Theorem 3.1 in [Milnor
1963] that the boundary ∂Lm is a smooth manifold for m0 < m < 0 and {∂Lm} are
diffeomorphic to each other. Since Kt(Pj ) is negative, if m is near m0, Lm has
more than two components. On the other hand, if m is near 0, ∂Lm is diffeomorphic
to ∂� and Lm is connected. This is a contradiction, so the proof is complete. �

Now, Lemma 3.2, Lemma 3.3 and Theorem 3.4 tell us the nonexistence of the
critical point described in the first question of the first section is equivalent to the
uniqueness for the critical point of the solution to (1-10), which will be proved in
the next section.

4. Proof of Theorem 1.1

In view of Lemma 3.2, Lemma 3.3 and Theorem 3.4, it suffices to show that the set
of minimal points of the solution consists of only one point. Put I = [0, 1]. Divide
I into two sets I1 and I2 as follows:

(4-1)
I1 = {t ∈ I | vt has only one minimal point in �},

I2 = {t ∈ I | vt has more than two minimal points in �}.

Then I = I1+ I2 and I1 ∩ I2 =∅. Lemma 3.3 and Theorem 3.4 imply that 0 ∈ I1,
so I1 is not empty.

On the one hand, I2 is open in I. That is, for any t0 ∈ I2, there exists a constant
ε>0 such that (t0−ε, t0+ε)⊂ I2. If it were not so, we can assume that there exists a
sequence of solutions {vtn } with only one minimal point and tn ∈ (t0−1/n, t0+1/n)
for some positive t0 ∈ I2. By Lemma 3.2 and Theorem 3.4, vtn has only one critical
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point. By compactness and Lemma 3.2, we can take a subsequence of vtn such that

(4-2) pn→ p, Dvtn (pn)= 0, Ktn (pn) < 0, Dvt0(p)= 0, Kt0(p) < 0.

Since t0 ∈ I2, there exists another point q ∈U (q)⊆� such that

(4-3) qn→ q, Dvtn (qn)→ Dvt0(q)= 0.

By uniqueness of the critical point of vtn , we can take a subsequence of {vtn } such
that vtn are all monotone in the line l(pn, qn). Then there exists a sequence of points
{sn | sn ∈ l(pn, qn)} such that

(4-4) |Dvtn (sn)| ≤ |Dvtn (qn)| → 0, |Ktn (sn)| =
|Dvtn (qn)|

|pn − qn|
→ 0.

Therefore, there should be a point s ∈ l(p, q) which satisfies

(4-5) Dvt0(s)= 0, Kt0(s)= 0.

This is a contradiction with Lemma 3.2.
On the other hand, I2 is closed in I. In fact, let {tj } be a sequence of points in I2

such that tj converges to t0 as j goes to∞. Theorem 3.4 and the compactness imply
that there exists a subsequence {tk}, a sequence {pk} and a point p ∈� such that

(4-6) pk→ p as k→∞, Dvtk (pk)= 0, and Ktk (pk) > 0.

By continuity, we have

(4-7) Dvt0(p)= 0, and Kt0(p)≥ 0.

Since Dvt0 6= 0 on ∂�, p∈�. Therefore it follows from Lemma 3.2 and Lemma 3.3,
Theorem 3.4 and (4-7) that t0 ∈ I2. This shows that I2 is closed in I.

Hence, I2 must be ∅ or I. Since I1 is not ∅, I1 = I. This completes the proof.

5. Sharp C0 and C1 estimates

In [Payne and Philippin 1979], the authors derived a maximum principle for a
function 8(x;α) defined by

(5-1) 8(x;α)=
∫ q2

0

g(ξ)+ 2ξg′(ξ)
ρ(ξ)

dξ +α
∫ u

0
f (η) dη,

where g > 0, ρ > 0, f are functions and u satisfies the following elliptic equation:

(5-2)
∑

i

(g(q2)ui )i + ρ(q2) f (u)= 0, q2
=

∑
i

ui ui = |Du|2.
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In our case, we can take g(ξ)= (1− ξ)−1/2, ρ = 1, f =−2H. Then

(5-3) 8(x;α)= 2
(

1√
1− |Du|2

− 1−αHu
)
.

In particular, 8 :=8(x; 1)= 2(1/
√

1− |Du|2− 1− Hu).
Theorem 4 in [Payne and Philippin 1979] gives us

(5-4)
∑
i, j

(
δi j +

ui u j

1− |Du|2

)
8i j +

∑
k

Wk8k ≥ 0,

where Wks are just the components of a vector function uniformly bounded in �.
It follows that 8(x; 1) takes its maximum value on ∂�. Together with (5-1), we
know 8(x; 1) takes its maximum value where |Du|2 = max∂� |Du|2. It follows
that, at any point x ∈�, we have

(5-5) −Hu ≤
1

√

1−max∂� |Du|2
−

1
√

1− |Du|2
.

So, at the critical point, we get

(5-6) −Humin ≤
1√

1− q2
max

− 1,

where umin =min� u and qmax =max∂� |Du|.
Now, we want to derive the upper bound for |Du|2max. Suppose 8(x;α) attains

its maximum at p ∈ ∂�. Then |Du|(p) = qmax. On the one hand, by the strong
maximum principle, we have at p,

(5-7)
∂8(x;α)
∂ν

= 2
g+ 2q2g′

ρ
uνuνν + f uν ≥ 0,

where ∂/∂ν or a subscript ν denotes the outward directed normal derivative on ∂�
and the equality holds if and only if8(x;α)= constant. On the other hand, making
use of (5-2) evaluated on ∂�, we have

(5-8) (g+ 2q2g′)uνν + gK uν + ρ f = 0.

Together with (5-7), this leads to

(5-9)
∂8(x;α)
∂ν

=−(2K gu2
ν + f uν)≥ 0.

Applying to our case, we get

(5-10)
qmax√

1− q2
max

≤
H

K (p)
≤

H
Kmin

.
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So

(5-11) q2
max ≤

H 2

H 2+ K 2
min
.

Therefore, the left inequality in (1-14) follows from (5-6) and (5-11). And the
equality holds if and only if the boundary is a circle. In fact, if the equality holds,
then 8(x; 1)= constant on ∂� from the strong maximum principle. From (5-1),
uν = constant on ∂�. So ∂� is a circle according to Theorem 2 and Remark 1 in
[Serrin 1971]. Conversely, if ∂� is a circle, then the solution u is radially symmetric.
So uν = constant on ∂�, and then the equality in (5-11) follows from the divergence
theorem.

To derive the upper bound of umin in the same way above, we need a minimum
principle for 8(x; 1). First, we need the following lemma.

Lemma 5.1 [Payne and Philippin 1979].

(5-12)
∑
i, j

(
δi j +

ui u j

1− |Du|2

)
8i j (x, α)+

∑
k

Ŵk8k(x, α)

= 4H 2(α− 1)(α− 2)
1√

1− |Du|2
,

where Ŵks are the components of a vector function which is singular at the critical
point of u.

From Lemma 5.1 and the Hopf maximum principle, we conclude that 8(x;α)
takes its minimum value either on the boundary ∂�, or at the unique critical point
of u in � when α ∈ [1, 2]. What if the second alternative happens? We answer
this in the following theorem whose Euclidean version was proved by Xi-Nan Ma
[2000]:

Theorem 5.2. Let u ∈ C∞(�) be a solution to (1-10). If 8(x; 1) attains its
minimum at the unique critical point in �, then 8(x; 1) is a constant on �.

By Theorem 5.2, we assume 8(x; 1) takes its minimum at p′ ∈ ∂�, then
|Du|(p′)= qmin =min∂� |Du| and

(5-13) −Humin ≥
1

√

1− q2
min

− 1,

and

(5-14)
∂8

∂ν
(p′; 1)≤ 0,
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where the equality holds if and only if 8(x; 1)= constant. As before, one can also
get

(5-15)
qmin

√

1− q2
min

≥
H

K (p′)
≥

H
Kmax

.

So

(5-16) q2
min ≥

H 2

H 2+ K 2
max

,

where the equality holds if and only if the boundary is a circle. Therefore, the right
inequality in (1-14) follows from (5-13) and (5-16).

For completeness, we will prove Theorem 5.2 to end this paper. Our proof is
similar to that in [Ma 2000] except for the different signs in some places.

Proof of Theorem 5.2. The proof consists of four steps. Assume the unique critical
point to be P ∈�.

Step 1: Derivatives of 8 up to the second order vanish at P. From the proof of
Theorem 1.1, we can choose the coordinates at P such that

(5-17) u1(P)= u2(P)= 0, u11 > 0, u22 > 0, u12 = 0.

By direct computation, we have

81 = 2v−
3
2 ui ui1− 2Hu1 = 0,(5-18)

82 = 2v−
3
2 ui ui2− 2Hu2 = 0,(5-19)

811 =
3
2v
−

5
2 (2ui ui1)(2u j u j1)+ 2v−

3
2 u2

i1+ 2v−
3
2 ui ui11− 2Hu11(5-20)

= 2u2
11− 2Hu11,

812 =
3
2v
−

5
2 (2ui ui1)(2u j u j2)+ 2v−

3
2 ui1ui2+ 2v−

3
2 ui ui12− 2Hu12(5-21)

= 0,

822 =
3
2v
−

5
2 (2ui ui2)(2u j u j2)+ 2v−

3
2 u2

i2+ 2v−
3
2 ui ui22− 2Hu22(5-22)

= 2u2
22− 2Hu22,

where v = 1− |Du|2. Since 8 attains its minimum at P, we get

(5-23) 811(P)822(P)−812(P)≥ 0.

Together with (5-17), we know

(5-24) u11(P)= u22(P)= H,
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and

(5-25) 811(P)=822(P)= 0.

Step 2: Derivatives of 8 up to the fifth order vanish at P. First we claim

(5-26) 8xk
1 x3−k

2
(P)= 0, k = 0, 1, 2, 3.

By (5-17), (5-24) and direct calculations, we have

(5-27)
8x3

1
(P)= 4Hux3

1
, 8x2

1 x2
(P)= 4Hux2

1 x2
,

8x1x2
2
(P)= 4Hux1x2

2
, 8x3

2
(P)= 4Hux3

2
.

Now, by differentiating (1-10), we obtain

(5-28) ux3
1
=−ux2

1 x2
and ux1x2

2
=−ux3

2
.

Together with (5-18), (5-19), (5-21) and (5-25), we can expand8 in a neighborhood
of P:

(5-29) 8(x1,x2;1)−8(P;1)=
r3

3!
(8x3

1
(P)cos(3φ)+8x2

1 x2
(P)sin(3φ))+O(r4),

where (r, φ) are polar coordinates. Suppose

(5-30)
√
(8x3

1
(P))2+ (8x2

1 x2
(P))2 6= 0.

Then (5-29) becomes

(5-31) 8(x1, x2; 1)−8(P; 1)= A3(P) cos[3φ−β3]r3
+ O(r4),

with

(5-32) A3(P)=

√
(8x3

1
(P))2+(8x2

1 x2
(P))2

3!
, cosβ3 =

8x3
1
(P)√

(8x3
1
(P))2+(8x2

1 x2
(P))2

,

sinβ3 =
8x2

1 x2
(P)√

(8x3
1
(P))2+(8x2

1 x2
(P))2

.

From (5-31) we conclude that 8 has at least three nodal lines forming equal angles
at P, but Lemma 5.1 tells us that 8 takes its minimum value only on ∂� or at P,
which is a contradiction. Thus A3(P)= 0. That is,

(5-33) 8xk
1 x3−k

2
(P)= 0, k = 0, 1, 2, 3,

and

(5-34) uxk
1 x3−k

2
(P)= 0, k = 0, 1, 2, 3.
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Using a similar argument we can show

0=8x4
1
(P)= 6H(ux4

1
(P)+ 3H 3)(5-35)

=−8x2
1 x2

2
(P)= 6H(ux2

1 x2
2
(P)+ H 3)

=8x4
2
(P)= 6H(ux4

2
(P)+ 3H 3),

0=8x3
1 x2
(P)= 6Hux3

1 x2
(P)=−8x1x3

2
(P)= 6Hux1x3

2
(P),(5-36)

ux4
1
(P)= ux4

2
(P)=−3H 3, ux3

1 x2
(P)= ux1x3

2
(P)= 0,(5-37)

ux2
1 x2

2
(P)=−H 3,

8xk
1 x5−k

2
(P)= uxk

1 x5−k
2
(P)= 0, k = 0, 1, 2, 3,(5-38)

and

(5-39) 8x5
1
(P)=−8x3

1 x2
2
(P)=8x1x4

2
(P), 8x4

1 x2
(P)=−8x2

1 x3
2
(P)=8x5

2
(P).

Step 3: Now we assume all derivatives of 8 up to the n-th order vanish at P, where
n ≥ 5. Using the same argument as in the previous step, we have the following
relations.

If n = 2l, l ≥ 3. Then

uxm
1 xk−m

2
(P)= uxk−m

1 xm
2
(P) for any m = 0, 1, 2, . . . , k,(5-40)

if k = 5, 6, 8, . . . , 2l,

uxm
1 xk−m

2
(P)= 0 for any m = 0, 1, 2, . . . , k,(5-41)

if k = 5, 7, 9, . . . , 2l − 1,

uxm
1 x2p−m

2
(P)= 0 for any m = 1, 3, 5, . . . , 2p− 1,(5-42)

if p = 3, 4, 5, . . . , l,

and

(5-43) ux2p
1
(P)= (−1)p+1(2p− 1)[(2p− 3)(2p− 5) · · · 1]2 H 2p−1

for any p = 3, 4, 5, . . . , l. When l is even, we have for any p = 4, 6, 8, . . . , l

(5-44)
ux2p

1

ux2p−2
1 x2

2

(P)= 2p− 1,
ux2p−2

1 x2
2

ux2p−4
1 x4

2

(P)=
2p− 3

3
,··· ,

ux p+2
1 x p−2

2

ux p
1 x p

2

(P)=
p+ 1
p− 1

,

and for any p = 3, 5, 7, . . . , l − 1, we have

(5-45)
ux2p

1

ux2p−2
1 x2

2

(P)= 2p− 1,
ux2p−2

1 x2
2

ux2p−4
1 x4

2

(P)=
2p− 3

3
,··· ,

ux p+3
1 x p−3

2

ux p+1
1 x p−1

2

(P)=
p+ 2
p− 2

.

When l is odd, we have similar relations to (5-44) and (5-45).
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If n = 2l + 1, l ≥ 2, by a similar argument we have (5-40)–(5-45) and

(5-46) uxm
1 x2l+1−m

2
(P)= 0, for any m = 0, 1, 2, . . . , 2l + 1.

Step 4: Derivatives of 8 of order n+1 vanish at P. We divide this step into two
parts according to whether n is odd or even.

Case A: If n = 2l, l ≥ 3. By the inductive assumption, we have

(5-47) vxm
1 xk−m

2
(P)= 0 for any m = 0, 1, 2, . . . , k, if k = 1, 3, 5, . . . , n−1.

Then for any m = 0, 1, 2, . . . , n+ 1,

(5-48) (2v−
1
2 )xm

1 xn+1−m
2

(P)=−v
3
2 vxm

1 xn+1−m
2

(P)

= 2v−
3
2 ((n+ 1−m)Huxm

1 xn+1−m
2
+m Huxm

1 xn+1−m
2

)

= 2(n+ 1)Huxm
1 xn+1−m

2
.

So

(5-49) 8xm
1 xn+1−m

2
(P)= 2nHuxm

1 xn+1−m
2

(P).

Now, by differentiating (1-10), we obtain

(5-50) uxm
1 xn+1−m

2
(P)=−uxm+2

1 xn−1−m
2

(P), for m = 0, 1, 2, . . . , n+ 1.

Then

(5-51) 8xm
1 xn+1−m

2
(P)=−8xm+2

1 xn−1−m
2

(P), for m = 0, 1, 2, . . . , n+ 1.

Using Taylor expansion as in Step 2, we can conclude that the derivatives of 8 of
order n+ 1 vanish at P.

Case B: If n=2l+1, l≥2, so n+1=2(l+1) is even. We first look for the relations
among 8xm

1 xn+1−m
2

(P), where m = 0, 2, 4, . . . , n + 1. Through computations, we
have

(5-52) 8xn+1
1
(P)= 2nH(uxn+1

1
+ (−1)l+1(2l+1)[(2l−1)(2l−3) · · · 1]2 H 2l+1),

and

(5-53) 8xn−1
1 x2

2
(P)= 2nH(uxn−1

1 x2
2
+ (−1)l+1

[(2l − 1)(2l − 3) · · · 1]2 H 2l+1).

Now, by differentiating (1-10), we get

(5-54) (1u+ ui u j ui jv
−1)xn−1

1
(P)= (2Hv 1

2
)xn−1

1
(P).

Together with the relations in Step 3, this leads to

(5-55) uxn+1
1
+ uxn−1

1 x2
2
= (n+ 1)(−1)l[(2l − 1)(2l − 3) · · · 1]2 H 2l+1.
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So

(5-56) 8xn+1
1
(P)=−8xn−1

1 x2
2
(P).

By a similar argument, it follows that

(5-57) 8xm
1 xn+1−m

2
(P)=−8xm+2

1 xn−1−m
2

(P), for m = 0, 2, 4, . . . , n+ 1.

Then, using the same argument, we have

(5-58) 8xm
1 xn+1−m

2
(P)=−8xm+2

1 xn−1−m
2

(P), for m = 0, 1, 2, . . . , n+ 1.

Now, as in Case A, we can show the derivatives of 8 of order n+ 1 vanish at P.
By the unique continuation of analytic functions, we know if 8 attains its

minimum at P, then it must be a constant. This completes the proof. �
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