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CONVEXITY OF THE ENTROPY OF POSITIVE SOLUTIONS
TO THE HEAT EQUATION ON QUATERNIONIC CONTACT

AND CR MANIFOLDS

DIMITER VASSILEV

A proof of the monotonicity of an entropy like energy for the heat equation
on a quaternionic contact and CR manifolds is given.

1. Introduction

The purpose of this note is to show the monotonicity of the entropy type energy
associated to the (subelliptic) heat equation in a sub-Riemannian setting. The result
is inspired by the corresponding Riemannian fact related to Perelman’s entropy
formula for the heat equation on a static Riemannian manifold; see [Ni 2004].
More recently a similar quantity was considered in the CR case [Chang and Wu
2010]. Our goal is to prove the convexity of the entropy of a positive solution
to the (subelliptic) heat equation on a quaternionic contact manifold, henceforth
abbreviated to QC, and give an alternative proof of the result in that work, more in
line with the Riemannian case. We resolve directly the difficulties arising in the
sub-Riemannian setting of both quaternionic contact and CR manifolds. Section 3
contains the alternative proof of the result of [Chang and Wu 2010] in the CR case
while the remaining parts of the paper focus on the QC case.

To state the problem, let M be a quaternionic contact or a CR manifold of real
dimensions 4n+ 3 and 2n+ 1, respectively, and u be a smooth positive solution to
the (QC or CR) heat equation

(1-1) ∂

∂t
u =1u.

Hereafter, 4u = trg(∇2u) denotes the negative sub-Laplacian with the trace taken
with respect to an orthonormal basis of the respective horizontal 4n or 2n dimen-
sional spaces in the QC and CR cases. Associated to such a solution are the
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(Boltzmann–Nash like) entropy

(1-2) N (t)=
∫

M
u ln u Volη

and entropy energy functional

(1-3) E(t)=
∫

M
|∇f |2u Volη,

where, as usual, f =− ln u and Volη is the naturally associated volume form on M,
see (2-4) and (3-3). Exactly as in the Riemannian case, we have that the entropy is
decreasing (i.e., nonincreasing) because of the formula

d
dt

N =−E(t).

Our goal is the computation of the second derivative of the entropy. In order to
state the result in the QC case we consider the Ricci type tensor

(1-4) L(X, X)
de f
= 2Sg(X, X)+αnT 0(X, X)+βnU (X, X),

where X is any vector from the horizontal distribution, αn = 2(2n+ 3)/(2n+ 1),
βn = 4(2n − 1)(n + 2)/((2n + 1)(n − 1)), and T 0 and U are certain invariant
components of the torsion; see Section 2. The tensor (1-4) appeared earlier as a
natural assumption in the QC Lichnerowicz–Obata type results; see [Ivanov and
Vassilev 2015, Section 8.1] and references therein. In addition, following [Ivanov
et al. 2013], we define the P-form of a fixed smooth function f on M by the
following equation:

(1-5) Pf (X)=
4n∑

b=1

∇
3 f (X, eb, eb)+

3∑
t=1

4n∑
b=1

∇
3 f (It X, eb, It eb)

−4nS d f (X)+ 4nT 0(X,∇f )− 8n(n−2)
n−1

U (X,∇f ),

which in the case n = 1 is defined by formally dropping the last term. The P-
function of f is the function Pf (∇f ). The C-operator of M is the 4th order
differential operator

f 7→ C f =−∇∗Pf =

4n∑
a=1

(∇ea Pf )(ea).

In many respects the C-operator plays a role similar to the Paneitz operator in CR
geometry. We say that the P-function of f is nonnegative if∫

M
f ·C f Volη =−

∫
M

Pf (∇f )Volη ≥ 0.
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If the above holds for any f ∈ C∞o (M) we say that the C-operator is nonnegative,
C ≥ 0.

We are ready to state our first result.

Proposition 1.1. Let M be a compact QC manifold of dimension 4n+3. If u= e− f

is a positive solution to heat equation (1-1), then we have

2n+1
4n

E ′(t)=−
∫

M

[
|(∇2 f )0|2+

2n+1
2

L(∇f,∇f )+ 1
16n
|∇f |4

]
uVolη+

3
n

∫
M

PF (∇F)Volη,

where u = F2 ( f =−2 ln F) and (∇2 f )0 is the traceless part of horizontal Hessian
of f .

Several important properties of the C-operator were found in [Ivanov et al. 2013],
most notable of which is the fact that the C-operator is nonnegative for n > 1.
In dimension seven, n = 1, the condition of nonnegativity of the C-operator is
nontrivial. However, [Ivanov et al. 2013] showed that on a 7-dimensional compact
QC-Einstein manifold with positive QC-scalar curvature the P-function of an
eigenfunction of the sub-Laplacian is nonnegative. In particular, this property holds
on any 3-Sasakian manifold, see [Ivanov et al. 2014a, Corollary 4.13]. Clearly,
these facts together with Proposition 1.1 imply the following theorem:

Theorem 1.2. Let M be a compact QC manifold of dimension 4n+3 of nonnegative
Ricci type tensor L(X, X) ≥ 0. In the case n = 1 assume, in addition, that the
C-operator is nonnegative. If u = e− f is a positive solution of the heat equation
(1-1), then the energy E(t) is monotone decreasing (i.e., nonincreasing).

The proof of Proposition 1.1 follows one of L. Ni’s arguments [2004] in the
Riemannian case, and thus it relies on Bochner’s formula. More precisely, after
Ni’s initial step, in order to handle the extra terms in Bochner’s formula, we will
follow the presentation of [Ivanov and Vassilev 2015] where this was done for the
QC Lichnerowicz-type lower eigenvalue bound under positive Ricci-type tensor;
see [Ivanov et al. 2013; Ivanov et al. 2014b] for the original result. In the QC
case, similar to the CR case, the Bochner formula has additional hard to control
terms, which include the P-function of f . In our case, since the integrals are with
respect to the measure u Volη, rather than Volη as in the Lichnerowicz-type estimate,
some new estimates are needed. The key is the following proposition which can be
considered as an estimates from above of the integral of the P-function of f with
respect to the measure u Volη when the C-operator is nonnegative.

Proposition 1.3. Let (M, η) be a compact QC manifold of dimension 4n + 3. If
u = e− f is a positive solution to heat equation (1-1), then with f = −2 ln F we
have the identity

(1-6)
∫

M
Pf (∇f )u Volη =

1
4

∫
M
|∇f |4u Volη+4

∫
M

PF (∇F)Volη .
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In the last section of the paper we apply the same method in the case of a strictly
pseudoconvex pseudo-Hermitian manifold and prove the following proposition:

Proposition 1.4. Let M be a compact strictly pseudoconvex pseudo-Hermitian CR
manifold of dimension 2n+ 1. If u = e− f is a positive solution to the heat equation
(1-1), then we have

n+1
2n

E ′(t)=−
∫

M

[
|(∇2 f )0|2+

2n+1
2

L(∇f,∇f )+ 1
8n
|∇f |4

]
uVolη−

6
n

∫
M

FC(F)Volη,

where u = F2, (∇2 f )0 is the traceless part of horizontal Hessian of f and C is the
CR-Paneitz operator of M.

We refer to Section 3 for the relevant notation and definitions. As a consequence
of Proposition 1.4 we recover the monotonicity of the entropy energy shown previ-
ously in [Chang and Wu 2010]. We note that one of the motivations to consider
the problem was the application of the CR version of the monotonicity of the
entropy-like energy (see their Lemma 3.3) in obtaining (nonoptimal) estimate on
the bottom of the L2 spectrum of the CR sub-Laplacian. However, the proof of their
Corollary 1.9 and Section 6 is not fully justified since their Lemma 3.3 is proved
for a compact manifold. It should be noted that a proof of S.-Y. Cheng’s type (even
nonoptimal) estimate in a sub-Riemannian setting, such as CR or QC manifold,
is an interesting problem in particular because of the lack of general comparison
theorems.

We conclude by mentioning another proof of the monotonicity of the energy
in the recent preprint [Ivanov and Petkov 2016], which was the result of a past
collaborative work with Ivanov and Petkov. Remarkably, [Chang and Wu 2010]
is also not acknowledged in [Ivanov and Petkov 2016] despite the line for line
substantial overlap of their Section 3 with Chang and Wu’s [2010, Lemma 3.3]
proof. In this paper we give an independent direct approach to the problem.

2. Proofs of the propositions

Some preliminaries. Throughout this section M will be a QC manifold of dimen-
sion 4n+ 3, [Biquard 1999], with horizontal space H locally given as the kernel of
a 1-form η= (η1, η2, η3) with values in R3, and Biquard connection ∇ with torsion
T. Below we record some of the properties needed for this paper, see also [Biquard
2000] and [Ivanov and Vassilev 2011] for a more expanded exposition.

The Sp(n)Sp(1) structure on H is fixed by a positive definite symmetric tensor
g and a rank-three bundle Q of endomorphisms of H locally generated by three
almost complex structures I1, I2, I3 on H satisfying the identities of the imaginary
unit quaternions and also the conditions

g(Is · , Is · )= g( · , · ) and 2g(Is X, Y )= dηs(X, Y ).
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Associated with the Biquard connection is the vertical space V, which is com-
plementary to H in TM. In the case n = 1 we shall make the usual assumption of
existence of Reeb vector fields ξ1, ξ2, ξ3, so that the connection is defined following
D. Duchemin [2006]. The fundamental 2-forms ωs of the fixed QC structure will
be denoted by ωs ,

2ωs|H = dηs|H , ξyωs = 0, ξ ∈ V .

In order to give some idea of the involved quantities we list a few more essential
for us details. Recall that ∇ preserves the decomposition H⊕V and the Sp(n)Sp(1)
structure on H,

∇g = 0, ∇0(Q)⊂ 0(Q)

and its torsion on H is given by T (X, Y )=−[X, Y ]|V . Furthermore, for a vertical
field ξ ∈ V, the endomorphism Tξ ≡ T (ξ, · )|H of H belongs to the space (sp(n)⊕
sp(1))⊥⊂ gl(4n) hence T (ξ, X, Y )= g(Tξ X, Y ) is a well defined tensor field. The
two Sp(n)Sp(1)-invariant trace-free symmetric 2-tensors

T 0(X, Y )= g((T 0
ξ1

I1+ T 0
ξ2

I2+ T 0
ξ3

I3)X, Y ) and U (X, Y )= g(u X, Y )

on H, introduced in [Ivanov et al. 2014a], satisfy

(2-1) T 0(X,Y )+ T 0(I1 X, I1Y )+ T 0(I2 X, I2Y )+ T 0(I3 X, I3Y )= 0,

U (X,Y )=U (I1 X, I1Y )=U (I2 X, I2Y )=U (I3 X, I3Y ).

Note that when n = 1, the tensor U vanishes. The tensors T 0 and U determine
completely the torsion endomorphism due to the identity [Ivanov and Vassilev 2010,
Proposition 2.3]

4T 0(ξs, Is X, Y )= T 0(X, Y )− T 0(Is X, IsY ),

which in view of (2-1) implies

(2-2)
3∑

s=1

T (ξs, Is X, Y )= T 0(X, Y )− 3U (X, Y ).

The curvature of the Biquard connection is R= [∇,∇]−∇[ , ] with QC-Ricci tensor
and normalized QC-scalar curvature, defined by respectively by

Ric(X, Y )=
4n∑

a=1

g(R(ea, X)Y, ea), 8n(n+ 2)S =
4n∑

a=1

Ric(ea, ea).

According to [Biquard 2000] the Ricci tensor restricted to H is a symmetric tensor.
Remarkably, the torsion tensor determines the QC-Ricci tensor of the Biquard
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connection on M in view of the formula, [Ivanov et al. 2014a],

(2-3) Ric(X, Y )= (2n+ 2)T 0(X, Y )+ (4n+ 10)U (X, Y )+ S
4n

g(X, Y ).

Finally, Volη will denote the volume form, see [Ivanov et al. 2014a, Chapter 8],

(2-4) Volη = η1 ∧ η2 ∧ η3 ∧�
n,

where �= ω1 ∧ω1+ω2 ∧ω2+ω3 ∧ω3 is the fundamental 4-form. We note the
integration by parts formula

(2-5)
∫

M
(∇∗σ)Volη = 0,

where the (horizontal) divergence of a horizontal vector field σ ∈31(H) is given
by ∇∗σ = − tr |H∇σ = −∇σ(ea, ea) for an orthonormal frame {ea}

4n
a=1 of the

horizontal space.

Proof of Proposition 1.3. We start with a formula for the change of the dependent
function in the P-function of f . To this effect, with f = f (F), a short calculation
shows the next identity

∇
3 f (Z,X,Y )= f ′∇3F(Z,X,Y )+ f ′′′dF(Z)dF(X)dF(Y )+ f ′′∇2F(Z,X)dF(Y )

+ f ′′∇2F(Z,Y )dF(X)+ f ′′∇2F(X,Y )dF(Z).

Recalling definition (1-5) we obtain

(2-6) Pf (Z)= f ′PF (Z)+ f ′′′|∇F |2dF(Z)+ 2 f ′′2 F(Z ,∇F)

+ f ′′(1F)dF(Z)+ f ′′
3∑

s=1

g(∇2F, ωs)dF(Is Z),

which implies the identity

(2-7) Pf (∇f )= f ′2PF (∇F)+ f ′ f ′′′|∇F |4+2 f ′ f ′′∇2F(∇F,∇F)+ f ′ f ′′|∇F |21F.

In our case, since we are interested in expressing the integral of u Pf (∇f ) =
e− f Pf (∇f ) in terms of the integral of a P -function of some function, equation
(2-7) leads to the ordinary differential equation u(−u′/u)2 = constant . Therefore,
we let u = F2 and find

(2-8) u Pf (∇f )=4PF (∇F)+8F−2
|∇F|4−8F−1

∇
2F(∇F,∇F)−4F−1

|∇F|21F.

Now, the last three terms will be expressed back in the variable f which gives

(2-9) u Pf (∇f )= 4PF (∇F)+
[
−

1
4 |∇f |4+ 1

2 |∇f |21 f +∇2 f (∇f,∇f )
]
u.
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At this point, we integrate the above identity and then apply the (integration by
parts) divergence formula (2-5) in order to show∫

M
∇

2 f (∇f,∇f )u Volη =
1
2

∫
M

[
|∇f |4− |∇f |21 f

]
u Volη,

which leads to (1-6). The proof of Proposition 1.3 is complete. �

Proof of Proposition 1.1. The initial steps are identical to the Riemannian case [Ni
2004] thus we skip the detailed computations and only sketch the common steps.
Let w = 21 f − |∇f |2. Using the heat equation, exactly as in the Riemannian case,
we have the identities

(2-10) ∂t f =1 f−|∇f |2, u1 f =u|∇f |2−1u, and 1u= (|∇f |2−1 f )u,

which imply

(2-11) E ′(t)=
∫

M
(∂t −1)(uw)Volη

and also

(2-12) (∂t −1)(uw)= [2g(∇(1 f ),∇f )−1|∇f |2]u.

Next, we apply the QC Bochner formula [Ivanov et al. 2013; Ivanov et al. 2014b]

1
24|∇f |2 = |∇2 f |2+ g(∇(4 f ),∇f )+ 2(n+ 2)S|∇f |2

+ 2(n+ 2)T 0(∇f,∇f )+ 4(n+ 1)U (∇f,∇f )+ 4R f (∇f ),

where

R f (Z)=
3∑

s=1

∇
2 f (ξs, Is Z).

Therefore,

(2-13) 1
2(∂t −1)(uw)= [−|∇2 f |2− 2(n+ 2)S|∇f |2− 2(n+ 2)T 0(∇f,∇f )

− 4(n+ 1)U (∇f,∇f )− 4R f (∇f )]u.

The next step is the computation of
∫

M R f (∇f )u Volη in two ways as was done in
[Ivanov et al. 2013; Ivanov et al. 2014b] for the Lichnerowicz-type first eigenvalue
lower bound but integrating with respect to Volη rather than u Volη as we need to do
here. For ease of reading we will follow closely [Ivanov and Vassilev 2015, Section
8.1.1] but notice the opposite convention of the sub-Laplacian in their Section 8.1.1.
First with the help of the P-function, working similarly to [Ivanov et al. 2013,
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Lemma 3.2], where the integration was with respect to Volη, we have

(2-14)
∫

M
R f (∇f )u Volη =

∫
M

[
−

1
4n

Pf (∇f )− 1
4n
(4 f )2− S|∇f |2

+
n+1
n−1

U (∇f,∇f )
]
u Volη+

1
4n

∫
M
|∇f |2(1 f )u Volη,

with the convention that in the case n=1 the formula is understood by formally drop-
ping the term involving (the vanishing) tensor U. Notice the appearance of a “new”
term in the last integral in comparison to the analogous formula in [Ivanov and Vas-
silev 2015, Section 8.1.1, p. 310]. Indeed, taking into account the Sp(n)Sp(1) invari-
ance of R f (∇f ) and Ricci’s identities we have, cf., [Ivanov et al. 2013, Lemma 3.2],

R f (X)=−
1

4n

3∑
s=1

4n∑
a=1

∇
3 f (Is X, ea, Isea)+ [T 0(X,∇f )− 3U (X,∇f )]

hence (1-5) gives

u R f (∇f )=
[
−

1
4n

Pn(∇f )−S|∇f |2+ n+1
n−1

U (∇f,∇f )
]
u+ 1

4n

4n∑
a=1

∇
3 f (∇f,ea,ea)u.

An integration by parts shows the validity of (2-14).
On the other hand, we have

(2-15)
∫

M
R f (∇f )u Volη

=−

∫
M

[
1

4n

3∑
s=1

g(∇2 f ,ωs)
2
+ T 0(∇f ,∇f )− 3U(∇f ,∇f )

]
u Volη,

which other than using different volume forms is identical to the second formula in
[Ivanov and Vassilev 2015, Section 8.1.1, p. 310]. Indeed, following [Ivanov et al.
2014b, Lemma 3.4], using Ricci’s identity

∇
2 f (X, ξs)−∇

2 f (ξs, X)= T (ξs, X,∇f )

and (2-2), we have

R f (∇f )=
( 3∑

s=1

∇
2 f (Is∇f, ξs)

)
− [T 0(∇f,∇f )− 3U (∇f,∇f )]
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An integration by parts gives (2-15), noting that
∑3

s=1 d f (ξs) d f (Is∇f ) = 0 and
taking into account that by Ricci’s identity

∇
2 f (X, Y )−∇2 f (Y, X)=−2

3∑
s=1

ωs(X, Y ) d f (ξs)

we have g(∇2 f, ωs)=
∑4n

a=1 ∇
2 f (ea, Isea)=−4n d f (ξs).

Now, working as in [Ivanov and Vassilev 2015, Section 8.1.1, p. 310], we subtract
(2-15) and three times formula (2-14) from (2-13) which brings us to the identity

(2-16) 1
2
E ′(t)=

∫
M

[
−|(∇2 f )0|2−

2n+1
2

L(∇f,∇f )
]
u Volη

+
1

4n

∫
M
[3Pf (∇f )+ 2(1 f )2− 3|∇f |21 f ]u Volη,

where |(∇2 f )0|2 is the square of the norm of the traceless part of the horizontal
Hessian

|(∇2 f )0|2 = |∇2 f |2− 1
4n

[
(4 f )2+

3∑
s=1

[g(∇2 f, ωs)]
2
]
.

Next, we consider
∫

M [2(1 f )2 − 3|∇f |21 f ]u Volη. Using the heat equation we
have the relation, identical to the Riemannian case, see (2-10),

E ′(t)= d
dt

∫
M
w1u Volη =

∫
M
(−2(1 f )2+ 3|∇f |21 f − |∇f |4)u Volη,

hence

(2-17)
∫

M
(2(1 f )2− 3|∇f |21 f )u Volη =−

d
dt

E(t)−
∫

M
|∇f |4u Volη .

A substitution of the above formula in (2-16) gives

2n+1
4n

d
dt

E(t)=
∫

M

[
−|(∇2 f )0|2−

2n+1
2

L(∇f,∇f )
]
u Volη

+
1

4n

∫
M
[3Pf (∇f )− |∇f |4]u Volη .

Finally, we invoke Proposition 1.3 in order to complete the proof. �

3. The CR case

In this section, following the method we employed in the QC case, we prove the
monotonicity formula in the CR case stated in Proposition 1.4. This implies the
monotonicity of the entropy-like energy which was proved earlier in [Chang and
Wu 2010].
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Throughout the section M will be a (2n+ 1)-dimensional strictly pseudoconvex
(integrable) CR manifold with a fixed pseudo-Hermitian structure defined by a
contact form η and a complex structure J on the horizontal space H = Ker η. The
fundamental 2-form is defined by ω = 1

2 dη and the Webster metric is g(X, Y )=
−ω(J X, Y ) which is extended to a Riemannian metric on M by declaring that the
Reeb vector field associated to η is of length one and orthonormal to the horizontal
space. We shall denote by ∇ the associated Tanaka–Webster connection [Tanaka
1975] and [Webster 1975; 1978], while 4u = trg(∇2u) will be the negative sub-
Laplacian with the trace taken with respect to an orthonormal basis of the horizontal
2n-dimensional space. Finally, we define the Ricci-type tensor

(3-1) L(X, Y )= ρ(J X, Y )+ 2n A(J X, Y ),

recalling that on a CR manifold we have

(3-2) Ric(X, Y )= ρ(J X, Y )+ 2(n− 1)A(J X, Y ),

where ρ is the (1, 1)-part of the pseudo-Hermitian Ricci tensor (the Webster Ricci
tensor) while the (2, 0)+ (0, 2)-part is the Webster torsion A; see [Ivanov and
Vassilev 2011, Chapter 7] for the expressions in real coordinates of these known
formulas [Webster 1975; 1978]; see also [Dragomir and Tomassini 2006].

With the above convention in place, as in [Chang and Wu 2010], for a positive
solution of (1-1) we consider the entropy (1-2) and energy (1-3), where

(3-3) Volη = η∧ (dη)2n.

For a function f we define the one-form,

(3-4) Pf (X)=∇3 f (X, eb, eb)+∇
3 f (J X, eb, Jeb)+ 4n A(X, J∇f )

so that the fourth order CR-Paneitz operator is given by

(3-5) C( f )=−∇∗P = (∇eaP)(ea)

=∇
4 f (ea,ea,eb,eb)+∇

4 f (ea, Jea,eb, Jeb)

−4n∇∗A(J∇f )− 4ng(∇2 f, JA).

By [Graham and Lee 1988], when n> 1 a function f ∈ C3(M) satisfies the equation
C f = 0 if and only if f is CR-pluriharmonic. Furthermore, the CR-Paneitz operator
is nonnegative, ∫

M
f ·C f Volη =−

∫
M

Pf (∇f )Volη ≥ 0.

On the other hand, in the three dimensional case the positivity condition is a
CR invariant since it is independent of the choice of the contact form by the
conformal invariance of C proven in [Hirachi 1993]. The nonnegativity of the
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CR-Paneitz operator is relevant in the embedding problem for a three dimensional
strictly pseudoconvex CR manifold. As shown in [Chanillo et al. 2012], if the
pseudo-Hermitian scalar curvature of M is positive and C is nonnegative, then M
is embeddable in some Cn

We turn to the proof of Proposition 1.4. Taking into account (2-12) and the CR
Bochner formula [Greenleaf 1985],

(3-6) 1
24|∇f |2 = |∇2 f |2+g(∇(4 f ),∇f )+Ric(∇f,∇f )+2A(J∇f,∇f )+4R f (∇f ),

where R f (Z) = ∇ d f (ξ, JZ), see [Ivanov and Vassilev 2015, Section 7.1] and
references therein but note the opposite sign of the sub-Laplacian, we obtain the
next identity:

(3-7) 1
2(∂t −1)(uw)= [−|∇2 f |2−Ric(∇f,∇f )− 2A(∇f,∇∇f )− 4R f (∇f )]u.

Since (2-11) still holds, working as in the QC case we compute
∫

M RF (∇f )u Volη
in two ways [Greenleaf 1985, Lemma 4] and [Ivanov and Vassilev 2012, Lemma
8.7] following the exposition [Ivanov and Vassilev 2015].

From Ricci’s identity ∇2 f (X, Y )−∇2 f (Y, X)=−2ω(X, Y ) d f (ξ), it follows
that d f (ξ)=− 1

2n g(∇2 f, ω). Hence

∇
2 f (JZ , ξ)=− 1

2n

2n∑
b=1

∇
3 f (JZ , eb, Jeb),

where {eb}
2n
b=1 is an orthonormal basis of the horizontal space. Applying Ricci’s

identity ∇2 f (X, ξ)−∇2 f (ξ, X)= A(X,∇f ), it follows that

(3-8) R f (Z)=∇2 f (ξ, JZ)=− 1
2n

2n∑
b=1

∇
3 f (JZ , eb, Jeb)− A(JZ ,∇f ).

Taking into account (3-4), the last formula gives

R f (Z)=−
1

2n
Pf (Z)+ A(JZ ,∇f )+ 1

2n

2n∑
b=1

∇
3 f (Z , eb, eb).

Now, an integration by parts shows the next identity

(3-9)
∫

M
R f (∇f )uVolη

=

∫
M

[
−

1
2n

Pf (∇f )+ A(J∇f,∇f )− 1
2n
(1 f )2+ 1

2n
|∇f |2(1 f )

]
uVolη.
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On the other hand, using again (3-8) but now integrating and then using integration
by parts, we have

(3-10)
∫

M
R f (∇f )u Volη =

∫
M

[
−

1
2n

g(∇2 f, ω)2− A(J∇f,∇f )
]
u Volη .

At this point, exactly as in the QC case, we subtract (3-10) and three times formula
(3-9) from (3-7), which gives

E ′(t)=−
∫

M

[
|(∇2 f )0|2+L(∇f,∇f )

]
uVolη+

1
2n

∫
M
[3Pf (∇f )+2(1 f )2−3|∇f |21 f ]uVolη,

where |(∇2 f )0|2 is the square of the norm of the traceless part of the horizontal
Hessian

|(∇2 f )0|2 = |∇2 f |2− 1
2n
[(4 f )2+ g(∇2 f, ω)2].

Taking into account that the formulas in Proposition 1.3 and (2-17) hold unchanged,
we complete the proof. �
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