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REGULAR REPRESENTATIONS OF COMPLETELY
BOUNDED MAPS

B. V. RAJARAMA BHAT, NIRUPAMA MALLICK AND K. SUMESH

We study properties and the structure of some special classes of homomor-
phisms on C∗-algebras. These maps are ∗-preserving up to conjugation by a
symmetry. Making use of these homomorphisms, we prove a new structure
theorem for completely bounded maps from a unital C∗-algebra into the
algebra of all bounded linear maps on a Hilbert space. Finally we provide
alternative proofs for some of the known results about completely bounded
maps and improve on them.

1. Introduction

Completely positive maps and completely bounded maps on C∗ algebras are well-
studied objects (see [Arveson 1969; Paulsen 1986; Pisier 2001]). We look at
two well-known structure theorems for completely bounded maps. The first one,
which we call the fundamental representation theorem of completely bounded maps
(Paulsen 2002; Wittstock 1981; 1984; Haagerup 1980) says that all completely
bounded maps from a unital C∗-algebra A into the algebra B(H) of bounded
operators on a Hilbert space H can be obtained from a unital representation of
A on another Hilbert space, by composing it with two bounded operators. Un-
like Stinespring’s [1955] representation theorem for completely positive maps,
there is no minimality condition on the representing Hilbert space, and hence the
fundamental representation is not unique. The second structure theorem, namely
commutant representation theorem (proved by Paulsen and Suen [1985]) says that
all such completely bounded maps can be obtained from a unital representation,
by first multiplying by an element in the commutant and then conjugating by a
bounded operator. Later, using the theory of Hilbert C∗-modules, Heo [1999]
proved analogues of these structure theorems for the case when the range algebra
is an injective C∗-algebra.

We prove a new structure theorem for completely bounded maps (Theorems 3.2,
3.6). The idea is that to represent completely positive maps in Stinespring’s theorem,
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one requires ∗-homomorphisms, and for a similar representation of completely
bounded maps we need to consider homomorphisms which are not necessarily
∗-preserving. This is necessary because conjugation of a ∗-homomorphism by a
bounded operator is always a completely positive map. However, it is possible to
impose symmetry or some other additional restrictions on the homomorphisms in
order to realize all completely bounded maps. That is what we do here.

To begin with, symmetries are self-adjoint unitaries. A homomorphism is sym-
metric if it preserves adjoints modulo conjugation by a symmetry. We define
regular homomorphisms and ternary homomorphisms. We demonstrate that these
homomorphisms are symmetric. Regular homomorphisms are essentially direct
sums or direct integrals of ternary homomorphisms.

In Section 3A we prove that (Theorem 3.2) every completely bounded map
from A into B(H) can be obtained by composing a regular homomorphism with
a single bounded operator. We will call this the regular representation theorem
for completely bounded maps. Moreover, we show that there exists a universal
regular representation which can be used to generate all completely bounded maps
from A into B(H). Since all representations (i.e., ∗-homomorphisms) are regu-
lar homomorphisms, we may consider the regular representation theorem as an
immediate generalization of Stinespring’s representation theorem for completely
positive maps. We look at Hilbert C∗-module versions of these results. We also
provide (Section 3B) new proofs of some results due to Paulsen and Suen [1985]
and Heo [1999]. In Section 3C we study natural relationships between different
representation theorems of completely bounded maps.

1A. Basic definitions and results: Throughout H, K are complex Hilbert spaces.
Our inner products are linear in the second variable and conjugate linear in the
first variable. Typically A,B, C denote unital C∗-algebras. For an element a of
a unital C∗-algebra A, σ(a) denote the spectrum of a. For a subset X of A, the
“commutant” is defined as X ′ = {a ∈A : xa = ax for all x ∈ X }.

Suppose A,B are C∗-algebras. A multiplicative linear map π :A→ B is called
a homomorphism. By a ∗-homomorphism we mean a homomorphism which is also
∗-preserving, i.e., π(a∗)= π(a)∗ for all a ∈A. If a ∗-homomorphism is mapping
into the algebra of all bounded operators on a Hilbert space, or into the algebra of
all bounded adjointable operators on a Hilbert C∗-module we call it a representation.
If A,B are unital C∗-algebras and π(1A)= 1B, then π is said to be unital.

Recall that a linear map ϕ :A→ B between two C∗-algebras is said to be

(i) a completely positive map (CP-map) if for all n ≥ 1, ϕn : Mn(A)→ Mn(B)
defined by ϕn([ai j ])= [ϕ(ai j )] is positive, i.e., ϕn([ai j ])≥ 0 for all 0≤ [ai j ] ∈

Mn(A),
(ii) a completely bounded map (CB-map) if ‖ϕ‖cb := sup‖ϕn‖<∞,
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(iii) a completely contractive map (CC-map) if ‖ϕ‖cb ≤ 1.

We let CB(A,B) denote the space of all CB-maps from A into B. Given a map
ψ : A→ B define ψ∗ : A→ B by ψ∗(a) := ψ(a∗)∗ for all a ∈ A. Note that if
ψ ∈ CB(A,B), then ψ∗ ∈ CB(A,B) with ‖ψ∗‖cb = ‖ψ‖cb. See [Paulsen 2002]
for details on basic results.

Stinespring [1955] proved that if A is a unital C∗-algebra and ϕ : A→ B(H)
is a CP-map, then there exists a triple (K, π, V ), called Stinespring’s dilation
for ϕ, consisting of a unital representation π : A → B(K) of A on a Hilbert
space K and a bounded linear map V : H → K with ‖ϕ‖cb = ‖V ‖2 such that
ϕ( · )= V ∗π( · )V. Moreover, K can be chosen to be “minimal” in the sense that
K = spanπ(A)VH, and in such case the triple is unique up to unitary equivalence.
Conversely, ϕ( · ) := V ∗π( · )V is a CP-map if π is a representation. If π is a
J -homomorphism (but not a ∗-homomorphism), then ϕ( · ) := V ∗π( · )V need not
be CP. In fact it need not even be positive. But if π is in a special class of J -
homomorphisms, called regular homomorphisms, then ϕ is a CB-map. Theorem 3.2
says that all CB-maps from A into B(H) are of this form.

Here we recall basics of Hilbert C∗-module theory we will use. Given a C∗-
algebra B, by an inner product B-module we mean a complex vector space E with a
right B-module structure and a B-valued inner product 〈 · , · 〉 : E×E→B satisfying

(i) 〈x, x〉 ≥ 0,

(ii) 〈x, x〉 = 0 if and only if x = 0,

(iii) 〈x, λy+ z〉 = λ〈x, y〉+ 〈x, z〉,

(iv) 〈x, y〉 = 〈y, x〉∗,

(v) 〈x, yb〉 = 〈x, y〉b,

for all x, y, z ∈ E , b ∈ B, λ ∈ C. If E is complete with respect to the norm
‖x‖ := ‖〈x, x〉‖1/2, then E is called a Hilbert B-module. An inner product B-
module for which the condition (ii) does not hold is called a semi-inner product
B-module. For a semi-inner product B-module we have

〈x, y〉∗〈x, y〉 ≤ ‖〈x, x〉‖〈y, y〉.

A linear map T : E→ F between two Hilbert B-modules is said to be adjointable
if there exists a linear map T ∗ : F → E such that 〈T x, y〉 = 〈x, T ∗y〉 for all
x ∈ E , y ∈ F. Adjointable maps are bounded and B-linear (i.e., T (λx1+ x2b)=
λT (x1)+ T (x2)b for all λ ∈ C, xi ∈ E , b ∈ B). But the converse may not be
true. We denote the space of all bounded and adjointable maps from E into F
by Ba(E, F), which is a Banach space under the operator norm. In particular
Ba(E) :=Ba(E, E) forms a C∗-algebra with natural algebraic operations.
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In the following E, F are Hilbert C∗-modules. An inner product preserving map
V : E→ F is called an isometry, and a surjective isometry is called a unitary. An
isometry with complemented range is adjointable. In general, closed submodules
of Hilbert C∗-modules are complemented only if there is an adjointable projection
onto that submodule.

If x, y are the elements of a Hilbert B-module E we let |x〉〈y| denote the
adjointable operator z 7→ x〈y, z〉. Note that (|x〉〈y|)∗= |y〉〈x |. We let K(E) denote
the completion of F(E) := span{|x〉〈y| : x, y ∈ E} (Always in the module context
“span” would mean B-linear span). A Hilbert B-module E is said to be a Hilbert
A-B-module if there exists (a left module action of A on E , i.e.,) a ∗-homomorphism
ϑ : A→ Ba(E) such that span{ϑ(a)x : a ∈ A, x ∈ E} = E (or equivalently ϑ is
unital if A is unital). Clearly any Hilbert B-module E is a Hilbert Ba(E)-B-module
with left module action given by the identity map. In fact, E is a K(E)-B-module
with inclusion map as the left module action. Given x ∈ E we let x∗ ∈Ba(E,B)
denote the adjointable map y 7→ 〈x, y〉. Note that E∗ := span{x∗ : x ∈ E} forms
a Hilbert Ba(E)-module with inner-product 〈x∗1 , x∗2 〉 := |x1〉〈x2| and right module
action x∗a := (a∗x)∗ for all a ∈ Ba(E). Moreover, ϑ : B → Ba(E∗) given by
ϑ(b)x∗ := (xb∗)∗ is a ∗-homomorphism such that E∗ = span{ϑ(B)E∗} so that E∗

forms a Hilbert B-Ba(E)-module. If F is a Hilbert B-C-module, then by Ba,bil(F)
we mean the space of all adjointable, bilinear (i.e., preserves both left and right
module actions) maps on F.

Suppose E is a Hilbert B-module and F is a Hilbert B-C-module with left action
given by the ∗-homomorphism ϑ : B→ Ba(F). We let E �ϑ F (or E �B F or
simply E � F) denote the completion of the algebraic tensor product E ⊗ F with
respect to the C-valued semi-inner product

〈x1⊗ y1, x2⊗ y2〉 := 〈y1, ϑ(〈x1, x2〉)y2〉.

We let x � y ∈ E �ϑ F denote the equivalence class containing x ⊗ y ∈ E ⊗ F.
Note that E �ϑ F forms a Hilbert C-module with right module action (x � y)c :=
x � yc. In addition if E has a left action of A via a ∗-homomorphism ϑ ′ : A→
Ba(E), then E �ϑ F also has a left module action ϑ̃ :A→Ba(E �ϑ F) given by
ϑ̃(a)(x � y) := ϑ ′(a)x � y. Thus E �ϑ F forms a Hilbert A-C-module. Note that
‖xb� y− x �ϑ(b)y‖ = 0 so that xb� y = x �ϑ(b)y for all x ∈ E, y ∈ F, b ∈ B.
We may identify B �ϑ F = F via the unitary isomorphism b� y 7→ ϑ(b)y. If
a ∈ Ba(E) and a ∈ Ba,bil(F), then a� IF ∈ B

a(E � F) and IE � a ∈ Ba(E � F)
are the maps defined by x � y 7→ ax � y and x � y 7→ x � ay, respectively.

Suppose ρ is a representation of a C∗-algebra B on a Hilbert space G. Given a
Hilbert B-module E , by considering G as a Hilbert B-C-module with left module ac-
tion given by ρ, we let η :Ba(E)→B(E �ρ G) denote the unital ∗-homomorphism
a 7→ a� IG , that is, η(a)(x � g) := ax � g for all a ∈Ba(E), x ∈ E , g ∈ G.
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We refer to [Lance 1994; Paschke 1973; Skeide 2000] for the basic theory of
Hilbert C∗-modules.

2. Symmetric homomorphisms

In this section we study homomorphisms between C∗-algebras which are not
necessarily ∗-homomorphisms. These homomorphisms need not be contractive.

2A. Symmetries.

Definition 2.1. An element J in a unital C∗-algebra B satisfying J = J ∗ = J−1

is called a symmetry. A homomorphism τ :A→ B is called a J -homomorphism
if Jτ(a)∗ J = τ(a∗) for all a ∈ A. A homomorphism τ : A→ B is said to be a
symmetric homomorphism if τ is a J -homomorphism for some symmetry J ∈ B.

Clearly all ∗-homomorphisms are symmetric homomorphisms. But the con-
verse is not true. For example, τ : C → B(C2) given by a 7→

[a/2
a

a/4
a/2

]
is a

J -homomorphism where J =
[ 0

1
1
0

]
. But τ is not ∗-preserving. It is easily seen that

τ is neither positive nor contractive.

Example 2.2. Define τ : M2(C) → M2(C) by τ(a) = sas−1, where s =
[ 1

0
1
1

]
.

Clearly τ is a homomorphism. But it is not a symmetric homomorphism. For,
suppose J ∈ M2(C) is a symmetry; then Jτ(a∗)J = τ(a)∗ implies that (s∗ Js)a∗ =
a∗(s∗ Js) for all a ∈ M2(C). Hence there exists λ ∈ C such that s∗ Js = λI, so that
J = λ(ss∗)−1 which is not a symmetry. Exactly the same situation arises when s is
an invertible element which is not a scalar multiple of a unitary.

The next proposition answers the question of uniqueness of symmetry J in a
symmetric homomorphism.

Proposition 2.3. Suppose τ :A→ B is a symmetric homomorphism. If there exist
symmetries J, J ′ ∈ B such that τ is both a J - and J ′-homomorphism, then there
exists a unitary U ∈ τ(A)′ ⊆ B such that J =U JU and J ′ = JU.

Proof. We have Jτ(a)J = τ(a∗)∗ = J ′τ(a)J ′ for all a ∈A. Multiplying on the left
and right side of this equation by J and J ′ respectively, we get τ(a)J J ′ = J J ′τ(a)
for all a ∈A. Hence there exists a U ∈ τ(A)′ such that J J ′ =U. Clearly U∗U =
I =UU∗ and J ′ = JU. Further, (J ′)∗ = J ′, yields J =U JU . �

Now we show that given any homomorphism, we can associate a symmetry J in
a very natural way. The usefulness of this symmetry will be seen later.

Proposition 2.4. Suppose τ : A→ B is a homomorphism. Then there exists a
symmetry J ∈ B such that: Jτ(a)J = τ(a)∗ for all a ∈ A satisfying τ(a)∗τ(1) =
τ(1)∗τ(a) and τ(a)τ (1)∗ = τ(1)τ (a)∗.



262 B. V. RAJARAMA BHAT, NIRUPAMA MALLICK AND K. SUMESH

Proof. Suppose T := τ(1)= R+ i S is the cartesian decomposition of τ(1). Since
τ(1)2 = τ(1) we have R2

− S2
= R and RS+ S R = S. Also since R = R∗ with

R2
− R = S2

≥ 0 we have σ(R)⊆ R \ (0, 1). Define f̂ : R→ R by

f̂ (t)=


−1 if t ≤ 0,
2t − 1 if 0< t < 1,
1 if t ≥ 1,

which is clearly a continuous function. Set f = f̂ |σ(R) ∈ C(σ (R)) ∼= C∗({1, R})
and J = f (R) ∈ B. Clearly J 2

= I and J = J ∗.

Step 1: First we prove that JTJ = T ∗. It is enough to show that J R = R J and
J S =−S J. Clearly J R = R J. Now

RS+ S R = S =⇒ RS = S(1− R)=⇒ Rn S = S(1− R)n for all n ≥ 0.

Approximating f by polynomials, from C(σ (R)) we get f (R)S = S f (1− R). But
since

f̂ (1− x)=
{

1 if x < 1,
−1 if x ≥ 1,

we have f̂ (1− x)=− f̂ (x) for all x ∈ σ(R), and hence f (1− R)=− f (R). Thus

J S = f (R)S = S f (1− R)=−S f (R)=−S J.

Step 2: Fix a ∈ A. Let τ(a) = X + iY be the Cartesian decomposition of τ(a).
Then

X = 1
2(τ (a)+ τ(a)

∗)= 1
2(τ (a)T + (T τ(a))

∗)= X R− Y S,

Y = 1
2i (τ (a)− τ(a)

∗)= 1
2i (T τ(a)− (τ (a)T )

∗)= RY + SX.

Since X and Y are self-adjoint we have

X R− Y S = X = R X − SY,(2-1)

X S+ Y R = Y = RY + SX.(2-2)

Now if τ(a)∗τ(1)= τ(1)∗τ(a) and τ(a)τ (1)∗ = τ(1)τ (a)∗, then we get

(X R+ Y S)+ i(X S− Y R)= (R X + SY )+ i(RY − SX),

(X R+ Y S)− i(X S− Y R)= (R X + SY )− i(RY − SX).

Adding and subtracting above two equations we get

X R+ Y S = R X + SY,(2-3)

X S− Y R = RY − SX.(2-4)
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Adding equations (2-1) and (2-3) we get X R = R X, hence X f (R) = f (R)X,
i.e., X J = J X. Adding equations (2-2) and (2-4) we get X S = RY. Now since
J S =−S J, from equation (2-2), we have

Y J = (X S+ Y R)J = (X S+ SX)J =−J (X S+ SX)=−J (X S+ Y R)=−JY.

Now a direct computation shows that Jτ(a)J = τ(a)∗. �

Now we introduce two subfamilies of symmetric homomorphisms, and study
their structure and properties. Later, in terms of these maps we prove a new structure
theorem for completely bounded maps. Before proceeding, we give a definition.

Definition 2.5. A linear map τ :A→Ba(E) is said to be

(i) nondegenerate if span{τ(a)x : a ∈A, x ∈ E} = E ;

(ii) ∗-nondegenerate if span{τ(a1)x1, τ (a2)
∗x2 : xi ∈ E, ai ∈A, i = 1, 2} = E .

Remark 2.6. (i) If τ is a homomorphism, then τ(a) = τ(1)τ (a) and τ(a)∗ =
τ(1)∗τ(a)∗, therefore τ is ∗-nondegenerate if and only if

span{τ(1)x, τ (1)∗x ′ : x, x ′ ∈ E} = E .

A ∗-homomorphism τ : A→ Ba(E) is ∗-nondegenerate if and only if τ is
nondegenerate or equivalently τ is unital.

(ii) Suppose a Hilbert space H plays the role of E . Then a linear map τ :A→B(H)
is ∗-nondegenerate if and only if {h ∈H : τ(a)h= 0= τ(a)∗h for all a ∈A} =
{0}. If τ is a homomorphism, then the above conditions are equivalent to the
condition {h ∈H : τ(1)h = 0= τ(1)∗h} = {0}.

2B. Regular homomorphisms.

Definition 2.7. A map τ : A→ B is said to be regular if τ(u)∗τ(u)= τ(1)∗τ(1)
and τ(u)τ (u)∗ = τ(1)τ (1)∗ for all unitary u ∈A.

Example 2.8. (i) The map τ : M2(C) → M2(C) defined in Example 2.2 is a
homomorphism but it is not regular. Because τ(u)∗τ(u) 6= τ(1)∗τ(1) for the
unitary u =

[ 0
1

1
0

]
.

(ii) All ∗-homomorphisms are regular. But the converse is not true. For example
τ :A→ M2(A) given by τ(a)=

[a
a

0
0

]
is a regular homomorphism but it is not

∗-preserving.

Proposition 2.9. Suppose τ :A→ B is a unital homomorphism. Then τ is regular
if and only if it is ∗-preserving.

Proof. Suppose τ is a unital regular homomorphism. Then for all unitary u ∈A,

τ(u)∗ = τ(u)∗τ(uu∗)= τ(u)∗τ(u)τ (u∗)= τ(1)∗τ(1)τ (u∗)= τ(u∗).



264 B. V. RAJARAMA BHAT, NIRUPAMA MALLICK AND K. SUMESH

Since any a ∈ A is a linear combination of at most four unitaries it follows that
τ(a)∗ = τ(a∗). The converse is obvious. �

The following theorem says that all regular homomorphisms preserve conjugation
∗ up to a symmetry. This is one of the reasons to study regular homomorphisms.

Theorem 2.10. Every regular homomorphism τ :A→ B is symmetric.

Proof. Suppose J ∈ B is the symmetry given by Proposition 2.4. Since τ is regular,
given any unitary u ∈A, we have

τ(u)∗τ(1)= τ(u)∗τ(u)τ (u∗)= τ(1)∗τ(1)τ (u∗)= τ(1)∗τ(u∗).

Since u∗ is also a unitary, we also get τ(u∗)∗τ(1)= τ(1)∗τ(u). In a similar fashion,
by regularity,

τ(1)τ (u)∗ = τ(u∗)τ (u)τ (u)∗ = τ(u∗)τ (1)τ (1)∗ = τ(u∗)τ (1)∗,

and replacing u by u∗, τ(1)τ (u∗)∗ = τ(u)τ (1)∗. So if we let u1 := u + u∗ and
u2 := u− u∗, then τ(u1)

∗τ(1)= τ(1)∗τ(u1) and τ(u1)τ (1)∗ = τ(1)τ (u1)
∗, so that

Proposition 2.4 is applicable and we get Jτ(u1)J = τ(u1)
∗. On the other hand,

as u∗2 =−u2 and Proposition 2.4 can be applied to iu2. Then we get Jτ(u2)J =
−τ(u2)

∗. Thus Jτ(u∗)J = τ(u)∗ for every unitary u. Since every element in a
C∗-algebra can be written as a linear combination of at most four unitaries it follows
that Jτ(a∗)J = τ(a)∗ for all a ∈A. �

Example 2.11. Suppose τ :A→B is a J -homomorphism for some symmetry J ∈B.
Then it can be seen that τ(u)∗τ(u)= τ(1)∗τ(1) for all unitary u ∈A if and only if
τ(u)τ (u)∗= τ(1)τ (1)∗ for all unitary u ∈A. But for general homomorphisms this is
not true. For example, let A=M2(C) and let v=

[ 1
0

1
1

]
∈A. Define a homomorphism

τ :A→ M2(A) by τ(a)=
[a

0
av
0

]
. Then τ satisfies τ(u)∗τ(u)= τ(1)∗τ(1) for all

unitary u. But τ(u)τ (u)∗ 6= τ(1)τ (1)∗ for the unitary u =
[0

1
1
0

]
.

Example 2.12. Suppose v ∈ A = B(H) is a nonscalar unitary. Define a homo-
morphism τ : A→ M2(A) by τ(a) =

[a
0

√
3(va−av)

a

]
. Then τ is symmetric with

symmetry J = 1
2

[
−1
√

3v∗

√
3v
1

]
. But τ is not regular since τ(u)∗τ(u) 6= τ(1)∗τ(1) for

any unitary u ∈A not commuting with v.

Proposition 2.13. Let τ : A→ B be a homomorphism. Then τ is regular if and
only if for all a, b ∈A,

(i) τ(a)∗τ(b)= τ(1)∗τ(a∗b)= τ(b∗a)∗τ(1),

(ii) τ(a)τ (b)∗ = τ(ab∗)τ (1)∗ = τ(1)τ (ba∗)∗.

Proof. Assume that τ is regular. Suppose u is a unitary. Then for any b, c ∈A,

τ(u)∗τ(b)= τ(u)∗τ(u)τ (u∗b)= τ(1)∗τ(1)τ (u∗b)= τ(1)∗τ(u∗b),(2-5)

τ(c)τ (u)∗ = τ(cu∗)τ (u)τ (u)∗ = τ(cu∗)τ (1)τ (1)∗ = τ(cu∗)τ (1)∗.(2-6)
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Since any element in A is a linear combination of at most four unitaries from
equations (2-5) and (2-6) we have τ(a)∗τ(b) = τ(1)∗τ(a∗b) and τ(c)τ (d)∗ =
τ(cd∗)τ (1)∗, respectively for all a, d ∈A. Taking adjoints of these equalities proves
(i) and (ii). The converse is obvious. �

Note that given a (unital) ∗-homomorphism ϑ :A→Ba(E) and an idempotent
operator T ∈ ϑ(A)′ ⊆ Ba(E) the map a 7→ ϑ(a)T always defines a bounded
(∗-nondegenerate) regular homomorphism from A into Ba(E). Now we will prove
that all ∗-nondegenerate regular homomorphisms can be represented this way.

Theorem 2.14. Suppose τ :A→Ba(E) is a ∗-nondegenerate, regular homomor-
phism. Then there exists a unique unital ∗-homomorphism ϑ :A→Ba(E) such that
τ(a)= ϑ(a)τ (1)= τ(1)ϑ(a) for all a ∈A. Consequently τ is completely bounded
with ‖τ‖cb = ‖τ(1)‖.

Proof. If τ is unital, then it is ∗-preserving and in such case we take ϑ=τ . Otherwise
let E0= span{τ(A)E,τ (A)∗E}= span{τ(1)E,τ (1)∗E}.Now for each unitary u∈A,
define ϑ(u) : E0→ E0 by ϑ(u)

(∑
i τ(1)xi + τ(1)∗yi

)
=
∑

i (τ (u)xi + τ(u∗)∗yi )

for all xi , yi ∈ E . Since∥∥∥∥ϑ(u)(∑
i

τ(1)xi + τ(1)∗yi

)∥∥∥∥2

=

∥∥∥∥〈∑
i

τ(u)xi + τ(u∗)∗yi ,
∑

j

τ(u)x j + τ(u∗)∗yj

〉∥∥∥∥
=

∥∥∥∥∑
i, j

(〈xi , τ (u)∗τ(u)x j 〉+ 〈xi , τ (u)∗τ(u∗)∗yj 〉

+ 〈yi , τ (u∗)τ (u)x j 〉+ 〈yi , τ (u∗)τ (u∗)∗yj 〉)

∥∥∥∥
=

∥∥∥∥∑
i, j

(〈xi , τ (1)∗τ(1)x j 〉+ 〈xi , τ (1)∗yj 〉+ 〈yi , τ (1)x j 〉+ 〈yi , τ (1)τ (1)∗yj 〉)

∥∥∥∥
=

∥∥∥∥〈∑
i

τ(1)xi + τ(1)∗yi ,
∑

j

τ(1)x j + τ(1)∗yj

〉∥∥∥∥
=

∥∥∥∥∑
i

τ(1)xi + τ(1)∗yi

∥∥∥∥2

,

we see that ϑ(u) is well defined and norm preserving on E0. It is also B-linear.
Hence ϑ(u) is an isometry. Note that ran(ϑ(u)) = E0 so that ϑ(u) : E0→ E0 is
a unitary. Now given a linear combination of unitaries, say a =

∑
λi ui ∈ A, we

define ϑ(a) :=
∑
λiϑ(ui ). Note that if

∑
λi ui = 0, then
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ϑ

(∑
i

λi ui

)(∑
j

τ(1)x j + τ(1)∗y j

)
=

∑
i

λiϑ(ui )

(∑
j

τ(1)x j + τ(1)∗y j

)
=

∑
i, j

(λiτ(ui )x j + λiτ(u∗i )
∗y j )

=

∑
j

(
τ

(∑
i

λi ui

)
τ(1)x j + τ

(∑
i

λi u∗i

)∗
τ(1)∗y j

)
= 0,

so that ϑ
(∑

λi ui
)
= 0. Thus the definition of ϑ(a) : E0→ E0 is independent of

the choice of linear combination
∑
λi ui . Note that if a =

∑
λi ui ∈A, then

(2-7) ϑ(a)(τ (a1)x1+ τ(a2)
∗x2)

=

∑
λiϑ(ui )τ (1)τ (a1)x1+

∑
λiϑ(ui )τ (1)∗τ(a2)

∗x2

=

∑
λiτ(ui a1)x1+

∑
λiτ(a2u∗i )

∗x2

= τ
(∑

λi ui a1

)
x1+ τ

(
a2
∑

λi u∗i
)∗

x2

= τ(aa1)x1+ τ(a2a∗)∗x2

for all xi ∈ E . Now it follows that ϑ(1) = IE0, ϑ(a + b) = ϑ(a) + ϑ(b) and
ϑ(a)ϑ(b)= ϑ(ab) for all a, b ∈A. Since any element in A is a linear combination
of at most four unitaries and ‖ϑ(u)‖≤ 1 for all unitary u ∈A, we have ‖ϑ(a)‖<∞
for all a ∈A. Hence each ϑ(a) : E0→ E0 can be extended to a bounded operator,
again denoted by ϑ(a), on E = E0. Also, from Proposition 2.13, for all a ∈ A,
xi ∈ E we have

〈ϑ(a)(τ (1)x1+ τ(1)∗x2),τ (1)x3+ τ(1)∗x4〉

= 〈x1,τ (a)∗τ(1)x3〉+〈x1,τ (a)∗τ(1)∗x4〉+〈x2,τ (a∗)τ (1)x3〉+〈x2,τ (a∗)τ (1)∗x4〉

= 〈x1,τ (1)∗τ(a∗)x3〉+〈x1,τ (a)∗x4〉+〈x2,τ (a∗)x3〉+〈x2,τ (1)τ (a)∗x4〉

= 〈τ(1)x1+τ(1)∗x2,τ (a∗)x3+τ(a)∗x4〉

= 〈τ(1)x1+τ(1)∗x2,ϑ(a∗)(τ (1)x3+τ(1)∗x4)〉,

so that 〈ϑ(a)x, x ′〉 = 〈x, ϑ(a∗)x ′〉 for all x, x ′ ∈ E , that is, ϑ(a) is adjointable with
ϑ(a)∗ = ϑ(a∗). Thus a 7→ ϑ(a) defines a unital ∗-homomorphism ϑ :A→Ba(E).
Moreover, from (2-7) we have ϑ(a)τ (1)x = τ(a)x and ϑ(a)τ (1)∗x = τ(a∗)∗x for
all x ∈ E . Hence we get ϑ(a)τ (1) = τ(a) = τ(1)ϑ(a) for all a ∈ A, therefore
‖τ‖cb ≤ ‖ϑ‖cb‖τ(1)‖ ≤ ‖τ(1)‖.
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Uniqueness: If ϑ ′ :A→Ba(E) is any other such ∗-homomorphism, then

ϑ ′(a)τ (1)x = τ(a)x = ϑ(a)τ (1)x,

ϑ ′(a)τ (1)∗x ′ = (τ (1)ϑ ′(a∗))∗x ′ = τ(a∗)∗x ′ = (τ (1)ϑ(a∗))∗x ′ = ϑ(a)τ (1)∗x ′.

Hence ϑ(a)x = ϑ ′(a)x for all a ∈A, x ∈ E = span{τ(1)E, τ (1)∗E}. �

Remark 2.15. Suppose τ :A→Ba(E) is a regular homomorphism, not necessarily
∗-nondegenerate. Then also ϑ :A→Ba(E0) given as in the proof is a well-defined
unital ∗-homomorphism. Note that E0 is a τ(a)-reducing closed B-submodule of E .
Thus the proof says that: If τ :A→Ba(E) is a regular homomorphism, then there
exists a closed B-submodule E0 ⊆ E, which reduces all τ(a); and a unique unital
∗-homomorphism ϑ : A→ Ba(E0) such that τ(a)|E0 = τ(1)ϑ(a) = ϑ(a)τ (1)|E0

for all a ∈A. Moreover, if E0 is complemented in E, then ϑ̃ =
[
ϑ
0

0
0

]
:A→Ba(E)

is a ∗-homomorphism such that τ(a)= τ(1)ϑ̃(a)= ϑ̃(a)τ (1).

Corollary 2.16. Suppose τ :A→Ba(E) is a ∗-nondegenerate regular homomor-
phism with τ(1)= τ(1)∗. Then τ is a ∗-homomorphism.

Proof. Suppose ϑ : A→ Ba(E) is the unique unital ∗-homomorphism such that
τ(a)= ϑ(a)τ (1)= τ(1)ϑ(a). Then

τ(a)∗ = (ϑ(a)τ (1))∗ = τ(1)∗ϑ(a∗)= τ(1)ϑ(a∗)= τ(a∗). �

Note that a unital C∗-algebra B is a Hilbert B-module with inner product 〈b, b′〉 :=
b∗b′. Moreover, B∼=Ba(B) as C∗-algebras under the unital isometric ∗-isomorphism
b 7→ Tb where Tb ∈ Ba(B) is given by Tb(b′) = bb′ for all b ∈ B. (Note that
adjointable maps preserves module action so that T (b) = T (1b) = T (1)b for all
b∈B, T ∈Ba(B).) So given a linear map τ :A→B we say that τ is ∗-nondegenerate
if span{τ(A)B, τ (A)∗B} = B.

Corollary 2.17. Suppose τ :A→ B is a ∗-nondegenerate regular homomorphism.
Then there exists a unique unital ∗-homomorphism ϑ : A→ B such that τ(a) =
ϑ(a)τ (1) = τ(1)ϑ(a) for all a ∈ A. Consequently τ is completely bounded with
‖τ‖cb = ‖τ(1)‖. Moreover, if τ(1)= τ(1)∗, then τ is a ∗-homomorphism.

Example 2.18. Let A be the C∗-algebra of continuous functions on the interval
[0, 1]. Let B = M2(A) and let E = B, with usual inner product, so that Ba(E)∼= B.
Let g : [0, 1] → C be the function defined by g(x) = x for all x ∈ [0, 1]. Define
τ :A→ Ba(E) by

τ( f )=
[

f g f
0 0

]
.
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Then it is easily seen that τ is a regular homomorphism, E0 defined as above is

E0 = span{τ(A)E, τ (A)∗E}

=

{[
f11 f12

f21 f22

]
: fi j ∈ B, 1≤ i, j ≤ 2, where f2 j (0)= 0

}
,

and is not complemented in E .

In the following E , F are Hilbert C∗-modules over possibly different C∗-algebras
B, C respectively. We wish to obtain a structure theorem for strictly continuous regu-
lar homomorphisms from Ba(E) to Ba(F). Recall (see [Lance 1994]) that a net {aα}
in Ba(E) is said to converge strictly (or ∗-strongly) to a ∈Ba(E) if, for all x, x ′ ∈ E ,
the nets {aαx} and {a∗αx ′} converge to ax and a∗x ′, respectively. Note that {aα}
converges to a strictly if and only if {a∗α} converges to a∗ strictly. A bounded linear
map τ :Ba(E)→Ba(F) is said to be strict if τ(aα) converges strictly to τ(a) in
Ba(F) whenever a net {aα} in the unit ball of Ba(E) converges strictly to a ∈Ba(E).

Remark 2.19. If the map τ given in Theorem 2.14 is also a strict map (so bounded
by definition), then ϑ is a strict map. For, suppose {aα} is a net in the unit ball of
A=Ba(A) which converges strictly to a ∈A. Then for all x1, x2 ∈ E we have

ϑ(aα)τ (1)x1 = τ(aα)x1
α
−→ τ(a)x1 = ϑ(a)τ (1)x1,

and

ϑ(aα)τ (1)∗x2 = (τ (1)ϑ(a∗α))
∗x2 = τ(a∗α)

∗x2
α
−→ τ(a∗)∗x2 = (τ (1)ϑ(a∗))∗x2

= ϑ(a)τ (1)∗x2,

so that {ϑ(aα)x} and {ϑ(aα)∗x ′} converge to ϑ(a)x and ϑ(a)∗x ′ respectively, for all
x, x ′ ∈ E . Thus ϑ is a strict unital ∗-homomorphism. In particular, if τ :Ba(E)→
Ba(F) is a ∗-nondegenerate, strict, regular homomorphism then the strict, unital
∗-homomorphism ϑ : Ba(E)→ Ba(F) has a factorization ϑ(a) = U (a � I )U∗

where U : E�Fϑ→ F is a unitary on a suitable Hilbert B-C-module Fϑ (see [Muhly
et al. 2006, Theorem 1.4]). In fact, if we consider F as a Hilbert Ba(E)-C-module
with left action given by ϑ , then Fϑ = E∗ �ϑ F and U ∈ Ba,bil(E � Fϑ , F). A
more generalized version says that: if ϑ :Ba(E)→Ba(F) is a strict CP-map, then
ϑ(a)=W (a� I )W ∗ for some bounded adjointable operator W : E� Fϑ→ F on a
suitable Hilbert B-C-module Fϑ (see [Skeide and Sumesh 2014, Theorem 3.2]). In
this case, Fϑ = E∗� E � F where E is the Hilbert Ba(E)-Ba(F)-module obtained
from the GNS construction ([Paschke 1973, Theorem 5.2]) of the CP-map ϑ .

Recall that a Hilbert B-module E is said to be full if span{〈x, y〉 : x, y ∈ E} = B.
The following lemma is a known result. But for the sake of completeness of the
note we include a proof here.
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Lemma 2.20. Suppose F is a Hilbert B-C-module. Then for any full Hilbert B-
module E the relative commutant of Ba(E)� IF in Ba(E � F) is IE �Ba,bil(F).

Proof. If T ∈Ba,bil(F), then IE�T ∈Ba(E � F) commutes with all elements of the
form a� IF for all a∈Ba(E) and hence we have IE�B

a,bil(F)⊆ (Ba(E)� IF )
′. For

the reverse inclusion assume that a ∈ (Ba(E)� IF )
′
⊆Ba(E � F). Since E is full

and F = spanBF = span{〈x1, x2〉y : xi ∈ E , y ∈ F} we have F = E∗�Ba(E) E�B F
under the identification 〈x1, x2〉y 7→ x∗1�x2�y. Set T = (IE∗�a)∈B

a,bil(F). Then,
since E�B E∗∼=K(E) via x1�x∗2 7→ |x1〉〈x2|, and K(E)�K(E) E�B F ∼= E�B F
via |x1〉〈x2| � x � y 7→ x1〈x2, x〉� y, we get

(IE � T )(x1�〈x2, x3〉y)= (IE � IE∗ � a)(x1� x∗2 � x3� y)

= x1� x∗2 � a(x3� y)

= |x1〉〈x2| � a(x3� y)

= |x1〉〈x2|a(x3� y)

= (|x1〉〈x2| � idF )a(x3� y)

= a(|x1〉〈x2| � idF )(x3� y)

= a(|x1〉〈x2|x3� y)

= a(x1�〈x2, x3〉y).

for all xi ∈ E , y ∈ F. Thus T ∈ Ba,bil(F) is such that a = idE � T. Hence
(Ba(E)� IF )

′
⊆ IE �Ba,bil(F). �

Theorem 2.21. Suppose E is a full Hilbert B-module, F is a Hilbert B-C-module
and τ :Ba(E)→Ba(F) is a ∗-nondegenerate, strict, regular homomorphism. Then
there exists a Hilbert B-C-module Fτ , an idempotent operator T ∈Ba,bil(Fτ ) and a
unitary U : E � Fτ → F such that

τ(a)=U (a� T )U∗

for all a ∈ Ba(E). Moreover, the triple (Fτ , T,U ) is unique up to a unitary
isomorphism.

Proof. Suppose ϑ : Ba(E)→ Ba(F) is the unique unital ∗-homomorphism such
that τ(a)= ϑ(a)τ (1)= τ(1)ϑ(a). Since τ is strict we have ϑ is strict, and hence
there exists a Hilbert B-C-module Fϑ and a unitary U ∈ Ba,bil(E � Fϑ , F) such
that ϑ(a) = U (a � I )U∗. Take Fτ = Fϑ . Then ϑ(a)τ (1) = τ(1)ϑ(a) implies
that (a � I )U∗τ(1)U = U∗τ(1)U (a � I ) for all a ∈ Ba(E) so that U∗τ(1)U ∈
(Ba(E)� IFτ )

′. Hence there exists a T ∈Ba,bil(Fτ ) such that τ(1)=U (IE �T )U∗.
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Clearly, τ(a)= ϑ(a)τ (1)=U (a� T )U∗. Now

τ(1)2 = τ(1)=⇒ IE � T 2
= IE � T

=⇒ 〈(IE � T 2)(x1� y1), x2� y2〉 = 〈(IE � T )(x1� y1), x2� y2〉

=⇒ 〈T 2 y1, 〈x1, x2〉y2〉 = 〈T y1, 〈x1, x2〉y2〉

for all x1, x2 ∈ E and y1, y2 ∈ Fτ . But since E is full and Fτ has a nondegenerate left
action of B, from equation above, we have 〈T 2 y, y′〉 = 〈T y, y′〉 for all y, y′ ∈ Fτ ,
so that T 2

= T.

Uniqueness: Suppose (F ′τ , T ′,U ′) is another such triple. Then we have E � Fτ ∼=
F ∼= E � F ′τ via the unitary isomorphism U ′∗U. Since E is full we identify
E∗�Ba(E) E = B via the unitary isomorphism x∗� x ′ 7→ 〈x, x ′〉. Then

Fτ = B� Fτ = E∗� E � Fτ ∼= E∗� E � F ′τ = B� F ′τ = F ′τ ,

where the isomorphism is given by the unitary Û = (IE∗�U ′∗)(IE∗�U ) : Fτ→ F ′τ .
Observe that

U = IE� IE∗�U = IE�(IE∗�U ′)Û = (IE� IE∗�U ′)(IE∗�Û )=U ′(IE∗�Û ).

Also since U (IE � T )U∗ = τ(IE)=U ′(IE � T ′)U ′∗ we have

T = IE∗� IE�T = IE∗�{U∗U ′(IE�T ′)U ′∗U }= Û∗(IE∗� IE�T ′)Û = Û∗T ′Û .

Thus Û gives the required unitary equivalence. �

Corollary 2.22. Suppose τ and T are as in the theorem above. Then τ is a ∗-
homomorphism if and only if T = T ∗.

Proof. Clearly if T = T ∗, then τ is a ∗-homomorphism. Conversely assume that τ
is a ∗-homomorphism. Then U (I � T )U∗ = τ(I )= τ(I )∗ =U (I � T ∗)U∗. Since
U is a unitary we get I � T = I � T ∗. Since E is full, this implies T = T ∗. �

Proposition 2.23. Suppose τ :A→B(H) is a regular homomorphism. Then there
exists a ∗-homomorphism ϑ : A→ B(H) such that τ(a)= ϑ(a)τ (1)= τ(1)ϑ(a)
for all a ∈ A. Consequently τ is completely bounded with ‖τ‖cb = ‖τ(1)‖. If
τ(1) = τ(1)∗, then τ is a ∗-homomorphism. If τ is ∗-nondegenerate, then ϑ is
unique and it is unit-preserving.

Proof. Follows from Remark 2.15. �

Suppose A is a von Neumann algebra and τ : A→ B(H) is a normal, regular
homomorphism. Then it can be verified that ϑ given by the Proposition 2.23
is a normal ∗-homomorphism. In particular if A = B(H′), where H′ is another
Hilbert space, then it is well known that ϑ has a factorization ϑ(a)= V (a� I )V ∗

for some isometry V : H′ � Hϑ → H on a suitable Hilbert space Hϑ . Again
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ϑ(a)τ (1)= τ(1)ϑ(a) for all a ∈B(H′) implies that τ(1)= V (I � T )V ∗ for some
T ∈B(Kϑ). Thus we have:

Theorem 2.24. Suppose τ : B(H)→ B(K) is a normal, regular homomorphism.
Then there exists a Hilbert space Kτ , an idempotent operator T ∈ B(Kτ ) and an
isometry V :H�Kτ → K such that

τ(a)= V (a� T )V ∗.

Moreover, there exists a symmetry J0 ∈B(Kτ ) such that τ is a J -homomorphism
with J = V (I � J0)V ∗. If τ is ∗-nondegenerate, then V is a unitary and (Kτ , T, V )
is unique up to unitary equivalence. Further, τ is a ∗-homomorphism if and only if
T = T ∗.

2C. Ternary homomorphisms.
Definition 2.25. Let t ∈ R. A map τ :A→ B is said to be t-ternary if

τ(a)τ (b)∗τ(c)= tτ(ab∗c) for all a, b, c ∈A.

A 1-ternary map is simply called a ternary map. Note that all ∗-homomorphisms
are ternary maps. In fact if A,B are unital C∗-algebras, then a unital linear map
τ : A→ B is ternary if and only if τ is a ∗-homomorphism. Here is a typical
example of a t-ternary homomorphism:

Example 2.26. Clearly, τ :A→ M2(A) given by τ(a)=
[ a
(
√

t−1)a
0
0

]
is a t-ternary

homomorphism for all t ∈ (1,∞).

We are only interested in t-ternary maps which are homomorphisms. In this
context, we have the following basic observation.

Proposition 2.27. Let A,B be unital C∗-algebras and let τ :A→ B be a nonzero
t-ternary homomorphism. Then 1 ≤ t = ‖τ(1)‖2. If t = 1, then τ is a ∗-
homomorphism.

Proof. For convenience, without loss of generality, we assume B ⊆B(H) for some
Hilbert space H. Take T = τ(1). Let H=H0⊕H⊥0 be the orthogonal decomposition
of H, where H0 = T (H). Since T 2

= T, T h = h for h ∈H0, as a consequence the
operator T decomposes as

T =
[

I N
0 0

]
for some N, with respect to the decomposition H = H0 ⊕H⊥0 . Now computing,
T T ∗T = tT , we see I + N N ∗ = t I. In particular t ≥ 1. Also since P = (1/t)T ∗T
is a nonzero projection we have ‖T ‖2 = t .

If t=1, we get N =0 and hence τ(1)∗=τ(1). Taking a=c=1 in the definition of
1-ternary, we get τ(b)∗= τ(1)∗τ(b)∗τ(1)∗= τ(1)τ (b)∗τ(1)= 1.τ (1.b∗.1)= τ(b∗).
Therefore, τ is a ∗-homomorphism. �
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Proposition 2.28. All t-ternary homomorphisms τ :A→ B are regular.

Proof. An easy computation using t-ternary and homomorphism properties yields
(τ (1)∗τ(1)− τ(u)∗τ(u))2 = 0 and (τ (1)τ (1)∗− τ(u)τ (u)∗)2 = 0 for any unitary
u ∈A. �

The converse of this proposition is not true. For example, the direct sum of t1
and t2-ternaries as in Example 2.26, is easily seen to be regular but not a t-ternary
for any t . The direct sum of two t-ternary homomorphisms on a common domain
algebra is again a t-ternary homomorphism.

From the proposition above, since all regular homomorphisms are symmetric,
all t-ternary homomorphisms τ : A→ B are symmetric homomorphisms. Since
1-ternary homomorphisms are already ∗-homomorphisms, we will assume that
t > 1. Now we will show that for a ∗-nondegenerate t-ternary homomorphism
τ : A→ Ba(E), t ∈ (1,∞), a possible choice of symmetry can be written down
explicitly as (1/

√
t)(τ (1)+ τ(1)∗− I ).

Proposition 2.29. Suppose t ∈ (1,∞) and τ :A→B is a t-ternary homomorphism.
Take T = τ(1) and Jt = (1/

√
t)(T + T ∗− I ). Then

(i) Jtτ(a)∗ Jt = τ(a∗) and Jtτ(a∗)Jt = τ(a)∗ for all a ∈A;

(ii) σ(Jt)⊆ {1,−1,−1/
√

t}.

Proof. We have T 2
= T and T T ∗T = tT. To prove (i),

Jtτ(a)∗ Jt =
1
√

t
(T + T ∗− I )τ (a)∗ 1

√
t
(T + T ∗− I )

=
1
t
(T τ(a)∗+ T ∗τ(a)∗− τ(a)∗)(T + T ∗− I )

=
1
t

T τ(a)∗(T + T ∗− I )

=
1
t

T τ(a)∗T

=τ(a∗).

Similarly we can prove that Jtτ(a∗)Jt = τ(a)∗. To see (ii), observe,

(Jt + I )(Jt − I )(
√

t Jt + I )=
√

t J 3
t + J 2

t −
√

t Jt − I

= Jt(T + T ∗− I )Jt + J 2
t −
√

t Jt − I

= (T ∗+ T − J 2
t )+ J 2

t −
√

t Jt − I

= 0.

Since Jt = J ∗t the proof is complete. �

In this Proposition, as Jt = J ∗t by spectral theorem Jt = P1− P2+ (−1/
√

t)P3,
where P1, P2, P3 are orthogonal projections with P1+ P2+ P3 = I. Note that due
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to finiteness of the spectrum of Jt , P1, P2, P3 are in the C∗-algebra B. Furthermore,
Jt is a symmetry if and only if P3 = 0.

Proposition 2.30. Suppose τ : A → Ba(E) is a t-ternary homomorphism with
t ∈ (1,∞). Then E0 = span{τ(a1)x1, τ (a2)

∗x2 : xi ∈ E , ai ∈ A, i = 1, 2} is
complemented in E. Moreover, the following are equivalent:

(i) τ is ∗-nondegenerate;

(ii) ker(τ (1)+ τ(1)∗)= {0};

(iii) Jt is a symmetry.

Proof. Set T = τ(1), E0= span{T (E), T ∗(E)}. We wish to construct an orthogonal
projection onto E0. Take Q = (1/(t − 1))[T T ∗+ T ∗T − T − T ∗]. From T 2

= T
and T T ∗T = tT, simple algebra shows QT = T, QT ∗ = T ∗ and Q = Q∗ = Q2.
So Q is a projection whose range contains T (E) and T ∗(E). From the definition
of Q, Q(E)⊆ E0. This proves Q(E)= E0. Clearly then (I − Q) is the projection
onto E⊥0 and E = E0⊕ E⊥0 .

To show the equivalence of (i) to (ii), we show ker(T + T ∗) = ker Q. If
(T + T ∗)x = 0, then

Qx = 1
t−1
[T T ∗+ T ∗T − T − T ∗]x = 1

t−1
[T T ∗x + T ∗T x]

=
1

t−1
[T (−T x)+ T ∗(−T ∗)x]

=
−1
t−1
[T x + T ∗x]

= 0.

Conversely if Qx = 0, then x ∈ E⊥0 ; hence (T + T ∗)x = 0. The equivalence of (ii)
and (iii) is obvious as ker(T+T ∗)= ker(

√
t Jt+1)=

{
x : Jt x = −1

√
t
x
}
= ran(P3). �

Theorem 2.31. Suppose t ∈ (1,∞) and τ :A→Ba(E) is a ∗-nondegenerate linear
map. Take Jt = (1/

√
t)[τ(1)+ τ(1)∗− 1]. Then the following are equivalent:

(i) τ is a t-ternary homomorphism.

(ii) τ is a Jt -homomorphism.

Proof. (i)⇒ (ii) : We have already seen this.

(ii)⇒ (i) : For all a, b, c ∈A we have

tτ(ab∗c)= tτ(a)τ (b∗)τ (c)

= tτ(a)Jtτ(b)∗ Jtτ(c)

= tτ(a)
τ (1)τ (b)∗τ(1)

t
τ(c)

= τ(a)τ (b)∗τ(c).
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�

Theorem 2.32. Suppose τ : A → Ba(E) is a t-ternary homomorphism, where
t ∈ (1,∞). Then there exists a closed, complemented, B-submodule E1 ⊆ E , a
unital ∗-homomorphism π :A→Ba(E1) and isometries V1, V2 ∈B

a(E1, E) with
V ∗2 V1 = (1/

√
t)IE1 such that

(2-8) τ( · )=
√

tV1π( · )V ∗2 .

Consequently τ is completely bounded with ‖τ‖cb = ‖τ(1)‖ =
√

t . Moreover, (2-8)
always defines a t-ternary homomorphism.

Proof. Let E1 be the range of the orthogonal projection P = (1/t)T ∗T where
T = τ(1). Define linear maps Vi : E1→ E by V1 = (1/

√
t)T |E1 and V2 = I |E1 .

Note that the Vi ’s are adjointable isometries with V ∗1 = (1/
√

t)PT ∗ and V ∗2 = P.
Now for each a ∈A define π(a) : E1→ E1 by π(a)= Pτ(a)|E1 . Clearly π(1)=
Pτ(1)|E1 = P|E1 = IE1 . Also for all a, b ∈A,

π(a)π(b)= Pτ(a)
τ (1)∗τ(1)

t
τ(b)|E1

= P
τ(a)τ (1)∗τ(b)

t
|E1

= Pτ(ab)|E1

= π(ab).

Now since

Pτ(a)∗P = 1
t2 τ(1)

∗τ(1)τ (a)∗τ(1)= 1
t
τ(1)∗τ(a∗)= Pτ(a∗)

for all x, x ′ ∈ E1 we have

〈π(a)x, x ′〉 = 〈Pτ(a)x, x ′〉 = 〈x, τ (a)∗Px ′〉 = 〈x, Pτ(a)∗Px ′〉 = 〈x, π(a∗)x ′〉,

so that π(a)∗ = π(a∗). Thus a 7→ π(a) defines a unital ∗-homomorphism π :A→
Ba(E1). Also for a ∈A we have

√
tV1π(a)V ∗2 = T Pτ(a)P = 1

t2 τ(1)τ (1)
∗τ(1)τ (a)τ (1)∗τ(1)= τ(a).

Since the Vi are isometries, τ is completely bounded with ‖τ‖cb ≤
√

t =‖τ(1)‖. �

Now we show that every regular homomorphism is essentially a direct sum
or direct integral of t-ternary homomorphisms through spectral integration. Let
τ : A→ B ⊆ B(H) be a ∗-nondegenerate regular homomorphism. In view of
Proposition 2.23, it suffices to know the structure of τ(1). As before, take T =
τ(1)= R+ i S and let J = f (R) be the symmetry constructed in Proposition 2.4.
In the following, we decompose the Hilbert space H as H = H+ ⊕H−, where
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H+ = {h ∈ H : Jh = h} and H− = {h ∈ H : Jh = −h}. With respect to this
decomposition, decompose the operator T = τ(1) as

T =
[

X Y
Z W

]
.

Now JTJ = T ∗ yields X = X∗,W =W ∗, Z =−Y ∗. Furthermore, from T 2
= T, we

get X2
−Y Y ∗ = X, XY +Y W = Y,−Y ∗Y +W 2

=W . So Y ∗Y =W (W − I ). Let
Y = V [W (W− I )]1/2, be the polar decomposition of Y. Suppose 0∈ σ(W ). Let 0 6=
h−∈H− such that W h−=0. Set h=

[ 0
h−

]
. Then Y h−=0, hence τ(1)h=0. Since τ

is ∗-nondegenerate this implies that h = 0, which is a contradiction. Again, suppose
1 ∈ σ(W ), choose 0 6= h− ∈H− such that W h− = h−. Then Y h− = 0. Since τ is
t-ternary, τ(1)τ (1)∗τ(1)h = tτ(1)h for t ∈ (1,∞). But τ(1)τ (1)∗τ(1)h = τ(1)h.
Thus τ(1)h = tτ(1)h =⇒ τ(1)h = 0. Since τ is ∗-nondegenerate this implies that
h = 0, which is a contradiction. Thus 0, 1 /∈ σ(W ). To prove V is unitary it is
enough to show that ran(Y ) = H+, i.e, we have to show that ker(Y ∗) = 0. Let
0 6= h+ ∈H+. We have X2

= X−Y Y ∗ and Y ∗h+= 0, which implies X2h+= Xh+.
Now −Z Xh+ = Y ∗X∗h+ = (XY )∗h+ = (Y ∗ − W ∗Y ∗)h+ = 0. Set h =

[ h+
0

]
.

Then τ(1)τ (1)∗τ(1)h = τ(1)h. Since τ is t-ternary, where t ∈ (1,∞), we will
get τ(1)h = tτ(1)h. Thus Xh+ = 0 and hence τ(1)h = 0 = τ(1)∗h. Since τ
is ∗-nondegenerate, h = 0. Thus to avoid degenerate cases assume that V is a
unitary and 0, 1 /∈ σ(W ). Now X2

− X = Y Y ∗ = V [W (W − I )]V ∗. Also from
XY = Y (I −W ), we get X V [W (W − I )]1/2 = V [W (W − I )]1/2(I −W ), which
yields, X = V (I −W )V ∗. Now T decomposes as

T =
[

V 0
0 I

] [
(I −W ) [W (W − I )]1/2

−[W (W − I )]1/2 W

] [
V ∗ 0
0 I

]
.

Observe that, for any real number w /∈ [0, 1]

Tw =
[

(1−w) [w(w− 1)]1/2

−[w(w− 1)]1/2 w

]
satisfies Tw = T 2

w and J2Tw J2 = T ∗w, where

J2 =

[
1 0
0 −1

]
.

and also TwT ∗w Tw = (1− 2w)2Tw. In other words z 7→ zTw is a (1− 2w)2-ternary
of complex numbers in M2(C).

3. Representations of completely bounded maps

In this section we give a new structure theorem for CB-maps from A into B(H). We
study some known structure theorems (see [Paulsen and Suen 1985; Suen 1991])
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and make a comparison. We repeatedly use the following well-known theorem (see
[Paulsen 2002, Theorem 8.3]):

Theorem 3.1. Suppose A is a unital C∗-algebra and ψ : A → B(H) is a CB-
map. Then there exist CP-maps ϕi : A→ B(H) with ‖ϕi‖cb = ‖ψ‖cb such that
8 : M2(A)→B(H⊕H) defined by

8

([
a b
c d

])
=

[
ϕ1(a) ψ(b)
ψ∗(c) ϕ2(d)

]

is a CP-map. Moreover, if ‖ψ‖cb ≤ 1, it is possible to take ϕi (1)= IH.

3A. Regular representations. Observe that if K is another Hilbert space and τ :
A→B(K) is a regular homomorphism, then ψ( · ) :=W ∗τ( · )W defines a CB-map
from A into B(H) for all W ∈B(H,K). We prove all CB-maps arise this way.

Theorem 3.2. Suppose ψ : A→ B(H) is a CB-map. Then there exists a Hilbert
space K, a ∗-nondegenerate regular homomorphism τ :A→B(K) and a bounded
linear map W :H→K such thatψ( · )=W ∗τ( · )W.Moreover, given any t ∈ (1,∞)
we can choose τ and W such that τ is t-ternary and W satisfies

(
(t − 1)

√
t − 1

2
√

t − 1+ 2t − 1

)
‖W‖2 ≤ ‖ψ‖cb ≤

√
t‖W‖2.

Proof. Since ψ is a CB-map, by Theorem 3.1, there exists CP-maps ϕi :A→B(H)
such that 8=

[
ϕ1
ψ∗

ψ
ϕ2

]
: M2(A)→B(H⊕H) is a CP-map. Suppose (K,5, V ) is

the (minimal) Stinespring dilation for 8. Given t ∈ (1,∞) set t ′ =
√

t − 1. Then
for a ∈A we have

ψ(a)=
[
IH IH

] [0 ψ(a)
0 0

] [
IH
IH

]
=
[
IH IH

]
8

([
0 a
0 0

])[
IH
IH

]
=
[
IH IH

]
V ∗5

([
0 a
0 0

])
V
[

IH
IH

]
(3-1)

=
[
IH IH

]
V ∗5

([
0 1

√
t ′

1
√

t ′
−1

t ′
√

t ′

])
5

([
a 0

t ′a 0

])
5

([
0 1

√
t ′

1
√

t ′
−1

t ′
√

t ′

])
V
[

IH
IH

]
.(3-2)
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Define τ :A→B(K) by τ(a)=5
([ a

t ′a
0
0

])
, which is a t-ternary homomorphism.

Note that if k ∈ K is such that τ(1)k = 0= τ(1)∗k, then

k =5(1)k =5
([

0 1
t ′

0 −1
t ′2

] [
1 0
t ′ 0

]
+

[
0 0
1
t ′ 0

] [
1 t ′

0 0

])
k

=5

([
0 1

t ′

0 −1
t ′2

])
τ(1)k+5

([
0 0
1
t ′ 0

])
τ(1)∗k

= 0.

Thus τ is a ∗-nondegenerate t-ternary homomorphism. Set

W =5
([

0 1/
√

t ′

1/
√

t ′ −1/t ′
√

t ′

])
V
[

IH
IH

]
∈B(H,K).

Then from (3-2) we get ψ( · )=W ∗τ( · )W ; hence ‖ψ‖cb≤‖W‖2‖τ‖cb=
√

t‖W‖2.
Also note that

‖W‖2 = ‖W ∗W‖

=

∥∥∥∥[IH IH
]

V ∗5
([

0 1/
√

t ′

1/
√

t ′ −1/t ′
√

t ′

] [
0 1/

√
t ′

1/
√

t ′ −1/t ′
√

t ′

])
V
[

IH
IH

]∥∥∥∥
=

∥∥∥∥[IH IH
]
8

([
1/t ′ −1/t ′2

−1/t ′2 (t ′2+ 1)/t ′3

])[
IH
IH

]∥∥∥∥
=

∥∥∥∥[IH IH
] [ ϕ1(1/t ′) ψ(−1/t ′2)
ψ∗(−1/t ′2) ϕ2((t ′2+ 1)/t ′3)

] [
IH
IH

]∥∥∥∥
=

∥∥∥ϕ1

( 1
t ′
)
−ψ

( 1
t ′2
)
−ψ∗

( 1
t ′2
)
+ϕ2

( t ′+1
t ′2

)∥∥∥
≤

1
t ′
‖ϕ1‖cb+

1
t ′2
‖ψ‖cb+

1
t ′2
‖ψ‖cb+

( t ′2+1
t ′3

)
‖ϕ2‖cb

=

(2t ′+2t ′2+1
t ′3

)
‖ψ‖cb

=
2
√

t−1+2t−1
(t−1)

√
t−1

‖ψ‖cb. �

Theorem 3.3. Suppose A is a unital C∗-algebra and H is a Hilbert space. Then
there exists a Hilbert space K and a ∗-nondegenerate regular homomorphism
τ : A→ B(K) such that given any ψ ∈ CB(A,B(H)) there exists an operator
Wψ ∈B(H,K) such that ψ( · )=W ∗ψτ( · )Wψ . Moreover, given any t ∈ (1,∞) we
can choose τ and Wψ such that τ is t-ternary and Wψ satisfies(

(t − 1)
√

t − 1

2
√

t − 1+ 2t − 1

)
‖Wψ‖

2
≤ ‖ψ‖cb ≤

√
t‖Wψ‖

2.
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Proof. Suppose t ∈ (1,∞). For each ψ ∈ CB(A,B(H)) fix a ∗-nondegenerate
regular representation (Kψ , τψ ,Wψ) as in Theorem 3.2. Take K = ⊕ψKψ and
τ = ⊕ψτψ . Note that τ : A→ B(K) is a well defined ∗-nondegenerate t-ternary
homomorphism since each τψ is a ∗-nondegenerate t-ternary homomorphism with
‖τψ‖=

√
t . Now given any CB-map ψ we have the corresponding Wψ ∈B(H,Kψ).

Considering Kψ ⊆ K via the natural inclusion map we have Wψ ∈B(H,K) with(
(t − 1)

√
t − 1

2
√

t − 1+ 2t − 1

)
‖Wψ‖

2
≤ ‖ψ‖cb ≤

√
t‖Wψ‖

2

and ψ( · )=W ∗ψτψ( · )Wψ =W ∗ψτ( · )Wψ . �

Theorem 3.4. Suppose ψ : A→ B(H) is a CC-map. Then there exists a Hilbert
space K, a (not necessarily ∗-nondegenerate) regular homomorphism τ :A→B(K)
and an isometry V ∈B(H,K) such thatψ( · )=V ∗τ( · )V.Moreover, we can choose
τ to be t-ternary for t large enough (t ≥ 18).

Proof. As in the proof of Theorem 3.2 consider the CP-extension of ψ given by
8=

[
ϕ1
ψ∗

ψ
ϕ2

]
: M2(A)→B(H⊕H) and the corresponding (minimal) Stinespring

dilation (K′,5′, V ′) for 8. Given t ∈ (1,∞) set t ′ =
√

t − 1 and define

W ′ =5′
([

0 1/
√

t ′

1/
√

t ′ −1/(t ′
√

t ′)

])
V ′
[

IH
IH

]
∈B(H,K′)

and define τ ′ :A→B(K′) by τ ′(a)=5′
([ a

t ′a
0
0

])
, which is a ∗-nondegenerate t-

ternary homomorphism. Clearly ψ(a)=W ′∗τ ′(a)W ′. Note that since ψ is CC-map
V ′ can be chosen to be an isometry. Hence

‖W ′‖2 ≤
∥∥∥∥[ 0 1/

√
t ′

1/
√

t ′ −1/(t ′
√

t ′)

]∥∥∥∥2∥∥∥∥[IH
IH

]∥∥∥∥2

≤ 2
( 1

t ′
+

1
t ′
+

1
t ′3
)
,

because ‖[ai j ]‖
2
≤
∑

i j |ai j |
2. So we can assume that W ′∈B(H,K′) is a contraction

by taking t large enough (t ≥ 18). Let K′′ = H⊕K′ and W ′′ :=
[ 0

W ′
0
0

]
∈ B(K′′).

Define τ ′′ : A→ B(K′′) by a 7→
[0

0
0

τ ′(a)

]
, which is a t-ternary homomorphism.

Suppose U is Halmos’s unitary dilation of W ′′, that is,

U =
[

W ′′ (1−W ′′W ′′∗)1/2

(1−W ′′∗W ′′)1/2 −W ′′∗

]
∈B(K′′⊕K′′).

Set K=K′′⊕K′′ and define τ :A→B(K) by τ(a)=
[
τ ′′(a)

0
0
0

]
which is a t-ternary

homomorphism. Let V0 be the inclusion map of H in K=K′′⊕K′′ =H⊕K′⊕K′′.
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Then V0 =
[ IK′′

0K′′

][ IH
0K′

]
. Set V =U V0 ∈B(H,K), which is an isometry. Then

V ∗τ(a)V = V ∗0 U∗τ(a)U V0

= V ∗0

[
W ′′∗τ ′′(a)W ′′ ∗

∗ ∗

]
V0

=
[
IH 0K′

]
W ′′∗τ ′′(a)W ′′

[
IH
0K′

]
=
[
IH 0K′

] [0 W ′∗

0 0

] [
0 0
0 τ ′(a)

] [
0 0

W ′ 0

] [
IH
0K′

]
=W ′∗τ ′(a)W ′

= ψ(a).

Note that τ is a t-ternary for t ≥ 18. �

Theorem 3.5. Suppose A is a unital C∗-algebra and H is a Hilbert space. There
exists a Hilbert space K and a regular homomorphism τ : A→ B(K) such that
given any completely contractive map ψ : A→ B(H) there exists an isometry
Vψ ∈B(H,K) such that

ψ( · )= V ∗ψ τ( · )Vψ .

Moreover, we can choose τ to be t-ternary for t large enough (t ≥ 18).

Proof. This follows by considering the direct sum of all representations given by
Theorem 3.4. �

Now we prove analogues of above theorems for the case when the range algebra
is an injective C∗-algebra.

Theorem 3.6. Suppose B is an injective C∗-algebra and ψ :A→ B is a CB-map.
Then there exists a Hilbert B-module E , a ∗-nondegenerate regular homomorphism
τ :A→Ba(E) and a vector z ∈ E such that

ψ( · )= 〈z, τ ( · )z〉.

Moreover, given any t ∈ (1,∞) we can choose τ and z such that τ is t-ternary and
z satisfies ((t − 1)

√
t − 1/(2

√
t − 1+ 2t − 1))‖z‖2 ≤ ‖ψ‖cb ≤

√
t‖z‖2.

Proof. Suppose t ∈ (1,∞). Let ρ : B→B(G) be a faithful unital ∗-homomorphism
ρ : B→ B(G) of B on some Hilbert space G satisfying span ρ(B)G = G. As B is
injective there exists a conditional expectation PB : B(G)→ ρ(B), i.e., PB is a
CP-map satisfying PB(b1T b2)= b1 PB(T )b2 for all bi ∈ ρ(B), T ∈B(G). Consider
the CB-map ψ̃ = ρ ◦ψ :A→B(G) with a ∗-nondegenerate regular representation
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(K, τ̃ ,W ), as in Theorem 3.2, where τ̃ :A→B(K) is a ∗-nondegenerate t-ternary
homomorphism. Set E0 =B(G,K). Given x, y ∈ E0 and b ∈ B define

xb := x ◦ ρ(b) ∈ E0 and 〈x, y〉 := ρ−1 PB(x∗ ◦ y) ∈ B.

Here x∗ is the adjoint of x ∈ B(G,K). It is easy to verify that with the above
operations E0 forms a semi-inner product B-module. Let E be the completion of
the inner product B-module E0/N where

N := {x ∈ E0 : 〈x, x〉 = 0} = {x ∈ E0 : 〈x, y〉 = 0 for all y ∈ E0}.

Note that for x+N , x ′+N ∈E the inner product is given by 〈x+N , x ′+N 〉 :=〈x, x ′〉.
We denote the equivalence classes x + N by x itself. Now for each a ∈A define
τ(a) : E→ E by τ(a)x := τ̃ (a) ◦ x for all x ∈ E0. Note that

‖τ(a)x‖2 = ‖〈τ̃ (a) ◦ x, τ̃ (a) ◦ x〉‖

= ‖ρ−1 PB(x∗ ◦ τ̃ (a)∗ ◦ τ̃ (a) ◦ x)‖

≤ ‖τ̃ (a)‖2‖ρ−1 PB(x∗ ◦ x)‖

= ‖τ̃ (a)‖2‖〈x, x〉‖

= ‖τ̃ (a)‖2‖x‖2,

so that τ(a) is a well defined bounded linear map. Also for all x, y ∈ E we have

〈τ(a)x, y〉 = ρ−1 PB((τ̃ (a) ◦ x)∗ ◦ y)= ρ−1 PB(x∗ ◦ τ̃ (a)∗ ◦ y)= 〈x, τ̃ (a)∗ ◦ y〉,

so that τ(a) ∈Ba(E) with τ(a)∗y = τ̃ (a)∗ ◦ y. Also for all a, b, c ∈A and x ∈ E
we have

τ(a)τ (b)x = τ(a)(τ̃ (b) ◦ x)= τ̃ (a) ◦ τ̃ (b) ◦ x = τ̃ (ab) ◦ x = τ(ab)x

and

τ(a)τ (b)∗τ(c)x = τ̃ (a) ◦ τ̃ (b)∗ ◦ τ̃ (c) ◦ x = t τ̃ (ab∗c) ◦ x = tτ(ab∗c)x,

so that τ(a)τ (b)= τ(ab) and τ(a)τ (b)∗τ(c)= tτ(ab∗c). Thus a 7→ τ(a) defines
a t-ternary homomorphism τ : A→ Ba(E). Now if we set z = W ∈ E , then for
a ∈A we have

〈z, τ (a)z〉 = ρ−1 PB(W ∗ ◦ τ̃ (a) ◦W )

= ρ−1 PB(ψ̃(a))

= ρ−1 PB(ρ ◦ψ(a))

= ρ−1
◦ ρ ◦ψ(a)

= ψ(a)
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and hence ‖ψ‖cb ≤ ‖τ‖cb‖z‖2 =
√

t‖z‖2. Also(
(t − 1)

√
t − 1

2
√

t − 1+ 2t − 1

)
‖z‖2 =

(
(t − 1)

√
t − 1

2
√

t − 1+ 2t − 1

)
‖W‖2 ≤ ‖ψ̃‖cb ≤ ‖ψ‖cb.

Also since τ̃ is a ∗-nondegenerate t-ternary homomorphism, from Proposition 2.30
it follows that τ is also ∗-nondegenerate. �

In this case also we can have a universal representation. Fixing one regular
representation for each ψ ∈ CB(A,B) and considering the direct sum of all such
representations as in the proof of Theorem 3.3 we can have the following.

Theorem 3.7. Suppose B is an injective C∗-algebra. There exists a Hilbert B-
module E , and a ∗-nondegenerate regular homomorphism τ : A→ Ba(E) such
that given any ψ ∈ C B(A,B) there exists a vector zψ ∈ E such that

ψ( · )= 〈zψ , τ ( · )zψ 〉.

Moreover, given any t ∈ (1,∞) we can choose τ and zψ such that τ is t-ternary
and zψ satisfies ((t − 1)

√
t − 1/(2

√
t − 1+ 2t − 1))‖zψ‖2 ≤ ‖ψ‖cb ≤

√
t‖zψ‖2.

3B. Commutant representations. In this section we provide new and possibly
simpler proofs of some known results for completely bounded maps. To begin with
we give a different proof of the following result due to Paulsen and Suen [1985,
Theorem 2.2]. Our proof involves mainly matrix manipulation.

Theorem 3.8. Suppose ψ : A→ B(H) is a CB-map. Then there exists a Hilbert
space K, a unital representation π : A→ B(K), an isometry V : H→ K and a
unique operator T ∈ π(A)′ ⊆B(K) such that

ψ( · )= V ∗Tπ( · )V and spanπ(A)VH= K.

Furthermore, ‖ψ‖cb ≤ ‖T ‖ ≤ 2‖ψ‖cb. If ψ = ψ∗, then T = T ∗ and ‖ψ‖cb = ‖T ‖.

Proof. For nonzero ψ , replacing ψ by ψ/‖ψ‖cb if necessary, we may assume
that ‖ψ‖cb = 1. Construct 8 as in Theorem 3.1 and let (K̃,5, Ṽ ) be the minimal
Stinespring dilation for 8 with Ṽ an isometry. Then from equation (3-1) we have

(3-3) ψ(a)=
[

IH√
2

IH√
2

]
Ṽ ∗5

([
0 2
0 0

])
5

([
a 0
0 a

])
Ṽ
[

IH/
√

2
IH/
√

2

]
= V ∗T̃ π̃(a)V,

where V = Ṽ
[

IH/
√

2
IH/
√

2

]
∈ B(H, K̃) is an isometry, T̃ = 5

([0
0

2
0

])
∈ B(K) and π̃ :

A→B(K̃) is the unital representation given by π̃(a) :=5
([a

0
0
a

])
. Clearly

T̃ π̃(a)=5
([

0 2a
0 0

])
= π̃(a)T̃
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for all a ∈ A so that T̃ ∈ π̃(A)′ ⊆ B(K̃). Set K = span π̃(A)VH ⊆ K̃ and
T = PKT̃ |K ∈B(K) where PK is the orthogonal projection of K̃ onto K. Note that
π̃(a) reduces K for all a ∈A. Then π :A→B(K) given by π(a)= π̃(a)|K defines
a unital representation such that

π̃(a)=
[
π(a) 0

0 ∗

]
∈B(K̃)=B(K⊕K⊥).

So T̃ =
[ T
∗

∗

∗

]
∈ π̃(A)′ ⊆ B(K⊕K⊥) implies that Tπ(a) = π(a)T for all a ∈ A.

That is, T ∈ π(A)′ ⊆B(K). Since π̃ is unital we have VH⊆K, i.e., V ∈B(H,K),
hence K = span π̃(A)VH= spanπ(A)VH. Also,

ψ(a)= V ∗T̃ π̃(a)V =
[
V ∗ 0

] [T ∗
∗ ∗

] [
π(a) 0

0 ∗

] [
V
0

]
= V ∗Tπ(a)V

for all a ∈A. Clearly ‖ψ‖cb ≤ ‖T ‖ ≤ ‖T̃ ‖ ≤ 2 gives the required bounds.
To see uniqueness of T, suppose there exists another operator S ∈ π(A)′ such

that ψ( · )= V ∗Sπ( · )V. Then

〈π(a1)Vh1,(T−S)π(a2)Vh2〉 =〈h1,V ∗π(a∗1)Tπ(a2)Vh2〉−〈h1,V ∗π(a∗1)Sπ(a2)Vh2〉

=〈h1,V ∗Tπ(a∗1a2)Vh2〉−〈h1,V ∗Sπ(a∗1a2)Vh2〉

=〈h1,ψ(a∗1a2)h2〉−〈h1,ψ(a∗1a2)h2〉

=0

for all ai ∈A, hi ∈H so that T − S = 0.
Finally if ψ = ψ∗, observe

V ∗Tπ(a)V = ψ(a)= ψ∗(a)= ψ(a∗)∗ = (V ∗Tπ(a∗)V )∗ = V ∗T ∗π(a)V,

and by the uniqueness property we have T = T ∗. Note that 1
2(T̃ + T̃ ∗)=

[ T
∗

∗

∗

]
, so

that ‖T ‖ ≤
∥∥ 1

2(T̃ + T̃ ∗)
∥∥= 1

2

∥∥5([0
0

2
0

])
+5

([0
2

0
0

])∥∥= 1= ‖ψ‖cb. �

For CB-maps from unital C∗-algebras into injective C∗-algebras Heo [1999] gave
an analogue of Theorem 3.8. For a Hilbert B module E , consider E] :=BB(E,B),
the set of all bounded B-module maps from E into B. It forms a right B-module
with the following operations:

(φ1+φ2)(x) := φ1(x)+φ2(x), (λφ)(x) := λφ(x), (φb)(x) := b∗φ(x)

for all x ∈ E, b ∈ B, λ ∈ C and φ, φi ∈ E]. Also the operator norm makes E] a
Banach B-module. With this notation, the theorem of Heo states the following.

Theorem 3.9. Suppose B is an injective C∗-algebra and ψ : A → B is a CB-
map. Then there exists a Hilbert B-module E , a vector z ∈ E , a representation
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π :A→Ba(E) and a unique operator T ∈BB(E, E])∩π(A)′ such that

ψ( · )= 〈z, Tπ( · )z〉 and spanπ(A)zB = E .

Heo proved this result using a structure theorem for so-called “completely multi-
positive” linear maps. Our proof is straightforward and we also get some norm
estimates.

Theorem 3.10. Suppose B is an injective C∗-algebra and ψ :A→ B is a CB-map.
Then there exists a quadruple (E, z, π, T ) consisting of a Hilbert B-module E ,
a unit vector z ∈ E , a unital representation π : A → Ba(E), and an operator
T ∈ π(A)′ ⊆Ba(E) with ‖ψ‖cb ≤ ‖T ‖ ≤ 2‖ψ‖cb such that

ψ( · )= 〈z, Tπ( · )z〉.

If ψ = ψ∗, then T = T ∗ and ‖ψ‖cb = ‖T ‖. Furthermore, if spanπ(A)zB = E ,
then T is unique.

Proof. Consider a unital faithful representation ρ : B → B(G) of B on some
Hilbert space G satisfying span ρ(B)G = G. By the assumption of injectivity, there
is a conditional expectation map PB : B(G)→ ρ(B). Suppose (K, π̃ , T̃ , V ) is
a commutant representation of the CB-map ψ̃ := ρ ◦ ψ : A→ B(G) given by
Theorem 3.8. From B(G,K), with z = V, construct the triple (E, π, z) as in the
proof of Theorem 3.6. Note that since π̃ is a unital representation so is π . Also z is
a unit vector since

〈z, z〉 = ρ−1 PB(V ∗ ◦ V )= ρ−1 PB(I )= ρ−1 PBρ(1)= ρ−1ρ(1)= 1.

Define T : E→ E by T (x)= T̃ ◦ x for all x ∈ E . It can be verified that T is well
defined and T ∈Ba(E) with T ∗(x)= T̃ ∗ ◦ x for all a ∈ E . Note that

Tπ(a)x = T̃ ◦ π̃(a) ◦ x = π̃(a) ◦ T̃ ◦ x = π(a)T x

for all a ∈A, x ∈ E so that T ∈ π(A)′ ⊆Ba(E). Also,

〈z, Tπ(a)z〉 = ρ−1 PB(V ∗ ◦ T̃ ◦ π̃(a) ◦ V )= ρ−1 PB(ψ̃(a))= ψ(a)

for all a ∈A. Now it follows that ‖ψ‖cb ≤ ‖T ‖ ≤ ‖T̃ ‖ ≤ 2‖ψ̃‖cb ≤ 2‖ψ‖cb since z
is a unit vector and π is a unital representation. Now if ψ = ψ∗, then for all a ∈A,

ψ̃∗(a)= ψ̃(a∗)∗ = ρ(ψ(a∗))∗ = ρ(ψ(a∗)∗)= ρ(ψ∗(a))= ρ(ψ(a))= ψ̃(a),

so that ψ̃ = ψ̃∗ and hence T̃ = T̃ ∗. Therefore T = T ∗. Also ‖T ‖cb ≤ ‖T̃ ‖cb =

‖ψ̃‖cb = ‖ψ‖cb.

Uniqueness: Suppose spanπ(A)zB = E . Now if S ∈ π(A)′ any other operator
such that π( · )= 〈z, Sπ( · )z〉, then 〈π(a)zb, (T − S)π(a′)zb′〉 = 0 for all a, a′ ∈A
and b, b′ ∈ B, so that T − S = 0. �
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3C. Representations of CB-maps: One from another. In this section we see how
different representations of CB-maps ψ :A→B(H) are related each other. Since
the results are straightforward we do not provide proofs.

Proposition 3.11 (Commutant representation from regular representation I). Let
ψ :A→B(H) be a CB-map with a regular representation (K, τ,W ), that is, τ :A→
B(K) is a ∗-nondegenerate regular homomorphism and W ∈ B(H,K) such that
ψ( · )=W ∗τ( · )W. Suppose ϑ :A→B(K) is the unique unital ∗-homomorphism
such that τ( · ) = ϑ( · )T = Tϑ( · ), where T = τ(1). Then (K, ϑ, T,W ) is a
commutant representation for ψ .

Note that W of this proposition may not be an isometry. This can be taken care
of as follows:

Proposition 3.12 (Commutant representation from regular representation II). Let
ψ : A→ B(H) be a nonzero CB-map. Let (K, τ, V ) be a regular representation
for ψ̂ = ψ/‖ψ‖cb with V as an isometry. Choose a (not necessarily unital) ∗-
homomorphism ϑ : A→ B(K) such that τ( · ) = ϑ( · )τ (1) = τ(1)ϑ( · ). Then
T =‖ψ‖cbτ(1)∈ τ(A)′⊆B(K) is such thatψ( · )=‖ψ‖cbV ∗τ( · )V =V ∗Tϑ( · )V,
so that (K, ϑ, T, V ) is a commutant representation for ψ .

The drawback of the previous representation is that the ∗-homomorphism ϑ may
not be unital.

Proposition 3.13 (Regular representation from commutant representation I). Sup-
pose (K , π, T, V ) is a commutant representation of a CB-map ψ :A→B(H). Set
K̂ = K⊕K. Define τ :A→B(K̂) by

τ(a)=
[
π(a) (2T − I )π(a)

0 0

]
and set W =

[
V/
√

2
V/
√

2

]
∈B(H, K̂).

Then τ is a regular homomorphism and W is an isometry such that ψ( · ) =
W ∗τ( · )W.

We may prefer to get a t-ternary representation instead of just a regular represen-
tation. This can be achieved as follows:

Proposition 3.14 (Regular representation from commutant representation II). Sup-
pose (K , π, T, V ) is a commutant representation of a CB-map ψ :A→B(H). Set
K̂ = K⊕K. Given any t ∈ (1,∞) define τ :A→B(K̂) by

τ(a)=
[

π(a) 0
−
√

t − 1π(a) 0

]
and set W =

[
0 I

I−T ∗
√

t−1
0

][
V
V

]
∈B(K̂).

Then τ is a ∗-nondegenerate t-ternary homomorphism. Also ψ( · )=W ∗τ( · )W, so
that (K̂, τ,W ) is a regular representation of ψ .
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Finally we show that any regular representation also gives another familiar
representation called the fundamental representation for completely bounded maps
(Theorem 8.4 of [Paulsen 2002]):

Proposition 3.15 (Fundamental representation from regular representation). Sup-
pose ψ : A → B(H) is a CB-map with regular representation (K, τ,W ). Let
ϑ : A→ B(K) be the ∗-homomorphism such that τ( · ) = ϑ( · )τ (1) = τ(1)ϑ( · ).
Then V1 :=W and V2 := τ(1)W are elements of B(H,K) such that

ψ( · )=W ∗τ( · )W = V ∗1 ϑ( · )V2.
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417Exact Lagrangian fillings of Legendrian (2, n) torus links
YU PAN

443Elementary calculation of the cohomology rings of real Grassmann
manifolds

RUSTAM SADYKOV

449Cluster tilting modules and noncommutative projective schemes
KENTA UEYAMA

469Concentration for a biharmonic Schrödinger equation
DONG WANG

489Global existence of smooth solutions to exponential wave maps in
FLRW spacetimes

CHANG-HUA WEI and NING-AN LAI

Pacific
JournalofM

athem
atics

2017
Vol.289,N

o.2


	1. Introduction
	1A. Basic definitions and results:

	2. Symmetric homomorphisms
	2A. Symmetries
	2B. Regular homomorphisms
	2C. Ternary homomorphisms

	3. Representations of completely bounded maps
	3A. Regular representations
	3B. Commutant representations
	3C. Representations of CB-maps: One from another

	Acknowledgement
	References
	
	

