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The notion of ball convexity, considered in finite-dimensional real Banach
spaces, is a natural and useful extension of usual convexity; one replaces
intersections of half-spaces by suitable intersections of balls. A subset S of
a normed space is called ball convex if it coincides with its ball hull, which
is obtained as the intersection of all balls (of fixed radius) containing S. Ball
convex sets are closely related to notions like ball polytopes, complete sets,
bodies of constant width, and spindle convexity. We will study geometric
properties of ball convex bodies in normed spaces, for example deriving sep-
aration theorems, characterizations of strictly convex norms, and an appli-
cation to complete sets. Our main results refer to minimal representations of
ball convex bodies in terms of their ball exposed faces, to representations of
ball hulls of sets via unions of ball hulls of finite subsets, and to ball convexity
of increasing unions of ball convex bodies.

1. Introduction

It is well known that generalized convexity notions are helpful for solving various
(metrical) problems from non-Euclidean geometries in an elegant way. For example,
Menger’s notion of d-segments, yielding that of d-convex sets (see Chapter II of
[Boltyanski et al. 1997]), is a useful tool for solving location problems in finite-
dimensional real Banach spaces (see [Martini et al. 2002]). Another example, also
referring to normed spaces, is the notion of ball convexity: usual convexity is ex-
tended by considering suitably defined intersections of balls instead of intersections
of half-spaces. The ball hull of a given point set S is the intersection of all balls
(of fixed radius) which contain S, and S is called ball convex if it coincides with
its ball hull. Ball convex sets are strongly related to notions from several recent
research topics, such as ball polytopes, applications of spindle convexity, bodies of
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constant width, and diametrically maximal (or complete) sets. In this article we
study geometric properties and (minimal) representations of ball convex bodies in
normed spaces. In terms of ball convexity and related notions, we derive separation
properties of ball convex bodies, various characterizations of strictly convex norms,
and an application for diametrically maximal sets, which answers a question from
[Martini et al. 2014]. Introducing suitable notions describing the boundary structure
of ball convex bodies, our main results refer to minimal representations of ball
convex bodies, particularly in terms of their ball exposed faces. More precisely,
we extend the formula K = cl(conv(exp(K ))) from classical convexity (where K
is a convex body in Rn) to the concept of ball convexity in normed spaces. On
the other hand, we derive theorems on the representation of ball convex bodies
“from inside”. That is, we show that unions of increasing sequences of ball convex
bodies are, essentially, ball convex, and we present ball hulls of sets by unions of
ball hulls of finite subsets. In that context we solve a problem from [Lángi et al.
2013]. We finish with some open questions inspired by the notions of ball hull and
ball convexity; they refer to spindle convex sets and generalized Minkowski spaces
(whose unit balls need not be centered at the origin).

We will give now a brief survey on what has been done regarding ball convexity
and related notions. Intersections of finitely many congruent Euclidean balls were
studied in [Bieberbach 1955; 1970; Martini and Swanepoel 2004], and in three di-
mensions in [Heppes 1956; Heppes and Révész 1956; Straszewicz 1957; Grünbaum
1956]. The notions of ball hull and ball convexity have been considered by various
authors, defining them via intersections of balls of some fixed radius R > 0 and
calling this concept also R-convexity; see, e.g., [Bezdek et al. 2006; Bezdek and
Naszódi 2006; Kupitz et al. 2010; Lángi et al. 2013]. In view of this concept, bodies
of constant width, Hausdorff limits, Minkowski sums, and approximation properties
of R-convex sets (see [Montejano 1991; Polovinkin 1996a; 1996b; Polovinkin and
Balashov 2007], respectively) are investigated. Analogues of the Krein–Milman
theorem and of Carathéodory’s theorem (see [Polovinkin 1996b; 1997]) are also
considered, but only for the Euclidean norm. Not much has been done for normed
spaces; however, for related results we refer to [Balashov 2002] for Hilbert spaces
and to [Balashov and Polovinkin 2000; Alimov 2012; Balashov and Ivanov 2006;
Martini and Spirova 2009] for normed spaces. A recent contribution is [Lángi et al.
2013], referring, e.g., to the Banach–Mazur distance and Hadwiger illumination
numbers of sets being ball convex in the sense described here.

Closely related is the concept of ball polytopes. It was investigated in [Bezdek
et al. 2007; Kupitz et al. 2010; Papez 2010] (but see also [Polovinkin 1996b;
Bezdek 2010, Chapter 6; Bezdek 2013, Chapter 5]). The boundary structure of
ball polytopes is interesting (digonal facets can occur, and hence their edge-graphs
are different from usual polyhedral edge-graphs), their properties are also useful
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for constructing bodies of constant width, and analogues of classical theorems like
those of Carathéodory and Steinitz on linear convex hulls are proved in these papers.

The study of the related notion of spindle convexity (also called hyperconvexity
or K -convexity) was initiated by Mayer [1935]; see also [Meissner 1911] and, for
Minkowski spaces, [Valentine 1964, p. 99]. The definition is given in Section 8
below. For a discussion of this notion we refer to the survey [Danzer et al. 1963,
p. 160] and, for further results and references in the spirit of abstract convexity and
combinatorial geometry, to [Bezdek et al. 2007; Lángi et al. 2013; Papez 2010;
Bezdek 2012; Fodor and Vígh 2012; Bezdek 2013, Chapters 5 and 6]. In [Bezdek
and Naszódi 2015] this notion was extended to analogues of star-shaped sets.

To avoid confusion, we briefly mention another concept which is also called
ball convexity. Namely, in [Lassak 1977] a set is called ball convex if, with any
finite number of points, it contains the intersection of all balls (of arbitrary radii)
containing the points. The ball convex hull of a set S is again defined as the
intersection of all ball convex sets containing S. In [Lassak 1977; 1979] this notion
was investigated for normed spaces, and in [Lassak 1982] the relations of these
notions to metric or d-convexity were investigated. The ball hull mapping studied
for Banach spaces in [Moreno and Schneider 2007a; 2007b] is also related.

2. Definitions and notations

Let Kn
= {S ⊆ Rn

: S is compact, convex, and nonempty} be the set of all convex
bodies in Rn (thus, in our terminology, a convex body need not have interior points).
Let B ∈Kn be centered at the origin o of Rn and have nonempty interior. We denote
by (Rn, ‖·‖) the n-dimensional normed or Minkowski space with unit ball B, i.e., the
n-dimensional real Banach space whose norm is given by ‖x‖=min{λ≥0 : x ∈λB}.
Any homothetic copy B(x, r), x ∈Rn and r ≥ 0, of B is a closed ball of (Rn, ‖ ·‖)

with center x and radius r ; therefore we write B(o, 1) from now on for the unit
ball of (Rn, ‖ · ‖). The boundary of the ball B(x, r) is the sphere S(x, r), and
therefore S(o, 1) denotes the unit sphere of our Minkowski space. Note that we
will use the symbol S for an arbitrarily given point set in Rn. For a compact S, we
write dist(x, S)=min{‖x − y‖ : y ∈ S} for the distance of x and S, and we denote
by rad(S) the circumradius of S, i.e., the radius of any circumball (or minimal
enclosing ball) of S, whose existence is assured by the boundedness of S. The
diameter of S is given by diam(S)=max{‖x−y‖ : x, y ∈ S}. The triangle inequality
yields the left-hand side of

(1) 1
2 diam(S)≤ rad(S)≤ n/(n+ 1) diam(S),

and we refer to [Bohnenblust 1938, Theorem 6] for the right-hand side.
As usual, we use the abbreviations int(S), cl(S), bd(S), conv(S), and aff(S) for

the interior, closure, boundary, convex hull, and affine hull of S, respectively. We
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write [x1, x2] for the closed segment with endpoints x1, x2 ∈ Rn, and, analogously,
(a, b), (a, b], [a, b] are used for the open, half-open or closed interval with a, b∈R,
respectively. We use | · | for the cardinality of a set.

A convex body is called strictly convex if its boundary does not contain proper
segments; analogously, ‖ · ‖ is called a strictly convex norm if the respective unit
ball is strictly convex.

Since we want to derive results for generalized convexity notions, the following
definitions yield direct analogues of notions from classical convexity; see [Schneider
1993]. The first of them is an analogue of the (closed) convex hull. Namely, the
ball hull of a set S is defined by

bh1(S)=
⋂

S⊆B(x,1)

B(x, 1).

A formally clearer expression would be bh1(S)=
⋂

x∈Rn: S⊆B(x,1) B(x, 1), but we
assume that the above shorter notation, as well as similar ones in the sequel, will
not cause confusion. (We underline once more that here and below we use balls
of radius 1.) A ball convex (b-convex) set S is characterized by S = bh1(S) or,
equivalently, by the property that S is an intersection of closed balls of radius 1 (then
S is necessarily closed and convex). A b-convex body K is a bounded nonempty
b-convex set (the analogue of a convex body in classical convexity); ∅ and Rn are the
only b-convex sets that are not b-convex bodies. (Note that Rn is b-convex, since we
want to understand the intersection of an empty family of sets as Rn.) A supporting
sphere S(x, 1) of K is characterized by K ⊆ B(x, 1) and K ∩ S(x, 1) 6= ∅; the
corresponding exposed b-face (or b-support set) is K ∩ S(x, 1) (note that nonempty
facets from [Kupitz et al. 2010, Definition 5.3] are a special case).

If an exposed b-face is a singleton {x0}, then x0 is called a b-exposed point
of K, and b-exp(K ) denotes the set of all b-exposed points. We note that several
such concepts, referring to the analogous notions for ball polytopes, their boundary
structure, separation properties with respect to spheres etc., can be found in [Bezdek
2012; Kupitz et al. 2010], but are defined there only for the subcase of the Euclidean
norm. Finally, a set S is called b-bounded if rad(S) < 1. This means that S is inside
a ball of radius 1 and separated from its bounding sphere, which plays the role of a
hyperplane in classical convexity.

We close this section by summarizing several basic facts about ball hulls and cir-
cumradii, and we give a lemma on intersections of compact sets with the boundaries
of their circumballs.

Lemma 1. Let (Rn, ‖ · ‖) be a Minkowski space. The following are satisfied for all
S, T ⊆ Rn and x ∈ Rn:

(a) S⊆cl(S)⊆cl(conv(S))⊆bh1(S)=bh1(cl(S))=bh1(conv(S))=bh1(bh1(S)).
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(b) If S ⊆ T, then bh1(S)⊆ bh1(T ).

(c) B(x, r) is a b-convex body for every r ∈ [0, 1].

(d) If rad(S)≤ 1, then rad(bh1(S))= rad(S). In particular, bh1(S) is b-bounded
if S is b-bounded.

(e) If S is closed and S ⊆ int(B(x, r)) for some r > 0, then S ⊆ B(x, r ′) for some
r ′ ∈ (0, r) and rad(S) < r . In particular, a closed subset of Rn is b-bounded if
and only if it is covered by an open ball of radius 1.

Proof. Parts (a) and (b) are obvious; see [Martini et al. 2013, Lemma 1] for a
collection of related statements.

For (c), the triangle inequality gives the following representation of B(x, r) as
an intersection of balls of radius 1: B(x, r)=

⋂
‖y−x‖≤1−r B(y, 1).

To see (d), first note that rad(S) ≤ rad(bh1(S)) by (a). If B(x, rad(S)) is a
circumball of S, then bh1(S) ⊆ bh1(B(x, rad(S))) = B(x, rad(S)) by (b) and (c).
Hence rad(bh1(S))≤ rad(B(x, rad(S)))= rad(S).

For (e), suppose that S contains at least two points. Consider the continuous
function f : S → R, f (y) = dist(y, S(x, r)) = dist(y,Rn

\ B(x, r)). Since S
is compact, f attains its minimum: f (y) ≥ f (y0) ∈ (0, r) for all y ∈ S. This
shows that dist(y,Rn

\ B(x, r)) ≥ f (y0) for all y ∈ S; i.e., S ⊆ B(x, r ′), where
r ′ = r − f (y0) ∈ (0, r). �

Lemma 2. Let B(x0, rad(S)) be a circumball of a nonempty compact subset S of a
Minkowski space (Rn, ‖ · ‖). Then rad(S ∩ S(x0, rad(S))) = rad(S). In particular,
there exist x, x ′ ∈ S ∩ S(x0, rad(S)) such that ‖x − x ′‖ ≥ (n+ 1)/n rad(S).

Proof. Without loss of generality, we set B(x0, rad(S)) = B(o, 1). Assume that,
contrary to our claim, rad(S ∩ S(o, 1)) < 1. Then there exists x1 ∈ Rn such that

(2) S ∩ S(o, 1)⊆ int(B(x1, 1)).

Since rad(S)= 1, Lemma 1(e) gives points

(3) yi ∈ S \ int
(

B
(1

i
x1, 1

))
, i = 1, 2, . . . .

Note that
(yi )
∞

i=1 ⊆ S \ int(B(x1, 1)),

as yi ∈ S\int
(
B
( 1

i x1, 1
))
⊆ B(o, 1)\int

(
B
( 1

i x1, 1
))

gives ‖yi‖≤ 1, ‖yi−
1
i x1‖≥ 1,

and in turn
‖yi − x1‖ =

∥∥∥i
(

yi −
1
i

x1

)
− (i − 1)yi

∥∥∥
≥ i
∥∥∥yi −

1
i

x1

∥∥∥− (i − 1)‖yi‖

≥ i − (i − 1)= 1.
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Because S \ int(B(x1, 1)) is compact, (yi )
∞

i=1 has an accumulation point y0 ∈

S \ int(B(x1, 1)). We know that ‖y0‖ ≤ 1 from S ⊆ B(o, 1), whereas (3) gives∥∥yi −
1
i x1
∥∥≥ 1 and, by i→∞, ‖y0‖ ≥ 1. This way we see that

y0 ∈ S ∩ S(o, 1) \ int(B(x1, 1)),

which contradicts (2) and completes the proof of rad(S ∩ S(x0, rad(S)))= rad(S).
Now the additionally claimed existence of x, x ′ ∈ S ∩ S(x0, rad(S)) such that
‖x − x ′‖ ≥ (n+1)/n rad(S) is a consequence of the right-hand estimate in (1) and
the compactness of S. �

3. Separation properties

The following results on the separation of b-convex bodies and points by spheres
are analogues of theorems on the separation by hyperplanes in classical convexity.

Proposition 3. Let K be a b-convex body in a Minkowski space (Rn, ‖ · ‖).

(a) For every x0 ∈ bd(K ), there exists a supporting sphere S(y0, 1) of K such that
x0 ∈ S(y0, 1).

(b) For every x0 ∈ Rn
\ K, there exists a supporting sphere S(y0, 1) of K such that

x0 /∈ B(y0, 1).

(c) If K is b-bounded then, for every x0 ∈ Rn
\ K, there exists a sphere of unit

radius S(y0, 1) such that K ⊆ int(B(y0, 1)) and x0 /∈ B(y0, 1). In particular,
K ⊆ B(y0, r) for some r ∈ (0, 1).

Proof. For proving (a), note that the assumption

x0 ∈ bd(K )= bd(bh1(K ))= bd
(⋂

K⊆B(y,1)
B(y, 1)

)
yields the existence of a sequence (yi )

∞

i=1 ⊆Rn such that K ⊆ B(yi , 1) for all i and

0= lim
i→∞

dist(x0,Rn
\ B(yi , 1))= lim

i→∞
(1−‖x0− yi‖).

By compactness, (yi )
∞

i=1 has a convergent subsequence, and we can assume that
limi→∞ yi = y0 without loss of generality. Then the above observations imply
K ⊆ B(y0, 1) and ‖x0− y0‖ = 1, i.e., x0 ∈ S(y0, 1). This is our claim.

For (b), we have x0 /∈ K =
⋂

K⊆B(y,1) B(y, 1). Hence there is y1 ∈ Rn such
that K ⊆ B(y1, 1) and x0 /∈ B(y1, 1). We consider the translated balls Bλ :=
B(y1 + λ(y1 − x0), 1), λ ≥ 0. We know that K ⊆ B0. Let λ0 ≥ 0 be maximal
such that

K ⊆ Bλ for 0≤ λ≤ λ0.
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By the maximality of λ0, bd(Bλ0)= S(y1+λ0(y1−x0), 1)=: S(y0, 1) is a supporting
sphere of K. Moreover, x0 /∈ B(y0, 1), because x0 /∈ B(y1, 1) gives

‖x0− y0‖ = ‖x0− (y1+ λ0(y1− x0))‖ = (1+ λ0)‖x0− y1‖> 1+ λ0 ≥ 1.

This proves (b).
For the proof of (c), the b-boundedness of K gives y1 ∈ Rn such that K ⊆

int(B(y1, 1)). By (b), there is y2 ∈ Rn with K ⊆ B(y2, 1) and x0 /∈ B(y2, 1). We
can pick ε ∈ (0, 1) small enough such that

x0 /∈ B(y0, 1), where y0 := y2+ ε(y1− y2).

Then we obtain

(4) K ⊆ int(B(y0, 1)),

because, for arbitrary x ∈ K, the inclusions K ⊆ int(B(y1, 1)) and K ⊆ B(y2, 1)
imply ‖x − y1‖< 1, ‖x − y2‖ ≤ 1, and in turn

‖x − y0‖ = ‖x − (y2+ ε(y1− y2))‖

= ‖ε(x − y1)+ (1− ε)(x − y2)‖

≤ ε‖x − y1‖+ (1− ε)‖x − y2‖

< ε+ (1− ε)= 1.

Finally, (4) yields K ⊆ B(y0, r) for suitable r ∈ (0, 1) by Lemma 1(e). �

Corollary 4. Every b-convex body in a Minkowski space (Rn, ‖ · ‖) satisfies

bd(K )=
⋃{

F : F is an exposed b-face of K
}
.

Proof. Proposition 3(a) gives “⊆”. The converse inclusion is implied by the
definition of exposed b-faces. �

Proposition 3 gives rise to alternative representations of ball hulls.

Corollary 5. Every b-bounded subset S of a Minkowski space (Rn, ‖ · ‖) satisfies

bh1(S)=
⋂

S⊆ int(B(x,1))

B(x, 1)=
⋂

S⊆B(x,r), r<1

B(x, 1)=
⋂

S⊆B(x,r), r<1

B(x, r).

Proof. We assume that S 6= ∅ and put A := bh1(S) =
⋂

S⊆B(x,1)B(x, 1), B :=⋂
S⊆ int(B(x,1))B(x, 1), C :=

⋂
S⊆B(x,r), r<1 B(x, 1) and D :=

⋂
S⊆B(x,r), r<1B(x, r).

The inclusions A ⊆ B ⊆ C and D ⊆ C are trivial. It suffices to prove that C ⊆ A
and A ⊆ D.

For proving C ⊆ A, we consider an arbitrary x0 ∈ Rn
\ A and have to show that

x0 /∈ C . Application of Proposition 3(c) to A, which is b-bounded by Lemma 1(d),
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and to x0 gives y0 ∈Rn and r ∈ (0, 1) such that S⊆ A⊆ B(y0, r) and x0 /∈ B(y0, 1).
This yields x0 /∈ C .

For A ⊆ D, note that
S ⊆ B(x, r) ⇔ A ⊆ B(x, r).

Indeed, if S ⊆ B(x, r), then A = bh1(S) ⊆ bh1(B(x, r)) = B(x, r) by (b) and
(c) of Lemma 1. Conversely, if A ⊆ B(x, r), then S ⊆ bh1(S) = A ⊆ B(x, r) by
Lemma 1(a).

The above equivalence yields

A ⊆
⋂

A⊆B(x,r), r<1

B(x, r)=
⋂

S⊆B(x,r), r<1

B(x, r)= D. �

Corollary 6. Every b-bounded closed subset S of a Minkowski space (Rn, ‖ · ‖)

satisfies
bh1(S)=

⋂
S⊆ int(B(x,1))

int(B(x, 1)).

Proof. By Corollary 5,

bh1(S)=
⋂

S⊆ int(B(x,1))

B(x, 1)⊇
⋂

S⊆ int(B(x,1))

int(B(x, 1)).

For the converse inclusion, note that

S ⊆ int(B(x, 1)) ⇒ bh1(S)⊆ int(B(x, 1)).

Indeed, if S ⊆ int(B(x, 1)), then S ⊆ B(x, r) for some r ∈ (0, 1) by Lemma 1(e),
and, by Lemma 1(b) and (c), bh1(S)⊆ bh1(B(x, r))= B(x, r)⊆ int(B(x, 1)).

The above implication yields⋂
S⊆ int(B(x,1))

int(B(x, 1))⊇
⋂

bh1(S)⊆ int(B(x,1))

int(B(x, 1))⊇ bh1(S). �

The assumption of b-boundedness is essential in Corollaries 5 and 6. For example,
if S is a closed ball of radius 1, then bh1(S)= S, whereas the four other intersections
represent Rn, since they are intersections over empty index sets.

To see that the assumption of closedness in Corollary 6 cannot be dropped,
consider the example S = int(B(x0, r0)) with x0 ∈ Rn and r0 ∈ (0, 1). Then

bh1(int(B(x0, r0)))= bh1(B(x0, r0))= B(x0, r0)

by Lemma 1(a) and (c). In contrast to that,⋂
int(B(x0,r0))⊆ int(B(x,1))

int(B(x, 1))=
⋂

‖x−x0‖≤1−r0

int(B(x, 1))= int(B(x0, r0)),

as can be checked by the triangle inequality.
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In classical convexity, two disjoint convex sets can be separated by a hyperplane.
The analogous claim for ball convexity would say that, given two disjoint b-convex
bodies K1, K2 ⊆ Rn, there exists a separating sphere S(x0, 1) for K1 and K2; i.e.,
K1⊆ B(x0, 1) and K2∩B(x0, 1)=∅. In fact, one knows even more if the underlying
Minkowski space (Rn, ‖·‖) is a Euclidean space (see [Bezdek et al. 2007, Lemma 3.1
and Corollary 3.4]), if its unit ball is a cube (see [Lángi et al. 2013, Corollary 3.15]),
or if it is two-dimensional (see [Lángi et al. 2013, Theorem 4]). Then, for every
b-convex body K and every supporting hyperplane H of K, there exists a sphere
S(x0, 1) such that K ⊆ B(x0, 1) and int(B(x0, 1)) ∩ H = ∅. However, the last
statement fails in general (see [Lángi et al. 2013, Example 3.9] for an example in a
generalized Minkowski space whose unit ball is not centrally symmetric). Here we
show that even the (formally weaker) separation of two b-convex bodies by a unit
sphere may fail in a (symmetric) Minkowski space.

Example 7. Let l3
1 be the three-dimensional Minkowski space with unit ball

B(o, 1) = conv({(±1, 0, 0), (0,±1, 0), (0, 0,±1)}), let 0 < ε < 1
2 , and consider

the segments K1 =
[(1

4 ,
1
4 , 0

)
,
(
−

1
4 ,−

1
4 , 0

)]
and K2 =

[(1
4 ,−

1
4 , ε

)
,
(
−

1
4 ,

1
4 , ε

)]
.

Then K1 and K2 are disjoint b-bounded b-convex bodies in l3
1, and there is no unit

sphere S(x0, 1) such that K1 ⊆ B(x0, 1) and K2 ∩ int(B(x0, 1))=∅.

Proof. K1 is b-convex, because K1 = B
((
−

3
4 ,

1
4 , 0

)
, 1
)
∩ B

((3
4 ,−

1
4 , 0

)
, 1
)
, and

b-bounded, since rad(K1)=
1
2 . Similarly, K2 is b-bounded and b-convex.

If K1 ⊆ B(x0, 1), then B(x0, 1) contains at least one of the points of the segment[(1
4 ,−

1
4 ,

1
2

)
,
(
−

1
4 ,

1
4 ,

1
2

)]
, and we get K2 ∩ int(B(x0, 1)) 6=∅, since 0< ε < 1

2 . �

4. Characterizations of strict convexity

Some of our results will require strict convexity of the norm ‖ · ‖. On the other
hand, strict convexity can be reflected by numerous properties related to concepts
introduced in Section 2. The current section is devoted to characterizations of strict
convexity. We start with characterizations by properties of balls, circumballs and
circumradii; for (iv) and (v) in the following lemma we also refer to [Amir and
Ziegler 1980; Martini et al. 2001].

Lemma 8. Let (Rn, ‖ · ‖) be a Minkowski space. The following are equivalent:

(i) The norm ‖ · ‖ is strictly convex.

(ii) Each supporting hyperplane of a closed ball meets that ball in exactly one point.

(iii) The circumradius of the intersection of any two distinct balls of the same radius
r > 0 is smaller than r.

(iv) Every bounded nonempty subset of Rn has a unique circumball.

(v) For any two distinct points x1, x2 ∈ Rn, {x1, x2} has a unique circumball.
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Proof. (i)⇒(ii): If (ii) fails, then some ball meets one of its supporting hyperplanes
in at least two distinct points x1, x2. Then the segment [x1, x2] is contained in the
boundary of that ball, contradicting (i).

(ii)⇒(i): If (i) fails, then the boundary of B(o, 1) contains a line segment L of
positive length. The disjoint convex sets int(B(o, 1)) and L can be separated by
a hyperplane H. Then H is a supporting hyperplane of B(o, 1) and contains L ,
contradicting (ii).

(i)⇒(iii): If x1, x2 ∈ Rn are distinct points and if r > 0, then

(5) B(x1, r)∩ B(x2, r)⊆ int
(

B
(

x1+x2

2
, r
))
,

which implies our claim rad(B(x1, r)∩ B(x2, r)) < r by Lemma 1(e). To verify (5),
assume the contrary; i.e., ‖x − (x1+ x2)/2‖ ≥ r for some x ∈ B(x1, r)∩ B(x2, r).
Then

r ≤
∥∥∥x − x1+x2

2

∥∥∥≤ 1
2

(
‖x − x1‖+‖x − x2‖

)
≤

1
2 (r + r)= r,

hence all terms in the above estimate agree and we obtain ‖x − x1‖ = ‖x − x2‖ =∥∥x− 1
2(x1+x2)

∥∥= r . This shows that [x1, x2] is a segment in S(x, r), contradicting
(i) and proving (5).

(iii)⇒(iv): If (iv) fails, then there is a bounded set S with circumradius rad(S)>0
that has two circumballs B(x1, rad(S)) and B(x2, rad(S)), x1 6= x2. This implies
B(x1, rad(S))∩B(x2, rad(S))⊇ S and rad(B(x1, rad(S))∩B(x2, rad(S)))≥ rad(S),
contradicting (iii).

For (iv)⇔(v)⇔(i), see [Amir and Ziegler 1980, Lemma 1.2]. �

Now we come to characterizations of strict convexity of norms in terms of
concepts related to b-convexity that are defined in Section 2.

Proposition 9. Let (Rn, ‖ · ‖) be a Minkowski space. The following are equivalent:

(i) The norm ‖ · ‖ is strictly convex.

(vi) Every b-convex body that is not b-bounded is a closed ball of radius 1.

(vii) Every b-convex body that is not b-bounded has only one supporting sphere.

(viii) For every boundary point x of a b-convex body K that is not b-bounded,
there exists only one supporting sphere of K that contains x.

(ix) For every x ∈ Rn, every r ∈ (0, 1) and every x0 ∈ bd(B(x, r)), B(x, r) has
only one supporting sphere that contains x0.

(x) There exist x ∈ Rn and r ∈ (0, 1) such that, for every x0 ∈ bd(B(x, r)),
B(x, r) has only one supporting sphere that contains x0.

(xi) For every x ∈ Rn and every r ∈ (0, 1), each supporting sphere of B(x, r)
meets B(x, r) in only one point.
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(xii) There exist x ∈Rn and r ∈ (0, 1) such that each supporting sphere of B(x, r)
meets B(x, r) in only one point.

(xiii) For every x ∈ Rn and every r ∈ (0, 1), b-exp(B(x, r))= S(x, r).

(xiv) There exist x ∈ Rn and r ∈ (0, 1) such that b-exp(B(x, r))= S(x, r).

(xv) Every b-convex body is strictly convex.

(xvi) For any two distinct points x1, x2 ∈ Rn, bh1({x1, x2}) is strictly convex.

(xvii) Every b-convex body that contains at least two points has nonempty interior.

(xviii) For any two distinct points x1, x2 ∈ Rn, int(bh1({x1, x2})) is nonempty.

Proof. The implications (vi)⇒(vii)⇒(viii), (ix)⇒(x), (xi)⇒(xii), (xiii)⇒(xiv),
(xv)⇒(xvi), and (xvii)⇒(xviii) are obvious.

(i)⇒(vi): Every b-convex body K is a nonempty intersection of a nonempty
family of closed balls of radius 1. If the family consisted of more than one ball,
then its intersection K would be b-bounded by Lemma 8(i)⇒(iii). Hence the only
b-convex bodies that are not b-bounded are closed balls of radius 1.

(viii)⇒(i): Suppose that (i) fails. Then condition (iii) from Lemma 8 fails as
well, and there are two points x1 6= x2 such that rad(B(x1, 1) ∩ B(x2, 1)) = 1.
The body K = B(x1, 1)∩ B(x2, 1) shows that (viii) fails as well, because every
x ∈ bd(B(x1, 1)) ∩ bd(B(x2, 1)) belongs to bd(K ) and has the two supporting
spheres S(x1, 1) and S(x2, 1).

(i)⇒(ix) and (i)⇒(xi): We use the fact that if two balls B(y, s) and B(y′, s ′)
of positive radii in a strictly convex Minkowski space are on the same side of a
common supporting hyperplane H with respective touching points y0 and y′0, then
the dilatation ϕ that is uniquely determined by ϕ(y0)= y′0 and the dilatation factor
s ′/s maps B(y, s) onto B(y′, s ′). To see this, consider the homotheties δ and δ′ that
map B(y, s) and B(y′, s ′) onto B(o, 1), respectively. Then δ(H)= δ′(H), because
B(o, 1) has only one supporting hyperplane with the same outer normal vector
as H, and δ(y0) = δ

′(y′0), since δ(H) = δ′(H) has only one touching point with
B(o, 1) (see Lemma 8). Now ϕ = (δ′)−1

◦ δ, and the fact is verified.
Coming back to the proof of (i)⇒(ix) and (i)⇒(xi), we consider an arbitrary

supporting sphere S(y, 1) of B(x, r) and suppose that x0 belongs to the b-support
set B(x, r)∩ S(y, 1). The supporting hyperplane of B(y, 1) at x0 supports B(x, r)
as well. Now the above fact says that B(y, 1) is the image of B(x, r) under the
dilatation ϕ with fixed point x0 and factor 1/r . This shows in particular that the
supporting sphere S(y, 1) is uniquely determined by the touching point x0, which
proves (ix) (because there exists at least one supporting sphere at x0 according to
Proposition 3(a)). To show (xi), we must prove that every point x1∈ B(x, r)∩S(y, 1)
coincides with x0. By the same argument as above, B(y, 1) is the image of B(x, r)
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under the dilatation ψ with fixed point x1 and factor 1/r . We obtain

y = ϕ(x)= x0+
1
r (x − x0) and y = ψ(x)= x1+

1
r (x − x1),

which gives x0 = x1 and completes the proof of (xi).
(x)⇒(i): Suppose that (i) fails. Then, for every x ∈ Rn and every r ∈ (0, 1),

S(x, r) contains a line segment [x0, x1] ⊆ S(x, r), x0 6= x1. If ϕ0 and ϕ1 are
dilatations with factor 1/r and fixed points x0 and x1, respectively, then ϕ0(S(x, r))
and ϕ1(S(x, r)) are distinct supporting spheres of B(x, r). Clearly, we have

x0 = ϕ0(x0) ∈ ϕ0([x0, x1])⊆ ϕ0(S(x, r)).

Moreover,

x0 = ϕ1(r x0+ (1− r)x1) ∈ ϕ1([x0, x1])⊆ ϕ1(S(x, r)).

Therefore ϕ0(S(x, r)) and ϕ1(S(x, r)) are both supporting spheres of B(x, r) at
x0 ∈ bd(B(x, r)), and (x) is disproved.

(xi)⇒(xiii) and (xii)⇒(xiv) follow from Proposition 3(a).
(xiv)⇒(i): If (i) fails, then every ball B(x, r), x ∈ Rn, r ∈ (0, 1), contains a

segment [x1, x2], x1 6= x2, in its boundary S(x, r). We shall show that 1
2(x1+ x2)

is not contained in b-exp(B(x, r)), thus disproving (xiv). Indeed, if S(y, 1) is
a supporting sphere of B(x, r) with touching point 1

2(x1+ x2) ∈ S(y, 1), then
[x1, x2] ⊆ B(x, r)⊆ B(y, 1), and the point 1

2(x1+ x2) (from the relative interior) of
[x1, x2] is in S(y, 1)= bd(B(y, 1)). Hence [x1, x2] ⊆ S(y, 1). This shows that the
exposed b-face B(x, r)∩ S(y, 1) that contains 1

2(x1+ x2) must necessarily cover
the whole segment [x1, x2]. Thus 1

2(x1+ x2) /∈ b-exp(B(x, r)).
(i)⇒(xv): Assume that (xv) fails; i.e., there are a b-convex body K and two points

x1 6= x2 such that [x1, x2]⊆ bd(K ). By Proposition 3(a), there is a supporting sphere
S(y, 1) of K such that 1

2(x1 + x2) ∈ S(y, 1). As above, we have [x1, x2] ⊆ K ⊆
B(y, 1) and 1

2(x1+ x2) ∈ S(y, 1) = bd(B(y, 1)), which yields [x1, x2] ⊆ S(y, 1)
and contradicts (i).

(xv)⇒(xvii) and (xvi)⇒(xviii): If a convex body K contains two distinct points
x1 and x2 and has empty interior, then K is not strictly convex, because [x1, x2] ⊆

K = bd(K ). This yields the two implications.
(xviii)⇒(i): If (i) fails, then there are x1 6= x2 such that [x1, x2] ⊆ S(o, 1). Hence[

x1−x2

2
,

x2−x1

2

]
=

(
[x1, x2] −

x1+x2

2

)
∩

(
−[x2, x1] +

x1+x2

2

)
⊆

(
S(o, 1)− x1+x2

2

)
∩

(
S(o, 1)+ x1+x2

2

)
= S

(
−

x1+x2

2
, 1
)
∩ S

( x1+x2

2
, 1
)

= B
(
−

x1+x2

2
, 1
)
∩ B

( x1+x2

2
, 1
)
.
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The last equation is a consequence of
∥∥1

2(x1+ x2)−(−
1
2(x1+ x2))

∥∥= 2. We obtain

int
(

bh1

({
x1−x2

2
,

x2−x1

2

}))
⊆ int

(
bh1

(
B
(
−

x1+x2

2
, 1
)
∩ B

( x1+x2

2
, 1
)))

= int
(

B
(
−

x1+x2

2
, 1
)
∩ B

( x1+x2

2
, 1
))

= int
(

S
(
−

x1+x2

2
, 1
)
∩ S

( x1+x2

2
, 1
))

=∅,

which contradicts (xviii). �

5. Representation of ball hulls “from inside”

In this section we deal with b-convexity of unions of increasing sequences of b-
convex bodies and with the representation of ball hulls of sets by unions of ball
hulls of finite subsets. We start with an auxiliary statement.

Lemma 10. Let K ∈ Kn, let H ⊆ Rn be a hyperplane, and let (yi )
∞

i=1 ⊆ Rn be
such that yi

i→∞
−−→ y0 ∈ Rn and H ∩ (K + yi ) 6= ∅ for all i = 1, 2, . . . . Then

H ∩ (K + yi )
i→∞
−−→ H ∩ (K + y0) in the Hausdorff distance.

Proof. First note that H ∩ (K + y0) 6=∅, and in turn H ∩ (K + y0) ∈ Kn. Indeed,
for every i ≥ 1, we can pick zi ∈ H ∩ (K + yi ), i.e., zi = xi + yi with xi ∈ K. By
the compactness of K we see that, without loss of generality, xi

i→∞
−−→ x0 ∈ K. We

get z0 := x0+ y0 = limi→∞ zi ∈ H ∩ (K + y0), because H is closed.
By [Schneider 1993, Theorem 1.8.7], our claim H ∩(K + yi )

i→∞
−−→H ∩(K + y0)

is now equivalent to the following conditions taken together:

(a) for every t0 ∈ H ∩ (K + y0), there exist ti ∈ H ∩ (K + yi ), i = 1, 2, . . . , such
that ti

i→∞
−−→ t0;

(b) if (ti j )
∞

j=1 is a sequence with i1 < i2 < · · · , ti j
j→∞
−−→ t0 ∈ Rn, and ti j ∈

H ∩ (K + yi j ), then t0 ∈ H ∩ (K + y0).

Proof of (a). Suppose that H = {x ∈Rn
: 〈u, x〉 = c}, with 〈 · , · 〉 denoting the usual

scalar product. Then fix t0 ∈ H ∩ (K + y0), i.e., t0 = x0+ y0 with x0 ∈ K and

(6) 〈u, t0〉 = c, i.e., 〈u, x0〉 = c−〈u, y0〉.

Pick x∗, x∗∗ ∈ K such that

〈u, x∗〉 =min{〈u, x〉 : x ∈ K }, 〈u, x∗∗〉 =max{〈u, x〉 : x ∈ K }.

For every i = 1, 2, . . . , H ∩ (K + yi ) 6=∅ gives x̃i ∈ K such that

(7) 〈u, x̃i + yi 〉 = c.
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We choose ti = xi + yi ∈ H ∩ (K + yi ) as follows: We know from x̃i ∈ K that
〈u, x̃i 〉 ∈ [〈u, x∗〉, 〈u, x∗∗〉].

Case 1: 〈u, x̃i 〉 = 〈u, x0〉. In this case we put

xi := x0.

Then ti = x0+yi ∈ K+yi and ti ∈ H, because 〈u, ti 〉= 〈u, x0+yi 〉= 〈u, x̃i+yi 〉
(7)
= c.

Case 2: 〈u, x̃i 〉 ∈ [〈u, x∗〉, 〈u, x0〉). Then

(8) xi :=
〈u, x̃i 〉− 〈u, x∗〉
〈u, x0〉− 〈u, x∗〉

x0+
〈u, x0〉− 〈u, x̃i 〉

〈u, x0〉− 〈u, x∗〉
x∗

satisfies xi ∈ [x0, x∗] ⊆ K, hence ti = xi + yi ∈ K + yi , and

〈u, xi 〉 =
〈u, x̃i 〉− 〈u, x∗〉
〈u, x0〉− 〈u, x∗〉

〈u, x0〉+
〈u, x0〉− 〈u, x̃i 〉

〈u, x0〉− 〈u, x∗〉
〈u, x∗〉 = 〈u, x̃i 〉.

This gives ti ∈ H, because 〈u, ti 〉 = 〈u, xi + yi 〉 = 〈u, x̃i + yi 〉
(7)
= c.

Case 3: 〈u, x̃i 〉 ∈ (〈u, x0〉, 〈u, x∗∗〉]. Then

(9) xi :=
〈u, x∗∗〉− 〈u, x̃i 〉

〈u, x∗∗〉− 〈u, x0〉
x0+

〈u, x̃i 〉− 〈u, x0〉

〈u, x∗∗〉− 〈u, x0〉
x∗∗

satisfies xi ∈ [x0, x∗∗] ⊆ K, hence ti = xi + yi ∈ K + yi , and

〈u, xi 〉 =
〈u, x∗∗〉− 〈u, x̃i 〉

〈u, x∗∗〉− 〈u, x0〉
〈u, x0〉+

〈u, x̃i 〉− 〈u, x0〉

〈u, x∗∗〉− 〈u, x0〉
〈u, x∗∗〉 = 〈u, x̃i 〉.

This yields ti ∈ H, because 〈u, ti 〉 = 〈u, xi + yi 〉 = 〈u, x̃i + yi 〉
(7)
= c.

Finally, for proving ti
i→∞
−−→t0, we use the following arguments. We get xi

i→∞
−−→x0

by partitioning the sequence (xi )
∞

i=1 into three subsequences corresponding to
Cases 1–3, where each of the subsequences (if it is infinite) converges to x0. In
Case 1 this is trivial, and in the other two cases it follows from

〈u, x̃i 〉
(7)
= c−〈u, yi 〉

i→∞
−−→ c−〈u, y0〉

(6)
= 〈u, x0〉

and from the definitions (8) and (9). This yields ti = xi + yi
i→∞
−−→ x0+ y0 = t0.

Proof of (b). The inclusion ti j ∈ H ∩ (K + yi j ) gives xi j := ti j − yi j ∈ K. Hence
xi j = ti j − yi j

j→∞
−−→t0− y0 ∈ K, because K is closed. Thus t0 ∈ K + y0. Moreover,

ti j ∈ H yields ti j
i→∞
−−→t0 ∈ H, because H is closed. Hence t0 ∈ H ∩ (K + y0). �

Remark 11. Note that H cannot be replaced by an affine subspace L of arbitrary
dimension in Lemma 10. See the following example, where

K :=
{
(ξ1, ξ2, ξ3) ∈ R3

: |ξ3| ≤ 1−
√
ξ 2

1 + ξ
2
2

}
.
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(Thus K = conv({(cosϕ, sinϕ, 0) : 0≤ ϕ < 2π}∪{(0, 0,±1)}) is a compact double
cone.) Consider the affine subspace L := aff({(1, 0, 0), (0, 0, 1)}) of R3, and let
yi := (1, 0, 0)−

(
cos 1

i , sin 1
i , 0

)
i→∞
−−→y0= (0, 0, 0). Then L∩(K+ yi )={(1, 0, 0)}

for any i , and L ∩ (K + y0) = L ∩ K = [(1, 0, 0), (0, 0, 1)]. Hence L ∩ (K + yi )

does not converge to L ∩ (K + y0) in the described way.

Theorem 12. Let C1 ⊆ C2 ⊆ · · · be an increasing sequence of b-convex bodies in
a Minkowski space (Rn, ‖ · ‖) such that

(10) dim
(

aff
(

bh1

(⋃∞

i=1
Ci

)))
∈ {0, 1, n− 1, n}.

Then

(11) cl
(⋃∞

i=1
Ci

)
= bh1

(⋃∞

i=1
Ci

)
.

In particular, cl
(⋃
∞

i=1 Ci
)

is a b-convex body.

Proof. Since “⊆” in (11) is obvious, we prove now “⊇”.

Case 1: dim
(
aff
(
bh1

(⋃
∞

i=1 Ci
)))
= 0. Here,

⋃
∞

i=1 Ci = {x0} is a singleton. Thus
Ci = {x0} for all i = 1, 2, . . . , and (11) is trivial.

Case 2: dim
(
aff
(
bh1

(⋃
∞

i=1 Ci
)))
= 1. Here, bh1

(⋃
∞

i=1 Ci
)

is a line segment. Since
every closed line segment of the same direction and having smaller length is also
b-convex, each Ci is a closed segment of that kind (perhaps of length 0),

⋃
∞

i=1 Ci

is a segment of that direction (not necessarily closed), and

bh1

(⋃∞

i=1
Ci

)
= cl

(⋃∞

i=1
Ci

)
.

Case 3: dim
(
aff
(
bh1

(⋃
∞

i=1 Ci
)))
≥ n− 1> 0. Assume that we have “+” in (11).

Then there exists x0 ∈ bh1
(⋃
∞

i=1 Ci
)
\ cl
(⋃
∞

i=1 Ci
)
, and we find ε0 > 0 such that

B(x0, ε0)∩
(⋃
∞

i=1 Ci
)
=∅. Thus, there exists x1∈ relint

(
bh1

(⋃
∞

i=1 Ci
))
\
(⋃
∞

i=1 Ci
)
,

that is,

(12) x1 ∈ relint
(

bh1

(⋃∞

i=1
Ci

))
and
(13) x1 /∈ Ci for i = 1, 2, . . . .

Property (13) and Proposition 3(b) give yi ∈ Rn such that

x1 /∈ B(yi , 1) and Ci ⊆ B(yi , 1) for i = 1, 2, . . . .

There exists a convergent subsequence yi j
j→∞
−−→ y0 ∈ Rn, and, by continuity of the

norm and the inclusions C1 ⊆ C2 ⊆ · · · , we have

(14) x1 /∈ int(B(y0, 1)) and
∞⋃

i=1

Ci ⊆ B(y0, 1).
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Subcase 3.1: dim
(
aff
(
bh1

(⋃
∞

i=1 Ci
)))
= n. With (14) we have bh1

(⋃
∞

i=1 Ci
)
⊆

B(y0, 1) and

x1 /∈ int
(

bh1

(⋃∞

i=1
Ci

))
= relint

(
bh1

(⋃∞

i=1
Ci

))
,

a contradiction to (12).

Subcase 3.2: dim
(
aff
(
bh1

(⋃
∞

i=1 Ci
)))
= n − 1. Let H := aff

(
bh1

(⋃
∞

i=1 Ci
))

.
From yi j

j→∞
−−→ y0 we get B(yi j , 1) j→∞

−−→B(y0, 1) in the Hausdorff metric, and with
Lemma 10 we get B(yi j , 1)∩H j→∞

−−→B(y0, 1)∩H as well. Then, by x1 /∈ B(yi j , 1),
we obtain x1 /∈ intH (B(y0, 1)∩H) (where intH ( · ) is the interior in the natural topol-
ogy of H ), whereas bh1

(⋃
∞

i=1 Ci
)
⊆ B(y0, 1)∩H by (14) and the choice of H. With

this and the choice of H we obtain x1 /∈ intH
(
bh1

(⋃
∞

i=1 Ci
))
= relint

(
bh1

(⋃
∞

i=1 Ci
))

,
a contradiction to (12). The proof of “⊇” in (11) is complete.

To show that cl
(⋃
∞

i=1 Ci
)
= bh1

(⋃
∞

i=1 Ci
)

is a b-convex body, it is enough
to verify that bh1

(⋃
∞

i=1 Ci
)
6= Rn , i.e., that

⋃
∞

i=1 Ci is contained in some ball of
radius 1. This is obvious by the second part of (14) (which can be shown analogously
in Cases 1 and 2). �

Remark 13. Note that the technical assumption (10) is satisfied in each of the
following situations:

(i) n ≤ 3,

(ii) (Rn, ‖ · ‖) is strictly convex,

(iii) dim
(
aff
(⋃
∞

i=1 Ci
))
≥ n−1 or, equivalently, dim(aff(Ci0))≥ n−1 for some i0.

Proof. Situation (i) is trivial. In situation (ii), the equivalence (i)⇔ (xvii) from
Proposition 9 shows that dim

(
aff
(
bh1

(⋃
∞

i=1 Ci
)))
= n as soon as

⋃
∞

i=1 Ci is not a
singleton. Condition (iii) implies (10), because

⋃
∞

i=1 Ci ⊆ bh1
(⋃
∞

i=1 Ci
)
. �

In Example 16 we shall see that assumption (10) cannot be dropped in Theorem 12.

Theorem 14. Let S 6=∅ be a subset of a Minkowski space (Rn, ‖ · ‖) such that

(15) dim(aff(bh1(S))) ∈ {0, 1, n− 1, n}.

Then

(16) bh1(S)= cl
(⋃

F⊆S finite
bh1(F)

)
.

Proof. The inclusion “⊇” is evident. For “⊆”, first note that S, considered as a
metric subspace of the separable metric space (Rn, ‖ · ‖), is separable itself; i.e.,
there are x1, x2, . . .∈ S such that cl(S)= cl({x1, x2, . . .}).

(
To be more constructive,

let r1, r2, . . . ∈ Rn be the vectors with only rational coordinates and pick xi ∈ S
such that ‖xi −ri‖< inf{‖x−ri‖ : x ∈ S}+ 1

i .
)

Putting Ci = bh1({x1, . . . , xi }) for
i = 1, 2, . . . , we obtain C1 ⊆ C2 ⊆ · · · . If Ci0 is not a b-convex body for some i0,
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then bh1({x1, . . . , xi0})= Ci0 = Rn, and (16) is obvious (both sides are Rn). Hence
we can assume that all Ci are b-convex bodies. Moreover,

bh1

(⋃∞

i=1
Ci

)
= bh1

(⋃∞

i=1
bh1({x1,...,xi })

)
= bh1

(⋃∞

i=1
{x1,...,xi }

)
(17)

= bh1
(
{x1,x2,...}

)
= bh1

(
cl({x1,x2,...})

)
= bh1

(
cl(S)

)
= bh1(S),

which gives

dim
(

aff
(

bh1

(⋃∞

i=1
Ci

)))
= dim(aff(bh1(S)))

(15)
∈ {0, 1, n− 1, n}.

Now we can apply Theorem 12 and obtain

bh1(S)
(17)
= bh1

(⋃∞

i=1
Ci

)
= cl

(⋃∞

i=1
Ci

)
= cl

(⋃∞

i=1
bh1({x1, . . . , xi })

)
⊆ cl

(⋃
F⊆S finite

bh1(F)
)
. �

Remark 15. As in Remark 13, we see that (15) holds in each of the following
situations:

(i) n ≤ 3,

(ii) (Rn, ‖ · ‖) is strictly convex,

(iii) dim(aff(S))≥ n− 1.

The claim of Theorem 14 is shown in [Lángi et al. 2013, Theorem 1] under the
stronger assumption that dim(aff(bh1(S))) = n. The authors ask in [Lángi et al.
2013, Problem 2.6] if the assumption can be dropped. Our generalization to the
additional cases dim(aff(bh1(S))) ∈ {0, 1, n− 1} shows that the assumption can be
weakened; however, Example 16 illustrates that the restrictions (10) in Theorem 12
and (15) in Theorem 14 are essential, which shows that the answer to Problem 2.6
from [Lángi et al. 2013] is negative.

Example 16. We denote the Euclidean norm by ‖ · ‖2 and consider convex bodies

K = {(κ1, κ2, κ3, 0) : ‖(κ1, κ2)‖2 ≤ 1, ‖(κ2, κ3)‖2 ≤ 1},

L = {(λ1, 0, λ3, λ4) : ‖(λ1, λ4)‖2 ≤ 1, |λ3| ≤ 1}

in R4. We define the unit ball B(o, 1)= B of a Minkowski space (R4, ‖ · ‖) by

(18) B = conv(K ∪ L)

=
{
(κ1+ λ1, ξ2, κ3+ λ3, ξ4) :

max{‖(κ1, ξ2)‖2, ‖(ξ2, κ3)‖2}+max{‖(λ1, ξ4)‖2, |λ3|} ≤ 1
}
.
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For that space we shall see that

(19) bh1({(α, 0, 0, 0), (−α, 0, 0, 0)})=[(α, 0, 0, 0), (−α, 0, 0, 0)] for α∈ (0, 1)

and

(20) bh1({(1, 0, 0, 0), (−1, 0, 0, 0)})= {(ξ1, 0, 0, ξ4) : ‖(ξ1, ξ4)‖2 ≤ 1}.

Consequently, the segments Ci =
[(

1− 1
i , 0, 0, 0

)
,
(
−1+ 1

i , 0, 0, 0
)]

, i=1, 2, . . . ,
form an increasing sequence of b-convex bodies, and we obtain

cl
(⋃∞

i=1
Ci

)
= [(1, 0, 0, 0), (−1, 0, 0, 0)],

bh1

(⋃∞

i=1
Ci

)
= {(ξ1, 0, 0, ξ4) : ‖(ξ1, ξ4)‖2 ≤ 1}.

Hence (11) fails and cl(
⋃
∞

i=1 Ci ) is not b-convex.
Similarly, the relatively open segment S = ((1, 0, 0, 0), (−1, 0, 0, 0)) satisfies

bh1(S)= {(ξ1, 0, 0, ξ4) : ‖(ξ1, ξ4)‖2 ≤ 1},

cl
(⋃

F⊆S finite
bh1(F)

)
= [(1, 0, 0, 0), (−1, 0, 0, 0)],

and (16) fails.

Proof of (19) and (20). Step 1: verification of (19). Let α ∈ (0, 1) be fixed. We use
the linear functional

f (ξ1, ξ2, ξ3, ξ4)=
√

1−α2 ξ2+αξ3 =
〈(√

1−α2, α
)
, (ξ2, ξ3)

〉
of Euclidean norm ‖ f ‖2 =

∥∥(√1−α2, α
)∥∥

2 = 1, and we define related level and
sublevel sets f=µ, f≤µ, f≥µ by

f=/≤/≥µ = {x ∈ R4
: f (x)= /≤ /≥ µ}.

We obtain, partially based on the Cauchy–Schwarz inequality,

K ⊆ f≥−1 ∩ f≤1, L ⊆ f≥−α ∩ f≤α, L ∩ f=1 =∅.
These yield

(21) B ⊆ f≥−1 ∩ f≤1

and

(22) B ∩ f=1 = K ∩ f=1 =
[(
α,
√

1−α2, α, 0
)
,
(
−α,
√

1−α2, α, 0
)]
.

Next note that
(
±α,±

√
1−α2,±α, 0

)
∈ K ⊆ B for arbitrary choice of signs.

This implies (±α, 0, 0, 0) ∈ B+
(
0,±
√

1−α2,±α, 0
)
, in particular

{(α,0,0,0),(−α,0,0,0)} ⊆ B
((

0,
√

1−α2,α,0
)
,1
)
∩B

((
0,−
√

1−α2,−α,0
)
,1
)
,
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and in turn

bh1({(α, 0, 0, 0), (−α, 0, 0, 0)})

⊆ B
((

0,
√

1−α2, α, 0
)
, 1
)
∩ B

((
0,−
√

1−α2,−α, 0
)
, 1
)

(21)
=
(
(B ∩ f≥−1)+

(
0,
√

1−α2, α, 0
))
∩
(
(B ∩ f≤1)+

(
0,−
√

1−α2,−α, 0
))

=
(
B+

(
0,
√

1−α2, α, 0
))
∩ f≥0 ∩

(
B+

(
0,−
√

1−α2,−α, 0
))
∩ f≤0

⊆
(
B+

(
0,−
√

1−α2,−α, 0
))
∩ f=0

= (B ∩ f=1)+
(
0,−
√

1−α2,−α, 0
)

(22)
= [(α, 0, 0, 0), (−α, 0, 0, 0)].

This gives the inclusion “⊆” in (19). The reverse inclusion is obvious, since the
ball hull is closed and convex.

Step 2: verification of the equivalence of

(23) {(1, 0, 0, 0), (−1, 0, 0, 0)} ⊆ B(t, 1)= B+ t

and

(24) t = (0, 0, τ3, 0) with τ3 ∈ [−1, 1].

Suppose that t = (τ1, τ2, τ3, τ4) satisfies (23). The inclusion B = conv(K ∪ L)⊆
conv([−1, 1]4)= [−1, 1]4 together with (23) gives

(25) τ1 = 0 and τ3 ∈ [−1, 1].

Now the assumption (−1, 0, 0, 0)∈ B+ t amounts to (−1,−τ2,−τ3,−τ4)∈ B and,
by symmetry, to (1, τ2, τ3, τ4)∈ B. By (18), this says that there are κ1, λ1, κ3, λ3∈R

such that κ1+ λ1 = 1, κ3+ λ3 = τ3 and

(26) max{‖(κ1, τ2)‖2, ‖(τ2, κ3)‖2}+max{‖(λ1, τ4)‖2, |λ3|} ≤ 1.

From κ1+ λ1 = 1 we obtain

1≤ |κ1| + |λ1| ≤ ‖(κ1, τ2)‖2+‖(λ1, τ4)‖2
(26)
≤ 1.

Hence all inequalities in the last formula are identities and

τ2 = τ4 = 0.

By (25), the implication “(23)⇒(24)” is proved.
The converse “(24)⇒(23)” amounts to (±1, 0,−τ3, 0) ∈ B for all τ3 ∈ [−1, 1].

This is an obvious consequence of (±1, 0,−τ3, 0) ∈ L ⊆ B.
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Note that the equivalence “(23)⇔(24)” implies

(27) bh1
({
(1, 0, 0, 0), (−1, 0, 0, 0)

})
=

⋂
τ3∈[−1,1]

(B+ (0, 0, τ3, 0)).

Step 3: verification of “⊆” from (20). Here the functional

g(ξ1, ξ2, ξ3, ξ4)= ξ3

satisfies K ∪ L ⊆ g≥−1 ∩ g≤1. Hence

(28) B ⊆ g≥−1 ∩ g≤1

and

(29) B∩g=1 = conv
(
(K∩g=1)∪(L∩g=1)

)
= conv

({
(ξ1,0,1,0) : |ξ1| ≤ 1

}
∪
{
(ξ1,0,1,ξ4) : ‖(ξ1,ξ4)‖2 ≤ 1

})
=
{
(ξ1,0,1,ξ4) : ‖(ξ1,ξ4)‖2 ≤ 1

}
.

Now we obtain the claim “⊆” from (20) by

bh1({(1, 0, 0, 0), (−1, 0, 0, 0)})
(27)
⊆ (B+ (0, 0, 1, 0))∩ (B+ (0, 0,−1, 0))

(28)
= ((B ∩ g≥−1)+ (0, 0, 1, 0))∩ ((B ∩ g≤1)+ (0, 0,−1, 0))

= (B+ (0, 0, 1, 0))∩ g≥0 ∩ (B+ (0, 0,−1, 0))∩ g≤0

⊆ (B+ (0, 0,−1, 0))∩ g=0

= (B ∩ g=1)+ (0, 0,−1, 0)

(29)
= {(ξ1, 0, 0, ξ4) : ‖(ξ1, ξ4)‖2 ≤ 1}.

Step 4: verification of “⊇” from (20). Let ξ1, ξ4, τ3 ∈R be such that ‖(ξ1, ξ4)‖2 ≤ 1
and |τ3| ≤ 1. Then (ξ1, 0,−τ3, ξ4) ∈ L ⊆ B. Thus

(ξ1, 0, 0, ξ4) ∈ B+ (0, 0, τ3, 0) if ‖(ξ1, ξ4)‖2 ≤ 1, |τ3| ≤ 1.

By (27), this implies “⊇” from (20). �

6. Minimal representation of ball convex bodies as ball hulls

In this section we will present, as announced, minimal representations of ball convex
bodies in terms of their ball exposed faces.

Theorem 17. Let K be a b-bounded b-convex body in a Minkowski space (Rn, ‖·‖)

and let S⊆ K. Then bh1(S)= K if and only if every exposed b-face of K meets cl(S).
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Proof. For the proof of “⇒”, suppose that there is an exposed b-face F of K
such that F ∩ cl(S) = ∅. We have to show that bh1(S) 6= K. The b-face F has a
representation F = K ∩ S(y, 1), where S(y, 1) is a supporting sphere of K. By
F∩cl(S)=∅, we obtain cl(S)⊆ int(B(y, 1)) and, by Lemma 1(e), cl(S)⊆ B(y, r)
for some r < 1. We fix x0 ∈ F. Then ‖x0 − y‖ = 1, because F ⊆ S(y, 1), and
x0 /∈ B(y−(1−r)(x0−y), 1), since ‖x0−(y−(1−r)(x0−y))‖= (2−r)‖x0−y‖>1.
But S ⊆ B(y, r)⊆ B(y− (1− r)(x0− y), 1) by the triangle inequality. Thus

x0 /∈ B
(
y− (1− r)(x0− y), 1

)
⊇ bh1(S) and x0 ∈ F ⊆ K ,

showing that bh1(S) 6= K.
For the converse implication “⇐”, we suppose that bh1(S) 6= K and will show

that cl(S) misses at least one exposed b-face F0 of K. Since bh1(S) 6= K and
bh1(S) ⊆ K by Lemma 1, there is x0 ∈ K \ bh1(S). By Proposition 3(b), we can
separate x0 from the b-convex body bh1(S)⊆ K by a sphere S(y0, 1),

(30) cl(S)⊆ bh1(S)⊆ B(y0, 1) and x0 /∈ B(y0, 1).

The b-boundedness of K gives y1 ∈ Rn such that

(31) cl(S)⊆ K ⊆ int(B(y1, 1)).

We consider the balls Bλ := B(y0+ λ(y1− y0), 1) for λ ∈ [0, 1]. Then K * B0 by
(30) and K ⊆ B1 by (31). Consequently, there exists

λ0 =min{λ ∈ [0, 1] : K ⊆ Bλ} ∈ (0, 1].

(It is a consequence of the continuity of ‖·‖ that λ0 is really attained as a minimum.)
By the definition of λ0 and a compactness argument, the set F0 = K ∩ bd(Bλ0)

is nonempty, so that Sλ0 := bd(Bλ0) is a supporting sphere of K and F0 is an
exposed b-face.

Now it remains to show that F0∩cl(S)=∅. Suppose that this is not the case; i.e.,
there exists z0 ∈ F0 ∩ cl(S). The inclusions (30) and (31) yield ‖z0− y0‖ ≤ 1 and
‖z0− y1‖< 1. Finally, the inclusion z0 ∈ F0 ⊆ Sλ0 = S(y0+ λ0(y1− y0), 1) gives

1= ‖z0− (y0+ λ0(y1− y0))‖

= ‖λ0(z0− y1)+ (1− λ0)(z0− y0)‖

≤ λ0‖z0− y1‖+ (1− λ0)‖z0− y0‖

< λ0+ (1− λ0)= 1.

This contradiction completes the proof. �

Note that the proof of “⇒” did not require b-boundedness of K. However, b-
boundedness is essential for “⇐”. To see this, consider a closed ball K = B(y, 1)
of radius 1. (Proposition 9(i)⇒(vi) says that these are the only b-convex bodies
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that are not b-bounded, provided that the norm ‖ · ‖ is strictly convex.) Then
the only supporting sphere of K is S(y, 1), and the only exposed b-face is F =
K ∩ S(y, 1) = S(y, 1). Then every singleton S = {x0} ⊆ S(y, 1) satisfies the
condition from Theorem 17, but bh1(S)= {x0} is not K.

Example 18. Consider the space l2
∞
= (R2, ‖·‖∞) with unit ball [−1, 1]2. Then all

b-convex bodies are of the form [α1, β1]× [α2, β2] with 0≤ βi −αi ≤ 2, i = 1, 2.
We restrict our consideration to b-bounded b-convex bodies K with nonempty
interior. These are rectangles K = [α1, β1]×[α2, β2] with 0<βi−αi < 2, i = 1, 2.
The exposed b-faces of K are the edges

F1=[α1,β1]×{β2}, F2={α1}×[α2,β2], F3=[α1,β1]×{α2}, F4={β1}×[α2,β2]

and the unions F1∪F2, F2∪F3, F3∪F4, F4∪F1. Theorem 17 says that a set S⊆ K
satisfies bh1(S)= K if and only if cl(S)∩ F j 6=∅ for j = 1, 2, 3, 4. Consequently,
when searching for minimal sets S (under inclusion) with bh1(S) = K, we need
to find a minimal set S containing at least one point from each of F1, F2, F3, F4.
Such S may consist of 2 (if S is composed of two vertices symmetric with respect
to the center of K ), 3 or 4 points (if S contains exactly one point from the relative
interior of each Fi ).

This example can be generalized for boxes in ln
∞

, n ≥ 1. Corresponding mini-
mal sets must contain a point in every (classical) facet of a box and may consist
of 2, . . . , 2n elements.

Corollary 19. If a subset S of a b-bounded b-convex body K in a Minkowski space
(Rn, ‖ · ‖) satisfies bh1(S)= K, then b-exp(K )⊆ cl(S).

Proof. If x ∈ b-exp(K ), then {x} is an exposed b-face of K. Now Theorem 17
yields {x} ∩ cl(S) 6=∅; i.e., x ∈ cl(S). �

Theorem 20. A subset S of a b-bounded b-convex body K in a strictly convex
Minkowski space (Rn, ‖ · ‖) satisfies bh1(S)= K if and only if b-exp(K )⊆ cl(S).
In particular,

K = bh1(b-exp(K )),

and cl(b-exp(K )) is the unique minimal (under inclusion) closed subset of Rn whose
ball hull is K.

Proof. The implication “⇒” of “bh1(S) = K ⇔ b-exp(K ) ⊆ cl(S)” is given by
Corollary 19. To see “⇐”, it is enough to show that

(32) K ⊆ bh1(b-exp(K )).

Indeed, if b-exp(K )⊆ cl(S) and if (32) is verified, parts (b) and then (a) of Lemma 1
give

K ⊆ bh1(b-exp(K ))⊆ bh1(cl(S))= bh1(S)⊆ bh1(K )= K ,
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and “⇐” is proved.
To show (32), we assume there exists x0∈K \bh1(b-exp(K )). The b-boundedness

of K implies b-boundedness of the subset K̃ := bh1(b-exp(K )) ⊆ bh1(K ) = K.
Separation of x0 from K̃ by Proposition 3(c) and the b-boundedness of K yield the
existence of y0, y1 ∈ Rn and r ∈ (0, 1) such that

K̃ ⊆ B(y0, r) and x0 /∈ B(y0, 1),(33)

K̃ ⊆ K ⊆ int(B(y1, r)).(34)

Much as in the proof of Theorem 17, we define Br
λ := B(y0+ λ(y1− y0), r) for

λ ∈ [0, 1] and, exploiting K * Br
0 from (33) and K ⊆ Br

1 from (34), find

λ0 =min{λ ∈ [0, 1] : K ⊆ Br
λ} ∈ (0, 1].

Then there exists x1 ∈ K ∩ Sr
λ0

, where Sr
λ0
:= bd(Br

λ0
).

Next we show that

(35) x1 /∈ K̃ .

Indeed, if x1 belongs to K̃ , we have ‖x1− y0‖≤ r and ‖x1− y1‖< r . The inclusion
x1 ∈ Sr

λ0
= S(y0+ λ0(y1− y0), r) gives

r = ‖x1− (y0+ λ0(y1− y0))‖

= ‖λ0(x1− y1)+ (1− λ0)(x1− y0)‖

≤ λ0‖x1− y1‖+ (1− λ0)‖x1− y0‖

< λ0r + (1− λ0)r = r.

This contradiction proves (35).
Since Br

λ0
is a b-convex body by Lemma 1(c) and since x1 ∈ Sr

λ0
= bd(Br

λ0
),

Proposition 3(a) gives y2 ∈ Rn such that

Br
λ0
⊆ B(y2, 1) and x1 ∈ Br

λ0
∩ S(y2, 1).

Proposition 9(i)⇒(xi) tells us that

Br
λ0
∩ S(y2, 1)= {x1},

because ‖ · ‖ is strictly convex. Using the known inclusions x1 ∈ K and K ⊆ Br
λ0

,
we get

K ⊆ B(y2, 1) and K ∩ S(y2, 1)= {x1}.

Hence x1 ∈ b-exp(K ). But (35) says that x1 /∈ bh1(b-exp(K )). This final contradic-
tion establishes (32) and completes the proof. �
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Theorem 20 says in particular that every b-bounded b-convex body in a strictly
convex Minkowski space gives rise to a unique minimal closed subset whose ball
hull is that body. We have seen in Example 18 that this is not necessarily the case
if the norm fails to be strictly convex.

Example 21. The set b-exp(K ) of all b-exposed points of a b-bounded b-convex
body is not necessarily closed. An example of that kind in the Euclidean plane is
the convex disc K bounded by the arcs

01 =

{(
cosϕ,−

√
3

4
+ sinϕ

)
:
π

3
≤ ϕ ≤

2π
3

}
,

02 =

{(
cosϕ,

√
3

4
+ sinϕ

)
:

4π
3
≤ ϕ ≤

5π
3

}
,

03 =

{(
1
4
+

1
2

cosϕ, 1
2

sinϕ
)
: −
π

3
< ϕ <

π

3

}
,

04 =

{(
−

1
4
+

1
2

cosϕ, 1
2

sinϕ
)
:

2π
3
< ϕ <

4π
3

}
.

Thus, K is a b-bounded b-convex body with b-exp(K )= 03∪04. Exposed b-faces
that are not singletons are 01 and 02.

Corollary 22. If K is a b-bounded b-convex body in a strictly convex Minkowski
space (Rn, ‖ · ‖), then every exposed b-face of K meets the closure of b-exp(K ).

Proof. This is a consequence of Theorems 17 and 20. �

Corollary 23. If S is a nonempty b-bounded subset of a strictly convex Minkowski
space (Rn, ‖ · ‖), then b-exp(bh1(S))⊆ cl(S).

Proof. By parts (d) and then (a) of Lemma 1, K := bh1(S) is a b-bounded b-convex
body and S is a subset of K. Now Theorem 20 says that cl(S) ⊇ b-exp(K ) =
b-exp(bh1(S)). �

Example 18 gives b-bounded b-convex bodies not having any b-exposed points.
This shows that Theorem 20 and Corollary 22 fail in general if the underlying norm
is not strictly convex.

A similar reason justifies the assumption of b-boundedness in Theorem 20 and
Corollary 22:

Proposition 24. If a b-convex body K in a Minkowski space (Rn, ‖ · ‖) is not
b-bounded, then b-exp(K )=∅.

Proof. We have rad(K ) = 1, because K is not b-bounded. Hence every support-
ing sphere S(x, 1) of K is the boundary of a circumball B(x, 1). By Lemma 2,
|K ∩ S(x, 1)| ≥ 2. Hence none of the exposed b-faces of K is a singleton and K
has no b-exposed points. �
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7. An application to diametrically maximal sets

A bounded nonempty set C ⊆ Rn is called complete (or diametrically maximal) if
diam(C ∪ {x}) > diam(C) for every x ∈ Rn

\C ; see [Meissner 1911; Jessen 1929;
Eggleston 1965; Groemer 1986]. Complete sets are necessarily convex bodies,
and in the Euclidean case or for n = 2, any complete set is of constant width. A
complete set C is called a completion of a bounded nonempty set S if S ⊆ C and
diam(C) = diam(S). Zorn’s lemma shows that every bounded nonempty subset
of Rn has at least one completion. In n-dimensional Minkowski spaces (n ≥ 3),
the family of complete bodies can form a much richer class than that of bodies of
constant width; see [Moreno and Schneider 2012a; 2012b] for recent contributions.

The following problem was posed in [Martini et al. 2014, Section 4]: Given
a complete set C ⊆ Rn, find all convex bodies K0 ⊆ C such that C is the unique
completion of K0 and, moreover, there is no convex body K ⊆ K0, K 6= K0, such
that C is the unique completion of K.

Without loss of generality, we can assume that diam(C) = 1. The following
lemma summarizes particular relevant statements from the literature (for (a) and (b),
see [Eggleston 1965, Section 1(E)]; for (c) and (d), see [Groemer 1986, Theorem 5]
and the short proof given there).

Lemma 25. The following are satisfied in every Minkowski space (Rn, ‖ · ‖):

(a) A set C ⊆ Rn of diameter 1 is complete if and only if , for every x1 ∈ bd(C),
there exists x2 ∈ bd(C) such that ‖x1− x2‖ = 1.

(b) A set C ⊆ Rn of diameter 1 is complete if and only if C =
⋂

x∈C B(x, 1).

(c) A set S ⊆ Rn of diameter 1 has a unique completion if and only if bh1(S) is
complete.

(d) If a set S ⊆ Rn of diameter 1 has a unique completion C , then C = bh1(S).

Proposition 26. Let C be a complete set of diameter 1 in a Minkowski space
(Rn, ‖ · ‖), and let K ⊆ C be a convex body. The following three conditions are
equivalent:

(I) C is the unique completion of K.

(II) bh1(K )= C.

(III) K meets every exposed b-face of C.

If , in addition, ‖ · ‖ is strictly convex, then (I), (II), and (III) are equivalent to

(IV) cl(conv(b-exp(C)))⊆ K.

Proof. First note that C is b-bounded by (1), because diam(C)=1, and Lemma 25(b)
shows that C is a b-bounded b-convex body.
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(I)⇒(II): Since C is a completion of K, we obtain diam(K ) = diam(C) = 1.
Now Lemma 25(d) gives (I)⇒(II).

(II)⇔(III) and (II)⇔(IV) follow from Theorems 17 and 20, respectively.
((II)∧(III))⇒(I): By (III), there exists x1 ∈ K ∩ bd(C). Lemma 25(a) gives

x ′2 ∈ bd(C) such that x ′2 ∈ S(x1, 1). Then S(x1, 1) is a supporting sphere of C
and F = C ∩ S(x1, 1) is an exposed b-face of C . By condition (III), there exists
x2 ∈ K ∩ F ⊆ K ∩ S(x1, 1). We obtain diam(K )= 1, because

1= ‖x1− x2‖ ≤ diam(K )≤ diam(C)= 1.

Now Lemma 25(c) gives (II)⇒(I), and we are done. �

Criteria (III) and (IV) from Proposition 26 help to characterize minimal convex
bodies K0 in a complete set C such that C is the unique completion of K0.

Example 27. We consider the space ln
∞

as in Example 18. The only complete sets
in that space are closed balls (see [Eggleston 1965, Corollary 2]), so that a complete
set C of diameter 1 is necessarily a box (i.e., a square if n = 2) with edges of length
1 parallel to the coordinate axes. The equivalence of (I) and (III) in Proposition 26
says that C is the unique completion of a convex body K ⊆ C if and only if K
meets each of the 2n facets of C . It is easy to find minimal convex bodies K0 with
that property: such a K0 is the convex hull of a minimal set S consisting of at
least one point from each facet of C . If n = 2, then such K0 can be a line segment
(a diagonal of C), a triangle or a quadrangle. For arbitrary n ≥ 2, the number of
vertices of such K0 can be 2 (if K0 is a diagonal of C passing through the center
of C), 3, . . . , 2n (e.g., if K0 is the cross polytope generated by the centers of the 2n
facets of C).

If the underlying Minkowski space is strictly convex, then Proposition 26 shows
that the problem mentioned above has a unique solution.

Corollary 28. Let C be a complete set of diameter 1 in a strictly convex Minkowski
space (Rn, ‖ · ‖). Then K0 = cl(conv(b-exp(C))) is the unique minimal (under
inclusion) convex body whose unique completion is C.

8. Open questions

8.1. Spindle convexity in Minkowski spaces. In [Lángi et al. 2013], bh1({x1, x2})

is called the spindle of x1, x2 ∈ Rn, which generalizes the corresponding notion
from Euclidean space (see, e.g., [Bezdek et al. 2007]). A set S ⊆ Rn is called
spindle convex if, for all x1, x2 ∈ S, S covers the whole spindle of x1 and x2. This
gives rise to the concept of the spindle convex hull of a subset of Rn. Note that
spindle convex sets are not necessarily closed, in contrast to b-convex sets. Closed
sets turn out to be spindle convex if and only if they are b-convex, provided the
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underlying Minkowski space is Euclidean or two-dimensional or its unit ball is (an
affine image of) a cube (see [Bezdek et al. 2007, Corollary 3.4; Lángi et al. 2013,
Corollaries 3.13 and 3.15]). An example in (an affine image of) the space l3

1 from
Example 7 shows that closed spindle convex sets need not be b-convex in general
(see [Lángi et al. 2013, Example 3.1]).

We define a related hierarchy of notions of convexity by calling a set S ⊆ Rn

k-spindle convex, k ∈ {2, 3, . . .}, if bh1({x1, . . . , xk})⊆ S for all x1, . . . , xk ∈ S. We
call S ∗-spindle convex if bh1(F)⊆ S for every finite F ⊆ S (i.e., if S is k-spindle
convex for all k = 2, 3, . . .).

Are the k-spindle convex hulls and the ∗-spindle convex hull of a closed set
closed? Clearly, every b-convex set is ∗-spindle convex. Is every closed ∗-spindle
convex set b-convex? Theorem 14 says that in many situations bh1(S) is the closure
of the ∗-spindle convex hull of S. On the other hand, the relatively open segment
S from Example 16 is ∗-spindle convex, but cl(S) is not even 2-spindle convex.
Given an arbitrary Minkowski space (Rn, ‖ · ‖), does there exist k ∈ {2, 3, . . .} such
that ∗-spindle convexity coincides with k-spindle convexity? Given k ∈ {2, 3, . . .},
does there exist a Minkowski space (Rn, ‖ · ‖) such that k-spindle convexity differs
from (k+ 1)-spindle convexity? These and related questions might be studied to
continue naturally our investigations here.

8.2. Generalized Minkowski spaces. Our results are shown in the framework of a
Minkowski space. What remains true if the norm is replaced by a gauge, i.e., if the
unit ball is no longer necessarily centered at o?

8.3. Möbius geometry. One might check whether there are interesting connections
(e.g., regarding the used methods and tools) to Möbius geometry where spheres
also somehow play the role of hyperplanes; see, e.g., [Volenec 1976; Langevin and
Teufel 2009].
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