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ON LANGLANDS QUOTIENTS
OF THE GENERALIZED PRINCIPAL SERIES

ISOMORPHIC TO THEIR AUBERT DUALS

IVAN MATIĆ

We determine under which conditions is the Langlands quotient of an in-
duced representation of the form δoσ , where δ is an irreducible essentially
square-integrable representation of a general linear group and σ is a dis-
crete series representation of the classical p-adic group, isomorphic to its
Aubert dual.

1. Introduction

Let F denote a nonarchimedean local field and let Gn stand for the symplectic or
(full) orthogonal group having split rank n. The involution on the Grothendieck
group of the smooth finite-length representations of a reductive group has been
intensively studied by many authors, and we use an involution defined for general
reductive p-adic groups in [Aubert 1995] and [Schneider and Stuhler 1997]. This
involution is known as the Aubert involution and the image of a representation
under this involution is called the Aubert dual of a representation. In this paper we
regard the Aubert dual of an admissible finite-length representation as a genuine
representation, taking the + or − sign in such way that we obtain the positive
element in the appropriate Grothendieck group.

The Aubert involution has a number of prominent applications in the represen-
tation theory of classical p-adic groups, and one would also like to gain a deeper
knowledge on the explicit structure of the Aubert duals of irreducible representations.

In our previous work [Matić 2016a; 2017], we obtained an explicit description
of the Aubert duals of certain classes of discrete series representations of Gn , and
in this paper we use developed methods to identify certain classes of irreducible
representations which are fixed by the Aubert involution, i.e., which are isomorphic
to their Aubert duals. We tackle this problem for the Langlands quotients of the
generalized principal series of the group Gn . We note that the generalized principal
series is an induced representation of the form δ o σ, obtained by the parabolic
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induction with respect to the maximal parabolic subgroup, where the inducing
representation δ⊗ σ has an irreducible essentially square-integrable representation
on the general linear group part and an irreducible square-integrable representation
on the classical group part. If νxδ is unitarizable for x < 0, where ν = |det|F , then
the generalized principal series δoσ has a unique irreducible (Langlands) quotient,
which is also isomorphic to the unique irreducible subrepresentation of δ̃oσ . Such
irreducible nontempered representations can be observed as the first step in the
Langlands classification of the nonunitary dual of Gn .

To obtain the necessary conditions under which the Langlands quotient of the
generalized principal series is isomorphic to its Aubert dual, we use the Jacquet
modules method and some elementary properties of the Aubert involution, together
with descriptions of the Jacquet modules of certain discrete series representations,
obtained in [Matić 2013; 2016c].

Afterwards, we explicitly determine the Aubert duals of Langlands quotients
satisfying the obtained necessary conditions, using methods introduced in [Matić
2017], and further developed in [Matić 2016a]. Perhaps a bit surprisingly, an impor-
tant role in such a procedure is, in the considered case, played by the composition
factors of the generalized principal series δoσ with a strongly positive σ, obtained
in [Muić 2004] and [Matić 2016b, Proposition 3.2]. Such a description of the
composition factors enables us to control the Jacquet modules of the investigated
nontempered representations, similarly to in [Matić 2015].

We summarize our main results in the following theorem.

Theorem 1.1. The Langlands quotient of the generalized principal series

δ([νxρ, ν yρ])o σ, x + y > 0,

is isomorphic to its Aubert dual if and only if one of the following holds:

(1) The discrete series representation σ is cuspidal, x = y, and νxρ o σ is irre-
ducible.

(2) The discrete series representation σ is cuspidal, x = 0, y = 1, and ρ o σ
reduces.

(3) The cuspidal representation ρ is self-contragredient, the induced representation
ναρoσcusp reduces for α > 0 (here σcusp stands for the partial cuspidal support
of σ ), y = α+ 1, and one of the following holds:

(i) x is a half-integer, 3
2 ≤ x ≤ α, and σ is the unique irreducible subrepre-

sentation of the induced representation

νxρ× νx+1ρ× · · ·× ναρo σcusp.
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(ii) x is a positive integer, x ≤ α, and σ is the unique irreducible subrepresen-
tation of the induced representation

νxρ× νx+1ρ× · · ·× ναρo σcusp.

(iii) x = 0 and σ is the unique irreducible subrepresentation of the induced
representation

νρ× ν2ρ× · · ·× ναρo σcusp.

We now describe the contents of the paper in more detail. In Section 2 we set
up the notation and terminology, and prove some technical results which will be
helpful in our investigation. In Section 3 we state and prove our main results, using
a case-by-case consideration.

2. Notation and preliminaries

Let F denote a nonarchimedean local field of characteristic 6= 2.
Let us first recall the definition of the Aubert involution and its basic properties.
For a connected reductive p-adic group G defined over F, let 6 denote the set

of roots of G with respect to a fixed minimal parabolic subgroup and let 1 stand
for a basis of 6. For 2⊆1, we let P2 be the standard parabolic subgroup of G
corresponding to 2 and M2 the standard Levi factor of G corresponding to 2.

For a parabolic subgroup P of G with the Levi factor M and a representation
σ of M, we denote by iM(σ ) a normalized parabolically induced representation
of Gn induced from σ . For an admissible finite-length representation σ of G, the
normalized Jacquet module of σ with respect to the standard parabolic subgroup
having Levi factor equal to M will be denoted by rM(σ ). We recall the following
definition and results from [Aubert 1995]:

Theorem 2.1. Define the operator on the Grothendieck group of admissible repre-
sentations of G of finite length by

DG =
∑
2⊆1

(−1)|2|iM2
◦ rM2

.

The operator DG has the following properties:

(1) DG is an involution.

(2) DG takes irreducible representations to irreducible ones.

(3) If σ is an irreducible cuspidal representation, then DG(σ )= (−1)|1|σ .

(4) For a standard Levi subgroup M = M2, we have

DG ◦ iM = iM ◦ DM .
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(5) For a standard Levi subgroup M = M2, we have

rM ◦ DG = Ad(w) ◦ Dw−1(M) ◦ rw−1(M),

where w is the longest element of the set {w ∈W : w−1(2) > 0}.

Let us now describe the groups that we consider. We look at the usual towers
of orthogonal or symplectic groups Gn = G(Vn) that are the groups of isometries
of F-spaces (Vn, ( · , · )), n ≥ 0, where the form ( · , · ) is nondegenerate and it is
skew-symmetric if the tower is symplectic and symmetric otherwise. The set of
standard parabolic subgroups will be fixed in a usual way. Then the Levi factors of
standard parabolic subgroups have the form

M ∼= GL(n1, F)×GL(n2, F)× · · ·×GL(nk, F)×Gn′ .

If δi is a representation of GL(ni , F) for i = 1, 2, . . . , k, and τ a representation
of Gn′ , the induced representation iM(δ1⊗ δ2⊗ · · · ⊗ δk ⊗ τ) will be denoted by
δ1× δ2× · · ·× δk o τ . We use a similar notation to denote a parabolically induced
representation of GL(m, F).

If π is an irreducible representation of Gn , we denote by π̂ the representa-
tion ±DGn (π), taking the sign + or − such that π̂ is a positive element in the
Grothendieck group of finite-length admissible representations of Gn . We call π̂
the Aubert dual of π .

By Irr(Gn) we denote the set of all irreducible admissible representations of
Gn . Furthermore, let R(Gn) denote the Grothendieck group of admissible rep-
resentations of finite length of Gn and define R(G) = ⊕n≥0 R(Gn). Similarly,
let Irr(GL(n, F)) denote the set of all irreducible admissible representations of
GL(n, F), let R(GL(n, F)) denote the Grothendieck group of admissible represen-
tations of finite length of GL(n, F) and define R(GL)=⊕n≥0 R(GL(n, F)).

The generalized principal series are the induced representations of the form δoσ,
where δ ∈ R(GL) is an irreducible essentially square-integrable representation and
σ ∈ R(G) is a discrete series representation.

There is a unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable, where ν = |det|F . If
e(δ) > 0, the generalized principal series δoσ has a unique irreducible (Langlands)
quotient, which is also the unique irreducible subrepresentation of δ̃o σ, where δ̃
denotes the contragredient of δ.

By the results of [Zelevinsky 1980], such a representation δ is attached to the
segment and we write δ = δ([νaρ, νbρ]), where a, b ∈ R are such that b− a is a
nonnegative integer and ρ ∈ Irr(GL(n, F)) is a unitary cuspidal representation. We
recall that δ([νaρ, νbρ]) is the unique irreducible subrepresentation of the induced
representation νbρ× νb−1ρ× · · ·× νaρ.
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For our Jacquet module considerations it is more convenient to use the sub-
representation version of the Langlands classification and write a nontempered
irreducible representation π of Gn as the unique irreducible (Langlands) sub-
representation of the induced representation of the form δ1 × δ2 × · · · × δk o τ ,
where τ ∈ Irr(Gm) is a tempered representation, δi ∈ Irr(GL(ni , F)) is an essen-
tially square-integrable representation attached to the segment [νaiρi , ν

biρi ] for
i = 1, 2, . . . , k, and a1+ b1 ≤ a2+ b2 ≤ · · · ≤ ak + bk < 0. In this case, we write
π = L(δ1× δ2× · · ·× δk o τ).

For σ ∈ Irr(Gn) and 1≤ k ≤ n, denote by r(k)(σ ) the normalized Jacquet module
of σ with respect to the parabolic subgroup with Levi factor GL(k, F)× Gn−k .
Identify r(k)(σ ) with its semisimplification in R(GL(k, F))⊗R(Gn−k) and consider

µ∗(σ )= 1⊗ σ +
n∑

k=1

r(k)(σ ) ∈ R(GL)⊗ R(G).

The following result, derived in [Tadić 1995], presents the crucial structural
formula for our calculations of Jacquet modules.

Theorem 2.2. Let ρ be an irreducible cuspidal representation of GL(m, F) and
k, l ∈ R such that k+ l ∈ Z≥0. Let σ be an admissible representation of Gn of finite
length. Write µ∗(σ )=

∑
τ,σ ′ τ ⊗ σ

′. Then we have

µ∗(δ([ν−kρ, νlρ])o σ)

=

l∑
i=−k−1

l∑
j=i

∑
τ,σ ′

δ([ν−iρ̃, νkρ̃])× δ([ν j+1ρ, νlρ])× τ ⊗ δ([νi+1ρ, ν jρ])o σ ′.

We omit δ([νxρ, ν yρ]) if x > y.

We note the following direct consequence of the previous theorem and of the
Casselman square-integrability criterion:

Corollary 2.3. Let ρ denote an irreducible self-contragredient cuspidal representa-
tion of GL(m, F) and k, l ∈ R such that k+ l ∈ Z≥0 and k > 0. If σ ∈ Irr(Gn) is a
discrete series representation, then µ∗(δ([ν−kρ, νlρ])o σ) contains an irreducible
constituent of the form νrρ ′⊗π , where r ≤ 0 and ρ ′ is cuspidal, if and only if l ≤ 0.
Furthermore, if l ≤ 0 and µ∗(δ([ν−kρ, νlρ])oσ) contains an irreducible constituent
of the form νrρ ′⊗π , where r ≤ 0 and ρ ′ is cuspidal, then r = l and ρ ′ ∼= ρ.

The following technical result will be used several times in the paper:

Lemma 2.4. Suppose that π ∈ Irr(Gn) is a subrepresentation of an induced repre-
sentation of the form νa1ρ1× ν

a2ρ2× · · ·× ν
akρk oπ1, where ρi ∈ Irr(GL(mi , F))

is a unitary cuspidal self-contragredient representation for i = 1, 2, . . . , k, and π1

is an admissible representation of finite length. Then the Jacquet module of π̂ with



400 IVAN MATIĆ

respect to an appropriate parabolic subgroup contains an irreducible representation
of the form ν−a1ρ1⊗ ν

−a2ρ2⊗ · · ·⊗ ν
−akρk ⊗π2.

Proof. Frobenius reciprocity and transitivity of Jacquet modules imply that there
is an irreducible cuspidal representation π ′ such that the Jacquet module of π
with respect to an appropriate parabolic subgroup contains the irreducible cuspidal
representation νa1ρ1⊗ ν

a2ρ2⊗ · · ·⊗ ν
akρk ⊗π

′. Using Theorem 2.1, we obtain the
claim of the lemma. �

We note that one can also deduce that the representation π2 in the previous
lemma is in fact isomorphic to π̂1. However, we will not use this in the sequel.

We will now recall the Mœglin–Tadić classification of discrete series for groups
that we consider. Every discrete series representation of Gn is uniquely determined
by three invariants: the partial cuspidal support, the Jordan block and the ε function.

The partial cuspidal support of a discrete series σ ∈ Irr(Gn) is an irreducible
cuspidal representation σcusp of some Gm such that there is an irreducible admissible
representation π of GL(n−m, F) such that σ is a subrepresentation of π o σcusp.

The Jordan block of σ, denoted by Jord(σ ), is the set of all pairs (c, ρ) where
ρ is an irreducible cuspidal self-contragredient representation of some GL(nρ, F)
and c > 0 is an integer such that the following two conditions are satisfied:

(1) c is even if and only if L(s, ρ, r) has a pole at s = 0. The local L-function
L(s, ρ, r) is the one defined by Shahidi [1990; 1992], where r =

∧2
Cnρ is

the exterior-square representation of the standard representation on Cnρ of
GL(nρ,C) if Gn is a symplectic or even-orthogonal group, and r = Sym2 Cnρ

is the symmetric-square representation of the standard representation on Cnρ

of GL(nρ,C) if Gn is an odd-orthogonal group.

(2) The induced representation δ([ν−(c−1)/2ρ, ν(c−1)/2ρ])o σ is irreducible.

To explain the notion of the ε function, we will first define Jordan triples. These
are triples of the form (Jord, σ ′, ε), where

• σ ′ is an irreducible cuspidal representation of some Gn .

• Jord is the finite (possibly empty) set of ordered pairs (c, ρ), where ρ ∈
Irr(GL(nρ, F)) is a self-contragredient cuspidal representation, and c is a
positive integer which is even if and only if L(s, ρ, r) has a pole at s = 0
(for the local L function as above). For an irreducible self-contragredient
cuspidal representation ρ of GL(nρ, F) we write Jordρ = {c : (c, ρ) ∈ Jord}.
If Jordρ 6=∅ and c ∈ Jordρ , we put c_= max{d ∈ Jordρ : d < c}, if it exists.

• ε is the function defined on a subset of Jord∪(Jord× Jord) and attains the
values 1 and −1. If (c, ρ) ∈ Jord, then ε(c, ρ) is not defined if and only if c is
odd and (c′, ρ) ∈ Jord(σ ′) for some positive integer c′. Next, ε is defined on a
pair ((c, ρ), (c′, ρ ′)) ∈ Jord× Jord if and only if ρ ∼= ρ ′ and c 6= c′.
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Suppose that, for the Jordan triple (Jord, σ ′, ε), there is a (c, ρ) ∈ Jord such that
ε((c_, ρ), (c, ρ))= 1. If we put Jord′ = Jord \{(c_, ρ), (c, ρ)} and consider the re-
striction ε′ of ε to Jord′ ∪(Jord′× Jord′), we obtain a new Jordan triple (Jord′, σ ′, ε′),
and we say that such Jordan triple is subordinated to (Jord, σ ′, ε).

We say that the Jordan triple (Jord, σ ′, ε) is a triple of alternated type if

ε((c_, ρ), (c, ρ))=−1

whenever c_ is defined and there is an increasing bijection φρ : Jordρ→ Jord′ρ(σ
′),

where Jord′ρ(σ
′) equals Jordρ(σ ′)∪ {0} if a is even and ε(min Jordρ, ρ) = 1, and

Jord′ρ(σ
′) equals Jordρ(σ ′) otherwise.

The Jordan triple (Jord, σ ′, ε) dominates the Jordan triple (Jord′, σ ′, ε′) if there
is a sequence of Jordan triples (Jordi , σ

′, εi ), 0≤ i ≤ k, such that (Jord0, σ
′, ε0)=

(Jord, σ ′, ε), (Jordk, σ
′, εk)= (Jord′, σ ′, ε′), and (Jordi , σ

′, εi ) is subordinated to
(Jordi−1, σ

′, εi−1) for i ∈ {1, 2, . . . , k}. The Jordan triple (Jord, σ ′, ε) is called
admissible if it dominates a triple of alternated type.

The classification given in [Mœglin 2002] and [Mœglin and Tadić 2002] states
that there is a one-to-one correspondence between the set of all discrete series in
Irr(G) and the set of all admissible triples (Jord, σ ′, ε) given by σ = σ(Jord,σ ′,ε),
such that σcusp = σ

′ and Jord(σ ) = Jord. Furthermore, if (c, ρ) ∈ Jord is such
that ε((c_, ρ), (c, ρ)) = 1, we set Jord′ = Jord \{(c_, ρ), (c, ρ)} and consider the
restriction ε′ of ε to Jord′ ∪(Jord′× Jord′). Then (Jord′, σ ′, ε′) is an admissible
triple and σ is a subrepresentation of δ([ν−(c_−1)/2ρ, ν(c−1)/2ρ])o σ(Jord′,σ ′,ε′).

An irreducible representation σ ∈ R(G) is called strongly positive if for every
embedding

σ ↪→ νs1ρ1× ν
s2ρ2× · · ·× ν

skρk o σcusp,

where ρi ∈ R, i = 1, 2, . . . , k, are irreducible cuspidal unitary representations
and σcusp ∈ R(G) is an irreducible cuspidal representation, we have si > 0 for
i = 1, 2, . . . , k.

It was shown in [Mœglin 2002, Proposition 5.3] and [Mœglin and Tadić 2002,
Proposition 7.1] that triples of alternated type correspond to strongly positive
discrete series. Let us recall an inductive description of the noncuspidal strongly
positive discrete series, obtained in [Matić 2011, Theorem 5.1], which also holds in
the classical group case.

Proposition 2.5. Suppose that σsp ∈ R(G) is an irreducible strongly positive repre-
sentation and let ρ ∈ Irr(GL(m, F)) denote an irreducible cuspidal representation
such that some twist of ρ appears in the cuspidal support of σsp. We denote by σcusp

the partial cuspidal support of σsp. Then there exist unique a, b ∈R such that a > 0,
b > 0, b− a is a nonnegative integer, and a unique irreducible strongly positive
representation σ (1)sp without νaρ in the cuspidal support, with the property that σsp
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is the unique irreducible subrepresentation of δ([νaρ, νbρ])o σ (1)sp . Furthermore,
there is a nonnegative integer l such that α := a+ l > 0 and ναρo σcusp reduces.
If l = 0 there are no twists of ρ appearing in the cuspidal support of σ (1)sp , and if
l > 0 there exist a unique b′ > b and a unique strongly positive discrete series σ (2)sp ,
which contains neither νaρ nor νa+1ρ in its cuspidal support, such that σ (1)sp can be
written as the unique irreducible subrepresentation of δ([νa+1ρ, νb′ρ])o σ (2)sp .

We say a representation σ ∈ Irr(Gn) belongs to the set D(ρ1,...,ρm;σcusp) if every
element of the cuspidal support of σ belongs to the set {νxρ1,...,ν

xρm,σcusp : x ∈R},
where ρ1,...,ρm are mutually nonisomorphic irreducible cuspidal representations
of general linear groups and σcusp is an irreducible cuspidal representation of Gn′

for some n′ ≤ n.
We note that for a self-contragredient cuspidal ρ ∈ Irr(GL(m, F)) and a cuspidal

σcusp ∈ Irr(Gn), there is a unique nonnegative α such that the induced representa-
tion ναρ o σcusp reduces, and it follows from [Arthur 2013] and [Mœglin 2014,
Théorème 3.1.1] that α is a half-integer.

Directly from the previous proposition we obtain

Proposition 2.6. Let σsp ∈ Irr(Gn) denote a strongly positive representation and
suppose that σsp ∈ D(ρ; σcusp) for an irreducible cuspidal self-contragredient repre-
sentation ρ. Let α stand for the unique nonnegative half-integer such that ναρoσcusp

reduces, and let k = dαe, the smallest integer which is not smaller than α. If k = 0,
then σsp ∼= σcusp. Otherwise, there exists a unique k-tuple (a1, a2, . . . , ak) such that
ai − α ∈ Z for i = 1, 2, . . . , k, −1 < a1 < a2 < · · · < ak , and σsp is the unique
irreducible subrepresentation of the induced representation

δ([να−k+1ρ, νa1ρ])× δ([να−k+2ρ, νa2ρ])× · · ·× δ([ναρ, νakρ])o σcusp.

3. Langlands quotients fixed by the Aubert involution

In this section we describe all Langlands quotients of the generalized principal
series δ o σ which are isomorphic to their Aubert duals, using case-by-case
considerations. We write δ = δ([νxρ, ν yρ]), for x, y such that x + y > 0. The
induced representation δoσ then contains a unique irreducible (Langlands) quotient,
which is also the unique irreducible subrepresentation of the induced representation
δ([ν−y ρ̃, ν−x ρ̃])oσ, and in what follows will be denoted by π , i.e., let π= L(δ̃oσ).

Lemma 3.1. If π is isomorphic to π̂ , then x ≥ 0.

Proof. Since x + y > 0, we obviously have y > 0. Suppose that x < 0. From the
embedding π ↪→ ν−x ρ̃ × δ([ν−y ρ̃, ν−x−1ρ̃])o σ and the transitivity of Jacquet
modules, in the same way as in the proof of Lemma 2.4 we obtain that µ∗(π̂)
contains an irreducible constituent of the form νxρ ⊗ π ′. Since y 6= x , it follows
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directly from the structural formula that µ∗(δ([ν−y ρ̃, ν−x ρ̃])oσ) does not contain
such an irreducible constituent, so π̂ is not isomorphic to π , a contradiction. �

Let us first consider the case of cuspidal σ.

Proposition 3.2. Suppose that σ ∈ Irr(Gn) is a cuspidal representation. Then π is
isomorphic to its Aubert dual if and only if one of the following holds:

(1) x = y > 0 and the induced representation νxρo σ is irreducible,

(2) (x, y)= (0, 1) and the induced representation ρo σ reduces.

Proof. We have already seen that if π ∼= π̂ then x ≥ 0. In the same way as in
the proof of the previous lemma we deduce that µ∗(π̂) ≥ ν−x ρ̃ ⊗ π ′, for some
irreducible representation π ′. From the structural formula we see that this is possible
only if either x = y or (x, ρ̃)= (0, ρ).

Let us first consider the case x = y. Note that then we have x > 0. Furthermore,
if νxρ o σ reduces, it follows from [Muić 2004, Proposition 3.1(i)] that µ∗(π)
does not contain an irreducible constituent of the form ν−x ρ̃⊗π ′. Consequently, if
π ∼= π̂ and x = y, then νxρo σ is irreducible.

Conversely, if the induced representation νxρoσ is irreducible, then π ∼= νxρoσ
and from part (4) of Theorem 2.1 we have π̂ ≤ νxρoσ ∼= π , so π is isomorphic to
its Aubert dual.

Let us now assume that x = 0 and ρ ∼= ρ̃. Let s denote a unique nonnegative
half-integer such that νsρo σ reduces. We obviously have y > 0 and there are two
possibilities to consider.

First, suppose that y = s and let σsp stand for a unique irreducible subrepresen-
tation of the induced representation νρ × ν2ρ × · · · × ν yρ o σ . It follows from
[Matić 2011, Theorem 4.6] that σsp is a strongly positive discrete series and one
can see directly from [Mœglin and Tadić 2002, Proposition 2.1] that the induced
representation ρ o σsp reduces. By [Tadić 2013, Section 4], there is a unique
irreducible subrepresentation τ of ρo σsp such that µ∗(τ ) does not contain an irre-
ducible constituent of the form νρ⊗π ′. We note that τ is a tempered representation.
Furthermore, if µ∗(τ ) contains an irreducible constituent of the form νaρ⊗π ′1, then
a = 0. Thus, if µ∗(τ̂ ) contains an irreducible constituent of the form νaρ⊗π ′2, then
a=0. Since τ is a subrepresentation of ρ×νρ×ν2ρ×· · ·×ν yρoσ, using Lemma 2.4
we deduce that τ̂ is a subrepresentation of ρ× ν−1ρ× ν−2ρ× · · ·× ν−yρo σ and,
in the same way as in the proof of [Matić 2017, Lemma 3.4], we deduce that τ̂ is a
subrepresentation of δ([ν−yρ, ρ])o σ . Consequently, τ̂ ∼= π and π̂ 6∼= π .

Now, suppose that y 6= s. If y ≥ 2, we have the following embedding and
isomorphism:

π ↪→ δ([ν−y+1ρ, ρ])× ν−yρo σ ∼= ν yρ× δ([ν−y+1ρ, ρ])o σ.
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Lemma 2.4 implies that µ∗(π̂) contains an irreducible constituent of the form
ν−yρ⊗π ′ and it follows directly from the structural formula that π̂ 6∼= π . Thus, we
can assume that y = 1. If s > 0, then s 6= y and [Muić 2004, Theorem 4.1(i)] imply
that δ([ν−1ρ, ρ])oσ is irreducible and π ∼= δ([ρ, νρ])oσ . Consequently, if s > 0
then µ∗(π̂) contains an irreducible constituent of the form ν−1ρ⊗π ′, and it follows
directly from the structural formula that π̂ 6∼= π .

It remains to consider the case s = 0. According to [Muić 2004, Theorem 2.1],
in R(G) we have

δ([ρ, νρ])o σ = π + σ (1)ds + σ
(2)
ds ,

where σ (1)ds and σ (2)ds are mutually nonisomorphic discrete series subrepresenta-
tions of δ([ρ, νρ]) o σ . Frobenius reciprocity implies that both µ∗(σ (1)ds ) and
µ∗(σ

(2)
ds ) contain irreducible constituents of the form νρ ⊗ π ′. It follows from

the structural formula that only irreducible constituents of the form νρ ⊗ π ′ ap-
pearing in µ∗(δ([ρ, νρ])o σ) are νρ ⊗ τ1 and νρ ⊗ τ−1, where τ1 and τ−1 are
irreducible mutually nonisomorphic tempered representations such that in R(G)
we have ρ o σ = τ1 + τ−1. Furthermore, both νρ ⊗ τ1 and νρ ⊗ τ−1 appear in
µ∗(δ([ρ, νρ])o σ) with multiplicity one. Thus, µ∗(π) does not contain an irre-
ducible constituent of the form νρ⊗π ′ and, consequently, µ∗(π̂) does not contain
an irreducible constituent of the form ν−1ρ⊗π ′′. Since π is a subrepresentation of
ρ×νρoσ, using Lemma 2.4 we obtain that π̂ is a subrepresentation of ρ×ν−1ρoσ
and it follows that π̂ is a unique irreducible subrepresentation of δ([ν−1ρ, ρ])o σ,
i.e., π ∼= π̂ . This completes the proof. �

In the rest of this section we assume that σ is a noncuspidal discrete series
representation, and let σcusp denote the partial cuspidal support of σ .

Lemma 3.3. If π is isomorphic to π̂ , then σ ∈ D(ρ; σcusp). In particular, ρ is
self-contragredient.

Proof. Suppose that σ 6∈ D(ρ; σcusp). Then there is an embedding of the form
σ ↪→ νaρ ′ o σ ′ such that a > 0, ρ ′ is an irreducible self-contragredient cuspidal
representation which is not isomorphic to ρ, and σ ′ is irreducible. We have

π ↪→ δ̃× νaρ ′o σ ′ ∼= νaρ ′× δ̃o σ ′,

and Lemma 2.4, together with transitivity of Jacquet modules, implies that Jacquet
module of π̂ with respect to an appropriate parabolic subgroup contains an irre-
ducible representation of the form ν−aρ ′ ⊗ σ ′′. Since σ is square-integrable, it
follows that µ∗(δ o σ) does not contain an irreducible constituent of the form
ν−aρ ′⊗ σ ′′. Thus, π is not isomorphic to π̂ , a contradiction. �
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According to the previous lemma, in what follows we can assume that ρ is a
self-contragredient representation and that σ ∈ D(ρ; σcusp). We denote by α a
unique nonnegative half-integer s such that νsρo σcusp reduces.

The following result presents the crucial step towards our description.

Theorem 3.4. If π is isomorphic to π̂ , then σ is a strongly positive discrete series.
In particular, α > 0.

Proof. Suppose on the contrary that σ is not a strongly positive representation and let
(Jord(σ ), σcusp, εσ ) denote the corresponding Jordan triple. Since σ ∈ D(ρ; σcusp),
there is c ∈ Jordρ(σ ) such that c_ is defined and εσ ((c_, ρ), (c, ρ))= 1. Also, σ is
a subrepresentation of an induced representation of the form

δ([ν−(c_−1)/2ρ, ν(c−1)/2ρ])o σ ′

for an appropriate discrete series σ ′. Using [Mœglin and Tadić 2002, Lemma 3.2],
we deduce that σ is a subrepresentation of an induced representation of the form
ν(c−1)/2ρ o π1, for some irreducible π1. Since (c − 1)/2 ≥ 1 and −x ≤ 0, if
(c, x) 6= (3, 0) we obtain an embedding π ↪→ ν(c−1)/2ρ × δ([ν−yρ, ν−xρ])o π1.
Lemma 2.4 implies that µ∗(π̂) contains an irreducible constituent of the form
ν−(c−1)/2ρ⊗π2, and Corollary 2.3 implies that x = (c− 1)/2.

If c > 3, we also have (c− 3)/2>−(c− 1)/2+ 1, which gives the following
embeddings and isomorphisms:

π ↪→ δ([ν−yρ, ν
−

c−1
2 ρ])× δ([ν

−
c_−1

2 ρ, ν
c−1

2 ρ])o σ ′

↪→ δ([ν−yρ, ν
−

c−1
2 ρ])× ν

c−1
2 ρ× ν

c−3
2 ρ× δ([ν

−
c_−1

2 ρ, ν
c−5

2 ρ])o σ ′

∼= ν
c−1

2 ρ× δ([ν−yρ, ν
−

c−1
2 ρ])× ν

c−3
2 ρ× δ([ν

−
c_−1

2 ρ, ν
c−5

2 ρ])o σ ′

∼= ν
c−1

2 ρ× ν
c−3

2 ρ× δ([ν−yρ, ν
−

c−1
2 ρ])× δ([ν

−
c_−1

2 ρ, ν
c−5

2 ρ])o σ ′.

Since π ∼= π̂ , Lemma 2.4 and the transitivity of Jacquet modules imply that the
Jacquet module of π with respect to an appropriate parabolic subgroup contains an
irreducible representation of the form ν−(c−1)/2ρ⊗ ν−(c−3)/2ρ⊗π3.

From π ↪→ δ([ν−yρ, ν−(c−1)/2ρ])o σ, using the structural formula recalled in
Theorem 2.2, we obtain that ν−(c−3)/2ρ ⊗ π3 ≤ µ

∗(δ([ν−yρ, ν−(c+1)/2ρ]) o σ),
which is impossible.

It remains to consider the case c = 3. This directly implies that c_ = 1 and
x ∈ {0, 1}. In other words, σ is a subrepresentation of an induced representation
of the form δ([ρ, νρ])o σ ′, where σ ′ is a discrete series such that 1 and 3 do not
appear in Jordρ(σ ′), and it follows that σ ′ is a strongly positive representation,
since otherwise we can apply the same arguments as before to deduce that π is not
isomorphic to π̂ .
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Let us first assume that Jordρ(σ ′) 6= ∅. Then, as in [Matić 2011, Section 4]
and [Mœglin and Tadić 2002, Proposition 2.1], we see that there is an a ≥ 2 such
that σ ′ is a subrepresentation of νaρ o σ ′′ for an appropriate strongly positive
representation σ ′′.

If a > 2, we have σ ↪→ νaρ× δ([ρ, νρ])oσ ′′. Since x ∈ {0, 1}, in the same way
as before we deduce that µ∗(π)≥ ν−aρ⊗π ′ for an irreducible representation π ′,
which is impossible.

If a = 2, the irreducible representation σ ′ is also a subrepresentation of an
induced representation of the form ν2ρ× νρo σ1. If x = 0, we have the following
embeddings:

π ↪→ δ([ν−yρ, ρ])× δ([ρ, νρ])× ν2ρ× νρo σ1

↪→ ρ× νρ× ν2ρ× δ([ν−yρ, ν−1ρ])× ρ× νρo σ1

↪→ ρ× νρ× ν2ρ× ν−1ρ× ρ× νρ× δ([ν−yρ, ν−2ρ])o σ1.

Using Lemma 2.4 and the transitivity of Jacquet modules, we obtain that the
Jacquet module of π with respect to an appropriate parabolic subgroup contains
an irreducible representation of the form ρ⊗ ν−1ρ⊗ ν−2ρ⊗ νρ⊗ ρ⊗ ν−1ρ⊗π4.
Since σ is a discrete series representation, applying the structural formula several
times, we deduce that y ≥ 2 and that νρ ⊗ ρ ⊗ ν−1ρ ⊗ π4 is contained in the
Jacquet module of δ([ν−yρ, ν−3ρ])o σ with respect to an appropriate parabolic
subgroup. This directly implies that the Jacquet module of σ with respect to an
appropriate parabolic subgroup contains an irreducible representation of the form
νρ⊗ρ⊗ν−1ρ⊗π5, contradicting the square-integrability criterion. The case x = 1
can be handled in the same way.

Let us now assume that Jordρ(σ ′) = ∅. This implies that σ ′ is a cuspidal
representation and ρo σ ′ reduces. As in the proof of Proposition 3.2, in R(G) we
have ρo σ ′ = τ1+ τ−1 and there is a unique i ∈ {1,−1} such that σ is the unique
irreducible subrepresentation of νρo τi or, equivalently, such that µ∗(σ )≥ νρ⊗ τi .
It follows from [Matić 2016a, Theorem 5.1] that σ̂ ∼= L(ν−1ρ o τ−i ), and if an
irreducible constituent of the form νzρ⊗π ′ appears in µ∗(σ̂ ), then z =−1.

Again, we comment only on the case x = 0, since the case x = 1 can be handled
in the same way.

We have the following embeddings:

(1) π ↪→ δ([ν−yρ, ρ])o σ

↪→ ρ× ν−1ρ× · · ·× ν−yρo σ

↪→ ρ× ν−1ρ× · · ·× ν−yρ× νρo τi .
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Frobenius reciprocity implies that the Jacquet module of π with respect to an
appropriate parabolic subgroup contains the irreducible representation

(2) ρ⊗ ν−1ρ⊗ · · ·⊗ ν−yρ⊗ νρ⊗ τi .

Since π ∼= π̂ , applying Theorem 2.1, part (4) to the induced representation appearing
in (1), we deduce that π is an irreducible subquotient of

(3) ρ× ν−1ρ× · · ·× ν−yρo L(ν−1ρo τ−i ).

Using a repeated application of the structural formula and τi 6∼= τ−i , one can show
that the irreducible representation (2) is not contained in the Jacquet module of
the induced representation (3) with respect to an appropriate parabolic subgroup, a
contradiction. This completes the proof. �

We denote dαe by k, and let (a1, a2, . . . , ak) denote a unique ordered k-tuple
such that ai −α ∈ Z for i = 1, 2, . . . , k, −1< a1 < a2 < · · ·< ak , and such that σ
is the unique irreducible subrepresentation of

δ([να−k+1ρ, νa1ρ])× δ([να−k+2ρ, νa2ρ])× · · ·× δ([ναρ, νakρ])o σcusp.

We note that such a k-tuple exists by Proposition 2.6. Since σ is noncuspidal, there
is an i ∈ {1,2,...,k} such that ai ≥ α− k+ i . Denote the minimal such i by imin.

Lemma 3.5. If π is isomorphic to π̂ , then aimin = α− k + imin and a j+1 = a j + 1
for j = imin, imin+ 1, . . . , k− 1.

Proof. It follows from [Matić 2013, Theorem 4.6], or from [Matić and Tadić 2015,
Section 8], that σ is a subrepresentation of an induced representation of the form
νaiminρo σsp, where σsp is a strongly positive representation. If −x 6= aimin − 1, we
have an embedding π ↪→ νaiminρ × δ([ν−yρ, ν−xρ])o σsp, and an application of
Corollary 2.3 and Lemma 2.4 gives x = aimin .

If −x = aimin − 1, since x ≥ 0 and aimin ≥
1
2 , it follows that x ∈

{
0, 1

2

}
. Thus, if

−x = aimin − 1 then imin = 1 and aimin = α− k+ 1.
Let us now assume that −x 6= aimin−1 and aimin ≥ α−k+ imin+1. It follows that

aimin ≥
3
2 , so x = aimin and −x < aimin−1. There is a strongly positive representation

σ ′sp such that σ is a subrepresentation of νaiminρ × νaimin−1ρ o σ ′sp, so we have an
embedding π ↪→ νaiminρ×νaimin−1ρ×δ([ν−yρ, ν−xρ])oσ ′sp. Since π ∼= π̂ , it follows
that the Jacquet module of π with respect to an appropriate parabolic subgroup
contains an irreducible representation of the form ν−aiminρ⊗ ν−aimin+1ρ⊗π ′. From
the structural formula we directly obtain that µ∗(δ([ν−yρ, ν−aimin−1ρ])oσ) contains
ν−aimin+1ρ⊗π ′, a contradiction. Consequently, aimin = α− k+ imin.

Now we assume that there is a j ∈ {imin, imin+ 1, . . . , k− 1} such that a j+1 6=

a j + 1. It follows from [Matić 2011, Section 4] that a j+1 ≥ a j + 2 and π is a
subrepresentation of an induced representation of the form νa j+1ρoσ ′sp, for a strongly
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positive representation σ ′sp. Since we obviously have that a j+1 >−x+1, there is an
embedding π ↪→ νa j+1ρ× δ([ν−yρ, ν−xρ])oσ ′sp. This gives µ∗(π)≥ ν−a j+1ρ⊗π ′

for some irreducible π ′, contradicting Corollary 2.3, since x < a j+1. �

In the following theorem we state our first main result.

Theorem 3.6. Suppose that α is a half-integer. Then π is isomorphic to π̂ if and
only if α ≥ 3

2 , aimin ≥
3
2 , x = aimin , and y = α+ 1.

Theorem 3.6 follows from the following two propositions:

Proposition 3.7. Suppose that α is a half-integer and π ∼= π̂ . Then α≥ 3
2 , aimin ≥

3
2 ,

x = aimin , and y = α+ 1.

Proof. Let us first show that x = aimin . We have an embedding σ ↪→ νaiminρoσsp for
some strongly positive representation σsp. Since x ≥ 0 and aimin > 0, if (x, aimin) 6=( 1

2 ,
1
2

)
, we obtain an embedding π ↪→ νaiminρ × δ([ν−yρ, ν−xρ]) o σsp, which

implies that µ∗(π) contains an irreducible constituent of the form ν−aiminρ ⊗ π1,
since π ∼= π̂ . This is possible only if x = aimin . Thus, in any case we have x = aimin .

Let us now prove that aimin ≥
3
2 . Assume on the contrary that aimin =

1
2 . Using

Lemma 3.5 and [Muić 2004, Theorem 5.1], we obtain that νzρo σ is irreducible
for z 6∈

{ 1
2 , α + 1

}
. If y 6∈

{1
2 , α + 1

}
, we have the following embedding and

isomorphism:

π ↪→ δ([ν−y+1ρ, ν−1/2ρ])× ν−yρo σ ∼= ν yρ× δ([ν−y+1ρ, ν−1/2ρ])o σ.

In the same way as before we conclude thatµ∗(π) contains an irreducible constituent
of the form ν−yρ⊗π1, which is impossible unless y = 1

2 . Thus, y ∈
{1

2 , α+ 1
}
.

It follows at once that π is a subrepresentation of ν−1/2ρ×δ([ν−yρ, ν−3/2ρ])oσ,
and Lemma 2.4, together with transitivity of Jacquet modules, shows that µ∗(π)
contains an irreducible constituent of the form ν1/2ρ⊗π1. We will show that this is
impossible, implying aimin ≥

3
2 . Note that εσ (ρ, 2)= 1, where (Jord(σ ), σcusp, εσ )

stands for the Jordan triple corresponding to σ, so we use [Muić 2004, Theo-
rem 5.1(ii)]. Only the case y = α+ 1 and α ≥ 3

2 will be described in detail, since
other cases can be obtained in the same way and the case (y, α)=

(3
2 ,

1
2

)
is also, in

the split case, discussed in [Jantzen 1996]. The following equality holds in R(G):

δ([ν1/2ρ, να+1ρ])o σ = π + L(δ([ν−α−1ρ, ν1/2ρ])o σ (1)sp )

+ L(δ([ν−αρ, ν−1/2ρ])o σ (2)sp )

+ L(δ([ν−αρ, ν1/2ρ])o σ (3)sp ),
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where σ (1)sp , σ (2)sp , σ (3)sp are the unique irreducible subrepresentations of

ν3/2ρ× ν5/2ρ× · · ·× ναρo σcusp,

ν1/2ρ× ν3/2ρ× · · ·× να−1ρ× δ([ναρ, να+1ρ])o σcusp,

ν3/2ρ× ν5/2ρ× · · ·× να−1ρ× δ([ναρ, να+1ρ])o σcusp,

respectively. We note that σ (i)sp is strongly positive for i = 1, 2, 3.
Using the structural formula, we obtain that if ν1/2ρ ⊗ π1 is an irreducible

constituent of µ∗(δ([ν1/2ρ, να+1ρ])o σ), then π1 is an irreducible subquotient of
δ([ν1/2ρ, να+1ρ])o σ (1)sp . By [Muić 2004, Theorem 5.1(i)], in R(G) we have:

δ([ν1/2ρ, να+1ρ])o σ (1)sp = L(δ([ν−α−1ρ, ν−1/2ρ])o σ (1)sp )

+ L(δ([ν−αρ, ν−1/2ρ])o σ (3)sp ).

Furthermore, both irreducible constituents ν1/2ρ⊗ L(δ([ν−α−1ρ, ν−1/2ρ])o σ (1)sp )

and ν1/2ρ⊗ L(δ([ν−αρ, ν−1/2ρ])oσ (3)sp ) appear in µ∗(δ([ν1/2ρ, να+1ρ])oσ) with
multiplicity one, and Frobenius reciprocity implies that both

µ∗(L(δ([ν−α−1ρ, ν1/2ρ])o σ (1)sp )) and µ∗(L(δ([ν−αρ, ν1/2ρ])o σ (3)sp ))

contain irreducible constituents of the form ν1/2ρ⊗π1, so µ∗(π) does not contain
such an irreducible constituent.

Since aimin ≥
3
2 , Lemma 3.5 implies that α ≥ 3

2 . From y ≥ aimin , using [Muić
2004, Proposition 3.1], we obtain that ν yρoσ is irreducible if y 6= α+ 1. Suppose
that y 6= α+ 1. Then we have the following embedding and isomorphism:

π ↪→ δ([ν−y+1ρ, ν−xρ])× ν−yρo σ ∼= ν yρ× δ([ν−y+1ρ, ν−xρ])o σ.

In the same way as before we conclude thatµ∗(π) contains an irreducible constituent
of the form ν−yρ⊗π1, which is impossible unless x = y. Thus, y = aimin . It follows
from Lemma 3.5 and [Muić 2004, Proposition 3.1] that ν−aiminρo σ ∼= νaiminρo σ,
so π is an irreducible subrepresentation of νaiminρ × νaiminρ o σsp. Consequently,
Lemma 2.4 and the transitivity of Jacquet modules imply that the Jacquet module
of π with respect to an appropriate parabolic subgroup contains an irreducible
representation of the form ν−aiminρ ⊗ ν−aiminρ ⊗ π2, and an easy application of
Theorem 2.2 implies the Jacquet module of δ([ν−yρ, ν−xρ])o σ with respect to
an appropriate parabolic subgroup does not contain such a representation. Thus,
y = α+ 1, and the proposition is proved. �

Proposition 3.8. Suppose that α is a half-integer, α ≥ 3
2 , aimin ≥

3
2 , x = aimin , and

y = α+ 1. Then π is isomorphic to π̂ .

Proof. Let us first prove that if an irreducible constituent of the form νzρ⊗π1, with
z≥0, appears inµ∗(π), then z=aimin . Using the structural formula and [Matić 2013,
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Theorem 4.6], we deduce that if an irreducible constituent of the form νzρ ⊗ π1,
with z ≥ 0, appears in µ∗(δ([ν−α−1ρ, ν−aiminρ])o σ), then z ∈ {aimin, α+ 1}.

By [Muić 2004, Proposition 3.1(i)], in R(G) we have

δ([νaiminρ, να+1ρ])o σ = π + L(δ([ν−αρ, ν−aiminρ])o σsp),

where σsp denotes the unique irreducible subrepresentation of

νaiminρ× νaimin+1ρ× · · ·× να−1ρ× δ([ναρ, να+1ρ])o σcusp.

We note that σsp is a strongly positive representation. Using [Matić 2013, Theo-
rem 4.6], Frobenius reciprocity, and the transitivity of Jacquet modules, we obtain
that µ∗(L(δ([ν−αρ, ν−aiminρ])o σsp)) contains an irreducible constituent of the
form να+1ρ ⊗ π ′. The induced representation δ([νaiminρ, ναρ])o σ is irreducible
(by [Muić 2004, Proposition 3.1(ii)]), so the only such irreducible constituent
appearing in µ∗(δ([νaiminρ, να+1ρ])o σ) is να+1ρ ⊗ δ([νaiminρ, ναρ])o σ, which
appears there with multiplicity one. Therefore, there is no irreducible constituent of
the form να+1ρ⊗π1 appearing in µ∗(π). Furthermore, Lemma 2.4 implies that if
an irreducible constituent of the form νzρ⊗π1 with z ≤ 0 appears in µ∗(π̂), then
z =−aimin .

Since π is a subrepresentation of δ([ν−α−1ρ, ν−aiminρ])o σ and aimin ≥
3
2 , we

have the following embedding and isomorphisms:

π ↪→ νaiminρ× · · ·× ναρ× ν−aiminρ× · · ·× ν−αρ× ν−α−1ρo σcusp

∼= ν
aiminρ× · · ·× ναρ× ν−aiminρ× · · ·× ν−αρ× να+1ρo σcusp

∼= ν
aiminρ× · · ·× ναρ× να+1ρ× ν−aiminρ×× · · ·× ν−αρo σcusp.

Using Lemma 2.4, Theorem 2.1, and [Mœglin and Tadić 2002, Lemma 3.1], we
obtain that π̂ is a subrepresentation of the induced representation

ν−aiminρ× · · ·× ν−α−1ρ× νaiminρ× · · ·× ναρo σcusp.

It follows from Lemma 3.2 of the same work that there exists an irreducible
subquotient π1 of ν−aiminρ × · · · × ν−α−1ρ such that π̂ is a subrepresentation of
π1 × ν

aiminρ × · · · × ναρ o σcusp. Since µ∗(π̂) does not contain an irreducible
constituent of the form νzρ ⊗ π1 for z ≤ 0 and z 6= −aimin , we deduce that π1 ∼=

δ([ν−α−1ρ, ν−aiminρ]).
By the same lemma, there is an irreducible representation π ′ such that π̂ is a

subrepresentation of δ([ν−α−1ρ, ν−aiminρ])oπ ′ and, obviously, the cuspidal support
of π ′ equals {νaiminρ, νaimin+1ρ, . . . , ναρ, σcusp}.

Let us first suppose that π ′ is a nontempered representation and write π ′ ∼=
L(δ1×δ2×···×δkoτ), where δi ∈ Irr(GL(ni , F)) is an irreducible essentially square-
integrable representation for i = 1,2,...,k, e(δi )≤ e(δi+1)< 0 for i = 1,2,...,k−1,
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and τ ∈ Irr(Gn′) is an irreducible tempered representation. Write δi =δ([ν
aiρ, νbiρ]).

From ai +bi < 0 and from the description of the cuspidal support of π ′ follows that
bi ≤−aimin , for i = 1, 2, . . . , k. It directly follows that π ′ is a subrepresentation of
an induced representation of the form νb1ρoπ ′′ and, since −α ≤ b1, we have the
following embedding and isomorphism:

π̂ ↪→ δ([ν−α−1ρ, ν−aiminρ])× νb1ρoπ ′′ ∼= νb1ρ× δ([ν−α−1ρ, ν−aiminρ])oπ ′′,

and it follows that µ∗(π̂) contains an irreducible constituent of the form νb1ρ⊗π2,
which is impossible unless b1 =−aimin . If this is the case, we have an embedding

π̂ ↪→ ν−aiminρ× ν−aiminρ× δ([ν−α−1ρ, ν−aimin−1ρ])oπ ′′,

and Lemma 2.4 and the transitivity of Jacquet modules imply that the Jacquet module
of π with respect to an appropriate parabolic subgroup contains an irreducible
representation of the form νaiminρ ⊗ νaiminρ ⊗ π2. Using the structural formula,
[Matić 2013, Theorem 4.6], and the fact that α + 1 > aimin , we deduce that a
representation of the form νaiminρ ⊗ νaiminρ ⊗ π2 does not appear in the Jacquet
module of the induced representation δ([ν−α−1ρ, ν−aiminρ])o σ with respect to an
appropriate parabolic subgroup, a contradiction.

Consequently, π ′ is a tempered representation and, using the description of its
cuspidal support and [Matić 2012, Theorem 3.5], we conclude that π ′ is strongly
positive. Since the strongly positive representation is completely determined by its
cuspidal support ([Matić 2013, Lemma 3.5]), it follows at once that π ′ is isomorphic
to σ . Thus, π̂ is an irreducible subrepresentation of δ([ν−α−1ρ, ν−aiminρ]) o σ,
leading to π̂ ∼= π . This completes the proof. �

Now we state our second main result.

Theorem 3.9. Suppose that α is an integer. Then π is isomorphic to π̂ if and only
if y = α+ 1 and either x = aimin or (aimin, x)= (1, 0).

Theorem 3.9 follows from the following two propositions:

Proposition 3.10. Suppose that α is an integer and π ∼= π̂ . Then y = α+ 1 and
either x = aimin or (aimin, x)= (1, 0).

Proof. If aimin ≥ 2, in the same way as in the proof of Proposition 3.7, we deduce
that (x, y)= (aimin, α+ 1).

Let us now assume that aimin = 1. Then σ is a subrepresentation of an induced
representation of the form νρ o σ ′ and if x > 0 we have an embedding π ↪→
νρ× δ([ν−yρ, ν−xρ])o σ ′. In the same way as in the proof of Proposition 3.7, we
get that x ∈ {0, 1}. Note that y > x if x = 0. Let us prove that y = α+ 1. Suppose,
contrary to our assumption, that y 6= α+ 1. Since y ≥ x , it follows from [Muić
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2004, Proposition 3.1] that ν yρo σ is irreducible. We have

π ↪→ δ([ν−y+1ρ, ν−xρ])× ν−yρo σ ∼= δ([ν−y+1ρ, ν−xρ])× ν yρo σ,

and if y 6= −x + 1 one obtains a contradiction in the same way as in the proof
of Proposition 3.7. Since y ≥ x and x ≥ 0, we see that y =−x + 1 holds only if
(x, y) = (0, 1). In that case, we have π ↪→ ρ × νρ × νρ o σ ′. Using Lemma 2.4
and the transitivity of Jacquet modules we get that rM(π) contains an irreducible
representation of the form ρ ⊗ ν−1ρ ⊗ ν−1ρ ⊗ σ ′′, where M denotes the Levi
factor of an appropriate parabolic subgroup. But, since σ is strongly positive,
rM(δ([ρ, νρ]) o σ) does not contain an irreducible representation of the form
ρ⊗ ν−1ρ⊗ ν−1ρ⊗ σ ′, a contradiction. This completes the proof. �

Proposition 3.11. Suppose that α is an integer. If y = α+ 1 and either x = aimin or
(aimin, x)= (1, 0), then π is isomorphic to π̂ .

Proof. First we suppose that (x, y) = (aimin, α + 1). Let us prove that if µ∗(π)
contains an irreducible constituent of the form νzρ⊗π ′, with z ≥ 0, then z = aimin .
It follows from the structural formula that if µ∗(δ([νaiminρ, να+1ρ])o σ) contains
an irreducible constituent of the form νzρ⊗π ′, with z ≥ 0, then z ∈ {aimin, α+ 1}.
Also, if z = α+ 1, then π ′ is an irreducible subquotient of δ([νaiminρ, ναρ])o σ .
We have δ([νaiminρ, ναρ])o σ is irreducible and να+1ρ⊗ δ([νaiminρ, ναρ])o σ is
contained in µ∗(δ([νaiminρ, να+1ρ]) o σ) with multiplicity one by [Muić 2004,
Proposition 3.1]. Using part (i) of the same proposition, we deduce that in R(G) we
have δ([νaiminρ, να+1ρ])oσ =π+L(δ([ν−αρ, ν−aiminρ])oσsp), where σsp denotes
the unique irreducible subrepresentation of

νaiminρ× νaimin+1ρ× · · ·× να−1ρ× δ([ναρ, να+1ρ])o σcusp.

We note that σsp is a strongly positive representation. It is now easy to conclude,
using Frobenius reciprocity and the irreducibility of νxρ × να+1ρ for x < α, that
µ∗(L(δ([ν−αρ, ν−aiminρ])o σsp)) contains an irreducible constituent of the form
να+1ρ⊗π ′, so µ∗(π) does not contain such an irreducible constituent. Now, in the
same way as in the proof of Proposition 3.8, we obtain that π̂ is a subrepresentation
of δ([ν−α−1ρ, ν−aiminρ])o σ, i.e., π ∼= π̂ .

Now we turn our attention to the case (aimin, x, y)= (1, 0, α+ 1). In this case,
we have the following embedding and isomorphisms:

π ↪→ ρ× ν−1ρ× · · ·× ν−α−1ρ× νρ× ν2ρ× · · ·× ναρo σcusp

∼= ρ× νρ× ν
2ρ× · · ·× ναρ× ν−1ρ× · · ·× ν−αρ× ν−α−1ρo σcusp

∼= ρ× νρ× ν
2ρ× · · ·× ναρ× ν−1ρ× · · ·× ν−αρ× να+1ρo σcusp

∼= ρ× νρ× ν
2ρ× · · ·× ναρ× να+1ρ× ν−1ρ× · · ·× ν−αρo σcusp.
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In the same way as before, we obtain that π̂ is a subrepresentation of the induced
representation

ρ× ν−1ρ× ν−2ρ× · · ·× ν−αρ× ν−α−1ρ× νρ× · · ·× ναρo σcusp.

We will show that if µ∗(π) contains an irreducible constituent of the form νzρ⊗π1,
with z≥ 0, then z= 0. The rest of the proof then follows similarly to Proposition 3.8.

Note that if an irreducible constituent of the form νzρ⊗π1, with z ≥ 0, appears
in µ∗(δ([ρ, να+1ρ])o σ), then z ∈ {0, 1, α + 1}. We will comment only on the
case α ≥ 2, since the case α = 1 can be handled in the same way but more easily,
and in the split case it can also be obtained using [Jantzen 1996].

According to [Muić 2004, Theorem 4.1(iv)], in R(G) we have

δ([ρ, να+1ρ])o σ = π + L(δ([ν−α−1ρ, νρ])o σ (1)sp )+ L(δ([ν−αρ, ρ])o σ (2)sp )

+ L(δ([ν−αρ, νρ])o σ (3)sp ),

where σ (1)sp , σ (2)sp , σ (3)sp are the unique irreducible subrepresentations of

ν2ρ× · · ·× ναρo σcusp, νρ× · · ·× να−1ρ× δ([ναρ, να+1ρ])o σcusp,

ν2ρ× · · ·× να−1ρ× δ([ναρ, να+1ρ])o σcusp,

respectively. We note that σ (i)sp is strongly positive for i = 1, 2, 3.
If µ∗(δ([ρ, να+1ρ])oσ) contains an irreducible constituent of the form νρ⊗π1,

then π1 is an irreducible subquotient of δ([ρ, να+1ρ]) o σ
(1)
sp . By [Muić 2004,

Theorem 4.1(ii)], in R(G) we have

δ([ρ, να+1ρ])o σ (1)sp = L(δ([ν−α−1ρ, ρ])o σ (1)sp )+ L(δ([ν−αρ, ρ])o σ (3)sp ).

Also, νρ ⊗ L(δ([ν−α−1ρ, ρ]) o σ
(1)
sp ) and νρ ⊗ L(δ([ν−αρ, ρ]) o σ

(3)
sp ) appear

in µ∗(δ([ρ, να+1ρ]) o σ) with multiplicity one and are obviously contained in
µ∗(L(δ([ν−α−1ρ, νρ])o σ (1)sp )) and in µ∗(L(δ([ν−αρ, νρ])o σ (3)sp )). Thus, there
are no irreducible constituents of the form νρ⊗π1 appearing in µ∗(π).

Similarly, if µ∗(δ([ρ, να+1ρ])o σ) contains an irreducible constituent of the
form να+1ρ⊗π1, then π1 is an irreducible subquotient of δ([ρ, ναρ])oσ . By [Muić
2004, Theorem 4.1(iii)], in R(G) we have

δ([ρ, ναρ])o σ = L(δ([ν−αρ, ρ])o σ)+ L(δ([ν−αρ, νρ])o σ (1)sp ).

Also, να+1ρ ⊗ L(δ([ν−αρ, ρ]) o σsp) and να+1ρ ⊗ L(δ([ν−αρ, νρ]) o σ
(1)
sp ) ap-

pear in µ∗(δ([ρ, να+1ρ]) o σ) with multiplicity one and obviously appear in
µ∗(L(δ([ν−αρ, ρ])oσ (2)sp )) and in µ∗(L(δ([ν−αρ, νρ])oσ (3)sp )). Thus, µ∗(π) does
not contain irreducible constituents of the form να+1ρ⊗π1. Consequently, µ∗(π)
does not contain an irreducible constituent of the form νzρ⊗π1 with z > 0, and the
proposition is proved. �
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