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YU PAN

Ekholm, Honda, and Kálmán constructed Cn exact Lagrangian fillings for
a Legendrian (2, n) torus knot or link with maximal Thurston–Bennequin
number, where Cn is the n-th Catalan number. We show that these exact La-
grangian fillings are pairwise nonisotopic through exact Lagrangian isotopy.
To do that, we compute the augmentations induced by the exact Lagrangian
fillings L to Z2[H1(L)] and distinguish the resulting augmentations.

1. Introduction

A Legendrian submanifold 3 in the standard contact manifold (R3, ξ = kerα),
where α = dz − y dx , is a 1-dimensional closed manifold such that T3 ⊂ ξ
everywhere. An exact Lagrangian filling L of 3 in the symplectization manifold
(Rt ×R3, ω = d(etα)) is a 2-dimensional surface that is cylindrical over 3 when t
is sufficiently large. See Definition 2.5 for more detail, and Figure 1 for a picture.

In this paper, we study oriented exact Lagrangian fillings of the Legendrian (2, n)
torus links 3 with maximal Thurston–Bennequin number (n > 0). When n is even,
we also require the link to have the right Maslov potential such that Reeb chords
b1, . . . , bn in Figure 2 are in degree 0 (see Section 2A for detailed definitions).
Ekholm, Honda, and Kálmán [Ekholm et al. 2016] gave an algorithm (which we
refer to later as the EHK algorithm) to construct exact Lagrangian fillings of the
Legendrian (2, n) torus link 3 as follows. Starting with a Lagrangian projection
(a projection from R3 to the xy-plane) of 3 as shown in Figure 2, we can succes-
sively resolve crossings bi in any order through pinch moves (see Figure 3), which
correspond to saddle cobordisms. As a result, we get two Legendrian unknots, which
admit minimum cobordisms as shown in Figure 3. Concatenating the n saddle cobor-
disms with these two minimum cobordisms, we get an exact Lagrangian filling of3.

Different orders of resolving crossings b1, . . . , bn may give different exact
Lagrangian fillings of 3 up to exact Lagrangian isotopy. Given a permutation
σ = (σ (1), σ (2), . . . , σ (n)) of {1, . . . , n}, write Lσ for the exact Lagrangian filling
achieved by using n successive pinch moves at bσ(1), bσ(2), . . . , bσ(n), respectively,
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Figure 1. An exact Lagrangian filling.

and then concatenating with the two minimum cobordisms. Observe that two
permutations may give isotopic exact Lagrangian fillings. For instance, let 3 be the
Legendrian (2, 3) torus knot and consider the exact Lagrangian fillings of 3 that
correspond to permutations (1, 3, 2) and (3, 1, 2), respectively. Since the saddles
corresponding to the pinch moves at b1 and b3 are disjoint when projected to R3,
one can use a Hamiltonian vector field in the t direction to exchange the heights of
these two saddles. Therefore, the two fillings L(1,3,2) and L(3,1,2) are Hamiltonian
isotopic and thus are exact Lagrangian isotopic. In general, for the Legendrian
(2, n) torus link 3, given any numbers i, j, k such that i < k < j, two permutations

b1 b2 bn

a1

a2

Figure 2. The Lagrangian projection of the Legendrian (2, n) torus knot.

∅
Figure 3. The pinch move (left) and the minimum cobordism
(right) between Lagrangian projections of links.
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(. . . , i, j, . . . , k, . . .) and (. . . , j, i, . . . , k, . . .), where only i and j are interchanged,
give the same exact Lagrangian fillings of3 up to exact Lagrangian isotopy. Taking
all the permutations of {1, . . . , n} modded out by this relation, we obtain Cn exact
Lagrangian fillings of 3, where

Cn =
1

n+ 1

(
2n
n

)
is the n-th Catalan number. In this paper, we prove the following theorem:

Theorem 1.1 (see Theorem 3.11 and Corollary 3.12). The Cn exact Lagrangian
fillings that come from the EHK algorithm are all of different exact Lagrangian
isotopy classes. In other words, the Legendrian (2, n) torus link has at least Cn

exact Lagrangian fillings up to exact Lagrangian isotopy.

Shende, Treumann, Williams and Zaslow [Shende et al. 2015] have also con-
structed Cn exact Lagrangian fillings of the Legendrian (2, n) torus knot using
cluster varieties and shown that they are distinct up to Hamiltonian isotopy. They
remarked that these are presumably the same as fillings obtained in [Ekholm et al.
2016], but we do not resolve this issue here.

Remark 1.2. We will see from Corollary 3.12 that the conclusion of Theorem 1.1
for the case when n is even can be derived from the result for the case when n
is odd. Therefore, for most of the paper, we focus on the case when n is odd, which
means 3 is a knot.

Inspired by [Ekholm et al. 2016], we use augmentations to distinguish the Cn

exact Lagrangian fillings of the Legendrian (2, n) torus knot 3. In order to talk
about augmentations, we first introduce the Chekanov–Eliashberg differential graded
algebra (DGA) of a Legendrian knot 3, which is a chain complex (A(3), ∂). This
is an invariant of Legendrian submanifolds introduced by Chekanov [2002] and
Eliashberg [1998] in the spirit of symplectic field theory [Eliashberg et al. 2000].
The underlying algebra A(3) of the Chekanov–Eliashberg DGA is freely generated
by Reeb chords of3 over a commutative ring Z2[H1(3)] =Z2[s, s−1

], where Reeb
chords of 3 correspond to double points of the Lagrangian projection of 3. The
differential is defined by a count of rigid holomorphic disks with boundary on 3,
taken with coefficients in Z2[H1(3)]. In general, the Chekanov–Eliashberg DGA
of 3 is defined with Z[H1(3)] coefficients. For our purpose, it suffices to consider
the DGA with Z2[H1(3)] coefficients, which means ignoring the orientations of
moduli spaces of holomorphic disks. An augmentation ε of A(3) to a commutative
ring F is a DGA map ε : (A(3), ∂)→ (F, 0). As shown in [Ekholm et al. 2016], an
exact Lagrangian filling L of 3 gives an augmentation of A(3) by counting rigid
holomorphic disks with boundary on L . Moreover, by Theorem 1.3 of the same
paper, exact Lagrangian isotopic fillings give homotopic augmentations. Therefore,
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in order to distinguish two fillings, we only need to show their induced augmentations
are not chain homotopic.

Ekholm et al. [2016] distinguished all the exact Lagrangian fillings from the
EHK algorithm when n = 3 by computing all the augmentations of the Legendrian
(2, 3) torus knot to Z2 and finding that they are pairwise non-chain-homotopic.
However, when n ≥ 5, a computation shows that the number of augmentations of
the DGA to Z2 is much less than the Catalan number Cn .

In this paper, for an exact Lagrangian filling L of the Legendrian (2, n) torus
knot3, we consider its induced augmentation of A(3) to Z2[H1(L)], where H1(L)
is the singular homology of L . Note that H1(L) ∼= H2(R×R3, L) and thus it is
natural to count the rigid holomorphic disks in R×R3 with boundary on L with
Z2[H1(L)] coefficients. However, the computation of augmentations is not as easy
as for the case with Z2 coefficients. For each exact Lagrangian filling L from the
EHK algorithm, we give a combinatorial formula of the induced augmentation
of A(3) to Z2[H1(L)]. From the formula, we find a combinatorial invariant to
show that the augmentations are not pairwise chain homotopic. In this way, we
distinguish all of the Cn exact Lagrangian fillings of the Legendrian (2, n) torus
knot 3 up to exact Lagrangian isotopy.

Outline. In Section 2, we review the Chekanov–Eliashberg DGA of a Legendrian
submanifold and the DGA maps induced by an exact Lagrangian cobordism. In
Section 3, we compute all the augmentations of the Legendrian (2, n) torus knot
to Z2[H1(L)] induced by the exact Lagrangian fillings L and prove that all the
resulting augmentations are distinct up to chain homotopy. In the end, we prove
Theorem 1.1 for the case n even as a corollary.

2. Preliminaries

In Section 2A, we review the definition of the Chekanov–Eliashberg DGA of
Legendrian submanifolds in (R3, kerα) and its extension to the setting of multiple
base points. For the purpose of computing augmentations in Section 3A, the
definition of DGA we use here is slightly different from the versions in [Ng 2010]
and [Ng et al. 2015], where the underlying algebra is completely noncommutative.
In our definition, we allow elements in the coefficient ring to commute with the
elements corresponding to Reeb chords. This is a generalization of the definition of
Chekanov–Eliashberg DGA from [Etnyre et al. 2002]. See [Ekholm et al. 2013,
Section 2.3.2] for further discussions. In Section 2B, we review the DGA map
induced by an exact Lagrangian cobordism and revise coefficients of this map for
the purpose of computing augmentations in Section 3A.

2A. The Chekanov–Eliashberg DGA. Let 3 be a Legendrian submanifold in
(R3, kerα), where α = dz− y dx . There are two projection diagrams associated
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Figure 4. A front projection (left) and a Lagrangian projection
(right) of the Legendrian trefoil.

Figure 5. Ng’s algorithm to transfer a front projection to a
Lagrangian projection by smoothing the left cusp directly and
smoothing the right cusp with an additional crossing.

to 3 via the Lagrangian projection 5xy : R
3
→ R2, (x, y, z) 7→ (x, y) and the

front projection 5xz : R
3
→ R2, (x, y, z) 7→ (x, z), respectively. As an example, a

front projection and a Lagrangian projection of the Legendrian trefoil are shown
in Figure 4. Moreover, starting from a front projection of 3, Ng [2003] gave an
algorithm to get a Lagrangian projection of 3 by smoothing the cusps of the front
projection in a way shown in Figure 5.

Let3=31∪32∪· · ·∪3k be an oriented Legendrian link with k connected com-
ponents. Now let us define the Chekanov–Eliashberg DGA (A(3 ;Z2[H1(3)]), ∂)

of 3. To simplify the definition of grading, we assume throughout the paper that
the rotation number of 3 is 0. Note that all the Legendrian (2, n) torus links we
consider have rotation number 0.

The underlying algebra. The underlying algebra A(3 ;Z2[H1(3)]) is a unital
graded algebra freely generated by Reeb chords of 3 over

Z2[H1(3)] = Z2[s±1
1 , s±1

2 , . . . , s±1
k ],

where {s1, s2, . . . , sk} is any basis of H1(3). A Reeb chord of 3 in (R3, kerα) is a
vertical line segment (z direction) with both ends on 3 endowed with an orientation
in the positive z direction. Reeb chords of 3 are in one-to-one correspondence to
double points of 5xy(3), which by Ng’s algorithm correspond to the crossings and
right cusps of 5xz(3).

To define the grading of Reeb chords, we work on the front projection 5xz(3).
Write C(5xz(3)) for the set of cusps of5xz(3), which divides5xz(3) into strands
(ignoring double points). The Maslov potential is a function µ that assigns an integer
to each strand such that around each cusp, the Maslov potential of the lower strand
is one less than that of the upper strand. This is well defined up to a global shift on
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Figure 6. At each crossing, the quadrants labeled with+ sign are positive
quadrants and the ones labeled with − sign are negative quadrants.

each component of 3. Once the Maslov potential is fixed, the grading of a Reeb
chord c that corresponds to a crossing of 5xz(3) can be defined by

|c| := µ(u)−µ(l),

where u is the upper strand of the crossing and l is the lower strand of the crossing.
The grading of Reeb chords that correspond to right cusps of 5xz(3) are defined
to be 1. Extend the definition of grading to A(3 ;Z2[H1(3)]) by setting |si | = 0
for i = 1, . . . , k and using the relation |ab| = |a| + |b|.

In the special case of Legendrian (2, n) torus links, when n is odd, the degree is
well defined. When n is even, we can choose a Maslov potential of the Legendrian
(2, n) torus link such that for any Reeb chord bi as labeled in Figure 2, the upper
strand and the lower strand of bi have the same Maslov potential. In this setting, for
a Legendrian (2, n) torus link (n is either odd or even) whose Lagrangian projection
is like Figure 2, we have that |a1| = |a2| = 1 and |bi | = 0 for i = 1, . . . , n.

Differential. The differential ∂ is defined by counting rigid holomorphic disks in
R2

xy with boundary on 5xy(3).
For any Reeb chords a, b1, . . . , bm of 3, define M3(a ; b1, . . . , bm) to be the

moduli space of holomorphic disks

u : (Dm+1, ∂Dm+1)→ (R2,5xy(3))

with the following properties:

• Dm+1 is a 2-dimensional unit disk with m+1 points s, t1, . . . , tm removed from
the boundary and the points s, t1, . . . , tm are labeled in counterclockwise order.

• limr→s u(r)= a and the image of a neighborhood of s under u covers exactly
one positive quadrant of the crossing a (see Figure 6).

• limr→ti u(r) = bi , for i = 1, . . . ,m, and the image of a neighborhood of ti
under u covers exactly one negative quadrant of the crossing bi (see Figure 6).

We occasionally abbreviate (a, b1, . . . , bm) to (a ; b), where b represents a se-
quence of Reeb chords, b1, . . . , bm . According to [Chekanov 2002], we have the
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c
c−
c+

p2

p1

31

32

Figure 7. The Legendrian Hopf link 31 ∪32. For a Reeb chord c
from c− ∈31 to c+ ∈32, the red curve is a capping path γc.

following dimension formula:

dimM3(a ; b1, . . . , bm)= |a| −
m∑

i=1

|bi | − 1.

When dimM3(a ; b1, . . . , bm)= 0, the disk u ∈M3(a ; b1, . . . , bm) is called rigid.
There are finitely many rigid holomorphic disks and hence we can count them.

In order to count with Z2[H1(3)] coefficients, we want to take the homology
class of the boundary of rigid disks in H1(3). However, for any rigid holomorphic
disk u, the boundary 5−1

xy (u(∂Dm+1)) is not closed. Therefore, we first introduce
capping paths. Equip each connected component 3i with a reference point pi , for
i = 1, . . . , k. For each i 6= 1, pick a path δ1i in R3

\3 that goes from p1 to pi . For
each Reeb chord c of 3 from c− ∈3i− to c+ ∈3i+ , the capping path γc is defined
by concatenating

• a path on 3i− from c− to pi− ,

• the chosen path −δ1i− connecting pi− to p1,

• the chosen path δ1i+ connecting p1 to pi+, and

• a path on 3i+ from pi+ to c+.

See Figure 7 for an example of a capping path.
After associating each Reeb chord with a capping path, for any rigid holomorphic

disk u ∈M3(a ; b1, . . . , bm), the curve

ũ =5−1
xy (u(∂Dm+1))∪ γa ∪−γb1 ∪ · · · ∪−γbm

is a loop in 3∪ δ12∪ · · · ∪ δ1k . Notice that H1(3∪ δ12∪ · · · ∪ δ1k)∼= H1(3). Thus
we can view the homology class [ũ] as in H1(3).

Now we can define the differential of the Chekanov–Eliashberg DGA of 3.
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Definition 2.1. For any Reeb chord a of 3, the differential ∂ is defined by:

(2-1) ∂(a)=
∑

dimM3(a;b)=0

∑
u∈M3(a;b)

[ũ] b1 · · · bm .

The definition of differential can be extended to A(3 ;Z2[H1(3)]) by setting
∂(si )= 0 for i = 1, . . . , k, and using the Leibniz rule

∂(ab)= ∂(a)b+ a∂(b).

According to [Chekanov 2002], the map ∂ is a differential in degree−1, and up to
stable tame isomorphism, the Chekanov–Eliashberg DGA (A(3 ;Z2[H1(3)]), ∂)

is an invariant of 3 under Legendrian isotopy.

Remark 2.2. In general, for any commutative ring R and a ring homomorphism
Z2[H1(3)] → R, we define the Chekanov–Eliashberg DGA (A(3 ; R), ∂) as a
tensor product of the DGA A(3 ;Z2[H1(3)]) with the ring R:

A(3 ; R)=A(3 ;Z2[H1(3)])⊗Z2[H1(3)] R,

where the ring homomorphism gives R the structure of a module over Z2[H1(3)].

We give a combinatorial definition of the differential of (A(3 ;Z2[H1(3)]), ∂).
Assign 3 an orientation and label each component 3i , for i = 1, . . . , k, with a base
point si , which is different from the reference point and ends of Reeb chords. For a
union of oriented curves γ in 3∪ δ12 ∪ · · · ∪ δ1k , we associate it with a monomial
w(γ ) in Z2[H1(3)]:

(2-2) w(γ )=

k∏
i=1

sni (γ )

i ,

where ni (γ ) is the number of times γ goes through si counted with sign. The sign
is positive if γ goes through si following the link orientation and is negative if γ
goes through si against the link orientation. In particular, for a rigid holomorphic
disk u ∈M3(a ; b1, . . . , bm), we have

(2-3) [ũ] = w(ũ)= w(u)w(γa)

m∏
i=1

w(γbi )
−1,

where w(u) is short for w(5−1
xy (u(∂Dm+1))). Plugging it into the formula (2-1), we

get a combinatorial definition of the differential. It seems to depend on the choice
of capping paths. However, we have the following well-known proposition.

Proposition 2.3. Let 3 be a Legendrian link and γ, γ ′ be two families of capping
paths of Reeb chords of 3. The corresponding DGAs (Aγ (3), ∂) and (Aγ ′(3), ∂ ′)
are isomorphic.
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b1 b2 b3

a1

a2

s

Figure 8. The Lagrangian projection of the Legendrian (2, 3) torus
knot with a single base point.

Proof. For a Reeb chord a of 3, we have

∂(a)=
∑

dimM3(a;b)=0

∑
u∈M3(a;b)

(
w(u)w(γa)

m∏
i=1

w(γbi )
−1
)

b1 · · · bm,

∂ ′(a)=
∑

dimM3(a;b)=0

∑
u∈M3(a;b)

(
w(u)w(γ ′a)

m∏
i=1

w(γ ′bi
)−1
)

b1 · · · bm .

For each Reeb chord c, concatenate −γ ′c with γc and get a closed curve, denoted
by −γ ′c ∪ γc. It is not hard to check that the map

f : (Aγ (3), ∂)→ (Aγ
′

(3), ∂ ′), c 7→ [−γ ′c ∪ γc] c = w(γ ′c)
−1w(γc) c

is a chain map and is an isomorphism. �

Note that for an oriented link 3 with minimal base points (i.e., each component
has exactly one base point), we can choose a family of capping paths such that
none of them pass through any base point. Therefore, we only need to count
intersections of the disk boundary and base points. Thanks to Proposition 2.3, we
can define the Chekanov–Eliashberg DGA of 3 to be a unital graded algebra over
Z2[H1(3)] = Z2[s±1

1 , . . . , s±1
k ] generated by Reeb chords of 3 endowed with a

differential given by

∂(a)=
∑

dimM3(a;b)=0

∑
u∈M3(a;b)

w(u)b1 · · · bm,

∂(si )= 0, i = 1, . . . , k,

with w(u) defined as in (2-3). This DGA is denoted by (A(3, {s1, . . . , sk}), ∂) too.

Example 2.4. Consider the Legendrian (2, 3) torus knot 3 with a single base point
s as shown in Figure 8. The underlying algebra A(3, {s}) is generated by Reeb
chords a1, a2, b1, b2, b3 over Z2[s, s−1

]. Reeb chords a1 and a2 are in degree 1 and
the rest of the Reeb chords are in degree 0. The differential is given by
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N

−N

Figure 9. A schematic picture of an exact Lagrangian cobordism.

∂(a1)= s−1
+ b1+ b3+ b1b2b3,

∂(a2)= 1+ b1+ b3+ b3b2b1,

∂(bi )= 0, i = 1, 2, 3,

∂(s)= ∂(s−1)= 0.

The definition of the DGA of a Legendrian link can be generalized to the case
where there is more than one base point on some components of the link. Let
3 be an oriented Legendrian link and {s1, . . . , sl} be a set of points on 3 such
that each component of 3 has at least one point in the set and the set does not
include any end of any Reeb chord of 3. For a union of paths γ , associate it with a
monomial w(γ )=

∏l
j=1 sn j (γ )

j in Z2[s±1
1 , . . . , s±1

l ], where n j is defined much as
above. The DGA

(A(3, {s1, . . . , sl}), ∂)

is a unital graded algebra generated by Reeb chords of 3 over Z2[s±1
1 , . . . , s±1

l ]

endowed with a differential given by

∂(a)=
∑

dimM3(a;b)=0

∑
u∈M3(a;b)

w(u)b1 · · · bm,

∂(si )= 0, i = 1, . . . , l.

2B. The DGA map induced by exact Lagrangian cobordisms. The Chekanov–
Eliashberg DGA acts functorially on exact Lagrangian cobordisms, according to
[Ekholm et al. 2016]. We first recall the definition of exact Lagrangian cobordisms.

Definition 2.5. Let 3+ and 3− be Legendrian submanifolds in (R3, kerα), where
α=dz−y dx . An exact Lagrangian cobordism6 from3− to3+ is a 2-dimensional
surface in (R×R3, d(etα)) such that there exists T > 0 such that 6 is

• cylindrical over3+ on the positive end, i.e.,6∩((T,∞)×R3)= (T,∞)×3+;
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6−

6+

6

3+

3−

Figure 10. The relation among cobordisms 6+, 6−, and 6.

• cylindrical over 3− on the negative end, i.e., 6 ∩ ((−∞,−T ) × R3) =

(−∞,−T )×3−;

• compact in [−T, T ]×R3,

and etα|T6 = d f for some function f :6→ R. (See Figure 9.)
When 3− is empty, the surface L satisfying the conditions above is called an

exact Lagrangian filling of 3+.

By [Ekholm et al. 2016], an exact Lagrangian cobordism 6 from 3− to 3+
gives a DGA map from A(3+) to A(3−) with Z2[H1(6)] coefficients. Thus, an
exact Lagrangian filling L of a Legendrian submanifold 3, which can be viewed
as a cobordism from the empty set to 3, gives a DGA map from A(3) to the
trivial DGA

(Z2[H1(L)], 0),

which is an augmentation of A(3) to Z2[H1(L)].
For the purpose of computing augmentations of the Legendrian (2, n) torus knots

in Section 3A, we revise the coefficient ring of the DGA map induced by exact
Lagrangian cobordisms from [Ekholm et al. 2016]. Instead of using Z2[H1(6)]

coefficients, we will show the following proposition:

Proposition 2.6. Let 3+ and 3− be Legendrian submanifolds in (R3, kerα) and
6 be a connected exact Lagrangian cobordism from 3− to 3+. Assume that 6+
is a connected exact Lagrangian cobordism from 3+ to some other Legendrian
link and 6− is the concatenation of 6+ and 6 as shown in Figure 10. The exact
Lagrangian cobordism 6 induces a DGA map

8 : (A(3+ ;Z2[H1(6+)]), ∂+)→ (A(3− ;Z2[H1(6−)]), ∂−)

with Z2[H1(6−)] coefficients.
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Note that when 6+ is an exact Lagrangian cylinder over 3+, this map agrees
with the DGA map introduced in [Ekholm et al. 2016]. The proof of Proposition 2.6
follows Section 3 of that paper. Our revision of the coefficient ring is based on a
different choice of capping paths of3+ and3−. Ekholm et al. choose capping paths
of 3+ and 3− on 6, while we choose capping paths of 3+ on 6+ and capping
paths of 3− on 6−. For the rest of the section, we will describe this DGA map.

The inclusion map 3+ ↪→6+ makes it natural to define the DGA

(A(3+ ;Z2[H1(6+)]), ∂+).

The underlying algebra

A(3+ ;Z2[H1(6+)])=A(3+ ;Z2[H1(3+)])⊗Z2[H1(3+)] Z2[H1(6+)]

is generated by Reeb chords of 3+ over the ring Z2[H1(6+)]. Given that 6+ is
connected, we can choose a family of capping paths for 3+ on 6+. Thus, for any
rigid holomorphic disk u+ counted by ∂+, it is natural to take the homology class
of ũ+ in H1(6+). Hence the differential coefficients of ∂+ are in Z2[H1(6+)].
In addition, the DGA (A(3+ ;Z2[H1(6+)]), ∂+) does not depend on the choice
of capping paths on 6+ for a similar reason as in Proposition 2.3. The DGA
(A(3− ;Z2[H1(6−)]), ∂−) is defined similarly.

The DGA map 8 induced by 6 is a composition of two maps. The first map

ψ : (A(3+ ;Z2[H1(6+)]), ∂+)→ (A(3+ ;Z2[H1(6−)]), ∂+)

is induced by the inclusion map 6+ ↪→ 6−. It is not hard to show ψ is a DGA
map. The second map

φ : (A(3+ ;Z2[H1(6−)]), ∂+)→ (A(3− ;Z2[H1(6−)]), ∂−)

is defined by counting rigid holomorphic disks in R×R3 with boundary on 6.
Fix an almost complex structure J on R×R3 which is adjusted to the symplectic

form ω (see [Ekholm et al. 2016, Section 3.2] for details). For a Reeb chord a
of 3+ and Reeb chords b1, . . . , bm of 3−, define M6(a ; b1, . . . , bm) to be the
moduli space of J -holomorphic disks

u : (Dm+1, ∂Dm+1)→ (R×R3, 6)

with the following properties:

• Dm+1 is a 2-dimensional unit disk with m+1 points r, s1, s2, . . . , sm removed.
The points r, s1, s2, . . . , sm are arranged counterclockwise on the boundary of
the disk.

• The image of u is asymptotic to a strip R+× a around r .

• The image of u is asymptotic to a strip R−× bi around si for i = 1, . . . ,m.
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By [Cieliebak et al. 2010], there is a corresponding dimension formula:

dimM6(a ; b1, . . . , bm)= |a| −
m∑

i=1

|bi |.

If dimM6(a ; b1, . . . , bm) = 0, the J -holomorphic disk u ∈M6(a ; b1, . . . , bm)

is called rigid. For each rigid J -holomorphic disk u, concatenate the image of the
disk boundary with the capping paths of corresponding Reeb chords on 6− and get

ũ = u(∂Dm+1)∪ γa ∪−γb1 ∪ · · · ∪−γbm ,

which is a loop in 6−. Hence we can take the homology class of ũ in H1(6−),
denoted by [ũ]6− . The map

φ : (A(3+ ;Z2[H1(6−)]), ∂+)→ (A(3− ;Z2[H1(6−)]), ∂−)

is defined as follows. For any Reeb chord a of 3+, the map φ maps a to

φ(a)=
∑

dimM6(a;b)=0

∑
u∈M6(a;b)

[u]6−b1 · · · bm .

The map φ is the identity on Z1[H1(6−)]. By [Ekholm et al. 2016, Section 3.5],
the map φ is a DGA map.

Therefore, the exact Lagrangian cobordism 6 induces a DGA map, 8= φ ◦ψ

8 : (A(3+ ;Z2[H1(6+)]), ∂+)→ (A(3− ;Z2[H1(6−)]), ∂−).

3. Main results

We consider the exact Lagrangian fillings of the Legendrian (2, n) torus knot
constructed from the EHK algorithm. Each filling can be achieved by concatenating
n successive saddle cobordisms with two minimum cobordisms. In Section 3A,
we combine results in [Ekholm et al. 2016] and Proposition 2.6 to write down
combinatorial formulas for the DGA maps induced by a pinch move and a minimum
cobordism. Composing all the DGA maps induced by n ordered pinch moves and
the two minimum cobordisms, we obtain a combinatorial formula for augmentations
of A(3) to Z2[H1(L)] induced by exact Lagrangian fillings L . In Section 3B, we
find a combinatorial invariant to distinguish these resulting augmentations and hence
we show that the Cn exact Lagrangian fillings are distinct up to exact Lagrangian
isotopy. As a corollary, we extend the result to the case n is even.

3A. Computation of augmentations. Consider the Lagrangian projection of the
Legendrian (2, n) torus knot 3 with a base point s̃0 and label the n crossings in
degree 0 from left to right by b1, . . . , bn as shown in Figure 11.
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b1 b2 bn

a1

a2

s̃0

Figure 11. The Lagrangian projection of the Legendrian (2, n)
torus knot with a base point.

For each permutation σ of {1, . . . , n}, the corresponding exact Lagrangian filling
Lσ of the Legendrian (2, n) torus knot 3 is achieved in the following way:

• Start with an exact Lagrangian cylinder over3, denoted by60. Label3 as30.

• For i = 1, . . . , n, concatenate 6i−1 from the bottom with a saddle cobordism
6i corresponding to the pinch move at crossing bσ(i) and get a new exact
Lagrangian cobordism 6i . Label the new Legendrian submanifold after the
pinch move as 3i .

• Finally, use two minimal cobordisms, denoted by 6n+1, to close up 6n from
the bottom and get the exact Lagrangian filling Lσ . To be consistent, let 3n+1

be the empty set.

By Proposition 2.6, for i = 1, . . . , n+ 1, each exact Lagrangian cobordism 6i

induces a DGA map:

8i : (A(3i−1 ;Z2[H1(6i−1)]), ∂i−1)→ (A(3i ;Z2[H1(6i )]), ∂i ).

The map 8n+1 that is induced by minimum cobordisms is well understood while
the maps 8i for i = 1, . . . , n that correspond to pinch moves are not. We will first
study H1(6n) and give a geometric description of the DGA map that corresponds
to a pinch move. Combining this with [Ekholm et al. 2016], we will write down an
explicit combinatorial formula for each 8i , for i = 1, . . . , n+ 1.

To describe H1(6n) easily, we chop off the cylindrical top of 6n and view it as
a surface with boundary 3∪3n , also denoted by 6n . By Poincaré duality, we have
H 1(6n) ∼= H1(6n,3∪3n). In particular, for each oriented curve α in 6n with
ends on 3∪3n , which is an element in H1(6n,3∪3n), there exists an element
θα ∈ H 1(6n) such that for any oriented loop β in 6n , the intersection number
of α and β is θα(β). Thus, in order to know the homology class of a loop β in
H1(6n), we only need to count the intersection number of each generator curve of
H1(6n,3∪3n) with β.

We choose the set of generator curves of H1(6n,3 ∪ 3n) as follows. Use
the t coordinate to slice 6n into a movie of diagrams (some of them may not be
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r2

α2

α0

s̃0

s̃0

s̃−1
2

s̃2

b2

61

Figure 12. As an example, assume 3 is the Legendrian (2, 3)
torus knot and the first pinch move is taken at b2. The blue curve
and the red curve are α2 and α0 restricted on 61, respectively.

Legendrian diagrams). We study the trace of points on the diagram when t is
decreasing. For i = 1, . . . , n, the saddle cobordism 6i flows all the points directly
downward except ends of the Reeb chord bσ(i). According to [Lin 2016], the
ends of the Reeb chord bσ(i) merge to a point rσ(i), and then split into two points,
labeled as s̃σ(i) and s̃−1

σ(i) respectively. Now for i = 1, . . . , n, consider the trace of
s̃ in 6n , which is a flow line from ri to the bottom of 6n . Concatenating it with
the inverse trace of s̃−1

i in 6n , we get a curve αi in 6n as shown in Figure 12. In
addition, denote the trace of the base point s̃0 in 6n by α0. In this way, we have
that α = {α0, α1, . . . , αn} is a set of generator curves of H1(6n,3∪3n)∼= Zn+1.

For each curve αi , where i = 0, . . . , n, Poincaré duality gives an element
θαi ∈ H 1(6n). Denote its dual in H1(6n) by s̃i . Therefore, for any union of
paths γ in 6n , the monomial w(γ ) associated to γ in Z2[H1(6n)] is

w(γ )=
∏ n

i=0
s̃ni (γ )

i ,

where ni (γ ) is the intersection number of αi and γ counted with signs.
For i < n, the map H1(6i )→ H1(6n) induced by the inclusion map is injective.

A similar argument shows that for a union of paths γ in6i , the monomial associated
to γ in Z2[H1(6i )] counts intersections of α0, ασ(1), . . . , ασ(i) with γ . Notice
that the curves ασ(i+1), . . . , ασ(n) do not intersect 6i . Hence the monomial in
Z2[H1(6i )] agrees with w(γ ) in Z2[H1(6n)].
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Pick a family of capping paths for 3i on 6i for i = 0, . . . , n. By Proposition 2.6,
for i = 1, . . . , n+ 1, each exact Lagrangian cobordism 6i gives a DGA map 8i ,

8i : (A(3i−1 ;Z2[H1(6i−1)]), ∂i−1)→ (A(3i ;Z2[H1(6i )]), ∂i ),

which maps any Reeb chord a of 3i−1 to∑
dimM6i (a;b)=0

∑
u∈M6i (a;b)

w(ũ)b1···bm

=

∑
dimM6i (a;b)=0

∑
u∈M6i (a;b)

(
w(γa)w(u)

m∏
i=1

w(γbi )
−1
)

b1···bm .

Now we show that the DGA map induced by the exact Lagrangian cobordisms
is independent of the choice of capping paths.

Theorem 3.1. Let γ and γ ′ be two families of capping paths of 3i on 6i for
i = 0, . . . , n. Denote the corresponding DGAs by (Aγ (3i ;Z2[H1(6i )]), ∂

γ

i )

and (Aγ ′(3i ;Z2[H1(6i )]), ∂
γ ′

i ). Assume 8γi and 8γ
′

i are the corresponding
DGA maps induced by 6i . Then the maps

fi : (Aγ (3i ;Z2[H1(6i )]), ∂
γ

i )→ (Aγ
′

(3i ;Z2[H1(6i )]), ∂
γ ′

i )

c 7→ w(γ ′c)
−1w(γc) c

are DGA isomorphisms for i = 0, . . . , n. Further, the following diagram commutes:(
Aγ (3i−1 ;Z2[H1(6i−1)]), ∂

γ

i−1

) fi−1
//

8
γ

i
��

(
Aγ ′(3i−1 ;Z2[H1(6i−1)]), ∂

γ ′

i−1

)
8
γ ′

i
��(

Aγ (3i ;Z2[H1(6i )]), ∂
γ

i

) fi
//
(
Aγ ′(3i ;Z2[H1(6i )]), ∂

γ ′

i

)
Proof. The maps fi are DGA isomorphisms for the same reason as in Proposition 2.3.
Now we prove the second part. For any Reeb chord a of 3i−1 (and denoting
b1 · · · bm by b∗),

fi◦8
γ

i (a)= fi

( ∑
dimM6i (a;b)=0

∑
u∈M6i (a;b)

(
w(γa)w(u)

m∏
i=1

w(γbi )
−1
)

b∗
)

=

∑
dimM6i (a;b)=0

∑
u∈M6i (a;b)

(
w(γa)w(u)

m∏
i=1

w(γbi )
−1w(γ ′bi

)−1w(γbi )

)
b∗

=

∑
dimM6i (a;b)=0

∑
u∈M6i (a;b)

(
w(γa)w(u)

m∏
i=1

w(γ ′bi
)−1
)

b∗,



EXACT LAGRANGIAN FILLINGS OF LEGENDRIAN (2, n) TORUS LINKS 433

γ

bσ(i)

s̃σ(i)

Figure 13. A cobordism corresponding to a pinch move, where the purple
disk represents a holomorphic disk with a positive puncture at bσ(i).

8
γ ′

i ◦ fi−1(a)=8
γ ′

i

(
w(γ ′a)

−1w(γa)a
)

= w(γ ′a)
−1w(γa)

∑
dimM6i (a;b)=0

∑
u∈M6i (a;b)

(
w(γ ′a)w(u)

m∏
i=1

w(γ ′bi
)−1
)

b∗

=

∑
dimM6i (a;b)=0

∑
u∈M6i (a;b)

(
w(γa)w(u)

m∏
i=1

w(γ ′bi
)−1
)

b∗. �

Note that, if we cut6i along the curves α0, ασ(1), . . . , ασ(i), the resulting surface
is connected. Therefore, we can choose a family γ of capping paths for 3i on 6i

such that none of them intersect the curves α0, ασ(1), . . . , ασ(i). Choose families
of capping paths for 30, . . . , 3n in a similar way. As a result, for any rigid
holomorphic disk u used in differentials of DGAs and DGA maps, we only need to
count the intersections of curves in α with the disk boundary, i.e., w(ũ)= w(u).

With this selection of capping paths, we are able to write down the DGA
(A(3i ;Z2[H1(6i )]), ∂i ) combinatorially, for i = 1, . . . , n. There are 2i+1 points
on 3i given by the intersection of α0 and 3i , labeled by s̃0, along with the two
intersections of ασ( j) and 3i , labeled by s̃σ( j) (positive intersection) and s̃ ′σ( j)
(negative intersection), for j = 1, . . . , i . One then takes the DGA of 3i with these
2i+1 base points, which has coefficients Z2[s̃±1

0 , s̃±1
σ(1), s̃ ±1

σ(1)
′ , . . . , s̃±1

σ(i), s̃ ±1
σ(i)
′
], and

quotients by the relations s̃ ′σ( j) = s̃−1
σ( j) for j = 1, . . . , i , to get the DGA

(A(3i ;Z2[H1(6i )]), ∂i ),

which is a DGA over Z2[s̃±1
0 , s̃±1

σ(1), . . . , s̃±1
σ(i)], and {s̃0, s̃σ(1), . . . , s̃σ(i)} is a basis

of H1(6i ) that corresponds to the curves α0, ασ(1), . . . , ασ(i).
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bj bσ(i)s̃−1
k

s̃k

+ +

Figure 14. A part of the Lagrangian projection of 3i−1.

Now we are ready to describe the DGA map 8i induced by the exact Lagrangian
cobordism6i , for i = 1, . . . , n, which corresponds to a pinch move at crossing bσ(i).
When we combine [Ekholm et al. 2016, Section 6.5] with Proposition 2.6, we find
that the DGA map

8i : (A(3i−1 ;Z2[H1(6i−1)]), ∂i−1)→ (A(3i ;Z2[H1(6i )]), ∂i )

maps the Reeb chord bσ(i) to s̃σ(i) and any other Reeb chord c to

c+
∑

dimM(c,bσ(i) ; c1,...,cm)=1

∑
u∈M(c,bσ(i) ; c1,...,cm)

w(u)s̃−1
σ(i) c1 · · · cm,

where M(c, bσ(i) ; c1, . . . , cm) is the moduli space of holomorphic disks in R2
xy

with boundary on 5xy(3i−1) that covers a positive quadrant around c and bσ(i) and
a negative quadrant around c1, . . . , cm . Please see [Ekholm et al. 2016, Section
6.5] for a detailed definition.

Here we discuss why the formulas make sense. The pinch move at bσ(i) pinches
the Reeb chord bσ(i) down, which gives a holomorphic disk (as shown in Figure 13)
with a positive puncture at bσ(i) and intersects s̃σ(i) exactly once. For a holomorphic
disk u ∈M(c, bσ(i) ; c1, . . . , cm), one can close the puncture of u at bσ(i) using
the disk in Figure 13, which gives a holomorphic disk that contributes to 8i (c).
Note that the boundary of this disk consists of the boundary of u and γ−1. Thus the
homology class of the boundary is w(u)s̃−1

σ(i), which matches the formula above.
In our case, in order to describe 8i combinatorially, we introduce two notations:

Definition 3.2. Let σ be a permutation of {1, . . . , n}. For i ∈ {1, . . . , n}, we define

T i
σ :={ j ∈ {1, . . . , n} | σ−1( j) > σ−1(i)

and if i < k < j or j < k < i, then σ−1(k) < σ−1(i)},

Si
σ :={ j ∈ {1, . . . , n} | i ∈ T j

σ }

={ j ∈ {1, . . . , n} | σ−1( j) < σ−1(i)
and if i < k < j or j < k < i, then σ−1(k) < σ−1( j)}.

Here T i
σ captures all the Reeb chords bj with the property that, before performing

a pinch move at bi , one can find a holomorphic disk with exactly two positive
punctures at bi and bj . In other words, it gathers all the Reeb chords on which the
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s̃1

s̃−1
1

s̃2

s̃−1
2

s̃3

s̃−1
3

s̃n

s̃−1
n

s̃0a1

a2

Figure 15. The Lagrangian projection of 3n .

DGA map induced by the pinch move at bi acts nontrivially. The other set Si
σ , on

the other hand, detects all the Reeb chords bj where a pinch move at bj gives a
DGA map that acts nontrivially on bi .

If j is in T σ(i)
σ (an example is shown in Figure 14), the map 8i sends bj to

8i (bj )= bj + s̃−1
σ(i)

∏
j<k<σ(i) or
σ(i)<k< j

s̃−2
k .

For a1, a2 and the rest of the bj where j is not in T σ(i)
σ , the map 8i is identity.

Composing all the maps 8i for i = 1, . . . , n together, we get a DGA map,

8n : (A(3 ;Z2[H1(3)]), ∂)→ (A(3n ;Z2[H1(6n)]), ∂n),

that is the identity map on the Reeb chords a1, a2. For i = 1, . . . , n, in order
to know 8n(bi ), we consider pinch moves at bj such that j ∈ Si

σ together with
the pinch move at bi . These pinch moves correspond to all the DGA maps that
contribute to 8n . Composing all these maps together, we have that

8n(bi )=81 ◦ · · · ◦8σ−1(i)(bi )= s̃i +
∑
j∈Si

σ

(
s̃−1

j

∏
j<k<i or
i<k< j

s̃−2
k

)
.

Now we describe the last DGA map,

8n+1 : (A(3n ;Z2[H1(6n)]), ∂n)→ (Z2[H1(Lσ )], 0).

As shown in Figure 15, the underlying algebra of 3n is generated by a1 and a2 and
the differential is given by

∂n(a1)= s̃1s̃2 · · · s̃n + s̃−1
0 , ∂n(a2)= s̃n s̃n−1 · · · s̃1+ 1.

Consider the mapψ :H1(6n)→H1(Lσ ) induced by the inclusion map6n ↪→ Lσ .
Since the DGA map

8n+1 : (A(3n ;Z2[H1(6n)]), ∂n)→ (Z2[H1(Lσ )], 0)
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satisfies8n+1◦ ∂n=0 ◦8n+1=0, we haveψ(s̃0)=1 andψ(s̃1)ψ(s̃2) · · ·ψ(s̃n)=1.
Given that the map ψ is surjective, we assume a basis of H1(Lσ ) is {s1, . . . , sn−1},
where si = s̃i , for i = 1, . . . , n− 1. The DGA map 8n+1 is given by

a1 7→ 0, a2 7→ 0,

s̃0 7→ 1, s̃i 7→ si , i = 1, . . . , n− 1, s̃n 7→ (s1s2 · · · sn−1)
−1.

Composing 8n+1 with 8n , we get the augmentation εσ induced by Lσ as follows.

Theorem 3.3. Given a permutation σ of {1, . . . , n}, let Lσ be the exact Lagrangian
filling of the Legendrian (2, n) torus knot 3 constructed from the EHK algorithm.
If we write

Z2[H1(3)] = Z2[s̃0, s̃−1
0 ],

Z2[H1(Lσ )] = Z2[s±1
1 , . . . , s±1

n−1],

and set sn = (s1s2 · · · sn−1)
−1, then the augmentation

εσ :A(3 ;Z2[H1(3)])→ Z2[H1(Lσ )]

induced by Lσ is given by

εσ (a j )= 0, j = 1, 2;

εσ (bi )= si +
∑
j∈Si

σ

(
s−1

j

∏
j<k<i or

i<k< j

s−2
k

)
, i = 1, . . . , n;

εσ (s̃0)= 1.

Example 3.4. In Figure 16, as an example, we compute the augmentation ε(2,3,1)
of the Legendrian (2, 3) torus knot induced by the exact Lagrangian filling L(2,3,1).

Similarly, one can compute the augmentation for each permutation of {1, 2, 3}
and get the following table:

ε ε(b1) ε(b2) ε(b3)

ε(1,2,3) s1 s2+ s−1
1 s−1

1 s−1
2 + s−1

2

ε(1,3,2) = ε(3,1,2) s1 s2+ s−1
1 + s1s2 s−1

1 s−1
2

ε(2,1,3) s1+ s−1
2 s2 s−1

1 s−1
2 + s−1

2 + s−1
1 s−2

2

ε(2,3,1) s1+ s−1
2 + s1s−1

2 s2 s−1
1 s−1

2 + s−1
2

ε(3,2,1) s1+ s−1
2 s2+ s1s2 s−1

1 s−1
2

3B. Proof of the main theorem. In this section, we use Theorem 3.3 to find an
invariant of augmentations induced from the exact Lagrangian fillings obtained



EXACT LAGRANGIAN FILLINGS OF LEGENDRIAN (2, n) TORUS LINKS 437

b1

b1

b1

b2 b3

b3

a1

a2

a1

a2

a1

a2

s̃2

s̃−1
2

s̃2

s̃−1
2

s̃2

s̃−1
2

s̃3

s̃−1
3

s̃1

s̃−1
1

s̃3
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b1+ s̃−1
2 s̃2 b3+ s̃−1

2

b1+ s̃−1
2 + s̃−2

2 s̃−1
3 s̃2 s̃3+ s̃−1

2

s̃1+ s̃−1
2 + s̃−2

2 s̃−1
3 s̃2 s̃3+ s̃−1

2

s1+ s−1
2 + s1s−1

2
s2 s−1

1 s−1
2 + s−1

2

81
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83
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↓ ↓ ↓

↓ ↓ ↓

↓ ↓ ↓

↓ ↓ ↓

Figure 16. A computation of the augmentation induced by an
exact Lagrangian filling of the Legendrian (2, 3) torus knot. We
keep track of the image of b1, b2, b3 under the composition of
81,82,83 and 84. The last line is the image of b1, b2, b3 under
the augmentation ε(2,3,1).

from the EHK algorithm. As a result, we distinguish all the augmentations in
Theorem 3.3 and thus prove Theorem 1.1.

Lemma 3.5. Let L1 and L2 be two exact Lagrangian fillings of the Legendrian
(2, n) torus knot 3 constructed from the EHK algorithm. If L1 and L2 are exact
Lagrangian isotopic, then there exists an invertible map g : H1(L1)→ H1(L2) such
that the following diagram commutes:

(3-1)

(A(3), ∂) Id
//

εL1
��

(A(3), ∂)
εL2
��

Z2[H1(L1)] g
// Z2[H1(L2)]

where εL1 and εL2 are augmentations induced by L1 and L2 respectively.
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Proof. The isotopy between L1 and L2 induces an invertible map g : H1(L1)→

H1(L2). If we identify both H1(L1) and H1(L2) with Zn−1, then g ∈GL(n−1,Z).
This map induces a natural map on the corresponding group rings Z2[H1(L1)] →

Z2[H1(L2)], also denoted by g. Thus, we have two augmentations of A(3) to
Z2[H1(L2)]: ε1= g◦εL1 and ε2= εL2 . Since the two fillings L1 and L2 are isotopic
through a family of exact Lagrangian fillings, according to [Ekholm et al. 2016,
Theorem 1.3], we know that ε1 and ε2 are chain homotopic. In other words, there
exists a degree 1 map H : A(3)→ Z2[H1(L2)] such that H ◦ ∂ = ε1− ε2 as one
can see from following diagram, where Ci denotes the degree i part of A(3).

C−1

H

%%

oo C0

H

%%

∂
oo

ε1

��

ε2

��

C1
∂

oo oo

0oo Z2[H1(L2)]oo 0oo oo

Note that 3 has a Lagrangian projection (as shown in Figure 11) such that no Reeb
chords are in negative degree. Hence C−1 = 0 and ε1− ε2 = H ◦ ∂ = 0. Therefore
ε1 = ε2, i.e., the diagram (3-1) commutes. �

Remark 3.6. For any DGA A that vanishes on the degree −1 part, by the same
argument, we have that two augmentations ε1 and ε2 of A are chain homotopic
if and only if they are identically the same. For a more general criteria of two
augmentations to be chain homotopic, check [Ng et al. 2015, Proposition 5.16].

Therefore, in order to distinguish exact Lagrangian fillings, we only need to
distinguish their induced augmentations up to a GL(n− 1,Z) action. Observing
the formula of the augmentation εσ in Theorem 3.3, we get a combinatorial way to
define the number of terms in εσ (bi ) for i = 1, . . . , n as follows.

Definition 3.7. For each permutation σ of {1, . . . , n} and any number i ∈{1, . . . , n},
we define Cσ := (C1

σ ,C2
σ , . . . ,Cn

σ ), where C i
σ = |S

i
σ | + 1.

Example 3.8. We compute the vector Cσ for all of the permutations σ of {1, 2, 3}:

σ (1, 2, 3) (1, 3, 2)∼ (3, 1, 2) (2, 1, 3) (2, 3, 1) (3, 2, 1)

Cσ (1, 2, 2) (1, 3, 1) (2, 1, 3) (3, 1, 2) (2, 2, 1)

Proposition 3.9. If two exact Lagrangian fillings Lσ1 and Lσ2 are exact Lagrangian
isotopic, then Cσ1 = Cσ2 . In other words, the vector Cσ is an invariant of the exact
Lagrangian filling Lσ up to exact Lagrangian isotopy.

Proof. Using the formula in Theorem 3.3, we first show that C i
σ is the number

of terms in εσ (bi ). In order to do that, we need to prove that εσ (bi ) as a sum of
monomials cannot be shorter, i.e, no terms in εσ (bi ) can be canceled by another
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term. First, replace sn with (s1 · · · sn−1)
−1. If i 6= n, then each term of εσ (bi ) is

one of the following forms:

(1) si ,

(2) s−1
k
∏

j∈S s−2
j for some k 6= i ∈ {1, . . . , n−1} and a subset S ⊂ {1, . . . , n−1}

that does not contain i, k (can be an empty set),

(3)
∏

j∈T s−1
j
∏

k /∈T sk for some subset T ⊂ {1, . . . , n− 1} that does not contain i
(can be an empty set).

If i = n, each term of εσ (bn) can be either s−1
1 · · · s

−1
n−1 or the form (2). Comparing

degrees of s1, . . . , sn−1 of each term, we know that no terms can be canceled.
If Lσ1 and Lσ2 are exact Lagrangian isotopic, by Lemma 3.5, there is a map

g : Z2[H1(L1)] → Z2[H1(L2)] such that g ◦ εL1 = εL2 . Note that the map g on
the group rings Z2[H1(L1)] → Z2[H1(L2)] is induced from an invertible map
H1(L1)→ H1(L2) and thus g maps a monomial to a monomial. Therefore εσ1(bi )

and εσ2(bi ) have the same number of terms, i.e., Cσ1 = Cσ2 . �

We say that two permutations σ1 and σ2 of {1, . . . , n} are isotopy equivalent if
they are equivalent via a sequence of relations of the form

(3-2) (. . . , i, j, . . . , k, . . .)∼ (. . . , j, i, . . . , k, . . .), where i < k < j.

By [Ekholm et al. 2016], if σ1 and σ2 are isotopy equivalent, the corresponding
exact Lagrangian fillings Lε1 and Lε2 are exact Lagrangian isotopic and hence
Cσ1 = Cσ2 . Conversely, we have the following:

Lemma 3.10. If Cσ1 = Cσ2 , then σ1 and σ2 are isotopy equivalent.

Proof. If σ1(1)=k, then Ck
σ1
=1. So Ck

σ2
=1, i.e., we have that Sk

σ2
=∅. If σ2(1) 6=k,

assume the element in σ2 right before k is l, i.e., σ2(σ
−1
2 (k)− 1)= l. Note that

l /∈ Sk
σ2

, i.e., there exists i such that l < i < k or k < i < l and σ−1
2 (i) > σ−1

2 (l).
Note that i 6= k and hence σ−1

2 (i) > σ−1
2 (k)= σ−1

2 (l)+ 1. Thus we can use the
relation (3-2) to switch l and k. In this way we can switch k to the first position
in σ2, i.e., σ2(1)= k = σ1(1).

By induction, assume σ2(i)= σ1(i) for i < l and σ1(l)= k. Then Sk
σ1
⊂ Sk

σ2
. The

assumption Ck
σ2
= Ck

σ1
implies that |Sk

σ1
| = |Sk

σ2
| and thus Sk

σ1
= Sk

σ2
. If σ2(l) 6= k, for

a similar reason to above, one can switch k to the l-th position and get σ2(l)= σ1(l).
Therefore, σ1 and σ2 are isotopy equivalent. �

Theorem 3.11. If n is odd, the Cn exact Lagrangian fillings of the Legendrian
(2, n) torus knot 3 from the EHK algorithm are all of different exact Lagrangian
isotopy classes.

Proof. If two augmentations σ1 and σ2 are not isotopy equivalent, by Lemma 3.10,
we have Cσ1 6= Cσ2 . According to Proposition 3.9, the corresponding exact La-
grangian fillings Lσ1 and Lσ2 are not exact Lagrangian isotopic. Therefore, the
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Legendrian (2, n) torus knot has at least Cn exact Lagrangian fillings up to exact
Lagrangian isotopy. �

Corollary 3.12. When n is even, the Legendrian (2, n) torus link 3 has at least Cn

exact Lagrangian fillings.

Proof. Start with the Legendrian (2, n+1)-knot 30 and label its degree 0 Reeb
chords from left to right by b1, . . . , bn+1 as usual. Let 6 be the exact Lagrangian
cobordism from 3 to 30 that corresponds to a pinch move of 30 at bn+1. For
any permutation σ of {1, . . . , n}, the exact Lagrangian filling Lσ of 3 gives an
exact Lagrangian filling of 30 by concatenating with 6 on the top. This new exact
Lagrangian filling of30 corresponds to the permutation σ̃ = (n+1, σ (1), . . . , σ (n))
of {1, 2, . . . , n+ 1}, i.e., it is the filling L σ̃ of 30. Note that Cn+1

σ̃
= 1. Moreover,

we have that C i
σ̃
= C i

σ for i = 1, . . . , n−1 and Cn
σ̃
=Cn

σ+1. Thus Cσ̃ is determined
by Cσ . Therefore, by Proposition 3.9 and Lemma 3.10, if two permutations σ1

and σ2 of {1, . . . , n} are not isotopy equivalent, their induced permutations σ̃1 and
σ̃2 of {1, . . . , n+ 1} are not isotopy equivalent. According to Theorem 3.11, the
corresponding exact Lagrangian fillings L σ̃1 and L σ̃2 of30 are not exact Lagrangian
isotopic. Hence Lσ1 and Lσ2 are not exact Lagrangian isotopic. �
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