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THE VIETORIS–RIPS COMPLEXES OF A CIRCLE

MICHAŁ ADAMASZEK AND HENRY ADAMS

Given a metric space X and a distance threshold r > 0, the Vietoris–Rips
simplicial complex has as its simplices the finite subsets of X of diameter less
than r . A theorem of Jean-Claude Hausmann states that if X is a Riemann-
ian manifold and r is sufficiently small, then the Vietoris–Rips complex is
homotopy equivalent to the original manifold. Little is known about the
behavior of Vietoris–Rips complexes for larger values of r , even though
these complexes arise naturally in applications using persistent homology.
We show that as r increases, the Vietoris–Rips complex of the circle obtains
the homotopy types of the circle, the 3-sphere, the 5-sphere, the 7-sphere,
etc., until finally it is contractible. As our main tool we introduce a di-
rected graph invariant, the winding fraction, which in some sense is dual
to the circular chromatic number. Using the winding fraction we classify
the homotopy types of the Vietoris–Rips complex of an arbitrary (possibly
infinite) subset of the circle, and we study the expected homotopy type of
the Vietoris–Rips complex of a uniformly random sample from the circle.
Moreover, we show that as the distance parameter increases, the ambient
Čech complex of the circle (i.e., the nerve complex of the covering of a circle
by all arcs of a fixed length) also obtains the homotopy types of the circle,
the 3-sphere, the 5-sphere, the 7-sphere, etc., until finally it is contractible.

1. Introduction

Given a metric space X and a distance threshold r > 0, the Vietoris–Rips simplicial
complex VR<(X; r) has as its simplices the finite subsets of X of diameter less
than r. As the maximal simplicial complex determined by its 1-skeleton, it is an
example of a clique (or flag) complex. Vietoris–Rips complexes were used by

Research of Adams was supported by the Institute for Mathematics and its Applications with funds
provided by the National Science Foundation. Adamaszek is supported by VILLUM FONDEN
through the network for Experimental Mathematics in Number Theory, Operator Algebras, and
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Vietoris [1927] to define a (co)homology theory for metric spaces, and by Rips
[Gromov 1987] to study hyperbolic groups.

More recently, Vietoris–Rips complexes are used in computational algebraic
topology and in topological data analysis. In this context the metric space X is
often a finite sample from some unknown subset M ⊆ Rd , and one would like to
use X to recover topological features of M. The idea behind topological persistence
is to reconstruct VR<(X; r) as the distance threshold r varies from small to large,
to disregard short-lived topological features as the result of sampling noise, and to
trust topological features which persist as being representative of the shape of M.
For example, with persistent homology one attempts to reconstruct the homology
groups of M from the homology of VR<(X; r) as r varies [Edelsbrunner and Harer
2010; Carlsson 2009; Carlsson et al. 2008].

Part of the motivation for using Vietoris–Rips complexes in applied contexts
comes from the work of Hausmann and Latschev. Hausmann [1995] proves that if M
is a closed Riemannian manifold and if r is sufficiently small compared to the injec-
tivity radius of M, then VR<(M; r) is homotopy equivalent to M. Latschev [2001]
furthermore shows that if X is Gromov–Hausdorff close to M (for example a suffi-
ciently dense finite sample) and r is sufficiently small, then VR<(X; r) recovers the
homotopy type of M. As the main idea of persistence is to allow r to vary, we would
like to understand what happens when r is beyond the “sufficiently small” range.

As the main result of this paper, we show that as the distance threshold increases,
the Vietoris–Rips complex VR<(S1

; r) of the circle obtains the homotopy types
of the odd-dimensional spheres S1, S3, S5, S7, . . . , until finally it is contractible.
To our knowledge, this is the first computation for a noncontractible connected
manifold M of the homotopy types of VR<(M; r) for arbitrary r (and also a first
computation of the persistent homology of VR<(M; r)). Our main result confirms,
for the case M = S1, a conjecture of Hausmann [1995, (3.12)] that for M a compact
Riemannian manifold, the connectivity of VR<(M; r) is a nondecreasing function
of the distance threshold r.

As our main tools we introduce cyclic graphs, a combinatorial abstraction of
Vietoris–Rips graphs for subsets of the circle, and their invariant called the winding
fraction. In a sense which we make precise, the winding fraction is a directed dual
of the circular chromatic number of a graph [Hell and Nešetřil 2004, Chapter 6]. In
[Adamaszek et al. 2016] we proved that for X ⊆ S1 finite, VR<(X; r) is homotopy
equivalent to either an odd-dimensional sphere or a wedge sum of spheres of the
same even dimension; the theory of winding fractions gives us quantitative control
over which homotopy type occurs, and also over the behavior of induced maps
between complexes. As applications we classify the homotopy types of VR<(X; r)
for arbitrary (possibly infinite) subsets X ⊆ S1, and we analyze the evolution of the
homotopy type of VR<(X; r) when X ⊆ S1 is chosen uniformly at random.
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Čech complexes are a second geometric construction producing a simplicial
complex from a metric space. The Čech complex Č<(S1

; r) is defined as the nerve
of the collection of all open arcs of length 2r in the circle of circumference 1. For
r small the nerve theorem [Hatcher 2002, Corollary 4G.3] implies that Č<(S1

; r)
is homotopy equivalent to S1. Just as we study VR<(S1

; r) in the regime where r
is too large for Hausmann’s result to apply, we also study Č<(S1

; r) in the regime
where r is too large for the nerve theorem to apply. We show that as r increases,
the ambient Čech complex Č<(S1

; r) also obtains the homotopy types of S1, S3,
S5, S7, . . . , until finally it is contractible.

All of this has analogues for the complexes VR≤(S1
; r) and Č≤(S1

; r), defined
by sets of diameter at most r, respectively closed arcs of length 2r. We have:

Main result (Theorems 7.4, 7.6, 9.7, 9.8). Let 0 < r < 1
2 . There are homotopy

equivalences ( for l = 0, 1, . . . ):

VR<(S1
; r)' S2l+1 if l

2l+1 < r ≤ l+1
2l+3 ,

Č<(S1
; r)' S2l+1 if l

2(l+1) < r ≤ l+1
2(l+2) ,

VR≤(S1
; r)'

{
S2l+1 if l

2l+1 < r < l+1
2l+3 ,∨c S2l if r = l

2l+1 ,

Č≤(S1
; r)'

{
S2l+1 if l

2(l+1) < r < l+1
2(l+2) ,∨c S2l if r = l

2(l+1) ,

Contents of the paper. In Section 2 we introduce preliminary concepts and notation,
including Vietoris–Rips complexes. We introduce cyclic graphs and develop their
invariant called the winding fraction in Section 3. In Section 4 we show how this
invariant affects the homotopy type of the clique complex of a cyclic graph. In
Section 5 we show that the homotopy type of the Vietoris–Rips complex stabilizes
for sufficiently dense samples of S1. We apply the winding fraction to study the
evolution of Vietoris–Rips complexes for random subsets of S1 in Section 6. The
main result appears in Sections 7 and 8, where we show how to compute the
homotopy types of Vietoris–Rips complexes of arbitrary (possibly infinite) subsets
of S1; in particular we describe VR<(S1

; r). In Section 9 we transfer these results
to the Čech complexes of the circle. The appendices contain proofs of auxiliary
results in linear algebra and probability.

2. Preliminaries

We refer the reader to [Hatcher 2002; Kozlov 2008] for basic concepts in topology
and combinatorial topology.
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Simplicial complexes. For K a simplicial complex, let V(K ) be its vertex set. The
link of a vertex v ∈ V(K ) is lkK (v) = {σ ∈ K | v /∈ σand σ ∪ {v} ∈ K }. We will
identify an abstract simplicial complex with its geometric realization.

Definition 2.1. For an undirected graph G the clique complex Cl(G) is the sim-
plicial complex with vertex set V(G) and with faces determined by all cliques
(complete subgraphs) of G.

Vietoris–Rips complexes. The Vietoris–Rips complex is used to capture a notion
of proximity in a metric space.

Definition 2.2. Suppose X is a metric space and r > 0 is a real number. The
Vietoris–Rips complex VR≤(X; r) is the simplicial complex with vertex set X,
where a finite subset σ ⊆ X is a face if and only if the diameter of σ is at most r.
Analogously, the complex VR<(X; r) is characterized by finite subsets whose
diameter is strictly less than r.

Every Vietoris–Rips complex is the clique complex of its 1-skeleton. We will
write VR(X; r), omitting the subscripts < and ≤, in statements which remain true
whenever either inequality is applied consequently throughout.

Conventions regarding the circle. We give the circle S1 the arc-length metric
scaled so that the circumference of S1 is 1. For x, y ∈ S1 we denote by [x, y]S1

the closed clockwise arc from x to y and by
−→

d(x, y) its length — the clockwise
distance from x to y. For a fixed choice of 0∈ S1 each point x ∈ S1 can be identified
with the real number

−→

d(0, x) ∈ [0, 1), and this will be our coordinate system on S1.
For any two numbers x, y ∈ R we define [x, y]S1 = [x mod 1, y mod 1]S1 and
−→

d(x, y)=
−→

d(x mod 1, y mod 1). Open and half-open arcs are defined similarly. If
x1, x2, . . . , xs ∈ S1 then we will write

x1 ≺ x2 ≺ · · · ≺ xs

if x1, . . . , xs appear on S1 in this clockwise order, or equivalently if they are pairwise
distinct and

∑s
i=1

−→

d(xi , xi+1)= 1, where xs+1 = x1. We define
−→

dn(i, j)= n ·
−→

d
( i

n ,
j
n

)
to be the “forward” distance from i to j in Z/n.

Directed graphs. Throughout this work a directed graph is a pair
−→

G = (V, E)
with V the set of vertices and E ⊆ V × V the set of directed edges, subject to the
conditions (v, v) 6∈ E (no loops) and (v,w) ∈ E =⇒ (w, v) 6∈ E (no edges oriented
in both directions). The edge (v,w) will also be denoted by v→ w. For a vertex
v ∈ V(

−→

G) we define the out- and in-neighborhoods

N+(
−→

G, v)= {w : v→ w} and N−(
−→

G, v)= {w : w→ v},
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as well as their closed versions

N+[
−→

G, v] = N+(
−→

G, v)∪ {v} and N−[
−→

G, v] = N−(
−→

G, v)∪ {v}.

A directed cycle of length s in
−→

G is a sequence of vertices v1, . . . , vs such that there
is an edge vi → vi+1 for all i = 1, . . . , s, where vs+1 = v1.

For a directed graph
−→

G we will denote by G the underlying undirected graph
obtained by forgetting the orientations. If G is an undirected graph we write v ∼w
when v and w are adjacent, and we define

N(G, v)= {w : w ∼ v} and N [G, v] = N(G, v)∪ {v}.

For v ∈ V let
−→

G \ v be the directed graph obtained by removing vertex v and all
of its incident edges, and for e ∈ E let

−→

G \ e be obtained by removing edge e. The
undirected versions G \ v and G \ e are defined similarly.

All graphs considered in this paper are finite.

3. Cyclic graphs, winding fractions, and dismantling

In this section we develop the combinatorial theory of cyclic graphs, dismantling,
and winding fractions.

We are going to work with the notion of a cyclic order. While there exist
definitions of a cyclic order based on the abstract ternary relation of betweenness
[Huntington 1916], the following definition will be sufficient for our purpose. A
cyclic order on a finite set S of cardinality n is a bijection h : S→ {0, . . . , n− 1}.
Denoting xi = h−1(i) we write this simply as

x0 ≺ x1 ≺ · · · ≺ xn−1.

If n ≥ 3 this gives rise to a betweenness relation: we write xi ≺ x j ≺ xk if i < j < k
or k < i < j or j < k < i . If S′ ⊆ S then any cyclic order on S restricts in an
obvious way to a cyclic order on S′.

A subinterval in such a cyclic ordering of S is either (1) the empty set, (2) a
set of the form {xi , . . . , x j } for 0 ≤ i ≤ j ≤ n − 1, or (3) a set of the form
{x j , . . . , xn−1, x0, . . . , xi } for 0 ≤ i < j ≤ n − 1. In particular, S itself is also
a subinterval.

A function f : S→ T between cyclic orders is cyclic monotone if (1) for every
t ∈ T the set f −1(t) is a subinterval of S, and (2) f (s)≺ f (s ′)≺ f (s ′′) in T implies
s ≺ s ′ ≺ s ′′ in S for any s, s ′, s ′′ ∈ S.

One easily shows that if f is cyclic monotone, s≺ s ′≺ s ′′, and f (s), f (s ′), f (s ′′)
are pairwise distinct, then f (s)≺ f (s ′)≺ f (s ′′). Moreover, if f : S→ T is cyclic
monotone then the preimage of any subinterval of T is a subinterval of S.

We will concentrate on the following class of directed graphs.
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Definition 3.1. A directed graph
−→

G is called cyclic if its vertices can be arranged
in a cyclic order v0 ≺ v1 ≺ · · · ≺ vn−1 subject to the following condition: if there is
a directed edge vi → vj , then either j ≡ i + 1 mod n or there are directed edges

vi → vj−1 mod n and vi+1 mod n→ vj .

In the future all arithmetic operations on the vertex indices are understood to be
reduced modulo n; for instance we will write simply vi+k for vi+k mod n .

Two examples of cyclic graphs are shown in Figure 1. Cyclic graphs are a special
case of directed graphs with a round enumeration; the latter are defined by the
above definition when edges with double (opposite) orientations are allowed. For
a comprehensive survey of related graph classes, see [Lin and Szwarcfiter 2009],
especially Theorem 10.

We begin with some basic properties of cyclic graphs.

Lemma 3.2. Let
−→

G be a cyclic graph with n vertices in cyclic order v0≺ · · · ≺ vn−1.
Then:

(a) For every i = 0, . . . , n− 1 there exist s, s ′ ≥ 0 such that

N+[
−→

G, vi ] = {vi , vi+1, . . . , vi+s} and N−[
−→

G, vi ] = {vi−s′, . . . , vi−1, vi }.

(b) For every i = 0, . . . , n− 1 we have inclusions

N+(
−→

G, vi )⊆ N+[
−→

G, vi+1] and N−(
−→

G, vi+1)⊆ N−[
−→

G, vi ].

(c) Every induced subgraph of
−→

G is a cyclic graph.

(d) If
−→

G contains a directed cycle then vi → vi+1 for all i = 0, . . . , n− 1.

Proof. Parts (a) and (b) follow directly from the definition. The cyclic orientation
inherited from

−→

G is a cyclic orientation of any induced subgraph, which gives (c).
To prove (d), take a directed cycle and replace any edge vi → vj with j 6= i + 1 by
a path vi → vi+1→ vj . After finitely many steps of this kind we get a directed
cycle in which every edge is of the form vi → vi+1. �

The main examples of cyclic graphs of interest in this paper are provided in the
next two definitions.

Definition 3.3. For a finite subset X ⊆ S1 and real number 0< r < 1
2 , the directed

Vietoris–Rips graphs
−→

VR≤(X; r) and
−→

VR<(X; r) are defined as
−→

VR≤(X; r)=
(
X, {x1→ x2 : 0<

−→

d(x1, x2)≤ r}
)

and
−→

VR<(X; r)=
(
X, {x1→ x2 : 0<

−→

d(x1, x2) < r}
)
.
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Figure 1. Left: the coordinate system on S1. Middle: the cyclic
graph

−→

C2
6 . Right: a cyclic graph which is not a Vietoris–Rips graph.

Its odd-numbered vertices are dominated; see Definition 3.9.

It is clear that the Vietoris–Rips graph is cyclic with respect to the clockwise
ordering of X ; in particular the two meanings of the symbol ≺ denoting clockwise
order in S1 and cyclic order of the vertices of

−→

VR(X; r) agree.
As before, we will omit the subscript and write

−→

VR(X; r) in statements which
apply to both < and ≤. Not every cyclic graph is a Vietoris–Rips graph of a subset
of S1: an example is in Figure 1. Our interest in Vietoris–Rips graphs stems from
the fact that a Vietoris–Rips complex is the clique complex of the corresponding
undirected Vietoris–Rips graph, namely VR(X; r)= Cl(VR(X; r)).

Definition 3.4. For integers n and k with 0 ≤ k < 1
2 n, the directed graph

−→

Ck
n has

vertex set {0, . . . , n− 1} and edges i→ (i + s) mod n for all i = 0, . . . , n− 1 and
s = 1, . . . , k. Equivalently

i→ j if and only if 0<
−→

dn(i, j)≤ k.

The directed graphs
−→

Ck
n are cyclic with respect to the natural cyclic order of the

vertices. Note that
−→

Ck
n is a Vietoris–Rips graph of the vertex set of a regular n-gon,

or in our notation:

(1)
−→

Ck
n =

−→

VR≤
({

0, 1
n , . . . ,

n−1
n

}
;

k
n

)
.

The cyclic graphs
−→

Ck
n will play a prominent role in our analysis of the Vietoris–Rips

graphs.
A homomorphism of directed graphs f :

−→

G→
−→

H is a vertex map such that for
every edge v→w in

−→

G either f (v)= f (w) or there is an edge f (v)→ f (w) in
−→

H.
Directed graphs with homomorphisms form a category. We now define a class of
homomorphisms for the subcategory of cyclic graphs.

Definition 3.5. Suppose that
−→

G and
−→

H are cyclic graphs, with vertex ordering
v0 ≺ · · · ≺ vn−1 in

−→

G. A vertex map f :
−→

G→
−→

H is a cyclic homomorphism if f
is cyclic monotone, if f is a homomorphism of directed graphs, and if f is not
constant whenever

−→

G has a directed cycle.
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Note that if
−→

H =
−→

VR(X; r) then the condition “ f is cyclic monotone and not
constant” is equivalent to the equation

(2)
∑

i

−→

d( f (vi ), f (vi+1))= 1.

Lemma 3.6. Cyclic homomorphisms have the following properties.

(a) If f :
−→

G→
−→

H is a cyclic homomorphism and
−→

G has a directed cycle then so
does

−→

H.

(b) The composition of two cyclic homomorphisms is a cyclic homomorphism.

(c) The inclusion of a cyclic subgraph (with inherited cyclic orientation) is a cyclic
homomorphism.

Proof. For (a), note that if
−→

G has a directed cycle, then by Lemma 3.2(d) it has
a directed cycle · · · → vi → vi+1 → · · · through all its vertices. The image of
that cycle under f is not constant, and by removing adjacent repetitions one gets a
directed cycle in

−→

H.
For (b) suppose f :

−→

G →
−→

H and g :
−→

H →
−→

K are cyclic homomorphisms of
cyclic graphs. We first check that g f is cyclic monotone. Indeed, for a vertex w in
−→

K the set (g f )−1(w) is the preimage under f of the subinterval g−1(w), hence a
subinterval. If g f (v)≺ g f (v′)≺ g f (v′′), then using that f and then g are cyclic
monotone, we get v ≺ v′ ≺ v′′.

Now we only have to check that if
−→

G has a directed cycle then g f is not constant.
By part (a), all three graphs have a directed cycle. Suppose, on the contrary, that
g( f (vi )) = w for all vi ∈ V(

−→

G). Since g is not constant there is a vertex u of
−→

H
not in the image of f with g(u) 6=w, and since f is not constant there is an index i
such that f (vi ) ≺ u ≺ f (vi+1) is cyclically ordered in

−→

H. Since vi → vi+1 in
−→

G
we have f (vi )→ f (vi+1) in

−→

H. That in turn implies f (vi )→ u→ f (vi+1) in
−→

H
and therefore w→ g(u)→ w in

−→

K . This contradicts our definition of a directed
graph (no edges oriented in both directions), and hence g f is not constant.

Part (c) is clear. �

We can now define the main numerical invariant of cyclic graphs.

Definition 3.7. The winding fraction of a cyclic graph
−→

G is

wf(
−→

G)= sup
{ k

n : there exists a cyclic homomorphism
−→

Ck
n→

−→

G
}
.

For a finite subset X ⊆ S1 we also introduce the shorthand notation

wf≤(X; r)= wf(
−→

VR≤(X; r)) and wf<(X; r)= wf(
−→

VR<(X; r)).

The next proposition records the basic properties of the winding fraction.

Proposition 3.8. The winding fraction satisfies the following properties.
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(a) wf(
−→

G) > 0 if and only if
−→

G has a directed cycle.

(b) If
−→

G→
−→

H is a cyclic homomorphism then wf(
−→

G)≤ wf(
−→

H).

(c) If X ⊆ S1 is a finite set and 0< r < 1
2 then

wf≤(X; r)≤ r, wf<(X; r) < r, and wf<(X; r)≤ wf≤(X; r).

(d) wf(
−→

Ck
n)=

k
n .

Proof. For (a) note that if
−→

G has a directed cycle, then by Lemma 3.2(d) the map
i 7→ vi defines a cyclic homomorphism

−→

C1
n→

−→

G with n = |V(
−→

G)|. Conversely, if
−→

G has no directed cycle then by Lemma 3.6(a) it admits cyclic homomorphisms
only from the graphs

−→

C0
n .

Part (b) follows from the definition of the winding fraction and the fact that a
composition of cyclic homomorphisms is a cyclic homomorphism.

Now we prove the first inequality of (c). Suppose that f :
−→

Ck
n→

−→

VR≤(X; r) is
a cyclic homomorphism with k ≥ 1, which means that for every i = 0, . . . , n− 1
we have

−→

d( f (i), f (i + k))≤ r. Since every arc of the form [ f ( j), f ( j + 1)]S1 is
covered by exactly k arcs [ f (i), f (i + k)]S1 ,

nr ≥
∑

i

−→

d( f (i), f (i + k))= k
∑

j

−→

d( f ( j), f ( j + 1))= k,

where in the last equality we used (2). It follows that k
n ≤ r and wf≤(X; r)≤ r.

The second inequality has similar proof with strict inequalities and the third one
follows from (b) since we have a subgraph inclusion

−→

VR<(X; r) ↪→
−→

VR≤(X; r).
For (d), the identity automorphism of

−→

Ck
n shows wf(

−→

Ck
n)≥

k
n . Conversely, apply-

ing part (c) with X =
{
0, 1

n , . . . ,
n−1

n

}
and r = k

n gives, by (1), that wf(
−→

Ck
n)≤

k
n . �

We now describe a practical way of computing the winding fraction. The method
uses graph reductions modeled on the notion of dismantlings of undirected graphs
(called folds in [Hell and Nešetřil 2004, Section 2.11] or LC reductions in [Matoušek
2008]), and hence we use the same terminology.

Definition 3.9. Suppose
−→

G is a cyclic graph with vertex ordering v0 ≺ · · · ≺ vn−1.
A vertex vi is dominated by vi+1 (or just dominated) if N−(

−→

G, vi+1)= N−[
−→

G, vi ].

Lemma 3.10. If
−→

G is a cyclic graph and vi is dominated by vi+1, then the map
f :

−→

G→
−→

G \ vi given by

f (vj )=

{
vj if j 6= i,
vi+1 if j = i

is a cyclic homomorphism. The composition
−→

G \ vi ↪→
−→

G
f
−→

−→

G \ vi is the identity.

Proof. We first check that f is a homomorphism of directed graphs. First note the
map f preserves all edges avoiding vi . If vk → vi then vk → vi+1 because vi is
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dominated by vi+1. If vi → vk then either k = i + 1, and then f (vi ) = f (vk), or
there is also an edge vi+1→ vk because

−→

G is cyclic.
The map f is a cyclic homomorphism because it clearly preserves the cyclic

ordering, and if
−→

G has a directed cycle then it has at least three vertices, in which
case f is not constant.

The last claim is obvious. �

The removal of a dominated vertex can be repeated as long as the new graph has
a dominated vertex.

Definition 3.11. We say a cyclic graph
−→

G dismantles to an induced subgraph
−→

H if
there is a sequence of graphs

−→

G =
−→

G0,
−→

G1, . . . ,
−→

Gs =
−→

H such that
−→

Gi is obtained
from

−→

Gi−1 by removing a dominated vertex for i = 1, . . . , s.

If
−→

G dismantles to
−→

H then the composition of cyclic homomorphisms
−→

Gi→
−→

Gi+1

provided by Lemma 3.10 gives a cyclic homomorphism
−→

G→
−→

H. Moreover the
composition

−→

H ↪→
−→

G→
−→

H

is the identity of
−→

H. The next proposition answers the question of when the
dismantling process of a cyclic graph must stop.

Proposition 3.12. A cyclic graph without a dominated vertex is isomorphic to
−→

Ck
n

for some 0≤ k < 1
2 n. As a consequence every cyclic graph dismantles to an induced

subgraph of the form
−→

Ck
n .

Proof. Let
−→

G be a cyclic graph with vertex ordering v0 ≺ · · · ≺ vn−1 and with no
dominated vertex. By Lemma 3.2(a) for every j = 0, . . . , n− 1 there is an e( j)
such that N+[

−→

G, vj ] = {vj , . . . , ve( j)}. For every i = 0, . . . , n− 1,

N−[
−→

G, vi ] \ N−(
−→

G, vi+1)= {vj : e( j)= i},

where N−(
−→

G, vi+1)⊆ N−[
−→

G, vi ] by Lemma 3.2(b). It follows that∑
i

|N−[
−→

G, vi ] \ N−(
−→

G, vi+1)| = n.

Since
−→

G has no dominated vertices, all n summands above are positive and therefore
all are equal to 1. We have

|N−(
−→

G, vi+1)| = |N−[
−→

G, vi ]| − 1= |N−(
−→

G, vi )∪ {vi }| − 1= |N−(
−→

G, vi )|.

Denote the common value of |N−(
−→

G, vi )| by k. Using Lemma 3.2(a) again we see
that N−[

−→

G, vi ] = {vi−k, . . . , vi } for all i , and so
−→

G is isomorphic to
−→

Ck
n . �

Remark 3.13. In [Adamaszek et al. 2017] we prove that, regardless of the choices
of a dominated vertex made in the process, every dismantling of a cyclic graph ends
up with the same subgraph. Such strong uniqueness is not needed in this paper.
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Our notion is modeled on the more classical dismantling of undirected graphs;
see [Hell and Nešetřil 2004]. In that setting the end result of the dismantling process
is unique only up to isomorphism; see [Matoušek 2008] or [Hell and Nešetřil 2004,
Theorem 2.60].

We can now give a recipe for computing the winding fraction.

Proposition 3.14. If a cyclic graph
−→

G dismantles to
−→

Ck
n then wf(

−→

G)= k
n .

Proof. The graph
−→

G has both cyclic homomorphisms
−→

Ck
n ↪→

−→

G and
−→

G→
−→

Ck
n , so

the claim follows from Proposition 3.8 parts (b) and (d). �

The following result gives the converse of Proposition 3.8(b).

Proposition 3.15. There is a cyclic homomorphism f :
−→

G →
−→

H if and only if
wf(

−→

G)≤ wf(
−→

H).

Proof. The “only if” part is handled by Proposition 3.8(b).
For any 0≤ k < 1

2 n and d ≥ 1 consider two maps ι :
−→

Ck
n→

−→

Ckd
nd and τ :

−→

Ckd
nd→

−→

Ck
n

given by
ι(i)= di, and τ( j)=

⌊ j
d

⌋
.

It is easy to see that ι and τ are cyclic homomorphisms.
To prove the “if” part, suppose that

−→

G dismantles to
−→

Ck
n and

−→

H dismantles to
−→

Ck′
n′ .

Proposition 3.14 and the assumption wf(
−→

G)≤ wf(
−→

H) imply k
n ≤

k′
n′ . Then we have

a cyclic homomorphism

−→

G→
−→

Ck
n

ι
−→

−→

Ckn′
nn′ ↪→

−→

Cnk′
nn′

τ
−→

−→

Ck′
n′ ↪→

−→

H,

where the first and last map come from dismantling, and the middle map is a
subgraph inclusion since kn′ ≤ nk ′. �

The winding fraction is in a sense dual to the well-studied concept of circular
chromatic number; see [Hell and Nešetřil 2004, Chapter 6]. For an arbitrary
undirected graph G the circular chromatic number χc(G) is defined as the infimum
over numbers n

k such that there is a map V(G)→ Z/n which maps every edge to a
pair of numbers at least k apart. By Proposition 3.15 we have

wf(
−→

G)= inf
{ k

n : there exists a cyclic homomorphism
−→

G→
−→

Ck
n
}

which leads to the following description: wf(
−→

G) is the infimum over numbers k
n

such that there is an order-preserving map V(G)→ Z/n which maps every edge to
a pair of numbers at most k apart.
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4. Winding fractions determine homotopy types

We now analyze the influence of the winding fraction wf(
−→

G) on the topology of the
clique complex Cl(G).

A homomorphism f : G→ H of undirected graphs is a vertex map such that
v ∼ w implies f (v)= f (w) or f (v)∼ f (w). Every homomorphism of directed
graphs

−→

G→
−→

H determines a homomorphism of the underlying undirected graphs
G → H , and in turn also a simplicial map Cl(G) → Cl(H). The assignment
−→

G 7→ Cl(G) is a functor from the category of directed graphs to topological spaces,
and also a functor from the subcategory of cyclic graphs to topological spaces.

Lemma 4.1. If
−→

G is a cyclic graph and vi is a dominated vertex, then the cyclic
homomorphisms

−→

G \ vi ↪→
−→

G and
−→

G→
−→

G \ vi from Lemma 3.10 induce homotopy
equivalences of clique complexes.

Proof. Using the conditions listed in Lemma 3.2(b) and Definition 3.9 we get

N [G, vi ] = N−[
−→

G, vi ] ∪ N+(
−→

G, vi )⊆ N−(
−→

G, vi+1)∪ N+[
−→

G, vi+1] = N [G, vi+1].

Hence the link lkCl(G)(vi ) is a cone with apex vi+1, or in other words, Cl(G) is
obtained from Cl(G \ vi ) by attaching a cone over a cone. It follows that the
inclusion Cl(G \ vi ) ↪→ Cl(G) is a homotopy equivalence. Since the composition
Cl(G \ vi ) ↪→ Cl(G) → Cl(G \ vi ) is the identity, also

−→

G →
−→

G \ vi induces a
homotopy equivalence. �

Corollary 4.2. If a cyclic graph
−→

G dismantles to
−→

H then the maps of clique com-
plexes induced by

−→

H ↪→
−→

G and
−→

G→
−→

H are homotopy equivalences.

To determine the homotopy types of Cl(G) for arbitrary cyclic graphs
−→

G we
recall the following result, proved with different methods in [Adamaszek 2013] and
[Adamaszek et al. 2016].

Theorem 4.3. For 0≤ k < 1
2 n there are homotopy equivalences

Cl(Ck
n)'

{
S2l+1 if l

2l+1 <
k
n <

l+1
2l+3 for some l = 0, 1, . . . ,∨n−2k−1 S2l if k

n =
l

2l+1 for some l = 0, 1, . . . .

By convention an empty wedge sum is a point. We immediately obtain the
following result.

Theorem 4.4. If
−→

G is a cyclic graph then

Cl(G)'

{
S2l+1 if l

2l+1 < wf(
−→

G) < l+1
2l+3 for some l = 0, 1, . . . ,∨n−2k−1 S2l if wf(

−→

G)= l
2l+1 and

−→

G dismantles to
−→

Ck
n .
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Proof. Graph
−→

G dismantles to some
−→

Ck
n for 0 ≤ k < 1

2 n by Proposition 3.12, and
then we have Cl(G) ' Cl(Ck

n) by Corollary 4.2. From Proposition 3.14 we get
wf(

−→

G)= k
n , and plugging this into Theorem 4.3 gives the result. �

Corollary 4.5. If X ⊆ S1 is a finite set and 0≤ r < 1
2 then

VR(X;r)'

{
S2l+1 if l

2l+1 < wf(X; r) < l+1
2l+3 for some l = 0, 1, . . . ,∨n−2k−1 S2l if wf(X;r)= l

2l+1 and
−→

VR(X;r) dismantles to
−→

Ck
n .

Proof. For the cyclic graph
−→

VR(X; r) we have VR(X; r)= Cl(VR(X; r)). �

Remark 4.6. A circular-arc graph (CA) is an intersection graph of a collection
of arcs in S1. A circular-arc graph is proper (PCA) if no arc contains another and
unit (UCA) if all arcs have the same length. We have inclusions of graph classes
UCA ( PCA ( CA. If

−→

G is a cyclic graph then one can show G is a PCA graph,
and if X ⊆ S1 is finite and 0≤ r < 1

2 then the Vietoris–Rips graph VR(X; r) is a
UCA graph. In [Adamaszek et al. 2016] we proved that the clique complex of any
CA graph has the homotopy type of S2l+1 or a wedge of copies of S2l for some
l ≥ 0. The theory of winding fractions refines the result by providing quantitative
control over which homotopy type occurs, and by allowing us to understand induced
maps. These features will be crucial for the applications we present in the following
sections.

There is a clear difference in the behavior of Cl(G) when wf(
−→

G) is one of the
singular values l

2l+1 , l=0, 1, . . . as opposed to a generic value l
2l+1 <wf(

−→

G)< l+1
2l+3 .

We now discuss additional properties of Cl(G) in the generic situation. The next
lemmas describe the effect of a vertex or edge removal on the homotopy type
of Cl(G).

Lemma 4.7. Suppose that
−→

G is a cyclic graph and v ∈ V(
−→

G). If

l
2l+1 < wf(

−→

G \ v)≤ wf(
−→

G) < l+1
2l+3 ,

then the inclusion
−→

G \ v ↪→
−→

G induces a homotopy equivalence of clique complexes.

Proof. By Theorem 4.4 the complexes Cl(G \ v) and Cl(G) are both homotopy
equivalent to S2l+1. Let

−→

Gv denote the cyclic subgraph of
−→

G induced by N(G, v),
so lkCl(G)(v)=Cl(Gv). The decomposition Cl(G)=Cl(G \v)∪Cl(Gv) (Cl(Gv)∗v)

yields a Mayer–Vietoris long exact sequence of homology groups whose only
nontrivial part is

(3) 0 // H̃2l+1(Cl(Gv)) // H̃2l+1(Cl(G \ v)) // H̃2l+1(Cl(G)) // H̃2l(Cl(Gv)) // 0

‖ ‖

Z Z
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Since
−→

Gv is cyclic, by Theorem 4.4 the homology H̃∗(Cl(Gv)) is free and concen-
trated in at most one dimension. In view of (3) this is possible only if H̃∗(Cl(Gv))=0
and the middle map in (3) is an isomorphism. So

−→

G \ v ↪→
−→

G induces a homology
isomorphism between spaces homotopy equivalent to S2l+1, and hence is a homotopy
equivalence by the Hurewicz and Whitehead theorems. �

Lemma 4.8. Suppose that
−→

G is a cyclic graph and e ∈ E(
−→

G) is an edge such that
−→

G \ e is also a cyclic graph. If

l
2l+1 < wf(

−→

G \ e)≤ wf(
−→

G) < l+1
2l+3 ,

then the inclusion
−→

G \ e ↪→
−→

G induces a homotopy equivalence of clique complexes.

Proof. Let e = (a, b) and denote by
−→

Ge the cyclic subgraph of
−→

G induced by
N(G, a)∩ N(G, b). Then we have a decomposition

Cl(G)= Cl(G \ e)∪Cl(Ge)∗{a,b} (Cl(Ge) ∗ e)= Cl(G \ e)∪6 Cl(Ge) (Cl(Ge) ∗ e).

By Mayer–Vietoris this yields the exact sequence

0 // H̃2l(Cl(Ge)) // H̃2l+1(Cl(G \ e)) // H̃2l+1(Cl(G)) // H̃2l−1(Cl(Ge)) // 0

‖ ‖

Z Z

where H̃k(Cl(Ge)) = H̃k+1(6 Cl(Ge)). The proof can now be completed as in
Lemma 4.7. �

Proposition 4.9. Suppose f :
−→

G→
−→

H is a cyclic homomorphism and

l
2l+1 < wf(

−→

G)≤ wf(
−→

H) < l+1
2l+3 .

Then f induces a homotopy equivalence of clique complexes.

Proof. We proceed in three stages. First, suppose that f :
−→

G→
−→

H is injective on
the vertices, i.e., it is an inclusion of a subgraph (not necessarily induced). In that
case f can be factored as a composition of cyclic homomorphisms

−→

G =
−→

G0 ↪→
−→

G1 ↪→ · · · ↪→
−→

Gs =
−→

H

where each inclusion
−→

Gi ↪→
−−−→

Gi+1 is an extension by a single vertex or by a single
edge. Since l

2l+1 < wf(
−→

G) ≤ wf(
−→

Gi ) ≤ wf(
−→

H) < l+1
2l+3 , the result follows from

Lemmas 4.7 and 4.8.
Next, we prove the statement for an arbitrary cyclic homomorphism f :

−→

Ck
n→

−→

Ck′
n′

with
l

2l+1 <
k
n ≤

k′
n′ <

l+1
2l+3 .

Our first goal is to find a factorization f = τ ◦ fd where fd :
−→

Ck
n→

−→

Cdk′
dn′ is injective

and τ :
−→

Cdk′
dn′→

−→

Ck′
n′ is given by τ( j)=

⌊ j
d

⌋
.
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Let j0 ≺ · · · ≺ js , with 1 ≤ s ≤ n− 1, be the cyclically ordered vertices of the
image of f in

−→

Ck′
n′ . Since f is a cyclic homomorphism, each preimage f −1( jq) is

an interval modulo n. Now define the cyclically ordered vertices i0 ≺ · · · ≺ is in
−→

Ck
n by f −1( jq) = {iq , . . . , iq+1− 1}. Choose d ≥ max{| f −1( jq)| : q = 0, . . . , s}

and define a map fd :
−→

Ck
n→

−→

Cdk′
dn′ by

fd(i)= d jq +
−→

dn(iq , i) for i ∈ {iq , . . . , iq+1− 1}.

Note that 0 ≤ i − iq < | f −1( jq)| ≤ d; therefore fd preserves the cyclic ordering
and hence is a cyclic homomorphism so long as it is a homomorphism of directed
graphs. It suffices to check that for every i = 0, . . . , n− 1 we have

−→

ddn′( fd(i), fd(i + k))≤ dk ′.

Suppose that i ∈ f −1( jq) and i + k ∈ f −1( jq ′); necessarily
−→

dn′( jq , jq ′) ≤ k ′. If
−→

dn′( jq , jq ′)≤ k ′− 1 then
−→

ddn′( fd(i), fd(i + k))≤
−→

ddn′(d jq , d jq ′ + d)≤ dk ′.

If jq ′ = jq + k ′ then
−→

ddn′( fd(i), fd(i + k))= dk ′+
−→

dn(iq ′, i + k)−
−→

dn(iq , i)

= dk ′+
−→

dn(i, i + k)−
−→

dn(iq , iq ′)= dk ′+ k−
−→

dn(iq , iq ′).

We have
−→

dn(iq , iq ′)≥ k, for otherwise
−→

dn(iq−1, iq ′)≤ k and
−→

dn′( f (iq−1), f (iq ′))=
−→

dn′( jq−1, jq ′)≥ k ′+ 1 would contradict the fact that f is a homomorphism. This
ends the proof that fd is a cyclic homomorphism.

Consider the cyclic homomorphisms ι :
−→

Ck′
n′→

−→

Cdk′
dn′ and τ :

−→

Cdk′
dn′→

−→

Ck′
n′ given by

ι(i)= di and τ( j)=
⌊ j

d

⌋
.

We have a commutative diagram

−→

Ck
n

f
&&

fd

'

// −→Cdk′
dn′

τ
��

−→

Ck′
n′

ι

'

oo

'

id
xx−→

Ck′
n′

where ' indicates the map induces a homotopy equivalence of clique complexes;
for the inclusions fd and ι this follows from the first part of the proof. From the
diagram we conclude that f induces a homotopy equivalence.

Finally, to prove the general case, suppose that
−→

G dismantles to
−→

Ck
n and

−→

H
dismantles to

−→

Ck′
n′ with wf(

−→

G)= k
n ≤

k′
n′ = wf(

−→

H). The composition

−→

Ck
n
� � ' // −→G

f // −→H ' // −→Ck′
n′
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induces a homotopy equivalence of clique complexes, and therefore so does f . �

We defer until Section 8 a further study of the combinatorics of Cl(G) when
wf(

−→

G)= l
2l+1 is a singular value.

5. Density implies stability

In this section we make precise the heuristic observation that the winding fraction
wf(X; r) increases with the density of X in S1. For this we recall the notion of
covering from metric geometry.

Definition 5.1. A subset X of a metric space M is an ε-covering if every point of
M is within distance less than ε from some point in X.

A finite subset X ⊆ S1 is an ε-covering of S1 if and only if every two cyclically
consecutive points in X are less than 2ε apart.

As motivation for this section, we note that if 0< r < 1
3 and X ⊆ S1 is a finite

subset, then VR<(X; r)' S1 if and only if X is an
( r

2

)
-covering of S1. The next

proposition is an analogue of this observation for bigger winding fractions and
therefore for higher-dimensional homotopy types of VR<(X; r).

Proposition 5.2. Suppose that 0< r < 1
2 and X ⊆ S1 is a finite subset. If X is an

ε-covering of S1 for some ε > 0 then wf<(X; r) > r − 2ε.

Proof. We can assume that r −2ε > 0. There exists an ε′ < ε such that X is also an
ε′-covering. It suffices to show that whenever 0< k

n < r − 2ε′ then there is a cyclic
homomorphism

−→

Ck
n→

−→

VR<(X; r), since then we get

wf<(X; r)≥ r − 2ε′ > r − 2ε.

Fix 0< k
n < r − 2ε′. For every i = 0, . . . , n− 1 let xi ∈ X be the point closest

to i
n . (The uniqueness of each xi can be assured by an infinitesimal rotation, if

necessary) Then x0, . . . xn−1 appear on S1 in this clockwise order (possibly with
repetitions) and, since ε′ < 1

2r < 1
4 , not all of the xi are the same. By the triangle

inequality

d(xi , xi+k)≤ d
(
xi ,

i
n

)
+ d

( i
n ,

i+k
n

)
+ d

( i+k
n , xi+k

)
< ε′+ k

n + ε
′
=

k
n + 2ε′ < r.

It follows that the map i 7→ xi determines a cyclic homomorphism
−→

Ck
n→

−→

VR<(X; r),
and the proof is complete. �

This leads to the following conclusion.
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Proposition 5.3. Suppose that l
2l+1 < r ≤ r ′ < l+1

2l+3 and δ = r − l
2l+1 . If X and Y

are finite subsets of S1, X ⊆ Y , and X is a δ
2 -covering of S1, then in the diagram

VR≤(X; r) �
� // VR≤(Y ; r ′)

VR<(X; r)
� � //

?�

OO

VR<(Y ; r ′)
?�

OO

all spaces are homotopy equivalent to S2l+1 and all maps are homotopy equiva-
lences.

For the spaces in the bottom row and the bottom map the same conclusion holds
under the weaker assumption l

2l+1 < r ≤ r ′ ≤ l+1
2l+3 .

Proof. Proposition 5.2 gives wf<(X; r) > r − δ = l
2l+1 and by Lemma 3.2(b) we

have wf≤(Y ; r ′)≤ r ′ < l+1
2l+3 . Hence the four cyclic graphs underlying the diagram

have their winding fractions in the open interval
( l

2l+1 ,
l+1
2l+3

)
. The statement now

follows from Proposition 4.9.
If r ′ = l+1

2l+3 then by Proposition 3.8(c) we still have wf<(Y ; r ′) < r ′ = l+1
2l+3 and

Proposition 4.9 applies in the bottom row. �

We end this section with a partial converse of Proposition 5.2.

Proposition 5.4. Suppose that l
2l+1 < r and δ = r − l

2l+1 . If X ⊆ S1 is a finite
subset with wf<(X; r) > l

2l+1 then X is a
((

l + 1
2

)
δ
)
-covering of S1.

Proof. Suppose that
−→

VR<(X; r) dismantles to
−→

Ck
n with k

n >
l

2l+1 . Let x0≺· · ·≺ xn−1

be the points of X which induce the subgraph
−→

Ck
n ↪→

−→

VR<(X; r). The proof will
be complete if we show the following claim: for every i there exists a j 6= i such
that

−→

d(xi , x j ) < (2l + 1)δ. Without loss of generality it suffices to prove this for
i = 0. We can assume that (2l + 1)δ < 1, for otherwise the claim is trivial.

Consider the directed path in
−→

VR<(X; r):

x0→ xk→ x2k→ · · · → x(2l+1)k .

Since (2l + 1)k > nl this path makes at least l revolutions around the circle, hence

2l∑
i=0

−→

d(xik, x(i+1)k) > l.

On the other hand
2l∑

i=0

−→

d(xik, x(i+1)k) < (2l + 1)r = l + (2l + 1)δ < l + 1.

It follows that the directed path covers exactly l full circle lengths plus the arc
[x0, x(2l+1)k]S1 whose length, by the last inequality, is less than (2l + 1)δ. That
proves the claim. �
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The results of this section can be summarized as follows. Suppose that l
2l+1 <

r < l+1
2l+3 and δ = r − l

2l+1 . Then we know by Proposition 3.8(c) that for any finite
subset X ⊆ S1 we have wf<(X; r) < r < l+1

2l+3 . If we think of X as an evolving
(increasing) set, then the homotopy type of VR<(X; r) stabilizes at S2l+1 at the
same time when X becomes an ε-covering for some ε ∈

[ 1
2δ,

(
l + 1

2

)
δ
]
. If l is

constant this is a very tight window as δ→ 0.

6. Evolution of random samples

We now apply the winding fraction to study the evolution of Vietoris–Rips complexes
of random subsets of S1. Let Xn ⊆ S1 be a subset obtained by sampling n points
uniformly and independently from S1. The connectivity of the graph VR(Xn; r)
when r = r(n)→ 0 as n→∞ has been extensively studied by many authors; see
[Imany-Nabiyyi 2008] and the references therein. We obtain asymptotic thresholds
for the higher-dimensional connectivity of VR(Xn; r) when r is large. In particular,
we analyze how many random samples are required until the homotopy type of
VR(Xn; r) matches that of VR(S1

; r), extending Latschev’s approximation result
[2001] for S1 to r values that are no longer sufficiently small.

In this section we always assume that l ≥ 0 is fixed and l
2l+1 < r < l+1

2l+3 . We
define δ = r − l

2l+1 . The probability that two points of Xn are in distance exactly r
for any fixed r is 0, and therefore all results hold for VR< as well as VR≤. Just as
nontrivial asymptotic results about the connectedness of the graph VR(Xn; r) can
be obtained for r→ 0 as n→∞, in our higher-dimensional regime it makes sense
to assume that r→ l

2l+1 , that is δ→ 0, as n→∞. We use the standard asymptotic
notation f (δ)=2(g(δ)) as δ→ 0 when there are constants C1,C2 > 0 (which can
depend on l) such that C1g(δ)≤ f (δ)≤ C2g(δ).

Let M(r) and N(r) be the random variables counting the number n of random
points in S1 until wf(Xn; r) reaches, resp. exceeds, the value l

2l+1 . Formally,
consider the random process (X1,X2, . . . ) where Xi+1 is obtained from Xi by
adding a single uniformly random point. Define

M(r)=min
{
n : wf(Xn; r)≥ l

2l+1

}
and N(r)=min

{
n : wf(Xn; r) > l

2l+1

}
,

where min∅ = ∞. The random variables M(r) and N(r) describe the last two
transition points in the evolution of VR(Xn; r), since M(r) ≤ n < N(r) means
VR(Xn; r) is homotopy equivalent to a wedge of copies of S2l, and n ≥ N(r) gives
VR(Xn; r)' S2l+1. We will determine the asymptotic expectations E[M(r)] and
E[N(r)].

Theorem 6.1. Let l
2l+1 < r < l+1

2l+3 for some fixed l ≥ 0 and let δ = r − l
2l+1 . Then

E[M(r)] =2
(( 1
δ

) 2l
2l+1
)

and E[N(r)] =2
( 1
δ

log 1
δ

)
as δ→ 0.
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Figure 2. The evolution of VR(Xn; r) with r = 0.432; see
Example 6.2. The red curve is the average winding fraction, the
blue curve is the average intrinsic dimension, and the green curves
are the average Betti numbers b4, b5, b6, b7 (from left to right).
Note the support of b6 (for example) mostly coincides with the
average intrinsic dimension being close to 6.

In particular, the expected number of random points n until VR(Xn; r)' S2l+1 is
2
( 1
δ

log 1
δ

)
as δ→ 0.

Note that the winding fraction of l
2l+1 is achieved much sooner than it is exceeded

(in fact E[M(r)] is sublinear in 1/δ). It means that we are expecting a long interval
of n for which VR(Xn; r) is a wedge of 2l-spheres, before reaching the final
homotopy type of S2l+1.

Example 6.2. Suppose 3
7 < r = 0.432< 4

9 with l = 3, δ ≈ 0.00343, and 1/δ ≈ 291.
Figure 2 shows the average evolution of VR(Xn; r) for 1≤ n≤ 1000. The red curve
plots the average winding fraction, which rapidly approaches 3

7 and then exceeds it
around n = 600 to approach r. The homotopy type then stabilizes at S7. For clarity
of the presentation the blue curve depicts the average intrinsic dimension, which
we define as 2l when wf( · )= l

2l+1 and as 2l + 1 when l
2l+1 < wf( · ) < l+1

2l+3 .

We first prove the second claim of Theorem 6.1. For ε > 0 let C(ε) be the random
variable which counts the number of steps until Xn becomes a

( 1
2ε
)
-covering of S1.
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By Propositions 5.2 and 5.4 we have

(4) C((2l + 1)δ)≤ N(r)≤ C(δ).

It is well known that

(5) E[C(ε)] =2(ε−1 log ε−1)

as ε→ 0; see [Solomon 1978, Equation (4.16)], which gives a more precise answer.
The asymptotics of (5) can also be seen heuristically as follows. Divide S1 into
K = 2(ε−1) arcs of length 2(ε). Think of the random process Xn as throwing
balls into K urns (arcs) independently. Then the event that Xn is a ε-covering
coincides with the event that each urn contains a ball. By the classical coupon
collector’s problem this happens, in expectation, after n = 2(K log K ) balls as
K →∞. Combining (5) with (4) gives E[N(r)] =2(δ−1 log δ−1) as δ→ 0.

To prove the first statement of Theorem 6.1 we need some auxiliary results. A
subset Y ⊆ S1 will be called (ε,m)-regular if |Y |=m and there is a bijection from Y
to the vertices of some regular inscribed m-gon which moves each point by distance
less than ε. We previously showed that achieving wf(X; r) > l

2l+1 coincides with X
being a 2(δ)-covering, and the next lemma shows that wf(X; r)≥ l

2l+1 is achieved
when X contains a (2(δ), 2l + 1)-regular subset.

Lemma 6.3. Let l
2l+1 < r < l+1

2l+3 and δ = r − l
2l+1 . For a finite subset X ⊆ S1:

(a) If X has a
( 1

2δ, 2l + 1
)
-regular subset then wf(X; r)≥ l

2l+1 .

(b) If wf(X; r)≥ l
2l+1 then X has a (4lδ, 2l + 1)-regular subset.

Proof. For (a) let {x0, . . . , x2l} ⊆ X be the
( 1

2δ, 2l + 1
)
-regular subset. We can

assume xi ∈
( i

2l+1 −
1
2δ,

i
2l+1 +

1
2δ
)

S1 . Since δ < 1
2l+1 we have x0 ≺ x1 ≺ · · · ≺ x2l

cyclically ordered in S1 as well as in
−→

VR(X; r). We have
−→

d(xi , xi+l) <
l

2l+1 + 2 · 1
2δ = r

and hence a cyclic homomorphism
−→

C l
2l+1 ↪→

−→

VR(X; r).
To prove (b) suppose wf(X; r)≥ l

2l+1 . By Proposition 3.15 there is a directed
homomorphism f :

−→

C l
2l+1→

−→

VR(X; r). Denote xi = f (i). For every i = 0, . . . , 2l,
−→

d(xi , xi+1)= 1−
−→

d(xi+1, xi+l+1)−
−→

d(xi+l+1, xi ) > 1− 2r = 1
2l+1 − 2δ.

It follows that for j = 1, . . . , 2l,
−→

d(xi , xi+ j ) >
j

2l+1 − 2 jδ ≥ j
2l+1 − 4lδ

and in turn
−→

d(xi , xi+ j )= 1−
−→

d(xi+ j , xi ) < 1− 2l+1− j
2l+1 + 4lδ = j

2l+1 + 4lδ.
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It follows that each x j lies in distance less than 4lδ from the j-th vertex of the
regular (2l + 1)-gon with x0 as a vertex. �

Let Rm(ε) be the random variable which counts the number of steps until Xn

contains a (ε,m)-regular subset. In Section B we show that for every fixed m

(6) E[Rm(ε)] =2
(
ε−

m−1
m
)

as ε→ 0.

Here we only give a heuristic explanation using our previous urn model with
K =2(ε−1) urns identified with arcs of length 2(ε). Divide the urns into K/m
groups of size m, each group consisting of arcs centered approximately around the
vertices of a regular m-gon. Then the event that Xn has an (ε,m)-regular subset
coincides with the event that every urn in some group contains a ball. This can
be correlated with the generalized birthday paradox, where we require one urn to
contain m balls (the case m = 2 is the classical birthday paradox). The expected
waiting time for this to happen is 2

(
K

m−1
m
)

as K→∞; see [Klamkin and Newman
1967, Theorem 2].

This proves the first claim of Theorem 6.1 since by Lemma 6.3 we have

R2l+1(4lδ)≤ N(r)≤ R2l+1
( 1

2δ
)
.

The proof of Theorem 6.1 is now complete.

7. Vietoris–Rips complexes for subsets of S1

The definition of the Vietoris–Rips complex VR(X; r) makes sense for an arbitrary
metric space X, not necessarily finite nor discrete. Hausmann [1995] studied the
case when X is a closed Riemannian manifold. In this section we show that for an
arbitrary subset X ⊆ S1 and r > 0, the complex VR(X; r) has the homotopy type
of an odd-dimensional sphere or a wedge of even-dimensional spheres. We will
also study the complexes VR<(S1

; r) and VR≤(S1
; r) in more detail.

For an arbitrary metric space X the geometric realization of VR(X; r) is given
the topology of a CW-complex, that is the weak topology with respect to finite-
dimensional skeleta, or equivalently, the weak topology with respect to subcom-
plexes induced by finite subsets of X. Formally, let F(X) be the poset of all
finite subsets of X ordered by inclusion. Then for each r we have a functor
VR(−; r) : F(X)→ Top and

VR(X; r)= colimY∈F(X) VR(Y ; r)' hocolimY∈F(X) VR(Y ; r),

where the last equivalence is a consequence of the fact that all maps VR(Y ; r) ↪→
VR(Y ′; r) for Y ⊆ Y ′ are inclusions of closed subcomplexes, hence cofibrations.
See [Welker et al. 1999, Section 3] for the statements of all diagram comparison
theorems used in this section.
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For a finite subset Y0 ⊆ X let F(X; Y0) be the subposet of F(X) consisting of
all sets which contain Y0. Since this poset is cofinal in F(X), we also have

VR(X; r)= colimY∈F(X;Y0) VR(Y ; r)' hocolimY∈F(X;Y0) VR(Y ; r).

For an arbitrary subset ∅ 6= X ⊆ S1 and 0< r < 1
2 we define

(7)
wf<(X; r)= sup{wf<(Y ; r) : Y ⊆ X, |Y |<∞},

wf≤(X; r)= sup{wf≤(Y ; r) : Y ⊆ X, |Y |<∞}.

The supremum in (7) need not be attained when X is infinite. When X is finite then
wf(X; r) agrees with our previous definition of this symbol since the supremum
is attained by Y = X. The following proposition shows that in the generic case,
VR(X; r) has the homotopy type of an odd-dimensional sphere.

Proposition 7.1. Suppose that ∅ 6= X ⊆ S1 and 0< r < 1
2 . Either of the conditions

(1) l
2l+1 < wf(X; r) < l+1

2l+3 , or

(2) wf(X; r)= l+1
2l+3 and the supremum is not attained,

for some l = 0, 1, . . . , implies that VR(X; r)' S2l+1.
Moreover, if r ′≥ r is another value of the distance parameter for which (1) or (2)

hold with the same l, then the inclusion VR(X; r) ↪→ VR(X; r ′) is a homotopy
equivalence.

Proof. Either of the two conditions (1) or (2) implies there is a finite subset Y0 ⊆ X
such that for every finite subset Y with Y0⊆Y ⊆ X, we have l

2l+1 <wf(Y ; r)< l+1
2l+3 .

By Proposition 4.9 all maps in the diagram VR(−; r) : F(X; Y0) → Top are
homotopy equivalences between spaces homotopy equivalent to S2l+1, and therefore

VR(X; r)' hocolimY∈F(X,Y0) VR(Y ; r)' S2l+1.

Furthermore, l
2l+1 < wf(Y ; r) ≤ wf(Y ; r ′) < l+1

2l+3 , hence the same is true for
VR(X; r ′). The maps VR(Y ; r)→ VR(Y ; r ′) now define a natural transformation
of diagrams VR(−; r)→ VR(−; r ′) which is a levelwise homotopy equivalence
by Proposition 4.9. It follows that the induced map of (homotopy) colimits is a
homotopy equivalence. �

Remark 7.2. The same argument shows that under the assumptions of the last
proposition the map VR(Y0; r) ↪→ VR(X; r) is a homotopy equivalence whenever
Y0 ⊆ X is a finite set with wf(Y0; r) > l

2l+1 .

As the next lemma shows, the winding fractions behave in the expected way for
dense subsets of the circle.

Lemma 7.3. If X is dense in S1 and 0< r < 1
2 then wf<(X; r)= wf≤(X; r)= r.

In the case of wf< the supremum is not attained.



THE VIETORIS–RIPS COMPLEXES OF A CIRCLE 23

Proof. For every ε > 0 the set X contains a finite ε-covering of S1. Proposition 5.2
now gives wf(X; r) ≥ r. The reverse inequality and the second statement of the
lemma follow from Proposition 3.8(c). �

We can now give a complete description of the homotopy types of VR<(S1
; r)

for arbitrary r.

Theorem 7.4. If X is dense in S1 (in particular when X = S1) and 0< r < 1
2 , then

VR<(X; r)' S2l+1 for l
2l+1 < r ≤ l+1

2l+3 , l = 0, 1, . . . .

Moreover, if l
2l+1 < r ≤ r ′ ≤ l+1

2l+3 then the inclusion VR<(X; r) ↪→ VR<(X; r ′) is
a homotopy equivalence.

Proof. By Lemma 7.3 we have wf<(X; r)= r and the supremum is not attained,
meaning that either (1) or (2) in Proposition 7.1 is satisfied. �

Proposition 7.1 describes the homotopy types of the complex VR(X; r) in all
generic situations. The only singular cases it does not cover occur when wf(X; r)
is of the form l

2l+1 and this value is in fact attained by some finite subset Y0 ⊆ X.
We deal with this in the next two statements.

Proposition 7.5. Suppose that ∅ 6= X ⊆ S1 and 0< r < 1
2 . If wf(X; r)= l

2l+1 for
some l = 0, 1, . . . and the supremum in the definition of wf(X; r) is attained, then
VR(X; r) is homotopy equivalent to a wedge sum of spheres of dimension 2l.

Theorem 7.6. For 0≤ r < 1
2 we have a homotopy equivalence

VR≤(S1
; r)'

{
S2l+1 if l

2l+1 < r < l+1
2l+3 , l = 0, 1, . . . ,∨c S2l if r = l

2l+1 ,

where c is the cardinality of the continuum. Moreover, if l
2l+1 < r ≤ r ′ < l+1

2l+3 then
the inclusion VR≤(S1

; r) ↪→ VR≤(S1
; r ′) is a homotopy equivalence.

We delay the proofs of Proposition 7.5 and Theorem 7.6 until Section 8. Note
that Theorems 7.4 and 7.6 together provide a complete description of the homotopy
types of VR(S1

; r) for arbitrary r. They also give the persistent homology of
VR(S1

; r), where we refer the reader to [Chazal et al. 2014] for information on the
persistent homology of Vietoris–Rips complexes.

Corollary 7.7. The persistent homology of VR<(S1
; r) contains a single interval( l

2l+1 ,
l+1
2l+3

]
in each homological dimension 2l + 1, and the persistent homology of

VR≤(S1
; r) contains a single interval

( l
2l+1 ,

l+1
2l+3

)
in each homological dimension

2l + 1.

Remark 7.8. Hausmann [1995, (3.12)] conjectured that if M is a compact Riemann-
ian manifold then the connectivity conn(VR<(M; r)) is a nondecreasing function
of r, and our results confirm this conjecture for M = S1. Hausmann [op. cit., (3.11)]
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furthermore conjectured that for r sufficiently small, VR<(M; r) is homotopy
equivalent to VR<(Y0; r) for some finite subset Y0 ⊆ M. For M = S1 we confirm
this conjecture for all r, sufficiently small or otherwise.

8. Singular winding fractions

In this section we return to study cyclic graphs for which wf(
−→

G) = l
2l+1 is a

singular value. Our aim is to describe a convenient structure in the homology group
H̃2l(Cl(G)), which we then use to prove Proposition 7.5 and Theorem 7.6.

We consider first a cyclic graph
−→

Ck
n with k

n =
l

2l+1 . Since l and 2l+1 are coprime
we have (k, n)= (dl, d(2l + 1)) for some integer d ≥ 1. We have d = n− 2k and
so by Theorem 4.4 we can write

Cl(Cdl
d(2l+1))'

d−1∨
S2l.

When (k, n) = (l, 2l + 1) the graph C l
2l+1 is a clique and Cl(C l

2l+1) is the full
simplex with 2l + 1 vertices.

The next case, d = 2 and (k, n)= (2l, 2(2l + 1)), is particularly interesting for
our purposes. The nonedges of the graph C2l

2(2l+1) are pairs of the form {i, i+2l+1},
which are the antipodal pairs in the evenly-spaced model

C2l
2(2l+1) = VR≤

({ i
2(2l+1) : i = 0, . . . , 4l + 1

}
;

l
2l+1

)
.

It follows that the clique complex Cl(C2l
2(2l+1)) is isomorphic to the standard trian-

gulation of S2l as the boundary of the cross-polytope of dimension 2l + 1. We fix
the 2l-dimensional cycle in Cl(C2l

2(2l+1)):

(8)

ι2l = (−1)l(l+3)/2
· ([0] − [2l + 1])∧ ([1] − [2l + 2])∧ · · · ∧ ([2l] − [4l + 1])

= [0, 2, . . . , 4l] − [1, 3, . . . , 4l + 1] ± · · · ,

which is (up to sign) the fundamental cycle of the boundary of the cross-polytope.
Here [x0] ∧ · · · ∧ [xk] denotes the oriented simplex [x0, . . . , xk], and we have
chosen the sign so that the oriented simplices [0, 2, . . . , 4l] and [1, 3, . . . , 4l + 1]
appear with coefficients +1 and −1 respectively. Indeed, in the oriented cycle
([0]− [2l+ 1])∧ · · ·∧ ([2l]− [4l+ 1]) the sign on [0, 2l+ 2, 2, . . . , 2l− 2, 4l, 2l]
is (−1)l, and then after l(l+1)

2 transpositions this gives the sign (−1)l(l+3)/2 on
[0, 2, . . . , 4l]. The argument for [1, 3, . . . , 4l + 1] is similar. The corresponding
homology class ι2l ∈ H̃2l(Cl(C2l

2(2l+1)))=Z is a generator. (Here and in the following
we will use the same symbol to denote a (co)cycle and its (co)homology class, and
sometimes also the map which induces the given class.)
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Definition 8.1. Suppose that
−→

G is a cyclic graph. A nonzero homology class
α ∈ H̃2l(Cl(G)) is called cross-polytopal if there is a cyclic homomorphism
f :
−→

C2l
2(2l+1)→

−→

G such that α = f∗(ι2l).

An immediate consequence of the definition is that the image of a cross-polytopal
class under a cyclic homomorphism

−→

G →
−→

H is again cross-polytopal, unless it
is zero. Note that if f is not injective on the vertices then f∗(ι2l) = 0 because a
homology class of degree 2l in a clique complex must be supported on at least
4l + 2 vertices; see for instance [Kahle 2009, Lemma 5.3].

Our aim is to classify all cross-polytopal homology classes for cyclic graphs.
We begin with the description of a class of cyclic homomorphisms.

Lemma 8.2. Let d ≥ 1 and (k, n)= (dl, d(2l + 1)).

(a) Every cyclic homomorphism
−→

C l
2l+1 →

−→

Ck
n is of the form θa for some a =

0, . . . , n− 1, where
θa(i)≡ a+ di mod n.

(b) Every injective cyclic homomorphism
−→

C2l
2(2l+1)→

−→

Ck
n is of the form αa,b for

some a = 0, . . . , n− 1 and b = a+ 1, . . . , a+ d − 1, where

αa,b(i)=
{

a+ d · i
2 mod n if i is even,

b+ d · i−1
2 mod n if i is odd.

Remark 8.3. Every cyclic homomorphism θ in part (a) is determined by the choice
of a = θ(0) and the condition θ(i + 1) = θ(i)+ d mod n. Similarly, in part (b)
every cyclic homomorphism is determined by the two initial values a = α(0) and
b = α(1), together with the requirement that α(i + 2)≡ α(i)+ d mod n.

Proof. To prove (a) let θ :
−→

C l
2l+1→

−→

Ck
n be a cyclic homomorphism with l > 0, since

the case l = 0 is clear. Then

(2l + 1)k ≥
2l∑

i=0

−→

dn(θ(i), θ(i + l))= l ·
2l∑

i=0

−→

dn(θ(i), θ(i + 1))= ln,

where the last equality follows from (2). Since the two extremes are in fact equal,
we must have

−→

dn(θ(i), θ(i + l))= k for all i , which implies
−→

dn(θ(i), θ(i+1))=n−
−→

dn(θ(i+1), θ(i+l+1))−
−→

dn(θ(i+l+1), θ(i))=n−2k=d,

as required. Clearly every θa is a cyclic homomorphism, hence (a) is proved.
Part (b) follows immediately, since

−→

C2l
2(2l+1) contains two induced copies of

−→

C l
2l+1 with vertex sets {0, 2, . . . , 4l} and {1, 3, . . . , 4l + 1}. For an injective cyclic

homomorphism α we must have α(0)≺ α(1)≺ α(2) cyclically ordered in
−→

Ck
n , i.e.,

a ≺ b ≺ a+ d, which yields the restrictions on b. �
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The cyclic homomorphism αa,b evaluated on the fundamental cycle ι2l determines
a cycle as well as a homology class in H̃2l(Cl(Cdl

d(2l+1))). We will continue to denote
both with αa,b. The chain representation of the cycle αa,b starts with

(9) αa,b = [a, a+ d, . . . , a+ 2l · d] − [b, b+ d, . . . , b+ 2l · d] ± · · ·

Compare this to (8). The homology classes αa,b for various pairs (a, b) satisfy a
number of relations worked out in the proof of the next proposition, which is the
main result concerning cyclic graphs with wf(

−→

G)= l
2l+1 .

Proposition 8.4. Suppose
−→

G is a cyclic graph which dismantles to
−→

Cdl
d(2l+1). Then

the homology group H̃2l(Cl(G)) = Zd−1 has a basis {e1, . . . , ed−1} such that all
the cross-polytopal elements in H̃2l(Cl(G)) are

±e1, . . . ,±ed−1

and
ei − ej , 1≤ i, j ≤ d − 1, i 6= j.

In particular, there are exactly d(d − 1) cross-polytopal elements in H̃2l(Cl(G)).

Proof. In the first step we will prove the result for
−→

G =
−→

Cdl
d(2l+1). Denote (k, n)=

(dl, d(2l + 1)).
For an oriented simplex σ in a simplicial complex K let σ∨ denote the cochain

which assigns 1 to σ , −1 to σ with opposite orientation, and 0 to all other oriented
simplices of K . For every a = 0, . . . , n− 1 define a cochain βa in Cl(Ck

n) by

βa = [a, a+ d, . . . , a+ 2l · d]∨.

Since the face [a, a + d, . . . , a + 2l · d] is maximal in Cl(Ck
n), the cochain βa is

in fact a cocycle, and it determines a cohomology class which we denote with the
same symbol. Using (9) we verify that for 1≤ i, j ≤ d − 1,

βi (α j,d)=

{
1 if i = j,
0 if i 6= j.

Since the groups H̃2l(Cl(Ck
n)) and H̃ 2l(Cl(Ck

n)) are both free abelian of rank d−1,
the above implies that {α1,d , . . . , αd−1,d} is a basis of homology and {β1, . . . , βd−1}

is its dual basis of cohomology. In particular, every element v ∈ H̃2l(Cl(Ck
n)) has a

decomposition

(10) v =

d−1∑
i=1

βi (v) ·αi,d .

Note that βi (αa,b) depends only on the evaluation of βi on the two leading terms
in (9), since βi evaluates to 0 on all the omitted terms. The oriented simplices
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appearing in αa,b and αa+d,b+d differ by a cyclic shift, hence by an even number
of 2l transpositions, and are therefore equal. That means we have the identity

αa+d,b+d = αa,b.

It follows that all cross-polytopal classes can be written as αa,b with 0≤ a ≤ d − 1
and a+ 1≤ b ≤ a+ d − 1.

If a= 0 then 1≤ b≤ d−1 and the only nonzero pairing in (10) is βb(α0,b)=−1,
and hence α0,b =−αb,d .

If 1≤a<b≤d−1 then βa(αa,b)=1 and βb(αa,b)=−1; hence αa,b=αa,d−αb,d .
If 1≤ a ≤ d − 1 and b = d then αa,b = αa,d is itself one of the generators.
If 1≤ a ≤ d − 1 and d + 1≤ b ≤ a+ d − 1 then 1≤ b− d < a ≤ d − 1. Using

the cyclic shift argument we obtain βa(αa,b) = 1 and βb−d(αa,b) = −1, hence
αa,b = αa,d −αb−d,d .

It follows that the proposition is true with ei = αi,d for i = 1, . . . , d − 1.
Now suppose

−→

G is an arbitrary cyclic graph which dismantles to
−→

Ck
n . By

Corollary 4.2 the cyclic homomorphisms
−→

Ck
n

ι
−→

−→

G
π
−→

−→

Ck
n induce isomorphisms

H̃2l(Cl(Ck
n))

∼=
−→ H̃2l(Cl(G))

∼=
−→ H̃2l(Cl(Ck

n))

with the composition being the identity. It follows that the cross-polytopal classes
ι∗(e1), . . . , ι∗(ed−1) form a basis of H̃2l(Cl(G)) and that±ι∗(ei ) and ι∗(ei )−ι∗(ej ),
i 6= j , are cross-polytopal. Moreover, if α ∈ H̃2l(Cl(G)) is cross-polytopal then
π∗(α) is one of ±ei or ei − ej , i 6= j , and therefore α must be one of ±ι∗(ei ) or
ι∗(ei )− ι∗(ej ), i 6= j . That completes the proof. �

We are now prepared to prove Proposition 7.5, using the algebraic fact in
Proposition A.1 of the appendix.

Proof of Proposition 7.5. Let Y0⊆ X be a finite subset that achieves wf(Y0; r)= l
2l+1 .

Then we have wf(Y ; r) = l
2l+1 for any finite subset Y with Y0 ⊆ Y ⊆ X. By

Corollary 4.5 every space in the diagram

VR(X; r)= colimY∈F(X;Y0) VR(Y ; r)

is homotopy equivalent to a finite wedge sum of 2l-spheres. It follows immediately
that VR(X; r) is simply-connected and its homology is torsion-free and concentrated
in degree 2l. It remains to show that the group H̃2l(VR(X; r)) is free abelian. Indeed,
if this is the case then VR(X; r) is a model of the Moore space M(

⊕κ
Z, 2l), unique

up to homotopy and equivalent to
∨κ S2l, for some cardinal number κ.

A nonzero homology class in H̃2l(VR(X; r)) will be called cross-polytopal if it
is the image under the inclusion VR(Y ; r) ↪→ VR(X; r) of a cross-polytopal class
in H̃2l(VR(Y ; r)) for some finite Y ∈ F(X; Y0). Since the groups H̃2l(VR(Y ; r))
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are generated by cross-polytopal classes, the same is true about their colimit,
H̃2l(VR(X; r)).

A subset B of an abelian group G is called independent if for every finite
subset {b1, . . . , bs} ⊆ B the identity

∑s
i=1 ai bi = 0, with a1, . . . , as ∈ Z, implies

a1 = · · · = as = 0. An independent set B generates a free abelian subgroup of G
with basis B. Now let B be the family of all subsets B ⊆ H̃2l(VR(X; r)) such that

(a) all elements of B are cross-polytopal,

(b) B is independent.

The family B is nonempty and closed under increasing unions. Using Zorn’s
lemma pick an inclusionwise maximal set B satisfying (a) and (b). If B generates
H̃2l(VR(X; r)) then we are done, since the group 〈B〉 generated by B is free abelian.

We suppose for a contradiction that B does not generate H̃2l(VR(X; r)), and
hence there exists a cross-polytopal class v 6∈ 〈B〉 since H̃2l(VR(X; r)) is generated
by cross-polytopal classes. By maximality of B the set B ∪ {v} violates (b), and
hence there exists a nontrivial linear relation involving v and a finite number of
elements b1, . . . , bs ∈ B. In other words, some nontrivial multiple of v lies in the
subgroup of H̃2l(VR(X; r)) generated by b1, . . . , bs . The same relation holds for
the cross-polytopal representatives v, b1, . . . , bs at some finite stage H̃2l(VR(Y ; r))
of the colimit, where VR(Y ; r) dismantles to

−→

Cdl
d(2l+1). Changing signs if necessary

we may assume that each of the elements v, b1, . . . , bs ∈ H̃2l(VR(Y ; r))= Zd−1 is
of the form ei or ei−ej , i< j , for the basis {e1, . . . , ed−1} from Proposition 8.4. Now
Proposition A.1 implies that v itself lies in the subgroup of H̃2l(VR(Y ; r)) generated
by b1, . . . , bs , and hence in the subgroup of H̃2l(VR(X; r)) generated by b1, . . . , bs .
This contradiction shows that in fact H̃2l(VR(X; r))= 〈B〉 is free abelian. �

The last item in this section is the proof of Theorem 7.6.

Proof of Theorem 7.6. By Lemma 7.3 we have wf≤(S1
; r)= r, and so all statements

concerning the generic values of r and r ′ follow from part (1) of Proposition 7.1.
If r = l

2l+1 then the value of wf≤
(
S1
;

l
2l+1

)
=

l
2l+1 is attained by the vertex set of

any regular (2l + 1)-gon. Proposition 7.5 implies that VR≤
(
S1
;

l
2l+1

)
is homotopy

equivalent to a wedge of copies of S2l , and so it remains to count the number of
wedge summands. For t ∈

(
0, 1

2l+1

)
S1 let

Yt =
{ i

2l+1 , t + i
2l+1 : i = 0, . . . , 2l

}
.

We have an isomorphism
−→

VR≤
(
Yt ;

l
2l+1

)
=
−→

C2l
2(2l+1), hence each inclusion

jt : VR≤
(
Yt ;

l
2l+1

)
↪→ VR≤

(
S1
;

l
2l+1

)
determines a homology class αt = jt∗(ι2l) in the complex VR≤

(
S1
;

l
2l+1

)
. Each

simplex βt =
[
t + i

2l+1 : i = 0, . . . , 2l
]

is a maximal face of VR≤
(
S1
;

l
2l+1

)
, which
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appears in the support of αt but not in any other αs for s 6= t . This implies that the
classes αt are independent, and hence H̃2l

(
VR≤

(
S1
;

l
2l+1

))
contains a free abelian

group of rank c. We get a corresponding upper bound by noting that the cardinality
of the set of 2l-simplices in VR≤

(
S1
;

l
2l+1

)
is also c, and hence the cardinality of

the wedge sum is c. �

Remark 8.5. Chambers et al. [2010, Section 6(1)] asked if for all k ≥ 2 and any
finite subset X ⊆ R2 the homology group H̃k(VR(X; r)) is generated by induced
k-dimensional cross–polytopal spheres (for all k these are complexes of the form
Cl(Ck

2k+2), where we considered k = 2l in this section). Proposition 8.4 confirms
this when k = 2l for subsets X ⊆ S1

⊆ R2. When k = 2l + 1 is odd the claim fails
already for X ⊆ S1. For example, one can check that for 1

3 <
k
n <

3
8 the graph Ck

n does
not contain an induced subgraph isomorphic to C3

8 , yet H̃3(Cl(Ck
n))= H̃3(S3) 6= 0

by Theorem 4.3.

9. Čech complexes

The Čech complex is another simplicial complex commonly associated with a
metric space. For a point x in a metric space M, let B<(x; r) and B≤(x; r) denote
the open and closed balls in M with center x and radius r.

Definition 9.1. For a subset X ⊆ M of an ambient metric space M and r > 0, the
Čech complex Č<(X,M; r) is the simplicial complex with vertex set X, where a
finite subset σ ⊆ X is a face if and only if

⋂
x∈σ B<(x; r) 6=∅. Analogously, the

faces of the complex Č≤(X,M; r) satisfy
⋂

x∈σ B≤(x; r) 6=∅.

As before, we will omit the subscript in statements which apply to both <
and ≤. An equivalent definition of Č(X,M; r) is as the nerve of the family of balls
{B(x; r) : x ∈ X}. Chazal, de Silva, and Oudot [Chazal et al. 2014] refer to these
complexes as ambient Čech complexes with landmark set X and witness set M. We
have the inclusion Č(X,M; r/2)⊆ VR(X; r), and if M is a geodesic space then
VR(X; r) is the 1-skeleton not only of VR(X; r) but also of Č(X,M; r/2).

Notation 9.2. If X ⊆ S1 then we write Č(X; r) for Č(X, S1
; r).

If M = S1 then the balls are open or closed arcs, and one can see that finite
σ ⊆ X is a face of Č(X; r) if and only if σ is contained in some arc of length 2r.

One can develop a parallel theory of dismantling, winding fractions, and homo-
topy types for the complexes Č(X; r) with X ⊆ S1, leading to straightforward ana-
logues of all the results from this paper. We note that the sequence of critical values(
0, 1

3 ,
2
5 ,

3
7 , . . . ,

l
2l+1 , . . .

)
determining the transitions of homotopy types will be re-

placed in the case of Čech complexes with the sequence
(
0, 1

4 ,
2
6 ,

3
8 , . . . ,

l
2(l+1) , . . .

)
,

and we refer the reader to [Adamaszek et al. 2016] for some results in the case
of finite X. Instead of pursuing the parallel theory of winding fractions for Čech
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0

2r

a1

a2

a3

b1

b2

A

B

0

2r
1+2r

1
1+2r

a′1

a′2
a′3

b′1b′2

a′′1

a′′2

a′′3 A′A′′

B′

Figure 3. The action of the operator Tr from Theorem 9.3. Left: a set
X split as X = AtB, where A= X ∩[0, 2r)S1 and B = X ∩[2r, 1)S1 .
Right: Tr (X)= A′tB ′tA′′, where A′, A′′, and B ′ are suitably rescaled
and shifted copies of A and B. The map πr : Tr (X)→ X sends back
A′ to A, B ′ to B, and A′′ to A.

complexes, we provide a direct transformation from Vietoris–Rips complexes to
Čech complexes. This transformation recovers most but not all of the results that
could be obtained with the parallel theory, and we believe it is of independent
interest. To our knowledge, Theorems 9.7 and 9.8 are the first computation for a
noncontractible connected manifold M of the homotopy types of Č(M,M; r) for
arbitrary r.

Let P(S1) denote the power set of S1. If X ⊆ S1 and a, b ∈ R then we write
aX + b = {(ax + b) mod 1 : x ∈ X}, where it is understood that each point x is
represented by a real number in [0, 1).

Theorem 9.3. For each 0< r < 1
2 let Tr : P(S1)→ P(S1) be given by

Tr (X)= 1
1+2r X ∪

( 1
1+2r · (X ∩ [0, 2r)S1)+ 1

1+2r

)
.

Then the (noncontinuous) map πr : S1
→ S1 defined by

πr (y)= (1+ 2r)y mod 1 for y ∈ [0, 1)

induces a simplicial homotopy equivalence

πr : VR≤
(
Tr (X); 2r

1+2r

) '
−→ Č≤(X; r).

Proof. We first verify that πr (Tr (X)) = X. Take any y ∈ Tr (X). If y = 1
1+2r x

for x ∈ X then πr (y) = x . If y = 1
1+2r x + 1

1+2r for some x ∈ X ∩ [0, 2r)S1 then
πr (y)≡ x+1≡ x mod 1. It means that πr restricts to a surjection πr : Tr (X)→ X.

Next we check that πr induces a map of simplicial complexes. Let σ be any face
of the complex VR≤

(
Tr (X); 2r

1+2r

)
and let x0 =min(σ ), so that σ ∩ [0, x0)S1 =∅.
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To prove that the subset πr (σ ) is a face of Č≤(X; r) we need to show that it is
contained in a closed arc of length 2r. There are three cases:

• x0 ∈
[ 1

1+2r , 1
)

S1 . Then σ ⊆
[ 1

1+2r , 1
)

S1 and πr (σ )⊆ [0, 2r)S1 .

• x0 ∈
[ 2r

1+2r ,
1

1+2r

)
S1 . Then the only way x0 can be in distance at most 2r

1+2r
from the other points in σ is if that distance is measured clockwise from x0.
It means that σ ⊆

[
x0, x0 +

2r
1+2r

]
S1 with x0 +

2r
1+2r < 1 as well as πr (σ ) ⊆

[(1+ 2r)x0, (1+ 2r)x0+ 2r mod 1]S1 .

• x0 ∈
[
0, 2r

1+2r

)
S1 . Note that

(
x0−

2r
1+2r

)
mod 1= x0+

1
1+2r , hence we can write

σ ⊆
[
x0, x0+

2r
1+2r

]
S1 ∪

[
x0+

1
1+2r , 1

)
S1 . An application of πr gives

πr (σ )⊆ [(1+ 2r)x0, (1+ 2r)x0+ 2r ]S1 ∪ [(1+ 2r)x0, 2r)S1

⊆ [(1+ 2r)x0, (1+ 2r)x0+ 2r ]S1 .

To prove that πr is a homotopy equivalence it suffices to check that the preimage
π−1

r (τ ) of every face τ ∈ Č≤(X; r) is contractible. The conclusion is then pro-
vided by the simplicial version of Quillen’s Theorem A due to Barmak [2011,
Theorem 4.2]. Suppose that

τ = {a1, . . . , as} ∪ {b1, . . . , bt },

where possibly s = 0 or t = 0, and

0≤ a1 < · · ·< as < 2r ≤ b1 < · · ·< bt < 1.

The preimage π−1
r (τ ) is the subcomplex of VR≤

(
Tr (X); 2r

1+2r

)
induced by the

vertex set

V(π−1
r (τ ))= {a′1, . . . , a′s} ∪ {b

′

1, . . . , b′t } ∪ {a
′′

1 , . . . , a′′s }

where a′i =
1

1+2r ai , b′i =
1

1+2r bi , and a′′i =
1

1+2r ai +
1

1+2r ; see Figure 3.
Note that {−→

d(a′i , b′j )=
1

1+2r
−→

d(ai , bj ) for all i, j,
−→

d(b′i , a′′j )=
1

1+2r
−→

d(bi , aj ) for all i, j .

Moreover, 
−→

d(b′i , b′j )=
1

1+2r
−→

d(bi , bj ) for i < j,
−→

d(a′i , a′′j )=
1

1+2r
−→

d(ai , aj ) for i > j,
−→

d(a′′i , a′i )=
2r

1+2r .

Since τ is contained in an arc of length 2r, there is a vertex x0 ∈ τ such that
τ ⊆ [x0, x0+ 2r ]S1 . We find a vertex y0 ∈ V(π−1

r (τ )) such that y0 is at most 2r
1+2r

away from every other vertex of V(π−1
r (τ )). This will end the proof, since then

π−1
r (τ ) is a cone with apex y0. We need to consider four cases.
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• If x0 = aq for some 1≤ q ≤ s then y0 = a′q . The arc [aq , aq + 2r ]S1 contains
all points of τ , therefore [

a′q , a′q +
2r

1+2r

]
S1

contains all points of V(π−1
r (τ )) up to the point preceding a′′q . Moreover

−→

d(a′′q , a′q)=
2r

1+2r and [a′′q , a′q ]S1 covers the remaining points.

• If x0 = b1 and s = 0 then take y0 = b′1. Since
−→

d(b1, bt) ≤ 2r, we have
−→

d(b′1, b′t)≤
2r

1+2r .

• If x0 = b1 and s > 0 then take y0 = a′′s . From
−→

d(b1, as) ≤ 2r we get the
inequality

−→

d(b′1, a′′s )≤
2r

1+2r ; also
−→

d(a′′s , as)=
2r

1+2r . This covers the distances
from a′′s to all points of V(π−1

r (τ )).

• The last case, x0 = bq with q ≥ 2, is impossible since
−→

d(bq , bq−1) > 2r. �

Remark 9.4. Theorem 9.3 has no variant for VR< and Č<, since the set Tr (X)
contains pairs of points in distance exactly 2r

1+2r whose existence is essential for
the proof.

In many natural circumstances maps of Čech complexes can be lifted to maps of
Vietoris–Rips complexes via πr . Below we describe the case of inclusions.

Proposition 9.5. Suppose X ⊆ S1 and 0< r ≤ r ′ < 1
2 . Then the (noncontinuous)

map η : S1
→ S1 given by

η(y)= 1+2r
1+2r ′ · y for y ∈ [0, 1)

determines a map of Vietoris–Rips complexes which makes the following diagram
commute:

VR≤
(
Tr (X); 2r

1+2r

) η //

πr '

��

VR≤
(
Tr ′(X); 2r ′

1+2r ′
)

πr ′ '

��
Č≤(X; r) �

� ⊆ // Č≤(X; r ′)

Proof. We first verify that η gives a well-defined map of Vietoris–Rips complexes
in the top row of the diagram; it suffices to check this map on vertices and edges.
For vertices, pick any y ∈ Tr (X). If y = 1

1+2r x for x ∈ X then η(y) = 1
1+2r ′ x ∈

Tr ′(X). If y = 1
1+2r x + 1

1+2r for x ∈ X ∩ [0, 2r), then η(y)= 1
1+2r ′ x +

1
1+2r ′ with

x ∈ X ∩[0, 2r)⊆ X ∩[0, 2r ′), and hence also in this case η(y) ∈ Tr ′(X). For edges,
we suppose that 0≤ y < y′ < 1. If

−→

d(y, y′)≤ 2r
1+2r then

−→

d(η(y), η(y′))≤ 2r
1+2r ·

1+2r
1+2r ′ ≤

2r ′
1+2r ′ .

If
−→

d(y′, y)≤ 2r
1+2r then

−→

d(y, y′)≥ 1
1+2r , hence we get

−→

d(η(y), η(y′))≥ 1
1+2r ·

1+2r
1+2r ′ =

1
1+2r ′ ,
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and therefore
−→

d(η(y′), η(y))≤ 2r ′
1+2r ′ .

Commutativity of the diagram follows from a direct calculation:

πr ′(η(y))≡ (1+ 2r ′) · 1+2r
1+2r ′ · y ≡ (1+ 2r)y ≡ πr (y) mod 1. �

For arbitrary X ⊆ S1 Theorem 9.3 allows one to determine the homotopy type of
Č≤(X; r) from an efficiently constructible instance of the Vietoris–Rips complex.
Here are some examples.

Example 9.6. Let Xn =
{
0, 1

n , . . . ,
n−1

n

}
⊆ S1. Then Č≤(Xn;

k
2n ) is the complex

whose maximal faces are generated from
{
0, 1

n , . . . ,
k
n

}
via rotations by 1

n . If r = k
2n

then 2r
1+2r =

k
n+k and Tr (Xn)= Xn+k . We obtain a homotopy equivalence

Cl(Ck
n+k)= VR≤

(
Xn+k;

k
n+k

) '
−→ Č≤

(
Xn;

k
2n

)
.

This special case was proved in [Adamaszek et al. 2016, Theorem 8.5].

Theorem 9.7. For 0< r < 1
2 we have a homotopy equivalence

Č≤(S1
; r)'

{
S2l+1 if l

2(l+1) < r < l+1
2(l+2) , l = 0, 1, . . . ,∨cS2l if r = l

2(l+1) .

Moreover, if l
2(l+1) < r ≤ r ′ < l+1

2(l+2) then the inclusion Č≤(S1
; r) ↪→ Č≤(S1

; r ′) is
a homotopy equivalence.

Proof. Note that r 7→ 2r
1+2r is a monotone map which takes the interval

[ l
2(l+1) ,

l+1
2(l+2)

)
to
[ l

2l+1 ,
l+1
2l+3

)
. Since Tr (S1)= S1 we get a homotopy equivalence

VR≤
(
S1
;

2r
1+2r

) '
−→ Č≤(S1

; r),

and the statement of homotopy types now follows from Theorem 7.6.
The statement about inclusions will follow from Proposition 9.5 if we show that

the map VR≤
(
S1
;

2r
1+2r

) η
−→ VR≤

(
S1
;

2r ′
1+2r ′

)
is a homotopy equivalence. Pick a

finite set Y0 ⊆ S1 with wf≤
(
Y0;

2r
1+2r

)
> l

2l+1 . We have a commutative diagram

VR≤
(
Y0;

2r
1+2r

) η //
� _

��

VR≤
(
Y0 ∪ η(Y0);

2r ′
1+2r ′

)
� _

��
VR≤

(
S1
;

2r
1+2r

) η // VR≤
(
S1
;

2r ′
1+2r ′

)
.

The vertical inclusions are homotopy equivalences by Remark 7.2. The map η is
injective and preserves the clockwise order of points on S1, hence it is a cyclic
homomorphism of the cyclic graphs underlying the top row of the diagram. As

l
2l+1 <wf≤

(
Y0;

2r
1+2r

)
≤wf≤

(
Y0∪η(Y0);

2r ′
1+2r ′

)
< l+1

2l+3 , the top row is a homotopy
equivalence by Proposition 4.9. �
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The following is an analogue of Theorem 7.4 for Čech complexes in the case
when X = S1.

Theorem 9.8. For 0< r < 1
2 we have a homotopy equivalence

Č<(S1
; r)' S2l+1 for l

2(l+1) < r ≤ l+1
2(l+2) , l = 0, 1, . . . .

Moreover, if l
2(l+1) < r ≤ r ′ ≤ l+1

2(l+2) then the inclusion Č<(S1
; r) ↪→ Č<(S1

; r ′) is
a homotopy equivalence.

Proof. Fix l
2(l+1) < r ≤ l+1

2(l+2) and note that Č<

(
S1, S1

; r
)
= colimn Č≤

(
S1
; r − 1

n

)
.

All inclusions
Č≤
(
S1
; r − 1

n

)
↪→ Č≤

(
S1
; r − 1

n+1

)
are cofibrations and by Theorem 9.7 they are self-homotopy equivalences of S2l+1

for sufficiently large n. That proves the statement of homotopy types.
For the statement about inclusions, note the inclusions

Č≤
(
S1
; r − 1

n

)
↪→ Č≤

(
S1
; r ′− 1

n

)
define a natural transformation of diagrams which is a levelwise homotopy equiva-
lence for sufficiently large n by Theorem 9.7. It follows that the induced map of
(homotopy) colimits Č<(S1

; r) ↪→ Č<(S1
; r ′) is a homotopy equivalence. �

10. Concluding remarks

A natural generalization of our results would be to investigate the complexes
VR(M; r) and Č(M,M; r) for Riemannian manifolds M other than S1, though
very little is known along these lines. Intriguing examples include the spheres Sn and
tori (S1)n for n≥ 2. One difficulty is that it is not known whether the homotopy type
of VR(M; r) can be approximated by those of complexes VR(X; r) for sufficiently
dense subsets X ⊆ M. Furthermore, already for M = S2 the complete list of
homotopy types of complexes VR(X; r) for finite subsets X ⊆ S2 is not known.

Towards the goal of understanding Vietoris–Rips complexes of more spaces, we
briefly describe two results, the homotopy types of annuli and of tori equipped with
the `∞ metric, which can be derived from our computation of VR(S1

; r) using
known tools.

Proposition 10.1. Consider the annulus D(ρ, ρ̃)={(x, y)∈R2
:ρ2
≤ x2
+y2
≤ ρ̃2
}

with the Euclidean metric. Then for any r > 0 the space VR<(D(ρ, ρ̃); r) is
homotopy equivalent to an odd-dimensional sphere or to a point.

Proof. The homotopy which radially deforms the annulus onto its inner boundary
does not increase distances, and so it is a crushing map in the sense of Hausmann
[1995]. By Proposition (2.2) of that reference, the inclusion of the Vietoris–Rips
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complex of S1 into that of D(ρ, ρ̃) is a homotopy equivalence, and so the result
follows from Theorem 7.4. �

We include a proof of a result for which we were unable to find a published
reference.

Proposition 10.2. Suppose (M1, d1), . . . , (Mn, dn) are metric spaces and M =
M1× · · ·×Mn is their product equipped with the supremum metric

`∞((x1, . . . , xn), (y1, . . . , yn))=max{di (xi , yi ) : i = 1, . . . , n}.

Then for any r > 0 we have a homotopy equivalence

VR(M; r)' VR(M1; r)× · · ·×VR(Mn; r).

Proof. For simplicial complexes K1, . . . , Kn the categorical product [Kozlov 2008,
Definition 4.25] (in the category of abstract simplicial complexes) is the complex∏

i Ki with vertex set V(K1)× · · ·× V(Kn) and with faces given by the condition:
σ ∈

∏
i Ki if and only if σ ⊆ σ1×· · ·×σn for some σi ∈ Ki , i = 1, . . . , n. Since a

subset of M has diameter equal to the maximum of the diameters of its coordinate
projections, we get an isomorphism of simplicial complexes

VR(M; r)=
n∏

i=1

VR(Mi ; r).

There is a homotopy equivalence
∏

i Ki ' K1× · · ·× Kn when each Ki is a finite
simplicial complex [Kozlov 2008, Proposition 15.23], and one can see that the
finiteness assumption is not necessary by combining the same proof with a version
of the nerve lemma for infinite simplicial complexes [Björner 1995, Theorem 10.6].
That ends the proof. �

Applied to the torus Tn
= (S1)n the last proposition yields the homotopy types

of VR(Tn
; r) for the `∞ metric on Tn. It would be interesting to investigate the

homotopy types of VR(Tn
; r) for other `p metrics on Tn, especially for the `2

metric.

Appendix A

We prove the following algebraic fact, which is used in the proof of Proposition 7.5.

Proposition A.1. Suppose that V = {e1, . . . , en} is a basis of the free abelian
group Zn . Consider the set of n+

(n
2

)
vectors

Ṽ = {e1, . . . , en} ∪ {ei − ej : 1≤ i < j ≤ n}.

For an arbitrary choice v, v1, . . . , vk ∈ Ṽ, if the subgroup of Zn generated by
{v1, . . . , vk} contains some nonzero multiple of v, then it also contains v.
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Proof. We can assume v, v1, . . . , vk are pairwise distinct. Let A = {v, v1, . . . , vk}.
Note that when expressed in the basis {e1, . . . , en}, any two vectors in Ṽ have at
most one nonzero coordinate in common. By symmetry it suffices to consider the
cases v = e1 and v = e1− e2.

First suppose v = e1. We have the identity

pe1 =
∑

vi∈A\{e1}

aivi

for some p, a1, . . . , ak ∈ Z with p 6= 0. Consider a labeled graph G with vertex
set A, where two vectors are connected by an edge with label i (1 ≤ i ≤ n) if
they both have nonzero i-th coordinate. Let A1 be the vertex set of the connected
component of G containing e1. Then we still have the identity

pe1 =
∑

vi∈A1\{e1}

aivi

because the vectors in A1 and A \ A1 contribute to two nonoverlapping sets of
coordinates.

It is not possible that all the vectors in A1 \ {e1} are of the form ei − ej . Indeed,
any linear combination of such vectors has the sum of its coordinates equal to 0,
whereas pe1 does not. Hence the connected component A1 contains some vector
el with l 6= 1. Consider the shortest path in G from el to e1. It is easy to see that
no edge label appears along this path more than once and that all the intermediate
vertices are vectors of the form ei − ej . The shortest path has the form

el = el0 →±(el0 − el1)→±(el1 − el2)→ · · · →±(els−1 − els )→ els = e1

for some s ≥ 1, where l0 = l and ls = 1, all li are pairwise distinct, and ±(ei − ej )

stands for emin(i, j)− emax(i, j). Now we obtain a presentation

e1 = el0 + (el1 − el0)+ (el2 − el1)+ · · ·+ (els − els−1)

of e1 as a linear combination of elements of A1 \ {e1} (with coefficients ±1). That
ends the proof of the proposition for v = e1.

The other case, v = e1− e2, can be reduced to the previous one as follows. Set
e′1 = e1− e2, e′2 =−e2, e′3 = e3− e2, . . . , e′n = en − e2. The set V ′ = {e′1, . . . , e′n}
is a basis of Zn . Moreover, up to signs, the sets Ṽ ′ and Ṽ coincide. The assumption
that p(e1 − e2) is a combination of v1, . . . , vk ∈ Ṽ is therefore equivalent to the
assumption that pe′1 is a combination of ±v1, . . . ,±vk ∈ Ṽ ′. From the previous
case we get that e′1 = e1− e2 is also a linear combination of v1, . . . , vk . �
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Appendix B

In this section we prove (6) which gives the expected waiting time for the appearance
of an (ε,m)-regular subset in a random sampling of S1.

We will first determine the waiting times for some occupancy problems in the
“balls into bins” model. Let K ≥ 1 be the number of bins and fix a constant m ≥ 1.
Consider the following random experiments.

(a) We throw balls independently and uniformly at random into K bins until one
of the bins contains m balls. Let Am(K ) be the random variable denoting the
number of balls thrown. By [Klamkin and Newman 1967, Theorem 2],

E[Am(K )] =2(K
m−1

m ) as K →∞.

This is known as the generalized birthday paradox, the case m=2 (and K =365
in the folklore formulation) being the classical birthday paradox.

(b) We throw balls as before, but each time a ball is thrown we assign it, uniformly
at random, with one of m colors. When a bin with m balls appears, we call
the sequence of colors in that bin, in the order in which they were thrown,
the outcome of the experiment. The outcome is good if all of the m balls
have different colors. The number of balls thrown is still given by the random
variable Am(K ), since the colors do not influence the stopping condition. Since
the balls were colored independently and uniformly, each outcome is equally
likely. In particular, the probability of a good outcome is m!/mm.

(c) We repeat the experiment of (b) until we obtain a good outcome, each time
starting with a fresh set of empty bins. Let τ be the random variable counting
the number of repetitions and let Bm(K ) be the total number of balls thrown.
We have

Bm(K )= Am(K )1+ · · ·+ Am(K )τ ,

where the Am(K )i are independent random variables with the distribution of
Am(K ). Clearly τ is a stopping time with respect to these variables, and by
the discussion in (b) we have E[τ ] = mm/m!. Now Wald’s equation gives

E[Bm(K )] = E[Am(K )] ·E[τ ] = E[Am(K )] ·
mm

m!
=2(K

m−1
m ) as K →∞.

(d) We throw balls independently and uniformly at random into K bins and we
color each ball uniformly with one of m colors, until some bin contains at least
one ball of each color. If Cm(K ) is the random variable counting the number
of balls thrown then Am(K )≤ Cm(K )≤ Bm(K ) and

E[Cm(K )] =2(K
m−1

m ) as K →∞.



38 MICHAŁ ADAMASZEK AND HENRY ADAMS

In the classical case m = 2 this is known as the birthday paradox with two
types (a boy sharing a birthday with a girl); we were unable to find a literature
reference for this result with arbitrary m.

Recall that Rm(ε) is the number of points chosen uniformly at random from S1

until an (ε,m)-regular subset appears. We claim that for any integer K ≥ 1,

(11) Rm

( 1
K m

)
≤ Cm(K ).

To see this divide S1 into arcs of length 1
K m . Each union of m arcs whose centers

form a regular m-gon represents one of our K bins. A uniformly random point
x ∈ S1 can be chosen by picking a uniformly random point y ∈

[
0, 1

m

)
S1 and a

random number i ∈ {0, . . . ,m− 1} and setting x = y+ i
m ; note y determines the

bin and i determines the color of the ball. When some bin contains a ball of each
color, the corresponding points are within 1

K m

(
in fact even 1

2K m

)
from the vertices

of a regular m-gon.
Next, we claim that

(12) E[Am(K )] ≤ 2E
[
Rm
( 1

4K m

)]
.

Let P1 be the collection of arcs and bins as above, and let P2 be the same collection
rotated by 1

2K m . If Y is
( 1

4K m ,m
)
-regular then all points of Y belong to the same

bin with respect to P1 or with respect to P2 (or both). Let p1 (resp., p2) be the
probability that the first time a

( 1
4K m

)
-regular set emerges in the random process

(X1,X2, . . . ), it is contained in one bin with respect to P1 (resp., P2). By symmetry
p1 = p2, therefore p1 ≥

1
2 . If we repeat the whole process until it ends with a set in

P1 then the expected number of repetitions is E[τ ] = 1
p1
≤ 2. An argument similar

to that in (c) above proves (12).
Letting K →∞ in (11) and (12) and using the asymptotics of E[Am(K )] and

E[Cm(K )] we obtain

E[Rm(ε)] =2
(( 1

ε

)m−1
m
)

as ε→ 0,

which proves (6).
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[Hell and Nešetřil 2004] P. Hell and J. Nešetřil, Graphs and homomorphisms, Oxford Lecture Series
in Mathematics and its Applications 28, Oxford Univ. Press, 2004. MR Zbl

[Huntington 1916] E. V. Huntington, “A set of independent postulates for cyclic order”, Proc. Nat.
Acad. Sci. USA 2:11 (1916), 630–631. JFM

[Imany-Nabiyyi 2008] R. Imany-Nabiyyi, “The sizes of components in random circle graphs”,
Discuss. Math. Graph Theory 28:3 (2008), 511–533. MR Zbl

[Kahle 2009] M. Kahle, “Topology of random clique complexes”, Discrete Math. 309:6 (2009),
1658–1671. MR Zbl

[Klamkin and Newman 1967] M. S. Klamkin and D. J. Newman, “Extensions of the birthday surprise”,
J. Combinatorial Theory 3:3 (1967), 279–282. MR

[Kozlov 2008] D. Kozlov, Combinatorial algebraic topology, Algorithms and Computation in Mathe-
matics 21, Springer, Berlin, 2008. MR Zbl

[Latschev 2001] J. Latschev, “Vietoris–Rips complexes of metric spaces near a closed Riemannian
manifold”, Arch. Math. (Basel) 77:6 (2001), 522–528. MR Zbl

[Lin and Szwarcfiter 2009] M. C. Lin and J. L. Szwarcfiter, “Characterizations and recognition of
circular-arc graphs and subclasses: a survey”, Discrete Math. 309:18 (2009), 5618–5635. MR Zbl

http://dx.doi.org/10.1007/s11856-012-0166-1
http://msp.org/idx/mr/3096593
http://msp.org/idx/zbl/1275.05041
http://dx.doi.org/10.1007/s00454-016-9803-5
http://msp.org/idx/mr/3530967
http://msp.org/idx/zbl/06627352
http://dx.doi.org/10.1016/j.aam.2016.08.007
http://dx.doi.org/10.1016/j.aam.2016.08.007
http://msp.org/idx/mr/3573216
http://msp.org/idx/zbl/06657205
http://dx.doi.org/10.1016/j.jcta.2011.06.008
http://msp.org/idx/mr/2834186
http://msp.org/idx/zbl/1234.05237
http://ftp.cs.wisc.edu/pub/users/prem/for-prem/Comp.%20topology/bjorner-topological-methods-1995.pdf
http://msp.org/idx/mr/1373690
http://msp.org/idx/zbl/0851.52016
http://dx.doi.org/10.1090/S0273-0979-09-01249-X
http://msp.org/idx/mr/2476414
http://msp.org/idx/zbl/1172.62002
http://dx.doi.org/10.1007/s11263-007-0056-x
http://dx.doi.org/10.1007/s11263-007-0056-x
http://dx.doi.org/10.1007/s00454-009-9209-8
http://dx.doi.org/10.1007/s00454-009-9209-8
http://msp.org/idx/mr/2639819
http://msp.org/idx/zbl/1231.05306
http://dx.doi.org/10.1007/s10711-013-9937-z
http://dx.doi.org/10.1007/s10711-013-9937-z
http://msp.org/idx/mr/3275299
http://msp.org/idx/zbl/1320.55003
http://msp.org/idx/mr/2572029
http://msp.org/idx/zbl/1193.55001
http://dx.doi.org/10.1007/978-1-4613-9586-7_3
http://msp.org/idx/mr/919829
http://msp.org/idx/zbl/0634.20015
http://msp.org/idx/mr/1867354
http://msp.org/idx/zbl/1044.55001
http://msp.org/idx/mr/1368659
http://msp.org/idx/zbl/0928.55003
http://dx.doi.org/10.1093/acprof:oso/9780198528173.001.0001
http://msp.org/idx/mr/2089014
http://msp.org/idx/zbl/1062.05139
http://dx.doi.org/10.1073/pnas.2.11.630
http://msp.org/idx/jfm/46.0825.03
http://dx.doi.org/10.7151/dmgt.1424
http://msp.org/idx/mr/2514207
http://msp.org/idx/zbl/1173.05041
http://dx.doi.org/10.1016/j.disc.2008.02.037
http://msp.org/idx/mr/2510573
http://msp.org/idx/zbl/1215.05163
http://dx.doi.org/10.1016/S0021-9800(67)80075-9
http://msp.org/idx/mr/0224121
http://dx.doi.org/10.1007/978-3-540-71962-5
http://msp.org/idx/mr/2361455
http://msp.org/idx/zbl/1130.55001
http://dx.doi.org/10.1007/PL00000526
http://dx.doi.org/10.1007/PL00000526
http://msp.org/idx/mr/1879057
http://msp.org/idx/zbl/1001.53026
http://dx.doi.org/10.1016/j.disc.2008.04.003
http://dx.doi.org/10.1016/j.disc.2008.04.003
http://msp.org/idx/mr/2567965
http://msp.org/idx/zbl/1228.05218


40 MICHAŁ ADAMASZEK AND HENRY ADAMS

[Matoušek 2008] J. Matoušek, “LC reductions yield isomorphic simplicial complexes”, Contrib.
Discrete Math. 3:2 (2008), 37–39. MR Zbl

[Solomon 1978] H. Solomon, Geometric probability, Regional Conf. Series in Appl. Math. 28,
Society for Industrial and Applied Mathematics, Philadelphia, 1978. MR Zbl

[Vietoris 1927] L. Vietoris, “Über den höheren Zusammenhang kompakter Räume und eine Klasse
von zusammenhangstreuen Abbildungen”, Math. Ann. 97:1 (1927), 454–472. MR JFM

[Welker et al. 1999] V. Welker, G. M. Ziegler, and R. T. Živaljević, “Homotopy colimits: comparison
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1. Introduction

Consider the classical ordinary differential equation

(∗) y′+ f y = g

where f and g are sufficiently nice real-valued functions. To solve (∗), we first
perform an exponential integration to obtain the so-called integrating factor

µ= exp
∫

f.

Then we perform an integration to obtain a solution y = µ−1
∫
(gµ). In this paper,

we wish to consider integration and exponential integration in the context of H-
fields. H -fields and all other terms used in this introduction will be properly defined
in the body of this paper.

H -fields are a certain kind of ordered valued differential field introduced in
[Aschenbrenner and van den Dries 2002] and include all Hardy fields containing
R; Hardy fields are ordered differential fields of germs of real-valued functions
defined on half-lines (a,+∞), (e.g., see [Bourbaki 1951, Chapitre V] or [Rosenlicht
1983a; 1983b]). Other examples include fields of transseries such as the field of
logarithmic-exponential transseries T and the field of logarithmic transseries Tlog

(e.g., see [Écalle 1992; van der Hoeven 2006; ADH 2017]). Our primary reference
for the theory of H -fields, and all other things considered in this paper, is the
work “Asymptotic differential algebra and model theory of transseries”, by Matthias
Aschenbrenner, Lou van den Dries and Joris van der Hoeven, which we refer to as
[ADH 2017].

A real closed H -field in which every equation of the form (∗) has a nonzero
solution, with f and g ranging over K, is said to be Liouville closed. If K is an
H -field, then a minimal Liouville closed H -field extension of K is called a Liouville
closure of K. The main result of [Aschenbrenner and van den Dries 2002] is that
for any H -field K, exactly one of the following occurs:

(I) K has exactly one Liouville closure up to isomorphism over K.

(II) K has exactly two Liouville closures up to isomorphism over K.

There are three distinct types of H -fields: an H -field K either is grounded, has a
gap, or has asymptotic integration. According to that work, grounded H -fields fall
into case (I) and H -fields with a gap fall into case (II). If an H -field has asymptotic
integration, then it is either in case (I) or (II). However, the precise dividing line
between (I) and (II) for asymptotic integration was not known.

The main result of this paper (Theorem 12.1) shows that this dividing line is
exactly the property of λ-freeness. We prove that if an H -field is λ-free, then
it is in case (I), and if an H -field has asymptotic integration and is not λ-free,



A TALE OF TWO LIOUVILLE CLOSURES 43

then it is in case (II). This follows by combining known facts about λ-freeness
from [ADH 2017] with our new technical results which show that λ-freeness is
preserved under certain adjunctions of integrals and exponential integrals. In order
to “defend” the λ-freeness of an H -field in these types of extensions, we introduce
the yardstick argument, which concerns the “rate of pseudoconvergence” when
adjoining integrals and exponential integrals.

We use many definitions and cite many results from [ADH 2017]. As a general
rule, any result taken directly from that reference is titled ADH instead of Lemma,
Theorem, etc. In citing results in this way we do not imply that they are originally
due to the authors of [ADH 2017]; for instance, ADH 4.1 is actually a classical fact
of valuation theory due to Kaplansky. Furthermore, in citations we omit qualifiers
when no confusion should arise, writing, for example, [Gehret 2017a, 3.2] instead
of [Gehret 2017a, Lemma 3.2].

In Section 2, we introduce the notion of a subset S of an ordered abelian group
0 being jammed. A set S being jammed corresponds to the elements near the top of
S becoming closer and closer together at an unreasonably fast rate. Being jammed
is an exotic property which we later wish to avoid.

In Section 3, we recall the basic theory of asymptotic couples and introduce and
study the yardstick property of subsets of asymptotic couples. Asymptotic couples
are pairs (0,ψ) where 0 is an ordered abelian group and ψ : 0 \ {0}→ 0 is a map
which satisfies, among other things, a valuation-theoretic version of l’Hôpital’s rule.
Asymptotic couples often arise as the value groups of H -fields, where the map ψ
comes from the logarithmic derivative operation f 7→ f ′/ f for f 6= 0. Roughly
speaking, a set S has the yardstick property if for any element γ ∈ S, there is a
larger element γ +ε(γ ) ∈ S for a certain “yardstick” ε(γ ) > 0 which depends on γ
and which we can explicitly describe. In contrast to the notion of being jammed, the
yardstick property is a desirable tame property. In Section 3 we show, among other
things, that the two properties are incompatible, except in a single degenerate case.
Asymptotic couples were introduced by Rosenlicht [1979; 1980; 1981] in order to
study the value group of a differential field with a so-called differential valuation,
what we call here a differential-valued field. For more on asymptotic couples,

including the extension theory of asymptotic couples and some model-theoretic
results concerning the asymptotic couples of T and Tlog, see [Aschenbrenner and
van den Dries 2000; Aschenbrenner 2003; Gehret 2017b; 2017a] and [ADH 2017,
§6.5, §9.2, §9.8 and §9.9].

In Section 4 we recall definitions concerning pseudocauchy sequences in valued
fields and some of the elementary facts concerning pseudocauchy sequences. The
main result of Section 4 is Lemma 4.4 which is a rational version of Kaplansky’s
lemma (ADH 4.1). We assume the reader is familiar with basic valuation theory,
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including notions such as henselianity. As a general reference, see [ADH 2017,
Chapters 2 and 3] or [Engler and Prestel 2005].

In Section 5 we give the definitions and relevant properties of differential fields,
valued differential fields, asymptotic fields, pre-differential-valued fields, differential-
valued fields, pre-H-fields and H-fields. These are the types of fields we will be
concerned with in the later sections. Nearly everything from this section is from
[ADH 2017] except for Lemmas 5.1 and 5.4 which are needed in our proof of
Theorem 12.1.

In Section 6 we give a survey of the property of λ-freeness, citing many definitions
and results from [ADH 2017, §11.5 and §11.6]. Many of these results we cite,
and later use, involve situations where λ-freeness is preserved in certain valued
differential field extensions. The main result of this section is Proposition 6.19
which shows that a rather general type of field extension preserves λ-freeness.
Proposition 6.19 is related to the yardstick property of Section 3.

In Section 7, Section 8, and Section 9, we show that under various circumstances,
if a pre-differential-valued field or a pre-H -field K is λ-free, and we adjoin an
integral or an exponential integral to K for an element in K that does not already
have an integral or exponential integral, then the resulting field extension will also
be λ-free. The arguments in all three sections mirror one another and the main
results, Propositions 7.2, 8.3, and 9.3 are all instances of Proposition 6.19.

In Sections 10 and 11 we give two minor applications of the results of Sections
7, 8, and 9. In Section 10 we show that λ-freeness is preserved when passing
to the differential-valued hull of a λ-free pre-differential-field K (Theorem 10.2).
In Section 11 we show that for λ-free differential-valued fields K, the minimum
henselian, integration-closed extension K

(∫ )
of K is also λ-free (Theorem 11.2).

In Section 12 we prove the main result of this paper, Theorem 12.1. Combining
it with the results in Section 10, we also obtain a generalization to the setting
of pre-H -fields (Corollary 12.3). Finally, we provide proofs of claims made in
[Aschenbrenner and van den Dries 2002; 2005] (Corollary 12.6 and Remark 12.7).

Conventions. Throughout, m and n range over the set N={0, 1, 2, 3, . . .} of natural
numbers. By “ordered set” we mean “totally ordered set”.

Let S be an ordered set. Below, the ordering on S will be denoted by ≤, and a
subset of S is viewed as ordered by the induced ordering. We put S∞ := S ∪ {∞},
∞ 6∈ S, with the ordering on S extended to a (total) ordering on S∞ by S <∞.
Suppose that B is a subset of S. We put S>B

:={s∈ S :s>b for every b ∈ B} and we
denote S>{a} as just S>a; similarly for≥, <, and≤ instead of>. For a, b∈ S we put

[a, b] := {x ∈ S : a ≤ x ≤ b}.
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A subset C of S is said to be convex in S if for all a, b ∈ C we have [a, b] ⊆ C. A
subset A of S is said to be a downward closed in S, if for all a ∈ A and s ∈ S we
have s < a =⇒ s ∈ A. For A ⊆ S we put

A↓ := {s ∈ S : s ≤ a for some a ∈ A},

which is the smallest downward closed subset of S containing A.
A well-indexed sequence is a sequence (aρ) whose terms aρ are indexed by the

elements ρ of an infinite well-ordered set without a greatest element.
Suppose that G is an ordered abelian group. Then we set G 6= := G \ {0}. Also,

G<
:= G<0; similarly for ≥,≤, and > instead of <. We define |g| :=max{g,−g}

for g ∈ G. For a ∈ G, the archimedean class of a is defined by

[a] := {g ∈ G : |a| ≤ n|g| and |g| ≤ n|a| for some n ≥ 1}.

The archimedean classes partition G. Each archimedean class [a] with a 6= 0 is
the disjoint union of the two convex sets [a] ∩G< and [a] ∩G>. We order the set
[G] := {[a] : a ∈ G} of archimedean classes by

[a]< [b] :⇐⇒ n|a|< |b| for all n ≥ 1.

We have [0]< [a] for all a ∈ G 6=, and

[a] ≤ [b] ⇐⇒ |a| ≤ n|b| for some n ≥ 1.

We shall consider G to be an ordered subgroup of its divisible hull QG. The
divisible hull of G is the divisible abelian group QG := Q⊗Z G equipped with
the unique ordering which makes it an ordered abelian group containing G as an
ordered subgroup.

2. Ordered abelian groups

In this section 0 is an ordered abelian group, S ⊆ 0, α ∈ 0 and n ≥ 1. We define:

α+ nS := {α+ nγ : γ ∈ S}.

A set of the form α+ nS is called an affine transform of S. Many qualitative
properties of a set S ⊆ 0 are preserved when passing to an affine transform, for
instance:

Lemma 2.1. S has a supremum in Q0 if and only if α+ nS does.

Definition 2.2. We say that S is jammed (in 0) if S 6=∅ does not have a greatest
element and for every nontrivial convex subgroup 1 6= {0} of 0, there is γ0 ∈ S
such that for every γ1 ∈ S>γ0, γ1− γ0 ∈1.

Example 2.3. Suppose 0 6= {0} is such that 0> does not have a least element. Then
S := 0<β is jammed for every β ∈ 0. In particular, 0< is jammed.
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Most 0 6= {0} we will deal with are either divisible or else [0 6=] does not have a
least element and so Example 2.3 will provide a large collection of jammed subsets
for such 0. Of course, not all jammed sets are of the form S↓ = 0<β.

Whether or not S is jammed in 0 depends on the archimedean classes of 0 in
the following way:

Lemma 2.4. Let 01 be an ordered abelian group extension of 0 such that [0 6=] is
coinitial in [0 6=1 ]. Then S is jammed in 0 if and only if S is jammed in 01.

Being jammed is also preserved by affine transforms:

Lemma 2.5. S is jammed if and only if α+ nS is jammed.

Proof. (=⇒) Let 1 be a nontrivial convex subgroup of 0. Let γ0 ∈ S be such that
for every γ1 ∈ S>γ0, γ1−γ0 ∈1. Consider the element δ0 := α+nγ0 ∈ α+nS. Let
δ1 ∈ (α+nS)>δ0. Then δ1=α+nγ1 for some γ1 ∈ S>γ0 and δ1−δ0=n(γ1−γ0)∈1.
We conclude that α+ nS is jammed.

(⇐) Let 1 be a nontrivial convex subgroup of 0. Let δ0 = α+ nγ0 ∈ α+ nS
be such that δ1 − δ0 ∈ 1 for all δ1 ∈ (α + nS)>δ0. Then for γ1 ∈ S>γ0 we have
δ1 := α+ nγ1 ∈ (α+ nS)>δ0 and so δ1− δ0 = n(γ1− γ0) ∈1. As 1 is convex, it
follows that γ1− γ0 ∈1. We conclude that S is jammed. �

Whether or not S is jammed depends only on the downward closure S↓ of S:

Lemma 2.6. S is jammed if and only if S↓ is jammed.

3. Asymptotic couples

An asymptotic couple is a pair (0,ψ) where 0 is an ordered abelian group and
ψ : 0 6=→ 0 satisfies for all α, β ∈ 0 6=,

(AC1) α+β 6= 0 =⇒ ψ(α+β)≥min(ψ(α), ψ(β));

(AC2) ψ(kα)= ψ(α) for all k ∈ Z 6=, in particular, ψ(−α)= ψ(α);

(AC3) α > 0 =⇒ α+ψ(α) > ψ(β).

If in addition for all α, β ∈ 0,

(HC) 0< α ≤ β =⇒ ψ(α)≥ ψ(β),

then (0,ψ) is said to be of H-type, or to be an H-asymptotic couple.
By convention we extend ψ to all of 0 by setting ψ(0) :=∞. Then

ψ(α+β)≥min(ψ(α), ψ(β))

holds for all α, β ∈ 0, and we construe ψ : 0→ 0∞ as a (non-surjective) valuation
on the abelian group 0. If (0,ψ) is of H -type, then this valuation is convex in the
sense of [ADH 2017, §2.4].
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For α ∈ 0 6= we shall also use the following notation:

α†
:= ψ(α), α′ := α+ψ(α).

The following subsets of 0 play special roles:

(0 6=)′ := {γ ′ : γ ∈ 0 6=}, (0>)′ := {γ ′ : γ ∈ 0>},

9 := ψ(0 6=)= {γ †
: γ∈ 0 6=} = {γ †

: γ ∈ 0>}.

Note that by (AC3) we have 9 < (0>)′. It is also the case that (0<)′ < (0>)′:

ADH 3.1. The map γ 7→ γ ′ = γ + ψ(γ ) : 0 6= → 0 is strictly increasing. In
particular:

(1) (0<)′ < (0>)′, and

(2) for β ∈ 0 there is at most one α ∈ 0 6= such that α′ = β.

Proof. This follows from [ADH 2017, 6.5.4(iii)]. �

ADH 3.2 [ADH 2017, 9.2.4]. There is at most one β such that

9 < β < (0>)′.

If 9 has a largest element, there is no such β.

Definition 3.3. Let (0,ψ) be an asymptotic couple. If 0 = (0 6=)′, then we say that
(0,ψ) has asymptotic integration. If there is β ∈0 as in ADH 3.2, then we say that
β is a gap in (0,ψ) and that (0,ψ) has a gap. Finally, we call (0,ψ) grounded if
9 has a largest element, and ungrounded otherwise.

The notions of asymptotic integration, gaps and being grounded form an important
trichotomy for H -asymptotic couples:

ADH 3.4 [ADH 2017, 9.2.16]. Let (0,ψ) be an H-asymptotic couple. Then exactly
one of the following is true:

(1) (0,ψ) has a gap, in particular, 0 \ (0 6=)′ = {β} where β is a gap in 0;

(2) (0,ψ) is grounded, in particular, 0 \ (0 6=)′ = {max9};

(3) (0,ψ) has asymptotic integration.

Remark 3.5. Gaps in H -asymptotic couples are the fundamental source of deviant
behavior we wish to avoid. If β is a gap in an H -asymptotic couple (0,ψ), then
there is no α ∈ 0 such that α′ = β, or in other words, β cannot be asymptotically
integrated. This presents us with an irreversible choice: if we wish to adjoin to
(0,ψ) an asymptotic integral for β, then we have to choose once and for all if that
asymptotic integral will be positive or negative. This phenomenon is referred to as
the fork in the road and is the primary cause of H -fields having two nonisomorphic
Liouville closures, as we shall see in Section 12 below. Gaps also prove to be a
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main obstruction in the model theory of asymptotic couples. For more on this, see
[Aschenbrenner and van den Dries 2000] and [Gehret 2017a].

Definition 3.6 (The Divisible Hull). Given an asymptotic couple (0,ψ), ψ extends
uniquely to a map (Q0)6= → Q0, also denoted by ψ , such that (Q0,ψ) is an
asymptotic couple. We call (Q0,ψ) the divisible hull of (0,ψ). Here are some
basic facts about the divisible hull:

(1) ψ((Q0)6=)=9 = ψ(0 6=);

(2) if (0,ψ) is of H -type, then so is (Q0,ψ);

(3) if (0,ψ) is grounded, then so is (Q0,ψ);

(4) if β ∈ 0 is a gap in (0,ψ), then it is a gap in (Q0,ψ);

(5) (0 6=)′ = ((Q0)6=)′ ∩0.

For proofs of these facts, see [ADH 2017, §6.5 and 9.2.8]. We say (0,ψ) has
rational asymptotic integration if (Q0,ψ) has asymptotic integration.

In the rest of this section (0,ψ) is an H-asymptotic couple with asymptotic
integration and we let α, β, γ range over 0.

Definition 3.7. For α ∈ 0 we let
∫
α denote the unique element β ∈ 0 6= such that

β ′ = α and we call β =
∫
α the integral of α. This gives us a function

∫
: 0→ 0 6=

which is the inverse of γ 7→ γ ′ : 0 6= → 0. We define the successor function
s : 0→9 by α 7→ ψ

(∫
α
)
. Finally, we define the contraction map χ : 0 6=→ 0<

by α 7→
∫
ψ(α). We extend χ to a function 0→ 0≤ by setting χ(0) := 0.

The successor function gets its name from its behavior on ψ(0 6=log) in Example 3.8
below (see [Gehret 2017a]). The contraction map gets its name from the way it
contracts archimedean classes in the sense of Lemma 3.9(5) below. Contraction
maps originate from the study of precontraction groups and ordered exponential
fields (see [Kuhlmann 1994; 1995; 2000]).

Example 3.8 (The asymptotic couple of Tlog). Define the abelian group 0log :=⊕
n Ren , equipped with the unique ordering such that en>0 for all n, and [em]> [en]

whenever m < n. It is convenient to think of an element
∑

ri ei of 0log as the vector
(r0, r1, r2, . . .). Next, we define the map ψ : 0 6=log→ 0log by

(0, . . . , 0︸ ︷︷ ︸
n

, rn︸︷︷︸
6=0

, rn+1, . . .) 7→ (1, . . . , 1︸ ︷︷ ︸
n+1

, 0, 0, . . .).

It is easy to verify that (0log, ψ) is an H -asymptotic couple with rational asymptotic
integration. Furthermore, the functions

∫
, s, and χ are given by the following

formulas:
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(1) (integral) For α = (r0, r1, r2, . . .) ∈ 0log, take the unique n such that rn 6= 1
and rm = 1 for m < n. Then the formula for α 7→

∫
α is given as follows:

α=(1,...,1︸ ︷︷ ︸
n

, rn︸︷︷︸
6=1

,rn+1,rn+2,...) 7→
∫
α=(0,...,0︸ ︷︷ ︸

n

,rn−1,rn+1,rn+2,...) :0log→0
6=

log.

(2) (successor) For α = (r0, r1, r2, . . .) ∈ 0log, take the unique n such that rn 6= 1
and rm = 1 for m < n. Then the formula for α 7→ s(α) is given as follows:

α = (1,...,1︸ ︷︷ ︸
n

, rn︸︷︷︸
6=1

,rn+1,rn+1,...) 7→ s(α)= (1,...,1︸ ︷︷ ︸
n+1

,0,0,...) : 0log→9log ⊆ 0log.

(3) (contraction) If α=0, then χ(α)=0. Otherwise, for α= (r0, r1, r2, . . .)∈0
6=

log,
take the unique n such that rn 6= 0 and rm = 0 for m < n. Then the formula for
α 7→ χ(α) is given as follows:

α = (0, . . . , 0︸ ︷︷ ︸
n

, rn︸︷︷︸
6=0

, rn+1, . . .) 7→ χ(α)= (0, . . . , 0︸ ︷︷ ︸
n+1

,−1, 0, 0, . . .) : 0log→ 0
≤

log.

For more on this example, see [Gehret 2017b; 2017a].

Lemma 3.9. For all α, β ∈ 0 and γ ∈ 0 6=:

(1) (integral identity)
∫
α = α− sα.

(2) (successor identity) If sα < sβ, then ψ(β −α)= sα.

(3) (fixed point identity) β = ψ(α−β) if and only if β = sα.

(4) sα < s2α.

(5) [χ(γ )]< [γ ].

(6) α 6= β =⇒ [χ(α)−χ(β)]< [α−β].

(7) α < β =⇒ α−χ(α) < β −χ(β).

Proof. For (1)–(4) we direct the reader to [Gehret 2017a]. (1) is Lemma 3.2 there,
(2) is Lemma 3.4 there, (3) is Lemma 3.7 there, (4) is Lemma 3.3 there, and (5)
and (6) follow easily from [ADH 2017, 9.2.18 (iii,iv)]. (7) follows from (6). �

Lemma 3.10. Suppose α ∈ (0<)′ and n ≥ 1. Then α+ (n+ 1)(sα−α) ∈ (0>)′.

Proof. Suppose α ∈ (0<)′. Then we have

α+ (n+ 1)(sα−α)= sα+ nsα− nα

= ψ
(∫
α
)
+ nψ

(∫
α
)
− n

(∫
α
)′

= ψ
(∫
α
)
+ nψ

(∫
α
)
− n

(∫
α
)
− nψ

(∫
α
)

= ψ
(∫
α
)
− n

∫
α

=
(
−n

∫
α
)′
∈ (0>)′.
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The last part follows because α ∈ (0<)′ if and only if
∫
α ∈ 0< if and only if

−n
∫
α ∈ 0> if and only if

(
−n

∫
α
)′
∈ (0>)′. �

Lemma 3.11. The sets 9 and 9↓ are jammed.

Proof. By Lemma 2.6, it suffices to show that9↓= (0<)′ is jammed. By asymptotic
integration and ADH 3.4, (0<)′ is nonempty and does not have a largest element.
Let1 be a nontrivial convex subgroup of 0. Take δ∈1> and set γ0 := (−δ)

′
∈ (0<)′.

Then

γ0+ 2δ = γ0+ 2
(
−
∫
(−δ)′

)
= γ0+ 2

(
−
∫
γ0
)
= γ0+ 2(sγ0− γ0),

where the last equality follows from Lemma 3.9(1). Thus γ0 + 2δ ∈ (0>)′ by
Lemma 3.10. In particular, for every γ1 ∈ ((0

<)′)>γ0, γ1 − γ0 < 2δ ∈ 1. We
conclude that (0<)′ is jammed. �

Calculation 3.12. Suppose γ 6= 0. Then∫ (
γ ′−

∫
sγ ′
)
= γ + (sγ †

− γ †)= γ −χ(γ ).

Proof. We begin by showing that

(A) s(γ + sγ †)= γ †.

By (2) and (4) of Lemma 3.9 we have

ψ(−γ )= γ † < sγ †
= ψ(γ †

− sγ †),

which implies ψ(γ †
− γ − sγ †)= γ †. Now (A) follows by Lemma 3.9(3).

We now proceed with our main calculation. The first and second equalities below
come from Lemma 3.9(1); the third from the definitions of s and ′, and the last
from (A). ∫ (

γ ′−
∫

sγ ′
)
=
(
γ ′−

∫
sγ ′
)
− s

(
γ ′−

∫
sγ ′
)

= (γ ′−sγ ′+s2γ ′)− s(γ ′−sγ ′+s2γ ′)

= (γ+γ †
−γ †
+sγ †)− s(γ+γ †

−γ †
+sγ †)

= γ+sγ †
− s(γ+sγ †)

= γ+(sγ †
−γ †)

Finally, note that −χ(γ )= sγ †
− γ † follows from applying Lemma 3.9(1) to γ †

and the definition of χ . �

Lemma 3.13. Let γ ∈ (0>)′. Then∫
γ >−

∫
sγ =−χ

∫
γ > 0.

Furthermore, if γ0, γ1 ∈ (0
>)′, then γ0 ≤ γ1 implies −

∫
sγ0 ≤−

∫
sγ1.
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Proof. We have sγ ∈ (0<)′ which implies that −
∫

sγ > 0, which gives the second
part of the first inequality. For the first part we note that∫

γ >−
∫

sγ ⇐⇒
∫
γ +

∫
sγ > 0 ⇐⇒

∫
γ +χ

∫
γ > 0,

this last equivalence being true because
∫
γ >0 and

[
χ
∫
γ
]
<
[∫
γ
]

by Lemma 3.9(5).
For the second inequality, we have

γ0 ≤ γ1 =⇒ sγ0 ≥ sγ1 since γ0, γ1 ∈ (0
>)′

⇐⇒
∫

sγ0 ≥
∫

sγ1 by ADH 3.1

⇐⇒ −
∫

sγ0 ≤−
∫

sγ1. �

Definition 3.14. Let S be a nonempty convex subset of 0 without a greatest element.
We say that S has the yardstick property if there is β ∈ S such that for every γ ∈ S>β,
γ −χ(γ ) ∈ S.

Note that if S is a nonempty convex subset of 0 without a greatest element,
then S has the yardstick property if and only if S↓ has the yardstick property. The
following is immediate from Lemma 3.9(7):

Lemma 3.15. Suppose S is a nonempty convex subset of 0 without a greatest
element with the yardstick property. Then for every γ ∈ S, γ −χ(γ ) ∈ S.

Remark 3.16. The yardstick property says that if you have an element γ ∈ S, then
you can travel up the set S to a larger element γ −χ(γ ) in a “measurable” way, i.e.,
you can increase upwards at least a distance of −χ(γ ) and still remain in S. Similar
to the property jammed from Section 2, this is a qualitative property concerning
the top of the set S. Unlike jammed, the yardstick property requires the asymptotic
couple structure of (0,ψ), and the contraction map χ in particular.

The yardstick property and being jammed are incompatible properties, except in
the following case:

Lemma 3.17. Let S be a nonempty convex subset of 0 without a greatest element
with the yardstick property. Then S is jammed if and only if S↓ = 0<.

Proof. If S = 0<, then S is jammed. Now suppose that S 6= 0<. We must show that
S is not jammed. In the first case, suppose S∩0> 6=∅ and take γ ∈ S∩0>. Let 1
be a nontrivial convex subgroup of 0 such that [1]< [χ(γ )]. Now let γ0, γ1 ∈ S
be such that γ < γ0 < γ0−χ(γ0) < γ1. Note that

γ1− γ0 >−χ(γ0)≥−χ(γ ) > 1,

and we conclude that S is not jammed since γ0 > γ was arbitrary.
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Next, suppose there is β such that S < β < 0. Let 1 be a nontrivial convex
subgroup of 0 such that [β] > [χ(β)] > [1]. Let γ ∈ S be arbitrary. Then
γ −χ(γ ) ∈ S. Note that

(γ −χ(γ ))− γ =−χ(γ )≥−χ(β) > 1.

We conclude that S is not jammed since γ was arbitrary. �

The following technical variant of the yardstick property will come in handy in
Sections 7, 8, and 9:

Definition 3.18. Let S ⊆ 0 be a nonempty convex set without a greatest element
such that either S ⊆ (0>)′ or S ⊆ (0<)′. We say that S has the derived yardstick
property if there is β ∈ S such that for every γ ∈ S>β,

γ −
∫

sγ ∈ S>β .

Proposition 3.19. Suppose S ⊆ 0 is a nonempty convex set without a greatest
element such that either S ⊆ (0>)′ or S ⊆ (0<)′ and S has the derived yardstick
property. Then

∫
S := {

∫
s : s ∈ S} ⊆0 is nonempty, convex, does not have a greatest

element, and has the yardstick property.

Proof. By ADH 3.1,
∫

S is nonempty, convex, and does not have a greatest element.
Let β ∈ S be such that for every γ ∈ S>β, γ −

∫
sγ ∈ S. Now take γ ∈ (

∫
S)>

∫
β.

Then γ ′ ∈ S>β, so γ ′−
∫

sγ ′ ∈ S>β. Thus∫ (
γ ′−

∫
sγ ′
)
∈
(∫

S
)> ∫ β

.

By Calculation 3.12,

γ −χ(γ ) ∈
(∫

S
)> ∫ β

.

We conclude that
∫

S has the yardstick property. �

Example 3.20. (The yardstick property in (0log, ψ)) To get a feel for what the
yardstick property says, suppose S ⊆ 0log is nonempty, downward closed, and has
the yardstick property. Then, given an element α 6= 0 in S we may write

α = (0, . . . , 0︸ ︷︷ ︸
n

, rn︸︷︷︸
6=0

, rn+1, . . .),

and then the yardstick property says that the following larger element is also in S:

α−χ(α)= (0,...,0︸ ︷︷ ︸
n

,rn,rn+1)− (0,...,0︸ ︷︷ ︸
n+1

,−1,0,0,...)= (0,...,0︸ ︷︷ ︸
n

,rn,rn+1+ 1,...) ∈ S.

In fact, by iterating the yardstick property, we find that for any m, the following
element is in S:

(0, . . . , 0︸ ︷︷ ︸
n

, rn, rn+1+m, . . .) ∈ S
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Thus if 1 is the convex subgroup generated by −χ(α), it follows that α+1⊆ S.

4. Valued fields

In this section K is a valued field. Let OK denote its valuation ring, OK the maximal
ideal of OK , v : K× → 0K := v(K×) its valuation with value group 0K , and
res :OK→ kK :=OK /OK its residue map with residue field kK , which we may also
denote as res(K ). We will suppress the subscript K when the valued field K is clear
from context. By convention we extend v to a map v : K→0∞ by setting v(0) :=∞.

Given f, g ∈ K we have the following relations:

f 4 g :⇐⇒ v f ≥ vg ( f is dominated by g)

f ≺ g :⇐⇒ v f > vg ( f is strictly dominated by g)

f � g :⇐⇒ v f = vg ( f is asymptotic to g)

For f, g ∈ K×, we have the additional relation:

f ∼ g :⇐⇒ v( f − g) > v f ( f and g are equivalent)

Both � and ∼ are equivalence relations on K and K×, respectively. We shall also
use the following notation:

K≺1
: = { f ∈ K : f ≺ 1} = OK

K41
: = { f ∈ K : f 4 1} =OK

K�1
: = { f ∈ K : f � 1} = K \OK

Pseudocauchy sequences and a Kaplansky lemma. Let (aρ) be a well-indexed
sequence in K, and a ∈ K. Then (aρ) is said to pseudoconverge to a (written
aρ a) if for some index ρ0 we have a−aσ ≺ a−aρ whenever σ >ρ >ρ0. In this
case we also say that a is a pseudolimit of (aρ). We say that (aρ) is a pseudocauchy
sequence in K (or pc-sequence in K ) if for some index ρ0 we have

τ > σ > ρ > ρ0 =⇒ aτ − aσ ≺ aσ − aρ .

If aρ  a, then (aρ) is necessarily a pc-sequence in K. A pc-sequence (aρ) is
divergent in K if (aρ) does not have a pseudolimit in K.

Suppose that (aρ) is a pc-sequence in K and a ∈ K is such that aρ a. Also let
γρ := v(a−aρ) ∈ 0∞, which is eventually in 0 and strictly increasing as a function
of ρ. Recall Kaplansky’s Lemma:

ADH 4.1 [ADH 2017, Prop. 3.2.1]. Suppose P ∈ K [X ] \ K. Then P(aρ) P(a).
Furthermore, there are α ∈ 0 and i ≥ 1 such that eventually v(P(aρ)− P(a)) =
α+ iγρ .
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Note that ADH 4.1 concerns polynomials P ∈ K [X ]. Below we give a version
for rational functions, but first a few remarks.

Roughly speaking, we think of the eventual nature of the sequence (γρ) as a
“rate of convergence” for the pseudoconvergence aρ  a. ADH 4.1 tells us that the
rate of convergence for P(aρ) P(a) is very similar to that of aρ  a. Indeed,
(α+ iγρ) is just an affine transform of (γρ) in 0. We want to show that applying
rational functions to (aρ) will also have this property. Before we can do this, we
need to recall a few more facts from valuation theory.

Suppose that (aρ) is a pc-sequence in K. A main consequence of ADH 4.1 is
that (aρ) falls into one of two categories:

(1) (aρ) is of algebraic type over K if for some nonconstant P ∈ K [X ], v(P(aρ))
is eventually strictly increasing (equivalently, P(aρ) 0).

(2) (aρ) is of transcendental type over K if for all nonconstant P ∈ K [X ],
v(P(aρ)) is eventually constant (equivalently, P(aρ) 6 0).

Suppose (aρ) is a pc-sequence of transcendental type over K. Then (aρ) is
divergent in K . Moreover, if aρ b with b in a valued field extension of K, then b
will necessarily be transcendental over K.

Now suppose that (aρ) is a pc-sequence in K. Take ρ0 as in the definition of
“pseudocauchy sequence” and define γρ := v(aρ′ − aρ) ∈ 0 for ρ ′ > ρ > ρ0; this
depends only on ρ and the sequence (γρ)ρ>ρ0 is strictly increasing. We define the
width of (aρ) to be the following upward closed subset of 0∞:

width(aρ)= {γ ∈ 0∞ : γ > γρ for all ρ > ρ0}.

The width of (aρ) is independent of the choice of ρ0. The following follows from
various results in [ADH 2017, Chapters 2 and 3]:

ADH 4.2. Let (aρ) be a divergent pc-sequence in K and let b be an element of
a valued field extension of K such that aρ  b. Then for σρ := v(b− aρ) ∈ 0∞,
eventually σρ = γρ and

width(aρ)= 0>v(b−K )
∞

and v(b− K )= 0<width(aρ)
∞

where v(b− K )= {v(b− a) : a ∈ K } ⊆ 0.

Remark 4.3. Let b be an element of an immediate valued field extension of K. If
b 6∈ K, then v(b− K )⊆ 0 is a nonempty downward closed subset of 0 without a
greatest element. We think of v(b− K ) as encoding how well elements from K
can approximate b. Below we will consider various qualitative properties of such a
set v(b− K ) and consider what these properties say about the element b itself.

We say that pc-sequences (aρ) and (bσ ) in K are equivalent if they satisfy any
of the following equivalent conditions:
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(1) (aρ) and (bσ) have the same pseudolimits in every valued field extension of K;

(2) (aρ) and (bσ) have the same width, and have a common pseudolimit in some
valued field extension of K;

(3) there are arbitrarily large ρ and σ such that for all ρ ′ > ρ and σ ′ > σ we have
aρ′ − bσ ′ ≺ aρ′ − aρ , and there are arbitrarily large ρ and σ such that for all
ρ ′ > ρ and σ ′ > σ we have aρ′ − bσ ′ ≺ bσ ′ − bσ .

See [ADH 2017, 2.2.17] for details of this equivalence.
Now we assume that L is an immediate extension of K, a ∈ L \ K, and (aρ) is a

pc-sequence in K of transcendental type over K such that aρ  a.

Lemma 4.4. Let R(X)∈ K (X)\K. Then there is an index ρ0 such that, for ρ >ρ0,

(1) R(aρ) ∈ K (that is, R(aρ) 6= ∞);

(2) R(aρ) R(a);

(3) v(R(aρ)− R(a))= α+ iγρ , eventually, for some α ∈ 0 and i ≥ 1;

(4) (α+ iγρ) is eventually cofinal in v(R(a)− K ), with α and i as in (3);

(5) (R(aρ)) is a divergent pc-sequence in K ; and

(6) v(R(a)− K )= (α+ iv(a− K ))↓, with α and i as in (3).

Proof. Let R(X) = P(X)/Q(X) with P, Q ∈ K [X ]6=. It is clear there exists ρ0

such that R(aρ) ∈ K for all ρ > ρ0. Fix such a ρ0 and assume ρ > ρ0 for the rest
of this proof.

We first consider the case that R(X)= P(X) ∈ K [X ] \ K is a polynomial. Then
(2) and (3) follow from ADH 4.1. We will prove (5) and then (4) and (6) will follow.
Assume towards a contradiction that there is b ∈ K such that R(aρ) b. Then
R(aρ)−b 0, so (aρ) is of algebraic type in view of R(X)−b ∈ K [X ] \ K . This
contradicts the assumption that (aρ) is a pc-sequence of transcendental type.

Next consider the case that R(X)∈K (X)\K [X ]. In particular, Q(X)∈K [X ]\K
and Q - P. Then note that

v

(
P(aρ)
Q(aρ)

−
P(a)
Q(a)

)
= v

(
P(aρ)Q(a)− P(a)Q(aρ)

Q(aρ)Q(a)

)
= v(P(aρ)Q(a)− P(a)Q(aρ))− v(Q(aρ))− v(Q(a)).

The quantity v(Q(aρ)) is eventually constant since (aρ) is of transcendental type.
Next, set S(X) := P(X)Q(a) − P(a)Q(X) ∈ K (a)[X ]. Note that eventually
S(aρ) 6= 0 and thus S 6= 0 (otherwise, the polynomial Q(X)− (Q/P)(a)P(X)
would be identically zero since it would have infinitely many distinct zeros, which
would imply Q | P). Furthermore, S(a)= 0, which shows that S ∈ K (a)[X ]\K (a).
By ADH 4.1, it follows that S(aρ) S(a)= 0. In particular, v(S(aρ)) is eventually
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strictly increasing and there are α ∈ 0 and i ≥ 1 such that eventually v(S(aρ))=
α+ iγρ . This shows (2) and (3).

Finally, we will prove (5) and then (4) and (6) will follow. Assume towards a
contradiction that R(aρ) b with b ∈ K. Then

v

(
P(aρ)
Q(aρ)

− b
)
= v(P(aρ)− bQ(aρ))− v(Q(aρ))

is eventually strictly increasing. Therefore so is v(P(aρ)−bQ(aρ)), since v(Q(aρ))
is eventually constant. This implies that (aρ) is of algebraic type, a contradiction. �

5. Differential fields, differential-valued fields and H-fields

Differential fields. A differential field is a field K of characteristic zero equipped
with a derivation ∂ on K, i.e., an additive map ∂ : K→ K which satisfies the Leibniz
identity: ∂(ab)= ∂(a)b+ a∂(b) for all a, b ∈ K. For such K we identify Q with a
subfield of K in the usual way.

Let K be a differential field. For a ∈ K, we will often denote a′ := ∂(a), and for
a ∈ K× we will denote the logarithmic derivative of a as a†

:= a′/a = ∂(a)/a. For
a, b ∈ K×, note that (ab)† = a†

+ b†, in particular, (ak)† = ka† for k ∈ Z. The set
{a ∈ K : a′ = 0} ⊆ K is a subfield of K and is called the field of constants of K, and
denoted by CK (or just C if K is clear from the context). If c ∈ C, then (ca)′ = ca′

for a ∈ K. If a, b ∈ K×, then a†
= b† if and only if a = bc for some c ∈ C×.

The following is routine:

Lemma 5.1. Let K be a differential field. Suppose that y0, y1, ` ∈ K are such that
y0, y1 6∈C and y′′i = `y′i for i = 0, 1. Then there are c0, c1 ∈C such that c0 6= 0 and
y1 = c0 y0+ c1.

In this paper we are primarily concerned with algebraic extensions and simple
transcendental extensions of differential fields. In these cases, we have:

ADH 5.2 [ADH 2017, 1.9.2]. Suppose K is a differential field and L is an algebraic
field extension of K. Then ∂ extends uniquely to a derivation on L.

ADH 5.3 [ADH 2017, 1.9.4]. Suppose K is a differential field with field extension
L = K (x) where x = (xi )i∈I is a family in L that is algebraically independent over
K. Then there is for each family (yi )i∈I in L a unique extension of ∂ to a derivation
on L with ∂(xi )= yi for all i ∈ I.

If K is a differential field and s ∈ K \ ∂(K ), then ADH 5.3 allows us to adjoin
an integral for s: let K (x) be a field extension of K such that x is transcendental
over K. Then by ADH 5.3 there is a unique derivation on K (x) extending ∂ such
that x ′ = s. Likewise, if s ∈ K \ (K×)†, then we can adjoin an exponential integral
for s: take K (x) as before and by ADH 5.3 there is a unique derivation on K (x)
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extending ∂ such that x ′ = sx , and thus x†
= s, i.e., “x = exp(

∫
s)”. Adjoining

integrals and exponential integrals are basic examples of Liouville extensions:
A Liouville extension of K is a differential field extension L of K such that CL is

algebraic over C and for each a ∈ L there are t1, . . . , tn ∈ L with a ∈ K (t1, . . . , tn)
and for i = 1, . . . , n,

(1) ti is algebraic over K (t1, . . . , ti−1), or

(2) t ′i ∈ K (t1, . . . , ti−1), or

(3) ti 6= 0 and t†
i ∈ K (t1, . . . , ti−1).

Valued differential fields. Avalued differential field is a differential field K equipped
with a valuation ring O ⊇Q of K. In particular, all valued differential fields have
char k = 0.

An asymptotic differential field, or just asymptotic field, is a valued differential
field K such that for all f, g ∈ K× with f, g ≺ 1,

(A) f ≺ g⇐⇒ f ′ ≺ g′.

If K is an asymptotic field, then C ⊆ O and thus v(C×) = {0}. The following
consequence of Lemma 5.1 will be used in Section 12 to obtain our main result:

Lemma 5.4. Let K be an asymptotic field. Suppose that y0, y1, ` ∈ K are such that
y0, y1 6∈ C and y′′i = `y′i for i = 0, 1. Then y0 � 1 if and only if y1 � 1.

The value group of an asymptotic field always has a natural asymptotic couple
structure associated to it:

ADH 5.5 [ADH 2017, 9.1.3]. Let K be a valued differential field. The following
are equivalent:

(1) K is an asymptotic field;

(2) there is an asymptotic couple (0,ψ) with underlying ordered abelian group
0 = v(K×) such that for all g ∈ K× with g 6� 1 we have ψ(vg)= v(g†).

If K is an asymptotic field, we call (0,ψ) as defined in ADH 5.5(2), the asymp-
totic couple of K .

Convention 5.6. Let L be an expansion of an asymptotic field, and P a property
that an asymptotic couple may or may not have. Then “L has property P” means
“the asymptotic couple of L has property P”. For instance, when we say L is
“of H-type”, equivalently “is H-asymptotic”, we mean that the asymptotic couple
(0L , ψL) of L is H -type. Likewise for the properties “asymptotic integration”,
“grounded”, etc.
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We say that an asymptotic field K is pre-differential-valued, or pre-d-valued, if
the following holds:

(PDV) for all f, g ∈ K×, f 4 1, g ≺ 1 =⇒ f ′ ≺ g†.

Every ungrounded asymptotic field is pre-d-valued by [ADH 2017, 10.1.3].
Finally, we say that a pre-d-valued field K is differential-valued, or d-valued, if

it satisfies one of the following three equivalent conditions:

(1) O = C + O.

(2) {res(a) : a ∈ C} = k.

(3) for all f � 1 in K there exists c ∈ C with f ∼ c.

Suppose K is a pre-d-valued field of H -type. Define the O-submodule

I(K ) := {y ∈ K : y 4 f ′ for some f ∈O}

of K. We say that K has integration if K = ∂K, has exponential integration if
K = (K×)†, has small integration if I(K )=∂O, and has small exponential integration
if I(K )= (1+ O)†.

Lemma 5.7. Let K be a pre-d-valued field of H-type with small integration. Then
K is d-valued.

Proof. Take f ∈ K such that f � 1. Then f ′ ∈ I(K )= ∂O, so we have ε ∈ O such
that f ′ = ε′. Hence f − ε = c with c ∈ C× and thus f ∼ c. �

Ordered valued differential fields. A pre-H-field is an ordered pre-d-valued field
K of H -type whose ordering, valuation, and derivation interact as follows:

(PH1) the valuation ring O is convex with respect to the ordering;

(PH2) for all f ∈ K, if f >O, then f ′ > 0.

An H-field is a pre-H -field K that is also d-valued. Any ordered differential
field with the trivial valuation is a pre-H -field.

Example 5.8. Consider the field L = R(x) with x transcendental over R, equipped
with the unique derivation which has constant field R and x ′ = 1. Furthermore,
equip L with the trivial valuation and the unique field ordering determined by
requiring x > R. It follows that L is a pre-H -field with residue field isomorphic to
R(x). However, L is not an H -field. Indeed, the residue field is not even algebraic
over the image of the constant field R under the residue map.

Example 5.9. Consider the Hardy field Q. Using [Rosenlicht 1983a, Theorem 2]
twice, we can extend to the Hardy field Q(x) where x ′ = 1, and further extend
to the Hardy field K =Q(x, arctan(x)) where (arctan(x))′ = 1/(1+ x2). Each of
these three Hardy fields are pre-H -fields (see [ADH 2017, §10.5]); however, Q
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Hardy field value group residue field constant field H -field?
Q {0} Q Q Yes

Q(x) Zv(x) Q Q Yes
K =Q(x, arctan(x)) (I) Zv(x) (I) Q(π) (II) Q No

and Q(x) are H -fields, whereas K is not an H -field: the constant field of K is Q

whereas the residue field of K is Q(π). Note that in this example the residue field
Q(π) is also not algebraic over the image of the constant field Q. For details of
these Hardy field extensions and justification of the claims about K, see the table
and the following discussion:

(I) Note that limx→∞ arctan(x)= π/2, hence arctan(x)4 1 and the residue field
res(K ) of K contains Q(π). Recall that by the Lindemann–Weierstrass theo-
rem [Lindemann 1882], π is transcendental over Q, so res(arctan(x))=π/2 is
transcendental over res(Q(x))=Q. It follows that arctan(x) is transcendental
over Q(x) (otherwise res(K ) would be algebraic over res(Q(x)) = Q). By
[ADH 2017, 3.1.31], it follows that 0K = 0Q(x) = Zv(x), and

res(K )= res(Q(x))(res(arctan(x)))=Q(π/2)=Q(π).

(II) As K is a pre-H -field, it follows that the constant field is necessarily a sub-
field of the residue field Q(π). A routine brute force verification shows that
1/(1+ x2) 6∈ ∂(Q(x)). Thus the differential ring Q(x)[arctan(x)] is simple
by [ADH 2017, 4.6.10] (see the same work for definitions of differential
ring and simple differential ring). Furthermore, as Q(x)[arctan(x)] is finitely
generated as a Q(x)-algebra, it follows that CK is algebraic over Q by [ADH
2017, 4.6.12]. However, Q is algebraically closed in Q(π) (because π is
transcendental over Q) and so CK =Q.

Algebraic extensions. In this subsection K is an asymptotic field. We fix an alge-
braic field extension L of K. By ADH 5.2 we equip L with the unique derivation
extending the derivation ∂ of K. By Chevalley’s Extension Theorem [ADH 2017,
3.1.15] we equip L with a valuation extending the valuation of K. Thus L is a
valued differential field extension of K. We record here several properties that are
preserved in this algebraic extension:

ADH 5.10. The valued differential field L is an asymptotic field [ADH 2017, 9.5.3].
Also:

(1) If K is of H-type, then so is L.

(2) If K is pre-d-valued, then so is L [ADH 2017, 10.1.22].

(3) K is grounded if and only if L is grounded.
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(1) and (3) of ADH 5.10 follow from the corresponding facts about the divisible
hull of an asymptotic couple; see Definition 3.6.

Furthermore, assume that K is equipped with an ordering making it a pre-H -field,
and L|K is an algebraic extension of ordered differential fields.

ADH 5.11. There is a unique convex valuation ring of L extending the valuation
ring of K [ADH 2017, 3.5.18]. Equipped with this valuation ring, L is a pre-H-field
extension of K [ADH 2017, 10.5.4]. Furthermore, if K is an H-field and L = K rc,
a real closure of K, then L is also an H-field [ADH 2017, 10.5.6].

6. λ-freeness

In this section K is an ungrounded H-asymptotic field with 0 6= {0}.

Logarithmic sequences and λ-sequences.

Definition 6.1. A logarithmic sequence (in K ) is a well-indexed sequence (`ρ) in
K�1 such that

(1) `′ρ+1 � `
†
ρ, i.e., v(`ρ+1)= χ(v`ρ), for all ρ;

(2) `ρ′ ≺ `ρ whenever ρ ′ > ρ;

(3) (`ρ) is coinitial in K�1: for each f ∈ K�1 there is an index ρ with `ρ 4 f .

Such sequences exist and can be constructed by transfinite recursion.

Definition 6.2. A λ-sequence (in K ) is a sequence of the form (λρ) = (−(`
††
ρ ))

where (`ρ) is a logarithmic sequence in K.

ADH 6.3 [ADH 2017, 11.5.2]. Every λ-sequence is a pc-sequence of width {γ ∈
0∞ : γ > 9}.

ADH 6.4 [ADH 2017, 11.5.3]. All λ-sequences are equivalent as pc-sequences.

For the rest of this section we will fix in K a distinguished logarithmic sequence
(`ρ) along with its corresponding λ-sequence (λρ). Nothing that we will discuss
depends on the choice of this λ-sequence.

λ-freeness.

ADH 6.5 [ADH 2017, 11.6.1]. The following conditions on K are equivalent:

(1) (λρ) has no pseudolimit in K ;

(2) for all s ∈ K there is g ∈ K�1 such that s− g†† < g†.

Definition 6.6. If L is an H -asymptotic field, we say that L is λ-free (or has λ-
freeness) if it is ungrounded with 0L 6= {0}, and it satisfies condition (2) in ADH 6.5.

The following is immediate from the definition of λ-freeness and is a remark
made after [ADH 2017, 11.6.4]:
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ADH 6.7. Suppose L is an H-asymptotic extension of K such that 9 is cofinal
in 9L . If L is λ-free, then so is K.

ADH 6.8 [ADH 2017, 11.6.4]. If K is a directed union of grounded asymptotic
subfields, then K is λ-free.

Lemma 6.9. If K is a directed union of λ-free asymptotic subfields, then K is
λ-free.

Proof. This follows easily from the (2) characterization of λ-freeness. �

Algebraic extensions. Ultimately, we will show that λ-freeness is preserved under
arbitrary Liouville extensions of H -fields. For the time being, we have the following
results concerning λ-freeness for algebraic extensions:

ADH 6.10 [ADH 2017, 11.6.7]. If K is λ-free, then so is its henselization K h.

ADH 6.11 [ADH 2017, 11.6.8]. K is λ-free if and only if the algebraic closure K a

of K is λ-free.

Lemma 6.12. Suppose K is equipped with an ordering making it a pre-H-field. If
K is λ-free, then so is its real closure K rc.

Proof. This follows from ADH 6.11 and ADH 6.7, using the fact that 9K rc =9. �

Big exponential integration. The “big” exponential integral extensions considered
here complement the Liouville extensions considered in Section 7, Section 8, and
Section 9 below. In particular, we fix an element s ∈ K that does not have an
exponential integral in K, i.e., s 6∈ (K×)†, and we assume that s is bounded away
from the logarithmic derivatives in K in the sense that

S := {v(s− a†) : a ∈ K×} ⊆9↓.

Then under the following circumstances, λ-freeness is preserved when adjoining an
exponential integral for such an s:

ADH 6.13 [ADH 2017, 11.6.12]. Let K be λ-free and 0 be divisible, and let f †
= s,

where f 6= 0 lies in an H-asymptotic field extension of K. Suppose

(1) S does not have a largest element, or

(2) S has a largest element and [γ + v f ] 6∈ [0] for some γ ∈ 0.

Then K ( f ) is λ-free.

ADH 6.14 [ADH 2017, 10.5.20 and 11.6.13]. Suppose K is equipped with an
ordering making it a real closed H-field such that s < 0. Let L = K ( f ) be a field
extension of K such that f is transcendental over K, equipped with the unique
derivation extending the derivation of K such that f †

= s. Then there is a unique
pair consisting of a valuation of L = K ( f ) and a field ordering on L making it a
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pre-H-field extension of K with f > 0. With this valuation and ordering L is an
H-field and 9 is cofinal in 9L . Furthermore, if K is λ-free, then so is L.

Gap creators. Let s ∈ K. We say that s creates a gap over K if v f is a gap in
K ( f ), for some element f 6= 0 in some H -asymptotic field extension of K with
f †
= s.

ADH 6.15 [ADH 2017, 11.6.1 and 11.6.8]. If K is λ-free, then K has rational
asymptotic integration, and no element of K creates a gap over K.

Remark 6.16. ADH 6.15 suggests that one way to view λ-freeness is as a gap
prevention property. How good is λ-freeness as a gap prevention property? Already
the above results show that it is impossible to create a gap from algebraic extensions
and certain exponential integral extensions of a λ-free field. However, we can do
a little bit better than that: by our results Propositions 7.2, 8.3, and 9.3 below, it
follows that λ-freeness is also safely preserved (and so gaps are prevented) when
passing to much more general Liouville extensions of a λ-free field.

On the other hand, not being λ-free does not bode well for preventing a gap:

ADH 6.17. Suppose K has asymptotic integration, 0 is divisible, and λρ  λ ∈ K.
Then s =−λ creates a gap over K. Furthermore, for every H-asymptotic extension
K ( f ) of K such that f †

= s, v f is a gap in K ( f ).

Proof. The first claim is [ADH 2017, 11.5.14] and the second claim is a remark
after that. �

The following will be our main method of producing gaps in Liouville extensions
of H -fields in Section 12 below:

ADH 6.18. Suppose that K is equipped with an ordering making it a real closed
H-field with asymptotic integration, and λρ  λ ∈ K. Let L = K ( f ) be a field
extension of K with f transcendental over K equipped with the unique derivation
extending the derivation of K such that f †

= −λ. Then there is a unique pair
consisting of a valuation of L and a field ordering on L making it an H-field
extension of K with f > 0. With this valuation and ordering, v f is a gap in L.

Proof. By [ADH 2017, 11.5.13] we can apply 10.5.20 of the same work with either
−λ or λ playing the role of s, whichever one is negative. Either way, a positive
exponential integral f of −λ will be adjoined, as it is the reciprocal of a positive
exponential integral of λ. Also L = K ( f ). By ADH 6.17, v f is a gap in L . �

The yardstick argument. Assume that L = K (y) is an immediate H -asymptotic
extension of K where y is transcendental over K. In particular, v(y − K ) is a
nonempty downward closed subset of 0 without a greatest element.
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Proposition 6.19. Assume K is henselian and λ-free, and v(y− K ) ⊆ 0 has the
yardstick property. Then L = K (y) is λ-free.

Proof. Assume towards a contradiction that L is not λ-free. Take λ ∈ L \ K such
that λρ  λ. By ADH 6.3, ADH 4.2, and Lemma 3.11, v(λ− K )=9↓ is jammed.
Furthermore, v(λ− K ) does not have a supremum in Q0 because K is λ-free
and hence has rational asymptotic integration. By the henselian assumption and
Lemma 4.4, there are α ∈ 0 and n ≥ 1 such that v(λ− K ) = (α+ nv(y − K ))↓.
Thus by Lemmas 2.6 and 2.5, v(y−K ) is jammed as well. Since v(y−K ) also has
the yardstick property, by Lemma 3.17 it follows that v(y− K )= 0<. However,
since v(λ− K ) does not have a supremum in Q0, by Lemma 2.1, neither does
v(y− K ), a contradiction. �

7. Small exponential integration

In this section K is a henselian pre-d-valued field of H-type and we fix an element
s ∈ K \ (K×)† such that v(s) ∈ (0>)′. In particular, K does not have small
exponential integration. Take a field extension L = K (y) with y transcendental
over K, equipped with the unique derivation extending the derivation of K such
that (1+ y)† = y′/(1+ y)= s.

ADH 7.1 [ADH 2017, 10.4.3 and 10.5.18]. There is a unique valuation of L that
makes it an H-asymptotic extension of K with y 6� 1. With this valuation L is
pre-d-valued, and is an immediate extension of K with y ≺ 1. Furthermore, if K is
equipped with an ordering making it a pre-H-field, then there is a unique ordering
on L making it a pre-H-field extension of K.

For the rest of this section equip L with this valuation. The main result of this
section is the following:

Proposition 7.2. If K is λ-free, then so is L = K (y).

The proof of Proposition 7.2 is delayed until the end of the section. The following
nonempty set will be of importance in our analysis:

S :=
{
v

(
s−

ε′

1+ ε

)
: ε ∈ K≺1

}
⊆ (0>)′ ⊆ 0∞.

ADH 7.3. The set S does not have a largest element.

Proof. This is Claim 1 in the proof of [ADH 2017, 10.4.3]. �

Lemma 7.4. S is a downward closed subset of (0>)′; in particular, S is convex.

Proof. Let ε1 ≺ 1 in K and α, β ∈ (0>)′ be such that

α < v

(
s−

ε′1

1+ ε1

)
= β.
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Let δ ≺ 1 in K be such that v(δ′)= α and set ε0 := δ+ ε1+ δε1. Note that

ε′1

1+ε1
−

ε′0

1+ε0
=

ε′1

1+ε1
− (1+δ+ε1+δε1)

†

=
ε′1

1+ε1
− ((1+δ)(1+ε1))

†
=

ε′1

1+ε1
−

δ′

1+δ
−

ε′1

1+ε1
=−

δ′

1+δ

and thus

v

(
ε′1

1+ ε1
−

ε′0

1+ ε0

)
= v

(
δ′

1+ δ

)
= α.

Finally,

v

(
s−

ε′0

1+ ε0

)
= v

((
s−

ε′1

1+ ε1

)
+

(
ε′1

1+ ε1
−

ε′0

1+ ε0

))
=min(β,α)= α ∈ S. �

The next lemma shows that S is a transform of the positive portion of v(y− K ).

Lemma 7.5. (v(y− K )>0)′ = S, and equivalently v(y− K )>0
=
∫

S.

Proof. (⊆) Let ε ∈ K be such that v(y− ε) > 0. Then necessarily ε ≺ 1 since y ≺ 1
and so it suffices to prove that (v(y− ε))′ = v(y′− ε′) ∈ S. By (PDV) it follows
that (y− ε)′ � ε′(y− ε). Thus

s −
ε′

1+ε
=

y′

1+y
−

ε′

1+ε
=

y′(1+ε)− ε′(1+y)
(1+y)(1+ε)

=
(1+ε)(y−ε)′ − ε′(y−ε)

(1+y)(1+ε)

� (1+ε)(y−ε)′ − ε′(y−ε)� y′−ε′.

We conclude that v(y′− ε′)= (v(y− ε))′ ∈ S.
For the (⊇) direction, suppose that α=v(s−ε′/(1+ε))∈ S where ε∈ K≺1. Then

the calculation in reverse shows that α= v(y′−ε′)= (v(y−ε))′ ∈ (v(y−K )>0)′. �

The next lemma gives us a “definable yardstick” that we can use for going up
the set S. If K has small integration, then we can obtain a longer yardstick in the
sense of Lemma 3.13, however the shorter yardstick will be good enough for our
purposes.

Lemma 7.6. Suppose γ ∈ S. Then γ < γ −
∫

sγ ∈ S. If I(K ) = ∂O, then γ <
γ +

∫
γ ∈ S. Thus S has the derived yardstick property and so v(y − K )>0 and

v(y− K ) both have the yardstick property.

Proof. Let γ ∈ S and take ε ≺ 1 in K such that γ = v(s− ε′/(1+ ε)). Next take
b ≺ 1 in K such that v(b′) = (v(b))′ = γ (and so v(b) =

∫
γ ). Take u ∈ K with

s− ε′/(1+ ε)= ub′, so u � 1. Next let δ ≺ 1 be such that (1+ ε)(1+ ub)= 1+ δ.
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Now note that

s− δ′

1+δ
= s− ((1+ ε)(1+ ub))† = s− ε′

1+ε
−
(ub)′

1+ub

= ub′− (ub)′

1+ub
=

u2bb′−u′b
1+ub

.

However, since 9 3 s2γ < v(u′) ∈ 0>9, we have

v(u′b)= v(u′b′(b†)−1)= v(u′)−ψ
∫
γ + γ > s2γ − sγ + γ =−

∫
sγ + γ,

the last step following from Lemma 3.9(1). Thus by Lemma 3.13, we have

v
(
s− δ′

1+δ

)
≥min(v(u2bb′),v(u′b))≥min

(
γ +

∫
γ,−

∫
sγ + γ

)
= γ −

∫
sγ > γ.

Finally, by Lemma 7.4, it follows that γ −
∫

sγ ∈ S.
If I(K )= ∂O, then we can arrange u = 1 above and thus

s− δ′

1+δ
=

bb′

1+b
� bb′,

and so v(bb′)= γ +
∫
γ . The claim about v(y−K )>0 now follows from Lemma 7.5

and Proposition 3.19. �

Proposition 7.2 now follows immediately from Lemma 7.6 and Proposition 6.19.

8. Small integration

In this section K is a henselian pre-d-valued field of H-type and we fix an element
s ∈ K such that v(s) ∈ (0>)′ and s 6∈ ∂O. In particular, K does not have small
integration. Define the following nonempty set:

S := {v(s− ε′) : ε ∈ K≺1
} ⊆ (0>)′ ⊆ 0∞.

As K is pre-d-valued, we have the following, which elaborates on [ADH 2017,
10.2.5(iii)]:

Lemma 8.1. S has no largest element and is a downward closed subset of (0>)′;
in particular, S is convex

Proof. First note that v(s)∈ S. Next take γ ∈ S with γ ≥v(s), and write γ =v(s−ε′)
for some ε ≺ 1 in K. As γ ∈ (0>)′, we take b ≺ 1 in K such that v(b′)= γ . Thus
for some u � 1 in K we have v(s− ε′− ub′) > γ . By (PDV), v(u′b) > v(b′)= γ
and so v(s− ε′− (ub)′) > γ . This shows that S has no largest element. The claim
that S is a downward closed subset of (0>)′ follows similarly from S ⊆ (0>)′. �

Take a field extension L = K (y) with y transcendental over K, equipped with
the unique derivation extending the derivation of K such that y′ = s.
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ADH 8.2 [ADH 2017, 10.2.4 and 10.5.8]. There is a unique valuation of L that
makes it an H-asymptotic extension of K with y 6� 1. With this valuation L is an
immediate extension of K with y ≺ 1 and L is pre-d-valued. Furthermore, if K is
equipped with an ordering making it a pre-H-field, then there is a unique ordering
on L making it a pre-H-field extension of K.

For the rest of this section equip L with this valuation. The main result of this
section is the following:

Proposition 8.3. If K is λ-free, then so is L = K (y).

We will delay the proof of Proposition 8.3 until the end of the section.

Lemma 8.4. (v(y− K )>0)′ = S, and equivalently v(y− K )>0
=
∫

S.

Proof. (⊆) Let ε ∈ K be such that y− ε ≺ 1. Then necessarily ε ≺ 1 because y ≺ 1.
Let α= v(y−ε). We want to show that α′ ∈ S. Note that because y−ε 6� 1, we get

α′ = (v(y− ε))′ = v(y′− ε′)= v(s− ε′) ∈ S.

For the (⊇) direction, let ε ≺ 1 be such that α = v(s− ε′) is an arbitrary element
of S. Then by arguing as above, v(y− ε) > 0 and (v(y− ε))′ = α. �

Lemma 8.5. Suppose γ ∈ S. Then γ < γ −
∫

sγ ∈ S. If I(K ) = (1+ O)†, then
γ < γ +

∫
γ ∈ S. Thus S has the derived yardstick property and so v(y−K )>0 and

v(y− K ) both have the yardstick property.

Proof. Suppose γ ∈ S and take ε ≺ 1 in K such that γ = v(s− ε′). As γ ∈ (0>)′,
we may take b ≺ 1 in K such that b′ � s− ε′. Thus there is u � 1 in K such that
ub′ = s− ε′. By (PDV), it follows that v(u′) > 9. Thus

v(s− (ε− ub)′)= v(s− ε′− ub′− ub′)= v(u′b)

= v(u′b′(b†)−1)= v(u′)−ψ
∫
γ + γ

> s2γ − sγ + γ =−
∫

sγ + γ.

Next, assume that (1+ O)† = I(K ). Since s− ε′ ∈ I(K ), there is δ ≺ 1 such that
s− ε′ = (1+ δ)†, i.e.,

s− ε′ = δ′

1+δ
.

Now note that

s− (ε+ δ)′ = s− ε′− δ′ = δ′

1+δ
− δ′ =

−δ′δ

1+δ
� δ′δ,

and so
S 3 v(s− (ε+ δ)′)= v(δ′δ)= γ +

∫
γ.

The claim about v(y−K )>0 now follows from Lemma 8.4 and Proposition 3.19. �

Proposition 8.3 now follows immediately from Lemma 8.5 and Proposition 6.19.
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9. Big integration

In this section K is a henselian pre-d-valued field of H-type and we fix an element
s ∈ K such that

S := {v(s− a′) : a ∈ K } ⊆ (0<)′ ⊆ 0∞.

It will necessarily be the case that s 6∈ ∂K and v(s) ∈ (0<)′.

Lemma 9.1. S is downward closed and does not have a largest element.

Proof. Let γ = v(s− a′) ∈ S for some a ∈ K. Suppose δ < γ in 0. Then there is
f ∈ K such that v( f ′) = δ and so δ = v(s − (a + f )′) ∈ S. Next, by S ⊆ (0<)′,
take b ∈ K such that b′ � s − a′, and then take u � 1 in K with ub′ = s − a′. By
(PDV), u′b ≺ b′ and thus γ < v(s− a′− (ub)′) ∈ S. �

Take a field extension L = K (y) with y transcendental over K, equipped with
the unique derivation extending the derivation of K such that y′ = s.

ADH 9.2 [ADH 2017, 10.2.6 and 10.5.8]. There is a unique valuation of L making
it an H-asymptotic extension of K. With this valuation L is an immediate extension
of K with y � 1 and L is pre-d-valued. Furthermore, if K is equipped with an
ordering making it a pre-H-field, then there is a unique ordering on L making it a
pre-H-field extension of K.

For the rest of this section equip L with this valuation. The main result of this
section is the following:

Proposition 9.3. If K is λ-free, then so is L = K (y).

We will delay the proof of Proposition 9.3 until the end of the section.

Lemma 9.4. v(y− K )′ = S, and equivalently v(y− K )=
∫

S.

Proof. Let γ = v(y− x) with x ∈ K. Then v(y′− x ′)= v(s− x ′) ∈ S ⊆ (0<)′ and
so y− x � 1. Thus γ ′ = (v(y− x))′ = v(y′− x ′)= v(s− x ′) ∈ S. Conversely, if
γ = v(s− x ′) ∈ S, then γ = v(y′− x ′)= (v(y− x))′. �

By Lemma 9.1, we fix g ∈ K�1 such that g′ ∼ s.

Lemma 9.5. S>v(s) is cofinal in S, and

S>v(s) = {v((g(1+ ε))′− s) : ε ≺ 1}.

Proof. S>v(s) is cofinal in S since v(s) ∈ S and S does not have a largest element.
Suppose ε ≺ 1. Then by (PDV), (g(1+ ε))′ = g′ + ε′g + εg′ ∼ g′ ∼ s and so
(g(1+ ε))′− s ≺ s. Conversely, suppose γ = v(x ′− s) > vs. Then x ′ ∼ s and so
x ′ ∼ g′, i.e., x ′− g′ ≺ g′. As g � 1, we get x − g ≺ g and so x = g(1+ ε) for some
ε ≺ 1. �



68 ALLEN GEHRET

Lemma 9.6. If γ ∈ S>v(s), then γ < γ −
∫

sγ ∈ S. Thus S has the derived yardstick
property and so v(y− K ) has the yardstick property.

Proof. Let γ = v((g(1+ ε))′− s) for some ε ≺ 1. Note that

(g(1+ ε))′− s = g′+ gε′+ g′ε− s.

Next take δ � 1 such that

δ′ � g′+ gε′+ g′ε− s,

so v(δ′)= γ , and take u � 1 such that

uδ′ = g′+ gε′+ g′ε− s.

Then δ′ ≺ g′ � s and so δ ≺ g, i.e., δ/g ≺ 1. Furthermore, u†
≺ δ† implies that

u′δ ≺ uδ′. Now consider the following element of S>v(s):

β = v
((

g
(

1+ ε− uδ
g

))′
− s

)
.

Note that (
g
(

1+ ε− uδ
g

))′
− s = (g+ gε− uδ)′− s

= g′+ gε′+ g′ε− u′δ− uδ′− s

= (g′+ gε′+ g′ε− s− uδ′)− u′δ

=−u′δ.

Thus we can use that v(u′) > 9 and γ = v(δ)+ v(δ†) to get the yardstick:

v(−u′δ)= v(u′(δ†)−1δ′)= v(u′(δ†)−1)+ γ

= v(u′)−ψ
∫
γ + γ = v(u′)− sγ + γ

> s2γ − sγ + γ =−
∫

sγ + γ.

The claim about v(y− K ) now follows from Lemma 9.4 and Proposition 3.19. �

Proposition 9.3 now follows immediately from Lemma 9.6 and Proposition 6.19.

10. The differential-valued hull and H-field hull

In this section K is a pre-d-valued field of H-type.

ADH 10.1 [ADH 2017, 10.3.1]. K has a d-valued extension dv(K ) of H-type such
that any embedding of K into any d-valued field L of H-type extends uniquely to
an embedding of dv(K ) into L.

The d-valued field dv(K ) as in ADH 10.1 above is called the differential-valued
hull of K .
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Theorem 10.2. If K is λ-free, then dv(K ) is λ-free.

Proof. By iterating applications of ADH 6.10, Proposition 8.3, and Lemma 6.9, we
get an immediate henselian λ-free H -asymptotic extension L of K which has small
integration. By Lemma 5.7, L will also be d-valued. Thus by ADH 10.1, dv(K )
can be identified with a subfield of L which contains K. Finally, by ADH 6.7 it
follows that dv(K ) is λ-free. �

Definition 10.3. A gap β in K is said to be a true gap if no b � 1 in K satisfies
v(b′)= β, and is said to be a fake gap otherwise (that is, if there is b� 1 in K such
that v(b′)= β).

Remark 10.4. Suppose K has a gap β. Then the asymptotic couple (0,ψ) “be-
lieves” it can make a choice about β, in the sense of Remark 3.5. However, if β is
a fake gap, then this choice is completely predetermined by K itself. Indeed, if L
is a d-valued extension of K of H -type and β is a fake gap, then there is ε ∈ OL

such that v(ε′)= β. However, if β is a true gap, then both options of this choice
are still available to K, see [ADH 2017, 10.3.2(ii), 10.2.1, and 10.2.2].

Lemma 10.5. If K is d-valued and has a gap β, then β is a true gap.

Proof. Let K be a d-valued field and consider β ∈ 0. Suppose that there is b � 1 in
K such that v(b′)= β. Then there are c ∈ C× and ε ≺ 1 in K× such that b= c+ ε
and thus v(b′)= v(ε′)= β ∈ (0>)′. In particular, β is not a gap. �

Corollary 10.6. The differential-valued hull of K has the following properties:

(1) If K is grounded, then dv(K ) is grounded.

(2) If K has a fake gap, then dv(K ) is grounded.

(3) If K has a true gap, then dv(K ) has a true gap.

(4) If K has asymptotic integration and is not λ-free, then dv(K ) has asymptotic
integration and is not λ-free.

(5) If K is λ-free, then dv(K ) is λ-free.

Proof. (1)–(4) are a restatement of [ADH 2017, 10.3.2]. (5) is Theorem 10.2. �

The H-field hull of a pre-H-field. In this subsection we further assume that K is
equipped with an ordering making it a pre-H-field.

ADH 10.7 [ADH 2017, 10.5.13]. A unique field ordering on dv(K ) makes dv(K ) a
pre-H-field extension of K. Let H(K ) be dv(K ) equipped with this ordering. Then
H(K ) is an H-field and embeds uniquely over K into any H-field extension of K.

The H -field H(K ) in ADH 10.7 above is called the H-field hull of K . We have
the following H -field analogues of Theorem 10.2 and Corollary 10.6:

Corollary 10.8. If K is λ-free, then H(K ) is λ-free.
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Corollary 10.9. The H-field hull of K has the following properties:

(1) If K is grounded, then H(K ) is grounded.

(2) If K has a fake gap, then H(K ) is grounded.

(3) If K has a true gap, then H(K ) has a true gap.

(4) If K has asymptotic integration and is not λ-free, then H(K ) has asymptotic
integration and is not λ-free.

(5) If K is λ-free, then H(K ) is λ-free.

11. The integration closure

In this section K is a d-valued field of H-type with asymptotic integration.

ADH 11.1 [ADH 2017, 10.2.7]. K has an immediate asymptotic extension K
(∫ )

that is henselian, has integration, and embeds over K into any henselian d-valued
H-asymptotic extension of K that has integration.

Given any K
(∫ )

with these properties, the only henselian asymptotic subfield of
K
(∫ )

containing K and having integration is K
(∫ )

.

Theorem 11.2. If K is λ-free, then so is K
(∫ )

.

Proof. By iterating Lemma 6.9, ADH 6.10, and Propositions 8.3 and 9.3, we obtain
a λ-free d-valued immediate H -asymptotic extension L of K that is henselian and
has integration. By ADH 11.1, K

(∫ )
can be identified with a subfield of L which

contains K. Finally, by ADH 6.7, K
(∫ )

is also λ-free. �

12. The number of Liouville closures

In this section K is a pre-H-field. K is said to be Liouville closed if it is a real
closed H -field with integration and exponential integration. A Liouville closure of
K is a Liouville closed H -field extension of K which is also a Liouville extension
of K.

Theorem 12.1. Suppose K is an H-field. Then K has at least one and at most two
Liouville closures up to isomorphism over K. In particular,

(1) K has exactly one Liouville closure up to isomorphism over K if and only if
(a) K is grounded, or
(b) K is λ-free.

(2) K has exactly two Liouville closures up to isomorphism over K if and only if
(c) K has a gap, or
(d) K has asymptotic integration and is not λ-free.

Theorem 12.1 will follow from the following Proposition, whose proof we delay
until later in the section:
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Proposition 12.2. Suppose K is an H-field.

(1) If K is λ-free, then K has exactly one Liouville closure up to isomorphism
over K.

(2) If K has asymptotic integration and is not λ-free, then K has at least two
Liouville closures up to isomorphism over K.

Proof of Theorem 12.1 assuming Proposition 12.2. It is clear that K will be in case
(a), (b), (c) or (d), and all four cases are mutually exclusive. If K is in case (a),
then K has exactly one Liouville closure up to isomorphism over K, by [ADH
2017, 10.6.23]. If K is in case (c), then K has exactly two Liouville closures up to
isomorphism over K, by [ADH 2017, 10.6.25]. Cases (b) and (d) are taken care of
by Proposition 12.2 and [ADH 2017, 10.6.12]. �

In general, a pre-H -field which is not also an H -field might not have any Liouville
closures at all. For instance, the pre-H -field L from Example 5.8 cannot have any
Liouville closures: a Liouville closure of L would necessarily contain H(L), but
H(L) cannot be contained inside any Liouville extension of L because CH(L) is
not an algebraic extension of CL = R. In such a situation, the next best thing is to
consider Liouville closures of the H -field hull:

Corollary 12.3. H(K ) has at least one and at most two Liouville closures up to
isomorphism over K. In particular,

(1) H(K ) has exactly one Liouville closure up to isomorphism over K if and only if

(a) K is grounded, or
(b) K has a fake gap, or
(c) K is λ-free.

(2) H(K ) has exactly two Liouville closures up to isomorphism over K if and
only if

(d) K has a true gap, or
(e) K has asymptotic integration and is not λ-free.

Proof. If we replace in the statement of Corollary 12.3 all instances of “up to
isomorphism over K ” with “up to isomorphism over H(K )”, then this would follow
from Corollary 10.9 and Theorem 12.1. Now, to strengthen the statements to “up
to isomorphism over K ”, use that H(K ) is determined up to unique isomorphism
in ADH 10.7. �

Liouville towers. In this subsection K is an H-field. The primary method of con-
structing Liouville closures of an H -field is with a Liouville tower. A Liouville
tower on K is a strictly increasing chain (Kλ)λ≤µ of H -fields, indexed by the
ordinals less than or equal to some ordinal µ, such that
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(1) K0 = K ;

(2) if λ is a limit ordinal, 0< λ≤ µ, then Kλ =
⋃
ι<λ Kι;

(3) for λ < λ+ 1≤ µ, either

(a) Kλ is not real closed and Kλ+1 is a real closure of Kλ,

or Kλ is real closed, Kλ+1 = Kλ(yλ) with yλ 6∈ Kλ (so yλ is transcendental
over Kλ), and one of the following holds, with (0λ, ψλ) the asymptotic couple
of Kλ and 9λ := ψλ(0 6=λ ):

(b) y′λ = sλ ∈ Kλ with yλ ≺ 1 and v(sλ) is a gap in Kλ,
(c) y′λ = sλ ∈ Kλ with yλ � 1 and v(sλ) is a gap in Kλ,
(d) y′λ = sλ ∈ Kλ with v(sλ)=max9λ,
(e) y′λ = sλ ∈ Kλ with yλ ≺ 1, v(sλ) ∈ (0>λ )

′, and sλ 6= ε′ for all ε ∈ K≺1
λ ,

(f) y′λ = sλ ∈ Kλ such that Sλ := {v(sλ−a′) : a ∈ Kλ}< (0
>
λ )
′, and Sλ has no

largest element,
(g) y†

λ = sλ ∈ Kλ with yλ ∼ 1, v(sλ) ∈ (0>λ )
′, and sλ 6= a† for all a ∈ K×λ ,

(h) y†
λ = sλ ∈ K<

λ with yλ > 0, and v(sλ− a†) ∈9↓λ for all a ∈ K×λ .

The H -field Kµ is called the top of the tower (Kλ)λ≤µ. We say that a Liouville
tower (Kλ)λ≤µ is maximal if it cannot be extended to a Liouville tower (Kλ)λ≤µ+1

on K. Given a Liouville tower (Kλ)λ≤µ on K, 0 ≤ λ < λ+ 1 ≤ µ, we say Kλ+1

is an extension of type (∗) for (∗) ∈ {(a), (b), . . . , (h)} if Kλ+1 and Kλ satisfy the
properties of item (∗) as in the definition of Liouville tower.

ADH 12.4. (1) Let (Kλ)λ≤µ be a Liouville tower on K. Then:
(a) Kµ is a Liouville extension of K .
(b) The constant field Cµ of Kµ is a real closure of C if µ > 0.
(c) |Kµ| = |K |, hence µ < |K |+.

(2) There is a maximal Liouville tower on K.

(3) The top of a maximal Liouville tower on K is Liouville closed, and hence a
Liouville closure of K.

(4) If (Kλ)λ≤µ is a Liouville tower on K such that no Kλ with λ < µ has a gap,
and if Kµ is Liouville closed, then Kµ is the unique Liouville closure of K up
to isomorphism over K.

Proof. (1) is [ADH 2017, 10.6.13], (2) follows from (1)(c), (3) is [ADH 2017,
10.6.14], and (4) is [ADH 2017, 10.6.17]. �

For a set 3⊆ {(a), (b), . . . , (h)} with (a) ∈3, the definition of a 3-tower on K
is identical to that of a Liouville tower on K , except that in clause (3) of the above
definition only the items from3 occur. Thus every3-tower on K is also a Liouville
tower on K. Maximal 3-towers exist on K by Zorn’s Lemma and ADH 12.4(1)(c).
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Proof of Proposition 12.2. (1) Assume K is λ-free. By ADH 12.4(4), it suffices
to find a Liouville tower (Kλ)λ≤µ on K such that Kµ is Liouville closed and no
Kλ with λ < µ has a gap. Take a maximal {(a),(e),(f),(g),(h)}-tower (Kλ)λ≤µ on K.
By Lemmas 6.9, 6.12, Propositions 7.2, 8.3, 9.3 and ADH 6.14, Kλ is λ-free for
every λ≤ µ. In particular, no Kλ with λ < µ has a gap. Finally, by maximality, it
follows that Kµ is Liouville closed.

(2) Assume that K has asymptotic integration and is not λ-free. First consider
the case that K does not have rational asymptotic integration. Then K1 = K rc

has a gap. By [ADH 2017, 10.6.25] K1 has two Liouville closures which are not
isomorphic over K1. As K1 is a real closure of K, they are not isomorphic over K
either because the real closure is unique up to unique isomorphism. Thus K has at
least two Liouville closures which are not isomorphic over K.

Next, consider the case that K is real closed. In this case, if L is a Liouville
closure of K, then CL = C since C is necessarily real closed. As K is not λ-free,
there is λ ∈ K such that λρ  λ. Next, let K1 = K ( f ) be the H -field extension
from ADH 6.18 such that f †

=−λ and v( f ) is a gap in K1. Again by [ADH 2017,
10.6.25], K1 has two Liouville closures L1 and L2 which are not isomorphic over
K1. There is ỹ ∈ L≺1

1 such that ỹ′ = f whereas every y ∈ L2 such that y′ = f has
the property that y � 1. Furthermore, as both L1 and L2 are Liouville closed, they
both contain nonconstant elements y such that y′′ =−λy′.

Claim. If y ∈ L1 \C is such that y′′ =−λy′, then y 4 1. If y ∈ L2 \C is such that
y′′ =−λy′, then y � 1.

Proof of Claim. Suppose y ∈ L1 \C is such that y′′ =−λy′. Let ỹ ∈ L≺1
1 be such

that ỹ′ = f . Then ỹ ∈ L1 \C since f 6= 0. Furthermore ỹ′′ = −λỹ′ so there are
c0 ∈ C× and c1 ∈ C such that y = c0 ỹ+ c1, by Lemma 5.4. It follows that y 4 1.

Next, let y ∈ L2\C and let ỹ ∈ L2 be such that ỹ′= f . Then ỹ 6∈C because ỹ� 1
and ỹ′′ =−λỹ′. As in the first case, it will follow from Lemma 5.4 that y � 1. �

It follows from the claim that L1 and L2 are not isomorphic over K.
Finally, consider the case that K is not real closed, and has rational asymptotic

integration. By the above case, the real closure K rc has two Liouville closures L1

and L2 which are not isomorphic over K rc. These two Liouville closures will also
not be isomorphic over K, as real closures are unique up to unique isomorphism. �

The next lemma concerns the appearances of gaps in arbitrary Liouville H -field
extensions, not necessarily extensions occurring as the tops of Liouville towers.

Lemma 12.5. Suppose K is grounded or is λ-free and L is a Liouville H-field
extension of K. Then L does not have a gap.

Proof. We first consider the case that K is λ-free. Let M be the Liouville closure
of K which was constructed in the proof of Proposition 12.2. We claim that 9
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is cofinal in 9M . This follows from the fact that M is constructed as the top of
an {(a),(e),(f),(g),(h)}-tower on K : the 9-set remains unchanged when passing to
extensions of type (a), (e), (f) or (g) and for extensions of type (h), the original9-set
is cofinal in the larger 9-set by ADH 6.14. Finally, as M is the unique Liouville
closure of K up to isomorphism over K, we may identify L with a subfield of M
which contains K. Thus 9L is cofinal in 9M . As M is λ-free, so is L by ADH 6.7.
In particular, L has rational asymptotic integration and so it does not have a gap.

We next consider the case that K is grounded. Let M be the Liouville closure of
K as constructed in the proof of [ADH 2017, 10.6.24] and the remarks following
it. In particular, using the notation from the remarks following that proof, we
have M =

⋃
n<ω `

n(K ) where `0(K )= K and `n+1(K ), for each n, is a grounded
Liouville H -field extension of K such that max9`n+1(K ) = s(max9`n(K )). Thus
the set {sn(max9) : n < ω} is a cofinal subset of 9M . We now identify L with a
subfield of M that contains K and consider two cases:

Case 1: {sn(max9) : n < ω} 6⊆9L

In this case there is a least N <ω such that s N (max9)∈9L but s(s N (max9))∈
9M \9L . This implies that the element s N (max9) ∈9L cannot be asymptotically
integrated. The only way this can happen is if s N (max9) = max9L . Thus L is
grounded and does not have a gap.

Case 2: {sn(max9) : n < ω} ⊆9L

In this case 9L is cofinal in 9M and so L is λ-free by ADH 6.7. This implies
that L has rational asymptotic integration and therefore does not have a gap. �

We also give a characterization of the dichotomy of Theorem 12.1 entirely in
terms of gaps appearing in Liouville towers and arbitrary Liouville extensions:

Corollary 12.6. The following are equivalent:

(1) K has exactly two Liouville closures up to isomorphism over K.

(2) There is a Liouville tower (Kλ)λ≤µ on K such that some Kλ has a gap.

(3) Every maximal Liouville tower (Kλ)λ≤µ on K has some Kλ with a gap.

(4) There is a Liouville tower (Kλ)λ≤µ on K with µ≥ ω such that either K0, K1

or K2 has a gap.

(5) There is an H-field L which has a gap and is a Liouville extension of K.

Proof. (4) =⇒ (2) and (3) =⇒ (2) are clear. (1) =⇒ (3) and (1) =⇒ (5) follow from
ADH 12.4(4).

(1) =⇒ (4): If K has exactly two Liouville closures up to isomorphism over K,
then in particular K itself is not Liouville closed. A routine argument shows that
every maximal Liouville tower (Kλ)λ≤µ has µ ≥ ω. By Theorem 12.1 either K
has a gap or K has asymptotic integration and is not λ-free. If K has a gap, then
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for any maximal Liouville tower (Kλ)λ≤µ, K0 has a gap. Otherwise, the proof of
Proposition 12.2 shows how we can arrange either K1 or K2 to have a gap.

(2) =⇒ (1): We will prove the contrapositive. Suppose that K has exactly one
Liouville closure up to isomorphism over K and let (Kλ)λ≤µ be a Liouville tower
on K. We will prove by induction on λ that Kλ is either grounded or λ-free, and
thus no Kλ has a gap. The case λ= 0 is clear and the limit ordinal case is taken care
of by ADH 6.8 and Lemma 6.9. Suppose λ= ν + 1 for some ordinal 0 ≤ ν < µ.
If Kλ is a real closure of Kν , then Kλ will be grounded if Kν is by Definition 3.6
(1) and Kλ will be λ-free if Kν is by Lemma 6.12. By the inductive hypothesis,
Kλ will never be an extension of type (b) or (c). If Kλ is an extension of type (d),
then Kλ will also be grounded by [ADH 2017, 10.2.3]. Extensions of type (e), (f)
and (g) are necessarily immediate extensions, so if Kν is grounded, then so is Kλ

and if Kν is λ-free, then so is Kλ by Propositions 7.2, 8.3, and 9.3. Finally, if Kλ

is an extension of type (h), and if Kν is grounded, then so is Kλ by [ADH 2017,
10.5.20], and if Kν is λ-free then so is Kλ by ADH 6.14.

(5) =⇒ (1): Suppose K has a Liouville H -field extension with a gap. Then
by Lemma 12.5, K has a gap or K has asymptotic integration and is not λ-free.
By Theorem 12.1, it follows that K has exactly two Liouville closures up to
isomorphism over K. �

Remark 12.7. The implication (2) =⇒ (1) of our Corollary 12.6 above occurs
without proof in [Aschenbrenner and van den Dries 2002] (see item (II) before
their 6.11). Also, (1) ⇐⇒ (5) of our Corollary 12.6 is stated without proof in
[Aschenbrenner and van den Dries 2005] (see the paragraph after their 4.3).

Acknowledgements

The author thanks the referee for the very careful reading of the manuscript and many
helpful suggestions, Chris Miller for suggesting Example 5.9, Santiago Camacho
and Elliot Kaplan for their helpful comments, Matthias Aschenbrenner for his
encouragement, and especially Lou van den Dries for his gentle guidance and
endless patience.

References

[ADH 2017] M. Aschenbrenner, L. van den Dries, and J. van der Hoeven, Asymptotic differential
algebra and model theory of transseries, vol. 195, Annals of Mathematics Studies, Princeton
University Press, Princeton, NJ, 2017. Zbl

[Aschenbrenner 2003] M. Aschenbrenner, “Some remarks about asymptotic couples”, pp. 7–18 in
Valuation theory and its applications, II (Saskatoon, 1999), edited by F.-V. Kuhlmann et al., Fields
Inst. Commun. 33, Amer. Math. Soc., Providence, RI, 2003. MR Zbl

[Aschenbrenner and van den Dries 2000] M. Aschenbrenner and L. van den Dries, “Closed asymptotic
couples”, J. Algebra 225:1 (2000), 309–358. MR Zbl

http://msp.org/idx/zbl/06684722
https://www.math.ucla.edu/~matthias/pdf/psi2.pdf
http://msp.org/idx/mr/2018547
http://msp.org/idx/zbl/1038.03040
http://dx.doi.org/10.1006/jabr.1999.8128
http://dx.doi.org/10.1006/jabr.1999.8128
http://msp.org/idx/mr/1743664
http://msp.org/idx/zbl/0974.12015


76 ALLEN GEHRET

[Aschenbrenner and van den Dries 2002] M. Aschenbrenner and L. van den Dries, “H -fields and
their Liouville extensions”, Math. Z. 242:3 (2002), 543–588. MR Zbl

[Aschenbrenner and van den Dries 2005] M. Aschenbrenner and L. van den Dries, “Asymptotic
differential algebra”, pp. 49–85 in Analyzable functions and applications, edited by O. Costin et al.,
Contemp. Math. 373, Amer. Math. Soc., Providence, RI, 2005. MR Zbl

[Bourbaki 1951] N. Bourbaki, Fonctions d’une variable réelle, Chapitres IV–VII, Actualités Sci. Ind.
1132, Hermann et Cie., Paris, 1951. Definitive edition (chapters I-VII) published by Masson, Paris,
1976; translated as Functions of a real variable, Springer, 2004. MR Zbl

[Écalle 1992] J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture
de Dulac, Hermann, Paris, 1992. MR Zbl

[Engler and Prestel 2005] A. J. Engler and A. Prestel, Valued fields, Springer, Berlin, 2005. MR Zbl

[Gehret 2017a] A. Gehret, “The asymptotic couple of the field of logarithmic transseries”, J. Algebra
470 (2017), 1–36. MR Zbl

[Gehret 2017b] A. Gehret, “NIP for the asymptotic couple of the field of logarithmic transseries”, J.
Symb. Log. 82:1 (2017), 35–61. MR

[van der Hoeven 2006] J. van der Hoeven, Transseries and real differential algebra, Lecture Notes in
Mathematics 1888, Springer, Berlin, 2006. MR Zbl

[Kuhlmann 1994] F.-V. Kuhlmann, “Abelian groups with contractions, I”, pp. 217–241 in Abelian
group theory and related topics (Oberwolfach, 1993), edited by R. Göbel et al., Contemp. Math. 171,
Amer. Math. Soc., Providence, RI, 1994. MR Zbl

[Kuhlmann 1995] F.-V. Kuhlmann, “Abelian groups with contractions, II: Weak o-minimality”, pp.
323–342 in Abelian groups and modules (Padova, 1994), edited by A. Facchini and C. Menini, Math.
Appl. 343, Kluwer Acad. Publ., Dordrecht, 1995. MR Zbl

[Kuhlmann 2000] S. Kuhlmann, Ordered exponential fields, Fields Institute Monographs 12, Amer.
Math. Soc., Providence, RI, 2000. MR Zbl

[Lindemann 1882] F. Lindemann, “Ueber die Zahl π”, Math. Ann. 20:2 (1882), 213–225. MR JFM

[Rosenlicht 1979] M. Rosenlicht, “On the value group of a differential valuation”, Amer. J. Math.
101:1 (1979), 258–266. MR Zbl

[Rosenlicht 1980] M. Rosenlicht, “Differential valuations”, Pacific J. Math. 86:1 (1980), 301–319.
MR Zbl

[Rosenlicht 1981] M. Rosenlicht, “On the value group of a differential valuation, II”, Amer. J. Math.
103:5 (1981), 977–996. MR Zbl

[Rosenlicht 1983a] M. Rosenlicht, “Hardy fields”, J. Math. Anal. Appl. 93:2 (1983), 297–311. MR
Zbl

[Rosenlicht 1983b] M. Rosenlicht, “The rank of a Hardy field”, Trans. Amer. Math. Soc. 280:2 (1983),
659–671. MR Zbl

Received December 12, 2016. Revised February 14, 2017.

ALLEN GEHRET

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

1409 W. GREEN STREET

URBANA, IL 61801
UNITED STATES

agehret2@illinois.edu

http://dx.doi.org/10.1007/s002090000358
http://dx.doi.org/10.1007/s002090000358
http://msp.org/idx/mr/1985465
http://msp.org/idx/zbl/1066.12002
http://dx.doi.org/10.1090/conm/373/06914
http://dx.doi.org/10.1090/conm/373/06914
http://msp.org/idx/mr/2130825
http://msp.org/idx/zbl/1087.12002
http://msp.org/idx/mr/0045774
http://msp.org/idx/zbl/0042.09201
http://msp.org/idx/mr/1399559
http://msp.org/idx/zbl/1241.34003
http://msp.org/idx/mr/2183496
http://msp.org/idx/zbl/1128.12009
http://dx.doi.org/10.1016/j.jalgebra.2016.08.016
http://msp.org/idx/mr/3565423
http://msp.org/idx/zbl/06647027
http://dx.doi.org/10.1017/jsl.2016.59
http://msp.org/idx/mr/3631276
http://dx.doi.org/10.1007/3-540-35590-1
http://msp.org/idx/mr/2262194
http://msp.org/idx/zbl/1128.12008
http://dx.doi.org/10.1090/conm/171/01775
http://msp.org/idx/mr/1293144
http://msp.org/idx/zbl/0837.03031
http://dx.doi.org/10.1007/978-94-011-0443-2_27
http://msp.org/idx/mr/1378210
http://msp.org/idx/zbl/0878.03029
http://msp.org/idx/mr/1760173
http://msp.org/idx/zbl/0989.12003
http://dx.doi.org/10.1007/BF01446522
http://msp.org/idx/mr/1510165
http://msp.org/idx/jfm/14.0369.04
http://dx.doi.org/10.2307/2373949
http://msp.org/idx/mr/527836
http://msp.org/idx/zbl/0411.12021
http://dx.doi.org/10.2140/pjm.1980.86.301
http://msp.org/idx/mr/586879
http://msp.org/idx/zbl/0401.12024
http://dx.doi.org/10.2307/2374255
http://msp.org/idx/mr/630775
http://msp.org/idx/zbl/0474.12020
http://dx.doi.org/10.1016/0022-247X(83)90175-0
http://msp.org/idx/mr/700146
http://msp.org/idx/zbl/0518.12014
http://dx.doi.org/10.2307/1999639
http://msp.org/idx/mr/716843
http://msp.org/idx/zbl/0536.12015
mailto:agehret2@illinois.edu


PACIFIC JOURNAL OF MATHEMATICS
Vol. 290, No. 1, 2017

https://doi.org/10.2140/pjm.2017.290.77

BRAID GROUPS AND QUIVER MUTATION

JOSEPH GRANT AND BETHANY ROSE MARSH

We describe presentations of braid groups of type ADE and show how these
presentations are compatible with mutation of quivers. In types A and D
these presentations can be understood geometrically using triangulated sur-
faces. We then give a categorical interpretation of the presentations, with
the new generators acting as spherical twists at simple modules on derived
categories of Ginzburg dg-algebras of quivers with potential.
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1. Introduction

Braid groups are fundamental objects in mathematics. Although they are of a
topological and geometric nature, they have an algebraic interpretation: a simple
presentation by generators and relations which is just based on adjacency of integers
[Artin 1925]. This can be encoded in a line graph, and from there one can generalize
to define a group from any finite graph, known as the Artin braid group.

The most well known groups defined from graphs are the Coxeter groups (we
restrict to the simply laced cases, for simplicity). These are closely related to Artin
braid groups: each Coxeter group is a quotient of a corresponding Artin braid group
in a natural way. In particular, the symmetric group on n letters is a quotient of the
classical braid group on n strands. Coxeter groups naturally split into two distinct
classes: those of finite type, corresponding to the Dynkin diagrams of type ADE,
and those of infinite type. Although all Artin braid groups are infinite, the Artin
braid groups of Dynkin type have a different character to those not of Dynkin type,
and are known as Artin groups of “finite type”.
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This dichotomy also arises in another area of mathematics which has generated a
lot of interest in the recent years: cluster algebras. In this theory, there is a notion of
finite-type cluster algebras, which again correspond to the Dynkin diagrams [Fomin
and Zelevinsky 2003]. Cluster algebras are specified by a directed graph, known as
a quiver, together with other information. A key ingredient in the definition is the
notion of mutation, which changes the arrows in a quiver in a nonobvious manner
which generalizes reflection at a source or sink. Barot and Marsh [2015] have given
new presentations of Coxeter groups of finite type based on quivers obtained from
Dynkin diagrams under finite sequences of mutations. Our first result generalizes
this to braid groups:

Theorem A. (Theorem 2.12) Let Q be a quiver, with vertices 1, 2, . . . , n, obtained
from a Dynkin quiver by a finite sequence of mutations. Let BQ be the group with
generators s1, s2, . . . , sn , subject to the relations

(a) si s j = s j si if there is no arrow between i and j (in either direction);

(b) si s j si = s j si s j if there is an arrow between i and j (in either direction);

(c) si1si2 ···sin si1 ···sin−2 = si2si3 ···sin si1 ···sin−1 = ··· = sin si1si2 ···sin si1si2 ···sin−3,

whenever i1→ i2→ · · · → in→ i1 is a chordless cycle in Q.

Then BQ is isomorphic to the Artin braid group of the same Dynkin type as Q.

We prove our result via isomorphisms between abstractly defined groups, which
can be thought of as mutations of groups, even though the resulting groups are
isomorphic. The Artin group presentations we obtain induce presentations of the
corresponding Coxeter groups which are distinct from those in [Barot and Marsh
2015]; we also give a compatibility result which shows the relationship between
the two presentations. Why have we chosen to use presentations which don’t agree
with the earlier work? This is explained in the following two sections of the paper,
as we now detail.

Certain cluster algebras can be understood using pictures. A (tagged) triangu-
lation of a Riemann surface with marked points on its boundary defines a quiver
[Fomin and Zelevinsky 2002; Fomin et al. 2008]; see also [Caldero et al. 2006].
Then mutation of the quiver has a natural interpretation in terms of swapping one
diagonal of a given quadrilateral for the other. So these cluster algebras have a
topological interpretation. In particular, such descriptions are available for the
infinite families of Dynkin type. It is natural to ask whether we can understand the
generators above, and the isomorphisms corresponding to mutations, in terms of
the geometry of the surface. The answer is yes, as shown by the following theorem:

Theorem B. (Theorem 3.6) Let 1 be a Dynkin diagram of type An or type Dn . In
the former case, let (X,M) be a disk with n + 3 marked points on its boundary.
In the latter case, let (X,M) be a disk with n marked points on its boundary and
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one marked point in its interior, taken to be a cone point of order two (so X is an
orbifold in this case).

Let T be a tagged triangulation of (X,M). Let GT be the graph in (X,M) dual
to T . For each vertex i of the quiver QT associated to T as in [Fomin and Zelevinsky
2002; Fomin et al. 2008], let σi be the braid of (X,M) associated to the edge of
GT crossing the tagged arc in T corresponding to i (see Definition 3.3). Then there
is an isomorphism between the subgroup HT of the braid group generated by the
σi and the group BQ defined above, taking σi to si .

Furthermore, in type An , the subgroup HT coincides with the braid group
of (X,M), while in type Dn , it is of index two in the braid group of (X,M).

As well as the original combinatorial and commutative algebraic approach to
cluster algebras, and the geometric approach described above, there is a third
approach which has proved very powerful: the representation theoretic approach
[Buan et al. 2006; Caldero et al. 2006]. This approach uses finite-dimensional
(noncommutative) algebras and ideas from categorification to better understand
cluster algebras, and has received intense study. Braid groups also appear in
representation theory and categorification [Rouquier and Zimmermann 2003; Seidel
and Thomas 2001]: in many important situations there are actions of braid groups
on derived categories via spherical twists. One example of this is given by certain
derived categories of differential graded algebras [Ginzburg 2007; Keller and Yang
2011] which are known to cover the categories appearing in the representation
theoretic approach to cluster algebras [Amiot 2009]. One might hope that these
categorical braid group actions are related to our presentations of braid groups, and
we show that this is indeed the case.

First, we make a connection between the categorical and the geometric situations.
The relevant differential graded algebras are defined by use of a quiver together with
a formal sum of cycles in that quiver known as a potential [Ginzburg 2007]. Mutation
of quivers of potential has been defined [Derksen et al. 2008] and, in the situations
where our cluster algebra comes from a Riemann surface, the mutation of potentials
also has a geometric interpretation [Labardini-Fragoso 2009]. Relying heavily on
results of Labardini-Fragoso [2009; 2016], we observe that the potential defined on
mutation-Dynkin quivers according to the geometric procedure is equivalent to the
“obvious” potential that one might guess (Proposition 4.4). So, while the potential
is important, it is in fact entirely determined by the quiver in types A and D. Note
that this result could also be proved relatively easily via a direct calculation.

Next we show that we do indeed obtain an action of the groups BQ (defined using
mutation-Dynkin quivers) on derived categories of Ginzburg differential graded
algebras in which the generators act via spherical twists. After setting up all the
technical machinery correctly, the main difficulty in proving this is to check that
the mutation procedure for the groups BQ , which relates the group associated to a
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quiver to the group associated to a mutated quiver, actually lifts to the categorical
setting as a natural isomorphism of functors. We do this, using important results of
Keller and Yang [2011]. From here, we can use the earlier theory developed here
to show that the generators si of finite type Artin braid groups from Theorem A
can be viewed as derived autoequivalences:

Theorem C. (Theorem 4.16) Let (Q,W ) be a mutation-Dynkin quiver with po-
tential of type ADE, and let 0Q,W be the corresponding Ginzburg differential
graded algebra. Let Dfd(0Q,W ) denote the full subcategory of the derived category
D(0Q,W ) on objects with finite-dimensional total homology. Then there is a group
homomorphism

BQ→ Aut Dfd(0Q,W ), si 7→ Fi

sending the group generator associated to the vertex i of Q to the spherical twist
Fi at the simple 0Q,W -module Si .

Since we started work on this project, we have become aware of independent
work by other authors. A. King and Y. Qiu have a related project, and were aware
of the new relations between spherical twists and a topological interpretation of
the spherical twist group; see [Qiu 2016], especially Section 10.1. In particular, an
independent proof of a version of Theorem 2.10 in types A and D was announced
in [Qiu 2016]. A key difference in our approach is the use of an orbifold with
cone point of degree two in type D. In [Nagao 2010, §2.2], K. Nagao refers to an
action of the mapping class group of a marked surface on the derived category of a
Ginzburg dg-algebra associated to a triangulation.

Since we released the first draft of this article, the preprint [Haley et al. 2014] has
appeared, where the authors give a presentation (different from the one given here)
of the Artin braid group for each diagram of finite type (in the cluster-theoretic
sense). This includes the non-simply-laced cases (not considered here) but does not
include a topological or categorical interpretation.

2. Presentations of braid groups

Braid groups. Let 1 be a graph of ADE Dynkin type, i.e., 1 is a graph of type An

for n ≥ 1, of type Dn for n ≥ 4, or of type E6, E7 or E8.

Type An: •
1

•
2

•
3

•
n−1

•
n

Type Dn:

•
1

•
2

•
3

•
4

•
n−1

•
n
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In particular, 1 has no double edges or cycles. Let I be the set of vertices of 1.
We can associate a group B1 to 1, which we call the braid group of 1. It has a
distinguished set of generators S1 = {si }i∈I , and the relations depend on whether
or not two vertices are connected by an edge. They are

(i) si s j = s j si if i and j are not connected by an edge;

(ii) si s j si = s j si s j if i and j are connected by an edge.

If 1 is of type An then we recover the “usual” braid group, sometimes denoted
Bn+1. Its generators can be visualized as

si =

•
1

•
2

•
i

•
i+1

•
n

•
n+1

•
1

•
2

•
i

•
i+1

•
n

•
n+1

and the relations of type (i) record the fact that crossings of adjacent pairs of strings
which are far apart commute, while relations of type (ii) record a Reidemeister 3
move.

If we also impose the relation that s2
i = 1 for all i ∈ I then we recover the Coxeter

group of type 1. More information on Coxeter groups and braid groups can be
found in [Humphreys 1990; Kassel and Turaev 2008].

Mutation of quivers. A quiver is just a directed graph. Throughout this article we
will only work with quivers with finitely many vertices and finitely many arrows
that have no loops or oriented 2-cycles. For a given quiver Q, we again denote its
set of vertices by I.

There is a procedure to obtain one quiver from another, called quiver mutation,
due to Fomin and Zelevinsky [2002, §4]. Fix Q and let k ∈ I. Then we obtain the
mutated quiver µk(Q) as follows:

(i) for each pair of arrows i→ k→ j through k, add a formal composite i→ j ;

(ii) reverse the orientation of all arrows incident with k;

(iii) remove a maximal set of 2-cycles (we may have created 2-cycles in the previous
two steps).

It is a basic but important observation that quiver mutation does not change the set
of vertices. One can also check that mutation is an involution.

We call a cycle in an unoriented graph (or in the underlying unoriented graph
of a quiver) chordless if the full subgraph on the vertices of the cycle contains no
edges which are not part of the cycle. We call a quiver Dynkin if its underlying
unoriented graph is a Dynkin graph of type ADE, and mutation-Dynkin if it can be
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obtained by mutating a Dynkin quiver finitely many times. By a theorem of Fomin
and Zelevinsky [2003, Theorem 1.4], there are only finitely many quivers that can
be obtained by mutating a given Dynkin quiver.

The following fact, due to Fomin and Zelevinsky, will be useful to us:

Proposition 2.1. In any mutation-Dynkin quiver, there are no double arrows and
all chordless cycles are oriented.

Proof. By [Fomin and Zelevinsky 2003, Theorem 1.8], the entries in the correspond-
ing exchange matrix B satisfy |Bxy Byx | ≤ 3 for all x, y (known as being 2-finite).
Hence there cannot be any double arrows in the quiver.

Now let Q be a mutation-Dynkin quiver and C a chordless cycle in Q. Then,
since Q is 2-finite, so is C . By Proposition 9.7 of the same paper, C must be an
oriented cycle. �

Groups from quivers. Let Q be a mutation-Dynkin quiver.

Definition 2.2. Let BQ be the group with generators SQ = {si }i∈I subject to the
following relations:

(i) si s j = s j si whenever i and j are vertices with no arrow between them,

(ii) si s j si = s j si s j whenever i and j are vertices of Q and there is an arrow
between them (in either direction);

(iii) s1s2 · · · sns1s2 · · · sn−2 = s2s3 · · · sns1 · · · sn−1
...

= sns1s2 · · · sns1s2 · · · sn−3

whenever Q contains an oriented chordless n-cycle

1 // 2
��

n

OO

.
.
.

oo

Remark 2.3. If Q is a Dynkin quiver, then BQ is (isomorphic to) the Artin braid
group of the corresponding Dynkin type.

This presentation is symmetric but not minimal:

Lemma 2.4. For each single chordless n-cycle, in the presence of the relations of
type (i) and (ii), any one of the relations of type (iii) implies all the others.

Proof. It is enough to show that if the relation

(1) s1s2 · · · sns1s2 · · · sn−2 = s2s3 · · · sns1s2 · · · sn−1

holds then
s1s2 · · · sns1s2 · · · sn−2 = s3s4 · · · sns1s2 · · · sn.
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So, we assume that (1) holds. Then we have

s−1
2 s1s2 · · · sns1s2 · · · sn−2sn = s3 · · · sns1s2 · · · sn−1sn.

The left-hand side can be rewritten, using relations of type (i) and (ii), as

s−1
2 s1s2 ···sns1s2 ···sn−2sn = s1s2s−1

1 s3 ···sns1s2 ···sn−2sn

= s1s2s3 ···sn−1s−1
1 sns1s2 ···sn−2sn

= s1s2 ···sn−1sns1s−1
n s2 ···sn−2sn = s1s2 ···sns1s2 ···sn−2,

and the result follows. �

Though the relations look different, by taking an appropriate quotient we can
obtain the groups defined by Barot and Marsh [2015] directly:

Lemma 2.5. If , along with the relations of types (i) and (ii), we also impose the
relations s2

i = 1 for all i ∈ I, then the group BQ becomes isomorphic to the group
0U (Q) defined in [Barot and Marsh 2015, Section 3], where U (Q) is the underlying
graph of Q.

Proof. As our definition is the usual definition of the braid group for a Dynkin
quiver, this follows from results in [Barot and Marsh 2015] and the results below
on how our groups change with quiver mutation, but since it is straightforward to
give a direct proof, we do so.

We need to show that, in the presence of relations (i), (ii), and s2
i = 1 for all i ∈ I,

our extra relation (iii) holds if and only if the relation

(s1s2 · · · sn−1snsn−1 · · · s2)
2
= 1

and its rotations hold for each n-cycle 1→ 2→ · · · → n→ 1. By symmetry, it is
enough to check that the relation above is equivalent to s1s2 · · · sns1s2 · · · sn−2 =

s2s3 · · · sns1 · · · sn−1.

Using that si = s−1
i , we see our relation is equivalent to

s1s2 · · · sns1s2 · · · sn−2sn−1sn−2 · · · s1sn · · · s3s2 = 1.

Multiplying out the relation from Barot and Marsh, we see that it is equivalent to

s1s2 · · · sn−1snsn−1 · · · s2s1s2 · · · sn−1snsn−1 · · · s2 = 1.

Cancelling out n terms on the left and n − 1 terms on the right of these two
expressions, it just remains to show

s1s2 · · · sn−2sn−1sn−2 · · · s2s1 = sn−1sn−2 · · · s2s1s2 · · · sn−2sn−1.

As there is an arrow i→ i + 1 for each i and the cycle is chordless, the symmetric
group on n letters maps onto the subgroup generated by s1, . . . , sn−1 with the
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(a)

◦

i
◦

j

•
k

µk

◦

i
◦

j

•
k

(b)

◦

i
◦

j

•
k

µk

◦

i
◦

j

•
k

Figure 1. Mutation of a quiver of mutation Dynkin type.

transposition which swaps i and i + 1 being sent to si . It is easy to see that the
corresponding relation holds in the symmetric group, with both sides of the equation
representing the transposition which swaps 1 and n. �

We will justify our choice of relations in Remark 4.19.

Mutation of groups. Let BQ be the group associated to the mutation-Dynkin
quiver Q, as above, and let k be a vertex of Q. Denote µk(Q) by Q′. Our aim
in this section is to show that BQ is isomorphic to BQ′ . We will do this by using
a group homomorphism ϕk : BQ → BQ′ defined using a formula which lifts the
formula used in [Barot and Marsh 2015, §5].

The following lemma follows from results in [Fomin and Zelevinsky 2003] (see
[Barot and Marsh 2015, §2]).

Lemma 2.6. Let Q be a quiver of mutation-Dynkin type, and fix a vertex k of Q.
Suppose that k has two neighbouring vertices. Then the possibilities for the induced
subquiver of Q containing vertex k and its neighbours are shown in Figure 1. The
effect of mutation is shown in each case.

The following lemma follows from [Barot and Marsh 2015, Lemma 2.5].

Lemma 2.7. Let Q be a quiver of mutation-Dynkin type, and fix a vertex k of Q.
Let C be an oriented cycle in Q. Then C is one of the following. In each case we
indicate what happens locally under mutation at k.

(a)
◦

i
◦

j

•
k

C
µk

◦

i
◦

j

•
k

(b) ◦i1 ◦ ir

•
k

◦i2

◦

◦ ir−1

◦

C

µk

◦i1 ◦ ir

•
k

◦i2

◦

◦ ir−1

◦
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(c) ◦i1 ◦ ir

•
k

◦i2

◦

◦ ir−1

◦

C

µk

◦i1 ◦ ir

•
k

◦i2

◦

◦ ir−1

◦

(d) An oriented cycle containing exactly one neighbour of k. Mutation at k reverses
the arrow between k and its neighbour in C.

(e) An oriented cycle containing no neighbours of k. Mutation at k does not
affect C.

Recall that BQ is defined using generators si for i ∈ I. We denote the correspond-
ing generating set for BQ′ by ti , i ∈ I. Let FQ be the free group on the generators
si for i ∈ I.

Definition 2.8. Let ϕk : FQ→ BQ′ be the group homomorphism defined by

ϕk(si )=

{
tk ti t−1

k if i→ k in Q;
ti otherwise.

Proposition 2.9. The group homomorphism ϕk induces a group homomorphism
(which we also denote by ϕk) from BQ to BQ′ .

Proof. Let us write s̃i = ϕk(si ). We must show that the elements s̃i in BQ′ satisfy
the defining relations of BQ . Note that the ti satisfy the defining relations for BQ′ .

Firstly, we check the relations (ii) for an arrow incident with k. Suppose that
there is an arrow i→ k. Using the fact that ti tk ti = tk ti tk ,

s̃i s̃k s̃i = tk ti tk ti t−1
k = t2

k ti tk t−1
k

= t2
k ti .

Also,
s̃k s̃i s̃k = t2

k tk ti t−1
k tk = t2

k ti .

So
s̃i s̃k s̃i = s̃k s̃i s̃k,

as required.
If there is an arrow i← k, then

s̃i s̃k s̃i = ti tk ti = tk ti tk = s̃k s̃i s̃k .

Next, we consider relations (i) and (ii) for all other arrows in Q. Relations of this
kind involving pairs of vertices which are not neighbours of k follow immediately
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from the corresponding relations in BQ . If only one of the vertices in the relation is
a neighbour of k, the relation again follows immediately since tk commutes with
any generator corresponding to a vertex not incident with k in Q′ (or equivalently,
in Q). So we only need to consider the case where both of the vertices in the pair
are incident with k and we can use Lemma 2.6.

Going in either direction in part (a) of Lemma 2.6, the relation s̃i s̃ j = s̃ j s̃i follows
from the relation ti t j = t j ti in BQ′ , so we consider part (b), firstly from left to right.
The cycle in Q′ gives the relation tk ti = t j tk ti t j t−1

k t−1
j . Also applying the relation

t−1
k t−1

j t−1
k = t−1

j t−1
k t−1

j , we obtain

s̃i s̃ j = tk ti t−1
k t j = t j tk ti t j t−1

k t−1
j t−1

k t j

= t j tk ti t−1
k = s̃ j s̃i .

Going from right to left in part (b), we have, using t j tk t j = tk t j tk , ti t j = t j ti and
ti tk ti = tk ti tk ,

s̃ j s̃i s̃ j = tk t j t−1
k ti tk t j t−1

k = t−1
j tk t j ti t−1

j tk t j

= t−1
j tk ti tk t j = t−1

j ti tk ti t j

= ti t−1
j tk t j ti = ti tk t j t−1

k ti
= s̃i s̃ j s̃i .

Next, we have to check that the s̃i satisfy the relations of type (iii) for Q, so we
need to consider each type of cycle described in Lemma 2.7. By Lemma 2.4, it is
enough to check that, for any given cycle in Q, one of the relations in (iii) holds.

For part (a),
s̃k s̃i s̃ j s̃k = tk ti tk t j t−1

k tk = tk ti tk t j ,

while
s̃i s̃ j s̃k s̃i = ti tk t j t−1

k tk ti = ti tk t j ti
= ti tk ti t j ,

which is equal to s̃k s̃i s̃ j s̃k as required.
For part (b), applying a relation for the cycle in Q′ in the fourth step,

s̃i1 s̃i2 · · · s̃ir s̃i1 s̃i2 · · · s̃ir−2 = tk ti1 t−1
k ti2 · · · tir tk ti1 t−1

k ti2 · · · tir−2

= t−1
i1

tk ti1 ti2 · · · tir tk ti1 t−1
k ti2 · · · tir−2

= t−1
i1

tk ti1 ti2 · · · tir tk ti1 ti2 · · · tir−2 t−1
k

= t−1
i1

ti1 ti2 · · · tir tk ti1 ti2 · · · tir−2 tir−1 t−1
k

= ti2 · · · tir tk ti1 t−1
k ti2 · · · tir−2 tir−1

= s̃i2 · · · s̃ir s̃i1 s̃i2 · · · s̃ir−2 s̃ir−1 .
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For part (c), applying a relation for the cycle in Q′ in the fourth step,

s̃i1 s̃i2 · · · s̃ir−1 s̃ir s̃k s̃i1 · · · s̃ir−1 = ti1 ti2 · · · tir−1 tk tir t−1
k tk ti1 · · · tir−1

= ti1 ti2 · · · tir−1 tk tir ti1 · · · tir−1

= ti1 tk ti2 · · · tir−1 tir ti1 · · · tir−1

= ti1 tk ti1 ti2 · · · tir−1 tir ti1 · · · tir−2

= tk ti1 tk ti2 · · · tir−1 tir ti1 · · · tir−2

= tk ti1 ti2 · · · tir−1 tk tir t−1
k tk ti1 · · · tir−2

= s̃k s̃i1 s̃i2 · · · s̃ir−1 s̃ir s̃k s̃i1 · · · s̃ir−2,

and we are done. �

Theorem 2.10. The map ϕk : BQ→ BQ′ is a group isomorphism.

Proof. As mutation is an involution, we can consider the composition

ϕk : BQ
ϕk
−→ BQ′

ϕk
−→ BQ .

Fix some i ∈ I. Note that mutation at k does not change whether i and k are
connected in the quiver; it just swaps the direction of any arrow that may exist
between i and k. So if we have i → k, then si 7→ tk ti t−1

k 7→ sksi s−1
k . If we have

i ← k, then si 7→ ti 7→ sksi s−1
k . And if there is no arrow between i and k then

si 7→ ti 7→ si . But in this case si and sk commute, so si = sksi s−1
k . Hence in every

case ϕk(si )= sksi s−1
k , so ϕk is just a conjugation map and therefore ϕk : BQ→ BQ′

is an isomorphism. �

Remark 2.11. The inverse of ϕk is the group isomorphism ϕ−1
k : BQ′ −→

∼ BQ

defined by

ϕ−1
k (ti )=

{
s−1

k si sk if i→ k in Q;
si otherwise.

Noting Remark 2.3, we have the following:

Theorem 2.12. If Q is a mutation-Dynkin quiver of type 1 then BQ ∼= B1.

3. Topological interpretation of the generators

Braid groups. In this section we consider quivers Q which are mutation-equivalent
to an orientation of the Dynkin diagram of type 1, where 1 = An or Dn . By
Theorem 2.12, BQ is isomorphic to the Artin braid group B1 of the same Dynkin
type. In other words, BQ gives a presentation of B1. In this section we give a
geometric interpretation of this presentation.

We associate an oriented Riemann surface S (with boundary), together with
marked points M , to 1 as follows. If 1= An , we take S to be a disk with n− 3
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FG

1 2

3

1 2

3

1 2

3 4

3 4

1

2

Figure 2. Type I (left) and type II (right) puzzle pieces for tagged
triangulations in types An and Dn and the corresponding quivers.

marked points on its boundary, as in [Fomin and Zelevinsky 2002; 2003]. If1= Dn ,
we take S to be a disk with one marked point in its interior and n marked points on
its boundary, as in [Fomin et al. 2008; Schiffler 2008]. In each case, it was shown
that every quiver of the corresponding mutation type arises from a triangulation of
(S,M) (tagged, in the type Dn case) in the following way. We follow [Fomin et al.
2008], in a generality great enough to cover both cases (noting that there is at most
one interior marked point).

A (simple) arc in (S,M) is a curve in S (considered up to isotopy) whose
endpoints are marked points in M and which does not have any self-crossings,
except possibly at its endpoints. Apart from these endpoints, it must be disjoint
from M and the boundary of S, and it must not cut out an unpunctured one- or
two-sided polygon.

Two arcs are said to be compatible if they are noncrossing in the interior of S. A
maximal set of compatible arcs is a triangulation.

A tagged arc in (S,M) is an arc which does not cut out a once-punctured
monogon; each of its ends is tagged, either plain or notched. Plain tags are omitted,
while notched tags are displayed using the bow-tie symbol FG. An end incident
with a boundary marked point is always tagged plain. Two tagged arcs α, β are
compatible if

(i) the untagged arcs underlying α and β are compatible, and

(ii) if the untagged versions of α and β are different but share an endpoint, then
the corresponding ends of α and β are tagged in the same way.
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A tagged triangulation T of (S,M) is a maximal collection of tagged arcs in (S,M).
Note that if none of the marked points in M lies in the interior of S, every end of
an arc in a tagged triangulation must be tagged plain, and tagged triangulations of
S can be identified with triangulations of S.

The set M of marked points divides the boundary components of (S,M) into
connected components, which we call boundary arcs. Note that the boundary arcs
do not lie in a triangulation or tagged triangulation of (S,M), by definition.

The tagged triangulation T can be built up by gluing together puzzle pieces of
the two types shown in Figure 2 (see [Fomin et al. 2008, Remark 4.2]) by gluing
together along boundary arcs. Note that the puzzle piece of type II can only occur
in the type Dn case, and then it occurs exactly once.

If α is an arc in a tagged triangulation T , then the flip of T at α is the unique
tagged triangulation containing T \{α} but not containing α. By [Fomin et al. 2008],
the set of tagged triangulations of (S,M) is connected under flips.

The quiver QT of a tagged triangulation T has vertices corresponding to the
arcs in T . The quiver is built up by associating a quiver to each puzzle piece; see
Figure 2. If a boundary arc in the puzzle piece is also a boundary arc of (S,M),
then the corresponding vertex in the quiver is omitted, together with all incident
arrows. The quivers are then glued together by identifying vertices whenever the
corresponding edges are glued together in the puzzle pieces.

In order to discuss braid groups, we need to consider more general curves in
(S,M). We define a path in (S,M) to be a (possibly nonsimple) curve whose
endpoints lie in S (not necessarily in M).

Definition 3.1. Let T be a tagged triangulation of (S,M). We associate a graph
to T , which we call the braid graph GT of T , as follows. The vertices VT of GT
are in bijection with the connected components of the complement of T in (S,M)
and, whenever two such connected components have a common tagged arc on their
boundaries, there is an edge in GT between the corresponding vertices. Thus the
edges in GT are in bijection with the arcs in T .

We choose an embedding ι of GT into (S,M), mapping each vertex to an interior
point of the corresponding connected component of the complement of T in (S,M)
and each edge to a path between the images of its endpoints transverse to the
corresponding edge in T . We identify GT with its image under ι.

Note that in the type A case the braid graph is the tree from Section 3.1 of
[Caldero et al. 2006].

We associate an orbifold X to S as follows. In the type An case, we just take
X = S, and in the type Dn case we take X to be S with the interior marked point
of S interpreted as a cone point of order two. In each case, the set M of marked
points induces a corresponding set of marked points in X , which we also denote



90 JOSEPH GRANT AND BETHANY ROSE MARSH

v1 v2

γv1

γv2

Figure 3. Thickening of the path π (the middle path).

by M. Each arc or tagged arc α in (S,M) induces a corresponding arc or tagged
arc in (X,M) which we also denote by α. Thus each (tagged) triangulation T of
(S,M) induces a corresponding set T of (tagged) arcs in (X,M).

Note also that orbifolds have been used to model cluster algebras in [Felikson
et al. 2012]. In this approach, the model for Bn is an orbifold with a cone point
of order two, regarded as a folding of Dn , where Dn is modelled by a disk with a
single interior marked point (see also Lecture 15 of [Thurston 2012], which was
given by A. Felikson).

We denote by X◦ the orbifold X with the cone point (if there is one) removed
(so X◦ = X in type An). Given any set V of vertices in X◦, we may consider the
corresponding braid group, 0(X, V ) following [Allcock 2002]. Each element of
0(X, V ) (or braid ) can be regarded as a permutation g of V together with a tuple
γ = (γv)v∈V of paths γv : [0, 1] → X◦ such that γv(0) = v and γv(1) = g(v) for
each v ∈ V. In addition, for each t ∈ [0, 1], the points γv(t) for v ∈ V must all be
distinct for all v ∈ V. Braids are considered up to isotopy, and two braids can be
multiplied by composing the paths in a natural way; we compose braids from right
to left, as for functions.

Remark 3.2. Suppose V and V ′ are two sets of points in X◦ and there is a bijection
ρ : V → V ′. Suppose also that there is a set of paths δv : [0, 1] → X◦, for v ∈ V,
with δv(0)= v and δv(1)= ρ(v) for all v ∈ V. Suppose furthermore that the points
γv(t) for v ∈ V and t ∈ [0, 1] are all distinct. Then the maps δv induce a natural
isomorphism between 0(X, V ) and 0(X, V ′).

Definition 3.3. Each path π in X◦ with endpoints v1, v2 in V determines a braid σπ
in 0(X, V ) as follows (see [Fox and Neuwirth 1962, §7]). We thicken the path π
along its length (avoiding the other vertices), closing it off at the end points to form
a (topological) disk. We give the boundary of the disk the clockwise orientation.
The vertices v1 and v2 divide the boundary of the disk into two paths, one from v1

to v2 and the other from v2 to v1. We define γv1 to be the former and γv2 to be the
latter. See Figure 3. For v ∈ V such that v 6= v1, v2, we define γv(t) to be v for all
t ∈ [0, 1]. Then σπ is the braid (γv)v∈V . Note that σπ only depends on the isotopy
class of the image of π in (X, V ). In particular, it is unchanged if π is reversed.
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π

π

Figure 4. The braid σπ .

An example of a braid σπ is displayed as a picture (in the same way as in [Allcock
2002]) in Figure 4. In this figure only, we display π as a dashed line to distinguish
it from the braid σπ .

Interpretation of the generators. Let T be a triangulation of (S,M). Let QT be
the quiver of T . Then QT has vertices I corresponding to the arcs in T . We denote
the arc in T associated to i ∈ I by αi . The corresponding edge in GT is denoted πi .
Let σi = σπi ∈ 0(X, VT ) be the corresponding braid. We define HT to be the
subgroup of 0(X, VT0) generated by the braids σi for i ∈ I.

Let T0 be an initial triangulation of (S,M) defined as follows. In the type An

case, we choose a marked point P in M and take noncrossing arcs between P and
each of the other marked points in M not incident with a boundary arc incident
with P. In the type Dn case, we choose two marked points P, Q on the boundary
of S. We take two arcs between the interior marked point and Q, one tagged plain
at the interior marked point and the other one tagged notched, and an arc between P
and Q (not homotopic to a boundary arc). We then take (noncrossing) arcs between
P and every other marked point in M on the boundary of S not incident with a
boundary arc incident with P. See Figure 5. Then the quiver QT0 associated to
QT0 is a Dynkin quiver of type 1. By Remark 2.3, BQT0

is isomorphic to the Artin
braid group of type 1.

Proposition 3.4. Let T0 be the triangulation of (X,M) defined as above. Then
there is an isomorphism from HT0 to BQT0

taking the braid σi to the generator
si of BQT0

. Furthermore, in type An , the subgroup HT0 coincides with 0(X, VT0),
while in type Dn , it is a subgroup of 0(X, VT0) of index two.

Proof. For type An , see [Fox and Neuwirth 1962] and the explanation in [Allcock
2002, §4]. For type Dn , note that the elements σi for i ∈ I coincide with the
generators hi defined in [Allcock 2002, §1] (via an isomorphism of the kind in
Remark 3.2). The result then follows from [Allcock 2002, Theorem 1]. �

The following lemma appears in [Sergiescu 1993, Théorème, part (iv)].

Lemma 3.5. Let A, B,C be three distinct points in X◦ and suppose there is a topo-
logical disk in X◦, with A, B and C lying in order clockwise around its boundary.
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Figure 5. Initial triangulations and the corresponding braid graphs
and quivers.

Let AB denote the arc on this boundary between A and B. We define BC and C A
similarly. Then σABσBC = σBCσC A.

Theorem 3.6. Let T be an arbitrary tagged triangulation of (X,M). Then there
is an isomorphism from HT to BQT taking the braid σi to the generator si of
BQT . Furthermore, in type An , the subgroup HT coincides with 0(X, V ), while in
type Dn , it is a subgroup of 0(X, V ) of index two.

Proof. The result holds for T = T0 by Proposition 3.4. Note that any triangulation
can be obtained from T0 by applying a finite number of flips of tagged triangulations.
We show that the theorem is true for an arbitrary tagged triangulation T by induction
on the number of flips required to obtain T from T0. To do this, it is enough to
show that if the theorem holds for a tagged triangulation T and αi is a tagged arc
in T then the theorem also holds for the flip of T at αi .

So we assume the result holds for a tagged triangulation T . Thus there is an
isomorphism ψT : HT → BQT sending σi to si . We denote the corresponding
elements of HT ′ by τi and ti . The tagged arcs in T are denoted by αi , for i ∈ I, and
we denote the corresponding tagged arcs in T ′ by βi , for i ∈ I. The edges of GT
are denoted πi , and we denote the edges of GT ′ by ρi .

We define:

τ̃i =

{
σ−1

k σiσk, if i→ k in Q;
σi , otherwise.

Then it is easy to see that HT is generated by the τ̃i for i ∈ I.
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Figure 6. Flip involving an arc (α1) where two puzzle pieces of
type I are glued.

We consider the possible types of flip that can occur, which are determined by
the fact that T can be constructed out of puzzle pieces. Suppose first that T ′ is the
flip of T at an arc α where two puzzle pieces of type I are glued together. We label
the corresponding vertices in I by 1, 2, 3, 4, 5, for simplicity, and suppose we are
flipping at the edge in T dual to α1. The braid graph local to the flip is shown in
the left-hand diagram in Figure 6. Applying Lemma 3.5, we see that the middle
figure shows paths π̃i with the property that τ̃i = σπ̃i for i = 1, 2, 3, 4, 5.

Rotating vertices A and B clockwise, to get the right-hand diagram in Figure 6,
we obtain, via Remark 3.2, an isomorphism from HT to HT ′ taking τ̃i to τi for
all i ∈ I. The inverse is an isomorphism from HT ′ to HT taking τi to σ−1

k σiσk if
there is an arrow i→ k in Q and to σi otherwise. Composing with the isomorphism
ϕk ◦ψT , where ϕk is the isomorphism in Proposition 2.9, we obtain an isomorphism
from HT ′ to BQT ′ taking τi to ti as required. This proves the required result in
type A, so we are left with the type D case, where puzzle pieces of type II may occur.

We next consider a flip inside a puzzle piece of type II. We can apply essentially
the same argument; see Figures 7 and 8. Here we draw the puzzle piece together
with the two adjacent triangles, necessarily of type I (since there is only one cone
point). To go from the middle diagram to the right-hand diagram in Figure 8, the
vertex D should be moved anticlockwise around the cone point. We use the fact
that in the right-hand diagram of Figure 8, the resulting path π̃1 is isotopic to the
path ρ1 in GT ′ , using the fact that the cone point has order two.

Note that the adjoining type I puzzle pieces (in Figures 7 and 8) may not occur,
but the argument is easily modified to cover these cases. We also need to consider
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Figure 7. Flip (at α1) inside a puzzle piece of type II, first case.
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Figure 8. Flip (at α2) inside a puzzle piece of type II, second case.

the flips from the right-hand diagram in each case to the corresponding left-hand
one. We omit the details; a similar argument can be applied in these cases.

Finally, we need to consider a flip involving an arc where a puzzle piece of type
I and a puzzle piece of type II have been glued together. These cases are shown in
Figures 9 and 10: Figure 9 illustrates the case where the puzzle piece of type I is on
the left of the puzzle piece of type II (when it is drawn as shown), while Figure 10
illustrates the case where it is on the right. Again, a similar argument applies in
the case of flips from the right-hand diagram to the left-hand one in these cases. �
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Figure 9. Flip involving an arc (α3) where puzzle pieces of type I
and II are glued, first case.
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Figure 10. Flip involving an arc (α4) where puzzle pieces of type
I and II are glued, second case.

4. Actions on categories

Quivers with potential. Fix an algebraically closed field F. To any quiver Q we
can associate the path algebra FQ, which, as an F-vector space, has basis given
by all paths in Q of length ≥ 0, and the multiplication of two paths p1 and p2 is
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their concatenation p1 p2 if p1 ends and p2 starts at the same vertex, and is zero
otherwise.

Let FQ≥n be the ideal of FQ generated by the paths in Q of length at least n.
We can take the completion F̂Q of FQ with respect to FQ≥1, which is defined as:

F̂Q = lim
←−−

n

FQ
FQ≥n

=
{
(an+FQ≥n)

∞

n=1 |an ∈FQ, ϕn(an+FQ≥n)=an−1+FQ≥n−1
}
,

where the limit is taken along the chain of epimorphisms

FQ
FQ≥1

ϕ2�−
FQ

FQ≥2

ϕ3�−
FQ

FQ≥3
� · · · .

Let F̂Q cyc denote the subspace of (possibly infinite) linear combinations of
cycles in Q. Recall that a potential for a quiver Q is an element W of F̂Q cyc,
regarded up to cyclic equivalence (and for which no two cyclically equivalent
paths in Q occur in the decomposition of W ). The pair (Q,W ) is called a quiver
with potential [Derksen et al. 2008], which we occasionally abbreviate to QP. The
following definition is due to Derksen, Weyman and Zelevinsky:

Definition 4.1 [Derksen et al. 2008, Definition 4.2]. Let Q1 and Q2 be two quivers
with the same vertex set I , and (Q1,W1) and (Q2,W2) be two QPs. A right equiv-
alence between (Q1,W1) and (Q2,W2) is an algebra isomorphism ϕ : F̂Q1→ F̂Q2

such that ϕ(W1) is cyclically equivalent to W2 and ϕ is the identity when restricted
to the semisimple subalgebra FI of F̂Q1.

A quiver with potential (Q,W ) with W containing paths of length two or more
is trivial if Q is a disjoint union of 2-cycles and there is an algebra automorphism
of k̂ Q preserving the span of the arrows of Q (a change of arrows) which takes
W to the sum of the 2-cycles in Q. A quiver with potential (Q,W ) is said to be
reduced if W is a linear combination of cycles in Q of length 3 or more.

The splitting theorem [Derksen et al. 2008, Theorem 4.6] states that every quiver
with potential can be written as a direct sum of a reduced quiver with potential and
a trivial quiver with potential which are unique up to right equivalence.

Let (Q,W ) be a quiver with potential, and let k be a vertex of Q not involved
in any 2-cycles. By replacing W with a cyclically equivalent potential on Q if
necessary, we can assume that none of the cycles in the decomposition of W start or
end at k. We denote by µ̃k(Q,W ) the nonreduced mutation of (Q,W ) at k in Q, as
defined in [Derksen et al. 2008, §5]. Then, by Theorem 5.2 of the same paper, the
right equivalence class of µ̃k(Q,W ) is determined by the right equivalence class
of (Q,W ). The mutation µk(Q,W ) of (Q,W ) at k is then defined to be the reduced
component of µ̃k(Q,W ), and is uniquely determined up to right equivalence, given
the right equivalence class of (Q,W ).
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Figure 11. Terms in the potential WT .

As before, we will say a quiver with potential (Q,W ) is Dynkin if the underlying
unoriented graph of Q is an orientation of a Dynkin quiver (and hence W = 0).
We shall say that a quiver with potential (Q′,W ′) is mutation-Dynkin if it can be
obtained by repeatedly mutating a Dynkin quiver with potential in the above sense.
Note: For the rest of this subsection we will restrict to Dynkin types A and D.
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Let (S,M) be the Riemann surface with marked points associated to 1 as in
Section 3. So, if 1= An , we take S to be a disk with n− 3 points on its boundary,
and if 1= Dn , we take S to be a disk with one marked point in its interior and n
marked points on its boundary.

Let Q be a mutation-Dynkin quiver. By [Fomin et al. 2008], Q = QT for some
tagged triangulation T of (S,M). Let W,W ′ be the sum of the terms coming from
local configurations in T as shown in Figure 11 (where in (c) and (d) there are at
least three arcs incident with the interior marked point).

Then WT is the potential given by taking the sum of the induced cycles in QT
(i.e., induced subgraphs of QT which are cycles), and W ′T is the potential associated
to T in [Labardini-Fragoso 2016, §3], taking the parameter associated to the internal
marked point (if there is one) to be equal to −1. Then we have the following:

Lemma 4.2. The potentials WT and W ′T are right equivalent.

Proof. We assume we are in case Dn , since the two potentials coincide in case An .
If the interior marked point is as in case (c) of Figure 11 (with at least 3 arcs incident
with it), then there is a unique triangle in T with sides 1 and 2. We label the arrows
in the corresponding 3-cycle in WT or W ′T by a, x, y, in order around the cycle.
Then the automorphism ϕ of k̂ QT negating a and x and taking each other arrow to
itself gives a right equivalence between WT and W ′T , since a and x are not involved
in any other terms in any of these potentials.

If the interior marked point is as in case (d), then WT and W ′T coincide. �

We recall the following special case of [Labardini-Fragoso 2016, Theorem 8.1].

Theorem 4.3 [Labardini-Fragoso 2016]. Let T , T ′ be triangulations of (S,M). If
T ′ is obtained from T by flipping at an arc αk then µk(QT ,W ′T ) is right equivalent
to (QT ′,W ′T ′).

By [Derksen et al. 2008, Theorem 7.1], it follows from this that the quiver of
µk(QT ,WT ) coincides with the quiver obtained from QT by Fomin–Zelevinsky
quiver mutation at k.

Hence we can effectively ignore potentials:

Proposition 4.4. Any mutation-Dynkin quiver with potential (Q̃, W̃ ) of type A or
D is right equivalent to (Q̃,WQ̃), where WQ̃ is the sum of all chordless cycles in Q̃.

Proof. Note that a Dynkin quiver with zero potential is of the form (QT ,WT ) for
some triangulation T ; see [Fomin et al. 2008]. Suppose that (Q̃, W̃ ) is obtained
from a Dynkin quiver with zero potential by iterated mutation in the sense of
[Derksen et al. 2008]. Then, by Theorem 4.3 and Lemma 4.2, (Q̃, W̃ ) is right
equivalent to (QT ,WT ) for some triangulation T of (S,M). �

Note that an alternative proof of Proposition 4.4 would be to compute the mutation
of a quiver with potential (QT ,W ′T ) directly, and show that it is right equivalent
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to (QT ′,W ′T ′). This is not too difficult to do, but requires consideration of several
cases and still requires arguments dealing with changes of sign as in Lemma 4.2,
so we instead refer to [Labardini-Fragoso 2016] above.

Differential graded algebras and modules. Let F be an algebraically closed field.
We think of F as a graded F-algebra concentrated in degree 0. If V =

⊕
Vi is

a graded F-module then let V [ j] be the graded F-module with (V [ j])i = Vi+ j .
If f : V → W is a map of graded vector spaces with homogeneous components
fi : Vi → Wi then let f [ j] : V [ j] → W [ j] be the map of graded vector spaces

with homogeneous components f [ j]i : V [ j]i → W [ j]i defined by f [ j]i (v) =
(−1) j fi+ j (v) for v ∈ V [ j]i = Vi+ j . Thus [1] is an endofunctor of the category of
graded F-modules, called the shift functor.

If V and W are graded vector spaces, we will refer to a map f : V →W [ j] of
graded vector spaces as a map from V to W of degree j . We use the Koszul sign
rule for graded F-algebras, so if f : V → V ′ and g :W →W ′ are maps of graded
F-modules of degree m and n then

( f ⊗ g)(v⊗w)= (−1)in f (v)⊗ g(w)

for v ∈ Vi and w ∈W.
A unital differential graded algebra (or dg-algebra, or dga) over F is a graded

F-algebra A =
⊕

i∈Z Ai with multiplication m : A⊗F A→ A of degree 0 together
with a unit ι : F ↪→ A and an F-linear differential d : A→ A of degree +1. These
should satisfy

• the associativity relation m ◦ (1⊗m)= m ◦ (m⊗ 1);

• the boundary relation d2
= 0;

• the Leibniz relation d ◦m = m ◦ (1⊗ d + d ⊗ 1);

• the unital relation m ◦ (idA⊗ ι)= m ◦ (ι⊗ idA), which should agree with the
F-algebra structure of A.

We often denote our dga by (A, d), or simply by A. Each dga (A, d) has an
underlying unital graded algebra, obtained by simply forgetting the differential,
which we denote u(A).

A left module M for A is a graded left F-module M which has a left action
mM : A⊗M→ M of u(A) together with a map dM : M→ M of degree +1, called
a differential, such that

dM ◦mM = mM ◦ (1⊗ dM + d ⊗ 1).

We always have the regular module M = A with dM = d and mM = m. Similarly,
a right module M for A is a graded right F-module M which has a right action
mM : M ⊗ A→ M of u(A) together with a differential dM such that dM ◦mM =

mM ◦ (1⊗ d + dM ⊗ 1). If (M, dM) is an A-module, then (M[1], dM [1]) is also an
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A-module, which we sometimes just write as M[1]. Modules for A are modules
for u(A), simply by forgetting the differential.

A map f : M→ N of left A-modules is a degree 0 map of u(A)-modules such
that f commutes with the differentials: dN ◦ f = f ◦dM . We thus obtain a category
A-Mod of left A-modules, and we write the morphism spaces in this category as
HomA-Mod(M, N ). A-Mod is an F-category: each morphism space is an F-module.

Given two differential algebras (A, dA) and (B, dB), an A-B-bimodule (M, dM)

is a graded F-module which is a left (A, dA)-module with left action m` and a right
(B, dB)-module with right action mr where the two actions commute:

mr
◦ (m`

⊗ idB)= m`
◦ (idA⊗mr ).

We will always assume that F acts centrally. Under this assumption we can, and
will, identify left A-modules with A-k-bimodules and A-B-bimodules with left
A⊗F Bop-modules, where Bop denotes the algebra B with the order of multiplication
reversed. A map of bimodules should commute with the differential on both the
left and the right, and we obtain an F-category A-Mod-B of A-B-bimodules.

Given a map f : M → N of left A-modules, we can construct a new left A-
module called the cone of f , denoted cone( f ). As a left module for u(A), we have
cone( f )= N ⊕M[1]. The differential is given by(

dN 0
f [1] dM[1]

)
.

If L is isomorphic to cone( f ) for some map f : M → N, we say that L is an
extension of M by L[−1].

We will use the following lemma, whose proof follows immediately from the
definitions, repeatedly.

Lemma 4.5. Let f : M→ N be a map in A-Mod.

(i) Let F : A-Mod→ B -Mod be an additive functor which commutes with the shift
functor. Then we have an isomorphism cone(F f )∼= F cone( f ) in B -Mod.

(ii) For any commutative diagram

M
f
//

ϕM∼

��

N

ϕN∼

��

M ′
f ′
// N ′

in A-Mod where both ϕM and ϕN are isomorphisms, we have an isomorphism
ϕN ⊕ϕM [1] : cone( f )→ cone( f ′) of A-modules.

Let (A, dA), (B, dB), and (C, dC) be dgas. If (M, dM) is an A-B-bimodule and
(N , dN ) is an A-C-bimodule then let Homi

A(M, N ) be the space of all graded left
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u(A)-module maps f : M → N of degree i . We do not require that these maps
commute with the differential. We define

HomA(M, N )=
⊕
i∈Z

Homi
A(M, N ),

and this is a graded u(B)-u(C)-bimodule. We also have a version for right modules,
which we write as HomAop(M, N ).

Note the distinction between HomA(M, N ) and the hom spaces in the category
A-Mod. With the differential d( f )= dN ◦ f − (−1)i f ◦dM for f ∈Homi

A(M, N ),
HomA(M, N ) becomes a B-C-bimodule. Similarly, if (M, dM) is a B-A-bimodule
and (N , dN ) is a C-A-bimodule, HomAop(M, N ) is a C-B-bimodule. HomA(−,−)

is the internal hom in the bimodule category, and we can recover the hom spaces in
A-Mod as the 0-cycles of HomA(M, N ).

If (M, dM) is an A-B-bimodule and (N , dN ) is a B-C-bimodule then let M⊗B N
denote the space M ⊗u(B) N. It is a graded u(A)-u(C)-bimodule: if m ∈ Mi and
n ∈ N j then m⊗ n has degree i + j . With the differential dM ⊗ idN + idM ⊗ dN , it
becomes an A-C-bimodule.

For an A-B-bimodule (M, dM), we thus have functors

M ⊗B − : B -Mod→ A-Mod and HomA(M,−) : A-Mod→ B -Mod .

The functor M ⊗B − is left adjoint to HomA(M,−). For (N , dN ) a left A-module,
the counit evN : M⊗B HomA(M, N )→ N of the adjunction is the evaluation map,
which acts as x ⊗ f 7→ (−1)i j f (m) for x ∈ Mi and f ∈ Hom j

A(M, N ).

Derived categories. Our references are [Keller 1994; 2006].
If A is a graded vector space and d is a differential, i.e., a degree +1 endomor-

phism of A which satisfies d2
= 0, then the i-th homology of A, denoted Hi (A), is

the subquotient ker di/ im di−1, where di : Ai → Ai+1 denotes the restriction of d
to Ai . If (A, d) is a dga then the homology H(A)=

⊕
Hi (A) is a graded algebra,

and if M is a left A-module then H(M) =
⊕

Hi (M) is a left H(A)-module. In
fact, taking homology is a functor from the category of A-modules to the category
of graded H(A)-modules. We say that a left A-module M is acyclic if H(M)= 0,
and that a map f : M → N of A-modules is a quasi-isomorphism if H( f ) is an
isomorphism.

The category up to homotopy of A-Mod, denoted K(A), is the F-category whose
objects are all left A-modules and whose morphism spaces, for M, N ∈ A-Mod, are
HomK (A)(M, N )= H0 HomA(M, N ). The derived category of A, denoted D(A),
is the F-category obtained by localizing K(A) at the full subcategory of acyclic
A-modules. As a map of modules is a quasi-isomorphism if and only if its cone is
acyclic, this is equivalent to localizing K(A) at the class of all quasi-isomorphisms.
So we have a canonical functor K(A)→D(A), which we call the projection functor.



102 JOSEPH GRANT AND BETHANY ROSE MARSH

The finite-dimensional derived category, denoted Dfd(A), is the full subcategory
of D(A) on objects with finite-dimensional total homology, i.e., on A-modules M
such that H(M) is a finite-dimensional F-vector space.

Let (A, dA) be a dga. We say that

• P ∈ A-Mod is indecomposable projective if it is an indecomposable direct
summand of the regular module,

• P ∈ A-Mod is relatively projective if it is a direct sum of shifts of indecompos-
able projective modules, and

• P ∈ A-Mod is cofibrant if, for each surjective quasi-isomorphism f :M→N, the
map HomA-Mod(P, f ) : HomA-Mod(P,M)→ HomA-Mod(P, N ) is surjective.

The following result characterizes cofibrant modules.

Proposition 4.6 [Keller 1994, Section 3; Keller and Yang 2011, Proposition 2.13].
An A-module P is cofibrant if and only if it is an iterated extension of a rela-
tively projective module by other relatively projective modules, possibly infinitely
many times.

Let A -cofib denote the full subcategory of K(A) on the cofibrant objects. The
projection functor K(A)→ D(A) induces an equivalence A -cofib−→∼ D(A). Each
A-module M has a cofibrant replacement, defined up to quasi-isomorphism and
denoted p M, which can be realized as the image of M under the left adjoint
D(A)→ K(A) to the canonical projection functor [Keller 2006, Proposition 3.1].

Let (B, dB) be another dga and let F : A-Mod→ B -Mod be an additive functor.
Then F preserves chain homotopies, and so induces a functor K(F) :K(A)→K(B).
If K(F) preserves quasi-isomorphisms then, by the universal property of localization,
it induces a functor D(F) : D(A)→ D(B). If P ∈ A-Mod-B is cofibrant as a left
A-module then, by [Keller 1994, Theorem 3.1(a)] and [Keller and Yang 2011,
Proposition 2.13], HomA(P,−) preserves acyclic modules, and so preserves quasi-
isomorphisms. By imitating the proof of [Keller 1994, Theorem 3.1(a)] we see
that if P ∈ A-Mod-B is cofibrant as a right B-module then P ⊗B − also preserves
acyclic modules. We often write P⊗B − and HomA(P,−), instead of D(P⊗B −)

and D(HomA(P,−)), for the induced functors D(B)→ D(A) and D(A)→ D(B).
For an arbitrary M ∈ A-Mod-B, we get a functor M⊗L

B−:D(B)→D(A), known
as the left derived functor of M ⊗B −, by composing the cofibrant replacement
functor D(B)→ K(B), the tensor functor K(M ⊗B −) : K(B)→ K(A), and the
projection functor K(A)→ D(B). By [Keller 1994, Lemma 6.3(a)], we have an
isomorphism M ⊗L

B N ∼= p M ⊗B N for all N ∈ D(B). The following basic, but
useful, lemma says that this isomorphism is natural.

Lemma 4.7. Let M ∈Mod-B.

(i) We have a natural isomorphism of functors p M ⊗B −∼= M ⊗L
B −.
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(ii) If M is cofibrant we have a natural isomorphism of functors M⊗B−∼=M⊗L
B−.

Proof. (i) We need to show that for each N ∈ B -Mod there is a quasi-isomorphism
ϕN : p M ⊗B N → M ⊗B p N such that, for all maps f : N → N ′, the diagram

p M ⊗B N
ϕN
//

p M⊗ f
��

M ⊗B p N

M⊗ p f
��

p M ⊗B N ′
ϕN ′
// M ⊗B p N ′

commutes. Consider the following diagram:

p M ⊗B p N

p M⊗πN

��

πM⊗ p N

��

p M ⊗B p N ′

p M⊗πN ′

��

πM⊗ p N ′

��

p M ⊗B N
ϕN

//

p M⊗ f

++

M ⊗B p N
M⊗ p f

++

p M ⊗B N ′
ϕN ′

// M ⊗B p N ′

As p M and p N are cofibrant and πM and πN are quasi-isomorphisms, both
p M ⊗πN and πM ⊗ p N are quasi-isomorphisms, therefore we can define ϕN =

(πM⊗ p N )◦( p M⊗πN )
−1 and it is a quasi-isomorphism. Then to check naturality

we need to show that

(M⊗ p f )◦(πM⊗ p N )◦( p M⊗πN )
−1
= (πM⊗ p N ′)◦( p M⊗πN ′)

−1
◦( p M⊗ f ).

By the bifunctoriality of the tensor product, the left-hand side is equal to

(πM ⊗ p N ′) ◦ ( p M ⊗ p f ) ◦ ( p M ⊗πN )
−1

so we just need to show that

p f ◦π−1
N = π

−1
N ′ ◦ f

but this follows from the functoriality f ◦πN =πN ′◦ p f of the cofibrant replacement
functor p.

(ii) We just need to show that, for M cofibrant, there is a natural isomorphism
M⊗B−∼= p M⊗B−, and then the result will follow by part (i) of the lemma. This
follows because πM : p M→ M is a quasi-isomorphism and by the bifunctoriality
of the tensor product. �

If the functor M ⊗L
B − is an equivalence D(B) −→∼ D(A), we say that M is a

tilting module.
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We say that a module M is of finite projective dimension if its cofibrant replace-
ment is an iterated extension of finitely many shifted indecomposable projective
modules.

The following basic lemma will also be useful. It can be found as [Keller 1994,
Lemma 6.2(a)]. We include a proof for the convenience of the reader.

Lemma 4.8. Let M be a left A-module of finite projective dimension and let P be
its cofibrant replacement. Then we have a natural isomorphism of functors

HomA(P, A)⊗A−−→
∼ HomA(P,−) : A-Mod→ F-Mod .

Proof. First note that, for any P ∈ A-Mod, we always have a natural transformation

HomA(P, A)⊗A−→ HomA(P,−)

obtained by starting with the map

ev⊗1 : (P ⊗F HomA(P, A))⊗A M→ A⊗A M,

using the associativity isomorphism to obtain a map

P ⊗F (HomA(P, A)⊗A M)→ A⊗A M,

then using the adjunction

HomF(HomA(P, A)⊗A M,HomA(P, A⊗A M))
∼= HomA(P ⊗F (HomA(P, A)⊗A M), A⊗A M),

and finally using the natural isomorphism A⊗A M ∼= M.
To show that our natural transformation is an isomorphism, we use induction

on the number of times we need to extend a summand of the regular module to
obtain P. We handle the base case as follows: the natural transformation is certainly
an isomorphism when P is the regular module and so, as hom functors commute
with finite direct sums, it is an isomorphism for all summands of the regular module.
For our inductive step, suppose the lemma holds for P1 and P2, and let P = cone( f )
for some map f : P1→ P2. Then, for M ∈ A-Mod, one can check that the map
HomA(P, A)⊗A M→ HomA(P,M) comes from the commutative diagram

HomA(P1, A)⊗A M

��

HomA(P2, A)⊗A M
Hom( f,A)⊗M
oo

��

HomA(P1,M) HomA(P2,M)
Hom( f,M)

oo

as in the construction from the second half of Lemma 4.5, where the vertical maps
come from the natural transformation described above. Therefore, as both vertical
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maps are isomorphisms by induction, HomA(P, A)⊗A M→ HomA(P,M) is an
isomorphism. �

Spherical twists. Our references are [Seidel and Thomas 2001; Rouquier and Zim-
mermann 2003; Grant 2013].

Let (A, d) be a dga and M be a left A-module with finite-dimensional total
homology. Let d ∈ Z. Following [Seidel and Thomas 2001], we say that M is
d-spherical if

• M is a d-Calabi–Yau object, i.e., we have an isomorphism

HomDfd(A)(M, N )∼= HomDfd(A)(N ,M[d])∗

which is functorial in N, and

•
⊕

i∈Z HomDfd(A)(M,M[i]) is isomorphic as a graded algebra to F[x]/〈x2
〉,

with x in degree d .

Associated to any spherical object M, we have a spherical twist functor FM :

Dfd(A)→ Dfd(A) which is defined as follows. First, let P = p M be a cofibrant
replacement of M. Then let X M be the cone of the map of A-A-bimodules

P ⊗F HomA(P, A) ev
−→ A,

where the nonzero map is the obvious evaluation map. As both HomA(P, A) and
A are cofibrant, X M is cofibrant as a right A-module. Then we define the spherical
twist at M by

FM = X M ⊗A− : Dfd(A)→ Dfd(A).

The spherical twist is an autoequivalence of Dfd(A) (so X M is a tilting module).
Note that, by Lemmas 4.5 and 4.8, if M has finite projective dimension then

FM(N )∼= P ⊗F HomA(P, N ) ev
−→ N .

We next need the fact that spherical twists are intertwined by derived equivalences.
The following is a generalization of [Seidel and Thomas 2001, Lemma 2.11].

Proposition 4.9. Let A, B be dgas. Let T ∈ B -Mod-A be a tilting module and

8= T ⊗L
A− : Dfd(A)→ Dfd(B)

be the associated derived equivalence. Let M ∈ A-Mod have finite-dimensional
total homology and suppose it is d-spherical, for some d ∈Z. Suppose that8(M)∈
B -Mod has finite-dimensional total homology. Then 8(M) is also d-spherical and
we have an isomorphism of functors

8 ◦ FM ∼= F8(M) ◦8 : Dfd(A)−→∼ Dfd(B).
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In particular, we have an isomorphism

F8(M) ∼=8 ◦ FM ◦8
−1
: Dfd(B)−→∼ Dfd(B)

where 8−1 is the quasi-inverse functor of 8.

Proof. As 8 : Dfd(A) → Dfd(B) is a derived equivalence it has quasi-inverse
8−1
: Dfd(B)→ Dfd(A), and so we have isomorphisms

HomDfd(B)(8(M),8(M)[i])∼= HomDfd(A)(M,M[i])

and

HomDfd(B)(8(M), N )∼= HomDfd(A)(M,8
−1(N ))

∼= HomDfd(A)(8
−1(N ),M[d])∗

∼= HomDfd(B)(N ,8(M)[d])
∗,

the second natural in N ∈ Dfd(B), using the facts that M is a d-Calabi–Yau object
and the shift functor [d] commutes with all triangulated functors. Thus 8(M) is
d-spherical.

By Lemma 4.7 we may assume that T is cofibrant as a right B-module and that
8= T ⊗A−. We want to show that

T ⊗A X M ⊗A−∼= X8(M)⊗B T ⊗A−,

so it is enough to check that we have an isomorphism

T ⊗A X M ∼= X8(M)⊗B T

in Dfd(B⊗F Aop). To construct this isomorphism, we use the following extension of
Lemma 4.5, which follows from the triangulated Five Lemma: for any commutative
diagram

M
f
//

ϕM∼

��

N

ϕN∼

��

M ′
f ′
// N ′

in B -Mod-A where ϕM and ϕN are both quasi-isomorphisms, we have a quasi-
isomorphism ϕN ⊕ϕM[1] : cone( f )→ cone( f ′).

As above, write P = p M. Then, by the first part of Lemma 4.5, we just need
to find two vertical maps which are quasi-isomorphisms and make the following
diagram commute:

T ⊗A P ⊗F HomB(T ⊗A P, B)⊗B T
ev⊗1T

//

∼

��

B⊗B T

∼

��

T ⊗A P ⊗F HomA(P, A)
1T⊗ev

// T ⊗A A
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Our plan is to do this in stages: we will show that the vertical maps in the following
diagram exist, and are quasi-isomorphisms, and that the diagram commutes.

T ⊗A P ⊗F HomB(T ⊗A P, B)⊗B T
ev⊗1T

//

∼

��

B⊗B T

=

��

T ⊗A P ⊗F HomB(T ⊗A P, B⊗B T ) ev
//

∼

��

B⊗B T

∼

��

T ⊗A P ⊗F HomB(T ⊗A P, T ⊗A A) ev
//

∼

��

T ⊗A A

=

��

T ⊗A P ⊗F HomA(P, A)
1T⊗ev

// T ⊗A A

Let us show that the first square commutes. We introduce some temporary
notation for the rest of this proof. Let F and G denote the functors F = T⊗A P⊗F−

and G =HomB(T ⊗A P,−), so F is left adjoint to G, and let H denote the functor
− ⊗B T. Then we have unit and counit natural transformations ε : FG → 1
and η : 1→ G F, and a natural isomorphism ζ : H F −→∼ F H coming from the
associativity isomorphism for tensor products. We first need to define a map

HFGB = T⊗A P⊗F HomB(T⊗A P,B)⊗B T→T⊗A P⊗F HomB(T⊗A P,B⊗B T )

= FGHB.

We define this as the composite

H FG B ζG B
−−→F H G B FηH G B

−−−→FG F H G B FGζ−1G B
−−−−−→FG H FG B FG HεB

−−−−→FG H B.

One checks that this is an isomorphism using the same argument as in Lemma 4.8.
To see that the diagram commutes, we break it up into smaller diagrams as follows:

H FG B

∼ζG B
��

HεB
// H B

F H G B 1
//

FηH G B
��

F H G B
∼

ζ−1G B &&

FG F H G B

∼FGζ−1G B
��

εF H G B

77

H FG B

HεB

AA

FG H FG B
FG HεB

//

εH FG B

33

FG H B

εH B

OO

Now we see that both squares commute by the naturality of ε, the triangle commutes
by the triangle identity εF ◦ Fη = 1F , and the pentagon commutes because the
isomorphisms are defined by ζ and its inverse.
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We use the obvious composite isomorphism B⊗B T −→∼ T −→∼ T ⊗A A to define
the second square. This commutes because the evaluation map is a counit, and
therefore a natural transformation.

To show that the third square commutes, we introduce some more notation.
Let F ′ and G ′ denote the functors F ′ = P ⊗F − and G ′ = HomA(P,−), so F ′

is left adjoint to G ′, and let H ′ and I ′ denote the functors H ′ = T ⊗A − and
I ′ = HomB(T,−), so H ′ is left adjoint (in fact, quasi-inverse) to I ′. We denote the
counit and unit maps of the first adjunction by ε′ : F ′G ′→ 1 and η′ : 1→G ′F ′, and
of the second adjunction by ε′′ : H ′ I ′→ 1 and η′′ : 1→ I ′H ′. Note that, because H ′

induces an equivalence of derived categories, ε′′ and η′′ give quasi-isomorphisms
when applied to any object.

Using the associativity isomorphism for tensor products we have a natural isomor-
phism of functors F ∼= H ′F ′, and by the uniqueness of right adjoints (or by using the
tensor-hom adjunctions directly) this gives another natural isomorphism G ∼= G ′ I ′.

We now redraw our final square, breaking it up into smaller diagrams:

FG H ′A
ε′H ′A

//

∼

��

H ′A

H ′F ′G ′ I ′H ′A
H ′ε′I ′H ′A

// H ′ I ′H ′A

ε′′H ′A
99

H ′F ′G ′A
H ′ε′A

//

H ′F ′G ′η′′A

OO

H ′A
H ′η′′A

ee
1

OO

Here, the top square commutes by definition of the isomorphisms F ∼= H ′F ′ and
G ∼= G ′ I ′, the triangle commutes by the triangle identity ε′′H ′ ◦ H ′η′′ = 1H ′ , and
the bottom square commutes by the naturality of ε′. �

We now describe the braid relations for spherical twists, as in Propositions 2.12
and 2.13 of [Seidel and Thomas 2001]; see also [Rouquier and Zimmermann 2003;
Grant 2015].

Proposition 4.10. Suppose that M and N are spherical objects of Dfd(A) and let

(M, N )= dimF

⊕
n∈Z

HomDfd(A)(M, N [n]).

Let FM , FN : Dfd(A)−→∼ Dfd(A) be the associated spherical twists.

• If (M, N )= 0 then FM ◦ FN ∼= FN ◦ FM .

• If (M, N )= 1 then FM ◦ FN ◦ FM ∼= FN ◦ FM ◦ FN .

Ginzburg dg-algebras. There is a well-known method to associate a differential
graded algebra to a quiver with potential [Ginzburg 2007, Section 5; Keller and
Yang 2011, Section 2.6].
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Let (Q,W ) be a quiver with potential. Construct a new quiver Q by adding
arrows to Q: for each arrow a : i→ j in Q we add a new arrow a∗ : j→ i , and for
each vertex i in Q we add a new arrow ti : i→ i . We view Q as a graded quiver
with the arrows of Q in degree 0, the arrows a∗ in degree −1, and the arrows ti
in degree −2. This induces a grading on the path algebra FQ of Q such that the
degree 0 part (FQ)0 is just the path algebra of FQ of Q. Let J denote the ideal of
FQ generated by the arrows of Q, and let F̂Q denote the completion of the graded
algebra FQ with respect to J , as on page 96.

We define a differential d on F̂Q by requiring that d be zero on each idempotent
ei associated to a vertex i of Q, specifying how d acts on arrows of Q, and then
extending to the rest of F̂Q using the Leibniz rule and continuity. For degree
reasons, we must have d(a) = 0 for each arrow a of Q. For arrows a∗, we
set d(a∗) = ∂aW, where ∂a denotes the cyclic derivative, and for arrows ti we
set d(ti ) = ei

(∑
aa∗ − a∗a

)
ei , where we sum over all arrows a of Q. Then

0Q,W = (F̂Q, d) is called the Ginzburg dga of (Q,W ).
Note that if (Q1,W1) and (Q2,W2) are right equivalent, then we have an isomor-

phism of dgas 0Q1,W1
∼= 0Q2,W2 [Keller and Yang 2011, Lemma 2.9]. Hence, if we

are working with quivers with potential of mutation type A or D, by Proposition 4.4
we only need to consider the Ginzburg dgas 0Q,WQ , and so can denote them 0Q .

Keller and Yang showed that QP-mutation lifts to equivalences of derived cate-
gories of Ginzburg dgas:

Theorem 4.11 [Keller and Yang 2011, Theorem 3.2]. Suppose that (Q,W ) is a
QP and that (Q′,W ′) = µk(Q,W ) for some k ∈ I. There is a tilting complex T
which gives an equivalence of triangulated categories

µk = Hom0Q′,W ′
(T,−) : D(0Q′,W ′)→ D(0Q,W ),

and it restricts to an equivalence of triangulated categories,

µk = Hom0Q′,W ′
(T,−) : Dfd(0Q′,W ′)→ Dfd(0Q,W ).

Recall that, for a dga A, the finite-dimensional derived category Dfd(A) is
d-Calabi–Yau if there exists a bifunctorial isomorphism,

HomDfd(A)(M, N )∼= HomDfd(A)(N ,M[d])∗,

where (−)∗ denotes the k-linear dual. We will need the following important result
of Keller and Van den Bergh:

Theorem 4.12 [Keller 2011, Theorem 6.3 and Theorem A.12]. The category
Dfd(0Q,W ) is 3-Calabi–Yau.

Let (Q,W ) be a QP and 0 = 0Q,W . Associated to each vertex i of Q, we have
the 1-dimensional simple left 0-module, which we denote Si . Keller and Yang
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[2011, Section 2.14] explained how to construct the cofibrant replacement of Si :
as long as we remember the differential, we can proceed as if the Ginzburg dga
were an ordinary hereditary algebra, and the underlying u(0)-module of p Si is the
direct sum of one copy of the projective Pi and one copy of the shifted projective
Pj [1] for each arrow j→ i in Q. Using this, they showed:

Lemma 4.13 [Keller and Yang 2011, Lemma 2.15]. Let i, j ∈ I and n ∈ Z and
0 = 0Q,W . Then HomDfd(0)(Si , S j [n])= 0 if n 6= 0, 1, 2, 3, and

dimF HomDfd(0)

(
Si , S j [n]

)
=


δi j if n = 0,
#{arrows i→ j in Q} if n = 1,
#{arrows j→ i in Q} if n = 2,
δi j if n = 3,

where δi j is the Kronecker delta.

Relations between functors. By Theorem 4.12, every object of Dfd(0Q,W ) is a
3-Calabi–Yau object. By Lemma 4.13,⊕

j∈Z

HomDfd(0Q,W )(Si , Si [ j])∼= F[x]/〈x2
〉

with x in degree 3. Hence Si is 3-spherical, and we have a spherical twist FSi

associated to Si . We will sometimes write Fi instead of FSi .
Let k be a vertex of Q, and write (Q′,W ′)= µk(Q,W ). Then write 0 = 0Q,W

and 0′ = 0Q′,W ′ for the associated Ginzburg dgas. Write Ti for the left 0′-module
associated to the vertex i of Q′ and Gi for the associated autoequivalence FTi of
Dfd(0

′). In this section we will study how the spherical twists Fi :Dfd(0)−→
∼ Dfd(0)

interact with the mutation functors µk : Dfd(0
′) −→∼ Dfd(0). Our key tools will

be Proposition 4.9 and the results on the images of the simple modules under the
mutation functors [Keller and Yang 2011, Lemma 3.12(a)], which we will describe
below.

If A is a dga and M, N ∈ Dfd(A), we have a natural map,

M ⊗F HomDfd(A)(M, N )→ N ,

in Dfd(A) given by evaluation. For any graded vector space V, we have biadjoint
functors −⊗F V and −⊗F V ∗, and these respect the left A-module structure, so
we also obtain a natural map,

M→ N ⊗F HomDfd(A)(M, N )∗,

in Dfd(A). Now let L , N ∈ A-Mod. The universal extension of N by L is the cone
of the natural map

N [−1] → L ⊗F HomDfd(A)(N [−1], L)∗
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and the universal coextension of L by N is the cone of the natural map

N [−1]⊗F HomDfd(A)(N [−1], L)→ L .

The following result is due to Keller and Yang:

Lemma 4.14 [Keller and Yang 2011, Lemma 3.12(a)]. We have µk(Tk) ∼= Sk[1]
and µk(Ti ) is the universal extension of Si by Sk , for i 6= k.

The following result should be compared to Definition 2.8.

Proposition 4.15. If Q has no double arrows then we have a natural isomorphism
of functors

Fµ−1
k (Si )

∼=

{
Gk Gi G−1

k if i→ k in Q,
Gi otherwise.

Proof. We first use Lemma 4.14 to calculate the images of the simple 0′-modules
under the inverse mutation functor µ−1, where µ=µk . We know that µ(Tk)∼= Sk[1],
so µ−1(Sk)∼= Tk[−1]. By assumption, there is at most one arrow between any two
vertices in Q. If i 6= k and there is no arrow i → k in Q then, by Lemma 4.14,
HomDfd(0)(Si [−1], Sk)=0 and soµ(Ti )∼= cone(Si [−1]→0)∼= Si , soµ−1(Si )∼=Ti .

If i 6= k and there is an arrow i → k in Q then HomDfd(0)(Si [−1], Sk) is
1-dimensional and soµ(Ti )∼=cone(Si [−1]→ Sk), with the nonzero map determined
up to a scalar. We can then use Lemma 4.5 to calculate µ(cone(Tk[−1] → Ti ):
this is cone(µ(Tk)[−1] → µ(Ti )) where, as µ is an equivalence, the map must
again be nonzero and determined up to scalar. We know that µ(Tk)[−1] ∼= Sk and
µ(Ti ) is Si ⊕ Sk with appropriate differential. One can check that the injection
Sk ↪→ Si ⊕ Sk respects the differentials, and so this must be our nonzero map. This
is quasi-isomorphic to the map 0→ Si , and so µ(cone(Tk[−1] → Ti )) ∼= Si and
hence µ−1(Si )∼= cone(Tk[−1] → Ti ). Note that this is the universal coextension
of Ti by Tk .

Now we check that the formula holds. If i = k then Fµ−1(Si ) = FTi [1], and as
the shift functor on Dfd(0

′) is naturally isomorphic to 0′[1]⊗0′ − we see that, by
Proposition 4.9, FTi [1]

∼= [1] ◦Gi ◦ [−1] ∼= Gi . If i 6= k and there is no arrow i→ k
in Q then µ−1(Si )∼= Ti so Fµ−1(Ti ) = Gi .

Finally, suppose i 6= k and there is an arrow i → k in Q. As mutation at k
reverses all arrows incident with k, and can never change the number of arrows
incident with k, there must be exactly one arrow k→ i in Q′. We first calculate
Gk(Ti ): this is

cone( p Tk ⊗F Hom0′( p Tk, Ti )→ Ti ).

As Hom0′( p Tk, Ti ) is a differential graded F-module, it is quasi-isomorphic to its
homology, which is the direct sum

⊕
HomK (0′)(Tk, Ti [n]) with

HomK (0′)(Tk, Ti [n])∼= HomDfd(0′)(Tk, Ti [n])
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in degree n. So by Lemma 4.14 the homology is only nonzero in degree 1, where it
is 1-dimensional, and thus

Gk(Ti )∼= cone(Tk ⊗F F[−1] → Ti ).

So we see that µ−1(Si ) ∼= Gk(Ti ) and therefore, using Proposition 4.9 again,
Fµ−1(Si )

∼= Gk Gi G−1
k . �

We are now able to show that our braid groups BQ act via spherical twists on
the category Dfd(0).

Theorem 4.16. Let (Q,W ) be a mutation-Dynkin quiver with potential of type ADE.
Then we have a group homomorphism

BQ→ Aut Dfd(0Q,W ), si 7→ Fi

sending the group generator associated to the vertex i ∈ I to the spherical twist at
the simple 0Q,W -module Si .

Proof. As (Q,W ) is mutation-Dynkin, it is obtained by mutating a quiver with
potential (Q′′, 0) finitely many times, where Q′′ is a Dynkin quiver. Then we have
a group homomorphism BQ′′→ Aut Dfd(0Q′′,0) by Remark 2.3, Proposition 4.10,
and Lemma 4.13. This gives the base case of an inductive argument, so we need
to show that if the spherical twists Fi on 0 = 0Q,W satisfy the relations of BQ for
a mutation-Dynkin quiver with potential (Q,W ) then the spherical twists Gi on
0′ = 0Q′,W ′ satisfy the relations of BQ′ .

Assume the functors Fi : Dfd(0)→ Dfd(0) satisfy the relations of BQ and let
µ = µk : Dfd(0

′)→ Dfd(0) be the Keller–Yang derived equivalence. Then the
functors µ−1

◦ Fi ◦ µ : Dfd(0
′)→ Dfd(0

′) also satisfy the relations of BQ . By
Proposition 4.9 we have

µ−1
◦ Fi ◦µ∼= Fµ−1(Si ),

i.e., the following diagram commutes:

Dfd(0
′)

µ
//

F
µ−1(Si )
��

Dfd(0)

FSi
��

Dfd(0
′)

µ
// Dfd(0)

So we have a group homomorphism ρ : BQ
ρ
−→Aut Dfd(0

′) sending si to Fµ−1(Si ).
By Proposition 2.1, Q has no double arrows, so we can use Proposition 4.15 to
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write ρ as

BQ
ρ
−→Aut Dfd(0

′),

si 7→

{
Gk Gi G−1

k if i→ k in Q;
Gi otherwise.

Precomposing this with the group isomorphism ϕ−1
k : B

′

Q −→
∼ BQ of Remark 2.11,

we obtain the group homomorphism

BQ′
ϕ−1

k
// BQ

ρ
// Aut Dfd(0

′)

ti
� //

{
s−1

k si sk if i→ k in Q,
si otherwise

}
� //
{

G−1
k Gk Gi G−1

k Gk if i→ k in Q,
Gi otherwise

}
∼= Gi

as required. �

Remark 4.17. Known results on the faithfulness of braid group actions can be
transferred to our setting. Suppose Q′′ is an orientation of an ADE graph and the
usual action BQ′′ → Aut Dfd(0Q′′,0) is faithful. From the proof of Theorem 4.16
we see that our actions of BQ where Q is of mutation type ADE are just built by
precomposing group isomorphisms with the action of BQ′′ , and so these are also
faithful under this assumption.

It was shown by Seidel and Thomas [2001, Theorem 2.18], building on work
of Khovanov and Seidel [2002], that given a collection of d-spherical objects,
with d ≥ 2, in a type An-configuration the action of the braid group by spherical
twists is faithful. Thus the actions of Theorem 4.16 are faithful in mutation type A.
The faithfulness result of Seidel and Thomas was extended to all collections of
2-spherical objects in type ADE configurations by Brav and Thomas [2011], using
the Garside structure of the braid monoid, but it is not immediately clear how to
generalize their argument to the 3-Calabi–Yau situation.

Remark 4.18. Although we have shown that our braid groups of mutation-Dynkin
quivers can be realized categorically, this is not a categorification of our earlier
results because we cannot decategorify (see, for example, [Baez and Dolan 1998]):
we cannot recover Theorem 2.10 from Theorem 4.16 because we use Theorem 2.10
to prove Theorem 4.16. The problem is that, for an arbitrary mutation-Dynkin
quiver with potential (Q,W ), we do not in advance know the relations satisfied by
the spherical twist functors Fi . This question will be addressed in a forthcoming
paper.

Remark 4.19. The arguments of [Grant 2015] generalize to show that, if vertices
i and j of Q are joined by an arrow, then Fi F j Fi ∼= F j Fi F j can be realized as a
single periodic twist. Similarly, one can show that if i→ j→ k→ i is a 3-cycle in
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Q then
F1 F2 F3 F1 ∼= F2 F3 F1 F2 ∼= F3 F1 F2 F3

can be realized as a single periodic twist. This exhausts the possibilities in type A;
we will study type D further in the future.
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A PALEY–WIENER THEOREM
FOR THE SPECTRAL PROJECTION

OF SYMMETRIC GRAPHS

SHIN KOIZUMI

We prove a Paley–Wiener theorem for the spectral projection of symmetric
graphs and, as a corollary, derive a Paley–Wiener theorem for the Helgason–
Fourier transform. The proof is based on contour integration arguments
similar to those used to prove the Paley–Wiener theorem for Euclidean
spaces and symmetric spaces.

1. Introduction

The theory of representations of free groups has been studied by many authors
in analogy with the semisimple theory. This arises from the realization of a free
group as a homogeneous tree and relies upon the use of the Poisson boundary
and spherical function. Mantero and Zappa [1983] characterized the image of
the Poisson transform of free groups and studied the uniform boundedness of the
spherical representation. In [Cowling et al. 1998], Cowling, Meda and Setti studied
the images of the Abel transform for various function spaces on homogeneous trees.
Cowling and Setti [1999] gave the characterizations of the images of the spaces of
compactly supported functions and rapidly decreasing functions.

The concept of tree has been extended in several aspects. For instance, Iozzi and
Picardello [1983a; 1983b] extended the context of tree to symmetric graphs and
gave an explicit expression of the spherical function. Later, the Plancherel measure
on symmetric graphs was explicitly computed in [Kuhn and Soardi 1983; Faraut and
Picardello 1984]. Recently Eddine [2013; 2015] investigated the characterization of
the Abel transform for symmetric graphs and, as an application, solved the shifted
wave equations on it.

In [Koizumi 2013], we studied the spectral projection on homogeneous trees and
proved the Paley–Wiener theorem of the spectral projection, which is an analogue
of that given by Bray [1996]. In this paper, we shall extend the works in [Koizumi
2013] to the case of symmetric graphs. Unlike the works of Cowling and Setti
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Keywords: spectral projection, symmetric graph, Paley–Wiener theorem, generalized spherical

function.
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[1999], our proof is based on contour integration arguments, which are usually used
to prove the Paley–Wiener theorem for the cases of the Euclidean spaces and the
symmetric spaces [Johnson 1979; Campoli 1980].

A brief outline of this paper is as follows: Section 2 is devoted to the overview
of the notation of symmetric graphs. In Section 3, we concretely write down
the expressions of the Poisson transform on symmetric graphs. In Section 4, we
construct the intertwining operators between the spherical representations and give
the explicit expressions of the intertwining operators. In Section 5, we study the
properties of the spectral projection for symmetric graphs. Finally in Section 6,
we show the Paley–Wiener theorem of the spectral projection and prove the Paley–
Wiener theorem of the Helgason–Fourier transform.

2. Notation and preliminaries

The standard symbols Z, R and C are used for the integers, the real numbers and
the complex numbers, respectively. Let us set Zk = Z/kZ. Throughout this paper,
the imaginary unit is denoted as i . If x ∈ C, <x and =x denote its real part and its
imaginary part, respectively.

A graph X is symmetric of type k ≥ 2 and order r ≥ 2 if every vertex v belongs
exactly to r polygons with k sides each with no sides and no vertex in common
except v, and if every nontrivial loop in X runs through all edges of at least one
polygon. If k = 2, X reduces to a homogeneous tree of degree r . In what follows,
we write q = (k − 1)(r − 1), τ = 2π/ log q and T = R/τZ. Different notions of
length on a symmetric graph were introduced in [Iozzi and Picardello 1983a]. Here
we use the definition of the length d(x, y) between two vertices x, y ∈ X to denote
the minimal number of polygons crossed by a path connecting x and y. We fix a
reference point o in X and write |x | = d(x, o).

By the same arguments as in [Betori and Pagliacci 1984, Theorem 1], if k > 2, it
is easy to see that every group acting simply transitively on X and isometrically with
respect to the metric induced by this length is isometric to the free group G=⊕r

i=1Zk ,
while, for k = 2, G is isometric to the free product of t copies of Z and s copies
of Z2, where 2t + s = r . Hence every vertex of X is identified with an element of
G and, under this identification, every polygon corresponds to an orbit under right
translations by one of the factors Zk . For x ∈ X and n ≤ |x |, we write x (n) for the
word of length n consisting of the first n blocks of x and simply write x ′ for x (|x |−1).

Let Sn be the set of words of length n in X. We write� for the Poisson boundary
of X. For ω ∈� and n ∈ Z≥0, we denote by ωn the word of length n consisting the
first n blocks. Let E(x) denote the subset of � of words that begin with the reduced
word x ∈ X. We write M and Mn for the σ -algebra generated by {E(x) : x ∈ X}
and σ -subalgebra generated by {E(x) : |x | 5 n} respectively. Then M makes
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� into a compact topological space and there exists a natural G-quasi-invariant
probability measure ν on (�,M). We write F(�) for the space comprised of
the Mn-measurable functions on �. We denote by F(�)c the linear span of the
characteristic functions of E(x) for x ∈ X. The dual space F ′(�) is identified with
the space of the martingales on � with respect to {Mn}.

We write s0 =
( 1

2 − logq(k− 1)
)
i + 1

2τ and set

ϒ =
{
s ∈ C : s = 1

2 i + hτ, s = s0+ hτ (h ∈ Z)
}
.

We define the subsets bx , cx , dx of X by the following: for x ∈ X \ {o}

bx = {y ∈ X : d(y, x)= 1, |y| = |x |},

cx = {y ∈ X : d(y, x)= 2, |y| = |x |},

dx = {y ∈ X : d(y, x)≥ 3, |y| = |x |},

and bo = co = do =∅. The subsets B(x) and C(x) of � are defined by

B(x)=
⋃
y∈bx

E(y), C(x)=
⋃
y∈cx

E(y).

For a function η on � and n ∈Z≥0, we define the averages Enη and Bnη as follows:

Enη(ω)=
1

ν(E(ωn))

∫
E(ωn)

η(ω′) dν(ω′), Bnη(ω)=
1

ν(B(ωn))

∫
B(ωn)

η(ω′) dν(ω′).

Then, as shown in [Mantero and Zappa 1983, p. 375], the set {Enη} is a martingale
associated to η ∈ L1(�) and the n-th martingale difference of η is given by Dnη =

Enη− En−1η. Here we set E−1 = 0. For x ∈ X and ω ∈ �, the Poisson kernel
p(x, ω) is defined to be the Radon–Nikodym derivative dν(x−1ω)/dν(ω) and is
computed as

p(x, ω)= qζ(x,ω),

where ζ(x, ω)= limm→∞(m− d(x, ωm)) is the Busemann function. As shown in
[Iozzi and Picardello 1983b, Proposition 2], for x ∈Sn , we have

(2-1) p(x, ω)= qnχE(x)(ω)+

n∑
j=1

q2 j−n−1χB(x ( j))(ω)+

n∑
j=1

q2 j−n−2χC(x ( j))(ω).

For η ∈ L1(�) and s ∈ T, we define the Poisson transform Psη by

(2-2) Psη(x)=
∫
�

p(x, ω)1/2+isη(ω) dν(ω).

By duality, the Poisson transform is naturally extended to F ′(�) and is denoted by
the same symbol Ps.
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Following [Mantero and Zappa 1983], we define the operators ε and 1 on X,
which are essentially the analogue of En and Dn . We set for n ∈ Z≥0

S(n, x)=
{
{x}, |x | ≤ n,
{y ∈ X : |y| = |x |, y(n) = x (n)}, |x |> n.

For a function φ on X and n ∈ Z≥0, we define its average εnφ by

(2-3) εnφ(x)=
1

Card S(n, x)

∑
y∈S(n,x)

φ(y).

We also define 1nφ by

1nφ(x)= εnφ(x)− εn−1φ(x).

Here we set ε−1φ = 0. We write µ1 for the probability measure equidistributed on
words of length 1. We also use the notation κ1 to denote the following:

(φ ∗ κ1)(x)=
1

k−2

∑
y∈bx

φ(y).

We write Cc(X) for the set of all compactly supported functions on X. For
N ∈ Z≥0, we denote by CN (X) the subset of Cc(X) consisting of all f ∈ Cc(X)

such that supp f ⊆ BN . A function φ on X is said to be radial if ε0φ = φ and
cylindrical if εNφ(x) = φ(x) for some N ∈ Z≥0. For any function space E(X),
we denote by E(X)# and E(X)c the subspaces of E(X) consisting of all radial
functions and cylindrical functions, respectively. A function f on T is said to be
Weyl-invariant if f (s+ τ)= f (s) and f (−s)= f (s).

Finally we pointed out that it is meaningful to study harmonic analysis for
symmetric graphs using methods similar to that in symmetric spaces. For example,
the explicit expressions of the intertwining operators obtained in Section 4 can
be used to construct the composition series of the spherical representations and
determine which parts of the subquotients are unitarizable. In Section 6, using this
information, we can concretely characterize the image of the compactly supported
functions under the Helgason–Fourier transform.

3. The Poisson transform on symmetric graphs

Iozzi and Picardello [1983b] studied the Poisson transform for symmetric graphs.
They showed in their paper that the Poisson transform Ps is injective on F(�)c
if and only if s 6∈ ϒ . In this section, by carrying out similar arguments to that in
[Mantero and Zappa 1983], we show that Ps is also surjective on F ′(�) when s 6∈ϒ .

As shown in [Iozzi and Picardello 1983b, Theorem 1], we have

(Psη ∗µ1)(x)= γ (s)Psη(x),
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where
γ (s)= 1

r(k−1)
(q1/2+is

+ q1/2−is
+ k− 2).

By using the equation

χE(x ( j))(ω)−χE(x ( j+1))(ω)= χC(x ( j+1))(ω)+χB(x ( j+1))(ω),

(2-1) is expressed as

(3-1) p(x, ω)= q−|x |χE(x (0))(ω)+ (1− q−2)

|x |∑
j=1

q2 j−|x |χE(x ( j))(ω)

+ (1− q−1)

|x |∑
j=1

q2 j−|x |−1χB(x ( j))(ω).

Therefore for ω ∈�, substituting (3-1) into (2-2), we have

Psη(ωn)=

n∑
j=0

bj,n(s)E jη(ω)+
k− 2

q1/2+is + 1

n∑
j=1

bj,n(s)Bjη(ω),

where b0,n(s)= q−n(1/2+is) and

bj,n(s)=
q

r(k− 1)
(1− q−1−i2s)q−n(1/2+is)+i2 js .

By the definitions of Bn and En , it is easy to verify that

Em Bn =

{
Bn, m ≥ n,
Em, m < n,

Bm En =

{
En, m > n,
Bm, m ≤ n.

And hence we obtain that

Bm Dnη =


Dnη, m > n,
Bnη− En−1η, m = n,
0, m < n.

Hereafter we suppose that DMη = η for some M ≥ 0. We first consider the case
when M > 0. Since E jη = 0 and Bjη = 0 for j < M, we have

Psη(ωn)= 0 for n < M,

and

(3-2) Psη(ωM+`)=

M+∑̀
j=M

bj,M+`(s)η(ω)+
k− 2

q1/2+is + 1

M+∑̀
j=M+1

bj,M+`(s)η(ω)

+
k− 2

q1/2+is + 1
bM,M+`(s)BMη(ω).
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We define the function Q0
M(s) on T by Q0

0(s)= 1 and

Q0
M(s)=

√
q

r(k− 1)
q−M/2q i(M−1)s(q1/2+is

− q−1/2−is)

for M > 0. By using this, (3-2) can be written

Psη(ωM+`)

= q−`(1/2+is)Q0
M(s)

{
M+∑̀
j=M

q i2s( j−M)η(ω)+
k− 2

q1/2+is + 1

M+∑̀
j=M+1

q i2s( j−M)η(ω)

+
k− 2

q1/2+is + 1
BMη(ω)

}
.

Here we set Q0(s)= R0(s)= 1 and

QM(s)=
√

q
r(k− 1)

q−M/2q i(M−1)s(q1/2+is
− (k− 1)q−1/2−is

+ k− 2),

RM(s)=
√

q
r(k− 1)

q−M/2q i(M−1)s(1− q−1/2−is)

for M > 0. Then a direct computation yields that

(3-3) Psη(ωM+`)= q−`/2ψ(`+ 1, s)QM(s)η(ω)

+ (k− 2)RM(s)q−`(1/2+is)(BMη(ω)− η(ω)),

where

ψ(n, s)=
sin(ns log q)
sin(s log q)

.

As pointed out in [Cowling and Setti 1999, p. 242], DMη = η if and only if η is
constant on E(x) for every x ∈SM and the average of η with respect to E(y) for
|y| < M is equal to 0. Therefore we can regard η as a function on X by setting
η(x) = E|x |η(ω) for ω ∈ E(x). Under this identification, we have that η(x) = 0
when |x |< M and η(x)= η(x (M)) when |x | ≥ M. Moreover, for x ∈ X such that
|x | > M and y ∈ bx , it holds that η(x) = η(y) because |x ′| = |y′| ≥ M. We also
remark that BMη(ω) corresponds to η ∗ κ1(x (M)). For these reasons, (3-3) can be
rewritten as follows:

(3-4) Psη(x)= q−(|x |−M)/2ψ(|x | −M + 1, s)QM(s)η(x (M))

+(k− 2)RM(s)q−(|x |−M)(1/2+is)(η ∗ κ1(x (M))− η(x (M))).

In the case M = 0, η is a constant function on � and so Psη is expressed in terms
of the spherical function φs given in [Iozzi and Picardello 1983b, Theorem 2] as:

Psη(x)= φs(x)η(o).
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We summarize these results in the following proposition.

Proposition 3.1. Let η ∈ L1(�) be such that DMη= η. Then the Poisson transform
Psη has the following forms:

(1) If M > 0,

Psη(x)= 0, |x |< M,

Psη(x)= q−(|x |−M)/2ψ(|x | −M + 1, s)QM(s)η(x (M))

+ (k− 2)RM(s)q−(|x |−M)(1/2+is)(η ∗ κ1(x (M))− η(x (M))), |x | ≥ M.

(2) If M = 0,
Psη(x)= φs(x)η(o).

Let Lγ (s)(X) denote the space consisting of the functions φ on X satisfying the
condition φ ∗µ1 = γ (s)φ. For M ∈ Z≥0, we denote by L M

γ (s)(X) the subspace of
Lγ (s)(X) consisting of the functions φ which satisfy the following conditions:

(1) 1Mφ = φ,

(2) for x ∈ X such that |x |> M and y ∈ bx , φ(x)= φ(y).

Then L 0
γ (s)(X) is just the space of radial harmonic functions on X. We prove the

following lemma, which is an analogue of [Mantero and Zappa 1983, Lemma 3.2].

Lemma 3.2. Let φ ∈L M
γ (s)(X) and ω ∈�. Then we have the following:

(1) If M > 0,

(3-5)
φ(ωn)= 0 (n < M),

φ(ωM+`)= q−`/2ψ(`+ 1, s)φ(ωM)

+ (k− 2)q−(`+1)/2ψ(`, s)× (φ(ωM)−φ ∗ κ1(ωM)).

(2) If M = 0,
φ(ω`)= φs(ω`)φ(o).

Proof. Since for ω ∈� and n ≥ M ,

φ∗µ1(ωn)=
1

r(k−1)

(
φ(ωn−1)+(k−2)φ∗κ1(ωn)+φ(ωn+1)+

∑
y∈bωn+1

φ(y)+
∑

y∈cωn+1

φ(y)
)
,

and

1n+1φ(ωn+1)= φ(ωn+1)−
1
q

(
φ(ωn+1)+

∑
y∈bωn+1

φ(y)+
∑

y∈cωn+1

φ(y)
)
= 0,

we have

φ ∗µ1(ωn)=
1

r(k−1)
{φ(ωn−1)+ (k− 2)φ ∗ κ1(ωn)+ qφ(ωn+1)}.
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Hence the condition φ ∗µ1 = γ (s)φ implies that

(qβ(s)+ k− 2)φ(ωn)= φ(ωn−1)+ (k− 2)φ ∗ κ1(ωn)+ qφ(ωn+1),

where β(s)= q−1/2+is
+q−1/2−is. When n > M, we have that φ ∗κ1(ωn)= φ(ωn)

and therefore we have the recursion formulae:

φ(ωn)= 0, n < M,(3-6)

φ(ωM+1)= β(s)φ(ωM)+ (k− 2)q−1(φ(ωM)−φ ∗ κ1(ωM)),(3-7)

φ(ωM+`)= β(s)φ(ωM+`−1)− q−1φ(ωM+`−2), `≥ 2.(3-8)

In the case s 6∈ (τ/2)Z, the difference equation (3-8) has the fundamental solu-
tions q−1/2+is and q−1/2−is. So using the initial condition (3-7) to determine the
coefficients of the fundamental solutions, we obtain the following expression:

(3-9) φ(ωM+`)= C1q`(−1/2+is)
+C2q`(−1/2−is),

where

C1 =
q isφ(ωM)+ (k− 2)q−1/2

{φ(ωM)−φ ∗ κ1(ωM)}

q is − q−is ,

C2 =
−q−isφ(ωM)− (k− 2)q−1/2

{φ(ωM)−φ ∗ κ1(ωM)}

q is − q−is .

Similarly, when s = 1
2 mτ (m ∈ Z), we also have

(3-10) φ(ωM+`)= (C ′1+C ′2`)(−1)m`q−`/2,

where

C ′1 = φ(ωM), C ′2 = φ(ωM)+ (k− 2)(−1)mq−1/2(φ(ωM)−φ ∗ κ1(ωM)).

Obviously both the expressions (3-9) and (3-10) agree with the equation (3-5). The
case M = 0 is analogous. This concludes the proof. �

Let x ∈SM and s 6∈ ϒ . Then we have from (3-4) that

(3-11) Psη(x)= QM(s)η(x)+ (k− 2)RM(s)(η ∗ κ1(x)− η(x)).

We put φ(x)= Psη(x) and write down η in terms of φ and φ ∗ κ1. Since

(3-12) φ ∗ κ1 ∗ κ1(x)=
1

k−2
φ(x)+ k−3

k−2
φ ∗ κ1(x),

we have from (3-11) that

(3-13) φ ∗ κ1(x)= QM(s)(η ∗ κ1)(x)+ RM(s)(η(x)− η ∗ κ1(x)).
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Thus, solving the simultaneous equations (3-11) and (3-13), we get the expressions

η(x)=
(q1/2+is

+ k− 2)φ(x)− (k− 2)φ ∗ κ1(x)
q1/2+is QM(s)

,

η ∗ κ1(x)=
(q1/2+is

+ 1)φ ∗ κ1(x)−φ(x)
q1/2+is QM(s)

.

The above expressions suggest the following proposition.

Proposition 3.3 (cf., [Mantero and Zappa 1983, Proposition 3.4]). Let s 6∈ϒ . For
φ ∈L M

γ (s)(X), there exists a function η on � such that DMη = η and Psη = φ.

Proof. Suppose that M > 0. Indeed, define η(ω) by

η(ω)=
(q1/2+is

+ k− 2)φ(ωM)− (k− 2)φ ∗ κ1(ωM)

q1/2+is QM(s)
.

Then φ(ωM)= Psη(ωM) is trivial. Applying Lemma 3.2 to our case together with
(3-11) and (3-13), we see that

φ(ωM+`)= q−`/2ψ(`+ 1, s)φ(ωM)+ (k− 2)q−(`+1)/2ψ(`, s)

×(φ(ωM)−φ ∗ κ1(ωM))

= q−`/2ψ(`+1, s){QM(s)η(ωM)+(k−2)RM(s)(η∗κ1(ωM)−η(ωM))}

+ (k− 2)q−(`+1)/2ψ(`, s)q1/2+is RM(s)(η(ωM)− η ∗ κ1(ωM))

= q−`/2ψ(`+ 1, s)QM(s)η(ωM)+ (k− 2)q−`/2 RM(s)

×{ψ(`+ 1, s)− q isψ(`, s)}(η ∗ κ1(ωM)− η(ωM))

= Psη(ωM+`).

The case M = 0 is analogous. This concludes the proof. �

The following proposition is proved in the same way as in [Mantero and Zappa
1983, Corollary 3.5] and hence we omit its proof.

Proposition 3.4. Suppose that s 6∈ϒ . Then the Poisson transform Ps is a bijective
operator from F ′(�) onto Lγ (s)(X).

4. The construction of the intertwining operator

Mantero and Zappa [1983] defined the intertwining operator between the spherical
representations for free groups and gave an explicit expression of the intertwining
operator. In this section, we extend their results to the case of symmetric graphs.

Let s ∈ C and define the action πs of G on L2(�) by

(πs(g)η)(ω)= p(g · o, ω)1/2+isη(g−1ω).
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The representation (πs, L2(�)) is called the spherical representation. We denote
by λ the left regular representation of G on Lγ (s)(X). Then as indicated in [Iozzi
and Picardello 1983b, p. 372], the Poisson transform P−s intertwines πs and λ.
Therefore, in the case ±s 6∈ ϒ , we see from Proposition 3.4 that the operator on
F ′(�) defined by Is = (Ps)−1 P−s is bijective and satisfies the following relation:

(4-1) Isπs(g)= π−s(g)Is .

Let η ∈ L1(�) be such that DMη = η for some M > 0. Under this assumption,
Is(BMη)= BM(Isη) because

Ps(BM Isη)(x)= Ps Isη ∗ κ1(x)= P−sη ∗ κ1(x)= P−s(BMη)(x).

Since

Ps Isη(ωM+`)= P−sη(ωM+`),

we have from (3-3) that

q−`/2ψ(`+ 1, s)QM(s)Isη(ω)+ (k− 2)RM(s)q−`(1/2+is)(Is BMη(ω)− Isη(ω))

= q−`/2ψ(`+ 1, s)QM(−s)η(ω)+ (k− 2)RM(−s)q−`(1/2−is)(BMη(ω)− η(ω)).

Taking `= 0 and `= 1 respectively, we obtain from the above equation that

(4-2) Q0
M(s)Isη(ω)+ (k− 2)RM(s)Is BMη(ω)

= Q0
M(−s)η(ω)+ (k− 2)RM(−s)BMη(ω)

and

(4-3) β(s)QM(s)Isη(ω)+ (k− 2)q−(1/2+is)RM(s)(Is BMη(ω)− Isη(ω))

= β(s)QM(−s)η(ω)+ (k− 2)q−(1/2−is)RM(−s)(BMη(ω)− η(ω)).

Solving the simultaneous equations (4-2) and (4-3), we have

Isη(ω)=
q−is QM(−s)η(ω)+ (q is

− q−is)Q0
M(−s)η(ω)

q is QM(s)

+
(k− 2)(q is

− q−is)RM(−s)BMη(ω)

q is QM(s)
,(4-4)

Is BMη(ω)=
(q is
− q−is)RM(−s){η(ω)− BMη(ω)}

q is QM(s)

+
q is QM(−s)BMη(ω)

q is QM(s)
.(4-5)
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For η ∈ L1(�) satisfying DMη = η, we define η+ and η− as

η+(ω)= η(ω)+ (k− 2)BMη(ω),(4-6)

η−(ω)= η(ω)− BMη(ω).(4-7)

Then we have from (4-4) and (4-5) that

Isη
+(ω)=

QM(−s)
QM(s)

η+(ω),(4-8)

Isη
−(ω)=

q−is RM(−s)
q is RM(s)

η−(ω).(4-9)

For n ∈ Z≥0, we denote by Hn the subspace of F(�)c consisting of η such that
Dnη= η. We write H+n and H−n for the subspaces of Hn generated by {η+ : η ∈Hn}

and {η− : η ∈Hn}, respectively. Then it holds that H0=H+0 and Hn =H+n ⊕H−n for
n > 0. The expressions (4-8) and (4-9) give the explicit forms of the intertwining
operator Is when restricted to H+n and H−n , respectively.

Finally in this section, we list some properties of the Poisson transform. Analo-
gously to (4-6) and (4-7), for a function φ on X, we define φ+ and φ− by

φ+(x)= φ(x)+ (k− 2)φ ∗ κ1(x), φ−(x)= φ(x)−φ ∗ κ1(x).

Let η ∈ L1(�) be such that DMη = η. Then taking into account (3-12), we see
from Proposition 3.1 that

(4-10) (Psη)+(x)= q−(|x |−M)/2ψ(|x | −M + 1, s)QM(s)η+(ω)= (Psη+)(x)

and

(4-11) (Psη)−(x)= q−(|x |−M)/2ψ(|x | −M + 1, s)QM(s)η−(ω)

−(k− 1)q−(|x |−M)(1/2+is)RM(s)η−(ω)

= (Psη−)(x).

We here set

ψ−(`+ 1, s)=
∑̀
j=0

q i(`−2 j)s
+ q−1/2(k− 1)

∑̀
j=1

q i(`−2 j+1)s .

Then the expression (4-11) can be written

(4-12) (Psη)−(x)= q−(|x |−M)/2ψ−(|x | −M + 1, s)q1/2+is RM(s)η−(ω).

We summarize these in the following corollary.

Corollary 4.1. Let η ∈ L1(�) be such that DMη = η. Then

(Psη)+(x)= (Psη+)(x), (Psη)−(x)= (Psη−)(x).
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In addition, for any x ∈ X satisfying |x |> M, we have

(1) QM(s)−1(Psη)+(x) is an even entire holomorphic function on C with respect
to the variable s,

(2) (q1/2+is RM(s))−1(Psη)−(x) is an even entire holomorphic function on C with
respect to the variable s.

5. The spectral projection on symmetric graphs

We first review the Helgason–Fourier transform for symmetric graphs and its
inversion formula, which were introduced by Eddine [2013; 2015].

Let (πs, L2(�)) be a spherical representation and let Is be the intertwining
operator defined in the previous section. The Helgason–Fourier transform f̃ (s, ω)
of f ∈ Cc(X) is defined by

(5-1) f̃ (s, ω)= (πs( f )1)(ω)=
∑
x∈X

f (x)p(x, ω)1/2+is.

Here 1 denotes the function identically one on �. In [Jamal Eddine 2015, Lemma
3.10], Eddine proved the following inversion formula:

f (x)=
(k− r)+

k

∫
�

f̃ (s0, ω)p(x, ω)1/2−is0 dν(ω)

+ cG

∫
�

∫
T

f̃ (s, ω)p(x, ω)1/2−is
|c(s)|−2 ds dν(ω),

where cG = q/{2τr(k− 1)} and

c(s)=
√

q
q + 1

·
q1/2+is

− (k− 1)q−1/2−is
+ k− 2

q is − q−is

is a c-function. Here (k−r)+ stands for k−r when k > r and to 0 when k 5 r . As
described in [Cowling and Setti 1999, p. 240], we see that Is f̃ (s, ω)= f̃ (−s, ω)
for almost all s ∈ T and thus we obtain the following symmetry condition:

(5-2)
∫
�

f̃ (s, ω)p(x, ω)1/2−is dν(ω)=
∫
�

f̃ (−s, ω)p(x, ω)1/2+is dν(ω).

Following Bray [1996], we define the spectral projection Ps f of f ∈ Cc(X) by

(5-3) Ps f (x)= ( f ∗φs)(x)=
∫

G
f (g1)φs(g−1

1 g) dg1,
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where x = g · o. Applying the functional equation of the spherical function [Ja-
mal Eddine 2015, Lemma 3.9] and using Fubini’s theorem, we obtain

Ps f (x)=
∫

G
f (g1 · o)

∫
�

p(g1 · o, ω)1/2+is p(g · o, ω)1/2−is dν(ω) dg1

=

∫
�

f̃ (s, ω)p(x, ω)1/2−is dν(ω).

Thus the spectral projection Ps f (x) is Weyl-invariant with respect to the variable s
and has the following inversion formula:

(5-4) f (x)=
(k− r)+

k
Ps0 f (x)+ cG

∫
T

Ps f (x)|c(s)|−2 ds.

Let a ∈ X and define the function ξa on � by ξo(ω)= 1 and for a 6= o

ξa(ω)= ν(E(a))−1χE(a)(ω)− ν(E(a′))−1χE(a′)(ω).

Then it is easy to see that D|a|ξa = ξa and B|a|ξa = (ξ∗ ∗ κ1)(a). For a ∈ X and
s ∈ C, we define the generalized spherical function 8a,s on X by

8a,s(x)= Psξa(x)=
∫
�

p(x, ω)1/2+isξa(ω) dν(ω).

By Proposition 3 in [Koizumi 2013] combined with Corollary 4.1, we have that

(1n Ps f )±(x)=
∫
�

8±ωn,−s(x) f̃ (s, ω) dν(ω).

The explicit expressions of 8±ωn,−s are given by (4-10) and (4-12). We see from
these that

(1n Ps f )+(x)= 0 when ± s ∈ ϒ,

(1n Ps f )−(x)= 0 when ± s ∈ 1
2 i + τZ.

Furthermore, we have the following proposition.

Proposition 5.1. Let f ∈ CN (X). Then (1n Ps0 f )−(x)= 0 when n > N.

Proof. By the definition of the Poisson transform, we have

(1n Ps0 f )−(x)=
∑
y∈X

f (y)
{∫

�

p(x, ω)1/2−is08−ωn,s0
(y) dν(ω)

}

=

∑
y∈X

f (y)
{∫

�

(1− r)ζ(x,ω)
( 1

1−k

)|y| k(k−1)n−1

r(r−1)n−1 ξ
−

ωn
(ω′) dν(ω)

}
,
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where we choose ω′ ∈ E(y). Taking into account

ξ−ωn
(ω′)=


r(k− 1)qn−1, ω ∈ E(y(n)),
−r(k− 1)qn−1/(k− 2), ω ∈ B(y(n)),
0, otherwise,

we have

(1n Ps0 f )−(x)= k(k− 1)2n−1
∑
y∈X
|y|≥n

f (y)
( 1

1−k

)|y|∫
E(y(n))

(1− r)ζ(x,ω) dν(ω)

−
k(k−1)2n−1

k−2

∑
y∈X
|y|≥n

f (y)
( 1

1−k

)|y|∫
B(y(n))

(1− r)ζ(x,ω) dν(ω).

Since f (y)= 0 for |y| ≥ n > N, we have (1n Ps0 f )−(x)= 0. �

6. Paley–Wiener theorem for spectral projection

In this section, we shall characterize the image of Cc(X) under the spectral projection
on X. As an application, we shall prove the Paley–Wiener theorem of the Helgason–
Fourier transform for symmetric graphs.

Throughout this section, for a function φ on X, we denote 1nφ(x) by φn(x).
Let N ∈ Z≥0. We denote by TN (T×X) the set comprised of all functions F on
T×X satisfying the following conditions:

(N1) F(s, x) is a Weyl-invariant smooth function on R with respect to the variable s.

(N2) For each n ∈ Z≥0 and s ∈ R, Fn(s, x) ∈L n
γ (s)(X),

(N3) For each x ∈ X, F(s, x) extends to a Weyl-invariant holomorphic function
on C.

(N4) For each n ∈ Z≥0, Qn(−s)−1 F+n (s, x) is holomorphic on C and there exists
a constant CN > 0 which does not depend on the choice of n such that

|Qn(−s)−1 F+n (s, x)| ≤ CN q(|x |−n+N )|=s|.

(N5) For each n ∈Z>0, (q1/2−is Rn(−s))−1 F−n (s, x) is holomorphic on C and there
exists a constant CN > 0 which does not depend on the choice of n such that

|(q1/2−is Rn(−s))−1 F−n (s, x)| ≤ CN q(|x |−n+N )|=s|.

(N6) F−n (s0, x)= 0 when n > N.

We set

T (T×X)=

∞⋃
N=0

TN (T×X).
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The following proposition is obtained by the same arguments as in [Koizumi 2013,
Proposition 4].

Proposition 6.1. Let f ∈ CN (X). Then F(s, x)= Ps f (x) belongs to TN (T×X).

To prove the sufficient condition in the Paley–Wiener theorem, we need the
following lemma.

Lemma 6.2 (cf., [Koizumi 2013, Lemma 1]). Let N ∈ Z>0, F ∈ TN (T×X) and
a ∈Sn . If n > N then F+n (s, a)= 0 and F−n (s, a)= 0 for all s ∈ T.

Proof. We shall first show that F−n (s, a)= 0. Let us set

φ−(s)= (q1/2−is Rn(−s))−1 F−n (s, a).
Then we see

(6-1) φ−(−s)= (q1/2+is Rn(s))−1 F−n (s, a)=
q1/2−is Rn(−s)
q1/2+is Rn(s)

φ−(s).

We put

c−(n, s)=
q1/2−is Rn(−s)
q1/2+is Rn(s)

.

Obviously we have

(6-2) c−(n, s)=−q−1/2−is(2n−1)
+ (1− q−1)

∞∑
`=0

q−`/2−is(2n+`).

The condition (N5) yields that φ−(s) is an entire function of exponential type N.
We use the Paley–Wiener theorem on Z to write

φ−(s)=
∑
m∈Z

φ−(m)q ims,

where φ−(m)= 0 unless −N ≤ m ≤ N. Substituting (6-2) to (6-1), we have∑
m∈Z

φ−(m)q−ims
=

∑
m∈Z

[
−q−

1
2−is(2n−1)

+(1−q−1)

∞∑
`=0

q−
`
2−is(2n+`)

]
×φ−(m)q ims,

and thus we have the following recursion formula:

(6-3) φ−(m)=−q−1/2φ−(2n− 1−m)+ (1− q−1)

∞∑
`=0

q−`/2φ−(2n+ `−m).

From (6-3), when n > N + 1, it is easily verified that φ−(m) = 0 for all m ∈ Z.
When n = N + 1, (6-3) implies

φ−(m)=−q−1/2φ−(2N + 1−m),

and so φ−(N )= 0. We consequently have that φ−(m)= 0 for all m ∈ Z.
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We shall next show that F+n (s, a)= 0. We set φ+(s)= Qn(−s)−1 F+n (s, a). We
use the Paley–Wiener theorem on Z to write

φ+(s)=
∑
m∈Z

φ+(m)q ims,

where φ+(m)= 0 unless −N ≤ m ≤ N. Putting

c+(n, s)=
Qn(−s)
Qn(s)

,

we have
φ+(−s)= c+(n, s)φ+(s).

Because

c+(n, s)=
1+ (k− 1)q−1/2+is

1+ (k− 1)q−1/2−is c−(n, s),

we have

(6-4) φ+(m)

=− (k− 1)q−1φ+(2n− 2−m)

+ (k− 1)(1− q−1)

∞∑
`=0

q−(`+1)/2φ+(2n+`−m− 1)

− (1− (1− k)2q−1)

∞∑
`=0

(1− k)`q−(`+1)/2φ+(2n+`− 1−m)

+
(1− q−1)(1− (1− k)2q−1)

k

∞∑
`=0

(1− (1− k)`+1)q−`/2φ+(2n+`−m).

From (6-4), when n > N + 1, it is easily verified that φ+(m)= 0 for all m ∈ Z. In
the case n = N + 1, (6-4) implies

φ+(m)=−(k− 1)q−1φ+(2N −m),

and so φ+(N )= 0. Therefore, in this case, φ+(m)= 0 for all m ∈ Z. �

The proof of the sufficient condition in the Paley–Wiener theorem is like the
proof for the case of semisimple Lie groups given by Campoli [1980] and Johnson
[1979]. We remark that =s0 ≥ 0 when k ≤ r and =s0 < 0 when k > r . We also
remark that the residue of 1/c(s) at s = s0 is equal to r(k − r)/{ik(r − 1) log q}
and 1/c(−s0)= 1. We first show the following proposition.

Proposition 6.3. Let N ∈ Z>0, F ∈ TN (T×X) and set

f0(x)= cG

∫
T

F0(s, x)|c(s)|−2 ds.
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Then there exists a function J0 ∈ CN (X)
# such that

f0(x)− J0(x)=
(k− r)+

k
F0(s0, x).

Proof. We put F(s)= F0(s, o). Then it follows from Lemma 3.2 and the condition
(N4) that F(s) is an even entire function of exponential order N and

F0(s, x)= φs(x)F(s).

We thus have

(6-5)

f (x)= cG

∫
T

φs(x)F(s)|c(s)|−2 ds

= cG

∫
T

F(s) 1
c(−s)

q(is−1/2)|x | ds+ cG

∫
T

F(s) 1
c(s)

q(−is−1/2)|x | ds.

We write f1(x) and f2(x) for the first term and the second term of the last expression
of (6-5), respectively. For a sufficiently large η > 0, let f1,η denote the formula
shifting the path of integral of f1 from T to T+ iη and let f2,−η denote the formula
shifting the path of integral of f2 from T to T− iη.

Suppose that k ≤ r . Because f1 is analytic inside the rectangle with corners
±τ/2 and ±τ/2+ iη, we have by Cauchy’s theorem that f1 = f1,η. Similarly we
can also obtain that f2 = f2,−η. In case k > r , we have

f1(x)− f1,η(x)= 2π icG Ress=−s0

{
F(s) 1

c(−s)
q(is−1/2)|x |

}
=

k−r
2k

F(−s0)
( 1

1−k

)|x |
,

f2(x)− f2,−η(x)= 2π icG Ress=s0

{
F(s) 1

c(s)
q(−is−1/2)|x |

}
=

k−r
2k

F(s0)
( 1

1−k

)|x |
.

Then the assertion follows immediately. �

In the nonradial case, we need slightly complicated calculations.

Proposition 6.4. Let N ∈ Z>0, F ∈ TN (T×X) and set

fn(x)= cG

∫
T

Fn(s, x)|c(s)|−2 ds

for n > 0. Then there exists a function Jn ∈ CN (X) such that

fn(x)− Jn(x)=
(k− r)+

k
Fn(s0, x).
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Proof. We put a = x (n) and choose ω ∈ E(x). Because F±n satisfies the condition
(N2), we have from (4-10) and (4-12) that

F+n (s, x)= q−(|x |−|a|)/2ψ(|x | − |a| + 1, s)Qn(s)F+n (s, a),(6-6)

F−n (s, x)= q−(|x |−|a|)/2ψ−(|x | − |a| + 1, s)q1/2+is Rn(s)F−n (s, a).(6-7)

In the case when n > N, Lemma 6.2 yields that F+n (s, a) = 0 and F−n (s, a) = 0.
On the other hand, since F−n (s0, x)= 0, it suffices to set Jn(x)= 0.

In the following, we suppose that n ≤ N. Substituting (6-6) and (6-7), we obtain

f ±n (x)= ξ
±

a (ω)
−1cG

∫
T

h±a (s)8
±

a,s(x)|c(s)|
−2 ds,

where h+a (s)=Q|a|(s)−1F+n (s,a), h−a (s)= (q
1/2+isR|a|(s))−1F−n (s,a) andω∈ E(x).

We know that 8+a,s(x) has the following expansion:

(6-8) 8+a,s(x)= {c(s)q
(is−1/2)|x |

− q i2(|a|−1)sc(s)q(−is−1/2)|x |
}ξ+a (ω).

Hence we can show f +n ∈CN (X) for all k, r by the same arguments as in the proof
of Proposition 6.3.

Hereafter we shall compute f −n (x). It follows from (6-8) that

8−a,s(x)= {c(s)q
(is−1/2)|x |

− q i2(|a|−1)sc(s)q(−is−1/2)|x |

− (k− 1)R|a|(s)q−(|x |−|a|)(1/2+is)
}ξ−a (ω).

Let us set

f −n,1(x)= cG

∫
T

h−a (s)
1

c(−s)
q(is−1/2)|x | ds,

f −n,2(x)= cG

∫
T

h−a (s)
1

c(−s)
q i2(|a|−1)sq(−is−1/2)|x | ds,

f −n,3(x)= cG

∫
T

h−a (s)R|a|(s)q
−(|x |−|a|)(1/2+is)|x |

|c(s)|−2 ds.

Suppose first that k≤ r . Then as shown in Proposition 6.3, we see that f −n,1 ∈CN (X).
Keeping the notation in the proof of Proposition 6.3, we have

f −n,2(x)− f −n,2,−η(x)= 2π icG Ress=−s0

{
h−a (s)

1
c(−s)

q i2(|a|−1)sq(−is−1/2)|x |
}

=
r(k−r)

2k
h−a (−s0)(1− k)−|a|+1(1− r)−|x |+|a|−1,

f −n,3(x)− f −n,3,−η(x)= 2π icG Ress=−s0{h
−

a (s)R|a|(s)q
−(is+1/2)(|x |−|a|)

|c(s)|−2
}

=
r(k−r)

2k
h−a (−s0)(1− k)−|a|(1− r)−|x |+|a|−1.
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Setting
f −n,η(x)= f −n,1(x)− f −n,2,−η(x)− (k− 1) f −n,3,−η(x),

we obtain that
f −n (x)− f −n,η(x)= 0.

Thus we have by contour integration arguments that f −n ∈ CN (X).
Suppose next that k > r . In this case, by the same discussion as in the proof of

Proposition 6.3, we see that f −n,2 ∈ CN (X). Moreover we have

f −n,1(x)− f −n,1,η(x)= 2π icG Ress=−s0

{
h−a (s)

1
c(−s)

q(is−1/2)|x |
}

=
k−r
2k

( 1
1−k

)|x |
h−a (−s0),

f −n,3(x)− f −n,3,−η(x)= 2π icG Ress=s0{h
−

a (s)R|a|(s)q
−(|x |−|a|)(1/2+is)

|c(s)|−2
}

=
k−r
2r

h−a (s0)(1− k)−|x |+|a|−2(1− r)−|a|+1.

Let us set
f −n,η(x)= f −n,1,η(x)− f −n,2(x)− (k− 1) f −n,3,−η(x).

Then we have

f −n (x)− f −n,η(x)=
( 1

1−k

)|x |{k−r
2k

ha(−s0)+
k−r
2r

h−a (s0)(1−k)|a|−1(1−r)−|a|+1
}
.

We see from the definition of h−a (s) that

h−a (−s0)= (1− k)|a|F−n (s0, a), h−a (s0)=
r(1−k)(1−r)|a|−1

k
F−n (s0, a).

We therefore obtain

f −n (x)− f −n,η(x)=
( 1

1−k

)|x | k−r
k
(1− k)|a|F−n (s0, a)= k−r

k
F−n (s0, x).

By contour integration arguments, we see that there exists J−n ∈ CN (X) such that

f −n (x)− J−n (x)=
(k− r)+

k
F−n (s0, x),

concluding the proof. �

Summarizing the arguments in this section, we arrive at the following theorem.

Theorem 6.5. Let N ∈ Z>0 and F ∈ TN (T×X). We set

f (x)= cG

∫
T

F(s, x)|c(s)|−2 ds.

Then there exists a function J ∈ CN (X) such that

f (x)− J (x)=
(k− r)+

k
F(s0, x).
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Proof. Let x ∈ X be such that |x | > N. We choose a positive integer M so that
|x | ≤ M. Then f (x) can be written as the following finite sum:

f (x)= εM f (x)= f0(x)+ f1(x)+ · · ·+ fM(x).

Applying Propositions 6.3 and 6.4 to each Fn , we have

M∑
n=0

fn(x)−
min(M,N )∑

n=0

Jn(x)=
(k− r)+

k

min(M,N )∑
n=0

Fn(s0, x).

We thus have the required result. �

In the remainder of this section, as a corollary of Theorem 6.5, we shall prove
the Paley–Wiener theorem of the Helgason–Fourier transform.

Let N ∈Z≥0. Denote by ZN (T×�) the set of all functions F on T×� satisfying
the following conditions:

(H1) F(s, ω) is a smooth function on T with respect to the variable s,

(H2) F(s+ τ, ω)= F(s, ω),

(H3) F(s, ω) extends to a τ -periodic entire function of exponential type N,

(H4) F satisfies the symmetry condition (5-2),

(H5) (Dn F)−(s0, ω)= 0 when n > N.

With the notation above, we show the following theorem.

Theorem 6.6. Let N ∈ Z≥0, F ∈ZN (T×�) and set

f (x)= cG

∫
T

∫
�

F(s, ω)p(x, ω)1/2−is ds dν(ω).

Then there exists a function J ∈ CN (X) such that

f (x)− J (x)=
(k− r)+

k

∫
�

F(s0, ω)p(x, ω)1/2−is0 dν(ω).

Proof. Let F ∈ZN (T×�). It suffices to show P−s F ∈TN (T×X). The conditions
(H1), (H2) and (H6) are immediate from the conditions (H1), (H2) and (H5). Noting

|q−n/2ψ(n+ 1, s)| ≤
q + 1
q − 1

qn|=s|, |q−n/2ψ−(n+ 1, s)| ≤
q + 1
q − 1

qn|=s|,

we have from (4-10) that

|Qn(−s)−1(P−s F)+n (s, x)| = |q−(|x |−n)/2ψ(|x | − n+ 1, s)(Dn F)+(s, ω)|

≤ C ′N q(|x |−n+N )|=s|

for some constant C ′N which does not depend on the choice of n. The condition
(N5) is obtained in the same fashion as above. This concludes the proof. �
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FUNDAMENTAL DOMAINS OF ARITHMETIC QUOTIENTS
OF REDUCTIVE GROUPS OVER NUMBER FIELDS

LEE TIM WENG

APPENDIX BY TAKAO WATANABE

For a connected reductive algebraic group G over a number field k, we
investigate the Ryshkov domain RQ associated to a maximal k-parabolic
subgroup Q of G. By considering the arithmetic quotients G(k)\G(A)1/K
and 0i\G(k)/K∞, with K a maximal compact subgroup of the adele group
G(A) and the 0i arithmetic subgroups of G(k), we present a method of
constructing fundamental domains for Q(k)\RQ and 0i\G(k∞)1. We also
study the particular case when G=GLn, and subsequently construct funda-
mental domains for Pn, the cone of positive definite Humbert forms over k,
with respect to the subgroups 0i .

1. Introduction

Let k be an arbitrary algebraic number field with ring of integers O. This paper
mainly focuses on the determination and construction of fundamental domains
associated to certain arithmetic quotients of reductive algebraic groups over k.

For the first part of the paper we consider a general connected reductive isotropic
algebraic group G over k and investigate fundamental domains associated to the
arithmetic quotients G(k)\G(A)1/K and 0i\G(k∞)1/K∞, with K a maximal com-
pact subgroup of G(A) and subgroups 0i of G(k) to be described below.

The discussion and results here in the preliminary sections are an extension
of Watanabe’s results [2014]. A maximal k-parabolic subgroup Q of G is taken
and we consider its associated height function HQ and Hermite function mQ(g)=
minx∈Q(k)\G(k) HQ(xg) on G(A)1. Watanabe [2014] introduced the Ryshkov do-
main of mQ , RQ ={g ∈G(A)1 :mQ(g)= HQ(g)}, for the purpose of constructing a
fundamental domain for G(k)\G(A)1 well matched with mQ . Watanabe also consid-
ered the case when G is of class number 1, that is, when |G(k)\G(A)1/G1

A,∞| = 1,
and obtained a fundamental domain for G(k∞) with respect to GO =G(k)∩GA,∞.
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Here however, we consider algebraic groups of any general class number nG .
Particularly for class numbers higher than 1, for each i = 1, . . . , nG we are required
to consider different arithmetic subgroups 0i of G(k) in place of just GO.

Let R∗Q denote the closure in G(A)1 of the interior of RQ . It was established in
[Watanabe 2014] that by starting from a fundamental domain � of R∗Q with respect
to Q(k), a fundamental domain of G(A)1 with respect to G(k) can be obtained by
taking the interior of � in G(A)1. In order to explicitly construct such an �, we
define groups

GA,∞ = G(k∞)× K f and 0i = ηi G1
A,∞η

−1
i ∩G(k),

where the η1, . . . , ηnG are representatives of G(k)\G(A)1/G1
A,∞. Also for each i

take a complete set of representatives {ξi j }
hi
j=1 for Q(k)\G(k)/0i , define sets

Ri, j,∞ = {g ∈ G(k∞)1 :mQ(gξi jηi )= HQ(gξi jηi )}

and let Qi, j = Q(k)∩ ξi j0iξ
−1
i j . By considering the action of Qi, j on Ri, j,∞, we

find that starting with arbitrary open fundamental domains �i, j,∞ for Qi, j\Ri, j,∞

we can construct the required �. From this we obtain the following results.

Theorem. �=
⊔nG

i=1
⊔hi

j=1�i, j,∞ξi jηi K f is an open fundamental domain of R∗Q
with respect to Q(k).

Theorem. For each i = 1, . . . , nG , the set
⋃hi

j=1 ξ
−1
i j �i, j,∞ξi j is an open funda-

mental domain of G(k∞)1 with respect to 0i .

In particular we can take η1 to be the identity element of G, in which case 01

coincides with the group GO=G(k)∩GA,∞ used in [Watanabe 2014] when nG = 1.
The second topic of interest in this paper is the special case when G is the general

linear group GLn defined over k. This time we consider the maximal k-parabolic
subgroup

Q = Qn,m
=

{[
a b
0 d

]
: a ∈ GLm(k), b ∈ Mm,n−m(k), d ∈ GLn−m(k)

}
for a fixed 1≤ m < n. The class number of G in this case is equal to h, the class
number of k. Using {a1, . . . , ah}, a complete set of representatives for the ideal
class group of k, we can produce a corresponding set of matrices {η1, . . . , ηh}

representing GLn(k)\GLn(A)
1/G1

A,∞. The 0i in this case are the subgroups of
GLn(k) stabilizing the respective O-lattices

∑n−1
k=1 Oek + ai en . The main result

established in this part is:

Theorem. |Q(k)\GLn(k)/0i | = h for every i = 1, . . . , h.

This can be proved by identifying Q(k)\GLn(k)with the set of all m-dimensional
subspaces of kn and establishing a bijection between this set modulo 0i and the
ideal class group of k. This bijection also allows us to obtain suitable matrix
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representatives {ξi j }
h
j=1 for Q(k)\GLn(k)/0i . Relations between the field class

number and the number of double cosets in quotients of similar type involving
other algebraic groups, e.g., SLn,Sp2n and Chevalley groups, modulo a minimal
parabolic subgroup instead are noted by Borel [1962, Section 4.7].

In the final sections we consider Pn , the space of positive definite Humbert forms
over k, with the usual identification Pn =

∏
σ Pn(kσ ), where Pn(kσ ) denotes the set

of n×n positive definite real symmetric/complex Hermitian matrices, depending on
whether σ is real or imaginary, and the product is taken over all infinite places σ of k.

If k=Q, then Pn is just the cone of positive definite real symmetric matrices, and
fundamental domains for Pn/GLn(Z) in this case have been historically constructed
by Korkin and Zolotarev [1873], Minkowski [1905] and later on Grenier [1988]. For
Pn over a general number field, Humbert [1939] previously provided a fundamental
domain constructed with respect to the particular group GLn(O). As GLn(O)
coincides with one of the 0i we study in this paper, the question can be raised about
fundamental domains for Pn with respect to each of the groups 0i when nG > 1.

As such, we proceed in the final sections to provide a general way of constructing
fundamental domains for Pn/0i given any number field. The method of construc-
tion given here follows and generalizes the example given by Watanabe [2014]
for the specific case k = Q. As already noted in that paper, when k = Q the
fundamental domain for Pn/GLn(Z) resulting from this method coincides with
Grenier’s [1988]. It was observed by Dutour Sikirić and Schürmann that Grenier’s
fundamental domain is in fact equivalent to the one previously developed by Korkin
and Zolotarev. Regarding Pn/GLn(O) for general number fields however, we note
that the fundamental domain produced by the method here differs from Humbert’s
construction, which utilizes the matrix trace, whereas the domain here is defined
using the adele norm of matrix determinants.

Using the matrix representatives {ηi }
h
i=1 and {ξi j }

h
j=1, we associate to each pair

(ηi , ξi j ) a maximal compact subgroup Ki, j,∞ of GLn(k∞) and a map πi j inducing an
isomorphism between GLn(k∞)/Ki, j,∞ and Pn . Then the results of our discussions
on GLn can be transferred to Pn via the maps πi j , which finally lead up to an
iterative method of constructing fundamental domains for Pn with respect to the
groups 0i for any general dimension n. Watanabe has also graciously provided an
appendix to this paper on Voronoi reduction over general number fields that are not
necessarily totally real, which settles the base case of dimension 1.

We also demonstrate that this fundamental domain construction for Pn/0i is
well matched with certain automorphisms of GL(k∞). Namely we see that the
fundamental domain for Pn/0i constructed using a set of ideals {a1, . . . , ah} repre-
senting the ideal class group and the maximal k-parabolic subgroup Qn,m can be
directly mapped by an automorphism to the one constructed with the representative
set {a−1

1 , . . . , a−1
h } and Qn,n−m.
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Notation

In this paper we use Q,R,C for the fields of rational, real, and complex numbers
respectively, and Z for the ring of integers. R>0 will denote the set of positive reals.

For positive integers r and s, we denote by Mr,s(S) the set of all r × s matrices
with entries in the set S, and we write Mr (S) for Mr,r (S). The identity matrix of
size r will be denoted by Ir . The transpose of a matrix A will be written by tA. If
A ∈ Mr,s(C), we write A for the matrix whose entries are the complex conjugates
of the original entries of A.

We will fix and consider k, an algebraic number field of finite degree over Q,
and denote its ring of integers by O. We denote by p∞ and pf the sets of infinite
and finite places of k respectively and we let p = p∞ ∪ pf . For σ ∈ p, we write
kσ for the completion of k at σ , while for any subring B of k, the closure of B in
kσ will be denoted by Bσ . We denote by k∞ the étale R-algebra k⊗Q R which we
identify with

∏
σ∈ p∞kσ . The ideal class group of k will be denoted by Cl(k).

The adele ring and idele group of k are denoted by A and A× respectively. For an
adele a ∈ A we write a∞ and a f for its infinite and finite components respectively.
Similarly for any matrix A = [ai j ]i, j with elements in A we write A∞ to denote
the matrix [(ai j )∞]i, j .

For each place σ , we write | |σ for the absolute value on kσ taken as follows: at
each infinite place we use the standard complex absolute value on kσ , while for
σ ∈ pf we use the normalized absolute value satisfying |x |σ = |Oσ/pσ |−1 for any
arbitrary x ∈ pσ\ p2

σ , where pσ is the prime ideal of Oσ . For an a = (aσ ) ∈ A× we
write |a|A to denote the idele norm of a, and |a|∞ for the idele norm of a restricted
to k×
∞

,
∏
σ∈ p∞ |aσ |

[kσ :R]
σ .

Given a finite-dimensional k-vector space V and σ ∈ p, we will write Vσ for
the kσ -vector space V ⊗k kσ . Also we will use the term O-lattice in V to mean
a finitely generated O-submodule of V containing a k-basis of V. If L is such an
O-lattice in V, we write Lσ to denote the Oσ -linear span of L in Vσ when σ ∈ pf .

For an affine algebraic group G defined over k and any k-algebra B, we write
G(B) for the set of all B-rational points of G. Also, the set of all k-rational characters
of G will be written as X∗(G)k. We define G(A)1 to be the set {g ∈ G(A) :
|χ(g)|A = 1 for all χ ∈ X∗(G)k}.

Lastly given a topological space X and a subset Y ⊂ X , we denote by Y ◦X and
Y−X (or just Y ◦ and Y− if the underlying space X is clear) the interior and closure
of Y in X respectively.

2. The Ryshkov domain of G associated to Q

Let G denote a connected reductive isotropic affine algebraic group over k, S a
fixed maximal k-split torus of G, and P0 a minimal k-parabolic subgroup of G
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containing S. Let M0 be the centralizer of S in G and U0 the unipotent radical of
P0 so that P0 has the Levi decomposition P0 = M0U0. We consider a relative root
system of G with respect to S and denote the set of simple roots with respect to P0

in this system by 1k.
A k-parabolic subgroup of G containing P0 is called a standard k-parabolic

subgroup. A standard k-parabolic subgroup R has a unique Levi subgroup MR

containing M0, which gives the Levi decomposition R = MRUR , where UR denotes
the unipotent radical of R. We write Z R for the largest central k-split torus of MR .

We fix a maximal compact subgroup K =
∏
σ∈ p Kσ of G(A), where each Kσ

is a maximal compact subgroup of G(kσ ), satisfying the property that for every
standard k-parabolic subgroup R of G,

• K ∩MR(A) is a maximal compact subgroup in MR(A),

• MR(A) = (MR(A) ∩ U0(A))M0(A) (K ∩ MR(A)) (Iwasawa decomposition)
holds.

Consider a standard proper maximal k-parabolic subgroup Q of G, which we
now fix. There exists a unique simple root in 1k that restricts nontrivially on Z Q ,
which we denote by χ0. Let m Q be the positive integer such that m−1

Q χ0|Z Q is a
Z-basis of the X∗(Z Q/ZG)k. We write χQ for the character

[X∗(Z Q/ZG)k : X∗(MQ/ZG)k]m−1
Q (χ0|Z Q ),

which is a Z-basis for X∗(MQ/ZG)k.
Next we define the map

zQ : G(A) 3 umh 7−→ ZG(A)MQ(A)
1m ∈ ZG(A)MQ(A)

1
\MQ(A),

where u ∈UQ(A), m ∈ MQ(A), h ∈ K . This is a well-defined left Q(A)1-invariant
map, which gives rise to the following map, which we also denote by zQ :

Q(A)1\G(A)1 3 Q(A)1g 7−→ zQ(g) ∈ MQ(A)
1
\(MQ(A)∩G(A)1).

Here we have used ZG(A)
1
= ZG(A)∩G(A)1 ⊂ MQ(A)

1.
We can now define the height function HQ : G(A)→ R>0 by

HQ(g)= |χQ(zQ(g))|−1
A , g ∈ G(A),

as well as the Hermite function mQ : G(A)1→ R>0 by

mQ(g)= min
x∈Q(k)\G(k)

HQ(xg), g ∈ G(A)1.

Definition [Watanabe 2014, §4]. The set RQ defined by

{g ∈ G(A)1 :mQ(g)= HQ(g)}

is called the Ryshkov domain of mQ .
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3. Fundamental domains of G(k)\G(A)1 and 0i\G(k∞)1

Definition. Let T be a locally compact Hausdorff space and 0 a discrete group
with a properly discontinuous action on T. An open subset � of T satisfying

(i) T = 0�−,

(ii) �∩ γ�− =∅ for all γ ∈ 0 \ {e}

is called an open fundamental domain of T with respect to 0. (Here we have
assumed that 0 acts on T from the left. In the case of a right action the same
definition holds with the group action written on the right instead.)

We call a subset F of T a fundamental domain of T with respect to 0, or simply
a fundamental domain of 0\T (T/0 in the case of a right action) if there exists an
open fundamental domain � of T with respect to 0 such that �⊂ F ⊂�−.

Further Notation. Hereafter we will use the following notation:

• K∞ =
∏
σ∈ p∞ Kσ , K f =

∏
σ∈ pf

Kσ ,

• GA,∞ = G(k∞)× K f , G1
A,∞ = GA,∞ ∩G(A)1,

• G(k∞)1 = G(k∞) ∩ G(A)1, where we identify G(k∞) with the subgroup
{g ∈ G(A) : g f = e} of G(A).

We will denote the class number of G, i.e., the finite number |G(k)\G(A)/GA,∞|,
by nG . We note here that |G(k)\G(A)1/G1

A,∞| is also equal to nG .
The case when G is of class number 1 is discussed in [Watanabe 2014], where

a fundamental domain for G(k∞)1 with respect to the group G(k) ∩ GA,∞ is
determined. In the following we discuss and obtain a similar fundamental domain
in the general case.

We take a complete set of representatives {η1, . . . , ηnG } for G(k)\G(A)1/G1
A,∞.

Then, for i = 1, . . . , nG , define the groups

Gi = ηi G1
A,∞η

−1
i and 0i = Gi ∩G(k).

We note that since (ηi )∞G(k∞)1(ηi )
−1
∞
= G(k∞)1, we can also write Gi as

G(k∞)1× (ηi ) f K f (ηi )
−1
f or G(k∞)1ηi K f η

−1
i .

From G(A)1 =
⊔nG

i=1 G(k)ηi G1
A,∞ =

⊔nG
i=1 G(k)Giηi we have

G(k)\G(A)1 =
nG⊔
i=1

0i\Giηi =

nG⊔
i=1

0i\(G(k∞)1ηi K f ),

which gives us the isomorphism

G(k)\G(A)1/K '
nG⊔
i=1

0i\G(k∞)1/K∞.
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Also for each i = 1, . . . , nG we take a complete set of representatives {ξi j }
hi
j=1

for Q(k)\G(k)/0i (where the number of double cosets hi is finite; see [Borel 1963,
§7]) and define groups

Qi, j = Q ∩ ξi j0iξ
−1
i j = Q(k)∩ ξi j Giξ

−1
i j

and the sets

Ri, j,∞ = {g ∈ G(k∞)1 :mQ(gξi jηi )= HQ(gξi jηi )}

for j = 1, . . . , hi . Also since Gi = G(k∞)1ηi K f η
−1
i as previously noted,

ξi j Giξ
−1
i j = ξi j G(k∞)1ηi K f η

−1
i ξ−1

i j = G(k∞)1ξi jηi K f η
−1
i ξ−1

i j .

Lemma 1. G(A)1 =
nG⊔
i=1

hi⊔
j=1

Q(k)G(k∞)1ξi jηi K f .

Proof. We first show that for a fixed i the union
⋃hi

j=1 Q(k)ξi j Giηi is disjoint.
Suppose for some 1≤ j, j ′≤hi that Q(k)ξi j Giηi∩Q(k)ξi j ′Giηi is nonempty. Then
there exist q, q ′ ∈ Q(k) and g, g′ ∈Gi such that qξi j g= q ′ξi j ′g′. Rearranging gives
us gg′−1

= ξ−1
i j q−1q ′ξi j ′ ∈Gi∩G(k)=0i . This shows that Q(k)ξi j ′0i = Q(k)ξi j0i ,

implying j = j ′. The result then follows from

G(A)1 =
⊔

i

G(k)ηi G1
A,∞ =

⊔
i

G(k)Giηi

=

⊔
i

(⊔
j

Q(k)ξi j0i

)
Giηi ⊂

⊔
i

⊔
j

Q(k)ξi j Giηi

and ξi j Giηi = G(k∞)1ξi jηi K f . �

The lemma also gives us the disjointedness of the union in the following result.

Proposition 2. RQ =

nG⊔
i=1

hi⊔
j=1

Q(k)Ri, j,∞ξi jηi K f .

Proof. From the previous lemma, we see that any g ∈ G(A)1 can be written as
qg′ξi jηi h for some i, j and q ∈ Q(k), g′ ∈ G(k∞)1, h ∈ K f . Since both HQ and
mQ are left Q(k)-invariant and right K -invariant, we see that

HQ(g)= HQ(g′ξi jηi ), mQ(g)=mQ(g′ξi jηi ).

Hence g ∈ RQ if and only if g′ ∈ Ri, j,∞. �

The following two lemmas hold for any fixed 1≤ i ≤ nG and 1≤ j ≤ hi .

Lemma 3. Let q ∈ Q(k). If the sets q(G(k∞)1ξi jηi K f ) and G(k∞)1ξi jηi K f

intersect, then q ∈ Qi, j .
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Proof. Suppose that g ∈ q(G(k∞)1ξi jηi K f ) ∩ (G(k∞)1ξi jηi K f ). By rewriting
G(k∞)1ξi jηi K f as ξi j Giηi , we have q−1g, g ∈ ξi j Giηi , from which we get q−1

∈

ξi j Giξ
−1
i j . Hence q ∈ Q(k)∩ ξi j Giξ

−1
i j = Qi, j . �

Lemma 4. Qi, j (Ri, j,∞ξi jηi K f )= Ri, j,∞ξi jηi K f .

Proof. Consider q ∈ Qi, j and g ∈ Ri, j,∞. Since q ∈ G(k∞)1ξi jηi K f η
−1
i ξ−1

i j , we
have q f ∈ (ξi jηi )K f (ξi jηi )

−1. Let q f = (ξi jηi )h(ξi jηi )
−1, with h ∈ K f . Then

HQ((q∞g)ξi jηi )= HQ(q∞g(ξi jηi )h)= HQ(q∞gq f (ξi jηi ))= HQ(qgξi jηi ),

which is equal to HQ(gξi jηi ). Similarly

mQ((q∞g)ξi jηi )=mQ(q∞gq f ξi jηi )=mQ(qgξi jηi )=mQ(gξi jηi );

thus q∞g ∈ Ri, j,∞. Finally q f ξi jηi K f ⊂ ξi jηi K f . Hence we get q(gξi jηi K f ) ⊂

Ri, j,∞ξi jηi K f , as required. �

By taking a complete set of representatives {θi jk}k for Q(k)/Qi, j and using both
Proposition 2 and Lemma 4, we obtain

(1) RQ =

nG⊔
i=1

hi⊔
j=1

Q(k)Ri, j,∞ξi jηi K f =

nG⊔
i=1

hi⊔
j=1

(⊔
k

θi jk Qi, j

)
Ri, j,∞ξi jηi K f

=

nG⊔
i=1

hi⊔
j=1

⊔
k

θi jk Ri, j,∞ξi jηi K f ,

where the final unions are disjoint as a result of Lemma 3.
Denote (R◦i, j,∞)

− by R∗i, j,∞, where the interior and closure is taken in G(k∞)1.
Similarly write R∗Q for (R◦Q)

− in G(A)1. From (1) we have

(2) R∗Q =
nG⊔
i=1

hi⊔
j=1

⊔
k

θi jk R∗i, j,∞ξi jηi K f .

Taking open fundamental domains �i, j,∞ of R∗i, j,∞ with respect to Qi, j for each
i = 1, . . . , nG and j = 1, . . . , hi , we consider the set

�=

nG⊔
i=1

hi⊔
j=1

�i, j,∞ξi jηi K f .

Theorem 5. � is an open fundamental domain of R∗Q with respect to Q(k).

Corollary 6. �◦ (=�◦G(A)1) is an open fundamental domain of G(A)1 with respect
to G(k).
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Proof. From (2) we have

R∗Q =
nG⊔
i=1

hi⊔
j=1

⊔
k

θi jk R∗i, j,∞ξi jηi K f =

nG⊔
i=1

hi⊔
j=1

⊔
k

θi jk(Qi, j�
−

i, j,∞)ξi jηi K f

=

nG⊔
i=1

hi⊔
j=1

Q(k)�−i, j,∞ηi K f = Q(k)�−.

Now suppose �∩ q�− 6=∅ for q ∈ Q(k). So for some i , i ′, j , j ′ we must have
q(�i, j,∞ξi jηi K f )∩(�

−

i ′, j ′,∞ξi ′ j ′ηi ′K f ) 6=∅. Writing q = θi jkq ′ with q ′ ∈ Qi, j and
some k, we have

θi jk(q ′)∞�i, j,∞ξi jηi K f ∩�
−

i ′, j ′,∞ξi ′ j ′ηi ′K f 6=∅

since (q ′) f ξi jηi K f ⊂ ξi jηi K f . Then (2) implies i = i ′, j = j ′, and θi jk = e. Thus
�i, j,∞∩ (q ′)∞�−i, j,∞ =�i, j,∞∩q ′�−i, j,∞ must be nonempty, which means q ′ = e
and hence q= e. This proves the theorem, and the corollary follows from [Watanabe
2014, Theorem 15]. �

Finally, for any fixed 1≤ i ≤ nG , we have the following theorem.

Theorem 7. The set �i,∞=
⋃hi

j=1 ξ
−1
i j �i, j,∞ξi j is a fundamental domain of G(k∞)1

with respect to 0i .

Proof. The following proof was suggested by Professor Watanabe. To show that
G(k∞)1 = 0i�

−

i,∞, consider an arbitrary g ∈ G(k∞)1. From Corollary 6,

G(A)1 = G(k)�− = G(k)
nG⊔
i=1

hi⊔
j=1

�−i, j,∞ξi jηi K f

= G(k)
nG⊔
i=1

hi⊔
j=1

ξi j (ξ
−1
i j �

−

i, j,∞ξi j )ηi K f ⊂ G(k)
nG⋃
i=1

�−i,∞ηi K f ,

so we may write gηi = g′ωηi h with g′ ∈G(k), ω ∈�−i,∞ and h ∈ K f . Rearranging
we get g′ = (gω−1)(ηi h−1η−1

i ), which belongs to G(k∞)1ηi K f η
−1
i = Gi . Hence

g′∈0i . Since g=(g′ω)(ηi hη−1
i ) and g∈G(k∞)1, we know ηi hη−1

i must necessarily
be trivial. Thus g ∈ 0i�

−

i,∞.
Now suppose that �◦i,∞ ∩ g�−i,∞ is nonempty for a g ∈ 0i . Then we must have

ξ−1
i j �

◦

i, j,∞ξi j ∩ gξ−1
i j ′ �

−

i,, j ′,∞ξi j ′ 6=∅ for some j , j ′. Since g f ηi K f = ηi K f ,

ξ−1
i j �

◦

i, j,∞ξi j ∩ gξ−1
i j ′ �

−

i,, j ′,∞ξi j ′ 6=∅

⇒ (�i, j,∞ξi jηi K f )
◦
∩ ξi j gξ−1

i j ′ (�i, j ′,∞ξi j ′ηi K f )
−
6=∅

⇒ �◦ ∩ (ξi j gξ−1
i j ′ )�

−
6=∅,
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and thus ξi j gξ−1
i j ′ = e by Corollary 6. Hence Q(k)ξi j0i = Q(k)ξi j ′0i , which implies

j = j ′ whereby g = ξ−1
i j ξi j ′ = e. �

4. The case G =GLn

We will now consider the case where G is a general linear group GLn defined over k.
We use the group of diagonal matrices as the maximal k-split torus S, and the group
of upper triangular matrices in G as the minimal k-parabolic subgroup P0. Also
fixing an integer 1 ≤ m < n, we will consider the maximal standard k-parabolic
subgroup Q defined by

Q(k)=
{[

a b
0 d

]
: a ∈ GLm(k), b ∈ Mm,n−m(k), d ∈ GLn−m(k)

}
and the Levi subgroup MQ is given by

MQ(k)=

{[
a 0
0 d

]
: a ∈ GLm(k), d ∈ GLn−m(k)

}
.

For the maximal compact subgroup K of G(A) let K = K∞× K f , where

K∞ = {g ∈ GLn(k∞) :
tḡg = In}, K f =

∏
σ∈ pf

GLn(Oσ ).

Here we identify GLn(k∞)with
∏
σ∈ p∞ GLn(kσ ), and for g=(gσ )σ∈ p∞ ∈GLn(k∞)

we write tḡ for the element ( tḡσ )σ∈ p∞ of GLn(k∞).
The character χQ described in the first section is then given by

χQ

([
a 0
0 d

])
= (det a)(n−m)/ l(det d)−m/ l

and the height function HQ by

HQ

([
a 0
0 d

])
= |det a|−(n−m)/ l

A |det d|m/ l
A ,

where l is the greatest common divisor of n−m and m.
We shall see that in this case the number of double cosets of Q(k)\GLn(k)/0i for

each i is invariant and equal to |GLn(k)\GLn(A)
1/G1

A,∞|, the class number of GLn .
Denote the set of all O-lattices in kr (r ≥ 1) by Lr , and the standard unit vectors

of kr by e(r)1 , . . . , e(r)r . For this section we simply write L for Ln and ek for e(n)k
(1≤ k ≤ n).

For L ∈ Lr and g = (gσ )σ∈ p ∈ GLr (A) put

(3) gL =
(
(k∞)

r
×

∏
σ∈ pf

gσ Lσ

)
∩ kr
∈ Lr .
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This defines a transitive left action of GLr (A)
1 on Lr . Note that if g ∈ GLr (k)

then gL as defined above coincides with the usual image of L under the linear
transformation v 7→ gv of kr. The subset of L consisting of all O-lattices of the
form gL with g ∈ GLn(k) will be referred to as the O-lattice class of L or just the
lattice class of L in L.

There is known to be a one-to-one correspondence between the O-lattice classes
in L and the double cosets in GLn(k)\GLn(A)

1/G1
A,∞, which we give explicitly

later on in this section. For now we note that this means the number of distinct
lattice classes in L and the class number |GLn(k)\GLn(A)

1/G1
A,∞| are equal.

Lemma 8. Let L be an O-lattice in a k-vector space V of dimension s ≥ 1. Then
there exists a k-basis {x j }

s
j=1 of V and s fractional ideals A1, . . . , As such that

L = A1x1+ · · ·+ As xs . Moreover:

(i) If W is a k-subspace of V of dimension r ≤ s, the x j can be chosen such that
x1, . . . , xr ∈W.

(ii) The ideal class of A1 · · · As is uniquely determined by the isomorphism class
of L as an O-module. In particular, L '

(⊕s−1
j=1 O

)
⊕ (A1 · · · As).

(iii) In the case V ⊆ kn (s ≤ n), we can find g ∈ GLn(k) such that

gL =
( s−1∑

j=1

Oej

)
+ (A1 · · · As)es .

Proof. See [Shimura 2010, Theorem 10.19]. We prove (iii) here. Consider the case
s = 2, where L = A1x1+ A2x2. We can find k1, k2 ∈ k× such that A′1 = k1 A1 and
A′2 = k2 A2 are integral ideals and A′1+ A′2 =O [Shimura 2010, Lemma 10.15(i)].
Let g′ be the matrix formed by substituting the first two columns of the n× n unit
matrix with k−1

1 x1 and k−1
2 x2. Then g′−1L = A′1e1+ A′2e2. Next let

g′′ =

 1 1
−a2 a1

In−2

 ,
where a1 ∈ A′1 and a2 ∈ A′2 are taken such that a1+a2 = 1. It is easily verified that
g′′(A′1e1 + A′2e2) = Oe1 + A′1 A′2e2. Hence g = diag(1, k−1

1 k−1
2 , 1, . . . , 1)g′′g′−1

maps L to Oe1+ A1 A2e2. The general case when s > 2 follows inductively from
this result. �

The ideal class associated to the O-lattice L mentioned above in (ii) is known as
the Steinitz class of L , denoted by λ(L). We may also speak of the Steinitz class
of an entire lattice class in L since every O-lattice in a lattice class has the same
Steinitz class.

It follows directly that mapping each lattice class to its Steinitz class gives a
bijection between the set of lattice classes in L and Cl(k). As a result the class
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number of GLn , which we have noted to be equivalent to the number of distinct
lattice classes in L, is equal to the class number of k, which we write as h.

We now proceed to prove that hi = |Q(k)\GLn(k)/0i | is also equal to h for
every i = 1, . . . , h. As we did in the previous section, let {η1, . . . , ηh} be a complete
set of representatives for GLn(k)\GLn(A)

1/G1
A,∞. Then for each i = 1, . . . , h put

L i = ηi (Oe1+ · · ·+Oen) ∈ L.
Next we identify Q(k)\GLn(k)with the set of all m-dimensional linear subspaces

of kn denoted by Grm (the Grassmannian) via the bijection

(4) Q(k)\GLn(k) 3 Q(k)g 7−→ g−1
( m∑

k=1

kek

)
∈ Grm .

From here up to the end of Theorem 11 we fix i ∈ {1, . . . , h}. Considering the
left action of 0i ⊂ GLn(k) on Grm , the map (4) gives rise to the bijection

(5) Q(k)\GLn(k)/0i 3 Q(k)g0i 7−→ 0i g−1
( m∑

k=1

kek

)
∈ 0i\Grm,

which lets us identify Q(k)\GLn(k)/0i with 0i\Grm .

Lemma 9. 0i is the stabilizer of L i in GLn(k), under the action of GLn(A)
1 on L,

i.e.,
0i = {g ∈ GLn(k) : gL i = L i }.

Proof. Since 0i =
(
GLn(k∞)× ηi

∏
σ∈ pf

GLn(Oσ )η−1
i

)
∩GLn(k), this is obvious

from our choice of L i . �

Proposition 10. Let V1, V2 ∈ Grm and put L̃1 = L i ∩ V1, L̃2 = L i ∩ V2, which are
O-lattices in V1 and V2 respectively. Then λ(L̃1)= λ(L̃2) if and only if there exists
g ∈ 0i such that V1 = gV2.

Proof. Suppose that V1 = gV2 for some g ∈ 0i . From Lemma 8 we can find a
k-basis {yj }

n
j=1 for kn contained in L i with y1, . . . , ym ∈ V2. Put x j = gyj for

j = 1, . . . ,m. Then {x j }
m
j=1 and {yj }

m
j=1 span V1 and V2 respectively and since g

stabilizes L i , they are also contained in L̃1 and L̃2 respectively.
For v ∈ V1 and w ∈ V2, we write (αv)j and (βw)j for the k-coefficients of x j and

yj in v and w respectively
(
so v =

∑m
j=1(αv)j x j and w =

∑m
j=1(βw)j yj

)
. Let J1

be the fractional ideal generated by {det[(αvj )l]
m
j,l=1 | v1, . . . , vm ∈ L̃1}. We can

show that the ideal class of J1 in Cl(k) is λ(L̃1) as follows: From the lemma above
we have L̃1 = A1x ′1+ · · ·+ Am x ′m , with fractional ideals A1, . . . , Am and {x ′j }

m
j=i

a basis of V1. Comparing
∧m

j=1 L̃1 = A1 · · · Am(x ′1 ∧ · · · ∧ x ′m) with∧m
j=1 L̃1 = k-span of {v1 ∧ · · · ∧ vm | v1, . . . , vm ∈ L̃1} = J1(x1 ∧ · · · ∧ xm),

we see that A1 · · · Am is a k×-multiple of J1; hence their ideal classes are equivalent.
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Similarly λ(L̃2) is the ideal class of the fractional ideal J2 generated by the
det[(βwj )l]

m
j,l=1 for all w1, . . . , wm ∈ L̃2. However, since any arbitrary v ∈ L̃1 can

be written as gw with some w ∈ L̃2 and

v = gw ⇐⇒
m∑

j=1

(αv)j x j = g
( m∑

j=1

(βw)j yj

)
=

m∑
j=1

(βw)j gyj =

m∑
j=1

(βw)j x j

⇐⇒ (αv)j = (βw)j , j = 1, . . . ,m,

this shows that J1 = J2 and thus λ(L̃1)= λ(L̃2).
Now suppose conversely that λ(L̃1)=λ(L̃2). Using Lemma 8, we obtain k-bases
{x j }

n
j=1, {yj }

n
j=1 for kn and fractional ideals A1, . . . , An, B1, . . . , Bn such that

L i = A1x1+· · ·+ Anxn = B1 y1+· · ·+Bn yn and x1, . . . , xm ∈ V1, y1, . . . , ym ∈ V2.
Since L̃1 = A1x1+ · · ·+ Am xm and L̃2 = B1 y1+ · · ·+ Bm ym , the ideal classes of
A1 · · · Am and B1 · · · Bm are equivalent, and hence so are those of Am+1 · · · An and
Bm+1 · · · Bn . By substituting the basis vectors and fractional ideals with suitable
k×-multiples, we may assume that A1 · · · Am = B1 · · · Bm and Am+1 · · · An =

Bm+1 · · · Bn .
Finally using Lemma 8(iii) we can find g1, g2 ∈ GLn(k) satisfying

g1L i =

m−1∑
j=1

Oej + (A1 · · · Am)em +

n−1∑
j=m+1

Oej + (Am+1 · · · An)en,

g2L i =

m−1∑
j=1

Oej + (B1 · · · Bm)em +

n−1∑
j=m+1

Oej + (Bm+1 · · · Bn)en,

chosen such that

g1 L̃1 =

m−1∑
j=1

Oej + (A1 · · · Am)em, g2 L̃2 =

m−1∑
j=1

Oej + (B1 · · · Bm)em .

Put g = g−1
1 g2. Since g1L i = g2L i , the previous lemma gives us g ∈ 0i , while

gV2 = V1 follows from gyj ∈ gL̃2 = L̃1 ⊂ V1 ( j = 1, . . . ,m). �

Finally we consider the map

(6) λi : 0i\Grm→ Cl(k), λi (0i V )= λ(L i ∩ V ) (V ∈ Grm),

which is well-defined and injective as a result of the previous proposition.

Theorem 11. hi = h.

Proof. Since hi = |Q(k)\GLn(k)/0i | = |0i\Grm | we only need to prove that λi is
surjective.

Take any ideal class in Cl(k) and let A be a fractional ideal representing this
class. Also let B be a fractional ideal representing λ(L i ). Lemma 8(iii) allows us
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to find g ∈ GLn(k) such that

gL i =
∑

1≤k<n−1

Oek + Aen−1+ A−1 Ben.

Let V be the subspace of kn spanned by e, . . . , em−1, en−1 and put V ′=g−1V ∈Grm .
Then L i ∩V ′'

(⊕m−1
j=1 O

)
⊕ A so λi (0i V ′)= λ(L i ∩V ′) is the class of A in Cl(k),

as required. �

The one-to-one correspondence between GLn(k)\GLn(A)
1/G1

A,∞ and the set
of O-lattices classes in L mentioned earlier in the section is given by mapping
each ηi to the lattice class of L i . That this is a bijection follows from G1

A,∞ being
the stabilizer group of the O-lattice Oe1+ · · ·+Oen under the action of GLn(A)

1

on L. Continuing this map to the Steinitz class of the lattice gives us the bijection

GLn(k)\GLn(A)
1/G1

A,∞ 3 ηi 7→ λ(L i ) ∈ Cl(k).

This gives us an explicit way to find candidates for {η1, . . . , ηh} as follows.
Let {a1, . . . , ah} be a complete set of fractional ideals representing the ideal class
of k. For each i = 1, . . . , h, we shall require an element ηi ∈ GLn(A)

1 such that
the Steinitz class of the resulting lattice L i = ηi

(∑n
k=1 Oek

)
is the ideal class

represented by ai .
Let Dn(x) (x ∈ A) denote the unit matrix of size n with bottom-most diagonal

entry replaced by x . For each 1 ≤ i ≤ h we can choose αi ∈ A× such that αiσ
generates the principal ideal aiOσ for every finite σ and |αi |∞ = N (ai ), the ideal
norm of ai . Then Dn(αi ) ∈ GLn(A)

1 since |det Dn(αi )|A = |αi |A = 1, and

Dn(αi )

( n∑
k=1

Oek

)
=

∑
1≤k<n

Oek + ai en.

Hence putting ηi = Dn(αi ) (1≤ i ≤ h) gives us our required set of representatives.
The corresponding O-lattice L i and its stabilizer group 0i will be denoted by Ln(ai )

and 0n(ai ) respectively whenever we want to call to attention the fractional ideal ai

or the dimension n.
We can also proceed similarly to find, for a fixed i , a suitable set of representatives

for Q(k)\GLn(k)/0i . We do this using the bijection

Q(k)\GLn(k)/0i 3 Q(k)g0i 7−→ λ(L i ∩ g−1Vm) ∈ Cl(k)

formed by composing λi with the bijection (5), where Vm =
∑m

k=1 kek .
For each j ∈ {1, . . . , h} the ideal aia

−1
j shares the same ideal class as a unique a j ′

( j ′ ∈ {1, . . . , h}); that is [aj ][a j ′]= [ai ]. Putting τi ( j) := j ′ defines a permutation τi

on {1, . . . , h}.
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Call a set of matrices {ξ1, . . . , ξh} ⊂GLn(k) an (n,m)-splitting set for Ln(ai ) if
for each j = 1, . . . , h

(7) ξj Ln(ai )=

( ∑
1≤k<m

Oek + aj em

)
+

( ∑
m<k<n

Oek + aτi ( j)en

)
' Lm(aj )⊕ Ln−m(aτi ( j)).

Since λ(L i ∩ ξ
−1
j Vm) = λ(ξj L i ∩ Vm) = [aj ] (i ≤ j ≤ h), such a set of matrices

completely represents Q(k)\GLn(k)/0i .
One such set is given as follows. For each j = 1, . . . , h, first take κi j ∈ k such

that ajaτi ( j) = κi jai . Then choose elements αi j ∈ aj , α′i j ∈ aτi ( j), βi j ∈ a
−1
j and

β ′i j ∈ a
−1
τi ( j) satisfying

αi jβi j −α
′

i jβ
′

i j = 1

(see [Cohen 2000, §1, Proposition 1.3.12 or Algorithm 1.3.16]) and define the
matrix

ξi j :=


Im−1

αi j κi jβ
′

i j

In−m+1
α′i j κi jβi j

 ∈ GLn(k).

By direct calculation it is easily verified that {ξi j }
h
j=1 is indeed an (n,m)-splitting

set for Ln(ai ) and thus fully represents Qn,m(k)\GLn(k)/0n(ai ).

5. Fundamental domains of GLn(k)\GLn(A)1 and Pn/0i

We use the results of Section 3 to determine suitable fundamental domains in our
continued discussion of the general linear group.

5.1. Local height functions.

Definition. For each σ ∈ p define Hσ :
∧m kn

σ → R>0 by

Hσ

(∑
I

aI (ei1 ∧ · · · ∧ eim )

)
=


(∑

I |aI |
2
σ

)[kσ :R]/2
, σ ∈ p∞,

supI |aI |σ , σ ∈ pf ,

where the sum and the supremum are taken over all I ={i1< · · ·< im}⊂ {1, . . . , n}.
We call this the local height function at σ .

In the following we extend each Hσ to a function of GLn(kσ ) by putting

Hσ (γ )= Hσ (γ e1 ∧ · · · ∧ γ em), γ ∈ GLn(kσ ).

The following lemma allows us to express the height function HQ (restricted to
G(A)1) in terms of these local heights.
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Lemma 12. For g = (gσ )σ∈ p ∈ GLn(A)
1,

HQ(g)=
∏
σ∈ p

Hσ (g−1
σ )n/ l.

Proof. By noting that every local height Hσ as a function of GLn(kσ ) is left
Kσ -invariant and writing

g =
[

a ∗
0 d

]
h (a ∈ GLm(A), d ∈ GLn−m(A), h ∈ K ),

we see that Hσ (g−1
σ )=|det(a−1

σ )|rσσ at every σ , where rσ =2 when σ is an imaginary
infinite place and 1 otherwise. Hence the right-hand side of our equation becomes
|det a|−n/ l

A , while HQ(g)= |det a|−(n−m)/ l
A |det d|m/ l

A by definition. Then since g ∈
GLn(A)

1, we have 1= |det g|A = |det a|A |det d|A, which gives us our equality. �

We proceed to describe the sets Ri, j,∞ using the matrices ηi and ξi j chosen at the
end of the previous section. For the rest of this paper, for a square matrix A with
entries in A or k∞, we will write |A|A and |A|∞ to denote |det A|A and |det A|∞
respectively. When the size of A is at least m, we write A[m] for the top-left
m×m submatrix of A, and use |A|[m]∞ to denote |A[m]|∞.

Lemma 13. Let X i j be the n×m matrix formed by the first m columns of ξ−1
i j . Then

(8) HQ(ξi jγ gηi )= N (aj )
n/ l
∣∣tX i j

tγ̄−1 tḡ−1(ηi )
−2
∞

g−1γ−1 X i j
∣∣n/2l
∞

for any 1≤ i, j ≤ h, γ ∈ 0i and g ∈ GLn(k∞)1.

Proof. Let x = η−1
i g−1γ−1 X i j so that Hσ ((ξi jγ gηi )

−1
σ )= Hσ (xσ e1 ∧ · · · ∧ xσ em).

For σ ∈ p∞, this computes to( ∑
I⊂{1,...,n}
|I |=m

|det[xσ ]I |2σ

)1
2 [kσ :R]

=

(∑
I

det t
[xσ ]I det[xσ ]I

)1
2 [kσ :R]

=det( tx̄σ xσ )
1
2 [kσ :R],

where for each I = {i1 < · · · < im} that the sums run through [xσ ]I denotes the
m×n matrix formed by the i1-th, . . . , im-th rows of xσ arranged from top to bottom
in that order. The final equality is due to the Cauchy–Binet formula; see [Bombieri
and Gubler 2006, Proposition 2.8.8].

For σ ∈ pf , since gσ is trivial and γσ ∈ ηiσGLn(Oσ )ηi
−1
σ , we have (ξi jγ gηi )σ =

ξi j σηiσhσ for some hσ ∈ GLn(Oσ ). Hence Hσ ((ξi jγ gηi )
−1
σ ) simplifies to

Hσ (ηi
−1
σ ξi j

−1
σ
)= Hσ

(
βi j (e1 ∧ · · · ∧ em)+αi

−1
σ κi jα

′

i j (e1 ∧ · · · ∧ em−1 ∧ en)
)

or

max{|βi j |σ , |αi
−1
σ κ
−1
i j α

′

i j |σ } = |β
′

i jκi jαiσ |
−1
σ max{|βi jβ

′

i jκi jαiσ |σ , |α
′

i jβ
′

i j |σ }.
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By the previous lemma, HQ(ξi jγ gηi ) is obtained by taking the n/ l-th power of
the product of all the Hσ ((ξi jγ gηi )

−1
σ ). Thus it remains to verify that∏

σ∈ pf

|β ′i jκi jαiσ |
−1
σ max{|βi jβ

′

i jκi jαiσ |σ , |α
′

i jβ
′

i j |σ } = N (aj ).

First we see that
∏
σ∈ pf
|β ′i jκi jαiσ |

−1
σ = N (β ′i jκi jai ) = N (β ′i jajaτi ( j)). It is then

sufficient to show that the product of the remaining factors is N (β ′i jaτi ( j))
−1.

Let pσ denote the prime ideal associated to a finite place σ ∈ pf . Write
the prime ideal decompositions of βi jaj and β ′i jaτi ( j) as

∏
σ∈ pf

(pσ ∩ O)dσ and∏
σ∈ pf

(pσ ∩O)eσ respectively, the exponents dσ and eσ being nonnegative.
Then βi jβ

′

i jκi jai = (βi jaj )(β
′

i jaτi ( j))=
∏
σ∈ pf

(pσ ∩O)dσ+eσ and since each aiσ
is generated by αiσ , this yields

|βi jβ
′

i jκi jαiσ |σ = |Oσ/pσ |−dσ−eσ, σ ∈ pf .

Now α′i jβ
′

i j ∈ β
′

i jaτi ( j) and hence |α′i jβ
′

i j |σ ≤ |Oσ/pσ |
−eσ. We have two cases.

Case 1: dσ = 0. Then |α′i jβ
′

i j |σ ≤ |βi jβ
′

i jκi jαiσ |σ = |Oσ/pσ |
−eσ.

Case 2: dp > 0. In this case

α′i jβ
′

i j =−1+αi jβi j ∈ −1+βi jaj ⊂−1+ (pσ ∩O)dp

shows us that α′i jβ
′

i j ∈O
×
σ and so |α′i jβ

′

i j |σ = 1≥ |βi jβ
′

i jκi jαiσ |σ . We also note that
since βi j and β ′i j were chosen in such a way that βi jai j+β

′

i jai j =O, the ideal βi jaj

is prime to β ′i jaτi ( j), which means eσ = 0.

So in either case,

max{|βi jβ
′

i jκi jαiσ |σ , |α
′

i jβ
′

i j |σ } = |Oσ/pσ |
−eσ

and thus the product over all finite places is N (β ′i jaτi ( j))
−1, as required. �

Now fix 1≤ i, j ≤ h and first consider the set ξ−1
i j Ri, j,∞ξi j . It is easy to directly

verify that

ξ−1
i j Ri, j,∞ξi j = {g ∈ G(k∞)1 : HQ(ξi j gηi )=mQ(gηi )}.

Hence for g ∈ ξ−1
i j Ri, j,∞ξi j we have

HQ(ξi j gηi )=mQ(gηi )= min
x∈Q(k)\GLn(k)

HQ(xgηi )= min
1≤k≤h
γ∈0i

HQ(ξikγ gηi ),

which in this case can be written using (8) as

|
tX i j

tḡ−1(ηi )
−2
∞

g−1 X i j |∞ ≤

(
N (ak)

N (aj )

)2

|
tX ik

tγ̄ tḡ−1(ηi )
−2
∞

g−1γ X ik |∞

for all k = 1, . . . , h and γ ∈ 0i .
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Now tX ik
tγ̄ tḡ−1(ηi )

−2
∞

g−1γ X ik = (
tξ̄−1

ik
tγ̄ tḡ−1(ηi )

−2
∞

g−1γ ξ−1
ik )
[m], which by

letting g[i j] = ξi j gξ−1
i j can be rewritten as( t(ξi jγ ξ

−1
ik )

tḡ−1
[i j](

tξ̄−1
i j (ηi )

−2
∞
ξ−1

i j )g
−1
[i j](ξi jγ ξ

−1
ik )

)[m]
.

This lets us express the set Ri, j,∞ as follows. For g ∈ GLn(k∞) let πi j (g) denote
tḡ−1( tξ̄−1

i j (ηi )
−2
∞
ξ−1

i j )g
−1. Then g ∈ Ri, j,∞ if and only if

(9) |πi j (g)|[m]∞ ≤
(

N (ak)

N (aj )

)2∣∣t(ξi jγ ξ
−1
ik )πi j (g)(ξi jγ ξ

−1
ik )

∣∣[m]
∞

for all k = 1, . . . , h and γ ∈ 0i .

5.2. Fundamental domains of Pn/0i . For each infinite place σ of k let Pn(kσ )
denote the subset of GLn(kσ ) consisting of all positive definite real symmetric
matrices when σ is real and positive definite Hermitian matrices when σ is imaginary.
We consider the subset of GLn(k∞) defined by Pn =

∏
σ∈ p∞ Pn(kσ ). This is the

space of positive definite Humbert forms in GLn(k).
We have the following right action of GLn(k∞) on Pn:

(10) A · g = tḡ Ag (g ∈ GLn(k∞), A ∈ Pn).

To determine fundamental domains in Pn with respect to subgroups of GLn(k),
we consider instead the induced action A · gZ = tḡ Ag of GLn(k)/Z on Pn , where
Z = {z ∈ k : z̄z = 1}, the set of roots of unity in k. Here {z In : z ∈ Z} is naturally
seen to be the intersection of K∞ and the center of GLn(k).

Hence given a discrete subgroup 0 of GLn(k) acting on a subset T of Pn , a
fundamental domain � of a T/0 is an open subset of T satisfying

(i) T =�− ·0,

(ii) for γ ∈ 0, if �◦ ∩ (�− · γ ) 6=∅ then γ ∈ Z .

Now for each 1≤ i, j ≤ h, put

Ki, j,∞ = (ξi jηi )∞K∞(ξi jηi )
−1
∞
, P i j

n = {A ∈ Pn : |A|∞ = N (κi jai )
−2
},

and define the map πi j : G(k∞) 3 g 7→ tḡ−1( tξ̄−1
i j (ηi )

−2
∞
ξ−1

i j )g
−1
∈ Pn . Note

that Ki, j,∞ is the stabilizer of tξ̄−1
i j (ηi )

−2
∞
ξ−1

i j ∈ Pn under the action of GLn(k∞)
on Pn and that πi j preserves this action. Thus the surjective map πi j gives us the
isomorphisms

GLn(k∞)/Ki, j,∞ ' Pn and GLn(k∞)
1/Ki,∞ ' πi j (GLn(k∞)

1)= P i j
n

since |tξ̄−1
i j (ηi )

−2
∞
ξ−1

i j |∞ = N (κi jai )
−2.
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Lastly let Fn,m
i, j denote the following closed subset of Pn:{

A ∈ Pn : |A|[m]∞ ≤
(

N (ak)

N (aj )

)2∣∣t(ξi jγ ξ
−1
ik )A(ξi jγ ξ

−1
ik )

∣∣[m]
∞
, 1≤ k ≤ h, γ ∈ 0i

}
.

From (9), πi j maps Ri, j,∞ onto Fn,m
i, j ∩ P i j

n . We also note that following statement
holds true, the proof of which will be given later in the section.

Proposition 14. Fn,m
i, j is right Qi, j -invariant under the action (10).

Thus the subgroup Qi, j of GLn(k∞) acts on Ri, j,∞ from the left and on Fn,m
i, j from

the right, and πi j preserves this. Hence by constructing a fundamental domain for
Fn,m

i, j /Qi, j , we can find one for Qi, j\Ri, j,∞ by taking the inverse image under πi j .
We start by observing that ξi j0iξ

−1
i j is the stabilizer in GLn(k) of the O-lattice

ξi j L i described in (7). This gives us an expression for Qi, j = Q(k)∩ ξi j0iξ
−1
i j :{[

a b
0 d

]
: a ∈ 0m(aj ), d ∈ 0n−m(aτi ( j)), bLn−m(aτi ( j))⊂ Lm(aj )

}
.

Any A ∈ Pn can be written uniquely in the form

(11) A =
[

Im 0
tu A,m In−m

] [
A[m] 0

0 A[n−m]

] [
Im u A,m

0 In−m

]
with A[m] ∈ Pm , A[n−m] ∈ Pn−m and u A.m ∈ Mm,n−m(k∞). (The symbol A[m] here
coincides with its prior use to denote the top left m×m submatrix of A). It is easy
to verify that the action of q =

[a
0

b
d

]
∈ Qi, j on A results in

( tq̄ Aq)[m] = tā A[m]a, ( tq̄ Aq)[n−m] =
td̄ A[n−m]d,

u tq̄ Aq,m = a−1(u A,md + b).

These equations will determine the necessary form of our fundamental domain,
as well as allow us to prove our previous proposition. Given A ∈ Fn,m

i, j and q as
above, we first see that

|
tq̄ Aq|[m]

∞
= |

tā|∞|A|[m]∞ |a|∞ = |A|
[m]
∞
.

Next put q = ξi jγqξ
−1
i j , γq ∈ 0i , to get

t(ξi jγ ξ
−1
ik )

tq̄ Aq(ξi jγ ξ
−1
ik )=

t(ξi jγqγ ξ
−1
ik )A(ξi jγqγ ξ

−1
ik )

for all γ ∈ 0i and every k. Together, this shows that tq̄ Aq ∈ Fn,m
i, j as proposed.

Now for each k = 1, . . . , h choose sets dk , d′k and dik that are fundamental
domains for k∞ with respect to addition by ak , a−1

k and aka
−1
τi (k) respectively. We

require each of these sets to be closed under multiplication by Z . Then choose also
a subset d̃ik of dik that is a fundamental domain for dik with respect to multiplication
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by Z . Also if necessary (which will be the case when m > 1 and n−m > 1) take a
fundamental domain dO of k∞ with respect to addition by O.

Using these, we define for 1< i, j < h the sets

Dn,m
i, j =


d11 · · · d1,n−m
...
. . .

...
dm1 · · · dm,n−m

 : dm,n−m ∈ d̃i j , drs ∈


dO, r < m, s < n−m,
d′τi ( j), r < m, s = n−m,
dj , r = m, s < n−m


and

Fn,m
i, j (S, S′)= {A ∈ Fn,m

i, j : A[m] ∈ S, A[n−m] ∈ S′, u A,m ∈D
n,m
i, j }

with arbitrary subsets S ⊂ Pm and S′ ⊂ Pn−m .
In particular we will want to consider Fn,m

i, j (Bj ,Cσi ( j)) when Bj and Cτi ( j) are
fundamental domains for Pm/0m(aj ) and Pn−m/0n−m(aτi ( j)) respectively. In this
case, based on our observations on the action of Qi, j on Fn,m

i, j , we establish the
following result.

Lemma 15. Fn,m
i, j (Bj ,Cτi ( j)) is a fundamental domain of Fn,m

i, j /Qi, j .

Proof. We write F = Fn,m
i, j (Bj ,Cτi ( j)) for short. First consider an A ∈ Fn,m

i, j . We
can find b ∈B−j , c ∈ C−τi ( j) and a ∈ 0m(aj ), d ∈ 0n−m(aτi(j)) such that A[m] = tāba
and A[n−m] =

td̄cd . Also, by substituting a with a suitable Z -multiple if necessary,
we can find f ∈ (Dn,m

i, j )
− and a g ∈ Mm,n−m(k) mapping Ln−m(aτi ( j)) to Lm(aj )

such that au A,md−1
= f + g. Let

q =
[

a gd
0 d

]
, A′ =

[
Im 0
t f̄ In−m

] [
b 0
0 c

] [
Im f
0 In−m

]
.

Then q ∈ Qi, j and A = tq̄ A′q. We have from the Qi, j -invariance of Fn,m
i, j that

A′ ∈ Fn,m
i, j and so A′ ∈ F−. This shows that Fn,m

i, j = F− · Qi, j .
Next suppose F◦ ∩ (F− · q) is nonempty for a q =

[a
0

b
d

]
∈ Qi, j , so there exist

A ∈ F◦ and A′ ∈ F− such that A = tq̄ A′q. We must show that q ∈ Z . From
A[m] = tā A′[m]a ∈ Bi j and A[n−m] =

td̄ A′
[n−m]d ∈ Ci j , we must have a = a1 Im

and d = d1 In−m with some a1, d1 ∈ Z . Since the entries of u A,m and u A′,m are
respectively in the interior and closure of either dO, dj , d′τi ( j) or di j , which are all
invariant under Z , we see that b = au A,m − u A′,md must necessarily be 0. From
this we get a1u A,m = d1u A′,m , whose (m, n−m)-th entry belongs to d̃i j , implying
that a1d−1

1 ∈ Z . Hence q ∈ Z . �

As a result, the inverse image of Fn,m
i, j (Bi j ,Ci j )∩ P i j

n under πi j is a fundamental
domain of Qi, j\Ri, j,∞.

If we have fundamental domains B1, . . . ,Bh for Pm with respect to the groups
0m(a1), . . . , 0m(ah), as well as fundamental domains C1, . . . ,Ch of Pn−m with re-
spect to 0n−m(a1), . . . , 0n−m(ah), we are able to construct the sets Fn,m

i, j (Bj ,Cσi ( j))
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for each i and j . Then by Corollary 6 a fundamental domain for GLn(k)\GLn(A)
1

is given by the set ⊔
1≤i, j≤h

π−1
i j (F

n,m
i, j (Bj ,Cτi ( j))∩ P i j

n )ξi jηi K f .

Also Theorem 7 shows us that
⋃h

j=1 ξ
−1
i j π

−1
i j (F

n,m
i, j (Bj ,Cτi ( j))∩ P i j

n )ξi j is a fun-
damental domain for GLn(k∞)1 with respect to 0i . Now let

�
n,m
i (B1, . . . ,Bh,C1, . . . ,Ch)=

h⋃
j=1

tξ̄i j Fn,m
i, j (Bj ,Cτi ( j))ξi j .

We have the following result.

Theorem 16. �n,m
i (B1, . . . ,Bh,C1, . . . ,Ch) ∩ P i j

n is a fundamental domain of
P i j

n with respect to 0i . In addition, by viewing R>0 as a subset of k∞ via the usual
diagonal embedding, if we assume for k = 1, . . . , h that

R>0Bk =Bk, R>0Ck = Ck,

then �n,m
i (B1, . . . ,Bh,C1, . . . ,Ch) is a fundamental domain of Pn/0i .

Proof. We write � for �n,m
i (B1, . . . ,Bh,C1, . . . ,Ch) and 0 for 0i for short. If

we define the map G(k∞) 3 g 7→ tḡ−1(ηi )
−2
∞

g−1
∈ Pn we can directly verify that

the image of
⋃h

j=1 ξ
−1
i j π

−1
i j (F

n,m
i, j (Bj ,Cτi ( j))∩ P i j

n )ξi j under this map is �, which
gives us the first result. For the second part, note that R>0 Fn,m

i, j = Fn,m
i, j and

(x A)[m] = x(A[m]), (x A)[n−m] = x(A[n−m]), ux A,m = u A,m

for any x ∈ R>0 and A ∈ Pn . Thus the conditions on the Bk and Ck imply that
R>0 Fn,m

i, j (Bj ,Cτi ( j)) = Fn,m
i, j (Bj ,Cτi ( j)) for each j ; hence R>0� = �. Since

Pn = R>0 P i j
n , we see from P i j

n = (� ∩ P i j
n )
−
· 0 that Pn = �− · 0. Finally

suppose that �◦ ∩ ( tγ̄ �−γ ) (γ ∈ 0) contains an element g = tγ̄ g′γ (g′ ∈ �−).
Put x = (N (κi jai )

2
|g|∞)−1/n[k∞:R]. Then |xg|∞= |xg′|∞= N (κi jai )

−2 and hence
xg= tγ̄ xg′γ ∈ (�◦∩ P i j

n )∩
tγ̄ (�−∩ P i j

n )γ , which gives us γ = In , as required. �

Using the theorem, we can construct fundamental domains for Pn with respect to
0i for each i and n≥1. Since 0i =O× for any i when n=1, we can start by choosing
a fixed fundamental domain, �1, for P1 with respect to O×/Z that is closed under
multiplication by R>0. (The existence of such a set can be shown using Voronoi
reduction; see the Appendix.) Then for each i = 1, . . . , h, let �1

i =�
1 and define

�n
i =�

n,n−1
i (�n−1

1 . . . , �n−1
h , �1, · · · , �1)

inductively for n ≥ 2. By construction, R>0�
n
i = �

n
i so for each 1 ≤ i ≤ h and

n ≥ 1, �n
i gives us a fundamental domain for Pn/0i .
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An example implementation of this construction for P2 over the imaginary
quadratic field Q(

√
−5) of class number 2 is given in the following subsection.

Similar work on fundamental domains in spaces over real quadratic fields of class
number 1 can be found in [Cohn 1965].

5.3. An example (k=Q(
√
−5)). When k is an imaginary quadratic field, we have

k∞ = C. For n = 1 we have P1 = R>0(⊂ C) and 0i =O× = Z acts trivially on P1;
hence P1 itself is a fundamental domain for P1/01(ai ).

Consider in particular k = Q(
√
−5) of class number h = 2. We can choose

representatives a1, a2 for Cl(k) by putting a1 = O and a2 =
〈
2, 1+

√
−5
〉
. Then

following the procedure at the end of Section 4, we see that

a2
1 = a1, a2

2 = 2a1

(
τ1 =

(
1 2
1 2

)
, κ11 = 1, κ12 = 2

)
,

a1a2 = a2, a2a1 = a2

(
τ2 =

(
1 2
2 1

)
, κ21 = κ22 = 1

)
,

and (2, 1)-splitting sets for L2(ai ) are given by{
ξ11 =

[
1 0
0 1

]
, ξ12 =

[
2 2+

√
−5

2 3+
√
−5

]}
(i = 1),{

ξ21 =

[
1 0
0 1

]
, ξ22 =

[
0 1
−1 0

]}
(i = 2).

For 1≤ i, j, k ≤ 2 denote by 4i, j,k the set of the first columns of the matrices
ξi jγ ξ

−1
ik as γ ranges over 0(ai ). Then for A ∈ P2

min
γ∈0i

∣∣t(ξi jγ ξ
−1
ik )A(ξi jγ ξ

−1
ik )

∣∣[1]
∞
= min

x∈4i, j,k
|
txAx|

= min[ e
f
]
∈4i, j,k

A[1]|e+ u A,1 f |2+ A[1]| f |2,

and so F2,1
i, j can be expressed as

F2,1
i, j =


[

1 0
d̄ 1

] [
b 0
0 c

] [
1 d
0 1

]
:

b, c ∈ R>0, d ∈ C,

|e+ d f |2+ c
b
| f |2 ≥ 1,[e

f

]
∈

1
N (aj )

4i, j,1 ∪
2

N (aj )
4i, j,2

 .
Now for α, β ∈ k let

d(α, β)=
{

xα+ yβ : − 1
2 < x, y ≤ 1

2

}
.

When α and β generate a fractional ideal a, we have d(α, β) is a fundamental
domain for C with respect to addition by a. Also if we let d̃(α, β) denote the subset
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of d(α, β) where the range of y is restricted to 0≤ y≤ 1
2 , this gives us a fundamental

domain for d(α, β) with respect to multiplication by Z = {±1}.
In particular d(1,

√
−5), d(2, 1+

√
−5), d

(
1, 1

2(1−
√
−5)

)
are fundamental

domains for C with respect to addition by O, a2 and a−1
2 respectively, and we can

put d̃11 = d̃12 = d̃(1,
√
−5), d̃21 = d̃

(
1, 1

2(1−
√
−5)

)
and d̃22 = d̃(2,

√
−5). Then

F2,1
i, j (P1, P1)=


[

1 0
d̄ 1

] [
b 0
0 c

] [
1 d
0 1

]
:

b, c ∈ R>0, d ∈ d̃i j ,

|e+ d f |2+ c
b
| f |2 ≥ 1,[e

f

]
∈

1
N (aj )

4i, j,1 ∪
2

N (aj )
4i, j,2

 .
Writing F2,1

i, j (P1, P1) as Fi, j , we obtain the fundamental domains �2
1 = F1,1 ∪

tξ̄12 F1,2ξ12 for P2/02(a1) and �2
2 = F1,1 ∪

tξ̄22 F2,2ξ22 for P2/02(a2).

5.4. Relations between the fundamental domains. So far we have used a represen-
tative set {a1, . . . , ah} for Cl(k) and a standard parabolic subgroup Qn,m of GLn in
constructing our fundamental domains. This construction is of course possible with
m varied and using any other representative set of fractional ideals. We will demon-
strate in this section that the fundamental domain for Pn/0n(ai ) constructed using
{a1, . . . , ah} and Qn,m can be mapped by an automorphism to a fundamental domain
for Pn/0n(a

−1
i ) constructed with the representative set {a−1

1 , . . . , a−1
h } and Qn,n−m.

For integers n and m where 1≤ m < n, define the outer automorphism φn,m of
GLn(k∞) by

(12) φn,m(g) := tJn,m(
tg−1)Jn,m, g ∈ GLn(k∞),

where

Jn,m =

[
0 Im

In−m 0

]
.

Note that tJn,m = (Jn,m)
−1
= Jn,n−m so that in particular we have φ−1

n,m = φn,n−m .
Also φn,m gives a one-to-one map between these two standard parabolic subgroups
of GLn since φn,m(Qn,m(k))= Qn,n−m(k).

Let the ideals a1, . . . , ah , the corresponding adeles α1, . . . , αh , and the matrices
ξi j (1≤ i, j ≤ h) be as they were chosen in the last section. Clearly {a−1

1 , . . . , a−1
h }

is also a set of representative ideals for ideal class group. A corresponding set of
matrices representing GLn(k)\GLn(A)

1/(GLn)
1
A,∞ is given by

{Dn(α
−1
1 ), . . . , Dn(α

−1
h )} = {η−1

i , . . . , η−1
h },

which gives us the subgroups

Dn(α
−1
i )(GLn(k∞)

1
× K f )Dn(α

−1
i )−1

∩GLn(k)= 0n(a
−1
i ),
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which are the respective stabilizer subgroups in GLn(k) of the lattices Ln(a
−1
i )

(i = 1, . . . , h).
Next for each i, j = 1, . . . , h set

ξ̃i j :=
tJn,m

tξ−1
iτi ( j) =


In−m+1

−β ′iτi ( j) κ−1
i j αiτi ( j)

Im−1
βiτi ( j) −κ−1

i j α
′

iτi ( j)

 ,
which is easily verified to satisfy

(13) ξ̃i j Ln(a
−1
i )=

( ∑
1≤k<n−m

Oe(n)k + a−1
j e(n)m

)
+

( ∑
n−m<k<n

Oe(n)k + a−1
τi ( j)e

(n)
n

)
' Ln−m(a

−1
j )⊕ Lm(a

−1
τi ( j)).

Thus {ξ̃i j }
h
j=1 is an (n, n−m)-splitting set for Ln(a

−1
i ), and hence a complete set

of representatives for Qn,n−m(k)\GLn(k)/0n(a
−1
i ).

We can also define

Q̃n,n−m
i. j := Qn,n−m(k)∩ ξ̃ n,n−m

i j 0n(a
−1
i )(ξ̃

n,n−m
i j )−1,

F̃n,n−m
i, j =

{
A∈ Pn : |A|[n−m]

∞
≤

(
N (a−1

k )

N (a−1
j )

)2∣∣t(ξ̃i jγ ξ̃
−1
ik )A(ξ̃i jγ ξ̃

−1
ik )

∣∣[n−m]
∞

,

1≤ k ≤ h, γ ∈0n(a
−1)

}
,

D̃n,n−m
i, j =


 d11 · · · d1,m

...
. . .

...
dn−m,1 · · · dn−m,m

: dn−m,m ∈ d̃i j , drs∈


dO, r < n−m, s<m,
dτi ( j), r < n−m, s=m,
d′j , r = n−m, s<m

,
where the fundamental domains dk , d′k , d̃ik , dO are taken as in the previous section,
and

F̃n,n−m
i, j (S, S′)=

{
A ∈ F̃n,n−m

i, j : A[n−m]
∈ S, A[m] ∈ S′, u A,n−m ∈ D̃

n,n−m
i, j

}
for arbitrary subsets S ⊂ Pn−m , S′ ⊂ Pm . These are precisely the groups Qn,m

i, j
and sets Fn,m

i, j , Dn,m
i, j and Fn,m

i, j (S, S′) from the previous section with a−1
i and ξ̃ik in

place of the ai and ξik respectively, when m = n − m. It is easily verified that
φn,m(Q

n,m
i, j )= Q̃n,n−m

i,τi ( j) .

Lemma 17. For A ∈ Pn ,

φn,m(A)[n−m]
=

tA−1
[n−m], φn,m(A)[m] = t(A[m])−1,

uφn,m(A),n−m =−
tu A,m .

Proof. Apply the automorphism φn,m to both sides of (11). �
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Given a set S consisting of invertible matrices, denote the set {ts−1
: s ∈ S} by tS−1.

Lemma 18. For S ⊂ Pm and S′ ⊂ Pn−m ,

φn,m(F
n,m
i, j (S, S′))= F̃n,n−m

i,τi ( j) (
tS′−1, tS−1).

Proof. We first show that φn,m(F
n,m
i, j )= F̃n,n−m

i,τi ( j) . First consider A ∈ Fn,m
i, j . Put

A(k, γ )= t(ξi jγ ξ
−1
ik )A(ξi jγ ξ

−1
ik )

for 1≤ k ≤ h and γ ∈ 0i . We have

|A(k, γ )| =
(
κi j

κik

)2
|A| =

(
κi j

κik

)2
|A[m]||A[n−m]|.

Substitute this and |A(k, γ )[m]| = |A(k, γ )||A(k, γ )[n−m]|
−1 into the inequality

|A[m]|∞ ≤
(

N (ak)

N (aj )

)2

|A(k, γ )[m]|∞.

Rearranging, we get

|A[n−m]|
−1
∞
≤

(
|κ−1

ik |∞N (ak)

|κ−1
i j |∞N (aj )

)2

|A(k, γ )[n−m]|
−1
∞
,

which, using the previous lemma, becomes

|φn,m(A)|[n−m]
∞

≤

(N (a−1
τi (k))

N (a−1
τi ( j))

)2

|φn,m(A(k, γ ))|[n−m]
∞

,

and since

φn,m(A(k, γ ))= t(ξ̃iτi ( j)
tγ−1 ξ̃−1

iτi (k))φn,m(A)(ξ̃iτi ( j)
tγ−1 ξ̃−1

iτi (k)),

this shows that φn,m(A) ∈ F̃n,n−m
i,τi ( j) . Thus φn,m(F

n,m
i, j ) ⊂ F̃n,n−m

i,τi ( j) and similarly
φn,n−m(F̃

n,n−m
i,τi ( j) )⊂ Fn,m

i, j . The rest of our result follows from the previous lemma. �

Lemma 19. Let 0 be a subgroup of GLn(k∞) acting on a subset X of Pn , the
action being the one defined in (10). If F is a given fundamental domain for X/0
and φ a group automorphism of GLn(k∞) that is also a topological isomorphism,
then φ(F) is a fundamental domain for φ(X)/φ(0).

Proof. Since φ is both a group homomorphism and a topological isomorphism,
X = F− ·0 implies φ(X)= φ(F)− ·φ(0). Also, for g ∈ 0, if the intersection of
φ(F)◦ and φ(F)− ·φ(g) is nonempty, then so is F◦∩F− ·g, implying g ∈ Z . Since
Z consists of all roots of unity in k, we have φ(g) ∈ Z . �

In particular, if for k = 1, . . . , h we let Bk and Ck be fundamental domains for
Pm/0m(ak) and Pn−m/0n−m(ak) respectively as in the end of the previous section,
then tB−1

k and tC−1
k are respectively fundamental domains for Pn−m/0n−m(a

−1
k )

and Pm/0m(a
−1
k ). Also we have:
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Corollary 20. The set
φn,m(F

n,m
i, j (Bj ,Cτi ( j)))

is a fundamental domain for F̃n,n−m
i,τi ( j) /Q̃

n,n−m
i,τi ( j) .

Corollary 21. The set

t(�n,m
i (B1, . . .Bh,C1, . . . ,Ch)

)−1

is a fundamental domain for Pn/0n(a
−1
i ).

Since
F̃n,n−m

i. j ( tC−1
j , tB−1

τi ( j))= φn,m(F
n,m
i,τi ( j)(Bτi ( j),Cj )),

the first corollary is consistent with Lemma 15 in the previous section.
Similarly if we put

�̃
n,n−m
i (C1, . . .Ch,B1, . . . ,Bh)=

h⋃
j=1

t ¯̃ξi j F̃n,m
i, j (

tC−1
j , tB−1

τi ( j))ξ̃i j

then �̃n,n−m
i (C1, . . .Ch,B1, . . . ,Bh) =

t
(
�

n,m
i (B1, . . .Bh,C1, . . . ,Ch)

)−1 and
according to Theorem 16, this set is indeed a fundamental domain for Pn/0n(a

−1
i ).

Appendix: Voronoi reduction
by Takao Watanabe

We present here generalizations of results from [Watanabe et al. 2013, §4], without
the assumption that the underlying number field is totally real.

Let k, O and Pn be as previously defined in this paper. We consider the space of
self-adjoint matrices in Mn(k∞) (with respect to the inner product 〈 , 〉 as defined
in [Watanabe et al. 2013, §1]), which we denote here by Hn . Identifying Hn with∏
σ∈ p∞ Hn(kσ ), where Hn(kσ ) denotes the set of n× n real symmetric (complex

Hermitian) matrices when σ is real (imaginary respectively), we see that Pn is the
set of positive definite matrices in Hn .

Also as per [Watanabe et al. 2013, §1], we use the inner product ( , ) on Hn

defined by
(A, B)=

∑
σ∈ p∞

Trkσ /R(Tr(Aσ Bσ ))

for A = (Aσ )σ∈ p∞ , B = (Bσ )σ∈ p∞ ∈ Hn .
Following [Watanabe et al. 2013, §2], we fix a projective O-module 3⊂ kn of

rank n and consider the arithmetical minimum function

m3(A)= inf
x∈3\{0}

〈Ax, x〉
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on P−n . The set
K1(m3)= {A ∈ P−n :m3(A)≥ 1},

known as the Ryshkov polyhedron of m3, is a locally finite polyhedron contained in
Pn [Watanabe et al. 2013, Lemma 2.1 and Proposition 2.2]. The set of 0-dimensional
faces of K1(m3), denoted by ∂0K1(m3), is characterized in [Watanabe et al. 2013,
Theorem 2.5].

Now for a given A ∈ Pn and a positive constant θ , define the sets

HA,θ = {B ∈ Hn : (A, B)≤ θ},

[A]θ = ∂0K1(m30)∩ HA,θ .

Lemma A1. [A]θ is a finite set.

Proof. Since HA,θ ∩ P−n is compact [Faraut and Korányi 1994, Corollary I.1.6] and
K1(m3) is a locally finite polyhedron, it follows that their intersection K1(m3)∩

HA,θ is a polytope. Hence [A]θ must be finite. �

Lemma A2. For an A ∈ Pn , there exists B0 ∈ ∂
0K1(m3) such that

inf
B∈K1(m3)

(A, B)= (A, B0)

and hence A is in DB0 , the perfect domain of B0 [Watanabe et al. 2013, §3]. Here

DB0 =

{ ∑
x∈S3(B0)

λx x tx̄ : λx ≥ 0
}
,

where
S3(B0)= {x ∈3 :m3(B0)= 〈B0x, x〉}.

Proof. Take a sufficiently large θ > 0 whereby [A]θ is nonempty. Since K1(m3) is
the convex hull of ∂K1(m3) [Watanabe et al. 2013, Theorem 2.6], we have

inf
B∈K1(m3)

(A, B) = inf
B∈∂K1(m3)

(A, B) = inf
B∈[A]θ

(A, B),

which together with the previous lemma proves the existence of B0. The proof that
A ∈ DB0 is the same as in [Watanabe et al. 2013, Lemma 4.8]. �

Next consider the set

k+
∞
= {(ασ )σ∈ p∞ : ασ > 0 for all σ ∈ p∞}.

Lemma A3. The subset {ββ̄ : β ∈ k×} of k∞ is dense in k+
∞

.

Proof. Define the norm ‖ · ‖ on k∞ by

‖α‖ = max
σ∈ p∞

√
ασασ , α = (ασ ) ∈ k∞.
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Now given a α ∈ k+
∞

there is an element
√
α ∈ k+

∞
such that (

√
α)2 = α. Since k

is dense in k∞, for a sufficiently small ε > 0 we can find β ∈ k× such that

‖
√
α−β‖<

ε

2‖
√
α‖+ 1

< 1.

From ‖β‖< ‖
√
α‖+ 1, we have ‖

√
α+β‖< 2‖

√
α‖+ 1, and thus

‖α−ββ̄‖ = 1
2

∥∥(√α−β)(√α+ β̄)+ (√α+β)(√α− β̄)∥∥
≤

1
2

(
‖
√
α−β‖‖

√
α+β‖+‖

√
α+β‖‖

√
α−β‖

)
< ε. �

Lemma A4. k+
∞
∪ {0} =

{ l∑
k=1

λkβk
tβ̄k : 1≤ l ∈ Z, λk ∈ R≥0, βk ∈ k×

}
.

Proof. See the proof of [Watanabe et al. 2013, Lemma 4.2]. �

As a result of the previous lemma, if we define the subsets

�1 =

{ l∑
k=1

αk xk
tx̄k : 1≤ l ∈ Z, αk ∈ k+

∞
∪ {0}, xi ∈ kn

}
,

�2 =

{ l∑
k=1

λk xk
tx̄k : 1≤ l ∈ Z, λk ∈ R≥0, xi ∈ kn

}
of P−n , we have �1 =�2. Also by Lemma A2, Pn ⊂�2 =�1.

Lemma A5. �2 =
⋃

B∈∂0 K1(m3)

DB .

Proof. For any A ∈ �2\{0}, following the same arguments as in the proofs of
[Watanabe et al. 2013, Lemmas 4.7 and 4.8], we can find an element B0∈ ∂

0K1(m3)

such that infB∈K1(m3)(A, B)= (A, B0) and hence A ∈ DB0 . �

Finally take a complete set of representatives B1, . . . , Bt for ∂0K1(m3)/GL(3),
where the right action is the same one as (10), and for each k = 1, . . . , t define
the subgroups 0Bk = {γ ∈ GL(3) : Bk ·

tγ̄ = Bk}. Since for any A ∈ ∂0K1(m) and
γ ∈GL(3) we have S3(A ·γ )= γ−1S3(A) and hence DA· tγ̄ = (DA) ·γ

−1, we see
that 0Bk stabilizes DBk for each k. Thus we conclude from the previous lemma the
following result.

Theorem A6. �2/GL(3)=
t⋃

k=1

DBk/0Bk .

This is analogous to [Watanabe et al. 2013, Theorem 4.9]. In particular when
n = 1, if we take 3= O , we have GL(3)= O× and P1 = k+

∞
=�1\{0} =�2\{0}.
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Since the action of O× on k+
∞

is simply x · ε = ε̄εx (x ∈ k+
∞

, ε ∈ O×), we have
0Bk = Z acts trivially on DBk for each k. Thus we obtain the decomposition

P1/O× = k+
∞
/O× =

t⋃
k=1

(DBk\{0}).

By definition each DBk\{0} is invariant under multiplication by R>0, so this estab-
lishes the existence of the fundamental domain �1 in the conclusion of Section 5.2.
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GROWTH AND DISTORTION THEOREMS
FOR SLICE MONOGENIC FUNCTIONS

GUANGBIN REN AND XIEPING WANG

We establish the sharp growth and distortion theorems for slice monogenic
extensions of univalent functions on the unit disc D � C in the setting of Clif-
ford algebras, based on a new convex combination identity. The analogous
results are also valid in the quaternionic setting for slice regular functions
and we can even prove a Koebe type one-quarter theorem in this case. Our
growth and distortion theorems for slice regular (slice monogenic) exten-
sions to higher dimensions of univalent holomorphic functions hold without
extra geometric assumptions, in contrast to the setting of several complex
variables in which the growth and distortion theorems fail in general and
hold only for some subclasses with the starlike or convex assumption.

1. Introduction

In geometric function theory of holomorphic functions of one complex variable,
the following well-known growth and distortion theorems (see, e.g., [Duren 1983;
Graham and Kohr 2003]) mark the beginning of the systematic study of univalent
functions.

Theorem 1.1 (growth and distortion theorems). Let F be a univalent function on
the open unit disc DD fz 2 C W jzj < 1g such that F.0/D 0 and F 0.0/D 1. Then
for each z 2 D, the following inequalities hold:

jzj

.1Cjzj/2
� jF.z/j �

jzj

.1�jzj/2
I(1-1)

1� jzj

.1Cjzj/3
� jF 0.z/j �

1Cjzj

.1�jzj/3
I(1-2)

1� jzj

1Cjzj
�

ˇ̌̌̌
zF 0.z/

F.z/

ˇ̌̌̌
�

1Cjzj

1� jzj
:(1-3)
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distortion theorems, Koebe one-quarter theorem.
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Moreover, equality holds for one of these six inequalities at some point z0 2Dn f0g

if and only if F is a rotation of the Koebe function, i.e.,

F.z/D
z

.1� ei�z/2
; 8z 2 D;

for some � 2 R.

The extension of geometric function theory to higher dimensions was suggested
by H. Cartan [1933], but the first meaningful result was only made in 1991 by
Barnard, Fitzgerald and Gong [Barnard et al. 1991]. Since then, the geometric
function theory in several complex variables has been extensively studied, see, for
example, [Gong 1998; Graham and Kohr 2003]. In particular, the growth theorem
holds for starlike mappings on starlike circular domains [Liu and Ren 1998a], and
for convex mappings on convex circular domains [Liu and Ren 1998b].

However, as far as we know, nearly nothing has been done about the correspond-
ing theory for other classes of functions, such as the classical regular (monogenic)
functions in the sense of Fueter and the recently introduced slice regular (slice
monogenic) functions, mainly because both regularity (monogenicity) and slice reg-
ularity (slice monogenicity) of functions are seldom preserved under multiplication
and composition, because of the noncommutativity of the underlying algebras on
which these functions are defined.

In this paper, we shall focus on slice regular and slice monogenic functions and
aim to generalize Theorem 1.1 to the noncommutative setting for slice regular and
slice monogenic extensions of univalent functions on the unit disc D � C. The
theory of slice regular functions of one quaternionic variable was initiated recently
by Gentili and Struppa [2006; 2007], and was also extended by the same authors to
octonions [2010] for octonionic slice regular functions. The related theory of slice
monogenic functions on domains in the paravector space RnC1 with values in the
Clifford algebra Rn was introduced in [Colombo et al. 2009; 2010]. For a more
complete insight and further references, we refer the reader to the monographs
[Gentili et al. 2013; Colombo et al. 2011a]. These function theories were also
unified and generalized in [Ghiloni and Perotti 2011a] using the concept of slice
functions on the so-called quadratic cone of a real alternative *-algebra, based on a
slight modification of a well-known construction due to Fueter. The theory of slice
regular functions on real alternative *-algebras is now well-developed through a
series of papers mainly due to Ghiloni and Perotti after their seminal work [Ghiloni
and Perotti 2011a]. It is also well worth mentioning that this recently introduced
theory of slice regular (slice monogenic) functions is significantly different from the
more classical theory of regular (monogenic) functions in the sense of Fueter (cf.
[Brackx et al. 1982; Colombo et al. 2004; Gürlebeck et al. 2008]), and has elegant
applications to the functional calculus for noncommutative operators [Colombo



GROWTH AND DISTORTION THEOREMS FOR SLICE MONOGENIC FUNCTIONS 171

et al. 2011a], to Schur analysis [Alpay et al. 2016], and to the construction and
classification of orthogonal complex structures on dense open subsets of R4 'H

[Gentili et al. 2014].
We are now in a position to state one of our main results in the case of the

Clifford algebra Rn for slice monogenic extensions to the open unit ball

B WD fx 2 RnC1
W jxj< 1g

of univalent functions on the unit disc D� C.

Theorem 1.2. Let F W D ! C be a univalent function such that F.0/ D 0 and
F 0.0/ D 1, and let f W B! Rn be the slice monogenic extension of F. Then for
each x 2 B, the following inequalities hold:

jxj

.1Cjxj/2
� jf .x/j �

jxj

.1� jxj/2
I(1-4)

1� jxj

.1Cjxj/3
� jf 0.x/j �

1Cjxj

.1� jxj/3
I(1-5)

1� jxj

1Cjxj
�
ˇ̌
xf 0.x/�f ��.x/

ˇ̌
�

1Cjxj

1� jxj
:(1-6)

Moreover, equality holds for one of these six inequalities at some point x0 2 Bn f0g

if and only if
f .x/D x.1�xei� /��2; 8x 2 B;

for some � 2 R.

Although Theorem 1.2 coincides in form with Theorem 1.1, the classical approach
to Theorem 1.1 cannot be directly applied in this new case of the Clifford algebra Rn,
since there lacks a fruitful theory of compositions for slice monogenic functions.
We shall reduce Theorem 1.2 to Theorem 1.1 via a new convex combination
identity; see (3-11). We remark that in contrast to the setting of several complex
variables in which the growth and distortion theorems fail to hold in general [Cartan
1933] and can only be restricted to the starlike or convex subclasses, our result for
slice monogenic extensions of univalent functions holds without extra geometric
assumptions. This new phenomenon is in a certain sense related to the rigidity
of the functions under consideration. There is a significant difference between
slice monogenic functions and holomorphic functions of several complex variables,
although they are both the generalizations in higher dimensions of holomorphic
functions of one complex variable. The former are closer to holomorphic functions
of one complex variable, and each of them can be completely determined by its
values on a set that lies in a complex slice and has an accumulation point in its
domain of definition. However, this is not the case for the latter, each of which is not
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always determined by its values on a complex submanifold of positive codimensions
in its domain of definition. From this perspective, we realize that holomorphic
functions of several complex variables are less rigid than slice monogenic functions
so that certain extra geometric assumptions such as starlikeness and convexity are
naturally present in the geometric function theory in several complex variables.

A result analogous to Theorem 1.2 also holds in the setting of quaternions (see
Theorem 4.7). As an application, we can prove a covering theorem, i.e., the so-called
Koebe type one-quarter theorem (see Theorem 4.10, a generalization of [Gal et al.
2015, Theorem 3.11 (1)]), with the help of the open mapping theorem, which is now
known to hold only for slice regular functions defined on symmetric slice domains
in H with values in H rather than slice monogenic functions defined on symmetric
slice domains in paravector space RnC1 with values in the Clifford algebra Rn.

We now describe in more detail the structure of the paper. In Section 2, we set
up basic notation and give some preliminary results. In Section 3, we first prove in
Proposition 3.1 a general formula to express the squared norm of a slice monogenic
function defined on a symmetric slice domain in the paravector space RnC1, in
terms of the values of the function at two conjugate points on some fixed slice of
the domain. For slice monogenic functions that preserve one slice, we provide
in Lemma 3.2 the aforementioned convex combination identity, which is the key
ingredient in proving Theorem 1.2. Section 4 is devoted to the detailed proofs of the
analogous results and the Koebe type one-quarter theorem (Theorem 4.10) for slice
regular functions in the quaternionic setting. Thanks to the specialty of quaternions,
we can also provide in Corollary 4.4 a sufficient and necessary condition under
which the aforementioned convex combination identity holds identically. Finally,
Section 5 provides a concluding remark and an open question.

2. Preliminaries

We recall in this section some necessary definitions and preliminary results on real
Clifford algebras and slice monogenic functions. For a more complete insight, we
refer the reader to the monograph [Colombo et al. 2011a].

The real Clifford algebra Rn D Cl0;n is an associative algebra over R generated
by n basis elements e1; e2; : : : ; en, subject to the relation

eiej C ej ei D�2ıij ; i; j D 1; 2; : : : ; n:

As a real vector space, Rn has dimension 2n. Each element b in Rn can be repre-
sented uniquely as

b D
X
A

bAeA;

where bA 2 R, e0 D 1, eA WD eh1
eh2
� � � ehr

, and A D h1 � � � hr is a multi-index
such that 1 � h1 < � � � < hr � n. The real number b0 is called the scalar part of
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b and is denoted by Sc.b/ as usual. The Clifford conjugate of each generator ei ,
i D 1; 2; : : : ; n, is defined to be Nei D�ei , and thus extends to each eA by setting

NeA WD Nehr
Nehr �1

� � � Neh1
D .�1/r ehr

ehr �1
� � � eh1

D .�1/r.rC1/=2eA;

and further extends by linearity to each element b D
P

A bAeA 2 Rn so that

b D
X
A

bA NeA:

Therefore, the Clifford conjugate is an antiautomorphism of Rn, i.e., ab D b Na for
any a; b 2 Rn. Moreover, the Euclidean inner product on Rn ' R2n

is given by

(2-1) ha; bi WD Sc.ab/D
X
A

aAbA

for any aD
P

A aAeA, b D
P

A bAeA 2 Rn, so it follows from the simple identity

ha; bi D 1
2

�
jaC bj2� jaj2� jbj2

�
that

(2-2) ha; bi D hb; ai D hNa; bi D hb; Nai:

It is worth remarking here that for Rn.n � 3/ the multiplicative property of the
Euclidean norm fails in general, and holds only for some special cases; see [Colombo
et al. 2011a, Proposition 2.1.17] or [Gürlebeck et al. 2008, Theorem 3.14 (ii)]. In
particular, it holds that

(2-3) jabj D jbaj D jajjbj

whenever one of a and b is a paravector (see below for this definition). This simple
fact will be useful for our argument in Section 3.

For convenience, some specific elements in Rn can be identified with vectors
in the Euclidean space RnC1: an element .x1;x2; : : : ;xn/ 2 Rn will be identified
with a so-called 1-vector in the Clifford algebra Rn through the map

.x1;x2; : : : ;xn/ 7! x D x1e1C e2x2C � � �CxnenI

and an element .x0;x1; : : : ;xn/ 2 RnC1 will be identified with

x D x0Cx D x0Cx1e1C � � �Cxnen;

which is called a paravector. Now for any two 1-vectors x;y 2 Rn, the Euclidean
inner product becomes

hx;yi D Sc.xy/D�1
2
.xyCyx/;

and consequently,
xy D�hx;yiCx ^y;
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where
x ^y WD 1

2
.xy �yx/

is called the outer product (see [Brackx et al. 1982, p.4; Gürlebeck et al. 2008, p.58])
or wedge product (see [Colombo et al. 2004, p.218, Definition 4.1.9; Colombo et al.
2011a, p.21]) of x and y. It is noteworthy here that in general the operator ^ is
a mapping from Rn �Rn to Rn, not to Rn. Furthermore, under the identifications
above, a vector x in RnC1 can be taken as a Clifford number

x D x0C

nX
iD1

xiei

so that it has inverse
x�1
D
Nx

jxj2
;

where Nx is the conjugate of x given by Nx D x0 �
Pn

iD1 xiei , and the norm of x

is induced by the inner product given above, that is, jxj D hx;xi
1
2 . Every x D

x0Cx1e1C� � �Cxnen 2RnC1 is composed by the scalar part Sc.x/D x0 2R and
the vector part x D x1e1C � � �Cxnen 2 Rn, and it can be expressed alternatively
as x D uC Iv, where u; v 2 R and

I D
x

jxj

if x ¤ 0, otherwise we take I arbitrarily in Rn such that I2 D �1. Then I is an
element of the unit .n� 1/-sphere of 1-vectors in Rn,

SD
˚
x D x1e1C � � �Cxnen 2 Rn

W x2
1 C � � �Cx2

n D 1
	
:

For every I 2 S we will denote by CI the plane R˚ IR, isomorphic to C, and, if
U � RnC1, by UI the intersection U \CI . Also, for R > 0, we will denote the
open ball of RnC1 centered at the origin with radius R by

B.0;R/D fx 2 RnC1
W jxj<Rg:

We can now recall the definition of slice monogenicity.

Definition 2.1. Let U be a domain in RnC1. A function f W U ! Rn is called
slice monogenic if, for all I 2 S, its restriction fI to UI is holomorphic, i.e., it has
continuous partial derivatives and satisfies

N@If .uC vI/ WD 1
2

�
@

@u
C I

@

@v

�
fI .uC vI/D 0;

for all uC vI 2 UI .

For slice monogenic functions, the natural domains of definition are symmetric
slice domains.
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Definition 2.2. Let U be a domain in RnC1.

(i) U is called a slice domain if it intersects the real axis and if for each I 2 S,
UI is a domain in CI .

(ii) U is called an axially symmetric domain if for every point uC vI 2 U, with
u; v 2 R and I 2 S, the entire sphere uC vS is contained in U.

A domain in RnC1 is called a symmetric slice domain if it is not only a slice
domain, but also an axially symmetric domain. By the very definition, an open ball
B.0;R/ is a typical symmetric slice domain. From now on, we will focus mainly
on slice monogenic functions on B.0;R/. In most cases, the following results hold,
with appropriate changes, for symmetric slice domains more general than open
balls of the type B.0;R/. For slice monogenic functions a natural definition of
derivative is given by the following.

Definition 2.3. Let f W B.0;R/! Rn be a slice monogenic function. The slice
derivative of f is defined to be

@If .uC vI/ WD 1
2

�
@

@u
� I

@

@v

�
fI .uC vI/:

Notice that the operators @I and N@I commute, and

@If .uC vI/D
@

@u
f .uC vI/

holds for slice monogenic functions. Therefore, the slice derivative of a slice
monogenic function is still slice monogenic so we can iterate the differentiation to
obtain the k-th slice derivative,

@k
I f .uC vI/D

�
@

@u

�k
f .uC vI/; 8k 2 N:

In what follows, for the sake of simplicity, we will directly denote the k-th slice
derivative @k

I
f by f .k/ for every k 2 N.

As shown in [Colombo et al. 2009], a paravector power series
P1

kD0 xkak with
fakgk2N � Rn defines a slice monogenic function in its domain of convergence,
which proves to be an open ball B.0;R/ with R equal to the radius of convergence
of the power series. The converse result is also true.

Theorem 2.4. A function f is slice monogenic on B D B.0;R/ if and only if f
has a power series expansion

f .x/D

1X
kD0

xkak with ak D
f .k/.0/

k!
:

A fundamental result in the theory of slice monogenic functions is described by
the splitting lemma, which relates the notion of slice monogenicity to the classical
notion of holomorphicity; see [Colombo et al. 2009].
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Lemma 2.5. Let f be a slice monogenic function on B D B.0;R/. For each
I1 D I 2 S, let I2; : : : ; In be a completion to a basis of Rn satisfying the defin-
ing relations IiIj C Ij Ii D �2ıij . Then there exist 2n�1 holomorphic functions
FA W BI ! CI such that for every z D uC vI 2 BI ,

fI .z/D

n�1X
jAjD0

FA.z/IA;

where I0 D 1 when r D 0, or IA D Ii1
Ii2
� � � Iir

, with AD i1i2 � � � ir a multi-index
such that 2� i1 < � � �< ir � n when r > 0.

The following version of the identity principle is one of the direct consequences
of the preceding lemma; see [Colombo et al. 2009].

Theorem 2.6. Let f be a slice monogenic function on B D B.0;R/. Denote by
Zf the zero set of f ,

Zf D fx 2 B W f .x/D 0g:

If there exists an I 2 S such that BI \Zf has an accumulation point in BI , then f
vanishes identically on B.

Another useful result is Theorem 2.7; see [Colombo and Sabadini 2009].

Theorem 2.7. Let f be a slice monogenic function on a symmetric slice domain
U � RnC1 and let I 2 S. Then for all uC vJ 2 U with J 2 S,

f .uC vJ /D 1
2

�
f .uC vI/Cf .u� vI/

�
C

1
2
JI
�
f .u� vI/�f .uC vI/

�
:

In particular, for each sphere of the form uCvS contained in U, there exist b; c 2Rn

such that f .uC vI/D bC Ic for all I 2 S.

Thanks to this result, it is possible to recover the values of a slice monogenic
function on symmetric slice domains, which are more general than open balls
centered at the origin, from its values on a single slice. This yields an extension
theorem that, in the special case of functions that are slice monogenic on B.0;R/,
can be obtained by means of their power series expansions.

Remark 2.8. Fix an element I 2S and denote by BI the intersection B.0;R/\CI

of the open ball B.0;R/ with the complex plane CI . Given a holomorphic function
fI W BI ! CI with the power series expansion taking the form

fI .z/D

1X
kD0

zkak ;

where fakgk2N �CI , the unique slice monogenic extension of fI to the whole ball
B.0;R/ is the function given by
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f .x/ WD ext.fI /.x/D

1X
kD0

xkak ;

which takes values in Rn. The uniqueness is guaranteed by the identity principle;
that is, Theorem 2.6. In Section 3, we will establish the growth and distortion
theorems for such a class of slice monogenic functions that are injective on BI .

Since slice monogenicity is not preserved under the usual pointwise product
of two slice monogenic functions, a new multiplication operation, called the slice
monogenic product (or �-product), appears via a suitable modification of the usual
operation, subject to the noncommutative setting, and plays a key role in the theory
of slice monogenic functions. On open balls centered at the origin, the slice
monogenic product of two slice monogenic functions is defined by means of their
power series expansions; see [Colombo et al. 2010; 2011a].

Definition 2.9. Let f;g W B D B.0;R/! Rn be two slice monogenic functions
and let

f .x/D

1X
kD0

xkak ; g.x/D

1X
kD0

xkbk

be their power series expansions. The slice monogenic product (�-product) of f
and g is the function defined by

f �g.x/D

1X
kD0

xk

� kX
jD0

aj bk�j

�
;

which is slice monogenic on B.

We now recall more definitions (see, e.g., [Colombo et al. 2010; 2011a; Ghiloni
and Perotti 2011a; 2011b]).

Definition 2.10. Letting f .x/ D
P1

kD0 xkak be a slice monogenic function on
B D B.0;R/, we define the slice monogenic conjugate of f as

f c.x/D

1X
kD0

xk
Nak ;

and the symmetrization of f as

(2-4) f s.x/ WD

1X
kD0

xkSc
� kX

jD0

aj Nak�j

�
:

Moreover, we define the normal function of f as

(2-5) N.f /.x/ WD f �f c.x/D

1X
kD0

xk

� kX
jD0

aj Nak�j

�
:
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These three functions are slice monogenic on B.

Remark 2.11. Here are several useful remarks concerning Definitions 2.9 and 2.10:

(i) The slice monogenic product (�-product), the slice monogenic conjugate,
and symmetrization can also be defined for slice monogenic functions f
on symmetric slice domains U in RnC1 (we refer the interested reader to
[Colombo et al. 2010] or [Colombo et al. 2011a, Section 2.6] for details).
Moreover, for any two slice monogenic functions f;g W U ! Rn and each
point x0 2 R, we can define two slice monogenic functions fx0

and gx0
on

the symmetric slice domain Ux0
WD U �x0 by setting

fx0
.x/D f .xCx0/; gx0

.x/D g.xCx0/

for each x 2 Ux0
. Then we have the following identity

.f �g/x0
D fx0

�gx0
:

This follows from the identity principle together with the fact that when
restricted to the real axis, the slice monogenic product is just the usual point-
wise one.

(ii) For slice monogenic functions on open balls of type B WDB.0;R/, the notion
of slice monogenic conjugate coincides with the one introduced in Definition
5.4 of [Colombo et al. 2010] (see also Proposition 5.5 therein). Further, the
notion of symmetrization given here is equivalent to the one introduced in
Definition 5.6. of that paper. To see this, we proceed as follows: For a slice
monogenic function f W B! Rn, we denote by f s the symmetrization of f
according to [Colombo et al. 2010, Definition 5.6]. By considering the power
series expansion of f s, we may assume that

(2-6) f s.x/D

1X
kD0

xk˛k :

We also fix an element I 2 S. Then according to [Colombo et al. 2010, p.386]
or [Colombo et al. 2011a, p.50], for each x 2 BI , we have

f s.x/D Sc
�
f �f c.x/

�
C
˝
f �f c.x/; I

˛
I:

Now substituting (2-5) and (2-6) into the preceding equality, we see that for
each x 2 B \R,

1X
kD0

xk˛k D

1X
kD0

xkSc
� kX

jD0

aj Nak�j

�
C

1X
kD0

xk

� kX
jD0

aj Nak�j ; I

�
I:
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For each k 2 N, since
Pk

jD0 aj Nak�j is invariant under the Clifford conjugate
(see (2-9) below), the second summation on the right-hand side of the preceding
equality must vanish identically. Indeed, in view of (2-2),� kX

jD0

aj Nak�j ; I

�
D

� kX
jD0

aj Nak�j ; I

�
D�

� kX
jD0

aj Nak�j ; I

�
;

which must be zero. Consequently, we deduce that the equality

1X
kD0

xk˛k D

1X
kD0

xkSc
� kX

jD0

aj Nak�j

�
holds for all x 2 B \R. By uniqueness,

˛k D Sc
� kX

jD0

aj Nak�j

�
; 8k 2 N:

This shows that f s is the same as f s defined in (2-4).

(iii) In view of (i), the definition N.f / WD f �f c is also valid for slice monogenic
functions f on symmetric slice domains in RnC1.

(iv) The notation N.f / in the definition of normal functions is chosen in accordance
with [Ghiloni and Perotti 2011a, Definition 11], which treated the case of slice
functions on symmetric open subsets of the so-called quadratic cone of a
finite-dimensional real alternative �-algebra.

(v) For each slice monogenic function f on a symmetric slice domain U � RnC1

and each element I 2 S, the restriction N.f /I of N.f / to UI WD U \ CI

coincides with the function fI �f
c

I
W UI ! Rn considered in [Colombo et al.

2010] or [Colombo et al. 2011a, Section 2.6].

With parts (i) and (iii) of Remark 2.11 in mind, the inverse element of a non-
identically vanishing slice monogenic functions with respect to the �-product can
be defined under a suitable condition.

Definition 2.12. Let f be a slice monogenic function on a symmetric slice domain
U � RnC1 such that

N.f /.UI /� CI

for some I 2 S. If f does not vanish identically, its slice monogenic inverse is the
function defined by

f ��.x/ WD f s.x/�1f c.x/;

which is slice monogenic on U n Zf s . Here Zf s denotes the zero set of the
symmetrization f s of f .
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Remark 2.13. Two useful remarks concerning Definition 2.12 are in order:

(i) For each function f as described in Definition 2.12, the requirement that

N.f /.UI /� CI

for some I 2 S guarantees that f s
I

coincides with N.f /I D fI �f
c

I
, see

[Colombo et al. 2011a, Definition 2.6.10], although this fact is not explicitly
proven in that paper.

(ii) Also we will see, in the proof of Proposition 2.14, that for each function f as
described in Definition 2.12, the coefficients which appeared in (2-5) are real
numbers. This implies that for each such function f , its normal function N.f /

is the same as its symmetrization f s, which is a slice preserving function so
that its slice monogenic inverse

f ��.x/D f s.x/�1f c.x/D
�
N.f /.x/

��1
f c.x/

is indeed slice monogenic on U nZf s. Furthermore, it is well worth noting that
in view of [Colombo et al. 2011a, Remark 2.6.8 and Lemma 2.5.12], the zero
set Zf s of f s is precisely the union of isolated spheres of the form uC vS

with u; v 2 R. This implies that U nZf s is a symmetric slice domain in RnC1.

The function f �� defined in Definition 2.12 deserves the name of slice mono-
genic inverse of f due to the following:

Proposition 2.14. Let f be as described in Definition 2.12. Then we have

(2-7) f jUnZf s �f
��
D f �� �f jUnZf s D 1;

and

(2-8) .f ��/�� D f jUnZf s :

This proposition is quite important in the theory of slice monogenic functions.
The equalities in (2-7) first appeared in [Colombo et al. 2010, Proposition 5.9],
but the proofs given there and in [Colombo et al. 2011a, Proposition 2.6.11] seem
incomplete — the equality fI �f

c
I
Df c

I
�fI (which is equivalent to N.f /DN.f c/,

in view of Remark 2.11 (v) and the identity principle) is used without being proven.
A different approach has been used in [Colombo et al. 2011b, Proposition 3.2]. A
complete treatment has been given in [Ghiloni et al. 2016, Section 2] in the case of
slice functions, which subsumes the case of slice monogenic functions. To keep our
presentation self-contained, we provide here a detailed proof of Proposition 2.14.

Proof. We first prove (2-7). To this end, we need the following well known facts:

Fact 1: For any a; b 2 Rn, ab D 1 if and only if baD 1.

Fact 2: For each a 2 Rn, a NaD 0 if and only if aD 0.
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Indeed, Fact 1 holds for all finite-dimensional associative algebras (see, e.g.,
[Drozd and Kirichenko 1994, Theorem 1.2.1]), and Fact 2, which immediately
follows from (2-1), is called nonsingularity of Rn.

Note that f does not vanish identically on U, and neither does the restriction
f jU\R of f to U \ R, in view of the identity principle. Thus we can find one
point x0 2 U \R and a positive number R> 0 such that the open ball B.x0;R/ is
contained in U and f is nowhere vanishing on B.x0;R/. Thanks to Remark 2.11(i),
we may further assume that x0 D 0 without loss of generality. Now we expand f
on B WD B.0;R/ as

f .x/D

1X
kD0

xkak :

Since there exists an element I 2 S such that N.f /D f � f c maps UI into CI

(and also maps BI into CI ), and

(2-9)
kX

jD0

aj Nak�j D

kX
jD0

ak�j Naj
j!k�j
D

kX
jD0

aj Nak�j ;

we see that
Pk

jD0 aj Nak�j must be a real number for each k 2N. Therefore, f �f c

is slice preserving and maps B \R into R. We next show that

(2-10) f c
�f D f �f c :

We proceed as follows. In view of Definition 2.10,

f �f c
jB\R D .f Nf /jB\R:

Since f �f c.B \R/� R, we deduce that the restriction .f Nf /jB\R takes values
in R as well. This together with Facts 1 and 2 implies that

.f Nf /jB\R D . Nf f /jB\R:

The right-hand side is no other than the restriction f c � f jB\R, according to
Definitions 2.9 and 2.10. Now we obtain that f �f c coincides with f c �f on
B\R�U, and hence on U by the identity principle. Now by using [Colombo et al.
2011a, Proposition 2.6.9], Remark 2.13 (ii) and equality (2-10), we can conclude
the proof of equality (2-7) as follows:

f �� �f D
1

f s
.f c
�f /D

1

f s
.f �f c/D

1

f s
N.f /D 1;

and
f �f �� D f � .

1

f s
f c/D

1

f s
.f �f c/D 1:

Now it remains to prove (2-8). In view of the very definition, we first need to
show that f �� satisfies the condition given in Definition 2.12. To see this, let I
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be an element of S such that f satisfies the assumption therein. From the above
argument, we know that f s DN.f / is slice preserving. This, together with (2-10)
and [Colombo et al. 2011a, Proposition 2.6.9], implies that

f �� � .f ��/c D
1

N.f /

so that f �� satisfies the assumption in Definition 2.12 and hence .f ��/�� is well
defined on U nZf s . Now (2-8) follows from (2-7) and uniqueness of .f ��/��. �

3. Growth and distortion theorems for slice monogenic functions

In this section, in the setting of the Clifford algebra Rn, we establish the growth
and distortion theorems for slice monogenic extensions to the open unit ball B WD

fx 2 RnC1 W jxj< 1g of univalent functions on the unit disc D� C. We begin with
a technical proposition. To present it more generally, we will digress for a moment
to slice monogenic functions on general symmetric slice domains.

Proposition 3.1. Let U � RnC1 be a symmetric slice domain and f W U ! Rn a
slice monogenic function. Then for every x D uC vJ 2 U and every I 2 S, there
holds the identity

(3-1) jf .x/j2 D 1ChI;J i

2
jf .y/j2C

1�hI;J i

2
jf .y/j2�

˝
f .y/f .y/; I ^J

˛
;

where y D uC vI and y D u� vI.

Proof. Fix an arbitrary point xDuCvJ 2U and an element I 2S. Set y WDuCvI

and y WD u� vI. It follows from Theorem 2.7 that

(3-2) f .x/D 1
2

�
f .y/Cf .y/

�
�

1
2
JI
�
f .y/�f .y/

�
:

Notice that, in vector notation,

(3-3) hI;J i D Sc.IJ /D�1
2
.IJ CJI/;

and

(3-4) I ^J D 1
2
.IJ �JI/:

We shall use the simple identity that

(3-5) jaC bj2 D jaj2Cjbj2C 2ha; bi

for any a; b 2 Rn ' R2n

.
Observe that I and J are 1-vectors and hence are paravectors. In view of (2-3),

it holds that
jJI.f .y/�f .y//j D jf .y/�f .y/j:
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Take the modulus on both sides of (3-2) and apply (3-5) to obtain

jf .x/j2 D 1
4

�
jf .y/Cf .y/j2Cjf .y/�f .y/j2

�
(3-6)

�
1
2

˝
f .y/Cf .y/;JI.f .y/�f .y//

˛
DWA� 1

2
B:

Again applying (3-5), it is evident that

(3-7) AD 1
2
.jf .y/j2Cjf .y/j2/:

To calculate the term B, it first follows from the very definition of inner product
(see (2-1)) that

(3-8) B D
˝�
f .y/Cf .y/

��
f .y/�f .y/

�
;JI

˛
DW B1CB2;

where B1D
˝
f .y/f .y/�f .y/f .y/;JI

˛
, and B2D

˝
f .y/f .y/�f .y/f .y/;JI

˛
.

We next claim that

(3-9) B1 D�hI;J i
�
jf .y/j2� jf .y/j2

�
;

and

(3-10) B2 D 2
˝
f .y/f .y/; I ^J

˛
:

Indeed, applying the fact that ha; bi D hNa; bi from (2-2) to B1 yields that

B1 D
˝
f .y/f .y/�f .y/f .y/; IJ

˛
:

Combining this, (3-3) and the initial notion of B1, we thus obtain

B1 D
1
2

˝
f .y/f .y/�f .y/f .y/; IJ CJI

˛
D�

˝
f .y/f .y/�f .y/f .y/; hI;J i

˛
D�hI;J i

˝
f .y/f .y/�f .y/f .y/; 1

˛
D�hI;J i

�
jf .y/j2� jf .y/j2

�
:

Similarly,

B2 D

D
f .y/f .y/;JI

E
�
˝
f .y/f .y/;JI

˛
D 2

˝
f .y/f .y/; I ^J

˛
as desired. In the second equality we have used (3-4). Now substituting (3-7)–(3-10)
into (3-6) yields that

jf .x/j2 D
1ChI;J i

2
jf .y/j2C

1�hI;J i

2
jf .y/j2�

˝
f .y/f .y/; I ^J

˛
;

which completes the proof. �
Proposition 3.1 shows that when f preserves at least one slice, the squared norm

of f can thus be expressed as a convex combination of those in the preserved slice.
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Lemma 3.2. Letting f be a slice monogenic function on a symmetric slice domain
U � RnC1 such that f .UI /� CI for some I 2 S, the convex combination identity

(3-11) jf .uC vJ /j2 D
1ChI;J i

2
jf .uC vI/j2C

1�hI;J i

2
jf .u� vI/j2

holds for every uC vJ 2 U.

Proof. As mentioned before, this lemma is a direct consequence of the preceding
proposition. But here, we would like to provide an alternative easier approach to it,
making no use of Proposition 3.1.

First, we have the following simple fact, which can be easily verified:

Fact: For any I;J 2 S, the set

f1; I; I ^J; I.I ^J /g

is an orthogonal set of Rn ' R2n

.

As in the preceding proposition, it follows from Theorem 2.7 that

(3-12) f .x/D 1
2

�
f .y/Cf .y/

�
�

1
2
JI
�
f .y/�f .y/

�
for every xD uCvJ 2U with y D uCvI and y D u�vI. We can rewrite (3-12),
in terms of the relation that

JI D�hI;J iCJ ^ I;

as

f .x/D 1
2

�
.1ChI;J i/f .y/C .1� hI;J i/f .y/

�
C

1
2
.J ^ I/.f .y/�f .y//

DW
1
2
AC 1

2
.J ^ I/B:

By assumption f .UI /� CI , we thus have

A 2 CI ; B 2 CI :

From the fact above and equality (2-3), taking the modulus on both sides yields

(3-13) jf .x/j2 D 1
4
jAj2C 1

4
jJ ^ I j2jBj2:

A simple calculation shows that

jAj2 D.1ChI;J i/2jf .y/j2C .1� hI;J i/2jf .y/j2(3-14)

C 2
�
1� hI;J i2

�
hf .y/; f .y/i

and

(3-15) jBj2 D jf .y/j2Cjf .y/j2� 2hf .y/; f .y/i:

Notice that

(3-16) jJ ^ I j2 D 1� hI;J i2:



GROWTH AND DISTORTION THEOREMS FOR SLICE MONOGENIC FUNCTIONS 185

Now inserting (3-14), (3-15) and (3-16) into (3-13) yields

jf .x/j2 D
1ChI;J i

2
jf .y/j2C

1�hI;J i

2
jf .y/j2;

which completes the proof. �

Remark 3.3. The counterpart of the convex combination identity (3-11) from
Lemma 3.2 also holds for slice regular functions defined on octonions or more
general real alternative algebras under the extra assumption that f preserves at least
one slice. This can be verified much as in the proof of Proposition 3.1; see [Wang
2015; Ren et al. 2016] for details.

As a direct consequence of Lemma 3.2, we conclude that the maximum and
minimum moduli of f are actually attained on the preserved slice.

Corollary 3.4. Let f be a slice monogenic function on a symmetric slice domain
U �RnC1 such that f .UI /�CI for some I 2S. Then for each sphere uCvS�U,
we have the equalities:

max
J2S
jf .uC vJ /j Dmax

�
jf .uC vI/j; jf .u� vI/j

�
;

min
J2S
jf .uC vJ /j Dmin

�
jf .uC vI/j; jf .u� vI/j

�
:

We can now state the growth and distortion theorems for slice monogenic functions.

Theorem 3.5 (growth and distortion theorems for paravectors). Let f be a slice
monogenic function on B such that its restriction fI to BI is injective and such that
f .BI / � CI for some I 2 S. If f .0/ D 0 and f 0.0/ D 1, then for all x 2 B, the
following inequalities hold:

jxj

.1Cjxj/2
� jf .x/j �

jxj

.1� jxj/2
I(3-17)

1� jxj

.1Cjxj/3
� jf 0.x/j �

1Cjxj

.1� jxj/3
I(3-18)

1� jxj

1Cjxj
�
ˇ̌
xf 0.x/�f ��.x/

ˇ̌
�

1Cjxj

1� jxj
:(3-19)

Moreover, equality holds for one of these six inequalities at some point x0 2 Bn f0g

if and only if f is of the form

f .x/D x
�
1�xeI�

���2
; 8x 2 B;

for some � 2 R.

Proof. Notice that fI W BI ! CI is a univalent function by our assumption.
Theorem 1.1 with F replaced by fI implies that the inequalities



186 GUANGBIN REN AND XIEPING WANG

jzj

.1Cjzj/2
� jf .z/j �

jzj

.1� jzj/2
;(3-20)

1� jzj

.1Cjzj/3
� jf 0.z/j �

1Cjzj

.1� jzj/3
;(3-21)

1� jzj

1Cjzj
�

ˇ̌̌̌
zf 0.z/

f .z/

ˇ̌̌̌
�

1Cjzj

1� jzj
(3-22)

hold for every zD uCvI 2BI . On the other hand, it follows from Lemma 3.2 that

jf .x/j2 D
1ChI;J i

2
jf .z/j2C

1�hI;J i

2
jf .z/j2

holds for every xDuCvJ 2B. Since (3-20) holds for all zDuCvI, zDu�vI 2BI ,
it immediately follows that the inequalities in (3-17) hold for all xD uCvJ 2B, by
virtue of the convex combination identity above. Since the condition f 0.BI /� CI

holds trivially, Lemma 3.2 can also be used so that the inequalities in (3-18) can be
proved in the same manner.

Now it remains to prove the inequalities in (3-19). To this end, we first need
to show that the slice monogenic function xf 0.x/�f ��.x/ is well-defined on the
whole ball B. We proceed as follows. First of all, since f .0/D 0, by considering
the Taylor expansion of f at the origin 0 (see Theorem 2.4) and using the Cauchy–
Hadamard formula for the radius of convergence of power series (which is valid in
the situation here by following the classical proof and making use of (2-3)), or by
Remark 2.8, we can write

(3-23) f .x/D xg.x/;

where g is a slice monogenic function on B. This together with the injectivity
of fI and f 0.0/ D 1 implies that g has no zeros on BI . Moreover, g maps BI

into CI , since f does by our assumption. Secondly, again from the assumption
that f .BI /� CI , i.e., all the coefficients of the Taylor expansion of f at the origin
belong to the complex plane CI , it follows that

f c
I .z/D fI .z/;

and hence

(3-24) N.f /I .z/D fI .z/fI .z/D z2gI .z/gI .z/D z2N.g/I .z/:

This implies that
N.f /.BI /� CI :

Furthermore, since g maps BI into CI and has no zeros on BI , we obtain that gs
I

is exactly gI gI . N� / and is zero free on BI . Thus it follows from Remark 2.13 (ii)
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and [Colombo et al. 2011a, Remark 2.6.8 and Lemma 2.5.12] that gs is zero free
on B as well. This, together with the fact that

(3-25) f s.x/D x2gs.x/; 8x 2 B;

(as obtained easily from (3-23)), implies that 0 is the only zero of f s. Therefore,
according to Definition 2.12, f �� and g�� can be defined on B n f0g and B,
respectively. Finally, in view of (3-23),

(3-26) f c.x/D xgc.x/; 8x 2 B;

from which and (3-25) it follows that the relation

xf 0.x/�f ��.x/D .f 0 �g��/.x/

holds for all x 2 B n f0g. Since the right-hand side is well-defined on the whole
ball B, the left-hand side can extend regularly to the whole ball B, as desired.

Notice also that xf 0.x/�f ��.x/ is just the slice monogenic extension to B of
the holomorphic function zf 0

I
.z/=fI .z/, which also maps the unit disc BI into CI .

Now inequalities in (3-19) immediately follow from (3-22) andˇ̌
xf 0 �f ��.x/

ˇ̌2
D

1ChI;J i

2

ˇ̌̌
zf 0.z/

f .z/

ˇ̌̌2
C

1�hI;J i

2

ˇ̌̌
zf 0.z/

f .z/

ˇ̌̌2
;

in view of Lemma 3.2.
Furthermore, if equality holds for one of six inequalities in (3-17), (3-18) and

(3-19) at some point x0Du0Cv0J ¤ 0 with J 2S, then the corresponding equality
also holds at z0 D u0C v0I or z0 D u0� v0I. Then from Theorem 1.1, we obtain

fI .z/D
z�

1� eI�z
�2 ; 8z 2 BI ;

for some � 2 R, which implies

f .x/D x
�
1�xeI�

���2
; 8x 2 B:

The converse part is obvious. Now the proof is complete. �

Remark 3.6. The right-hand inequalities in (3-17) and (3-18) can follow alterna-
tively from the well-known but highly nontrivial Bieberbach–de Branges theorem
for univalent functions on the open unit disc D� C.

Let F W D! C be a univalent function on the unit disc D of the complex plane
with Taylor expansion

F.z/D zC

1X
mD2

zmam; am 2 C:
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We consider the canonical imbedding C� RnC1 by expanding the basis f1; ig of
C to the basis f1; e1; : : : ; eng of RnC1 with e1 D i . Therefore we can construct a
natural extension of F to B by setting

f .x/D xC

1X
mD2

xmam; x 2 B:

It is evident that f is a slice monogenic function on the open unit ball BDB.0; 1/

such that its restriction f jD D F is injective and satisfies that F.D/� C. Clearly,
f .0/D 0 and f 0.0/D 1. Thus f satisfies all the assumptions of Theorem 3.5 and
thus Theorem 1.2 immediately follows.

Remark 3.7. The slice monogenic extension of holomorphic functions on the unit
disc D of the complex plane can result in the theory of slice monogenic elementary
functions. We refer to [Colombo et al. 2011a] for the corresponding functional
calculus and applications.

The following proposition is of independent interest.

Proposition 3.8. Let f be a slice monogenic function on a symmetric slice domain
U � RnC1 such that its restriction fI to UI is injective and f .UI /� CI for some
I 2 S. Then the restriction fJ W UJ ! Rn is also injective for every J 2 S.

Proof. Suppose that there are two points x D ˛CˇJ and y D 
 C ıJ such that
f .x/D f .y/, then it suffices to prove that x D y. If J D˙I, the result follows
from the assumption. Otherwise, from Theorem 2.7 one can deduce that

f .x/D 1
2
.f .z/Cf .z//� 1

2
JI.f .z/�f .z//

and
f .y/D 1

2
.f .w/Cf . Nw//� 1

2
JI.f .w/�f . Nw//:

Here z D ˛CˇI and w D 
 C ıI for the given I 2 S. Therefore,�
.f .z/Cf .z//� .f .w/Cf . Nw//

�
�JI

�
.f .z/�f .z//� .f .w/�f . Nw//

�
D 0:

Since f .UI /� CI , 1 and J are linearly independent on CI we obtain that

f .z/Cf .z/D f .w/Cf . Nw/

and
f .z/�f .z/D f .w/�f . Nw/;

which imply that f .z/ D f .w/. Thus it follows from the injectivity of fI that
z D w and consequently, x D y. �
Remark 3.9. Let f be as described in Theorem 3.5. Then fJ W BJ ! Rn is
injective for any J 2 S by the preceding proposition. Unfortunately, the authors do
not know whether f W U ! Rn is injective.
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4. Growth, distortion and covering theorems for slice regular functions

Let H denote the noncommutative, associative, real algebra of quaternions with
standard basis f1; i; j ; kg, subject to the multiplication rules

i2
D j 2

D k2
D ij k D�1:

Let h ; i denote the standard inner product on HŠ R4, i.e.,

hp; qi D Re.pq/D

3X
nD0

xnyn

for any

p D x0Cx1i Cx2j Cx3k; q D y0Cy1i Cy2j Cy3k 2 H:

In this section, we shall consider slice regular functions defined on domains
in quaternions H with values also in H. These functions are not slice monogenic
functions obtained by setting n D 2 in the Clifford algebra Rn. Such a class of
functions enjoys many nice properties similar to those of classical holomorphic
functions of one complex variable. For example, the open mapping theorem holds
for slice regular functions on symmetric slice domains in H, but fails for slice
monogenic functions even in the quaternionic setting. A simple counterexample
is the imbedding map { W R3 ,! R2 'H. The open mapping theorem allows us to
prove a Koebe type one-quarter theorem (see Theorem 4.10 below). Furthermore,
in the quaternionic setting only, we have an explicit formula to express the regular
product and regular quotient in terms of the usual pointwise product and quotient.
It is exactly this explicit formula which plays a crucial role in many arguments; see
the monograph [Gentili et al. 2013] and the recent papers [Ren and Wang 2017;
Wang 2015] for more details. In higher dimensions, the formulas to express slice
products and slice quotients in terms of the usual pointwise products hold true only
under some special cases; see [Ghiloni et al. 2016, Corollary 3.5 and Theorem 3.7]
for details. In a certain sense, this phenomenon distinguishes quaternions from
other real alternative algebras.

To introduce the theory of slice regular functions, we will denote by S the unit
2-sphere of purely imaginary quaternions, i.e.,

SD
˚
q 2 H W q2

D�1
	
:

For every I 2 S we will denote by CI the plane R˚ IR, isomorphic to C, and, if
�� H, by �I the intersection �\CI . Also, we will denote by B the open unit
ball centered at the origin in H, i.e.,

BD
˚
q 2 H W jqj< 1

	
:

We can now recall the definition of slice regularity.
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Definition 4.1. Let � be a domain in H. A function f W �! H is called slice
regular if, for all I 2S, its restriction fI to�I is holomorphic, i.e., it has continuous
partial derivatives and satisfies

N@If .xCyI/ WD 1
2

�
@

@x
C I

@

@y

�
fI .xCyI/D 0;

for all xCyI 2�I .

The notions of slice domain, of symmetric slice domain and of slice derivative
are similar to those already given in Section 2. Moreover, the corresponding results
still hold for the slice regular functions in the setting of quaternions, such as the
splitting lemma, the representation formula, the power series expansion and so on.

Now we can establish the following result by some obvious modifications of the
proof of Proposition 3.1.

Proposition 4.2. Let f be a slice regular function on a symmetric slice domain
�� H. Then for every q D xCyJ 2� and every I 2 S, there holds the identity

(4-1) jf .q/j2D 1ChI;J i

2
jf .z/j2C

1�hI;J i

2
jf .z/j2�

˝
Im
�
f .z/f .z/

�
; I^J

˛
;

where z D xCyI and z D x�yI.

Before presenting the key ingredient in establishing the growth and distortion
theorems, we first make an equivalent characterization of the vanishing of the third
term on the right-hand side of (4-1), thanks to the specialty of quaternions.

Theorem 4.3. Let f be a slice regular function on a symmetric slice domain��H

and let I 2 S. Then, ˝
Im
�
f .z/f .z/

�
; I ^J

˛
D 0;

for all J 2 S and all z 2 �I if and only if there exist u 2 @B and a slice regular
function g on � that preserves the slice �I such that

f .q/D g.q/u

on �.

Proof. We only prove the necessity, since the sufficiency is obvious. Let

fI D F CGK

be the splitting of fI , where K 2 S is perpendicular to I , and F; G W �I ! CI

are holomorphic functions. Take L 2 S such that f1; I;K;Lg is an orthonormal
basis of quaternions H and let V denote the real vector space generated by the set
fI ^J W J 2 Sg. Then it is clear that

V DKR˚LR:(4-2)

Moreover, a simple calculation gives

f .z/f .z/D
�
F.z/F.z/CG.z/G.z/

�
C
�
F.z/G.z/�F.z/G.z/

�
K;
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and from this combined with (4-2) it follows that˝
Im
�
f .z/f .z/

�
; I ^J

˛
D 0; 8J 2 S;

if and only if

F.z/G.z/D F.z/G.z/; 8z 2�I :(4-3)

If G � 0 on �I , there is nothing to prove and the desired result follows. Otherwise,
G 6� 0. Then by the identity principle, its zero set ZG has no accumulation points
in �I , and neither does

ZG WD
˚
z 2�I W z 2 ZG

	
:

Thus, by (4-3),
F.z/

G.z/
D

F.z/

G.z/

is both holomorphic and antiholomorphic on �I n
�
ZG [ ZG

�
, which is still a

domain of CI , therefore there exists a constant � 2 CI such that

F.z/

G.z/
D

F.z/

G.z/
D �;

which implies that F D �G on �I n
�
ZG [ZG

�
and hence on �I by the identity

principle.
Now let

g WD
�
1Cj�j2

� 1
2 ext.G/;

and set
u WD

�
1Cj�j2

�� 1
2 .�CK/ 2 @B:

Then g is a slice regular function on � such that g.�I /� CI and f D gu, which
completes the proof. �

As a direct consequence, we obtain Corollary 4.4.

Corollary 4.4. Let I be an element of S and f a slice regular function on a
symmetric slice domain �� H. Then the convex combination identity

(4-4) jf .xCyJ /j2 D
1ChI;J i

2
jf .xCyI/j2C

1�hI;J i

2
jf .x�yI/j2

holds for every x C yJ 2 � if and only if there exists some u 2 @B such that
f .�I /� CI u.

In particular, each element f from the slice regular automorphism group of the
open unit ball B of H

Aut.B/D
˚
f .q/D .1� q Na/�� � .q� a/u W a 2 B;u 2 @B

	
satisfies the condition that there exists some u 2 @B such that f .�I /�CI u so that
equality (4-4) holds for such an f .
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From Corollary 4.4, we also conclude that the maximum and minimum moduli
of every slice regular function on a symmetric slice domain in H that preserves one
slice are actually attained on its preserved slice.

Corollary 4.5. Let f be a slice regular function on a symmetric slice domain
�� H such that f .�I /� CI for some I 2 S. Then for each sphere xCyS��,
the following equalities hold:

max
J2S
jf .xCyJ /j Dmax

�
jf .xCyI/j; jf .x�yI/j

�
;(4-5)

min
J2S
jf .xCyJ /j Dmin

�
jf .xCyI/j; jf .x�yI/j

�
:(4-6)

Consequently,

(4-7) sup
q2�

jf .q/j D sup
z2�I

jf .z/j

and

(4-8) inf
q2�
jf .q/j D inf

z2�I

jf .z/j:

Remark 4.6. Equalities (4-5) and (4-6) were first proved in [Sarfatti 2013, Proposi-
tion 1.13] and [de Fabritiis et al. 2015, Proposition 2.6]. Together with the classical
growth and distortion theorems, Corollary 4.5 is sufficient to prove Theorem 4.7
even without Corollary 4.4. Despite this trivial fact, Corollary 4.4 is of independent
interest and has its own intrinsic value. It presents, additionally, a new convex
combination identity (4-4) and provides a sufficient and necessary condition under
which (4-4) holds identically. This convex combination identity is also quite useful
for other purposes. For instance, it provides an effective approach to a quaternionic
version of a well-known Forelli–Rudin estimate, which will play a fundamental
role in the theory of various spaces of slice regular functions [Ren and Xu 2016].

Now we state the growth and distortion theorems for slice regular functions.

Theorem 4.7 (growth and distortion theorems for quaternions). Let f be a slice
regular function on B such that its restriction fI to BI is injective and f .BI /� CI

for some I 2 S. If f .0/ D 0 and f 0.0/ D 1, then for all q 2 B, the following
inequalities hold:

jqj

.1Cjqj/2
� jf .q/j �

jqj

.1� jqj/2
I(4-9)

1� jqj

.1Cjqj/3
� jf 0.q/j �

1Cjqj

.1� jqj/3
I(4-10)

1� jqj

1Cjqj
�
ˇ̌
qf 0.q/�f ��.q/

ˇ̌
�

1Cjqj

1� jqj
:(4-11)
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Moreover, equality holds for one of these six inequalities at some point q0 2 Bn f0g

if and only if f is of the form

f .q/D q
�
1� qeI�

���2
; 8q 2 B;

for some � 2 R.

Let F W D! C be a univalent function on the unit disc D of the complex plane
with Taylor expansion

F.z/D zC

1X
nD2

znan; an 2 C:

As in Section 3, with a canonical imbedding C � H, we can construct a natural
slice regular extension of F to B via

f .q/D qC

1X
nD2

qnan; q 2 B:

It is evident that f is a slice regular function on the open unit ball BDB.0; 1/ such
that its restriction f jD D F is injective and satisfies F.D/� C. Clearly, f .0/D 0

and f 0.0/D 1. Thus f satisfies all the assumptions of Theorem 4.7 and this results
in Theorem 4.8.

Theorem 4.8. Let F WD! C be a univalent function on D such that F.0/D 0 and
F 0.0/D 1, and let f WB!H be the slice regular extension of F. Then for all q 2B,
the following inequalities hold:

jqj

.1Cjqj/2
� jf .q/j �

jqj

.1� jqj/2
I(4-12)

1� jqj

.1Cjqj/3
� jf 0.q/j �

1Cjqj

.1� jqj/3
I(4-13)

1� jqj

1Cjqj
�
ˇ̌
qf 0.q/�f ��.q/

ˇ̌
�

1Cjqj

1� jqj
:(4-14)

Moreover, equality holds for one of these six inequalities at some point q0 2 Bn f0g

if and only if
f .q/D q

�
1� qei�

���2
; 8q 2 B:

Next we digress to the Koebe one-quarter theorem for slice regular functions
on the open unit ball B�H. We recall the following definition (see [Gentili et al.
2013, Definition 7.5]):

Definition 4.9. Let f be a slice regular function on a symmetric slice domain
��H. The degenerate set of f is defined to be the union Df of the 2-dimensional
spheres S D xCyS (with y ¤ 0) such that f jS is constant.
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Now as a direct consequence of the open mapping theorem and the first inequality
in (4-9), we have the following result, which is a generalization of [Gal et al. 2015,
Theorem 3.11 (1)].

Theorem 4.10 (Koebe one-quarter theorem). Let f be a slice regular function on
B such that its restriction fI to BI is injective and f .BI /� CI for some I 2 S. If
f .0/D 0 and f 0.0/D 1, then B

�
0; 1

4

�
� f .B/:

Proof. By assumption, the degenerate set Df of f is empty. Then f is open by
the open mapping theorem (see [Gentili et al. 2013, Theorem 7.7]). This together
with the first inequality in (4-9) shows that the image set f .B/, containing the
origin 0, is an open subset of H, whose boundary @f .B/ lies outside of the ball
B.0; 1=4/. Indeed, for each point w 2 @f .B/, there exists a sequence fqng

1
nD1

in B

such that limn!1 f .qn/D w. By passing to a subsequence, we may assume that
the sequence fqng

1
nD1

itself converges to one point, say q1 2 B. By the openness
of f , q1 must lie on the boundary @B. Thus in view of the first inequality in (4-9),

jwj D lim
n!1
jf .qn/j � lim

n!1

jqnj

.1Cjqnj/2
D

1

4
:

Consequently, f .B/ must contain the ball B.0; 1=4/. This completes the proof. �
Let SR.B/ denote the set of slice regular functions on the open unit ball B� H.

We define

S WD
˚
f 2 SR.B/ W 9 I 2 S such that fI is injective and fI .BI /� CI

	
and

S0 WD
˚
f 2 S W f .0/D 0; f 0.0/D 1

	
:

For each f 2 S0, we use r0.f / to denote the radius of the smallest ball B.0; r/

contained in f .B/. Also for every � 2 R and every I 2 S, denote by kI;� the slice
regular function given by

(4-15) kI;� .q/D q
�
1� qeI�

���2
; 8q 2 B;

which obviously belongs to the class S0. The image set of the unit disc BI under
kI;� is exactly the complex plane except for a radial slit from1 to �eI�=4. This
fact together with Theorem 4.10 gives the following result:

Theorem 4.11. Let the notation be as above.

(i) For each f 2 S0,
r0.f /�

1
4
;

with equality if and only if f D kI;� for some I 2 S and some � 2 R.

(ii)
\
f 2S0

f .B/D B
�
0; 1

4

�
:
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Proof. We only prove (i). It suffices to consider the extremal case, since the remain-
der is clear. If r0.f /D 1=4, from the proof of Theorem 4.10 and inequality (4-8),
we conclude that there exists some I0 2 S such that 1=4 is exactly the radius of
the smallest disc BI0

.0; r/ contained in the image set fI0
.BI0

/ of the unit disc BI0

under the classical univalent function fI0
W BI0

! CI0
. This is possible only if

f D kI0;� for some � 2 R (see the proof of [Graham and Kohr 2003, Theorem
1.1.5] or [Duren 1983, Theorem 2.3]). Now the proof is complete. �
Remark 4.12. Two remarks are in order:

(i) It is noteworthy here that Gal et al. [2015] dealt with the growth, distortion and
covering theorems for slice preserving and injective slice regular functions on
the open unit ball B� H with certain normalized conditions. More precisely,
they focused on injective slice functions f on B of the form

f .q/D qC

1X
nD2

qnan;

with fangn�2 being a sequence of real numbers; see [Gal et al. 2015, Theorem
3.11] for details, while, in the present paper we consider slice regular functions
f .q/ D qC

P1
nD2 qnan on B for which there exists some I 2 S such that

the restriction fI is injective and fangn�2 is a sequence of numbers in the
complex plane CI determined by I. Thus our result properly includes the
former case. Moreover, our approach to the Koebe type one-quarter theorem
(Theorem 4.10), which can be specialized to the complex case, depends only
on the open mapping theorem and the first inequality in (4-9), and does
not involve compositions of functions. We refer the interested reader to
[Graham and Kohr 2003, p.14; Duren 1983, p.31] for a standard proof of the
classical Koebe one-quarter theorem for univalent functions.

(ii) Functions kI;� of the form in (4-15) are specific examples in S0. In view of
Theorem 4.10, the image of B under the function kI; �=2 contains the open
ball B.0; 1=4/. However, it does not seem so easy to directly deduce this fact
from the classical complex result, without using the open mapping theorem
and the first inequality in (4-9).

The following proposition is the quaternionic version of Proposition 3.8 for slice
regular functions.

Proposition 4.13. Let f be a slice regular function on a symmetric slice domain
��H such that its restriction fI to�I is injective and f .�I /�CI for some I 2S.
Then its restriction fJ W�J ! H is also injective for every J 2 S.

Remark 4.14. Let f be as described in Theorem 4.7. Then according to the
preceding proposition, fJ W BJ ! H is injective for every J 2 S. It is well worth
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knowing whether f W B! H is injective. If it is indeed the case, together with
the first inequality in (4-9) and invariance of domain theorem, it would provide an
alternative approach to Theorem 4.10.

5. Concluding remarks

As pointed out in Remark 3.3, the counterpart of the convex combination identity
(3-11) in Lemma 3.2 also holds for slice regular functions defined on octonions or
more general real alternative algebras under the extra assumption that f preserves
at least one slice. Therefore some of the results given in the preceding sections
can be easily generalized by slight modification to these new settings. Finally, we
conclude with an open question connected with the subject of this paper.

Recall that SR.B/ is the set of slice regular functions on the open unit ball B�H.
We denote

SR0.B/ WD
˚
f 2 SR.B/ W f .0/D 0; f 0.0/D 1

	
and

S0 WD
˚
f 2 SR0.B/ W 9I 2 S such that fI is injective and fI .BI /� CI

	
:

Open question:1 Is the class S0 the largest subclass of SR0.B/ in which the
corresponding growth, distortion and covering theorems hold?
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REMARKS ON METAPLECTIC TENSOR PRODUCTS
FOR COVERS OF GLr

SHUICHIRO TAKEDA

We had previously constructed a metaplectic tensor product of automorphic
representations of covers of GLr . To be precise, let M=GLr1 ×· · ·×GLrk ⊆

GLr be a Levi subgroup of GLr , where r = r1+· · ·+ rk, and M̃ its metaplec-
tic preimage in the n-fold metaplectic cover G̃Lr of GLr . For automorphic
representations π1, . . . , πk of G̃Lr1(A), . . . , G̃Lrk (A), we had constructed
(under certain technical assumptions, which are always satisfied when n=2)
an automorphic representation π of M̃ that can be considered as the “tensor
product” of the representations π1, . . . , πk.

Here we significantly simplify and generalize our previous construction
without the technical assumptions mentioned above.

1. Introduction

Let F be a number field and A be the ring of adeles. For a partition r = r1+· · ·+rk

of r , one has the Levi subgroup

M(A) := GLr1(A)× · · ·×GLrk (A)⊆ GLr (A)

of the (r1, . . . , rk)-parabolic. Let π1, . . . , πk be automorphic representations of
GLr1(A), . . . ,GLrk (A), respectively. It is a trivial construction to obtain the au-
tomorphic representation π1 ⊗ · · · ⊗ πk of the Levi M(A) simply by taking the
usual tensor product. Though highly trivial, this construction is of great importance
in the theory of automorphic forms, especially when one would like to formulate
Eisenstein series.

Now if one considers the metaplectic n-fold cover G̃Lr (A) constructed by Kazh-
dan and Patterson [1984], the analogous construction turns out to be far from trivial.
Namely for the metaplectic preimage M̃(A) of M(A) in GLr (A) and automorphic
representations π1, . . . , πk of the metaplectic n-fold covers G̃Lr1(A), . . . , G̃Lrk (A),
one cannot construct a representation of M̃(A) simply by taking the tensor product
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π1⊗ · · · ⊗πk , because M̃(A) is not the direct product of G̃Lr1(A), . . . , G̃Lrk (A),
namely

M̃(A)� G̃Lr1(A)× · · ·× G̃Lrk (A),

and even worse there is no natural map between them.
For the local case, P. Mezo [2004], whose work, we believe, is based on the work

by Kable [2001], carried out a construction of an irreducible admissible represen-
tation of the Levi M̃ starting with representations π1, . . . , πk of G̃Lr1, . . . , G̃Lrk ,
which can be called the “metaplectic tensor product” of π1, . . . , πk , and character-
ized it uniquely up to certain character twists.

In [Takeda 2016], we carried out an analogous construction for the global case
and defined the global metaplectic tensor product. Further, we showed that the
global metaplectic tensor product satisfies various expected properties. We, however,
needed to impose certain technical assumptions for the group M̃ , most notably
Hypothesis (∗) in [Takeda 2016, p. 202]. In this paper, we will modify the con-
struction of that work so that the metaplectic tensor product can be defined without
those technical assumptions and show that the new version also satisfies all the
expected properties. Indeed, it seems our previous construction was unnecessarily
complicated, and here we will give a simpler construction. To be more precise:

Main Theorem. Let M = GLr1 × · · · ×GLrk be a Levi subgroup of GLr , and let
π1, . . . , πk be automorphic subrepresentations of G̃Lr1(A), . . . , G̃Lrk (A). Then
there exists an automorphic subrepresentation π of M̃(A) such that

π ∼=
⊗̃
v

′

πv,

where each πv is the local metaplectic tensor product of Mezo. Moreover, if
π1, . . . , πk are cuspidal (alternatively, square-integrable modulo center), then so is
π . Further the metaplectic tensor product satisfies various expected properties.

In the above theorem,
⊗̃′

v indicates the metaplectic restricted tensor product, the
meaning of which will be explained later in the paper. Also we require πi be an
automorphic subrepresentation, so that it is realized in a subspace of automorphic
forms and hence each element in πi is indeed an automorphic form. (Note that in
general an automorphic representation is a subquotient.)

As we will see, strictly speaking the metaplectic tensor product of π1, . . . , πk

might not be unique even up to equivalence but is dependent on a character ω on
the center ZG̃Lr

of G̃Lr . Hence we write

πω := (π1⊗̃ · · · ⊗̃πk)ω

for the metaplectic tensor product to emphasize the dependence on ω.
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Notation. Throughout the paper, F is a number field and A is the ring of adeles of F.
For each place v, Fv is the corresponding local field and OFv is the ring of integers of
Fv . For each algebraic group G over a global F, and g ∈G(A), by gv we mean the v-
th component of g, and so gv ∈G(Fv). For any group G, we denote its center by ZG .

For a positive integer r , we denote by Ir the r × r identity matrix. Throughout
we fix an integer n ≥ 2, and we let µn be the group of n-th roots of unity in the
algebraic closure of the prime field. We always assume that µn ⊆ F.

We fix an ordered partition r1+ · · ·+ rk = r of r , and we let

M = GLr1 × · · ·×GLrk ⊆ GLr

and assume it is embedded diagonally as usual.
If π is a representation of a group G, we denote the space of π by Vπ , though we

often conflate π with Vπ when there is no danger of confusion. We say π is unitary
if Vπ is equipped with a Hermitian structure invariant under the action of G, but
we do not necessarily assume that the space Vπ is complete. Now assume that the
space Vπ is a space of functions or maps on the group G and π is the representation
of G on Vπ defined by right-translation. (This is the case, for example, if π is an
automorphic subrepresentation.) Let H ⊆ G be a subgroup. We define π‖H to be
the representation of H realized in the space

Vπ‖H := { f |H : f ∈ Vπ }

of restrictions of f ∈ Vπ to H, on which H acts by right translation. Namely π‖H

is the representation obtained by restricting the functions in Vπ . Occasionally, we
confuse π‖H with its space when there is no danger of confusion. Note that there
is an H -intertwining surjection π |H → π‖H , where π |H is the (usual) restriction
of π to H. Also for any subset X ⊆ G and any f ∈ Vπ , we denote by π(X) f the
vector space generated by π(x) f for all x ∈ X. If X is a subgroup, this gives rise
to a representation of X, which is a subrepresentation of π |X .

2. The metaplectic cover G̃Lr of GLr

The groups. In this subsection, we set up our notations for the metaplectic n-fold
cover G̃Lr of GLr for both local and global cases. Most of the time, we work both
locally and globally at the same time. Hence we let

R =
{

Fv in the local case,
A in the global case.

By the metaplectic n-fold cover G̃Lr (R) of GLr (R) with a fixed parameter
c ∈ {0, . . . , n− 1}, we mean the central extension of GLr (R) by µn as constructed
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by Kazhdan and Patterson in [1984]. More concretely, as a set,

G̃Lr (R)= GLr (R)×µn = {(g, ξ) : g ∈ GLr (R), ξ ∈ µn},

whereas the multiplication is defined by

(g, ξ) · (g′, ξ ′)= (gg′, τr (g, g′)ξξ ′),

where τr is a certain 2-cocycle. (See [Takeda 2016, Sections 2 and 3] more about
various issues on cocycles.)

If P is a parabolic subgroup of GLr whose Levi part is M = GLr1 × · · ·×GLrk ,
we often write

M̃(R)= G̃Lr1(R)×̃ · · · ×̃G̃Lrk (R)

for the metaplectic preimage of M(R). Next let

GL(n)r (R)= {g ∈ GLr (R) : det g ∈ R×n
},

and G̃L(n)r (R) be its metaplectic preimage. Also we define

M (n)(R)= {(g1, . . . , gk) ∈ M(R) : det gi ∈ R×n
}

and often denote its preimage by

M̃ (n)(R)= G̃L(n)r1
(R)×̃ · · · ×̃G̃L(n)rk

(R).

The groups M (n)(R) and M̃ (n)(R) are normal subgroups of M(R) and M̃(R),
respectively. Indeed, if we define

(2.1) DetM : M(R)= GLr1(R)× · · ·×GLrk (R)→ R×× · · ·× R×︸ ︷︷ ︸
k times

to be the map given by determinant on each factor GLri , then M (n)(R) is the kernel
of the composition of DetM with projection to R×n

\ R×× · · ·× R×n
\ R×. Hence

for the local case (R = Fv), the groups M (n)(R) and M̃ (n)(R) are of finite index.
An important observation is that the metaplectic preimage of the center ZGLr (R)

of GLr (R) does not in general coincide with the center of G̃Lr (R). (It might not
be even commutative for n > 2.) The center, which we denote by ZG̃Lr (R), is

(2.2) ZG̃Lr (R) = {(aIr , ξ) : ar−1+2rc
∈ R×n, ξ ∈ µn}

= {(aIr , ξ) : a ∈ R×n/d , ξ ∈ µn},

where d = gcd(r −1+2rc, n). The second equality is proven in [Chinta and Offen
2013, Lemma 1].
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Also the center Z M̃(R) of M̃(R) is described as

Z M̃(R) =

{(
a1 Ir1 . . .

ak Irk

)
: ar−1+2cr

i ∈ R×n and a1 ≡ · · · ≡ ar mod R×n

}
.

See Proposition 3.10 of [Takeda 2016]. Let us mention that the above descriptions
of ZG̃Lr (R) and Z M̃(R) give

(2.3) ZG̃Lr (R)M̃
(n)(R)= Z M̃(R)M̃

(n)(R).

Let π be a representation of a subgroup H ⊆ G̃Lr (R) containing µn . We say π
is “genuine” if each element (1, ξ) ∈ H acts as multiplication by ξ , where we view
ξ as an element of C in the natural way.

We will revisit the question, considered in [Takeda 2016], of how the metaplectic
tensor product behaves under restriction to a smaller Levi. Some relevant notation: if

I = {i1, . . . , il} ⊆ {1, . . . , k}

is a nonempty subset with i1 < · · ·< il , we set

(2.4) MI (R)= GLri1
(R)× · · ·×GLril

(R)

which is embedded into M(R) in the obvious way and hence viewed as a subgroup
of M(R). Let M̃I (R) be the metaplectic preimage of MI (R), so we have

M̃I (R)⊆ M̃(R).

Also set
M̃ (n)

I (R) := M̃I (R)∩ M̃ (n)(R).

The global metaplectic cover G̃Lr(A). In this subsection we only consider the
global case, i.e., R = A.

First let us mention that both the F-rational points GLr (F) and the unipotent
radical NB(A) of the Borel subgroup B split in G̃Lr (A) via a certain partial map
s : GLr (A)→ G̃Lr (A). Via this splitting we identify GLr (F) with a subgroup of
G̃Lr (A). Let us mention, however, that this partial map is not given by the map
g 7→ (g, 1) for our choice of cocycle τr . But rather the map g 7→ (g, 1) splits some
compact subgroup. For our purpose here, we have only to mention the following.
Let S be a finite set of places containing all Archimedean places and those v with
v | n. Then we have a group homomorphism

(2.5)
∏
v /∈S

GLr (OFv )→ G̃Lr (A)

under the map g 7→ (g, 1).
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We can also describe G̃Lr (A) as a quotient of a restricted direct product of the
groups G̃Lr (Fv) as follows. Consider the restricted direct product

∏
′

v G̃Lr (Fv) with
respect to the groups Kv for all v with v - n and v -∞. If we denote each element
in this restricted direct product by 5′v(gv, ξv) so that gv ∈ Kv and ξv = 1 for almost
all v, we have the surjection

(2.6) ρ :
∏
v

′

G̃Lr (Fv)→ G̃Lr (A), 5′v(gv, ξv) 7→ (5′vgv,5vξv),

where the product 5vξv is literally the product inside µn . This is indeed a group
homomorphism and ∏

v

′

G̃Lr (Fv)/ ker ρ ∼= G̃Lr (A),

where ker ρ consists of the elements of the form (1, ξ)with ξ ∈
∏
′

v µn and5vξv=1.
We set ∏̃

v

′

G̃Lr (Fv) :=
∏
v

′

G̃Lr (Fv)/ ker ρ

and call it the metaplectic restricted direct product. Let us note that each G̃Lr (Fv)
has a natural embedding into

∏
v
′ G̃Lr (Fv). By composing it with ρ, we have the

natural inclusion

(2.7) G̃Lr (Fv) ↪→ G̃Lr (A),

which allows us to view G̃Lr (Fv) as a subgroup of G̃Lr (A).
Let us mention that all the discussions above on G̃Lr (A) can be generalized to

M̃(A), though there is a subtle issue on cocycles for M̃(A), which is discussed in
detail in [Takeda 2016, Sect. 3]. This issue will not play any role in this paper.

We have the notion of automorphic representations as well as automorphic forms
on G̃Lr (A) or M̃(A). In this paper, by an automorphic form, we mean a smooth
automorphic form instead of a K -finite one, namely an automorphic form is K f -
finite, Z-finite and of uniformly moderate growth; see [Cogdell 2004, p. 17]. Hence
if π is an automorphic representation of G̃Lr (A) (or M̃(A)), the full group G̃Lr (A)

(or M̃(A)) acts on π . An automorphic form f on G̃Lr (A) (or M̃(A)) is said to
be genuine if f (g, ξ)= ξ f (g, 1) for all (g, ξ) ∈ G̃Lr (A) (or M̃(A)). In particular
every automorphic form in the space of a genuine automorphic representation is
genuine. We denote the space of genuine automorphic forms on G̃Lr (A) (resp.
M̃(A)) by A(G̃Lr ) (resp. A(M̃)).

Suppose we are given a collection of irreducible admissible representations πv
of G̃Lr (Fv) such that πv is Kv-spherical for almost all v. Then we can form an
irreducible admissible representation of

∏
′

v G̃Lr (Fv) by taking a restricted tensor
product

⊗
′

v πv as usual. Suppose further that ker ρ acts trivially on
⊗
′

v πv , which is
always the case if each πv is genuine. Then it descends to an irreducible admissible
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representation of G̃Lr (A), which we denote by
⊗̃′

vπv , and call it the “metaplectic
restricted tensor product”. Let us emphasize that the space for

⊗̃′
vπv is the same as

that for
⊗
′

v πv . Conversely, if π is an irreducible genuine admissible representation
of G̃Lr (A), it is written as

⊗̃′
vπv where πv is an irreducible genuine admissible

representation of G̃Lr (Fv), and for almost all v, πv is Kv-spherical. (To see this,
view π as a representation of the restricted direct product

∏
′

v G̃Lr (Fv) by pulling
it back by ρ in (2.6) and apply the usual tensor product theorem for the restricted
direct product. This gives the restricted tensor product

⊗
′

v πv, where each πv is
genuine, and hence it descends to

⊗̃′
vπv.)

We now list some important properties of various groups we consider.

Lemma 2.8 [Takeda 2016, Lemma 14]. Let S be a finite set of places containing
all the Archimedean ones, and set

O×S :=
∏
v /∈S

O×Fv .

Then the set F×A×n
\A×/O×S is finite.

Lemma 2.9. The group F×A×n
\A× is compact.

Proof. Let S be any finite set of places containing all the Archimedean ones. By the
above lemma, we know F×A×n

\A× is a finite union of sets of the form F×A×naO×S
for a ∈ A×. But this set, which is the image of the compact set aO×S under the
quotient map A× → F×A×n

\ A×, is compact in the topology of F×A×n
\ A×.

Hence the lemma follows. �

This in turn implies:

Lemma 2.10. The group M(F)M̃ (n)(A) is a closed normal subgroup of M̃ (n)(A)

whose quotient M(F)M̃ (n)(A)\ M̃(A) is a compact abelian group. Indeed, we have
an isomorphism

M(F)M̃ (n)(A) \ M̃(A)∼= F×A×n
\A×× · · ·× F×A×n

\A×︸ ︷︷ ︸
k times

of topological groups.

Proof. That it is closed is [Takeda 2016, Proposition A.4]. To show it is normal,
one can check that the group M(F)M̃ (n)(A) is indeed the kernel of the composite

M̃(A)→ A×× · · ·×A×→ F×A×n
\A×× · · ·× F×A×n

\A×

where the first map is the determinant map DetM as in (2.1). By the previous lemma,
the last group on the right-hand side is compact. �
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Lemma 2.11. Let S be a finite set of places containing all the Archimedean ones
and those v with v | n. Define

(2.12) K S
:=

∏
v /∈S

M(OFv ),

which can be viewed as a subgroup of M̃(A) as in (2.5). Then the set

M(F)M̃ (n)(A) \ M̃(A)/K S

is finite.

Proof. This is immediate from Lemma 2.8, because M(F)M̃ (n)(A) \ M̃(A)/K S is
a product of k copies of F×A×n

\A×/O×S �

We next state a lemma from general topology and an important consequence of it.

Lemma 2.13. Let A be a Hausdorff compact abelian group, and m1, . . . ,mk be
positive integers. Define

H := {(am1, . . . , amk ) : a ∈ A} = Am1 × · · ·× Amk ⊆ A× · · ·× A︸ ︷︷ ︸
k times

.

Then H is a closed subgroup of A× · · ·× A.

Proof. Note that for each i ∈ {1, . . . , k}, the mi -th power map A→ Ami ⊆ A is
continuous, and hence the image Ami of the compact A is compact. Recall that in a
Hausdorff topological group, every compact subgroup is closed by, say, [Deitmar
and Echterhoff 2009, Lemma 1.1.4]. So each Ami is closed. Hence H is closed. �

Proposition 2.14. We have

M(F)Z M̃(A)M̃
(n)(A)= M(F)ZG̃Lr (A)

M̃ (n)(A)

and this group is a closed (hence locally compact) subgroup of M̃(A).

Proof. The equality is immediate from (2.3).
To prove this group is closed, it suffices to show that the image of Z M̃(A) in

the quotient M(F)M̃ (n)(A) \ M̃(A) is closed. But one can see that the image of
ZG̃Lr (A)

under the isomorphism

M(F)M̃ (n)(A) \ M̃(A)= F×A×n
\A×× · · ·× F×A×n

\A×

is the subgroup of the form

{(anr1/d , . . . , anrk/d) : a ∈ F×A×n
\A×},

where d = gcd(r − 1+ 2rc, n). By Lemma 2.9, we know that F×A×n
\ A× is

compact, and hence by the previous lemma, this is closed. �
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3. The metaplectic tensor product

In this section, after reviewing the local metaplectic tensor product of Mezo [2004]
with the modification made by the author in [Takeda 2016], we will construct the
global metaplectic tensor product.

Mezo’s local metaplectic tensor product. In this subsection, all the groups are over
the local field Fv , and accordingly we simply write G̃Lr , M̃ , etc, instead of G̃Lr (Fv),
M̃(Fv), etc.

Let π1,...,πk be irreducible admissible genuine representations of G̃Lr1,...,G̃Lrk ,
respectively. For each i = 1, . . . , k, let

σi := πi |G̃L(n)ri
.

Note that σi , as a representation of G̃L(n)ri , is completely reducible, and the multi-
plicities of all the irreducible constituents are all equal. Namely, we have

(3.1) σi = mi

⊕
j

τi, j ,

where τi, j is an irreducible representation of G̃L(n)ri such that τi, j � τi,k for j 6= k, and
mi is a positive multiplicity which is independent of τi, j . For the non-Archimedean
case, this is precisely [Gelbart and Knapp 1982, Lemma 2.1], and the Archimedean
case can be proven in the same way as the non-Archimedean case because the index
of G̃L(n)ri in G̃Lri is at most 2. Mezo [2004] first picks up an irreducible constituent
τi of σi and considers the (usual) tensor product

Vτ1 ⊗ · · ·⊗ Vτk ,

which, of course, gives a representation of the direct product G̃L(n)r1 × · · ·× G̃L(n)rk .
The genuineness of the representations τ1, . . . , τk implies that this tensor product
representation descends to a representation of the group M̃ (n)

:= G̃L(n)r1 ×̃ · · · ×̃G̃L(n)rk ,
i.e., the representation factors through the natural surjection

G̃L(n)r1
× · · ·× G̃L(n)rk

� G̃L(n)r1
×̃ · · · ×̃G̃L(n)rk

.

We denote this representation of M̃ (n) by

τ := τ1⊗̃ · · · ⊗̃τk .

Let us emphasize that the space Vτ of τ is the usual tensor product Vτ1 ⊗ · · ·⊗ Vτk .
In this paper, however, we will take a different approach. Instead of picking up a

τi , we will consider all of σi at the same time and define the representation

σ := σ1⊗̃ · · · ⊗̃σk
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of M̃ (n) in the same way as τ . Let us again emphasize that the space Vσ of σ is the
usual tensor product Vσ1 ⊗ · · ·⊗ Vσk . Further note that because of (3.1), we have

(3.2) σ = m
⊕
τ

τ,

where m = m1 · · ·mk and the sum is over all possible equivalence classes of
representations of the form τ = τ1⊗̃ · · · ⊗̃τk .

Then we define
5=5(π1, . . . , πk) := IndM̃

M̃ (n) σ.

By (3.2), we have
5= m

⊕
τ

IndM̃
M̃ (n) τ,

where the sum is over all the equivalence classes of irreducible subrepresentations
τ of σ . Note that since σ is completely reducible and the index of M̃ (n) in M̃ is
finite, one can see that the representation 5 is completely reducible. Certainly, it is
highly unlikely that 5 is irreducible. Rather it contains all the metaplectic tensor
products constructed by Mezo. To see it, we need to take the action of the center
ZG̃Lr

into account. For this purpose, let us first define

(3.3) �=�(π1, . . . , πk) := {ω : ω is a character on ZG̃Lr
which appears in σ },

where we say “ω appears in σ” if there is an irreducible constituent τ ⊆ σ that
agrees with ω on the overlap, namely

ω|ZG̃Lr ∩M̃ (n) = τ |ZG̃Lr ∩M̃ (n) .

Now Mezo’s construction can be summarized as follows. Let τ ⊆ σ be an
irreducible representation, so τ = τ1⊗̃ · · · ⊗̃τk for some τi , and let ω ∈� be such
that it agrees with τ on the overlap. Then we can extend τ to the representation

τω := ωτ

of ZG̃Lr
M̃ (n) by letting ZG̃Lr

act by ω. Then if we induce it to the group M̃ , it is
isotypic (though possibly reducible), and we denote this isomorphism class by

(π1⊗̃ · · · ⊗̃πk)ω

and call it the metaplectic tensor product of π1, . . . , πk with respect to ω. With this
notation, we have

IndM̃
ZG̃Lr M̃ (n) τω = m′(π1⊗̃ · · · ⊗̃πk)ω

for some finite multiplicity m′, which will be seen to be independent of τ and ω but
only dependent on the representations π1, . . . , πk .
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Clearly we have the inclusions

(3.4) IndM̃
ZG̃Lr M̃ (n) τω ↪→ IndM̃

M̃ (n) τ ↪→ IndM̃
M̃ (n)σ =5(π1,...,πk)= m

⊕
τ

IndM̃
M̃ (n) τ,

because τ ⊆ σ . Further we have:

Proposition 3.5. For each fixed τ , let

�(τ) := {ω ∈� : ω|ZG̃Lr ∩M̃ (n) = τ |ZG̃Lr ∩M̃ (n)}.

Then
IndM̃

M̃ (n) τ =
⊕
ω∈�(τ)

IndM̃
ZG̃Lr M̃ (n) τω = m′

⊕
ω∈�(τ)

(π1⊗̃ · · · ⊗̃πk)ω,

where m′ is the positive multiplicity of (π1⊗̃ · · · ⊗̃πk)ω in IndM̃
ZG̃Lr M̃ (n) τω, which is

independent of τ and ω but is only dependent on π1, . . . , πk .

Proof. The proof is an elementary exercise in representation theory. But we will
give a brief explanation for each equality. First, by inducing in stages, we have

IndM̃
M̃ (n) τ = IndM̃

ZG̃Lr M̃ (n) Ind
ZG̃Lr M̃ (n)

M̃ (n) τ.

Then similarly to [Mezo 2004, Lemma 4.1], one can see

Ind
ZG̃Lr M̃ (n)

M̃ (n) τ =
⊕
ω∈�(τ)

τω,

because the quotient M̃ (n)
\ ZG̃Lr

M̃ (n)
= ZG̃Lr

∩ M̃ (n)
\ ZG̃Lr

has the same size as
�(τ). To be more precise, for a fixed ω ∈�(τ) we can write

�(τ)=
{
ωχ : χ is in the dual of ZG̃Lr

∩ M̃ (n)
\ ZG̃Lr

}
.

To show the next equality, the only nontrivial part is to show that the multiplicity
m′ is independent of τ and ω. The independence from ω follows from the fact that
the restrictions (IndM̃

ZG̃Lr M̃ (n) τω)|ZG̃Lr M̃ (n) and (IndM̃
ZG̃Lr M̃ (n) τω)|M̃ (n) have the same

number of constituents and the latter is independent of ω, and further the restric-
tions (π1⊗̃ · · · ⊗̃πk)ω|ZG̃Lr M̃ (n) and (π1⊗̃ · · · ⊗̃πk)ω|M̃ (n) have the same number of
constituents and again the latter is independent of ω. To show it is independent of
τ , let us note that m′ is indeed equal to

[
H̃ : ZG̃Lr M̃ (n)

]
, where H̃ is a maximal

subgroup of M̃ such that τω can be extended to H̃ so that Mackey’s irreducible
criterion is satisfied as constructed in [Mezo 2004, pp. 89–90]. This can be proven
in the same way as in [Takeda 2016, Proposition 4.7]. From the construction of H̃ ,
one can see that H̃ is independent of the choice of τ1, . . . , τk but only dependent
on π1, . . . , πk . Also see [Cai 2016, Section 3.4] for this issue. �

The main theorem for local metaplectic tensor product follows easily:
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Theorem 3.6. Keeping the above notation, we have

5=5(π1, . . . , πk)=
⊕
ω∈�

m(ω)(π1⊗̃ · · · ⊗̃πk)ω,

where � is as in (3.3) and m(ω) is the positive multiplicity of (π1⊗̃ · · · ⊗̃πk)ω.

Proof. By the previous proposition, we have

5= mm′
⊕
τ

⊕
ω∈�(τ)

(π1⊗̃ · · · ⊗̃πk)ω,

which implies the theorem. �

Remark 3.7. In the above theorem, one may wonder if m(ω) = mm′. This is
certainly the case if the �(τ) are all distinct for distinct τ . But it may be the case
that �(τ) ∩�(τ ′) 6= ∅ even when τ 6= τ ′. Also it should be mentioned that if
�(τ)∩�(τ ′) 6=∅, then necessarily �(τ)=�(τ ′)

With this theorem, one can tell that the presentation5 contains all the metaplectic
tensor products, and one can call each irreducible constituent of 5 a metaplectic
tensor product.

Next we consider the behavior of metaplectic tensor products upon restriction to
a smaller Levi. Let I, M̃I , etc., be as on page 203.

Proposition 3.8. Let π ⊆ 5(π1, . . . , πk) be a metaplectic tensor product. Then
the restriction π |M̃I

is completely reducible (with most likely infinite multiplic-
ity). Further each constituent of τ |M̃I

is of the form (πi1⊗̃ · · · ⊗̃πil )ω′ for some
ω′ ∈�(πi1, . . . , πil ).

Proof. Note that π ↪→ IndM̃
M̃ (n) τ for some irreducible representation τ of M̃ (n).

Hence it suffices to show the restriction
(
IndM̃

M̃ (n) τ
)
|M̃I

is completely irreducible.
But since the group M̃ (n)

\ M̃ is finite, one has the following Mackey type theorem:(
IndM̃

M̃ (n) τ
)
|M̃I
=

⊕
g∈M̃ (n)\M̃/M̃I

IndM̃I

M̃I∩gM̃ (n)g−1(τ
g),

where, as usual, τ g is the representation of τ twisted by g viewed as a representation
of M̃I ∩ gM̃ (n)g−1 by restriction. But note that M̃ (n)

\ M̃/M̃I = M (n)
\ M/MI

and each element in this double coset is represented by an element in M which
has the identity on all the components for the GLri factors for i ∈ I. Hence
M̃I ∩ gM̃ (n)g−1

= M̃ (n)
I , and τ g

= τ as a representation of M̃ (n)
I . Hence we have(

IndM̃
M̃ (n) τ

)
|M̃I
=

⊕
g∈M̃ (n)\M̃/M̃I

IndM̃I

M̃ (n)
I

(
τ |M̃ (n)

I

)
.

But note that the space Vτ of τ is of the form Vτ1 ⊗ · · ·⊗ Vτk for some irreducible
representations τ1, . . . , τk of G̃L(n)r1 , . . . , G̃L(n)rk , which are irreducible constituents
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of the restrictions π1|G̃L(n)r1
, . . . , πk |G̃L(n)rk

. Hence when it is restricted to M̃ (n)
I , it is

completely reducible. (Yet note that the multiplicity is infinite unless all the σi

for i /∈ I are one dimensional.) Indeed τ |M̃ (n)
I

is isotypic with all the irreducible
constituents equivalent to τi1⊗̃ · · · ⊗̃τil . Hence first of all, π |M̃I

is completely
reducible. Second of all, each irreducible constituent in π |M̃I

is contained in the
induced representation

IndM̃
M̃ (n)

I
τi1⊗̃ · · · ⊗̃τil .

This, together with Theorem 3.6 applied to the group M̃I , implies that each con-
stituent of π |M̃I

is of the form (πi1⊗̃ · · · ⊗̃πil )ω′ . �

The global metaplectic tensor product. By essentially following the local meta-
plectic tensor product, the global metaplectic tensor product was constructed in
[Takeda 2016] with some technical assumptions, most notably Hypothesis (∗) on
page 202 of that work. Here we will simplify our previous construction and remove
the technical assumptions imposed there. Throughout this subsection, let π1, . . . , πk

be automorphic subrepresentations of the groups G̃Lr1(A), . . . , G̃Lrk (A) realized
in the spaces of automorphic forms. Namely we assume

Vπi ⊆A(G̃Lri ).

Also let
Hi := GLri (F)G̃L(n)ri

(A).

Note that by Lemma 2.10, Hi is a closed normal subgroup of GLri (A) whose
quotient is a compact abelian group.

First let
σi := πi‖Hi ,

where we recall the notation ‖ from the notation section. Each element ϕ in the
space of Vσi is a restriction to Hi of an automorphic form on G̃Lri (A), and hence
we may view it as a function on Hi with the property that ϕ(γ g) = ϕ(g) for all
γ ∈ GLri (F) and g ∈ G̃L(n)ri (A). Namely the representation σi is a representation
of the group Hi realized in a space of “automorphic forms on Hi ”.

We should mention

Proposition 3.9. Let π be an irreducible smooth representation of G̃Lr (A). Then
the restriction π |GLr (F)G̃L(n)r (A) is completely reducible, and hence π‖GLr (F)G̃L(n)r (A)

is a subrepresentation of π |GLr (F)G̃L(n)r (A)
.

Proof. In this proof, let us write H =GLr (F)G̃L(n)r (A). We will prove the proposi-
tion by modifying the proof of [Gelbart and Knapp 1982, Lemma 2.1].

First we will show that the restriction π |H has an irreducible subrepresentation.
For this, consider the contragredient π̂ of π . Since π is irreducible, so is π̂ . Let
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ϕ ∈ π̂ be nonzero. Then π̂ is generated by ϕ as a representation of G̃Lr (A). One of
the key points is that the restriction π̂ |H is also finitely generated as a representation
of H. To see it, let S be a sufficiently large finite set of places such that ϕ is
fixed by K S

:=
∏
v /∈S GLr (OFv ). We know that the set H \ G̃L(A)/K S is finite by

Lemma 2.11. Let {g1, . . . , gl} be a complete set of representatives of this finite
set. Then one can see that the vectors π̂(gi )ϕ generate π̂ |H , i.e., π̂ |H is finitely
generated. Hence π̂ |H has an irreducible quotient. (It is an elementary exercise
of Zorn’s lemma to show that every finitely generated representation of any group
has an irreducible quotient.) Let W be the kernel of the surjection from Vπ̂ to this
irreducible quotient. Let

Ann(W ) := { f ∈ Vπ : 〈 f, ϕ〉 = 0 for all ϕ ∈W }

be the annihilator of W, which gives a representation of H. Then one can see
Ann(W ) is an irreducible subrepresentation of π |H as follows. Let X ⊆ Ann(W )

be any nonzero subrepresentation of Ann(W ). Consider the annihilator Ann(X)
of X, which is a subrepresentation of Vπ̂ . Note that W ⊆ Ann(X) ⊆ Vπ̂ . But
since the pairing Vπ × Vπ̂ → C is nondegenerate, we have Ann(X) 6= Vπ̂ . Hence
W =Ann(X) by the irreducibility of Vπ̂/W. Hence the pairing Vπ ×Vπ̂→C gives
rise to a nondegenerate pairing

X × Vπ̂/W → C,

which is H invariant. This implies that X is canonically isomorphic to the repre-
sentation realized in the space

{〈 f,−〉 : f ∈ X},

where 〈 f,−〉 : Vπ̂/W →C is the functional given by ϕ 7→ 〈 f, ϕ〉. But this space is
independent of X. Hence X = Ann(W ), which shows Ann(W ) is irreducible.

Now let V be an irreducible subrepresentation of π |H and let f ∈ V be a fixed
nonzero vector. As above there exists a sufficiently large S, possibly (most likely)
different from the above one, such that the group K S fixes f . Again let {g1, . . . , gl}

be a complete set of representatives of H \G̃L(A)/K S, which is most likely different
from the one above. Then one can see

Vπ =
l∑

i=1

π(Hgi K S) f =
l∑

i=1

π(Hgi ) f.

Note that each space π(Hgi ) f gives rise to a representation of H, which is equiv-
alent to the gi twist of π(H) f . But π(H) f = V because V is a space of an
irreducible representation of H, and hence each π(Hgi ) f is irreducible.
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Let {gi1, . . . , giN } be the smallest subset of {g1, . . . , gl} such that

Vπ =
N∑

j=1

π(Hgi j ) f.

This is actually a direct sum because for each k ∈ {1, . . . , N }, if the intersection

π(Hgik ) f ∩
∑
j 6=k

π(Hgi j ) f,

which is a representation of H, is nonzero, then it is actually equal to π(Hgik ) f
by irreducibility, which contradicts to the minimality of the set {gi1, . . . , giN }. This
competes the proof. �

Next note that each element in Hi is of the form (hi , ξi ) for hi ∈GLri (F)GLri (A)

and ξi ∈ µn . As in [Takeda 2016, p. 215], we have the natural surjection

(3.10) H1× · · ·× Hk→ M(F)M̃ (n)(A)

given by the map ((h1, ξ1), . . . , (hk, ξk)) 7→ (h1 · · · hk, ξ1 · · · ξk). Then consider
the space

Vσ1 ⊗ · · ·⊗ Vσk

of functions on the direct product H1×· · ·×Hk , which gives rise to a representation
of the direct product H1×· · ·×Hk . But each element in Vσ , which is a function on
this direct product, descends to a function on M(F)M̃ (n)(A), which is “automorphic”
in the sense that it is left-invariant on M(F). (It should be mentioned that this
is not as immediate as it looks, especially due to some issues on cocycles. See
[Takeda 2016, Proposition 5.2] for details.) If ϕi ∈ Vσi for i = 1, . . . , k, we denote
this function by

ϕ1⊗̃ · · · ⊗̃ϕk,

and denote the space generated by those functions by Vσ . We call each function in
Vσ an “automorphic form on M(F)M̃ (n)(A)”. The group M(F)M̃ (n)(A) acts on
Vσ by right-translation, and denote this representation by σ . We define

σ1⊗̃ · · · ⊗̃σk := σ.

Proposition 3.11. With the above notation, σ is completely reducible. Further, if
all of π1, . . . , πk are unitary, so is σ .

Proof. Each σi is completely reducible by Proposition 3.9. Hence one can see σ is
completely reducible. If π1, . . . , πk are unitary and each σi is a subrepresentation
of πi |Hi , the unitary structure on πi descends to σi . Hence one can define a unitary
structure on σ1⊗ · · ·⊗ σk , which descends to σ . �
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Now just as we did for the local case, consider the smooth induced representation

(3.12) 5=5(π1, . . . , πk) := IndM̃(A)
M(F)M̃ (n)(A)

σ.

Then we have the obvious map

(3.13) IndM̃(A)
M(F)M̃ (n)(A)

σ →A(M̃), f 7→ f̃

where f̃ is defined by

f̃ (m)= f (m)(1) for m ∈ M̃(A)

and A(M̃) is the space of automorphic forms on M̃(A). Further this map is one-to-
one, and one can identify 5 as a subspace of A(M̃), namely we have

5⊆A(M̃).

Proposition 3.14. If all of π1, . . . , πk are cuspidal, then 5, viewed as a subspace
of A(M̃), is in the space of cusp forms. If all of π1, . . . , πk are realized in the
spaces of square integrable automorphic forms, then 5 is also in the space of
square integrable automorphic forms. Also if all of π1, . . . , πk are unitary, so is 5.

Proof. The proofs for the first two parts (cuspidality and square-integrability) are
simple modifications of the proofs of Theorems 5.12 and 5.13 of [Takeda 2016].
But let us repeat the key points. For this purpose, note that for f ∈5 and m ∈ M̃(A),
we have f (m)∈ Vσ , and hence f (m) is a sum of functions of the form ϕ1⊗̃ · · · ⊗̃ϕk ,
where each ϕi is a restriction of a function in Vπi to Hi .

Assume that π1, . . . , πk are cuspidal, and N := N1 × · · · × Nk is a unipotent
radical of a parabolic of M, where each Ni is a unipotent radical of a parabolic
of GLri . We view N (A) as a subgroup of M̃(A) via the splitting N (A)→ M̃(A).
Noting that N (A)⊆ M(F)M̃ (n)(A), we have∫

N (F)\N (A)
f̃ (nm) dn =

∫
N (F)\N (A)

f (nm)(1) dn

=

∫
N (F)\N (A)

f (m)(n) dn

=

∑∫
N (F)\N (A)

(ϕ1⊗̃ · · · ⊗̃ϕk)(n) dn

=

∑∫
N (F)\N (A)

ϕ1(n) · · ·ϕk(n) dn

=

∑∫
N1(F)\N1(A)

ϕ1(n1) dn1 · · ·

∫
Nk(F)\Nk(A)

ϕk(nk) dnk

= 0,

where the last equality follows from the cuspidality of the ϕi .
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Next let us show the square integrability. By [Takeda 2016, Lemma 5.17], it
suffices to show that ∫

Z (n)M(A)M(F)\M(A)

| f̃ (m)|2 dm <∞

for each f̃ ∈5, where

Z (n)M(A) =

{(
an

1 Ir1 . . .
an

k Irk

)
: ai ∈ A×

}
.

But∫
Z (n)M(A)M(F)\M(A)

| f̃ (m)|2 dm

=

∫
Z (n)M(A)M(F)M

(n)(A)\M(A)

∫
Z (n)M(A)M

(n)(F)\M (n)(A)

| f̃ (m′m)|2 dm′ dm

=

∫
Z (n)M(A)M(F)M

(n)(A)\M(A)

∫
Z (n)M(A)M

(n)(F)\M (n)(A)

| f (m′m)(1)|2 dm′ dm

=

∫
Z (n)M(A)M(F)M

(n)(A)\M(A)

∫
Z (n)M(A)M

(n)(F)\M (n)(A)

| f (m)(m′)|2 dm′ dm,

Note that the outer integral is over a compact set, and hence we only need to show
the convergence of the inner integral. But this follows from the square integrability
of the function f (m) ∈ Vσ as an “automorphic form on M(F)M̃ (n)(A)”.

Finally, assume π1, . . . , πk are unitary. By Proposition 3.11, we know σ is
unitary. But by Lemma 2.11, we know the induction defining 5 is a compact
induction, which makes 5 unitary. �

Remark 3.15. In the above proof for square integrability, we implicitly used the
fact that the group M(F)Z (n)M(A)M

(n)(A) is closed, which can be shown by the same
argument as Proposition 2.14. This justifies the existence of the quotient measure
for Z (n)M(A)M(F)M

(n)(A)\M(A). The author has to admit that this subtle point was
not addressed in the proof of [Takeda 2016, Theorem 5.13]. Also there we, for
some reason, did not realize that the group Z (n)M(A)M(F)M

(n)(A)\M(A) is compact
when writing our previous paper, which made the proof there unnecessarily long.

We would like to have that the representation 5=5(π1, . . . , πk) is completely
reducible, as in the local case. And this is immediate if π1, . . . , πk are cuspidal
because then 5 is in the space of cusp forms. We do not know if this is true in
general, but the following formulation is enough for our purposes:



216 SHUICHIRO TAKEDA

Proposition 3.16. Let τ ⊆ σ be an irreducible subspace. Then the space

IndM̃(A)
M(F)M̃ (n)(A)

τ

has an irreducible subrepresentation. Hence 5 has an irreducible subrepresenta-
tion.

Proof. In this proof, let us write H = M(F)M̃ (n)(A). First note that since σ is
completely reducible by Proposition 3.9, an irreducible τ ⊆ σ always exists. Let
ϕ ∈ Vτ be nonzero. Since π1, . . . , πk are smooth, there exists a finite set of places
such that ϕ is fixed by the group H∩K S, where K S

=
∏
v /∈S M(OFv ). Let g1, . . . , gl

be a complete set of representatives of the double cosets H \ M̃(A)/K S, which, we
know, is finite by Lemma 2.11, where we assume g1 = 1. Hence each vector in
IndM̃(A)

H τ fixed by K S is completely determined by its values at g1, . . . , gl . With
this said, let us define an element f : M̃(A)→ Vτ in IndM̃(A)

H τ by setting

f (hgi k)=
{
τ(h)ϕ if i = 1,
0 otherwise,

where h ∈ H and k ∈ K S. This is well defined because ϕ is fixed by H ∩ K S,
and has the property that f (hm) = τ(h) f (m) for all h ∈ H and m ∈ M̃(A). To
show f is indeed in IndM̃(A)

H τ , we need to show that f is smooth. This can be
checked at each v by viewing M̃(Fv) as a subgroup of M̃(A) as in (2.7) (or its
M̃(A) analogue). Namely for each v /∈ S, clearly f is fixed by M(OFv ) and hence
f is smooth at v. If v is Archimedean, then since the Lie algebra of M̃(Fv) is
the same as that of M̃ (n)(Fv), the smoothness follows from that of ϕ. Finally let
v ∈ S be a non-Archimedean place in S. Then by the smoothness of ϕ, there is
an open compact subgroup U of M̃ (n)(Fv). Since M̃ (n)(Fv) is an open subgroup
of M̃(Fv), U is also an open compact subgroup of M̃(Fv). Then one can see that
the intersection of all g−1

i Ugi , which is also an open compact subgroup of M̃(Fv),
fixes f . Hence f is smooth and indeed in IndM̃(A)

H τ .
Now consider the space 5(M̃(A)) f generated by f . Then we can write

5(M̃(A)) f =
l∑

i=1

5(Hgi ) f,

where each space 5(Hgi ) f is H invariant and hence a subrepresentation of
5(M̃(A)) f |H . Now to prove the proposition, it suffices to show that 5(Hgi ) f is
irreducible, because, then, 5(M̃(A)) f |H has only finite length, and hence a fortiori
5(M̃(A)) f is of finite length, which implies that 5(M̃(A)) f has an irreducible
subrepresentation. Moreover, one can see that, as abstract representations, each
5(Hgi ) f is equivalent to the gi twist of 5(H) f . Hence it suffices to show that
5(H) f is irreducible.
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To show each 5(H) f is irreducible, consider the evaluation map at 1, namely

5(H) f → τ, f ′ 7→ f ′(1)

for f ′ ∈5(H) f , which is H -intertwining. Since f (1)= ϕ 6= 0, this map is nonzero.
But note that each nonzero f ′ is supported on HK S, which implies f ′(1) 6= 0
for all nonzero f ′ ∈ 5(H) f . Therefore 5(H) f ∼= τ , which shows 5(H) f is
irreducible. �

Now as in the local case, 5(π1, . . . , πk) essentially contains all the possible
metaplectic tensor products. To see it, we need to carry out a construction analogous
to the local metaplectic tensor product of Mezo by taking the central character into
account. Namely, we now need to consider an irreducible subrepresentation of
σ and extend it to a representation of ZG̃Lr (A)

M(F)M̃ (n)(A) by letting the center
ZG̃Lr

(A) act as a character.
First note that since σ is completely reducible by Proposition 3.11, it has an

irreducible subrepresentation
τ ⊆ σ.

Fix such τ from now on. We need

Lemma 3.17. For each irreducible τ ⊆ σ , the abelian group

ZG̃Lr (A)
∩M(F)M̃ (n)(A)

acts as a character, which we denote by ωτ .

Proof. By Proposition 3.16, there exists an irreducible subrepresentation π of
IndM̃(A)

M(F)M̃ (n)(A)
τ . Let ω be the central character of π . Now by Frobenius reciprocity

we have an M(F)M̃ (n)(A)-intertwining map π→ τ , which shows that the group
ZG̃Lr (A)

∩M(F)M̃ (n)(A) acts via the character ω on τ . �

Remark 3.18. Of course, if τ is unitary, which is the case if π1, · · · , πk are, then
τ actually has a central character because M(F)M̃ (n)(A) is locally compact. But
the author does not know if τ admits a central character in general.

By the “automorphy” of each element in Vτ , we can see that the character ωτ in
the above lemma is “automorphic” in the sense that

ωτ (γ z)= ωτ (z)

for all z ∈ ZG̃Lr (A)
∩ M(F)M̃ (n)(A) and γ ∈ M(F)∩ (ZG̃Lr (A)

∩ M(F)M̃ (n)(A)).
Then we can find a “Hecke character” ω on ZG̃Lr (A)

by extending ωτ ; namely ω is
a character on ZG̃Lr (A)

such that

ω(z)= ωτ (z) for all z ∈ ZG̃Lr (A)
∩M(F)M̃ (n)(A).
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Such ω always exists because both ZG̃Lr (A)
and ZG̃Lr (A)

∩M(F)M̃ (n)(A) are locally
compact abelian groups. Also note that any such ω is indeed a “Hecke character”
in the sense that

ω(γ z)= ω(z)

for all z ∈ ZG̃Lr (A)
and γ ∈ GLr (F)∩ ZG̃Lr (A)

, simply because

GLr (F)∩ ZG̃Lr (A)
⊆ ZG̃Lr (A)

∩M(F)M̃ (n)(A).

For each f ∈ Vτ , which is a function on M(F)M̃ (n)(A), we can extend it to a
function

fω : ZG̃Lr (A)
M(F)M̃ (n)(A)→ C

by

fω(zm)= ω(z) f (m) for all z ∈ ZG̃Lr
(A) and m ∈ M(F)M̃ (n)(A).

This is well defined because of our choice of ω, and is considered as an “automorphic
form on the group ZG̃Lr (A)

M(F)M̃ (n)(A)”. We define

Vτω := { fω : f ∈ Vτ }.

The group ZG̃Lr (A)
M(F)M̃ (n)(A) irreducibly acts on this space, giving rise to an

“automorphic representation” τω of ZG̃Lr (A)
M(F)M̃ (n)(A). As abstract representa-

tions, we have

(3.19) τω ∼= ωτ

where by ωτ we mean the representation of the group ZG̃Lr (A)
M(F)M̃ (n)(A) ex-

tended from τ by letting ZG̃L(A) act via the character ω.
As we did before, let us consider the smooth induced representation

5(τω) := IndM̃(A)
ZG̃Lr (A)M(F)M̃

(n)(A)
τω.

Note that we have the obvious inclusion

IndM̃(A)
ZG̃Lr (A)M(F)M̃

(n)(A)
τω ↪→ IndM̃(A)

M(F)M̃ (n)(A)
σ,

which allows us to view 5(τω) as a subrepresentation of 5 realized in the space of
automorphic forms on M̃(A), namely

5(τω)⊆5⊆A(M̃).

Then we have

Proposition 3.20. The representation 5(τω) has an irreducible subrepresentation.

Proof. This can be proven identically to Proposition 3.16. �
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Finally, we can define our metaplectic tensor product as follows.

Definition 3.21. Keeping the above notations, let πω ⊆ 5(τω) be an irreducible
subrepresentation. Then we write

πω = (π1⊗̃ · · · ⊗̃πk)ω

and call it a metaplectic tensor product of π1, . . . , πk with respect to the character ω.

The definition of metaplectic tensor product along with Proposition 3.14 imme-
diately implies the following.

Proposition 3.22. If all of π1, · · · , πk are cuspidal (alternatively, unitary, or
square integrable modulo center), then so is (π1⊗̃ · · · ⊗̃πk)ω.

This πω is precisely the metaplectic tensor product we want:

Theorem 3.23. The representation πω constructed above has the desired local-
global compatibility. Namely if we write πω = ⊗̃

′

vπω,v, then for each v we have

πω,v = (π1,v⊗̃ · · · ⊗̃πk,v)ωv .

Thus πω is unique up to equivalence, and depends only on π1, . . . , πk and ω.

Proof. Note that the uniqueness assertion follows from the corresponding local
statement that the local metaplectic tensor product only depends on π1,v, . . . , πk,v

and ωv. Hence we have only to show the local-global compatibility.
First, note that, since πω⊆ IndM̃(A)

ZG̃Lr (A)M(F)M̃
(n)(A)

τω, we have the natural surjection

πω|ZG̃Lr (A)M(F)M̃
(n)(A)→ τω.

Recall that as abstract representations, we have τω ∼= ωτ , where τ is an irreducible
representation of M(F)M̃ (n)(A). So by restricting further down to ZG̃Lr (A)

M̃ (n)(A),
we have

πω|ZG̃Lr (A) M̃
(n)(A)→ ωτ |ZG̃Lr (A) M̃

(n)(A).

Now by Lemma A.1 in the Appendix, πω|ZG̃Lr (A) M̃
(n)(A) is completely reducible.

Hence ωτ |ZG̃Lr (A) M̃
(n)(A) is completely reducible. Let

ωπ (n) ⊆ τω|ZG̃Lr (A) M̃
(n)(A)

be an irreducible subrepresentation, where π (n) is an irreducible representation of
M̃ (n)(A). By complete reducibility, this is also a quotient, and hence we have a
surjection

πω|ZG̃Lr (A) M̃
(n)(A)→ ωπ (n).
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Recall that τ is realized as a space of “automorphic forms on M(F)M̃ (n)(A)”
and is written as

Vτ = Vτ1⊗̃ · · · ⊗̃Vτk ,

where each Vτi is a space of restrictions of automorphic forms in the space Vπi . By
the automorphy, one can see that

τω|ZG̃Lr (A) M̃
(n)(A) = τω‖ZG̃Lr (A) M̃

(n)(A).

Hence we have
Vπ (n) = V

π
(n)
1
⊗̃ · · · ⊗̃V

π
(n)
k
,

where V
π
(n)
i
⊆ Vτi for each i , and indeed we have

π
(n)
i ⊆ τi |G̃L(n)ri (A)

= τi‖G̃L(n)ri (A)
⊆ πi‖G̃L(n)ri (A)

.

Therefore we can write

ωπ (n) = ⊗̃
′

vωv(π
(n)
1,v ⊗̃ · · · ⊗̃π

(n)
k,v ),

where ωv(π
(n)
1,v ⊗̃ · · · ⊗̃π

(n)
k,v ) is the irreducible representation of ZG̃Lr (Fv)M̃

(n)(Fv)
constructed from π

(n)
1,v , . . . , π

(n)
k,v as is done for the local metaplectic tensor product.

Then if we write

πω =
⊗̃
v

′

πω,v,

where πω,v is an irreducible representation of M̃(Fv), we have the surjection(⊗̃
v

′

πω,v

)
|ZG̃Lr (A) M̃

(n)(A)→

⊗̃
v

′

ωv
(
π
(n)
1,v ⊗̃ · · · ⊗̃π

(n)
k,v

)
.

Hence by Lemma 5.5 of [Takeda 2016], we conclude that at each place v, the rep-
resentation ωv

(
π
(n)
1,v ⊗̃ · · · ⊗̃π

(n)
k,v

)
is a quotient of πω,v|ZG̃Lr (Fv) M̃

(n)(Fv). By Frobenius
reciprocity, we have

πω,v ⊆ IndM̃(Fv)
ZG̃Lr (Fv) M̃

(n)(Fv)
ωv
(
π
(n)
1,v ⊗̃ · · · ⊗̃π

(n)
k,v

)
.

Thus by the definition of local metaplectic tensor product, we have

πω,v = (π1,v⊗̃ · · · ⊗̃πk,v)ωv .

Hence we have the desired local-global compatibility. �

Remark 3.24. With the theorem, we can say that the notation (π1⊗̃ · · · ⊗̃πk)ω is
unambiguous in the sense that it only depends on π1, . . . , πk and ω as long as we
consider the metaplectic tensor product as an equivalence class of representations,
which we usually do.
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This theorem immediately implies the following.

Corollary 3.25. For fixed ω, all the irreducible subrepresentations of

IndM̃(A)
ZG̃Lr (A)M(F)M̃

(n)(A)
τω

are equivalent.

Next we will show that 5(π1, . . . , πk) contains all the possible metaplectic
tensor products of π1, . . . , πk . For this purpose, let us define

�=�(π1,...,πk) := {ω :ω is a Hecke character on ZG̃Lr (A)
which appears in σ },

where we say “ω appears in σ” if there exists a nonzero function ϕ ∈ σ such that

(3.26) ϕ(zm)= ω(z)ϕ(m)

for all z ∈ ZG̃Lr (A)
∩M(F)M̃ (n)(A) and m ∈ M(F)M̃ (n)(A).

We need

Proposition 3.27. Let ω ∈� be as above, i.e., ω appears in σ . Then there exists a
metaplectic tensor product πω = (π1⊗̃ · · · ⊗̃πk)ω such that πω ⊆5.

Proof. Since ω appears in σ , there exists ϕ ∈ Vσ with the property (3.26). Con-
sider the space σ(M(F)M̃ (n)(A))ϕ generated by ϕ inside Vσ . Because each
z ∈ ZG̃Lr (A)

∩ M(F)M̃ (n)(A) is in the center of M(F)M̃ (n)(A), one can see that
σ(z)ϕ′=ω(z)ϕ′ for all ϕ′∈σ(M(F)M̃ (n)(A))ϕ. Hence if we pick up an irreducible
τ ⊆σ(M(F)M̃ (n)(A))ϕ, we can extend it to τω, and an irreducible subrepresentation
of IndM̃(A)

ZG̃Lr (A)M(F)M̃
(n)(A)

τω is the desired metaplectic tensor product. �

With this proposition, we can state the global analogue of Proposition 3.5 as
follows:

Proposition 3.28. First we have the decomposition

5(π1, . . . , πk)=
⊕
τ

m(τ ) IndM̃(A)
M(F)M̃ (n)(A)

τ,

where the sum is over all the equivalence classes τ ⊆ σ and m(τ ) is the positive
multiplicity of τ in σ . Further for each fixed τ , let

�(τ) :=
{
ω ∈� : ω|ZG̃Lr (A)∩M(F)M̃ (n)(A) = τ |ZG̃Lr (A)∩M(F)M̃ (n)(A)

}
.

Then we have

IndM̃(A)
M(F)M̃ (n)(A)

τ ⊇
⊕
ω∈�(τ)

IndM̃(A)
ZG̃Lr (A)M(F)M̃

(n)(A)
τω ⊇

⊕
ω∈�(τ)

m(τ,ω)(π1⊗̃···⊗̃πk)ω,

where m(τ, ω) is the positive multiplicity.
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Proof. The proposition can be proven in the same way as the local case. Yet, we
should mention that unlike the local case, we do not seem to know the precise
information on the multiplicities. �

From the proposition, the following is immediate.

Theorem 3.29. We have

5(π1, . . . , πk)⊇
⊕
ω∈�

m(ω)(π1⊗̃ · · · ⊗̃πk)ω,

where m(ω) is the multiplicity of (π1⊗̃ · · · ⊗̃πk)ω. Also if all of π1, . . . , πk are
cuspidal, then the inclusion is actually an equality.

Proof. The first part is obvious from the above proposition. The second part follows
from Proposition 3.14 because if 5 is in the cuspidal spectrum, it is completely
reducible. �

Let us note that if we know the multiplicity-one property for the group M̃(A), we
could set m(ω)= 1. Yet, the author does not know if the multiplicity-one property
holds even for the cuspidal spectrum.

Restriction to a smaller Levi. As we did for the local case, we will discuss the
restriction of our metaplectic tensor products to a smaller Levi M̃I , where MI is as
in (2.4). Recall

σ = σ1⊗̃ · · · ⊗̃σk,

whose space Vσ is essentially identified with Vσ1 ⊗ · · ·⊗ Vσk , which is a space of
functions on the direct product H1× · · ·× Hk . Hence if we let

σI := σi1⊗̃ · · · ⊗̃σil ,

one can see that if ϕ ∈ Vσ , we have ϕ|MI (F)M̃
(n)
I (A)

∈ VσI . Indeed, we have an

MI (F)M̃
(n)
I (A)-intertwining surjection

σ → σI , ϕ 7→ ϕ|MI (F)M̃
(n)
I (A)

.

In other words, we have σI = σ‖MI (F)M̃
(n)
I (A)

.
Now we can prove

Theorem 3.30. For each πω = (π1⊗̃ · · · ⊗̃πk)ω ⊆5(π, . . . , πk), we have

πω‖M̃I (A)
⊆

⊕
ω′∈�I

m(ω′)(πi1⊗̃ · · · ⊗̃πil )ω′,

where �I =�(πi1, · · · , πik ) is defined analogously to �.
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Proof. Let us view πω as a subspace of the induced space of (3.12). Then we have
the commutative diagram

πω

��

⊆ IndM̃(A)
M(F)M̃ (n)(A)

σ

��

� � // A(M̃)

��

πω‖M̃I (A)
⊆ IndM̃I (A)

MI (F)M̃
(n)
I (A)

σI
� � // A(M̃I )

where all the vertical arrows are restriction of functions and the hooked arrow
on the top is the “automorphic realization map” as in (3.13), and the one on the
bottom is its analogue for M̃I . By Lemma A.1, we know that πω|M̃I (A)

is completely
irreducible, and hence so is πω‖M̃I (A)

. Note that every irreducible subrepresentation
of IndM̃I (A)

MI (F)M̃
(n)
I (A)

σI is a metaplectic tensor product of πi1, . . . , πil with respect

to some ω′. Hence the theorem follows by identifying IndM̃I (A)

MI (F)M̃
(n)
I (A)

σI with a

subspace of A(M̃I ). �

Other properties. In [Takeda 2016], a couple of other properties of metaplectic
tensor product are discussed. To be precise, they have the expected behavior under
the Weyl group action and the compatibility with parabolic induction, which are,
respectively, Theorems 5.19 and 5.22 in that work. But both of them follow from the
corresponding local statements, and hence they also hold in our new construction.

It should also be mentioned that recently it has been shown by W. T. Gan [2016]
that the metaplectic tensor product can be interpreted as an instance of Langlands
functoriality by using the L-group formalism of covering groups developed by
Weissman. (See [Weissman 2016; Gan and Gao 2014] for this formalism.) This
shows that the construction of the metaplectic tensor product is indeed a natural one.

Some remarks on past literature. The notion of metaplectic tensor product has
been implicitly used in many of the past works on automorphic forms on G̃Lr (A),
especially when one would like to construct Eisenstein series on G̃Lr (A). But there
are various discrepancies in the past literature in this subject, which, we believe,
was due to the lack of a foundation on the metaplectic tensor product. In this final
subsection, let us briefly discuss some of the previous works and how they can be
reconciled with the theory developed in this paper.

The first work that considered Eisenstein series on G̃Lr (A) is, of course, the
important work of Kazhdan and Patterson [1984]. There they only considered
those Eisenstein series which are induced from the Borel subgroup B. Namely
they only considered the case M = GL1× · · · ×GL1. In this case, one can show
that the group ZG̃Lr (A)

M(F)M̃ (n)(A) is a maximal abelian subgroup of M̃ , and
accordingly, from the outset they considered a character on ZG̃Lr (A)

M(F)M̃ (n)(A)
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instead of starting with characters on G̃L1(A) (see their Section II.1). Yet, one can
see that this is the same as constructing some τω in our notation. Then Kazhdan
and Patterson considered the induced representation IndG̃Lr (A)

ZG̃Lr (A)M(F)M̃
(n)(A)NB

τω, to
construct Eisenstein series. By inducing in stages,

IndG̃Lr (A)

ZG̃Lr (A)M(F)M̃
(n)(A)NB

τω = IndG̃Lr (A)

B̃(A)
IndM̃(A)NB

ZG̃Lr (A)M(F)M̃
(n)(A)NB

τω,

and hence the metaplectic tensor product that is implicitly used in [Kazhdan and
Patterson 1984] is our 5(τω) = IndM̃(A)

ZG̃Lr (A)M(F)M̃
(n)(A) τω. Further the fact that

ZG̃Lr (A)
M(F)M̃ (n)(A) is maximal abelian implies that 5(τω) is irreducible (see

Section 0.3 in the same reference).
The next important set of works on this subject is probably the one by Bump and

Ginzburg [1992] on the symmetric square L-function, and the work by Banks
[1997] on the twisted case for GL3, both of which dealt with only the case
n = 2. There are two main parabolic subgroups considered there: the Borel
and the (r − 1, 1)-parabolic. For the Borel, they use the same formulation as
[Kazhdan and Patterson 1984]. For the (r − 1, 1)-parabolic, they first start with a
representation of G̃Lr−1(A) viewed as a subgroup of G̃Lr (A) and they extend it to a
representation of ZG̃Lr (A)

G̃Lr−1(A) by letting ZG̃Lr (A)
act by an appropriate charac-

ter. Now if r is odd (and n = 2), this gives a representation of G̃Lr−1(A)×̃G̃L1(A)

because ZG̃Lr (A)
G̃Lr−1(A)= G̃Lr−1(A)×̃G̃L1(A). But if r is even, we only have

ZG̃Lr (A)
G̃Lr−1(A)= G̃Lr−1(A)×̃G̃L(2)1 (A). Then, in [Bump and Ginzburg 1992],

they induced the representation of G̃Lr−1(A)×̃G̃L(2)1 (A) to G̃Lr−1(A)×̃G̃L1(A)

(see the middle of page 159 in the same reference.) However, it seems to the author
that one cannot show the automorphy of this induced representation if it is simply
induced from G̃Lr−1(A)×̃G̃L(2)1 (A), and probably this is another technical issue
to be addressed in that work. At any rate, one can see that at least if r is odd
this construction is also obtained as our metaplectic tensor product, say, by first
restricting to ZG̃Lr (A)

M(F)M̃ (n)(A) and then inducing one of the constituents to
M̃(A). It should be also mentioned that in [Bump and Ginzburg 1992; Banks 1997]
various properties of metaplectic tensor product, such as the behavior of metaplectic
tensor product upon restriction to a smaller Levi, are implicitly used.

From those two works, the author generalized in [Takeda 2014], in which the
parabolic subgroups considered are mainly (2, . . . , 2) and (r − 1, 1) parabolic.
For the (2, . . . , 2)-parabolic, the inducing representation for each G̃L2 factor is
only the Weil representation, and hence by using the Schrödinger model for G̃L(2)2 ,
we explicitly constructed what we called the “Weil representation of M̃P”. One
can see that this is also an instance of our metaplectic tensor product, because
for the case at hand we have ZG̃Lr (A)

⊆ M̃ (n)(A), which means that the central
character does not play any role in the formation of metaplectic tensor product
and hence the metaplectic tensor product only depends locally on restrictions to
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M̃ (n)(Fv). For the (r−1, 1)-parabolic case in [Takeda 2014], however, depending on
the parity of r , we took a different approach. For r odd, we did just as in [Bump and
Ginzburg 1992; Banks 1997]. For r even, we directly constructed a representation
of the Levi G̃Lr−1×̃G̃L1 as residues of Eisenstein series induced from the Borel,
instead of starting with representations of G̃Lr−1 and G̃L1 separately. One can
show that this construction is the same as our metaplectic tensor product by using
the compatibility of our metaplectic tensor product with parabolic induction as
discussed in the previous subsection.

Besides those applications to symmetric square L-functions, the works of Suzuki
[1997; 1998] should be mentioned. In the first of these works, he considered the
(r1, r2)-parabolic for r1+r2= r . To construct an automorphic form on the Levi part,
he uses what he calls “partial Eisenstein series” (see his Sec. 5.4). This construction
is essentially the same as the r = even case of [Takeda 2014] mentioned above,
and again our metaplectic tensor product encompasses this construction of Suzuki.
Also in [Suzuki 1998], Eisenstein series induced from the (`, . . . , `)-parabolic are
considered. There it seems that what he considers is our 5, namely the whole
induced representation IndM̃(A)

M(F)M̃ (n)(A)
σ . Yet, it should be mentioned that first of

all he assumes that each automorphic representation of G̃L`(A) is already induced
from GL`(F)G̃L(n)` (A) (page 750 of that work), and second of all it is claimed,
without proof, that the representation on the Levi thus constructed is irreducible
with local-global compatibility. (See the beginning of [Suzuki 1998, p. 752].) At
any rate, since no proofs or no detailed explanations are given for his assertions, it
is not completely clear to the author that what kind of construction is carried out
there and even that his construction is legitimate.

Finally, more recently Brubaker and Friedberg [2015] considered metaplectic
Eisenstein series not just on the group G̃Lr but on other covering groups in general.
Although they use the language of “S-integers”, what they use to construct repre-
sentations of the Levi amounts to our5, the whole induced representation. Also the
same convention is used in the even more recent [Friedberg and Ginzburg 2016].

Probably which convention to use might be a matter of taste or the nature of the
problem one works on. But it seems to the author that for the purpose of constructing
Eisenstein series, using the whole induced space 5, which contains all the meta-
plectic tensor products, is an easy choice, especially because then, the inducing data
is essentially the same as the usual tensor product. One should, however, be careful
that usually the representation 5=5(π1, . . . , πk) is reducible. Hence for example
we do not know if we can express it as a restricted tensor product as 5=

⊗̃′
v5v,

which is often crucial when one would like to find out analytic properties of
intertwining operators. Therefore, it might be more convenient to pick an irreducible
subrepresentation πω⊆5, although this requires one to take care of the dependence
of πω on ω. Nonetheless, probably many of the important properties (especially
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analytic ones) of Eisenstein series constructed from different πω might usually
be independent of ω, because, after all, the characters ω differ by characters on
ZG̃L(A)∩M(F)M̃ (n)(A)\ZG̃Lr (A)

, which is compact, and hence it seems unlikely that
a difference in a character on a compact group affects analytic properties of Eisen-
stein series. Indeed, for example, in [Takeda 2015] the author studied some analytic
properties of some Eisenstein series using the formalism of metaplectic tensor prod-
uct of [Takeda 2016], and all the results there hold independently of the choice of ω.

Appendix: A lemma on complete reducibility

We prove the result used on pages 219 and 223.

Lemma A.1. Let π̃ =
⊗̃′

vπv be an irreducible admissible representation of M̃(A).
Let H̃ be a group of the form H̃ =

∏̃′
vHv, where Hv ⊆ M̃(Fv) and the re-

stricted direct product is with respect to the group Hv ∩ M(OFv ). (The groups
M̃ (n)(A), ZG̃Lr (A)

M̃ (n)(A) and M̃I (A) are such examples of H̃ .) Further assume
that for each v, the restriction πv|Hv is completely reducible. Then the restriction
π̃ |H̃ is completely reducible.

Proof. We argue “semilocally” using the definition of the restricted metaplectic
tensor product π̃ =

⊗̃′
vπv. First note that the space of

⊗̃′
vπv is actually

⊗
′

v Vπv
(usual restricted tensor product) on which not only the group

∏̃′
v M̃(Fv), but also∏

′

v M̃(Fv) acts. Accordingly we set

π :=
⊗
v

′

πv (usual restricted tensor product),

H :=
∏
v

′

Hv (usual restricted direct product),

and it suffices to show that the restriction π |H is completely reducible.
Now let us recall the definition of

⊗
′

v πv . For almost all v, we choose a spherical
vector ξ ◦v ∈ πv. Let S be a sufficiently large finite set of places so that each πv is
spherical for v /∈ S. Let

πS =
⊗
v∈S

πv,

which gives a representation of
∏
v∈S M̃(Fv). For each S′⊇ S we have the inclusion

πS → πS′ by tensoring the chosen spherical vectors ξ ◦v for v ∈ S′ \ S. Then the
system {πS}S is a directed system and by definition

⊗
′

v πv = lim
−→

S

πS . For each S,
let us define HS :=

∏
v∈S Hv. Then one can see that

π |H = lim
−→

S

πS|HS
.

For each v, the restriction πv|Hv is completely reducible by our assumption.
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Hence let us fix the decomposition

πv|Hv =
⊕
iv∈Iv

πiv

for some finite indexing set Iv, where each πiv is irreducible. (We do not assume
that the restriction πv|Hv is multiplicity free, and hence this decomposition might
not be unique even up to ordering. So we “fix” the decomposition for each πv|Hv
once and for all.) We let

priv : πv→ πiv

be the projection map. Further we let

I ◦v := {iv ∈ Iv : priv (ξ
◦

v ) 6= 0}.

Note that if iv ∈ I ◦v then πiv is spherical in the sense that it contains a vector fixed by
Hv ∩M(OFv ). (The author does not know if I ◦v has only one element, and probably
it does have more than one in general. This makes the following argument a bit
delicate.) Let us define

IS =
∏
v∈S

Iv and I =
∏′

v
Iv =

{
i ∈

∏
v

Iv : iv ∈ I ◦v for almost all v
}
,

where for each i ∈ I, we denote its v-th component by iv . Namely I is the restricted
direct product of Iv with respect to I ◦v. For each i ∈ I, we write

iS := (iv)v∈S ∈ IS.

With this notation, we can write

πS|HS
=

⊕
i∈IS

πiS ,

where πiS =⊗v∈Sπiv .
Now for each i ∈ I, let us define

πi := lim
−→

S

πiS

by using priv (ξ
◦
v ) for our spherical vector for iv ∈ I ◦v. Note that each πi is an

irreducible representation of H. To prove the lemma, it suffices to show we have
an isomorphism

(A.2) lim
−→

S

πS|HS
∼=

⊕
i∈I

lim
−→

S

πiS ,

namely π |H ∼=
⊕

i∈I πi , which will show that π |H is completely reducible. To
show there is such an isomorphism, first note that for each S ⊆ S′, the following
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diagram commutes:

(A.3) πS|HS
//

��

πS′ |HS′

��⊕
iS∈IS

πiS
//
⊕

iS′∈IS′

πiS′

where the vertical arrows are actually an equality and the top horizontal arrow is
given by tensoring with ⊗v∈S′\Sξ

◦
v and the bottom horizontal arrow is given as

follows: for each iS ∈ IS , define a map

πiS → πiS ⊗

⊕
iS′\S∈IS′\S

πiS′\S
= πiS ⊗

⊗
v∈S′\S

⊕
iv∈Iv

πiv

by
viS 7→ viS ⊗

⊗
v∈S′\S

⊕
iv∈Iv

priv (ξ
◦

v ),

where recall that priv is the projection from πv to πiv . Then the bottom horizontal
arrow is given by combining all those maps for all the iS .

Next, one can see that for each S there is an obvious injection

(A.4)
⊕
i∈IS

πiS ↪→
⊕
i∈I

lim
−→

S

πiS ,

which makes the diagram⊕
iS∈IS

πiS

&&

//
⊕

iS′∈IS′

πiS′

xx⊕
i∈I

lim
−→

S

πiS

commute. This diagram and the diagram (A.3) together with the universal property
of lim
−→

S

πS|HS give a unique map

T : π |H = lim
−→

S

πS|HS
−→

⊕
i∈I

lim
−→

S

πiS =

⊕
i∈I

πi ,

which “commutes with the directed system”. This map is injective because each
ϕ ∈ π is in ϕ ∈ πS for some S, which maps to

⊕
i∈I πi via the map in (A.4), and

hence there is no kernel for T. Also one can see that T is surjective because if
ϕi ∈ πi , one can find S such that ϕi ∈ πiS , which comes from some vector πS under
the vertical map in (A.3). This completes the proof. �
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Remark A.5. As our last remark, let us mention that in [Takeda 2016, Lemma 5.1],
it is erroneously claimed that the complete reducibility of a unitary automorphic
representation of G̃Lr (A) to G̃L(n)r (A) follows from the admissibility and unitarity,
but actually the restriction to G̃L(n)r (A) is most likely not admissible, and hence the
argument in the proof there does not work. But the proof of the above lemma, we
hope, fixes the mistake.
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ON RELATIVE RATIONAL CHAIN CONNECTEDNESS
OF THREEFOLDS WITH ANTI-BIG CANONICAL DIVISORS

IN POSITIVE CHARACTERISTICS

YUAN WANG

Let X be a projective klt threefold over an algebraically closed field of positive
characteristic, and f : X → Y a morphism from X to a projective variety Y
of dimension 1 or 2. We study how bigness and relative bigness of −KX influ-
ences the rational chain connectedness of X and fibers of f , respectively. We
construct a canonical bundle formula and use it as well as the minimal model
program to prove two results in this context.

1. Introduction

It is widely recognized that the geometry of a higher-dimensional variety is closely
related to the geometry of rational curves on it. A classical result by Campana
[1992] and Kollár, Miyaoka and Mori [Kollár et al. 1992] says that smooth Fano
varieties are rationally connected in characteristic zero and are rationally chain
connected in positive characteristics. This was generalized in characteristic zero
in [Zhang 2006; Hacon and McKernan 2007]. More recently, using the minimal
model program of [Hacon and Xu 2015; Birkar 2016], Gongyo, Li, Patakfalvi,
Schwede, Tanaka and Zong [Gongyo et al. 2015a] proved that projective globally
F-regular threefolds in characteristic ≥ 11 are rationally chain connected and this
was later generalized to threefolds of log Fano type by Gongyo, Nakamura and
Tanaka [Gongyo et al. 2015b].

The main result of Hacon and McKernan is as follows:

Theorem 1.1 [Hacon and McKernan 2007, Theorem 1.2]. Let (X,1) be a log
pair, and let f : X→ S be a proper morphism such that −K X is relatively big and
−(K X +1) is relatively semiample. Let g : Y → X be any birational morphism.
Then the connected components of every fiber of f ◦g are rationally chain connected
modulo the inverse image of the locus of log canonical singularities of (X,1).

The author was supported in part by the FRG grant DMS-#1265261.
MSC2010: primary 14M22; secondary 14E30.
Keywords: rational chain connectedness, positive characteristic, minimal model program, weak
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In this paper we prove a theorem similar to Theorem 1.1 for morphisms from a
klt threefold to a variety of dimension ≥ 1. More precisely, we have

Theorem 3.1. Let X be a normal Q-factorial threefold over an algebraically closed
field k of characteristic ≥ 7 and (X, D) a klt pair. Let f : X → Z be a proper
morphism such that f∗OX = OZ , dim(Z) is 1 or 2, Z is klt, −K X is relatively
big, −(K X + D) is relatively semiample, and (Xz, Dz) is klt for general z ∈ Z. Let
g : Y → X be any birational morphism. Then the connected components of every
fiber of f ◦ g are rationally chain connected.

Motivated by Theorem 3.1, we construct a global version of rational chain
connectedness for threefolds.

Theorem 5.1. Let X be a projective threefold over an algebraically closed field k
of characteristic p > 0, f : X→ Y a projective surjective morphism from X to a
projective variety Y such that f∗OX =OY. Let D be an effective Q-divisor, and Xη
the geometric generic fiber of f . Assume that the following conditions hold:

(1) (X, D) is klt, −K X is big, and f-ample, K X+D ∼Q 0, and the general fibers
of f are smooth.

(2) p > 2/δ, where δ is the minimum nonzero coefficient of D.

(3) D = E + f ∗L where E is an effective Q-Cartier divisor such that p - ind(E),
(Xη, E |Xη) is globally F-split, and L is a big Q-divisor on Y.

(4) dim(Y ) is 1 or 2.

Then X is rationally chain connected.

Here ind(E) means the Cartier index of E .
The main ingredients of the proofs of Theorems 3.1 and 5.1 are the minimal

model program constructed in [Hacon and Xu 2015; Birkar 2016; Gongyo et al.
2015a]; some facts, especially [Gongyo et al. 2015a, Theorem 2.1]; some positivity
results [Patakfalvi 2014; Ejiri 2015]; a canonical bundle formula constructed in
Section 4 in the spirit of [Prokhorov and Shokurov 2009]. Note that condition (3)
in Theorem 5.1 is used in order to apply the result [Ejiri 2015, Theorem 1.1] to
deduce that −KY is big, and to apply Theorem 4.3 when dim Y = 2. This creates
enough rational curves on Y. Note that by [Ejiri 2015, Example 3.4], (Xη, E |Xη)
being globally F-split is equivalent to S0(Xη, E |Xη ,OXη)= H 0(Xη,OXη).

We note that although its proof is independent, Theorem 3.1 is implied by
[Gongyo et al. 2015b, Theorem 4.1], which was put on arXiv before this paper. The
proof of that result relies on the minimal model program in dimension 3 in positive
characteristic, which is only established in characteristic ≥ 7 so far. On the other
hand, Theorem 5.1 covers some cases in characteristic < 7. It does not rely on the
minimal model program and is not implied by [Gongyo et al. 2015b].
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2. Preliminaries

We work over an algebraically closed field k of characteristic p > 0.

Preliminaries on rational connected varieties and the minimal model program.

Definition 2.1. For a variety X and a Q-Weil divisor on X such that K X +1 is
Q-Cartier. Let f : Y → X be a log resolution of (X,1) and write

KY = f ∗(K X +1)+
∑

i

ai Ei

where Ei is a prime divisor. We say that (X,1) is

• sub-Kawamata log terminal (sub-klt for short) if ai >−1 for any i ;

• Kawamata log terminal (klt for short) if ai >−1 for any i and 1≥ 0;

• log canonical if ai ≥−1 for any i and 1≥ 0.

Definition 2.2. [Kollár 1996, IV.3.2] Suppose that X is a variety over k.

(1) We say that X is rationally chain connected (RCC) if there is a family of
proper and connected algebraic curves g :U→ Y whose geometric fibers have
only rational components and there is a cycle morphism u :U → X such that
u(2) :U ×Y U → X ×k X is dominant.

(2) We say that X is rationally connected (RC) if (1) holds and moreover the
geometric fibers of g in (1) are irreducible.

Proposition 2.3. Let X be a klt Q-factorial threefold over an algebraically closed
field k and char(k) ≥ 7. Let g : W → X be a log resolution and assume that
KW + E = g∗K X + B, where E and B are exceptional divisors and the coefficients
in E are all 1. Then relative minimal model for (W, E) over X exists. Denote this
process by

W =W0
f0
99KW1

f1
99K · · ·

fN−1
99K WN =W ′.

Then we actually have W ′ = X. Moreover if we have a morphism h : X→ Y such
that every fiber of h is RCC, then every fiber of h ◦ g is RCC.

Proof. The existence of this minimal model program is by [Gongyo et al. 2015a,
Theorem 3.2]. So we have a morphism g′ :W ′→ X and we want to show that g′ is
the identity. Denote the strict transform of E by E ′, then KW ′ + E ′ = g′∗K X + B ′

for some exceptional Q-divisor B ′. By construction of the minimal model program
we know that g′∗K X + B ′ is nef over X which means that B ′ is g′-nef and since
X is klt the support of B ′ is the whole exceptional locus of g′. So we can get that
B ′ = 0 by the negativity lemma, and since X is Q-factorial we will get W ′ = X .

The proof of the last statement follows the proof of Proposition 3.6 in the same
reference. Without loss of generality we can do a base change and assume that the
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base field k is uncountable. Define F in the following way: if fi is a divisorial
contraction, then let E0 = E , Ei+1 = fi,∗Ei , and F be an arbitrary component
of Ei ; if fi is a flip and C is any flipping curve then let F be a component of Ei

that contains C . Let KF +1F :=
(
KWi + Ei −

1
n (Ei − F)

)∣∣
F , where n� 0. By

assumption KWi + Ei −
1
n (Ei − F) is plt, then by adjunction KF +1F is klt, hence

by [Tanaka 2014, Theorem 14.4] F is Q-factorial. We also know that −(KWi + Ei )

is fi -ample by assumption, then −(KF +1F ) is ample. Moreover by [Prokhorov
2001, Corollary 2.2.8] the coefficients of 1F are in the standard set

{
1− 1

n

∣∣ n ∈N
}
.

Let F̃ be the normalization of F . Then by [Hacon and Xu 2015, Theorem 3.1] we
know that (F̃,1F̃ ) is strongly F-regular and by Theorem 4.1 from that reference
F is a normal surface.

Next we consider three cases.

Case 1: If fi is a divisorial contraction and the exceptional divisor is contracted to
a point, then since −(KF +1F ) is ample, by [Kawamata 1994, Lemma 2.2] F is a
rational surface, in particular it is rationally connected.

Case 2: If fi is a divisorial contraction and the exceptional divisor is contracted
to a curve, then let p : F→ B be the Stein factorization of fi |F . By assumption
−(KF +1F ) is fi -ample, so it is p-ample. Then for a general fiber D of p,

(KF + D) · D = (KF +1F + D−1F ) · D = (KF +1F ) · D−1F · D < 0.

Here D is reduced and irreducible by [Bădescu 2001, Theorem 7.1], hence by
[Tanaka 2014, Theorem 5.3] D ∼= P1. Therefore every component of every fiber of
fi is a rational curve.

Case 3: If fi is a flip, then let C be an arbitrary flipping curve. By assumption we
have (KF +1F ) ·C < 0, C2 < 0, and 0 ≤ coeffC 1F < 1, so (KF +C) ·C < 0.
Again by [op. cit., Theorem 5.3] C ∼= P1.

We denote a fiber of h over y ∈ Y by FX,y . There is a morphism from Wi to Y
for every i , and we denote the fiber of this morphism over y as FWi ,y . Then there is
a rational map FWi ,y 99K FWi+1,y . From the above Cases 1–3 we see that compared
to FWi ,y , there are only rational curves or a rational surface generated in FWi+1,y .
So the RCC-ness of FWi+1,y implies the RCC-ness of FWi ,y . By assumption FX,y is
RCC, so FW,y is RCC. �

Proposition 2.4. Let X be a klt Q-factorial threefold over an algebraically closed
field k and char(k)≥ 7. Let f : X→ Y be a morphism from X to a normal surface Y.
Suppose we run a K X -minimal model program and it terminates at g : X ′→ Y. If
every fiber of g is RCC then every fiber of f is RCC.

Proof. This can be easily deduced from Proposition 2.3 by taking a common
resolution of X and X ′. The proof of [Gongyo et al. 2015a, Proposition 3.6] works
as well. �
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Preliminaries on F-singularities. In this article, for a proper variety X, a Q-
divisor 1, and the line bundle M , we will use the concepts of strongly F-regular,
the non-F-pure ideal σ(X,1) and S0(X, σ (X,1)⊗M). The definitions of these
can be found in many papers related to F-singularities, e.g., [Hacon and Xu 2015].
For a pair (X,1) where 1 is a Q-Cartier divisor we also follow the definition of
globally F-split in [Ejiri 2015].

Lemma 2.5. Let X be a surface, D an effective Q-divisor on X , f : X → C a
morphism from X to a smooth curve C , and (Xc, Dc) is a strongly F-regular pair
for general c ∈ C. Assume that −K X is big, K X + D ∼Q 0, then C ∼= P1.

Proof. By Kodaira’s lemma we can write D ∼Q ε f ∗H + E where H is an ample
Q-divisor on C , 0< ε ∈Q, E is an effective Q-divisor on X and (Xc, Ec) is also
strongly F-regular for general c ∈ C (since Xc is a curve). Suppose that C is not
isomorphic to P1. We know that K X/C + E ∼Q f ∗(−KC − εH) is f -nef and
K Xc + Ec is semiample for general c ∈ C , so by [Patakfalvi 2014, Theorem 3.16],
K X/C + E = K X − f ∗KC + E is nef. Since we have assumed that g(C) > 0 we
have that K X + E is nef. However this is impossible since K X + E ∼Q −ε f ∗H
where H is ample and ε > 0. �

Weak positivity. Let Y be a nonsingular projective variety, F a torsion-free coherent
sheaf on Y. We take i : Ŷ → Y to be the biggest open subvariety such that F |Ŷ is
locally free. Let Ŝk(F) := i∗Sk(i∗F).

Definition 2.6 [Viehweg 1983, Definition 1.2]. We call F weakly positive, if there
is an open subset U ⊆ Y such that for every ample line bundle H on Y and every
positive number α there exists some positive number β such that Ŝα·β(F)⊗Hβ is
generated by global sections over U.

Lemma 2.7. Weakly positive line bundles are nef.

Proof. This easily follows from Definition 2.6. �

3. Relative rational chain connectedness

In this section we prove the following

Theorem 3.1. Let X be a normal Q-factorial threefold over an algebraically closed
field k of characteristic ≥ 7 and (X, D) a klt pair. Let f : X → Z be a proper
morphism such that f∗OX = OZ , dim(Z) is 1 or 2, Z is klt, −K X is relatively
big, −(K X + D) is relatively semiample, and (Xz, Dz) is klt for general z ∈ Z. Let
g : Y → X be any birational morphism. Then the connected components of every
fiber of f ◦ g are rationally chain connected.
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Remark 3.2. In Theorem 3.1, if dim Z = 2, by adjunction and a theorem of Tate
(see [Liedtke 2013, Theorem 5.1]) we have that the generic fiber of f is smooth.
So in this case the condition that (Xz, Dz) is klt for general z ∈ Z is not necessary.

Proof. First we observe that (Xz, Dz) being klt implies that Xz is normal (in
particular reduced) and irreducible.

Next we prove that if every fiber of f is RCC, then every fiber of f ◦ g is RCC.
We take a log resolution of Y and denote it by p : Y ′→ Y and let q = g ◦ p. If
KY ′ = q∗K X + B̃ then KY ′ − B̃ = q∗K X and the coefficients of −B̃ are < 1. Then
we can add another effective divisor to make all the coefficients 1, and we denote
this divisor by Ẽ . Now we run a relative (KY ′ + Ẽ)-minimal model program of Y ′

over X . By Proposition 2.3 we see that if every fiber of f is RCC then every fiber
of f ◦ g ◦ p is RCC, hence every fiber of f ◦ g is RCC.

Therefore it suffices to show that every fiber of f is RCC. We consider the cases
of dim(Z)= 2 and dim(Z)= 1, respectively.

Case 1: dim(Z)= 2. If dim(Z) = 2 then a general fiber of f being normal and
−K X being relatively big implies that a general fiber of f is a smooth rational curve.
Next we run a relative minimal model program over Z and denote this process as

X = X0
f0
99K X1

f1
99K · · ·

fN−1
99K Xn = X ′.

Since−K X is relatively big we end up with a Mori fiber space X ′
h
−→ Z ′

p
−→ Z where

Z ′ is also a surface. Then the general fibers of h are rational curves. Moreover
since p∗OZ ′ =OZ we know that p is birational.

Now we prove that h is equidimensional. Suppose that this is not the case, then
there is a fiber F̃ of h over a point z̃ ∈ Z ′ which contains a 2-dimensional irreducible
component. If F̃ is reducible then let F̃1 be a 2-dimensional component of F̃ and F̃2

another component which intersects F̃1. We can choose a curve C̃2 ⊆ F̃2 such that
F̃1 · C̃2 > 0. On the other hand if we take a general point z′ ∈ Z ′ then h−1(z′) is an
irreducible curve and h−1(z′) · F̃2 = 0. This contradicts the fact that ρ(X ′/Z ′)= 1.
If F̃ is irreducible, by Bertini’s theorem we have a very ample divisor H ⊂ X ′

such that H ∩ F̃ is an irreducible curve which we denote by C̃ . We do the Stein
factorization of h|H and denote the process as

H
h1
−→ Z ′′

h2
−→ Z ′,

then h1 is birational and C̃ is an exceptional curve of h1. After possibly replacing
Z ′′ by its normalization we can assume that Z ′′ is normal. Now F̃ · C̃ is equal
to C̃2, viewed as the self-intersection of C̃ in H, so by the negativity lemma it is
negative. On the other hand we can still take a general point z′ ∈ Z ′ as above such
that h−1(z′) · F̃ = 0. This also contradicts the fact that ρ(X ′/Z ′)= 1.
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Since h is equidimensional, by [Debarre 2001, Lemma 3.7] the components of
every fiber of h are rational curves. Then by Proposition 2.4 every fiber of f is
RCC.

Case 2: dim(Z)= 1. Without loss of generality we can do a base change and
assume that the base field k is uncountable. By passing to the normalization of Z
we can assume that Z is smooth. Then since every closed point of Z is a Cartier
divisor, every fiber of f is also Cartier, hence f is equidimensional.

We first show that the general fibers of f are rationally chain connected. Let F
be a general fiber of f . Since we assume that (F, D|F ) is klt, by adjunction

K X |F ≡num (K X + F)|F = KF +DiffF (0),

where DiffF (0) ≥ 0; see [Kollár 1992, Proposition-Definition 16.5]. Therefore,
−(KF +DiffF (0)) is big, hence −KF as well. As a result, κ(F)=−∞ and F is
birationally ruled by classification of surfaces. To prove that the general fibers of
f are RCC it suffices to prove that F is rational. By assumption −(KF + D|F )=
−(K X + D)|F is semiample, so there exists an effective Q-divisor H such that
H ∼Q −(KF + D|F ) and (F, D|F + H) is klt. We define 1 := D|F + H . Let
π : F ′ → F be a minimal resolution of (F,DiffF (0)), then F ′ maps to a ruled
surface F ′′ over a smooth curve B via a sequence of blowdowns and we denote the
morphism by ψ . The situation is as follows:

F

F ′

F ′′

B

π ψ

q

Since (F,1) is klt, by [Kollár and Mori 1998, Theorem 4.7] π and ψ only contract
copies of P1. So F is RCC if and only if F ′′ is RCC. Define 1′′ on F ′′ via

KF ′′ +1
′′
= ψ∗π

∗(KF +1).

Then (F,1) being klt implies that (F ′′,1′′) is klt.
We denote a general fiber of q by R. By construction R ∼= P1, so we know that

(R,1′′|R) is klt and hence strongly F-regular. Then by applying Lemma 2.5 on F ′′

we know that B = P1. So F is rational. Therefore we have proven that the general
fibers of f are RCC.

Since we have assumed that the base field k is uncountable, by [Kollár 1996,
Chapter IV, Corollary 3.5.2] we know that every fiber of f is RCC. �
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4. A canonical bundle formula for threefolds in positive characteristics

In this section following the idea of the proof of [Prokhorov and Shokurov 2009]
we construct a canonical bundle formula in characteristic p for a morphism from a
threefold to a surface, whose general fibers are P1. There are similar constructions
in [Cascini et al. 2015, 6.7; Das and Hacon 2016, Theorem 4.8].

Let M0,n be the moduli space of n-pointed stable curves of genus 0, let f0,n :

U0,n →M0,n be the universal family, and let P1,P2, . . . ,Pn be the sections of
f0,n which correspond to the marked points. Let dj ( j = 1, 2, . . . , n) be the rational
numbers such that 0< dj ≤ 1 for all j ,

∑
j dj = 2, and D =

∑
j djPj .

Lemma 4.1 [Das and Hacon 2016, Lemma 4.6; Kawamata 1997, Theorem 2].

(1) There exists a smooth projective variety U∗0,n , a P1-bundle g0,n : U∗0,n→M0,n ,
and a sequence of blowups with smooth centers

U0,n = U (1) σ2
−→ U (2) σ3

−→ · · ·
σn−2
−−→ U (n−2)

= U∗0,n

(2) Let σ : U0,n → U∗0,n be the induced morphism, and let D∗ = σ∗D. Then
KU0,n

+D− σ ∗(KU∗0,n +D∗) is effective.

(3) There exists a semiample Q-divisor L on M0,n such that

KU∗0,n +D∗ ∼Q g∗0,n(KM0,n
+L).

Definition 4.2. Let f : X→Y be a surjective proper morphism between two normal
varieties and K X + D ∼Q f ∗L , where D is a boundary divisor on X and L is a
Q-Cartier Q-divisor on Y. Let (X, D) be log canonical near the generic fiber of f ,
i.e., ( f −1U, D| f −1U ) is log canonical for some Zariski dense open subset U ⊆ Y.
We define

Ddiv :=
∑

(1− cQ)Q,

where Q ⊂ Z are prime Weil divisors on Z and

cQ = sup{c ∈ R : (X, D+ c f ∗Q)is log canonical over the generic point ηQ of Q}.

Next we define
Dmod := L − KY − Ddiv,

so K X + D = f ∗(KY + Ddiv+ Dmod).

Theorem 4.3. Let f : X → Y be a proper surjective morphism, where X is a
normal threefold and Y is a normal surface over an algebraically closed field k
of characteristic p > 0. Assume that Q =

∑
i Qi is a divisor on Y such that f is

smooth over (Y − Supp(Q)) with fibers isomorphic to P1. Let D =
∑

i di Di be a
Q-divisor on X where di = 0 is allowed, which satisfies the following conditions:
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(1) (X, D ≥ 0) is klt on a general fiber of f .

(2) Suppose D = Dh
+ Dv where Dh is the horizontal part and Dv is the vertical

part of D. Then p= char(k)> 2/δ, where δ is the minimum nonzero coefficient
of Dh .

(3) K X + D ∼Q f ∗(KY +M) for some Q-Cartier divisor M on Y.

Then we have that Dmod is Q-linearly equivalent to an effective Q-divisor. Here
Dmod is defined as in Definition 4.2. Moreover if (X, D) is klt then there exists an
effective Q-divisor Dmod on Y such that Dmod ∼Q Dmod and (Y, Ddiv +Dmod) is
klt.

Proof. First we reduce the problem to the case where all components of Dh are
sections. Let Di0 be a horizontal component of D and Di0→ D[

i0→ Y be the Stein
factorization of f |Di0

. Let Y ′→ D[
i0 be the normalization of D[

i0 , then Y ′→ Y is a
finite surjective morphism of normal surfaces. Let X ′ be the normalization of the
component of X ×Y Y ′ dominating Y.

Y Y ′

X X ′

ν

f ′f

ν′

Let m = deg(µ : Y ′→ Y ) and l be a general fiber of f . Then

m = Di · l ≤
1
di
(D · l)= 1

di
(−K X · l)=

2
di
≤

2
δ
< char(k).(4-1)

Therefore ν is a separable and tamely ramified morphism.
Let D′ be the log pullback of D under ν ′, i.e.,

K X ′ + D′ = ν ′∗(K X + D).

More precisely by [Kollár 1992, 20.2],

D′ =
∑
i, j

d ′i j D′i j , ν ′(D′i j )= Di , d ′i j = 1− (1− di )ei j ,

where ei j is the ramification indices along D′i j .
By construction X dominates Y. Also, since ν is étale over a dense open subset

of Y, say ν−1U →U, and étale morphisms are stable under base change, the map
( f ′ ◦ν)−1U→ f −1U is étale. Thus the ramification locus 3 of ν ′ does not contain
any horizontal divisor f ′, i.e., f ′(3) 6= Y ′. Therefore D′ is a boundary near the
generic fiber of f ′, i.e., D′h is effective. We observe that the coefficients of D′h can
be computed by intersecting with a general fiber of f ′ : X ′→Y ′, hence they are equal
to the coefficient of Dh

⊆ X . Thus the condition p> 2/δ remains true for D′ on X ′.
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After finitely many such base changes we get a family f ′′ : X ′′ → Y ′′, such
that all of the horizontal components of D′′ are rational sections of f ′′. Here
D′′ is the log pullback of D via the induced finite morphism α : X ′′ → X , i.e.,
KX ′′ + D′′ = α∗(KX + D).

By construction of M0,n there is a generically finite rational map Y ′′ 99KM0,n .
Let β0 : Ỹ → Y ′′ be a morphism that resolves the indeterminacies of Y ′′→M0,n

and X̃ the normalization of X ′′ ×Y ′′ Ỹ. We have a morphism Ỹ →M0,n and let
X̂ = Ỹ ×M0,n

U0,n . Let X ] be a common resolution of X̃ and X̂ . We have the
following diagram:

Y Ỹ M0,n

X X̃ X̂ U0,n U∗0,n

X ]

Y ′′

X ′′

φ0

f f̃ f̂ f0,n g0,n

σ

λ µ

βα

β0α0

f ′′

f ]

π

φ̂ψ

ψ0

Let D] and D̂ be Q-divisors on X ] and X̂ respectively, defined by

KX ] + D]
= π∗(KX + D) and KX̂ + D̂ = µ∗(KX ] + D]).

We also define D′′mod and D′′div on Y ′′ for (X ′′, D′′) as in Definition 4.2, such that

KX ′′ + D′′ = f ′′∗(KY ′′ + D′′mod+ D′′div),

and we define D̃mod and D̃div on Ỹ in a similar way. Since KX ]+D] is the pullback
of some Q-divisor from the base Ỹ we get

KX ] + D]
= µ∗(KX̂ + D̂).

Since Ddiv does not depend on the birational modification of the family [Prokhorov
and Shokurov 2009, Remark 7.3], we will define it with respect to f̂ : X̂→ Ỹ.

Since φ̂ is generically finite and D∗ is horizontal it follows that φ̂∗D∗ is horizontal
too. Since D̂h is also horizontal,

D̂h
= φ̂∗D∗.(4-2)

From the construction of the map σ : U0,n → U∗0,n we see that (F,D∗|F ) is log
canonical for any fiber F of g0,n : U∗0,n→M0,n . Since the fibers of f̂ : X̂→ Ỹ are
isomorphic to the fiber of g0,n , we see that (F̂, D̂h

|F̂ ) is also log canonical, where
F̂ is any fiber of f̂ . Let D̂v

i be a component of D̂v and η the generic point of f̂ (D̂v
i ).
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Then by inversion of adjunction we know that (X̂η, (D̂v
i + D̂h)|η) is log canonical.

Since the fibers of f̂ are reduced, the log canonical threshold of (X̂ , D̂; D̂v
i ) over

the generic point of D̂v
i is (1− coeffD̂v

i
D̂). Hence we get D̂v

= f̂ ∗ D̃div. Note that
the coefficients of D̂v can be > 1. By definition of D̃mod we have

KX̂ + D̂h
∼Q f̂ ∗(KỸ + D̃mod).(4-3)

Then

(4-4) KX̂ + D̂h
− f ∗(KỸ +φ

∗

0L)= K X̂/Ỹ + D̂h
− φ̂∗KU∗0,n/M0,n

− φ̂∗D∗ ∼Q 0,

where the first equality follows from (4-3) and Lemma 4.1(3), and the second
relation from (4-2) and [Liu 2002, Chapter 6, Theorem 4.9(b) and Example 3.18].

Since f̂ has connected fibers, by (4-3) and (4-4) and projection formula we get

D̃mod ∼Q φ∗0L,(4-5)

i.e., D̃mod is semiample.
Now since α0 : Y ′′→ Y is a composition of finite morphisms of degree strictly

less than char(k) and β0 is a birational morphism, by [Ambro 1999, Theorem 3.2
and Example 3.1],

KY ′′ + D′′div ∼Q α∗0(KY + Ddiv)

and

KỸ + D̃div ∼Q β∗0 (KY ′′ + D′′div).

So α∗0 Dmod ∼Q D′′mod, and β∗0 D′′mod ∼Q D̃mod. By the projection formula we have

D′′mod ∼Q β0,∗ D̃mod.

Then since α0 is finite,

ψ0,∗ D̃mod ∼Q α0,∗β0,∗ D̃mod ∼Q α0,∗D′′mod ∼Q α0,∗α
∗

0 Dmod ∼Q Dmod.

Here we view the pushforward through α0 as pushforward of cycles. Therefore
Dmod is Q-linearly equivalent to an effective divisor.

Next we prove the second statement. Since α is finite, by [Kollár 2013, Corol-
lary 2.42] we know that (X ′′, D′′) is klt, and as β, λ, and µ are birational we know
that (X̂ , D̂) is sub-klt, in particular D̂v has coefficients<1. Since f̂ is a P1 fibration
and (Ỹ, D̃div) is log smooth we have that (Ỹ, D̃div) is sub-klt. By construction D̃mod

is semiample, so by [Tanaka 2015, Theorem 1] we know that (Ỹ, D̃div+ D̃mod) is sub-
klt up to Q-linear equivalence. Then KY ′′+D′′mod+D′′div ∼Q β0,∗(KỸ+ D̃div+ D̃mod)

is also sub-klt. Finally using [Kollár 2013, Corollary 2.42] again and the fact that
Dmod+ Ddiv ≥ 0 we get that (Y, Dmod+ Ddiv) is klt. �
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5. Global rational chain connectedness

In this section we prove the following theorem.

Theorem 5.1. Let X be a projective threefold over an algebraically closed field k
of characteristic p > 0, and f : X→ Y a projective surjective morphism from X to
a projective variety Y such that f∗OX =OY. Let D be an effective Q-divisor, and
Xη the geometric generic fiber of f . Assume that the following conditions hold:

(1) (X, D) is klt, −K X is big and f-ample, K X + D ∼Q 0 and the general fibers
of f are smooth.

(2) p > 2/δ, where δ is the minimum nonzero coefficient of D.

(3) D = E + f ∗L where E is an effective Q-Cartier divisor such that p - ind(E),
(Xη, E |Xη) is globally F-split, and L is a big Q-divisor on Y.

(4) dim(Y ) is 1 or 2.

Then X is rationally chain connected.

Remark 5.2. Under the assumptions of Theorem 5.1, the smoothness of the general
fibers of f holds in characteristic p ≥ 11 when dim Y = 1 by [Hirokado 2004,
Theorem 5.1(2)], and in characteristic p ≥ 5 when dim Y = 2, as is explained in
Remark 3.2.

Proposition 5.3. Let f : X → Y be a projective surjective morphism between
normal varieties with f∗OX =OY. Assume that the following conditions hold:

(1) The general fibers of f are isomorphic to P1.

(2) Y is rationally chain connected.

Then X is rationally chain connected.

Proof. The proof is essentially the same as [Gongyo et al. 2015a, Lemma 3.12
and Proposition 3.13]. We take two general points x1, x2 ∈ X and let y1 = f (x1),
y2 = f (x2), so by construction f −1(y1)∼= f −1(y2)∼=P1. By assumption y1 and y2

can be connected by a chain of rational curves, say C1,C2, . . . ,Cn . Let Ci → Ci

be the normalization for each Ci , Si := f −1(Ci ), Si := Si ×Ci
Ci , and gi : Si→ Si

the induced morphisms. Now the morphism Si → Ci is a flat projective morphism
whose general fibers are P1, by [de Jong and Starr 2003, Theorem] it has a section
which we denote by C̃i . Then x1 and x2 is connected by f −1(y1), f −1(y2), gi (C̃i )

and the fibers of f over the intersection points of {Ci }, which is a union of rational
curves by [Debarre 2001, Lemma 3.7]. �

Proof of Theorem 5.1. We first prove the following lemma.

Lemma 5.4. Under the condition of Theorem 5.1, −KY is big.
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Proof. By assumption m(KXη + E |Xη) ∼Q 0 for sufficiently large and divisible m;
in particular, the k(η)-algebra⊕

m≥0

H 0(m(KXη + E |Xη)
)

is finitely generated. On the other hand since (Xη, E |Xη) is globally F-split we
have that

S0(Xη, σ (Xη, E |Xη)⊗OXη(m(KXη + E |Xη))
)
= H 0(Xη,OXη(m(KXη + E |Xη))

)
.

Here we would like to mention that for a line bundle M and a Q-Cartier divisor 1,
the notation S0(X,1,M) is the same as the standard notation S0(X, σ (X,1)⊗M);
see [Hacon and Xu 2015, between Lemma 2.2 and Proposition 2.3]. Therefore by
[Ejiri 2015, Theorem 1.1],

f∗OX (m(KX/Y + E))∼= f∗OX ( f ∗(−m(KY + L)))=OY (−m(KY − L))

is weakly positive for m sufficiently large and divisible. By Lemma 2.7, −KY − L
is nef, so −KY is big. �

Next we consider the following two cases.

Case 1: Y is 1-dimensional. After possibly taking the normalization of Y we can
assume that Y is smooth. Then Lemma 5.4 implies that g(Y )= 0, i.e., Y ∼= P1. Let
F be a general fiber of f . By assumption F is smooth and KF is anti-ample, hence
F is separably rationally connected. By [de Jong and Starr 2003, Theorem] we
know that f has a section which we denote by s. Then s(Y ) is a rational curve in
X which dominates Y. Therefore we get that X is rationally chain connected.

Case 2: Y is 2-dimensional. By assumption, a general fiber of f is isomorphic to P1.
Now by Lemma 5.4 we know that −KY is big. On the other hand since (X, D) is
klt, by Theorem 4.3 there is a nonzero effective Q-Cartier divisor M on Y such that
KY +M ∼Q 0 and (Y,M) is klt. Then by the proof of Case 2 of Theorem 3.1 we
know that Y is rational. Finally by Proposition 5.3 we get that X is rationally chain
connected. �
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AN ORTHOGONALITY RELATION
FOR SPHERICAL CHARACTERS

OF SUPERCUSPIDAL REPRESENTATIONS

CHONG ZHANG

We show that, in the setting of Galois pairs, the spherical characters of uni-
tary supercuspidal representations satisfy an orthogonality relation.

1. Main result

Let F be a finite extension field of Qp for an odd prime p, and E a quadratic field
extension of F. Let G be a connected reductive group over F, and G = RE/F G
the Weil restriction of G with respect to E/F. The nontrivial automorphism in
Gal(E/F) induces an involution θ , defined over F, on G. The pair (G,G) is called
a Galois pair, which is a kind of symmetric pair.

Let π be an irreducible admissible unitary representation of G(E)= G(F). We
say that π is G-distinguished if the space HomG(F)(π,C) is nonzero. We fix a
Haar measure dg on G(E). Given an element ` in HomG(F)(π,C), the spherical
character 8π,` associated to ` is the distribution on G(E) defined by

8π,`( f ) :=
∑

v∈ob(π)

`(π( f )v)`(v), f ∈ C∞c (G(E)),

where ob(π) is an orthonormal basis of the representation space Vπ of π . In this
note, our main goal is to show that spherical characters satisfy an orthogonality
relation when π is unitary supercuspidal.

Before stating our result, we introduce some notation. Recall that an element
g ∈ G(E) is called θ -regular if s(g) := g−1θ(g) is regular semisimple in G(E) in
the usual sense; a θ -regular element g is called θ -elliptic if the identity component
of the centralizer of s(g) in G is an elliptic F-torus. We denote by G(E)reg (resp.
G(E)ell) the subset of θ -regular (resp. θ -elliptic) elements of G(E).

Theorem 1.1 [Hakim 1994, Theorem 1]. The spherical character 8π,` is locally
integrable on G(E) and locally constant on the θ -regular locus G(E)reg.
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We denote by φπ,` the locally integrable function on G(E) representing the
distribution 8π,`, that is,

8π,`( f )=
∫

G(E)
φπ,`(g) f (g) dg, f ∈ C∞c (G(E)).

We will also call φπ,` a spherical character. Note that φπ,` is bi-G(F)-invariant
and independent of the choice of Haar measures dg. Theorem 1.1 is analogous to
the classical result of Harish-Chandra [1999, Theorem 16.3] on admissible invariant
distributions on connected reductive p-adic groups.

When π is unitary supercuspidal, we will show that the spherical characters φπ,`
satisfy an orthogonality relation (see Theorem 1.2). Before stating this relation, we
need to review the Weyl integration formula in the setting of symmetric pairs. We
refer the reader to [Rader and Rallis 1996, §3] or [Hakim 2003, §6] for the notation
below and more details on this integration formula.

Let T be a set of representatives for the equivalence classes of Cartan subsets of
G(E) with respect to the involution θ . For T ∈ T , denote Treg = T ∩G(E)reg. For
T ∈ T , the map

µ : G(F)× Treg×G(F)→ G(E)reg, (h1, t, h2) 7→ h1th2,

is submersive and

G(E)reg =
∐

T∈T

G(F)TregG(F).

Let A be the split component of the center of G. For each θ-regular element
g, we choose a Haar measure on Gγ (F) where γ = s(g) and Gγ is the split
component of the centralizer of γ in G. Fix Haar measures on A(F) and G(F).
For φ ∈ C∞c (G(E)/A(F)) and g ∈ G(E)reg, the orbital integral O(g, φ) of φ at g
is defined to be

O(g, φ)=
∫

A(F)\G(F)

∫
Gγ (F)\G(F)

φ(h1gh2) dh1 dh2,

where γ = s(g) and the measures inside the integral are quotient measures. From the
definition we see that orbital integrals are bi-G(F)-invariant functions on G(E)reg.
For T ∈ T , the group Gs(t) is the same for each t ∈ Treg. Let DG(E) be the usual
Weyl discriminant function on G(E). Then the Weyl integration formula reads as
follows: with suitably normalized measures, for each φ ∈ C∞c (G(E)/A(F)), we
have

(1)
∫

G(E)/A(F)
φ(g) dg =

∑
T∈T

1
wT

∫
T
|DG(E)(s(t))|E · O(t, φ) dt,
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where wT are some positive constants only depending on T (see [Rader and Rallis
1996, Theorem 3.4] and [Hakim 2003, Lemma 5]). Let Tell be the subset of T

consisting of elliptic Cartan subsets, that is, for T ∈ T , T belongs to Tell if and
only if Treg ⊂ G(E)ell.

Theorem 1.2. (1) Suppose that π is unitary supercuspidal and G-distinguished.
Let ` be a nonzero element of HomG(F)(π,C). Then∑

T∈Tell

1
wT

∫
T
|DG(E)(s(t))|E · |φπ,`(t)|2 dt

is nonzero.

(2) Suppose that π and π ′ are two unitary supercuspidal representations of G(E)
and π � π ′. Then for any ` ∈ HomG(F)(π,C) and `′ ∈ HomG(F)(π

′,C), we
have ∑

T∈Tell

1
wT

∫
T
|DG(E)(s(t))|E ·φπ,`(t) ·φπ ′,`′(t) dt = 0.

Theorem 1.2 is an analog of the classical orthogonality relation for characters
of discrete series (see [Clozel 1991] or [Kazhdan 1986] for this classical result).
The following corollary, which has potential application in simple relative trace
formula, is a direct consequence of Theorem 1.2.

Corollary 1.3. Suppose that π is unitary supercuspidal and G-distinguished. Let `
be a nonzero element of HomG(F)(π,C). Then the spherical character 8π,` does
not vanish identically on G(E)ell.

2. Proof of Theorem 1.2

Lemma 2.1. Suppose that γ = s(g) with g ∈ G(E) lies in an F-Levi subgroup M
of G. Then there exists m ∈ M(E) such that γ = s(m).

Proof. First we recall some basic facts about symmetric spaces. Denote G=RE/F G
and M = RE/F M. Let X = G/G and XM = M/M be the quotient varieties. As
F-varieties, X and XM are isomorphic to the identity components of the varieties
defined by the equations

X̃ = {x ∈ G : xθ(x)= 1} and X̃M = {x ∈ M : xθ(x)= 1}

respectively [Richardson 1982, 2.1–2.4]. The exact sequences

1→ G→ G→ X→ 1 and 1→ M→ M→ XM → 1

induce the following exact cohomology sequences:

1→ s(G(F))→ X(F)→ H 1(F,G)
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and

1→ s(M(F))→ XM(F)→ H 1(F,M),

where we use the standard notation H 1(F, •) to denote the Galois cohomology of
algebraic groups [Serre 1997, Chapter III. §2]. However, the above exact sequences
have little to do with our assertion. What we need are the following exact sequences
[Carmeli 2015, Lemma 4.1.1]:

1 → s(M(F)) → X̃M(F) → H 1(θ, M(F)) → 1
↓ ↓ ↓

1 → s(G(F)) → X̃(F) → H 1(θ, G(F)) → 1,

where

H 1(θ, M(F)) := H 1(Gal(E/F),M(E))

and

H 1(θ, G(F)) := H 1(Gal(E/F),G(E)).

Note that γ ∈ X̃M(F), and Lemma 2.1 asserts that γ ∈ s(M(F)). Thus it suffices
to show that the image [γ ]M of γ in H 1(θ, M(F)) is trivial. On the other hand,
we know that the image [γ ]G of γ in H 1(θ, G(F)) is trivial, and [γ ]G is also the
image of [γ ]M under the natural map

ι : H 1(θ, M(F))→ H 1(θ, G(F)).

We claim that ι is injective, which implies that [γ ]M is trivial. Consider the exact
sequences [Serre 1997, Chapter I. §5.8(a)]:

1 → H 1(θ, M(F)) → H 1(F,M) → H 1(E,M)Gal(E/F)

↓ ↓ ↓

1 → H 1(θ, G(F)) → H 1(F,G) → H 1(E,G)Gal(E/F).

Let P an F-parabolic subgroup of G such that P =MnU where U is the unipotent
radical of P. We have natural isomorphisms (see [Gille 2007, Lemma 16.2])

H 1(F, P)−→' H 1(F,M), and H 1(E, P)−→' H 1(E,M),

and natural injections [Serre 1997, Chapter III. §2.1]

H 1(F, P) ↪→ H 1(F,G) and H 1(E, P) ↪→ H 1(E,G).
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In summary we have the following commutative diagram of exact sequences:

1 → H 1(θ,G(F)) → H 1(F,G) → H 1(E,G)
↑ ↑ ↑

1 → H 1(θ, P(F)) → H 1(F, P) → H 1(E, P)
↓ ↓ ↓

1 → H 1(θ, M(F)) → H 1(F,M) → H 1(E,M),

which implies that ι is injective. �

Lemma 2.2. Suppose that φ is a matrix coefficient of a unitary supercuspidal
G-distinguished representation. Then, for any g ∈ G(E)reg, the orbital integral
O(g, φ) vanishes unless g is θ -elliptic.

Proof. Since φ is a matrix coefficient of a unitary supercuspidal G-distinguished
representation, it belongs to C∞c (G(E)/A(F)) and is a supercusp form [Harish-
Chandra 1970, Part I. §3]. In particular, for any unipotent radical N of a proper
parabolic subgroup P of G, we have∫

N (E)
φ(gn) dn = 0

for any g ∈ G(E). Write γ = s(g). Suppose that g is not θ-elliptic, which means
that γ is not elliptic by definition. Therefore there exists a Levi subgroup M of a
proper parabolic subgroup P of G such that Gγ ⊂ M. According to Lemma 2.1
there exists m ∈ M(E) such that γ = s(m). Since

O(g, φ)= O(m, φ),

we assume that g is in M(E) from now on. Let N be the unipotent radical of P, and
K a maximal open compact subgroup of G(F) such that G(F)=M(F)N (F)K. Fix
Haar measures dm, dn and dk on M(F)/A(F), N (F) and K/K∩A(F) respectively
so that dh= dk dn dm on G(F)/A(F). Denote K = K/K ∩ A(F). Then the orbital
integral O(g, φ) can be written as follows:

O(g, φ)=
∫

A(F)\G(F)

∫
Gγ (F)\G(F)

φ(h−1
1 gh2) dh2 dh1

=

∫
(A(F)\M(F))×N (F)×K

∫
(Gγ (F)\M(F))×N (F)×K

φ(k−1
1 n−1

1 m−1
1 gm2n2k2)

· dk1 dk2 dn1 dn2 dm1 dm2

=

∫
(A(F)\M(F))×N (F)

∫
(Gγ (F)\M(F))×N (F)

φ′(n−1
1 m−1

1 gm2n2)

· dn1 dn2 dm1 dm2,
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where

φ′(x) :=
∫

K×K
φ(k1xk2) dk1 dk2, x ∈ G(E)/A(F).

Note that φ′ is still a supercusp form on G(E). From now on, for convenience, we
write φ instead of φ′ and g instead of m−1

1 gm2. Let γ = s(g) for this “new” g. We
claim that:

(2)
∫

N (F)×N (F)
φ(n−1

1 gn2) dn1 dn2 = 0.

It is clear that this claim implies the lemma directly.
Now we begin to prove claim (2). Note that∫

N (F)×N (F)
φ(n−1

1 gn2) dn1 dn2 =

∫
N (F)×N (F)

φ(g · g−1n1gn2) dn1 dn2.

Denote N = RE/F N. Consider the morphism of the algebraic varieties:

ηg : N × N → N, (n1, n2) 7→ g−1n1gn2.

We will show that ηg is an isomorphism. If g−1n1gn2 = g−1n′1gn′2, we have the
relation

(3) n−1
2 γ n2 = s(n1gn2)= s(n′1gn′2)= n′−1

2 γ n′2.

Since γ is regular, according to [Harish-Chandra 1970, Lemma 22], the equality (3)
implies n2 = n′2, and thus n1 = n′1. Hence ηg is injective. To show ηg is surjective,
consider the Lie algebras n′ = Lie(N ′), n′′ = Lie(N ) and n= Lie(N), where N ′ is
the unipotent subgroup g−1 Ng. Since

2 dimF n′ = 2 dimF n′′ = dimF n

and n′ ∩ n′′ = {0} by the injectivity of ηg, we have n = n′ ⊕ n′′. Therefore ηg is
submersive and thus N ′ · N is open in N . On the other hand, since N ′ and N are
unipotent groups, the orbit N ′ · N of 1 under the left and right translations of N ′

and N is closed in N . Hence N = N ′ · N, that is, ηg is surjective. It turns out that∫
N (E)

φ(gn) dn =
∫

N (F)×N (F)
jg(n1, n2) ·φ(g · g−1n1gn2) dn1 dn2,

where jg(n1, n2) is the Jacobian of ηg at (n1, n2). Note that

jg(n1, n2)= |ad(g)|n(F)|E ,

which is independent of (n1, n2). At last, the claim (2) follows from the condition
that φ is a supercusp form. �
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Proof of Theorem 1.2. Let π be a unitary supercuspidal representation of G(E) and
` ∈ HomG(F)(π,C). By [Zhang 2016, Theorem 1.5], there exists a vector u0 in the
space Vπ such that `=Lu0 , where the G(F)-invariant linear form Lu0 is defined by

Lu0(v) :=

∫
G(F)/A(F)

〈π(h)v, u0〉 dh, v ∈ Vπ .

Set

φ(g)= 〈π(g)u0, u0〉,

which is a matrix coefficient of π . Then, according to [Zhang 2016, Corollary 1.11],
the spherical character 8π,` has the following expression:

(4) 8π,`( f )=
∫

G(F)/A(F)

∫
G(F)/A(F)

∫
G(E)

φ(h1gh2) f (g) dg dh1 dh2.

Note that Gs(g) = A for g ∈ G(E)ell. Therefore, when f ∈ C∞c (G(E)ell), we get

8π,`( f )=
∫

G(E)
O(g, φ) f (g) dg.

On the other hand, by Theorem 1.1, we have

8π,`( f )=
∫

G(E)
φπ,`(g) f (g) dg.

Therefore, for g ∈ G(E)ell, we obtain

(5) φπ,`(g)= O(g, φ).

Now let π ′ be another unitary supercuspidal representation of G(E) and `′ ∈
HomG(F)(π

′,C). Let φ′ be a matrix coefficient of π ′ such that the distribution
8π ′,`′ can be expressed as

8π ′,`′( f )=
∫

G(F)/A(F)

∫
G(F)/A(F)

∫
G(E)

φ′(h1gh2) f (g) dg dh1 dh2

for any f ∈ C∞c (G(E)). Thus

(6) φπ ′,`′(g)= O(g, φ′)

for any g ∈ G(E)ell. We choose f1 ∈ C∞c (G(E)) so that φ f1 = φ
′, where

φ f1(g) :=
∫

A(F)
f1(ag) da.

Then, by the Weyl integration formula (1), we have
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8π,`( f1)=

∫
G(E)/A(F)

φπ,`(g) ·φ f1(g) dg

=

∑
T∈T

1
wT

∫
T
|DG(E)(s(t))|E ·φπ,`(t) · O(t, φ′) dt.

Combining Lemma 2.2 and (6), we get

(7) 8π,`( f1)=
∑

T∈Tell

1
wT

∫
T
|DG(E)(s(t))|E ·φπ,`(t) ·φπ ′,`′(t) dt.

For the first assertion, we take π ′ = π , `′ = ` and φ′ = φ. Then (7) implies

8π,`( f1)=
∑

T∈Tell

1
wT

∫
T
|DG(E)(s(t))|E · |φπ,`(t)|2 dt.

On the other hand, we set
v0 =

1
√
〈u0, u0〉

u0

and choose {vi }i∈N such that {vi }i≥0 is an orthonormal basis of Vπ . Then

π(φ)v0 = λv0 for some nonzero λ, and π(φ)vi = 0 for i ≥ 1.

Therefore
8π,`( f1)= λ|`(v0)|

2.

From the proof of [Zhang 2016, Theorem 1.4] (page 1542), we see that

`(u0)= c
∫

A(E)G(F)\G(E)
|`(π(g)u0)|

2 dg = c′〈u0, u0〉,

where c and c′ are some nonzero numbers. Hence 8π,`( f1) is nonzero. This
completes the proof of the first assertion.

As for the second assertion, note that

8π,`( f1)=

∫
G(F)/A(F)

∫
G(F)/A(F)

∫
G(E)/A(F)

φ(h1gh2)φ′(g) dg dh1 dh2 = 0,

since the inner integral over G(E)/A(F) vanishes by the Schur orthogonality
relation. Hence the assertion is deduced from (7) directly. �
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