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DIFFERENTIAL HARNACK ESTIMATES
FOR FISHER’S EQUATION

XIAODONG CAO, BOWEI LIU, IAN PENDLETON AND ABIGAIL WARD

We derive several differential Harnack estimates (also known as Li–Yau–
Hamilton-type estimates) for positive solutions of Fisher’s equation. We
use the estimates to obtain lower bounds on the speed of traveling wave
solutions and to construct classical Harnack inequalities.

1. Introduction

Fisher’s equation, or the Fisher–KPP partial differential equation, is given by

(1) ft =1 f + c f (1− f ),

where f is a real-valued function on an n-dimensional Riemannian manifold Mn,
and c is a positive constant. The equation was proposed by R. A. Fisher [1937] to
describe the propagation of an evolutionarily advantageous gene in a population,
and was also independently described in a seminal paper by A. N. Kolmogorov,
I. G. Petrovskii, and N. S. Piskunov [1937] in the same year; for this reason,
it is often referred to in the literature as the Fisher–KPP equation. The density
of the gene evolves according to diffusion (the term 1 f ) and reaction (the term
c f (1− f )). Since the two papers in 1937, the equation has found many applications
including in the description of the branching Brownian motion process [McKean
1975], in neuropsychology [Tuckwell 1988], and in describing certain chemical
reactions [Ó Náraigh and Kamhawi 2013]. Because a solution f often describes a
concentration or density, it is natural to study solutions to the equation for which
0< f < 1; our main theorems will simply assume positive solutions.

It is clear that f = 0 and f = 1 are stationary solutions to this equation on any
manifold; it is also known that when Mn

= Rn the equation admits traveling wave
solutions, i.e., solutions f (x, t) that we can express as a function of z = x + ηt for
some vector η ∈ Rn. Under a broad range of conditions, general solutions to the
equation in R1 approach a traveling wave solution with a unique minimal speed
(see for example, [Kolmogorov et al. 1937, Theorem 17] or [Fisher 1937; Sherratt
1998]).
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A bound on the minimum speed of such a traveling wave solution on R1 was
known to Kolmogorov, Petrovskii and Piskunov [1937]; our work results in bounds
for the minimum speed of a solution on Rn for n = 1, 2, 3. While our bound in
dimension 1 is weaker than the previously known bounds, the bounds in higher
dimensions are new and suggest that the study of Harnack inequalities may be used
to bound the minimal speed of traveling waves in higher dimensions as well.

Our work introduces and proves three Li–Yau–Hamilton-type Harnack inequali-
ties which constrain positive functions satisfying the Fisher–KPP equation on an
arbitrary Riemannian manifold Mn. Depending on the setting we obtain different
inequalities. The study of differential Harnack inequalities was first initiated by P. Li
and S.-T. Yau [1986] (also see [Aronson and Bénilan 1979]). Harnack inequalities
have since played an important role in the study of geometric analysis and geometric
flows (for example, see [Hamilton 1993; Perelman 2002]). Applications have also
been found to the study of nonlinear parabolic equations, e.g., in [Hamilton 2011].
One of these is a recent reproof of the classical result of H. Fujita [1966], which
states that any positive solution to the endangered species equation in dimension n,

ft =1 f + f p,

blows up in finite time provided 0< n(p− 1) < 2; see [Cao et al. 2015].
When the dimension falls into a certain range we can integrate our differential

Harnack inequality along any spacetime curve to obtain a classical Harnack inequal-
ity which allows us to compare the values of positive solutions at any two points in
spacetime when time is large.

The organization for the paper is as follows: In Section 2 we present the precise
formulations and the proofs of our two inequalities governing closed manifolds. In
Section 3 we state and prove a similar Harnack inequality for complete noncompact
manifolds. In Section 4, we end the paper with the aforementioned results on the
minimum speed of traveling wave solutions and classical Harnack inequalities.

2. On closed manifolds

In this section, we will deal with the case when the Riemannian manifold M is
closed, and we also assume that its Ricci curvature is nonnegative.

In what follows, the time derivative will always be taken to mean the derivative
from the left if the two-sided derivative does not exist.

Theorem 1. Let (Mn, g) be an n-dimensional closed Riemannian manifold with
nonnegative Ricci curvature and let f (x, t) :M×[0,∞)→R be a positive solution
of the Fisher–KPP equation ft =1 f + c f (1− f ), where f is C2 in x and C1 in t ,
and c > 0.
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(A) Let u = log f and define

φ<0 (t)=

(
βcn

cn+8β(1−α)

)
e−ct
−β

1−e−ct .

Then we have

(2) 1u+α|∇u|2+βeu
+φ<0 (t)≥ 0

for all x and t , provided that

(i) 0< α < 1, (ii) β ≤ −cn(1+α)
4α2−4α+2n

< 0 and (iii) 8β(1−α)
n

+ c < 0.

(B) Now set

φ>0 (t)=


n

2(1−α)t
if t ≤ T2,

−βc(ec(t−T2)+1)

c+ 8β(1−α)
n

+cec(t−T2)
otherwise,

where
T2 :=

n
2(1−α)(−βc)

(4β(1−α)
n

+ c
)
.

If instead of (iii) we have

(iv) 8β(1−α)
n

+ c ≥ 0,

in addition to (i) and (ii), then

(3) 1u+α|∇u|2+βeu
+φ>0 (t)≥ 0.

In summary, our theorem is that 1u+α|∇u|2+βeu
+φ0(t)≥ 0, where

φ0(t)=



(βcn/(cn+8β(1−α)))e−ct
−β

1−e−ct if (iii) holds,

n
2(1−α)t

if (iv) holds and t ≤ T2,

−βc(ec(t−T2)+1)

c+ 8β(1−α)
n

+cec(t−T2)
if (iv) holds and t > T2.

We briefly describe the main idea of our proof here, which uses the parabolic
maximum principle and an argument by contradiction. We first define a quantity

h(x, t) : M × (0,∞)→ R,

which will depend on a given solution to Fisher’s equation. We start with h(x, ε)>0
for any sufficiently small ε> 0, and our goal is to prove this quantity h(x, t) remains
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positive for all points in M ×R+. As suggested in [Cao 2008; Cao and Hamilton
2009], we then compute what we call the time evolution of h, namely ∂h/∂t , in the
following form:

∂h
∂t
(x, t)=1h(x, t)+ A1(x, t) ·∇h(x, t)+ A2(x, t),

for some A1 : M × (0,∞)→ Rn, and A2 : M × (0,∞)→ R. We then assume
for the sake of a contradiction that there exists a first (with respect to t) point
(x1, t1) where h(x, t)≤ 0; it follows that (∂h/∂t)(x1, t1)≤ 0. Since h(x1, t1) must
be a local minimum in M of the function h(x, t1) : M → R, it also follows that
1h(x1, t1)≥ 0, and ∇h(x1, t1)= (0, . . . , 0). Thus our time evolution simplifies to

∂h
∂t
(x1, t1)≥ A2(x1, t1).

By our construction of h(x, t) we will force A2(x1, t1) > 0, and so we will have

0≥ ∂h
∂t
(x1, t1)≥ A2(x1, t1) > 0,

which is a contradiction. Thereby we conclude that h(x, t) > 0 for all (x, t) ∈
M × (0,∞).

Technical lemmas. In this section we prove the technical lemmas needed in the
case that M is a closed manifold.

Lemma 2 gives us the time evolution of h in terms of 4 quantities P1, P2, P3, P4

(which sum to A2 above). Lemma 3 gives a lower bound for P2 which also applies
in the noncompact case. Lemma 4 introduces quantities P5, P5.1, P5.2 which depend
only on φ and which give a lower bound for P3. Lemma 5 puts a lower bound on
P5. Lemma 6, used for our second Harnack inequality, bounds P3 when Lemma 5
is inapplicable. Finally, P1 and P4 are bounded in the proof of the main theorem.

Lemma 2. Let (Mn, g) be a complete Riemannian manifold with Ricci curvature
bounded from below by Ric≥−K . Let f (x, t) : Mn

→ R be a positive solution to
ft =1 f + c f (1− f ) which is C2 in x and C1 in t . Let u(x, t)= log f (x, t), and
let α, β, c be any constants. Define h(x, t) as follows:

h(x, t): =1u+α|∇u|2+βeu
+ϕ,

ϕ = ϕ(x, t)= φ(t)+ψ(x),

where φ(t) is any C1 function and ψ(x) is any C2 function. Then the following
inequality holds:

ht −1h− 2∇u ·∇h ≥ P1h+ P2+ P3+ P4,
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where

P1 =
2(1−α)

n
h− 4(1−α)

n
(α|∇u|2+βeu

+φ+ψ)− ceu,

P2 =
2(1−α)

n
(α2
|∇u|4+ 2φψ)− 2K (1−α)|∇u|2+ 4α(1−α)

n
φ|∇u|2

+|∇u|2eu
(4αβ(1−α)

n
− 2β −αc− c

)
,

P3 = e2u 2β2(1−α)
n

+ eu
(4β(1−α)

n
φ+ cφ+ cβ

)
+

2(1−α)
n

φ2
+φt ,

P4 =
4α(1−α)

n
ψ |∇u|2− 2∇u ·∇ψ + euψ

(
c+ 4β(1−α)

n

)
+

2(1−α)
n

ψ2
−1ψ.

Lemma 2 will be used in the proofs of both Theorem 1 and Theorem 7, with
different choices of α, β, c, φ and ψ . The statement of Lemma 2 is independent of
these choices.

Proof. The proof is based on a straightforward but fairly long calculation. Let
f : M ×[0,∞)→ R satisfy (1); hence u must satisfy

ut =1u+ |∇u|2+ c(1− eu).

We then compute

(∂t −1)u = c− ceu
+ |∇u|2,

(∂t −1)(1u)=1|∇u|2− c(1u)eu
− c|∇u|2eu,

(∂t −1)(α|∇u|2)= 2α∇u ·∇(1u)+ 2α∇u ·∇|∇u|2− 2αc|∇u|2eu
−α1|∇u|2,

(∂t −1)(βeu)= βceu
−βce2u,

(∂t −1)ϕ(t)= φt −1ψ,

2∇u ·∇h = 2∇u ·∇(1u)+ 2α∇u ·∇|∇u|2+ 2β|∇u|2eu
+ 2∇u ·∇ψ.

Here we use the Weitzenböck-Bochner formula,

1|∇u|2 = 2|∇∇u|2+ 2∇u ·∇(1u)+ 2 Ric(∇u,∇u),

where ∇∇u is the Hessian of u(x, t).
This leads to the equality

(∂t −1)h− 2∇u · ∇h

= 2(1−α)|∇∇u|2− ceu(1u)− |∇u|2eu(2αc+ 2β + c)

+2(1−α)Ric(∇u,∇u)+βceu
−βce2u

+φt −1ψ − 2∇u ·∇ψ.
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Using Cauchy–Schwarz |∇∇u|2 ≥ (1/n)(1u)2 and Ric≥−K yields that

(∂t −1)h− 2∇u · ∇h ≥ 2(1−α)
n

(1u)2− ceu(1u)− |∇u|2eu(2αc+ 2β + c)

−2(1−α)K |∇u|2+βceu
−βce2u

+φt −1ψ − 2∇u ·∇ψ.

Finally, we substitute for 1u:

1u = h−α|∇u|2−βeu
−φ−ψ,

to expand and conclude that

ht −1h− 2∇u ·∇h

≥ h
(2(1−α)

n
h− 4(1−α)

n
(α|∇u|2+βeu

+φ+ψ)− ceu
)

+

[2(1−α)
n

(α2
|∇u|4+ 2φψ)− 2K (1−α)|∇u|2+ 4α(1−α)

n
φ|∇u|2

+ |∇u|2eu
(4αβ(1−α)

n
− 2β −αc− c

)]
+

[
e2u
(2β2(1−α)

n

)
+ eu

(4β(1−α)
n

φ+ cφ+ cβ
)
+

2(1−α)
n

φ2
+φt

]
+

[4α(1−α)
n

ψ |∇u|2− 2∇u·∇ψ + euψ
(
c+ 4β(1−α)

n

)
+

2(1−α)
n

ψ2
−1ψ

]
= P1h+ P2+ P3+ P4,

as desired. �

We now show that P2 is nonnegative under the assumptions of Theorem 1.

Lemma 3. If K = 0 and assuming that (i) and (ii) hold, then for any x , t where
φ(t), ψ(x)≥ 0 we have

P2 ≥ 0.

Proof. We have assumed that α, 1−α, φ, ψ , K ≥ 0. Note that

4αβ(1−α)
n

− 2β −αc− c ≥ 0

is equivalent to
(4α(1−α)− 2n)β − cn(α+ 1)≥ 0,

or
(−4α(1−α)+ 2n)β ≤−cn(1+α),

which is exactly condition (ii) since 2n ≥ 1≥ 4α(1−α). �

Next, we find quantities depending only on φ which we will eventually use to
guarantee that P3 is strictly positive.
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Lemma 4. Assume α < 1. Define

µ1: =
1
2

c
√

n
2(1−α)

, ν1 =
c+ 4β(1−α)

n
2β

√
n

2(1−α)
,

ω1 =

√
2(1−α)

n
,

P5(φ): = −(µ1+ ν1φ)
2
+ (ω1φ)

2
+φt ,

P5.1(φ): =
(4β(1−α)

n
+ c

)
φ+βc, P5.2(φ): =

2(1−α)
n

φ2
+φt .

Then for any (x, t), P5 > 0 implies that P3 > 0. Alternatively, if P5.1 ≥ 0 and
P5.2 > 0, then P3 > 0.

Proof. Recall that

P3(φ)= e2u
(2β2(1−α)

n

)
+ eu

(4β(1−α)
n

φ+ cφ+ cβ
)
+

2(1−α)
n

φ2
+φt .

If P5 > 0, then by using x2
+ 2xy ≥−y2, where x2

= e2u(2β2(1− a)/n), we get

P3(φ)≥−
n

8(1−α)β2

[
βc+

(
c+ 4(1−α)β

n

)
φ
]2
+

2(1−α)
n

φ2
+φt

=−(µ1+ ν1φ)
2
+ (ω1φ)

2
+φt = P5(φ) > 0.

Alternatively, if P5.1 ≥ 0 and P5.2 > 0, then since (1− α) > 0 we can ignore the
first term of P3 and get

P3(φ)≥ eu
(4β(1−α)

n
φ+ cφ+ cβ

)
+

2(1−α)
n

φ2
+φt

= eu P5.1+ P5.2 > 0. �

We now find functions φ(t) such that P3(φ) > 0. In Lemma 5 we construct φ(t)
in the case that (iii) is true, and in Lemma 6 we construct φ(t) when (iv) is true.

Lemma 5. Let µ, ν, ω be any constants such that µ 6= 0, ν2 < ω2 and ω > 0. If
for sufficiently small ε > 0 we define

φ(t) :=
µ
( 1
ν−(ω−ε)

e2µ(ω−ε)t
−

1
ν+(ω−ε)

)
1−e2µ(ω−ε)t ,

then

−(µ+ νφ)2+ (ωφ)2+φt > 0,

where lim
t→0+

φ(t)=∞ and φ(t)≥ 0 for all t .
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Proof. Choose ε small enough so that ν2 < (ω− ε)2. We claim that φ(t) satisfies
the following equation:

−(µ+ νφ)2+ [(ω− ε)φ]2+φt(t)= 0

for all time. This follows from the direct computation below. On the one hand we
get that

−(µ+ νφ)2+ [(ω− ε)φ]2 =

µ2(ω−ε)2
( e2µ(ω−ε)t

ν−(ω−ε)
−

1
ν+(ω−ε)

)2

(1−e2µ(ω−ε)t)2

−

(
µ+

µν
( e2µ(ω−ε)t

ν−(ω−ε)
−

1
ν+(ω−ε)

)
1−e2µ(ω−ε)t

)2

=
µ2
[2(ω−ε)(ω−ε−ν)][2(ω−ε)(ω−ε+ν)e2µ(ω−ε)t

]

(1−e2µ(ω−ε)t)2(ν−(ω−ε))2(ν+(ω−ε))2

=−
4µ2(ω−ε)2e2µ(ω−ε)t

(ν+(ω−ε))(ν−(ω−ε))(e2µ(ω−ϕ)t−1)2
.

On the other hand we have

φt(t)=
2µ2(ω−ε)e2µ(ω−ε)t

(1−e2µ(ω−ε)t)(ν−(ω−ε))
+

2µ2(ω−ε)e2µ(ω−ε)t
( e2µ(ω−ε)t

ν−(ω−ε)
−

1
ν+(ω−ε)

)
(1−e2µ(ω−ε)t)2

=
4µ2(ω−ε)2e2µ(ω−ε)t

(ν+(ω−ε))(ν−(ω−ε))(1−e2µ(ω−ε)t)2
.

Therefore it follows that

−(µ+ νφ)2+ [(ω− ε)φ]2+φt = 0,

and hence

−(µ+ νφ)2+ (ωφ)2+φt = 2εωφ2
− ε2φ2

= φ2(2εω− ε2).

Note that ν−(ω−ε) and ν+(ω−ε)must have different signs since their product
is ν2
− (ω−ε)2 < 0; hence φ(t) 6= 0 for all time. It then follows that for sufficiently

small ε,
−(µ+ νφ)2+ (ωφ)2+φt = φ

2(2εω− ε2) > 0.

To show that limt→0+ φ(t)=∞, we split φ(t) into two parts. First, note that

lim
t→0+

( 1
ν−(ω−ε)

e2µ(ω−ε)t
−

1
ν+(ω−ε)

)
=

1
ν−(ω−ε)

−
1

ν+(ω−ε)

=
2(ω−ε)

ν2−(ω−ε)2
< 0.
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Further, it is clear that
lim

t→0+
µ

1−e2µ(ω−ε)t =−∞.

Combining these two calculations lets us conclude that

lim
t→0+

φ(t)=∞.

Finally, since φ(t) is continuous and starts out positive and φ(t) 6= 0 for any t > 0,
it follows that φ(t) > 0 for all t > 0. �

Remark. We can also compute lim
t→∞

φ(t).

If µ > 0 then e2µ(ω−ε)t
→∞ as t→∞; hence we find that

lim
t→∞

φ(t)=

µ

ν−(ω−ε)

−1
=

µ

−ν+(ω−ε)
.

If µ < 0 then e2µ(ω−ε)t
→ 0 as t→∞, which gives us

lim
t→∞

φ(t)= −µ

ν+(ω−ε)
.

Next we deal with the other case.

Lemma 6. Let µ1, ν1, ω1 be defined as in Lemma 4, and suppose (iv) is true (i.e.,
(iii) becomes false). Let

T2 = T2(ε) :=
n

2(1−α)(1−ε)(−βc)
·

(4β(1−α)
n

+ c
)
.

If for some sufficiently small ε > 0 we define

φ(t) :=


n

2(1−α)(1−ε)t
if t ≤ T2,

−µ1(e2µ1(ω1−ε)(t−T2)+1)
(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)

if t > T2,

then for t ≤ T2 we get P5.1≥ 0 and P5.2> 0, and for t > T2 we get P5> 0. Therefore
P3(φ) > 0 for all t .

In addition, limt→0+ φ(t)=∞ and φ(t) > 0 for all t .

Proof. For ε < 1, we have

lim
t→0+

φ(t)= lim
t→0+

n
2(1−α)(1−ε)t

=∞.

To show that φ(t) is continuous at T2, we check its limits from the left and right.
The limit from the left is

lim
t→T−2

φ(t)= n
2(1−α)(1−ε)T2

=
−βcn

4β(1−α)+cn
.

And the limit from the right is
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lim
t→T+2

φ(t)= −µ1(1+1)
(ν1+(ω1−ε))+(ν1−(ω1−ε))

=
−2µ1
2ν1

=−
c
2
·

2βn
(cn+4β(1−α))

=
−βcn

4β(1−α)+cn
.

Therefore φ(t) is continuous.
Next we check that φ(t) > 0 for all t > 0. Note that φ(t) is continuous, and

clearly is positive between 0 and T2. For t ≥ T2, since µ1 6= 0, it follows that

−µ1(e2µ1(ω1−ε)(t−T2)+ 1) 6= 0,

and therefore φ(t) 6= 0 for any t ≥ T2. By continuity, it follows that φ(t) > 0 for
all t > 0.

Next we show that for t ≤ T2 we have P5.1 ≥ 0. That is, we need

P5.1 =

(4β(1−α)
n

+ c
)
φ(t)+βc ≥ 0.

First we note that condition (iv) states that 4β(1− α)/n + c ≥ 0. Since φ(t) is
decreasing in t < T2, it suffices to check that P5.1 ≥ 0 holds for t = T2:(4β(1−α)

n
+ c

)
φ(t)+βc ≥

(4β(1−α)
n

+ c
)
φ(T2)+βc

=

(4β(1−α)
n

+ c
)(

−βc
4β(1−α)

n
+c

)
+βc = 0.

Therefore P5.1 ≥ 0 for all t ≤ T2.

Now we show that P5.2 > 0 for all t ≤ T2. That is, we need

P5.2 =
2(1−α)

n
φ(t)2+φt(t) > 0.

We have

P5.2 =
2(1−α)

n

[ n
2(1−α)(1−ε)t

]2
+

−n
2(1−α)(1−ε)t2

=
n

2(1−α)(1−ε)2t2 −
n

2(1−α)(1−ε)t2 =
εn

2(1−α)(1−ε)2t2 > 0.

This implies that P3(φ) > 0 for t ≤ T2. Next we show that P5 > 0 for all t > T2.
That is, we need that

P5 =−(µ1+ ν1φ)
2
+ (ω1φ)

2
+φt > 0

for

φ(t)= −µ1(e2µ1(ω1−ε)(t−T2)+1)
(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)

.
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We first show that for t > T2, φ(t) satisfies

−(µ1+ ν1φ)
2
+ [(ω1− ε)φ]

2
+φt = 0.

Plugging in φ(t) for t > T2 gives us that

−(µ1+ ν1φ)
2
+ [(ω1− ε)φ]

2

=−

[
µ1−

µ1ν1(e2µ1(ω1−ε)(t−T2)+1)
(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)

]2

+

[
(ω1− ε)

−µ1(e2µ1(ω1−ε)(t−T2)+1)
(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)

]2

=
µ2

1(ω1−ε)
2
[−(1−e2µ1(ω1−ε)(t−T2))2+(e2µ1(ω1−ε)(t−T2)+1)2]

[(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)]2

=
4µ2

1(ω1−ε)
2e2µ1(ω1−ε)(t−T2)

[(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)]2
.

Similarly, we have

φt(t)=
−2µ2

1(ω1−ε)e2µ1(ω1−ε)(t−T2)[(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)]

[(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)]2

−
(ν1−(ω1−ε))(2µ1(ω1−ε))e2µ1(ω1−ε)(t−T2)[−µ1(e2µ1(ω1−ε)(t−T2)+1)]

[(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)]2

=−
4µ2

1(ω1−ε)
2e2µ1(ω1−ε)(t−T2)

[(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)]2
.

Therefore

−(µ1+ ν1φ)
2
+ [(ω1− ε)φ]

2
+φt = 0,

and it follows that

P5 =−(µ1+ ν1φ)
2
+ (ω1φ)

2
+φt = (2εω1− ε

2)φ2 > 0

for small enough ε. Therefore P3(φ) > 0 for t > T2. �

Remark. Here we observe that

lim
t→∞

φ(t)= lim
t→∞

−µ1(e2µ1(ω1−ε)(t−T2)+1)
(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)

=
−µ1

ν1−(ω1−ε)
=

µ1
−ν1+(ω1−ε)

,

which is the same limit as φ(t) from Lemma 5 since µ1 > 0.

Now we are ready to finish the proof of Theorem 1.
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Proof of Theorem 1. Let f : M × [0,∞) → R be a positive solution of ft =

1 f + c f (1− f ) for c > 0, and assume that the following hold:

(i) 0< α < 1,

(ii) β ≤ −cn(1+α)
4α2−4α+2n

< 0.

Let u = log f , and define

h(x, t) :=1u+α|∇u|2+βeu
+ϕ,

where

ϕ = ϕ(x, t)= φ(t)+ψ(x),

and since we are in the closed case we set ψ(x)= 0.
With µ1, ν1, ω1, and T2 as defined in Lemma 4 and Lemma 6, and ε > 0 small

enough to satisfy Lemmas 5 and 6, we let

φ(t)=



µ1

( 1
ν1−(ω1−ε)

e2µ1(ω1−ε)t−
1

ν1+(ω1−ε)

)
1−e2µ1(ω1−ε)t

if (iii),
n

2(1−α)(1−ε)t
if (iv) and t ≤ T2,

−µ1(e2µ1(ω1−ε)(t−T2)+1)
(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)

if (iv) and t > T2.

We first show that h(x, t) > 0 for all t . Suppose for the sake of a contradiction
that h ≤ 0 somewhere; let t1 be the first time such that minx h(x, t)= 0. Since M
is closed the minimum is attained, say at the point (x1, t1). By Lemmas 5 and 6,
limt→0+ φ(t)=∞ so it follows that t1 exists.

By applying Lemma 2, we get that

(4) ht −1h− 2∇u ·∇h ≥ P1h+ P2+ P3+ P4,

where P1, . . . , P4 are defined as in Lemma 2. Note that in the case (iv), the derivative
φt at t = T2 is considered to be the derivative from the left.

We have P1h = 0 since h(x1, t1)= 0. Lemma 3 yields that P2 ≥ 0 since K = 0,
and P4 = 0 since ψ(x)≡ 0.

Since (x1, t1) is the first spacetime where h(x, t)= 0, the maximum principle
yields that ht(x1, t1)≤ 0 (where this is a derivative as t→ t−1 ), 1h(x1, t1)≥ 0 and
∇h(x1, t1)= 0.

Hence (4) yields that

(5) 0≥ ht −1h− 2∇u ·∇h ≥ P1h+ P2+ P3+ P4 ≥ P3.

Now we split into cases based on whether (iii) or (iv) holds.
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If (iii) is true, since c > 0 we have the following inequalities:

4β(1−α)
n

< c+ 4β(1−α)
n

<−
4β(1−α)

n
,∣∣∣c+ 4β(1−α)

n

∣∣∣< ∣∣∣4β(1−α)n

∣∣∣,(
c+4β(1−α)/n

2β

)2

<
(2(1−α)

n

)2
,

ν2
1 =

(
c+4β(1−α)/n

2β

)2
n

2(1−α)
< ω2

1 =
2(1−α)

n
.

Therefore by Lemmas 4 and 5 it follows that P3 > 0, which contradicts (5).
Otherwise, if (iv) is true, it follows from Lemmas 4 and 6 that P3 > 0 again,

which still contradicts (5).
This proves that h(x, t) > 0 for all x , t . Finally, letting ε→ 0 with

T2
∣∣
ε=0 =

n
2(1−α)(−βc)

(4β(1−α)
n

+ c
)
,

we get that φ(t)→ φ0(t), where

φ0(t)=



(
βcn

cn+8β(1−α)

)
e−ct
−β

1−e−ct if (iii) holds,

n
2(1−α)t

if (iv) holds and t ≤ T2
∣∣
ε=0,

−βc(ec(t−T2)+1)

c+ 8β(1−α)
n

+cec(t−T2)
if (iv) holds and t > T2

∣∣
ε=0.

Therefore limε→0 h(x, t)=1u+α|∇u|2+βeu
+φ0(t)≥ 0 as desired. �

3. On complete noncompact manifolds

In this section, we study the case in which the manifold is complete but noncompact.
The idea is similar to the case when the manifold is compact without boundary.
The main technical difficulty here is to ensure that the minimum of the Harnack
quantity is attained in a compact region. We first state our main theorem of this
section.

Theorem 7. Let (Mn, g) be an n-dimensional complete (noncompact) Riemannian
manifold with nonnegative Ricci curvature. Let f (x, t) : M × [0,∞)→ R be a
positive solution of the Fisher–KPP equation ft =1 f + c f (1− f ), where f is C2

in x and C1 in t , and c > 0 is a constant. Let u = log f . Then we have

(6) 1u+α|∇u|2+βeu
+φ1(t)≥ 0,
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provided the following constraints are satisfied:

(i) 0< α < 1,

(ii) β < −cn(1+α)
2(2α2−2α+n)

< 0,

(iii) −cn(2+
√

2)
4(1−α)

< β <
−cn(2−

√
2)

4(1−α)
,

where

φ1(t)=
µ2

( 1
ν2−ω2

e2µ2ω2t
−

1
µ2+ω2

)
1− e2µ2ω2t ,

with

µ2 = βc
√

2(1−α)
c(−cn−8β(1−α))

,

ν2 =

(4β(1−α)
n

+ c
)
·

√
2(1−α)

c(−cn−8β(1−α))
, ω2=

√
2(1−α)

n
.

Technical lemmas. In this subsection, we state and prove some additional lemmas
which will be needed in the proof of Theorem 7. Lemma 8 allows us to substitute
the sum P6+ P7 for P3+ P4; then Lemma 9 bounds P6 using a new quantity P8.
Lemma 10 allows us to apply Lemma 5 to control P8. Lemma 11 gives sufficient
conditions for bounding P7. After bounding P1, we are in a position to prove our
theorem.

For any given ε′ > 0, let

A = A(ε′) := 2β2(1−α)
n

−

n
(

c+ 4β(1−α)
n

)2

8(1−α− ε′)
.

Lemma 8. Let P3 and P4 be as defined in Lemma 2. Define

P6: = Ae2u
+ eu

(4β(1−α)φ
n

+ cβ + cφ
)
+

2(1−α)
n

φ2
+φt ,

P7: =
4α(1−α)

n
ψ |∇u|2− 2∇u ·∇ψ + 2ε′

n
ψ2
−1ψ.

For any ε′ > 0 and any (x, t) we have

P3+ P4 ≥ P6+ P7.

Proof of Lemma 8. Recall that,

P3+ P4 =
2β2(1−α)

n
e2u
+ eu

(4β(1−α)
n

φ+ cφ+ cβ
)
+

2(1−α)
n

φ2
+φt

+
4α(1−α)

n
ψ|∇u|2− 2∇u·∇ψ−1ψ+ euψ

(
c+ 4β(1−α)

n

)
+

2(1−α)
n

ψ2.



DIFFERENTIAL HARNACK ESTIMATES FOR FISHER’S EQUATION 287

We write the last two terms as

euψ
(

c+4β(1−α)
n

)
+

2(1−α)
n

ψ2
=euψ

(
c+4β(1−α)

n

)
+

2(1−α−ε′)
n

ψ2
+

2ε′

n
ψ2.

Using 2xy+ x2
≥−y2 in the form

euψ
(

c+ 4β(1−α)
n

)
+

2(1−α−ε′)
n

ψ2
≥−

n
(

c+ 4β(1−α)
n

)2

8(1−α− ε′)
e2u,

gives us

euψ
(

c+ 4β(1−α)
n

)
+

2(1−α)
n

ψ2
≥

2ε′

n
ψ2
−

n
(

c+ 4β(1−α)
n

)2

8(1−α− ε′)
e2u.

Applying this inequality then gives

P3+ P4 ≥ e2u

(
2β2(1−α)

n
−

n
(

c+ 4β(1−α)
n

)2

8(1−α− ε′)

)
+ eu

(4β(1−α)φ
n

+ cβ + cφ
)

+
2(1−α)

n
φ2
+φt +

4α(1−α)
n

ψ |∇u|2− 2∇u ·∇ψ + 2ε′

n
ψ2
−1ψ,

= P6+ P7,

which finishes the proof. �

Lemma 9. For µ1 = βc/(2
√

A), ν1 = (4β(1 − α)/n + c)/(2
√

A), and ω1 =
√

2(1−α)/n, define

P8(φ) := −(µ1+ ν1φ)
2
+ (ω1φ)

2
+φt .

If A > 0, then P8 > 0 implies P6 > 0 for any (x, t).

Proof of Lemma 9. Recall that

P6 = Ae2u
+

[(4β(1−α)
n

+ c
)
φ+βc

]
eu
+

2(1−α)
n

φ2
+φt .

Since A > 0, we use the fact that x2
+ xy ≥− 1

4 y2 in the form

Ae2u
+

[(4β(1−α)
n

+ c
)
φ+βc

]
eu
≥−

[(4β(1−α)
n

+ c
)
φ+βc

]2

4A
.
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This gives

P6 ≥−

[(4β(1−α)
n

+ c
)
φ+βc

]2

4A
+

2(1−α)
n

φ2
+φt

=−

[
βc

2
√

A
+

1
2
√

A

(4β(1−α)
n

+ c
)
φ
]2
+

(
φ

√
2(1−α)

n

)2

+φt

as desired. �

Lemma 10. If condition (iii) of Theorem 7 holds, then there always exists some
ε′ > 0 such that A > 0 and ν2

1 < ω
2
1.

Proof of Lemma 10. We first want to show that A(ε′) > 0 for some ε′ > 0. We will
show that A(0) > 0, and since A is a continuous function of ε′, this implies that
A(ε′) > 0 for some ε′ > 0.

We have

A(0)= 2β2(1−α)
n

−

n
(

c+ 4β(1−α)
n

)2

8(1−α− 0)

=
16β2(1−α)2−(cn+4β(1−α))2

8n(1−α)

=
−c2n2

−8βcn(1−α)
8n(1−α)

.

It follows from (iii) that

−8<−4− 2
√

2< cn
β(1−α)

,

which rearranges to give c2n2
+ 8βcn(1− α) < 0. Thus A(0) > 0, and so there

exists some ε′ > 0 such that A(ε′) > 0.

Next we want to show that ν2
1 < ω

2
1 for some ε′ > 0, where

ν1 =
4β(1−α)/n+c

2
√

A
and ω1 =

√
2(1−α)

n
.

Since ν1 and ω1 are continuous functions of ε′, if we can show that ν2
1 < ω

2
1 for

ε′ = 0, then it must be that ν2
1 < ω

2
1 for some ε′ > 0.

When ε′ = 0, ν2
1 < ω

2
1 is equivalent to

c2n2
+8βcn(1−α)+16(1−α)2β2

−c2n2−8βcn(1−α)
< 1.

Restriction (iii) implies

−4− 2
√

2< cn
β(1−α)

<−4+ 2
√

2,



DIFFERENTIAL HARNACK ESTIMATES FOR FISHER’S EQUATION 289

which leads to
c2n2

β2(1−α)2
+

8cn
β(1−α)

+ 8< 0.

This is equivalent to

c2n2
+ 8βcn(1−α)+ 16(1−α)2β2 <−(c2n2

+ 8βcn(1−α)),

and therefore ν2
1 < ω

2
1 for ε′ = 0. �

Lemma 11. Suppose R≥ 1 is a constant and ρ :Mn
→R is a function that satisfies

ρ(x)≥ 0, |∇ρ(x)| ≤ 1, 1ρ ≤
c1
ρ
,

for some constant c1 > 0. Define

(7) ψ(x) := k R2
+ρ2

(R2−ρ2)2
.

Then for k sufficiently large, ψ(x) satisfies P7 > 0.

Proof of Lemma 11. Let

9(x) := R2
+ρ2

(R2−ρ2)2
,

so that ψ = k9. We claim that 9 satisfies

(8) |∇9|2 ≤ 1893 and 19 ≤ c29
2,

where c2 depends only on c1.
Indeed, we can compute

∇9 =∇ρ
(6ρR2

+2ρ3

(R2−ρ2)3

)
,

|∇9|2 ≤ 4ρ2 (3R2
+ρ2)2

(R2−ρ2)6
≤ 1893,

and

19 =1ρ
(6ρR2

+2ρ3

(R2−ρ2)3

)
+ |∇ρ|2

(6R4
+36ρ2 R2

+6ρ4

(R2−ρ2)4

)
≤ 6c1

R2
+ρ2

(R2−ρ2)3
+ 18(R

2
+ρ2)2

(R2−ρ2)4

≤ (6c1+ 18)92.

Recall that

P7 =
4α(1−α)

n
ψ |∇u|2− 2∇u · ∇ψ + 2ε′

n
ψ2
−1ψ.
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Completing the square gives us

P7 ≥
2ε′

n
ψ2
−1ψ −

n
4α(1−α)ψ

|∇ψ |2.

By (8), we know that

ε′

n
k292

≥
ε′k
c2n

k19 and ε′

n
k292

≥
ε′k
18n
·

k2
|∇9|2

k9
,

so if

k >max
(c2n
ε′
,

18n2

4α(1−α)ε′

)
,

we immediately obtain P7 > 0. �

Proof of Theorem 7. Fix a point p ∈ M , let r = r(x) := d(x, p), where d( · , · )
denotes the geodesic distance in M . We define the Harnack quantity h on the
geodesic ball BR(p) := {x ∈ M | d(x, p) < R}. The quantity h depends on the
positive constants ε, ε′, k, R and is defined as follows:

h(x, t)=1u+α|∇u|2+βeu
+φ(t)+ψ(x),

φ = φ(t) :=
µ2

( 1
ν2−(ω2−ε)

e2µ2(ω2−ε)t −
1

ν2+(ω2−ε)

)
1− e2µ2(ω2−ε)t

,

ψ = ψ(x) := k R2
+r2

(R2−r2)2
,

with µ2, ν2, ω2, and A defined as in Lemma 9 and the paragraph following
Theorem 7. Fix R > 1. Let ε, ε′ and k be positive constants to be chosen later. Note
that h is C1 in t and C2 in x , except possibly for those x in the cut locus C(p). We
will show that we can choose ε, ε′, and k so that h(x, t) > 0 for all x, t . Assume
for the sake of a contradiction that h(x, t)≤ 0 for some x , t .

Let t1 be the first time t such that infx∈BR(p) h(x, t)= 0. Since limt→0+ h(t)=∞
by Lemma 5, it follows that t1 exists. Note also that ψ(x)→∞ as r = d(x, p)
approaches R, so the infimum of h is attained inside BR(p); let (x1, t1) be such a
point, so that h(x1, t1)= 0. Now we split into cases based on whether or not x1 is
in the cut locus C(p).

Case 1: Suppose that x1 /∈ C(p), so that ψ(x) is twice differentiable at x1. Then
by Lemmas 2 and 3 and 8 we have

0> ht −1h− 2∇h ·∇u− P1h ≥ P2+ P3+ P4 ≥ P6+ P7.

By Lemma 10, we can choose ε′ > 0 small enough such that A > 0 and ν2 < ω2;
then, since φ is the same as the one defined as in Lemma 5, it follows by Lemmas
5 and 9 that we can choose ε small enough so that P6 > 0.
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Note thatψ takes the form of (7), with the distance function ρ(x)=r(x)=d(x, p).
We have r ≥ 0 and |∇r |2 = 1; furthermore, by the Laplacian comparison theorem
we have 1r ≤ (n− 1)/r . Thus we can apply Lemma 11 and choose k sufficiently
large such that P7 > 0 as well, which leads to a contradiction.

Case 2: Suppose that x1 ∈ C(p). We apply Calabi’s trick. Let δ ∈ (0, d(x1, p)/2)
be a positive constant, and let γ (t) be any length-minimizing geodesic from p to x1.
Define pδ := γ (δ), so that x1 /∈ C(pδ), and define

rδ(x) := d(x, pδ)+ δ, ψδ(x) := k
R2
+ r2

δ

(R2− rδ)2
,

hδ :=1u+α|∇u|2+βeu
+φ+ψδ.

Note that by the triangle inequality, rδ(x)=d(x, pδ)+d(pδ, p)≥r(x),with equality
at x = x1. Since ψ is an increasing function of r , it follows that ψδ(x)≥ψ(x) with
equality at x = x1. This implies that (x1, t1) is still the first time and place where
hδ(x, t)= 0. Furthermore, hδ is now C2 at (x1, t1) so applying Lemmas 2, 3, 8, 5,
and 9 gives that 0> P7.

Note that clearly rδ ≥ 0 and |∇rδ| ≤ 1, and at x1 we get

1rδ =1(d(x1, pδ))≤
n−1

d(x1, pδ)
=

n−1
r(x1)−δ

≤
2(n−1)

r(x1)
,

since we assumed that δ ≤ 1
2r(x1). Therefore applying Lemma 11 gets us a

contradiction in this case as well.
This shows that h(x, t) > 0 for all x , t . Since h varies continuously as a function

of R, ε, ε′, we can take the limit R→∞ to get ψ→ 0. Then by taking ε, ε′→ 0,
we get that φ→ φ1 and so

1u+α|∇u|2+βeu
+

µ2

( 1
ν2−ω2

e2µ2ω2t
−

1
µ2+ω2

)
1− e2µ2ω2t ≥ 0,

with

µ2 = βc
√

2(1−α)
c(−cn−8β(1−α))

,

ν2 =

(4β(1−α)
n

+ c
)
·

√
2(1−α)

c(−cn−8β(1−α))
, ω2 =

√
2(1−α)

n
,

which finishes the proof. �

4. Applications

In this section, we derive two applications of our differential Harnack estimates.
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Bounds on the wave speed of traveling wave solutions. The first such application
shows that our Harnack inequality can be used to prove an interesting fact about
traveling wave solutions to Fisher’s equation. In particular we look at traveling
plane waves, i.e., solutions to (1) of the form

f (x, t)= v(z) := v(x + ηt â),

for some function v : Rn
→ R and some wave direction â ∈ Rn, |â| = 1 and wave

speed η > 0. For n = 1, these solutions were first studied by Fisher [1937] (also
see [Kolmogorov et al. 1937; Sherratt 1998]) and were considered by him to be a
natural model for propagation of mutations. He was able to show that if n = 1 and

lim
t→−∞

f (x, t)= 0, then it must be that η ≥ 2
√

c.

We will show a weaker bound that generalizes to higher dimensions.

Theorem 12. Let f (x, t)= v(x + ηt â) be a traveling plane wave solution to (1),
with wave speed η and wave direction â. Suppose that

(9) lim
x=kb̂,
k→∞

v(x)= 0 for some direction b̂ ∈ Rn, |b̂| 6= 0.

Then

η ≥


√

(3−
√

3)c if n = 1,
√

2c if n = 2,
√

(7− 3
√

3)c if n = 3.

When n = 1, η ≥ 2
√

c is both a necessary and sufficient condition for the
existence of traveling wave solutions. The same condition is sufficient in any higher
dimension, but it is not known (at least to us) if it is necessary as well. Our bounds
above give a weaker necessary wave speed in dimensions two and three.

Remark. In the proof below we have not used the fact that the traveling wave v
approaches 1 in some direction. Although we were ourselves unsuccessful, the
authors would like to encourage an attempt to use this additional restriction to
obtain a better bound on the wave speed η.

Lemma 13. For any v(z) and any η that satisfy the conditions of Theorem 12, and
for any α, β that satisfy (i), (ii), and (iii) as in Theorem 7, we have

η2
≥ M ′ := 4(1−α)[(c−φ(t))− (β + c)v(z)],

for all x , t , where

φ(t)=
µ
( 1
ν−ω

e2µωt
−

1
ν+ω

)
(1− e2µωt)

(which appears as φ1(t) in the statement of Theorem 7).
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Proof. Since Fisher’s equation is spherically symmetric, we may assume without
loss of generality that â = x̂1 = (1, 0, 0, . . . , 0). Therefore

f (x, t)= v(x1+ ηt, x2, . . . , xn)= v(z1, z2, . . . , zn)= v(ẑ).

It then follows from (1) that (where ∂i := ∂/∂zi )

η∂1v =1v+ cv(1− v).

Combining this with Theorem 7 gives

1(log v)+α|∇(log v)|2+βv+φ ≥ 0,

1v

v
− (1−α) |∇v|

2

v2 +βv+φ ≥ 0,

η∂1v−cv(1−v)
v

− (1−α) |∇v|
2

v2 +βv+φ ≥ 0,

(1−α)
∑n

i=2(∂iv)
2

v2 + (1−α)(∂1v)
2

v2 − η
∂1v

v
− (β + c)v+ (c−φ)≤ 0.

It follows from standard Cauchy–Schwarz that

−
η2

4(1−α)
− (β + c)v+ (c−φ)≤ 0,

hence η2
≥ 4(1−α)[(c−φ)− (β + c)v], as desired. �

Lemma 14. Assume that v(x)→ 0 along some path, as in (9). Then for any ε3 > 0
there exists (x3, t3), possibly depending on n, α, β, and c, such that at (x3, t3)

M ′ > M ′′− 1
3ε3,

where

M ′′ := 4(1−α)
(

c− −µ
ν+ω

)
.

Proof. Fix ε3 > 0. Note that

lim
t→∞

φ(t)= −µ
ν+ω

.

Choosing t ≥ t3 large enough gives∣∣∣φ(t3)− −µ
ν+ω

∣∣∣< ε3
24(1−α)

,

so that

4(1−α)(c−φ) > 4(1−α)
(

c− −µ
ν+ω

)
−
ε3
6
.
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Having fixed t3, we then set x3 := −ηt3â+λb̂ with λ sufficiently large. Then by
(9) it follows that

|v− 0|< ε3
24(1−α)

1
|β+c|

and − 4(1−α)(β + c)v > 0− 1
6ε3.

Therefore

M ′ = 4(1−α)[(c−φ)− (β + c)φ]> M ′′− 1
3ε3. �

Remark. Condition (9) can be weakened; it suffices to have lim
z→∞

v(z) = 0 along
some path that goes to infinity.

Lemma 15. If n ≤ 3, and β =−cn(1+α)/(4α2
− 4α+ 2n), and 0< α < α0(ε3)

is sufficiently close to 0, then conditions (i), (ii), and (iii) are satisfied, and
M ′′ > M ′′′− 1

3ε3, where

M ′′′ := M ′′′(n)= 2c
(

n−4+2
√

4n−n2

n−2+
√

4n−n2

)
.

Proof. Conditions (i) and (ii) are clearly satisfied by construction. And note that
(iii) is equivalent to

−
2+
√

2
4

<
β(1−α)

cn
<−

2−
√

2
4

.

But the quantity in the middle varies continuously with α near α = 0, so it suffices
to check it at α = 0, where we indeed have

−
2+
√

2
4

<−
1

2n
<−

2−
√

2
4

,

which holds for all n ≤ 3, so there must exist some α0 sufficiently small such that
(iii) holds for all α < α0.

Next, we compute M ′′:

M ′′ = 4(1−α)
(

c− −µ
ν+ω

)

= 4(1−α)

c+

βc
2
√

A
1

2
√

A

(4β(1−α)
n

+c
)
+

√
2(1−α)

n



= 4(1−α)

c+ βc(
c+ 4β(1−α)

n

)
+

√
8A(1−α)

n

 .
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Here A = A(ε′ = 0), so that

8A(1−α)
n

=
16β2(1−α)2

n2 −

(
c+ 4β(1−α)

n

)2
= c2

(
−1− 8β(1−α)

cn

)
.

This gives

M ′′ = 4(1−α)c

1+ β/c

1+ 4β(1−α)
cn

+

√
−1− 8β(1−α)

cn

 .
Again, this involves only (1− α) and β, both of which are continuous at α = 0,
where we have β =−c/2, so

M ′′ = 4c

(
1+ −1/2

1− 2
n+

√
−1+ 4

n

)
= 2c

(
2− n

n−2+
√

4n−n2

)
= M ′′′.

Hence for α sufficiently close to 0 we can get |M ′′−M ′′′|< ε3/3, which gives
us the desired conclusion. �

Proof of Theorem 12. Fix a solution f (x, t)= v(x+ηt â) of (1) which also satisfies
(9), and fix a ε3 > 0.

Let α<α0 and β=−c/(2(1−α)), so that (i), (ii), (iii) are satisfied (by Lemma 15).
Applying Lemma 13 then gives η2

≥ M for all x, t .
Applying Lemma 14, we find a pair (x3, t3) such that M ′ > M ′′− ε3/3. Then

applying Lemma 15 again, we have M ′′ > M ′′′− ε3/3 so that

η2 > M ′′′− ε3.

However, note that M ′′′ depends only on n. Hence we send ε3→ 0, to get that

η2
≥ M ′′′(n)=


c(3−

√
3), n = 1,

2c, n = 2,
c(7− 3

√
3), n = 3,

as desired. �

Classical Harnack inequality. In this subsection, we integrate our differential
Harnack estimates along a spacetime curve to derive classical Harnack inequalities.
We further assume that M is closed, and that f (x, t) < 1 for all x , t .

Theorem 16. Let M be a closed Riemannian manifold with nonnegative Ricci
curvature, and 0< f < 1 be a bounded positive solution to Fisher’s equation. Let
α and β satisfy the conditions of Theorem 1. Furthermore, if α ≤ n/4, then there
will always exist β such that β + c ≥ 0 in addition to the constraints of Theorem 1.
For such an α and β,
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(i) if 8β(1−α)+ cn < 0, then we have

f (x2, t2)
f (x1, t1)

≥

(1−e−ct2

1−e−ct1

) 8β2(1−α)
c2n+8βc(1−α) exp

(
−

d(x1, x2)
2

4(1−α)(t2− t1)

)
;

(ii) if 8β(1−α)+ cn > 0, t2 > t1 > T2, then we have

f (x2, t2)
f (x1, t1)

≥


(
1+ 8β(1−α)

cn

)
e−c(t2−T2)+ 1(

1+ 8β(1−α)
cn

)
e−c(t1−T2)+ 1


8β2(1−α)

c(cn+8β(1−α))

exp
(
−

d(x1, x2)
2

4(1−α)(t2− t1)

)
;

(iii) if 8β(1−α)+ cn = 0, t2 > t1 > T2, then we have

f (x2, t2)
f (x1, t1)

≥ exp
[
−
β

c

(
e−c(t2−T2)− e−c(t1−T2)

)]
exp

(
−

d(x1, x2)
2

4(1−α)(t2− t1)

)
.

Proof of Theorem 16. Let f (x, t) solve ft =1 f + c f (1− f ), and u = log f . Fix
points (x1, t1), (x2, t2) and let γ : [t1, t2] → Mn be an arbitrary spacetime path
connecting them, i.e., γ (t1)= x1, γ (t2)= x2.

Let v(t) := u(γ (t), t) be the value of u along γ . We compute

v′(t)= ut +∇u ·
dγ
dt
.

Using the time evolution for ut = (log f )t = ft/ f , this is equal to

v′(t)=1u+ |∇u|2+ c(1− eu)+∇u ·
dγ
dt
.

Applying the Harnack inequality gives

v′(t)≥ (1−α)|∇u|2+ (c−φ)− (β + c)eu
+∇u ·

dγ
dt
.

By assumption, f < 1 and β + c ≥ 0. This implies −(β + c)eu
≥ −(β + c), so

defining φ̃(t)=−β −φ(t), we then get

v′(t)≥ (1−α)|∇u|2+ (c−φ)− (β + c)+∇u ·
dγ
dt

=−β −φ+ (1−α)|∇u|2+∇u ·
dγ
dt

= φ̃(t)+ (1−α)|∇u|2+∇u ·
dγ
dt
,

v′(t)≥ φ̃(t)− 1
4(1−α)

∣∣∣dγ
dt

∣∣∣2.
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Integrating in time, we get

u(x2, t2)−u(x1, t1)=v(t2)−v(t1)=
∫ t2

t1
v′(t) dt≥

∫ t2

t1
φ̃(t) dt− 1

4(1−α)

∫ t2

t1

∣∣∣dγ
dt

∣∣∣2dt.

Since γ was chosen to be an arbitrary path, we can choose it to be the path
minimizing

∫
|γ ′|2, which is the minimizing geodesic between the two endpoints.

The integral thus becomes ∫ t2

t1
|γ ′|2 dt =

d(x1, x2)
2

t2− t1
.

Thus the spacetime Harnack is given by

log
( f (x2, t2)

f (x1, t1)

)
= u(x2, t2)− u(x1, t1)≥

∫ t2

t1
φ̃(t) dt −

d(x1, x2)
2

4(1−α)(t2− t1)
.

We compute the definite integral, dividing into three cases. First we deal with
the case 8β(1−α)+ cn < 0. In this case we have

φ(t)=

(
βcn

cn+8β(1−α)

)
e−ct
−β

1−e−ct ,

and

φ̃(t)=
(
βe−ct

−
βcne−ct

cn+8β(1−α)

) 1
1−e−ct = β ·

8β(1−α)
cn+8β(1−α)

·
e−ct

1−e−ct .

Then we can explicitly integrate∫ t2

t1
φ̃(t) dt = β

c

( 8β(1−α)
cn+8β(1−α)

)
log
[1−e−ct2

1−e−ct1

]
.

Therefore we get that

exp
(∫ t2

t1
φ̃(t) dt

)
=

(1−e−ct2

1−e−ct1

) 8β2(1−α)
c2n+8βc(1−α) ,

and the claim follows.
Second, we deal with the case 8β(1−α)+cn> 0. Then for t > T2 (recall that T2

is a constant) we have

φ(t)= −βcnec(t−T2)−βcn
cn+8β(1−α)+cnec(t−T2)

,

and so

φ̃(t)=−β −φ(t)= −8β2(1−α)e−c(t−T2)

(8β(1−α)+cn)e−c(t−T2)+cn
.



298 XIAODONG CAO, BOWEI LIU, IAN PENDLETON AND ABIGAIL WARD

If we let B =−8β2(1−α) and D = cn+ 8β(1−α), then we get that

φ̃(t)= Be−c(t−T2)

De−c(t−T2)+cn
.

We can integrate∫ t2

t1
φ̃(t) dt =

( 8β2(1−α)
c2n+8βc(1−α)

)
log
(
(8β(1−α)+cn)e−c(t2−T2)+cn
(8β(1−α)+cn)e−c(t1−T2)+cn

)
.

Therefore

exp
(∫ t2

t1
φ̃(t) dt

)
=


(

1+ 8β(1−α)/(cn)
)

e−c(t2−T2)+ 1(
1+ 8β(1−α)/(cn)

)
e−c(t1−T2)+ 1


8β2(1−α)

c2n+8βc(1−α)

as claimed in the statement of Theorem 16.
In the last case that 8β(1−α)+ cn = 0, we have

φ(t)= −βec(t−T2)−β

ec(t−T2)
,

and so
φ̃(t)=−β −φ(t)= β

ec(t−T2)
.

Therefore

exp
(∫ t2

t1
φ̃(t) dt

)
= exp

[
−
β

c
(
e−c(t2−T2)− e−c(t1−T2)

)]
as desired.

To finish the proof of our theorem we need to show that we can choose β+c≥ 0,
i.e., β ≥−c. We have the constraint (ii):

β ≤
−cn(1+α)

4α2−4α+2n
,

so we need to have
−c ≤ β ≤ −cn(1+α)

4α2−4α+2n
.

Note that since 0< α < 1, we have 4α2
− 4α+ 2n ≥−1+ 2n ≥ 1; thus it remains

to choose α so that
−(4α2

− 4α+ 2n)≤−n(1+α),

which simplifies to
α ≤ 1

4 n.

This is automatically true if n ≥ 4, which means we can choose any α we wish,
and there will be at least one β satisfying all the constraints including β+c≥ 0. �
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Note that limt→∞ φ(t) = −β, and limt→∞ φ̃(t) = 0. Thus, as t1, t2→∞, the
estimate approaches the classical Li–Yau–Harnack [Li and Yau 1986].

Remark. In the compact case we obtain a good bound as t1 and t2 get large. In the
complete noncompact case, one can still integrate along spacetime curves to obtain
an inequality, but the estimate degenerates when time becomes large.
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