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A VECTOR-VALUED BANACH–STONE THEOREM
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√
2

ELÓI MEDINA GALEGO AND ANDRÉ LUIS PORTO DA SILVA

Let K and S be locally compact Hausdorff spaces and H a real Hilbert space
of finite dimension at least two. We prove that if T is an isomorphism from
C0(K, H) onto C0(S, H) whose distortion ‖T‖‖T−1‖ is exactly

√
2, then K

and S are homeomorphic. This is the vector-valued Banach–Stone theorem
via isomorphisms with the largest distortion that is known. It improves a
1976 classical result due to Cambern.

1. Introduction

If K is a locally compact Hausdorff space and X is a Banach space, we denote
by C0(K , X) the Banach space of continuous functions vanishing at infinity on K ,
taking values in X , and provided with the usual supremum norm. If K is compact,
we use the notation C(K , X) to represent this space. Moreover, if X = R we will
denote these spaces by C0(K ) and C(K ) respectively. In the present paper, the
word “isomorphism” means “linear homeomorphism”.

The well-known Banach–Stone theorem states that if K and S are locally compact
Hausdorff spaces, then the existence of an isometric isomorphism T of C0(K ) onto
C0(S) implies that K and S are homeomorphic [Banach 1932; Behrends 1979;
Stone 1937]. Cambern [1966; 1967] strengthened this theorem by showing that the
conclusion holds if the requirement that T be an isometric isomorphism is replaced
by the requirement that T be an isomorphism satisfying ‖T ‖‖T−1

‖ < 2. Amir
[1965] established the same result independently for K and S compact. Cambern
[1970] showed that 2 is indeed the greatest number for which the formulation of
the Banach–Stone theorem given in [Cambern 1967] is valid, by exhibiting a pair
of locally compact Hausdorff spaces K and S, with K compact, S noncompact,
and an isomorphism T of C(K ) onto C0(S) with ‖T ‖‖T−1

‖ = 2. Cohen [1975]
showed there was such an example where both K and S are compact.

Cambern [1976] was also the first to get a vector-valued Banach–Stone theorem
via isomorphisms with distortion λ > 1. He proved:

MSC2010: primary 46B03, 46E15; secondary 46B25, 46E40.
Keywords: vector-valued Banach–Stone theorem, C0(K , X) spaces, finite-dimensional Hilbert space.

321

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2017.290-2
http://dx.doi.org/10.2140/pjm.2017.290.321


322 ELÓI MEDINA GALEGO AND ANDRÉ LUIS PORTO DA SILVA

Theorem 1.1. Let K and S be locally compact Hausdorff spaces and H a finite-
dimensional Hilbert space. If there exists an isomorphism T from C0(K , H) onto
C0(S, H) satisfying ‖T ‖‖T−1

‖<
√

2, then K and S are homeomorphic

It is still an open question whether the bound
√

2 can be improved. Moreover,
after Cambern’s theorem, all vector-valued Banach–Stone theorems have been
obtained via isomorphisms with distortion 1≤ λ <

√
2; see [Cidral et al. 2015].

Thus, in view of the above mentioned isomorphisms with distortion 2 between
C0(K , H) spaces constructed independently by Cambern and Cohen in the case
where H is the scalar field, it is natural to turn our attention to the isomorphisms with
distortion

√
2 between C0(K , H) spaces in the case where H is an n-dimensional

Hilbert space with n ≥ 2. In other words, the following question arises naturally.

Problem 1.2. Let K and S be locally compact Hausdorff spaces and H a Hilbert
space of finite dimension greater than or equal to 2. Suppose that there exists an
isomorphism T from C0(K , H) onto C0(S, H) satisfying ‖T ‖‖T−1

‖ =
√

2. Does
it follow that K and S are homeomorphic?

The principal purpose of this paper is to show that Problem 1.2 has a positive
solution when the scalar field is the real numbers R.

So, henceforward H = Rn
2 the space of n tuples of real numbers with the usual 2

norm and n ≥ 2. Our main theorem is as follows.

Theorem 1.3. Let K and S be locally compact Hausdorff spaces. Suppose that
there exists an isomorphism T from C0(K , H) onto C0(S, H) satisfying

(1-1)
‖ f ‖

4
√

2
≤ ‖T ( f )‖ ≤ 4

√
2‖ f ‖,

for every f ∈ C0(K , H). Then K and S are homeomorphic.

Then, the solution of Problem 1.2 follows immediately from Theorem 1.3 by
considering τ = T ‖T−1

‖2−1/4 and noticing that (1-1) holds for the isomorphism τ .
Moreover, Theorem 1.1 in the real case is also a direct consequence of Theorem 1.3.
Indeed, put ‖T ‖‖T−1

‖ = λ <
√

2 and τ = T ‖T−1
‖λ−1/2. Therefore, it suffices to

observe that (1-1) again holds for the isomorphism τ .
It is worth mentioning that Theorem 1.3 cannot be extended to infinite dimen-

sional Hilbert spaces. Indeed, let I be an infinite set and write I = I1 ∪ I2 with
I1 ∩ I2 = ∅ and the cardinalities of I1 and I2 equal to the cardinality of I . Let
K1 = {1} and K2 = {1, 2} be two discrete compact Hausdorff spaces. Consider the
natural isometries

2 : C(K2, l2(I ))→ l2(I1)⊕∞ l2(I2) and ϒ : l2(I )→ C(K1, l2(I )).

Now, define T : l2(I1)⊕∞ l2(I2)→ l2(I ) by

T ((ai )i∈I1, (bi )i∈I2)= (ci )i∈I ,
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where ci = ai if i ∈ I1 and ci = bi if i ∈ I2. Then, it is easy to check that

‖ϒT2‖ =
√

2 and ‖(ϒT2)−1
‖ = 1.

But, of course K1 and K2 are not homeomorphic.
As we will see, the proof of Theorem 1.3 depends not only on the fact that H

has finite dimension but the intrinsic geometry of H as a real Hilbert space. It is
divided into five sections.

2. Special sets associated to isomorphisms between C0(K, H) spaces

We begin by recalling that a bijective map T : C0(K , H)→ C0(S, H) is said to
be a bijective coarse quasi-isometry if for some constants M > 0 and L ≥ 0 the
inequalities

1
M
‖ f − g‖− L ≤ ‖T ( f )− T (g)‖ ≤ M‖ f − g‖+ L ,

are satisfied for all f, g ∈ C0(K , H).
In our recent study of these maps ([Galego and Porto da Silva 2016]; henceforth

abbreaviated [GPS]) we introduced some classes of subsets 0w(k, v) and 0v(s, w)
of S and K respectively, where k ∈ K , s ∈ S and v and w are suitable elements of
R. We shall define these sets for v,w ∈ H instead of R.

In order to prove Theorem 1.3, we will need to state some new properties of
these sets in the particular case where T is linear, M = 4

√
2 and L = 0. So, in this

short preliminary section we will remember some definitions and results already
adapted to the context of Theorem 1.3.

From now on M= 4
√

2 and T will be an isomorphism of C0(K , H) onto C0(S, H)
satisfying

(2-1)
‖ f ‖
M
≤ ‖T ( f )‖ ≤ M‖ f ‖,

for every f ∈ C0(K , H).
Let k ∈ K , f ∈ C0(K , H) and v ∈ H . Following [GPS, Definition 2.2] we set

ω(k, f, v)=max{‖ f ‖, ‖ f (k)− v‖}.

Moreover, if v,w ∈ H with v 6= 0 satisfy ‖w‖ = ‖v‖/M , following [GPS,
Definition 3.1], we also set

0w(k, v)= {s ∈ S : ‖T f (s)−w‖ ≤ Mω(k, f, v),∀ f ∈ C0(K , H)}.

Analogously, for s ∈ S, w and v ∈ H with w 6= 0 and ‖v‖ = ‖w‖/M , we set

0v(s, w)= {k ∈ K : ‖T−1g(k)− v‖ ≤ Mω(s, g, w),∀g ∈ C0(S, H)}.
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Let us summarize the results concerning these sets which will be used in the
present paper. We will denote by 〈 · , · 〉 the usual inner product on H . When the
vectors v and w of H are orthogonal we will write v ⊥ w.

Proposition 2.1. Let k ∈ K and v ∈ H with v 6= 0.

(1) There exists w ∈ H such that 0w(k, v) 6=∅.

(2) For all t ∈ R with t 6= 0 and w ∈ H we have 0w(k, v)= 0tw(k, tv).

(3) Let v′, w,w′ ∈ H and k ′ ∈ K with k 6= k ′. Suppose that

0w(k, v)∩0w′(k ′, v′) 6=∅,

then w ⊥ w′.

(4) Let w ∈ H and suppose that s ∈ 0w(k, v). If 0z(s, w) 6= ∅ for some z ∈ H
then 0z(s, w)= {k}.

Proof. (1) The proof is essentially the same proof of [GPS, Proposition 3.2]. We
leave it to the reader to transpose to the Hilbert context.

(2) It suffices to prove that 0w(k, v)⊂ 0tw(k, tv) for all t 6= 0. Let s ∈ 0w(k, v).
Given f ∈ C0(K , H) put f ′ = t−1 f . By the definition of 0w(k, v) it follows that

‖T f ′(s)−w‖ ≤ Mω(k, f ′, v),
and hence

‖T f (s)− tw‖ = |t |‖T f ′(s)−w‖ ≤ M |t |ω(k, f ′, v)= Mω(k, f, tv).

Consequently s ∈ 0tw(k, tv).
(3) By item (2) of the proposition we may assume that ‖v‖ = ‖v′‖ = 1. By

Urysohn’s lemma pick f ∈C0(K , H) such that ‖ f ‖ = 1
2 , f (k)= v

2 and f (k ′)= v′

2 .
It is easy to check that ω(k, f, v)=ω(k ′, f, v′)= 1

2 . Pick s ∈0w(k, v)∩0w′(k ′, v′).
Then, by the definitions of these sets we have

‖w−w′‖ ≤ ‖T f (s)−w‖+‖T f (s)−w′‖ ≤ M
2
+

M
2
= M.

Now, by applying the law of cosines we see that

〈w,w′〉 ≥ 1
2(‖w‖

2
+‖w′‖2−M2),

Since ‖w‖ = ‖w′‖ = 1/M and M = 4
√

2, it follows that

〈w,w′〉 ≥
1
2

(
2

M2 −M2
)
= 0.

On the other hand, by item (2) of the proposition we have

s ∈ 0w(k, v)∩0−w′(k ′,−v′).

So, proceeding as above we obtain that 〈w,−w′〉 ≥ 0. Hence 〈w,w′〉 = 0.
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(4) According to item (2) of the proposition we may assume that ‖v‖ = 1. By
item (1) of the proposition there is z ∈ H such that 0z(s, w) 6=∅. Fix m ∈0z(s, w);
we need to show that m = k. Assume then that m 6= k and choose h ∈ C0(K )
satisfying

‖h‖ = 1
2
, h(k)= v

2
and h(m)=−1

2
z
‖z‖

.

Since 0w(k, v) and 0z(s, w) are well defined, we have ‖z‖ = 1/M2
= 1/
√

2.
Moreover, observe that z is negatively proportional to h(m). Thus, we have

‖h(m)− z‖ = ‖h(m)‖+‖z‖ = 1
2
+

1
√

2
.(2-2)

On the other hand, ω(k, h, v)= 1
2 and s ∈ 0w(k, v) imply that

‖Th(s)−w‖ ≤ M
2
.

Since ‖Th‖ ≤ M/2 it follows that ω(s, Th, w) ≤ M/2 and by the definition of
0z(s, w) (using the function Th and the map T−1)

‖h(m)− z‖ ≤ Mω(s, Th, w)≤ M2

2
=

1
√

2
,

which by (2-2) lead us to a contradiction. �

Note that since the definitions of 0w(k, v) and 0v(s, w) are symmetric the
properties proved in Proposition 2.1 on k ∈ K and 0w(k, v) are also valid for s ∈ S
and 0v(s, w).

Henceforth our task will be to construct a homeomorphism ϕ : K → S using the
subsets 0w(k, v), for every k ∈ K . In fact, we will see that these subsets contain
the candidates to be the image of k by ϕ.

3. On the subsets 0w(k, v) of K containing irregular points

The purpose of this section is to establish Proposition 3.1. It allows us to relate the
vectors v and w involved in the construction of certain special sets 0w(k, v). For
convenience, we introduce the following definition.

A point s ∈ S is said to be irregular if there exist two different points k and k ′ ∈ K
such that s ∈ 0w(k, v)∩0w′(k ′, v′) for some v,w, v′, w′ ∈ H . Symmetrically, we
will say that a point k ∈ K is irregular if k ∈0v(s, w)∩0v′(s ′, w′) for some different
points s, s ′ ∈ S and v,w, v′, w′ ∈ H .

Proposition 3.1. Suppose that k ∈ K and s is an irregular point of S.

(1) If s ∈ 0w1(k, v1)∩0w2(k, v2) for some v1, v2, w1, w2 ∈ H then

〈v1, v2〉 = M2
〈w1, w2〉.
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(2) If (vi )1≤i≤l is a linearly independent set of H and s ∈ 0wi (k, vi ), for some
wi ∈ H , 1≤ i ≤ l, then (wi )1≤i≤l is a linearly independent set.

Proof. In virtue of Proposition 2.1(2) we can assume that ‖v1‖ = ‖v2‖ = 1. Hence
‖w1‖ = ‖w2‖ = 1/M . Since s is irregular, there exists k ′ ∈ K , k ′ 6= k and vectors
v′, w′ ∈ H with ‖v′‖ = 1 and ‖w′‖ = 1/M such that s ∈ 0w′(k ′, v′). According to
Proposition 2.1(3) we have

(3-1) w′⊥ w1 and w′⊥ w2.

Since k 6= k ′ by Urysohn’s lemma there exist f, f ′ ∈ C0(K ) satisfying:

(i) f (K ), f ′(K )⊂ [0, 1].

(ii) f (k)= f ′(k ′)= 1.

(iii) supp f ∩ supp f ′ =∅.

Put h1 = f · (v1/2), h2 = f · (v2/2), h3 = f ′ · (v′/2) and

(3-2) h = h1+ h2+‖v1+ v2‖h3.

According to (iii)

(3-3) ‖h‖ = 1
2‖v1+ v2‖.

Next we will calculate ‖Th(s)‖. In order to do this consider the function h1+ h3.
It is easy to see that

ω(k, h1+ h3, v1)= ω(k ′, h1+ h3, v
′)= 1

2 .

Thus, since s ∈ 0w1(k, v1)∩0w′(k ′, v′) it follows by the definition of these sets that

(3-4) ‖T (h1+ h3)(s)−w1‖ ≤
M
2

and ‖T (h1+ h3)(s)−w′‖ ≤
M
2
.

On the other hand, (3-1) gives us that

(3-5) ‖w1−w
′
‖ =

√
‖w1‖2+‖w′‖2 =

√
2

M2 = M.

By (3-4) and (3-5) we deduce that

(3-6) T (h1+ h3)(s)=
w1+w

′

2
.
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In the same way we obtain

(3-7) T (h1− h3)(s)=
w1−w

′

2
,

and

(3-8) T (h2+ h3)(s)=
w2+w

′

2
.

By combining (3-6), (3-7) and (3-8) we infer that

Th1(s)=
w1
2
, Th2(s)=

w2
2

and Th3(s)=
w′

2
.

Thus, taking in mind (3-1) and (3-2) we get

‖Th(s)‖2 =
‖w1+w2‖

2

4
+‖v1+ v2‖

2 ‖w
′
‖

2

4
.

Since that ‖Th‖ ≤ M‖h‖ and (3-3) holds, it follows that

‖w1+w2‖
2

4
+‖v1+ v2‖

2 ‖w
′
‖

2

4
≤ M2 ‖v1+ v2‖

2

4
.

Recalling that ‖w′‖ = 1/M , we have

‖w1+w2‖
2
≤

(
M2
−

1
M2

)
‖v1+ v2‖

2.

But ‖w1+w2‖
2
= 2/M2

+ 2〈w1, w2〉 and ‖v1+ v2‖
2
= 2+ 2〈v1, v2〉. Hence

2
M2 + 2〈w1, w2〉 ≤

(
M2
−

1
M2

)
(2+ 2〈v1, v2〉).

By using that M2
=
√

2 we conclude

M2
〈w1, w2〉 ≤ 〈v1, v2〉.

Similarly working with −v2 and −w2 instead of v2 and w2 we derive that

M2
〈w1,−w2〉 ≤ 〈v1,−v2〉,

so the equality holds.
(2) It suffices to notice that item (1) of the proposition implies the following

identity of matrices:

[〈vi , vj 〉]1≤i, j≤l = M2
[〈wi , wj 〉]1≤i, j≤l . �
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4. The functions 8 : K → P(S) and 9 : S→ P(K )

Here it is convenient to introduce two functions 8 : K →P(S) and 9 : S→P(K )
given by

8(k)=
⋃{

0w(k, v) : v 6= 0 and ‖w‖ =
‖v‖

M

}
,

and

9(s)=
⋃{

0v(s, w) : w 6= 0 and ‖v‖ =
‖w‖

M

}
.

Our next step is to prove that the sets 8(k) and 9(s) are singletons, see
Proposition 5.1. The next proposition works on the assumption that 8(k) is not
a singleton set. Later, in the proof of Proposition 4.1, we will use it to derive a
contradiction.

Proposition 4.1. Let k ∈ K . Suppose that 8(k) is not a singleton set. Then:

(1) k is an irregular point of K .

(2) 8(k) contains only irregular points of S.

Proof. (1) Pick two different points s, s ′ ∈ 8(k). So, there are v, v′, w,w′ ∈ H
such that

s ∈ 0w(k, v) and s ′ ∈ 0w′(k, v′).

By Proposition 2.1.4 there exist z and z′ ∈ H satisfying

k ∈ 0z(s, w)∩0z′(s ′, w′),

hence k is an irregular point of K .
(2) First of all notice that by item (1) of the proposition applied to 9(s), it

suffices to prove that for all s ∈8(k), 9(s) is not a singleton set.
Assume by contradiction that 9(s) is a singleton set for some s ∈8(k). Since

s ∈8(k), there exist v,w ∈ H such that s ∈ 0w(k, v). By Proposition 2.1(4) there
exists z ∈ H satisfying 0z(s, w)= {k}. Then k ∈9(s) and therefore

(4-1) 9(s)= {k}.

Now fix (wi )1≤i≤n , a basis of H with ‖wi‖ = 1 for every 1 ≤ i ≤ n. There exist,
by Proposition 2.1(1), (vi )1≤i≤n in H such that 0vi (s, wi ) 6=∅ for every 1≤ i ≤ n.
Thus (4-1) implies that

(4-2) 0vi (s, wi )= {k},

for every 1≤ i ≤ n.
On the other hand, since by item (1) of the proposition k is an irregular point of K ,

it follows from (4-2) and Proposition 3.1(2) that (vi )1≤i≤n is linearly independent.
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Next, since k is an irregular point of K , there exist s ′ ∈ S, s ′ 6= s and w′, v′ ∈ H
such that k ∈ 0v′(s ′, w′). So, by (4-2) and Proposition 2.1(3) we conclude that

v′ ⊥ vi ,

for every 1≤ i ≤ n, a contradiction because the dimension of H is n. �

5. The cardinality of 8(k) for every k ∈ K

We are now in position to state the key proposition for proving Theorem 1.3. The
span of a subset V of E will be denoted by [V ].

Proposition 5.1. 8(k) is a singleton set for every k ∈ K .

Proof. Assume that there exists k ∈ K such that 8(k)= {si : i ∈ I } with cardinality
of I greater than or equal two. For all i ∈ I put

Vi = {v ∈ H, v 6= 0 : si ∈ 0w(k, v) for some w ∈ H}.

It follows from the definition of 8(k) that Vi 6=∅ for every i ∈ I , and according to
Proposition 2.1(1) ⋃

i∈I

Vi = Hr {0},

and therefore

(5-1)
⋃
i∈I

[Vi ] = H.

On the other hand, for all i ∈ I set

Zi = {z ∈ H, z 6= 0 : k ∈ 0z(si , w) for some w ∈ H}.

Pick i ∈ I . Since Vi 6=∅ there exists v ∈ H such that si ∈0w(k, v) for some w ∈ H .
By Proposition 2.1(4), 0z(si , w)= {k} for some z ∈ H . Hence Zi 6=∅.

According to Proposition 2.1(2) we can assume that ‖zi‖ = ‖z j‖ and by the
definition of (Zi )i∈I there are wi and wj ∈ H such that

k ∈ 0zi (si , wi )∩0z j (sj , wj ).

So by Proposition 2.1(3), zi ⊥ z j . Consequently

(5-2) [Zi ] ⊥ [Z j ].

Now we will prove that for all i ∈ I

(5-3) [Zi ] = [Vi ].
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First we will show that Zi ⊂ Vi . Indeed, let z ∈ Zi and take w ∈ H such that
k ∈ 0z(si , w). By Proposition 2.1(4) there exists w′ ∈ H satisfying 0w′(k, z)= {si }.
So z ∈ Vi .

Next we will complete the proof of (5-3) by showing that the dimension of [Vi ]

is less than or equal to the dimension of [Zi ]. Let {v1, . . . , vl} ⊂ Vi be a basis
of [Vi ]. Thus, by the definition of Vi there are {w1, . . . , wl} ⊂ H such that

(5-4) si ∈ 0wj (k, vj ),

for every 1≤ j ≤ l. Since the cardinality of I is greater than or equal to two, k is
an irregular element of K . Thus, according to Proposition 4.1(2), si is an irregular
element of S. Then, by (5-4) and Proposition 3.1(2) we see that {w1, . . . , wl} is
linearly independent.

In view of (5-4), Proposition 2.1(4) implies that there are {z1, . . . , zl} ⊂ H such
that for all 1≤ j ≤ l,

(5-5) 0z j (si , wj )= {k}.

So, for all 1≤ j ≤ l, z j ∈ Zi and by (5-5) and Proposition 3.1(2) we deduce that
{z1, . . . , zl} is linearly independent. Then, we are done.

Finally, by combining (5-2) and (5-3) it follows that for all i, j ∈ I with i 6= j

[Vi ] ⊥ [Vj ],

a contradiction with (5-1), because H would be a union of nontrivial mutually
perpendicular subspaces. �

6. The isomorphisms between C0(K, H) spaces with distortion
√

2

Proposition 5.1 allows us to define two functions ϕ : K → S and ψ : S→ K by

8(k)= {ϕ(k)} and 9(s)= {ψ(s)}.

Thus, to complete the proof of Theorem 1.3 it remains to prove the following
proposition.

Proposition 6.1. The functions ϕ : K → S and ψ : S → K are continuous
and ψ = ϕ−1.

Proof. First we will show that ψ = ϕ−1. Fix k ∈ K . By the definition of 8(k) there
are v,w ∈ H such that

ϕ(k) ∈ 0w(k, v).

Thus, applying the items (1) and (3) of Proposition 2.1, there exists z ∈ H satisfying

0z(ϕ(k), w)= {k}.
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Therefore k ∈ 9(ϕ(k)) = {ψ(ϕ(k))}. That is, k = ψ(ϕ(k)). Hence ψ ◦ ϕ = IdK .
Analogously we deduce that ϕ ◦ψ = IdS .

We now prove that ϕ is continuous. The proof that ψ is continuous is analogous.
Observe that it suffices to prove that each net (kj )j∈J of K converging to k ∈ K

admits a subnet (kjp)p∈P such that (ϕ(kjp))p∈P converges to ϕ(k).
Assume then that (kj )j∈J is a net of K converging to k. By Propositions 2.1(1)

and 5.1, for all j ∈ J take vj and wj ∈ H with ‖vj‖ = 1 such that

(6-1) ϕ(kj ) ∈ 0wj (kj , vj ).

Since the nets (vj )j∈J and (wj )j∈J are contained in compact sets, we can assume
that there are v,w ∈ H such that vj → v and wj → w.

For each f ∈ C0(K , H) we have

(6-2) ω(kj , f, vj )→ ω(k, f, v),

and according to (6-1),

(6-3) ‖T f (ϕ(kj ))−wj‖ ≤ Mω(kj , f, vj ), ∀ j ∈ J.

Fix f1 ∈ C0(K , H) satisfying ‖ f1‖ =
1
2 and f1(x) = v

2 . Then (6-2) and (6-3)
imply that

‖T f1(ϕ(kj ))‖ ≥ ‖wj‖−‖T f1(ϕ(kj ))−wj‖ ≥
1
M
−Mω(kj , f1, vj ),

for every j ∈ J . Notice that ω(k, f1, v)=
‖v‖

2 =
1
2 , so by (6-2) we have

lim inf
j∈J
‖T f1(ϕ(kj ))‖ ≥

1
M
−

M
2
> 0.

Since T f1 vanishes at infinity, this implies that (ϕ(kj ))j∈J admits a subnet converg-
ing to some s ∈ S, so we assume that ϕ(kj )→ s. Hence, by (6-2) and (6-3),

‖T f (s)−w‖ ≤ Mω(k, f, v), ∀ f ∈ C0(K , H),

which means that s ∈ 0w(k, v)⊂8(k)= {ϕ(k)}, and consequently s = ϕ(k). �

7. Open questions

In view of Theorem 1.3, the following questions arise naturally:

Problem 7.1. Is Theorem 1.3 optimal, in the sense that 4
√

2 is the best number for
formalizing it?

Problem 7.2. What are the Banach spaces X satisfying the following property:
whenever K and S are locally compact Hausdorff spaces and there exists an
isomorphism T from C0(K , X) onto C0(S, X) with ‖T ‖‖T−1

‖ =
√

2, then K and
S are homeomorphic?
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