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For Brylinski–Deligne covering groups of an arbitrary split reductive group,
we consider theta representations attached to certain exceptional genuine
characters. The goal of the paper is to study the dimension of the space of
Whittaker functionals of a theta representation. In particular, we investi-
gate when the dimension is exactly one, in which case the theta representa-
tion is called distinguished. For this purpose, we first give effective lower
and upper bounds for the dimension of Whittaker functionals for general
theta representations. Consequently, the dimension in many cases can be re-
duced to simple combinatorial computations, e.g., the Kazhdan–Patterson
covering groups of the general linear groups, or covering groups whose
complex dual groups (à la Finkelberg, Lysenko, McNamara and Reich) are
of adjoint type. In the second part of the paper, we consider coverings of
certain semisimple simply connected groups and give necessary and suffi-
cient conditions for the theta representation to be distinguished. There are
subtleties arising from the relation between the rank and the degree of the
covering group. However, in each case we will determine the exceptional
character whose associated theta representation is distinguished.

1. Introduction and main results

1A. Introduction. Let F be a nonarchimedean local field of characteristic 0 and
residue characteristic p. Let G be a connected split reductive group over F, and
let G :=G(F) be its rational points. One of the central ingredients in the study of
irreducible admissible representation of G is the uniqueness of Whittaker functionals
(see [Rodier 1973; Shalika 1974]). For instance, this uniqueness property is crucial
in the Langlands–Shahidi theory of L-functions [Shahidi 2010] for the so-called
generic representations of G, i.e., those with nontrivial Whittaker functionals.
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For a natural number n ≥ 1, we assume that F× contains the full subgroup
of the n-th roots of unity, which is then denoted by µn . In this paper, we work
with the Brylinski–Deligne n-fold covering groups G(n) of G, see Section 2A for a
description on such covering groups. We may write G(n) and G interchangeably
if no confusion arises. For simplicity, the phrase covering groups in this paper
is used to refer to the Brylinski–Deligne covering groups. For this purpose, it is
noteworthy to mention that the Brylinski–Deligne framework is quite encompassing
and contains almost all classically interesting covering groups [Steinberg 1962;
Moore 1968; Matsumoto 1969], in particular the Matsumoto covering groups of
semisimple simply connected groups [Moore 1968] and the Kazhdan–Patterson
covering groups GL(n)r of GLr [Kazhdan and Patterson 1984].

For covering groups, the uniqueness of Whittaker functionals for genuine rep-
resentations of G(n) holds rarely and one nontrivial example is the classical double
cover Sp(2)2r of the symplectic group Sp2r , see [Szpruch 2007]. This uniqueness plays
a pivotal role in the work of Szpruch [2009b; 2013] generalizing the method of Lang-
lands and Shahidi to Sp(2)2r . Besides this special family of examples, the uniqueness
of Whittaker functionals fails widely, and one almost never expects such a uniform
property for all genuine representations of a general covering group. For example, it
is well known that certain theta representations for the Kazhdan–Patterson coverings
GL(n)r of GLr could have high dimensional space of Whittaker functionals [Kazhdan
and Patterson 1984]. In fact, such theta representations show that the analogous
standard module conjecture (which is a theorem for linear algebraic groups from
[Casselman and Shahidi 1998]) does not hold for covering groups.

The failure of the uniqueness of Whittaker functionals for general genuine
representations of covering groups, however, has been the source of both obstacles
and inspirations to some advancement of the representation theory of such groups.
On the one hand, for instance, it is not a priori clear how to generalize the Langlands–
Shahidi theory of L-functions to covering groups because of the nonuniqueness of
Whittaker functionals for unramified principal series representations. Equivalently,
the difficulty for such generalization is essentially due to the fact that the analogous
Casselman–Shalika formula for covering groups as in [Chinta and Offen 2013;
McNamara 2016] is vector-valued, whereas for linear algebraic groups it is scalar-
valued; see [Casselman and Shalika 1980].

On the other hand, there are various streams of rich theories stemming from the
nonexistence or multidimensionality of Whittaker functionals. For instance, for
genuine representations of covering groups without Whittaker functionals, one may
consider semi-Whittaker functionals as in [Takeda 2014] or degenerate Whittaker-
functionals [Mœglin and Waldspurger 1987], which interact fruitfully with the
arithmetic and character theory of the representations. Meanwhile, the theory of
unipotent orbit as discussed in [Ginzburg 2006; Friedberg and Ginzburg 2014;
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Friedberg and Ginzburg 2016a] for instance also rectify the situation in the absence
of Whittaker functionals. In the latter case where multidimensionality holds, the
theory of multiple Weyl Dirichlet series makes deep and fascinating connections
between representation theory of covering groups, quantum physics and statistical
mechanics etc, see [Brubaker et al. 2011; Bump et al. 1990; 2012] for some of the
ideas involved. In particular, the book [Bump et al. 2012] contains several excellent
expository articles on multiple Dirichlet series.

Nevertheless, in this paper we consider only the so-called theta representations
2(G(n), χ) which appear as the local representations for the residue of the Borel
Eisenstein series (see Definition 2.1). Moreover, we are mostly interested in deter-
mining when the space of Whittaker functionals for 2(G(n), χ) has dimension one,
in which case 2(G(n), χ) is called distinguished following Suzuki [1998]. Here χ
is an exceptional genuine character (see Definition 2.1) of the center Z(T ) of the
covering torus T ⊆ G. The reason for considering this problem is two-fold.

First, 2(G(n), χ) is in a certain sense the simplest family of genuine repre-
sentations of a general covering group G(n). Indeed, if n = 1, then it follows
from definition that 2(G(n), χ) could be the trivial representation of the linear
group G = G(1), depending on a proper choice of the exceptional character χ .
Therefore, for the genericity question regarding Whittaker functionals of genuine
representations, it is reasonable to consider this family first. Moreover, theta
representations for the Kazhdan–Patterson covering groups of GLr , to which we
have just alluded, are already studied in depth in the seminal paper [Kazhdan and
Patterson 1984]. Despite the fact that the idea therein could be applicable for
general covering groups, to the best of our knowledge, it seems that there is no
systematic treatment on theta representations for general covering groups in the
literature. Perhaps this gap is caused by the tedious cocycle computation to be
carried out by any potential author. However, the Brylinski–Deligne framework
enables us to compute by invoking some neat structural fact of the covering groups
of interest, and to handle only a minimized usage of a cocycle on the torus. In
brief, we wish to fill in the gap by generalizing the relevant work of Kazhdan and
Patterson to Brylinski–Deligne covering groups.

Second, distinguished theta representations have important and emergingly wider
applications. Theta representations are the representation-theoretic analogues of
theta functions, one of the early applications of which was given by Riemann in his
seminal paper to prove the functional equation of the Riemann zeta function. In
the language of modern theory of representations, theta representations for Sp(2)2r
gain deep applications in the Shimura correspondence [Shimura 1973; Gelbart
1976]. On the other hand, following the work of Kazhdan and Patterson, theta
representations for GL(n)r are also studied extensively in [Bump and Hoffstein 1987;
Suzuki 1998; 2012], to mention a few. In particular, these authors made some deep
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conjectures and also provided evidence for a generalized Shimura correspondence
regarding GL(n)r , and the distinguishedness property is exploited to achieve the goals
in their work. Another significant direction of applications is the Rankin–Selberg
integral representation for the symmetric square and cube L-functions [Bump and
Ginzburg 1992; Bump et al. 1996; Takeda 2014; Kaplan 2016]. Evidently, it should
be mentioned that for distinguished theta representations, the theory of L-functions
could be developed as in the linear algebraic case, since the Casselman–Shalika
formula is then scalar-valued. More recently, the work of E. Kaplan [2015a; 2015b],
and S. Friedberg and D. Ginzburg [2014; 2016a] also relies heavily on the local and
global theta representations in their consideration of Fourier coefficient, Rankin–
Selberg L-function and descent integral etc. Notably in their work, distinguishedness
is responsible for proving that a global integral admits an Euler factorization into
local factors. Besides these, the problem on global cuspidal theta representations
is important and many problems are open (see [Friedberg and Ginzburg 2016a;
Suzuki 1998]). In any case, we believe that distinguished theta representations are
objects of great interest and significance, and we hope that our paper could shed
some light on the relevant questions.

1B. Main results. We consider a Brylinski–Deligne n-fold covering group G(n).
Let χ be an exceptional character for G(n). Fix an unramified additive character ψ
of F and consider the space Whψ(2(G(n), χ)) of ψ-Whittaker functionals of the
theta representation 2(G(n), χ). The pair (G(n), χ) such that

dim Whψ(2(G(n), χ))= 1

is quite unique, and the goal is to investigate when 2(G(n), χ) is distinguished. We
remark that for fixed G(n), the set of unramified exceptional characters χ is a torsor
over Z(G∨), the center of the complex dual group G∨ of G. For details on G∨, see
[Finkelberg and Lysenko 2010; McNamara 2012; Reich 2012; Weissman 2015].

We outline the structure of the paper and state the main results.
In Section 2, we recall the basic structural facts on a Brylinski–Deligne covering

group G(n) which will be crucial for our computations. In this paper, we consider
exclusively unramified covering group G(n) and unramified exceptional character
χ . In Section 3, the space Whψ(2(G(n)), χ) is analyzed following the strategy
in [Kazhdan and Patterson 1984] closely. In particular, it relies crucially on the
Shahidi local coefficient matrix [τ(χ,wα, γ, γ ′)]γ,γ ′ for covering groups. Note
that [τ(χ,wα, γ, γ ′)]γ,γ ′ is also referred to as the scattering matrix in [Brubaker
et al. 2016] and transition matrix in [Chinta and Offen 2013]. Since the matrix is
an analogue (and in fact the reciprocal) of Shahidi’s local coefficient in the linear
algebraic case [Shahidi 2010, Chapter 5], we call it the Shahidi local coefficient
matrix in this paper. See also [Budden 2006; Szpruch 2016]. In the unramified
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setting, the matrix is computed in [McNamara 2016]; it is also computed for ramified
places in [Goldberg and Szpruch 2015].

The first main result is Theorem 3.14 from Section 3:

Theorem 1.1. Let G(n) be an arbitrary unramified Brylinski–Deligne covering
group. Let χ be an unramified exceptional genuine character of G(n) with associated
theta representation 2(G(n), χ). Then,

|℘Q,n(Oz
Q,n)| ≤ dim Whψ(2(G(n), χ))≤ |℘Q,n(Oz

Q,n,sc)|.

These two bounds are combinatorial quantities involving certain Weyl-action on
lattices. The readers are referred to Section 2 for details. We highlight here some
consequences from the above theorem.

Firstly, Theorem 1.1 recovers the results of Kazhdan and Patterson. More
precisely, for covering groups GL(n)r studied in [Kazhdan and Patterson 1984], the
authors determine that dim Whψ(2(GL(n)r , χ))= 1 if and only if

(1) n = r and GL(n)r is any Kazhdan–Patterson covering group, or

(2) n = r + 1 and GL(n)r belongs to a special type of degree n Kazhdan–Patterson
covering groups.

In fact, for any covering group GL(n)r studied in [Kazhdan and Patterson 1984],
one has Oz

Q,n =Oz
Q,n,sc. Therefore dim Whψ(2(GL(n)r , χ))= |℘Q,n(Oz

Q,n,sc)|. In
particular, the dimension does not depend on the choice of the exceptional character
χ and can be computed effectively. For details, see Example 3.16.

In general, for cases where the two bounds in Theorem 1.1 actually agree,
the computation of the dimension is reduced to a purely combinatorial problem,
and thus amenable to a straightforward calculation. This includes the case where
YQ,n = Y sc

Q,n , or equivalently Z(G∨)= 1. For example, odd degree coverings of
simply connected groups of type Br ,Cr have this property. See Sections 5 and 6.

Secondly in contrast, when the two bounds in Theorem 1.1 do not agree,
dim Whψ(2(G, χ)) becomes sensitive to the choice of the exceptional character χ .
The second half of this paper is devoted to investigating this. This phenomenon al-
ready occurs for the degree two metaplectic covering SL(2)2 , see Example 4.7. In this
case 2(SL(2)2 , χ) is the even Weil representation. Consider 2(SL(2)2 , χψa ), where
χψa is an exceptional character defined by using the twisted additive character ψa ,
where a ∈ F×. It is well known that dim Whψ(2(SL(2)2 , χψa ))≤ 1 and the equality
holds if and only if a ∈ (F×)2. Our analysis shows that similar phenomenon occurs
for higher rank groups, see Section 4B, in particular Corollary 4.5.

In any case, we summarize our results for certain coverings of simply connected
groups as follows. We write for instance A(n)r for the degree n covering of the
simply connected group of type Ar of rank r . Here the covering group arises from
a quadratic form Q on the coroot lattice Y = Y sc such that Q(α∨) = 1 for any
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short coroot α∨. The following theorem is an amalgam of Theorems 4.10, 5.3, 6.2
and 7.1. Only for A(n)r , we impose the condition n ≤ r + 2 for technical reasons.

Theorem 1.2. Let G(n) be an unramified Brylinski–Deligne degree n covering of
a simply connected semisimple group of type Ar , Br ,Cr or G2. If G(n)

= A(n)r , we
further assume n ≤ r +2. Let χ be an unramified exceptional character for G(n). In
each case for G(n) below, if dim Whψ(2(G(n), χ))= 1, then the following relations
between r and n must hold:

A(n)r , r ≥ 1, n ≤ r + 2, n = r + 2 or r + 1;

C (n)
r , r ≥ 2, n = 4r − 2, 4r, 4r + 2 or 2r + 1;

B(n)r , r ≥ 3, n = 2r + 1 or 2r + 2;

G(n)
2 , n = 7 or 12.

Conversely, suppose that r and n satisfy the above relations; then for every
case above except C (4r)

r , there exists a unique exceptional character χ such that
dim Whψ(2(G(n), χ))= 1 for above G(n).

We actually determine the unique exceptional character specified in Theorem 1.2,
see Theorems 4.10, 5.3, 6.2 and 7.1. In the A(r+1)

r case, our result generalizes the re-
sult for the even Weil representation of SL(2)2 mentioned above. As noted, the collec-
tion of unramified exceptional characters is a torsor over Z(G∨). Moreover, for cov-
ering groups of simply connected groups, the choice of ψ actually gives a base point
for this torsor. Thus, any exceptional character χ gives rise to an element in Z(G∨),
depending on the choice of ψ . That is, the explicit requirement given in those
theorems could be viewed as determining the corresponding element in Z(G∨).

We note that for classical groups and similitude groups, an extensive study is
included in [Friedberg et al. ≥ 2017]. Our result from Theorem 1.2 also agrees
with the pertinent discussion in [Friedberg and Ginzburg 2016b] for symplectic
groups. For example, the local statement for the second part of Conjecture 1 in
Friedberg and Ginzburg’s paper follows from our Proposition 5.1 here. Moreover,
the factorizability property of the Whittaker function in that paper for Sp(4n−2)

2n also
agrees with our result for the C (n)

r case in Theorem 1.2.
Finally, we remark that groups of type Dr , E6, E7, E8, F4 could be analyzed by

the same procedure. In principle, Theorem 1.1 coupled with the analogous argument
for Theorem 1.2 enable one to determine completely dim Whψ(2(G(n), χ)) for
arbitrary (G(n), χ).

2. Basic setup

2A. Structural facts on G. For ease of reading, we first recall some structural facts
on G. The main references are [Brylinski and Deligne 2001; Finkelberg and Lysenko
2010; Reich 2012; McNamara 2012; 2016; Weissman 2015; Gan and Gao 2016].
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In this paper, we concentrate exclusively on unramified Brylinski–Deligne covering
groups G (to be explained below). We follow the notations in [Gan and Gao 2016].

Let F be a nonarchimedean field of characteristic 0, with residual characteristic p.
Fix a uniformizer $ of F. Let G be a split linear algebraic group over F with
maximal split torus T. Write (X,8,1, Y,8∨,1∨) for the root data of G. Here
X (respectively, Y ) is the character lattice (respectively, cocharacter lattice) for
(G,T). Choose a set 1⊆8 of simple roots from the set of roots 8, and 1∨ the
corresponding simple coroots from 8∨. Let B be the Borel subgroup associated
with 1. Write Y sc

⊆ Y for the lattice generated by 8∨.
Fix a Chevalley system of pinnings for (G,T,B). That is, fix an isomorphism

eα :Ga→Uα for each α ∈8, where Uα ⊆G is the root subgroup associated with α.
Moreover, for each α ∈8, there is a unique morphism φα : SL2→G which restricts
to e±α on the upper and lower triangular subgroup of unipotent matrices of SL2.

Consider the algebro-geometric covering G of G by K2, which is categorically
equivalent to the pairs {(D, η)} (see [Gan and Gao 2016]). Here η : Y sc

→ F× is a
homomorphism. On the other hand, D is a bisector associated to a Weyl-invariant
quadratic form Q : Y → Z. That is, let BQ be the Weyl-invariant bilinear form
associated to Q such that BQ(y1, y2)= Q(y1+ y2)− Q(y1)− Q(y2), then D is a
bilinear form on Y satisfying

D(y1, y2)+ D(y2, y1)= BQ(y1, y2).

The bisector D is not necessarily symmetric. Any G is, up to isomorphism, incar-
nated by (i.e., categorically associated to) (D, η) for a bisector D and some η.

Let n ≥ 1 be a natural number. Assume that F× contains the full group µn

of n-th roots of unity and p - n. Let G be incarnated by (D, η). One naturally
obtains degree n topological covering groups G, T , B of the rational points G :=
G(F), T := T(F), B := B(F), such as

µn
� � // G // // G.

We may write G(n) for G to emphasize the degree of covering. For any set H ⊆ G,
we write H ⊆ G for the preimage of H with respect to the quotient map G→ G.
The Bruhat–Tits theory gives a maximal compact subgroup K ⊆ G, which depends
on the fixed pinnings. We assume that G splits over K and fixes such a splitting;
call G an unramified Brylinski–Deligne covering group in this case. We remark
that if the derived group of G is simply connected, then G splits over K (see [Gan
and Gao 2016, Theorem 4.2]). On the other hand, we refer the reader to [Gan and
Gao 2016, § 4.6] for a counterexample from a certain double cover of PGL2 where
the splitting does not exist.

The data (D, η) play the following role for the structural fact on G:
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• The group G splits canonically over any unipotent element of G. In particular,
we write ēα(u) ∈ G, α ∈8, u ∈ F for the canonical lifting of eα(u) ∈ G. For
any α ∈ 8, there is a natural representative wα := eα(1)e−α(−1)eα(1) ∈ K
(and therefore w̄α ∈ G by the splitting of K ) of the Weyl element wα ∈ W.
Moreover, for hα(a) := α∨(a) ∈ G, α ∈8, a ∈ F×, there is a natural lifting
h̄α(a) ∈ G of hα(a), which depends only on the pinning and the canonical
unipotent splitting. For details, see [Gan and Gao 2016].

• There is a section s of T over T such that the group law on T is given by

(1) s(y1(a)) · s(y2(b))= (a, b)D(y1,y2)
n · s(y1(a) · y2(b)).

Moreover, for the natural lifting h̄α(a), one has

(2) h̄α(a)= (η(α∨), a)n · s(hα(a)) ∈ T .

• Let wα ∈ G be the natural representative of wα ∈W. For any y(a) ∈ T ,

(3) wα · y(a) ·w−1
α = y(a) · h̄α(a−〈y,α〉),

where 〈−,−〉 is the pairing between Y and X.

Consider the sublattice YQ,n := {y ∈ Y : BQ(y, y′) ∈ nZ} of Y. For every
α∨ ∈8∨, define nα := n/gcd(n, Q(α∨)). Write α∨Q,n := nαα∨ and αQ,n := n−1

α α.
Let Y sc

Q,n ⊆ Y be the sublattice generated by {α∨Q,n}α∈8. The complex dual group
G∨ for G as given in [Finkelberg and Lysenko 2010; McNamara 2012; Reich 2012]
has root data (YQ,n, {α

∨

Q,n},Hom(YQ,n,Z), {αQ,n}). In particular, Y sc
Q,n is the root

lattice for G∨. What is most pertinent to our paper is that the center Z(G∨) could
be identified as

Z(G∨) := Hom(YQ,n/Y sc
Q,n,C×).

2B. Theta representations2(G, χ). Fix an embedding ι :µn ↪→C×. A represen-
tation of G is called ι-genuine if µn acts via ι. We consider throughout the paper
ι-genuine (or simply genuine) representations of G.

Let U be the unipotent subgroup of B = T U. As U splits canonically in G, we
have B = T U. The covering torus T is a Heisenberg group with center Z(T ). The
image of Z(T ) in T is equal to the image of the isogeny YQ,n ⊗ F×→ T induced
from YQ,n→ Y.

Let χ ∈ Homι(Z(T ),C×) be a genuine character of Z(T ), write i(χ) := IndT
A χ
′

for the induced representation on T , where A is any maximal abelian subgroup of T ,
and χ ′ is any extension of χ . By the Stone–von Neumann theorem (see [Weissman
2009, Theorem 3.1; McNamara 2012, Theorem 3]), the construction χ 7→ i(χ)
gives a bijection between isomorphism classes of genuine representations of Z(T )
and T . Since we consider an unramified covering group G in this paper, we take A
to be Z(T ) · (K ∩ T ) from now.
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View i(χ) as a genuine representation of B by inflation from the quotient map
B→ T . Write I (i(χ)) := IndG

B
i(χ) for the normalized induced principal series

representation of G. For simplicity, we may also write I (χ) for I (i(χ)). One
knows that I (χ) is unramified (i.e., I (χ)K

6= 0) if and only if χ is unramified,
i.e., χ is trivial on Z(T )∩ K. We consider in this paper only unramified genuine
representations (and characters). In fact, one has the naturally arising abelian
extension

(4) µn
� � // Y Q,n // // YQ,n

such that unramified genuine characters of χ of Z(T ) correspond to genuine char-
acters of Y Q,n . Here Y Q,n := Z(T )/Z(T )∩ K. Since A/(T ∩ K )' Y Q,n as well,
there is a canonical extension (also denoted by χ ) of an unramified character χ of
Z(T ) to A, by composing χ with A � Y Q,n . Therefore, we will identify i(χ)
as IndT

A
χ for this χ .

For any w ∈W, the intertwining operator Tw,χ : I (χ)→ I (wχ) is defined by

(Tw,χ f )(ḡ)=
∫

Uw

f (w−1uḡ) du

whenever it is absolutely convergent. Moreover, it can be meromorphically contin-
ued for all χ (see [McNamara 2012, § 7]). For I (χ) unramified and w= wα with
α ∈1, Twα,χ is determined by

Twα,χ ( f0)= c(wα, χ) · f ′0 with c(wα, χ)=
1− q−1χ(h̄α($ nα ))

1−χ(h̄α($ nα )
,

where f0 ∈ I (χ) and f ′0 ∈ I (wαχ) are the unramified vectors. Moreover, Tw,χ

satisfies the cocycle condition as in the linear case. The coefficient c(wα, χ) was
determined in [McNamara 2016, Theorem 12.1] and later reformulated in [Gao
≥ 2017]. We use the latter formalism which is more suitable for our needs in
this paper.

The following definition mimics that in [Kazhdan and Patterson 1984, § I.2].

Definition 2.1. An unramified genuine character χ of Z(T ) is called exceptional if
χ(h̄α($ nα ))= q−1 for all α ∈1. The theta representation 2(G, χ) associated to
an exceptional character χ is the unique Langlands quotient (see [Ban and Jantzen
2013]) of I (χ), which is also equal to the image of the intertwining operator
Tw0,χ : I (χ)→ I (w0χ), where w0 ∈W is the longest Weyl element.

The extension Y Q,n gives rise to an extension Y sc
Q,n of Y sc

Q,n by restriction. All
exceptional characters agree on Y sc

Q,n , and therefore the set of exceptional characters
is a torsor over Z(G∨).

2C. Unitary distinguished characters. Depending on the choice of a nontrivial
additive character ψ ′ of F, a special class of the so-called distinguished genuine
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characters of Z(T ) is singled out in [Gan and Gao 2016] for the consideration of
the L-group extension for G. Distinguished characters, in the sense of [Gan and
Gao 2016], may not exist for general Brylinski–Deligne covering groups. However,
if G has a simply connected derived group or if the composition

η : Y sc
→ F×→ F/(F×)n

is trivial, such characters exist. One special property of a distinguished character is
its Weyl-invariance, and thus it could serve as a distinguished base point in the set
of genuine characters of Z(T ).

For the purpose of Sections 4 to 7, we recall the explicit construction in [Gan
and Gao 2016] when a distinguished character exists. In particular, we make the
above assumption on G, which is clearly satisfied in the simply connected case in
Sections 4 to 7.

First, let {yi } be a basis of YQ,n such that {ki yi } is a basis for the lattice J =
nY + Y sc

Q,n for some ki ∈ Z. Let ψ ′ be a nontrivial additive character of F. Let γψ ′
be the Weil index valued in µ4 satisfying

γψ ′(b2)= 1, γψ ′(b)2 = (b, b)2, γψ ′(bc)= γψ ′(b)γψ ′(c) · (b, c)2.

For any a ∈ F×, let ψ ′a : x 7→ ψ ′(ax) be the twisted additive character. Then

γψ ′a (b)= γψ ′(b) · (a, b)2.

By definition, a unitary distinguished character χ 0
ψ ′ of Z(T ) is given by

χ 0
ψ ′(yi (a))= γψ ′(a)2(ki−1)Q(yi )/n,

and for y =
∑

i ni yi and a ∈ F×,

(5) χ 0
ψ ′(y(a))= (a, a)

∑
i< j ni n j D(yi ,y j )

n ·

∏
i

χ 0
ψ ′(yi (ani ))2(ki−1)Q(yi )/n.

Note that in [Gan and Gao 2016], the exponent of γψ ′(a) in the formula of
χ 0
ψ ′(yi (a)) is the negative of what we use here. However, both give rise to distin-

guished characters.

2D. Conventions and notations. Let 2ρ :=
∑

α∨>0 α
∨ be the sum of all positive

coroots of G. Consider the affine translation `ρ :Y⊗Q→Y⊗Q given by y 7→ y−ρ.
Write w(y) for the natural Weyl group action on Y and Y⊗Q. Endow the codomain
of `ρ with this action. By transport of structure, one has an induced action of W on
the domain of `ρ (i.e., the first Y ⊗Q), which we denote by w[y]. That is,

w[y] := w(y− ρ)+ ρ.

Clearly Y is stable under this action. Write yρ := y − ρ for any y ∈ Y, then
w[y] − y = w(yρ)− yρ . From now, by Weyl orbits in Y or Y ⊗Q we always refer
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to the ones with respect to the action w[y]. Write O (respectively Oz) for the set
of W -orbits (respectively, free W -orbits) in Y.

We remark that for GLr , the Weyl-action considered by Kazhdan and Patterson
[1984, page 78] is actually w(y + ρ)− ρ. However, the indexing of Whittaker
functionals also differs from ours by taking an “inverse”, thus our terminology is
different but equivalent to that of [Kazhdan and Patterson 1984].

Definition 2.2. For any subgroup 3⊆ Y, a free orbit Oy ∈Oz is called 3-free if
the quotient map Y → Y/3 is injective on Oy . We write Oz

3 ⊆Oz for the set of
3-free orbits of Y.

Note that 3-free orbits are assumed to be free by definition. For simplicity, we
write Oz

Q,n,sc and Oz
Q,n for the set of Y sc

Q,n and YQ,n-free orbits of Y , respectively.
Clearly, the inclusions O ⊇Oz

⊇Oz
Q,n,sc ⊇Oz

Q,n hold.
Generally, notations will be either self-explanatory or explained the first time they

occur. For convenience, we list some notations which appear frequently in the text:
ε: the element ι((−1,$)n) ∈ C×. In particular, for n odd, ε = 1. We use the

following identity freely in the paper:

εD(y,y′)
= εD(y′,y) for any y ∈ YQ,n, y′ ∈ Y.

℘Q,n: the projection Y → Y/YQ,n .
℘sc

Q,n: the projection Y → Y/Y sc
Q,n .

ψ : a fixed additive character of F into C× with conductor OF . For any a ∈ F×,
the twisted character ψa is given by ψa : x 7→ ψ(ax).

sy : for any y ∈ Y, we write sy := s($ y) ∈ T .
dxe: the minimum integer such that dxe ≥ x for a real number x .

3. Bounds for dim Whψ(2(G, χ))

3A. Whittaker functionals. We follow the notations in Section 2B. Consider,
in particular, the principal series I (χ) := I (i(χ)) for an unramified character
χ ∈ Homι(Z(T ),C×).

Let Ftn(i(χ)) be the vector space of functions c on T satisfying

c(t̄ · z̄)= c(t̄) ·χ(z̄), t̄ ∈ T and z̄ ∈ A.

The support of any c ∈ Ftn(i(χ)) is a disjoint union of cosets in T /A. Moreover,
dim(Ftn(i(χ)))= |Y/YQ,n| since T /A has the same size as Y/YQ,n .

There is a natural isomorphism of vector spaces Ftn(i(χ)) ' i(χ)∨, where
i(χ)∨ is the complex dual space of functionals of i(χ). More explicitly, letting
{γi } ⊆ T be a chosen set of representatives of T /A, consider cγi ∈ Ftn(i(χ))
which has support γi · A and cγi (γi ) = 1. It gives rise to a linear functional
λ
χ
γi ∈ i(χ)∨ such that λχγi ( fγ j )= δi j , where fγ j ∈ i(χ) is the unique element such
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that supp( fγ j ) = A · γ−1
j and fγ j (γ

−1
j ) = 1. That is, fγ j = i(χ)(γ j )φ0, where

φ0 ∈ i(χ) is the normalized unramified vector of i(χ) such that φ0(1T )= 1. Thus,
the isomorphism Ftn(i(χ))' i(χ)∨ is given explicitly by

c 7→ λχc :=
∑

γi∈T /A

c(γi )λ
χ
γi
.

It can be checked easily that the isomorphism does not depend on the choice of
representatives for T /A.

LetψU :U→C× be the character on U such that its restriction to every Uα, α∈1

is given by ψ ◦ e−1
α . We may write ψ for ψU if no confusion arises.

Definition 3.1. For any genuine representation (σ , Vσ ) of G, a linear functional
` : Vσ → C is called a ψ-Whittaker functional if `(σ (u)v)= ψ(u) · v for all u ∈U
and v ∈ Vσ . Write Whψ(σ ) for the space of ψ-Whittaker functionals for σ .

An isomorphism exists between i(χ)∨ and the space Whψ(I (χ)) of ψ-Whittaker
functionals on I (χ) (see [McNamara 2016, § 6]), given by λ 7→Wλ with

Wλ : I (χ)→ C, f 7→ λ

(∫
U

f (w−1
0 u)ψ(u)−1µ(u)

)
,

where f ∈ I (χ) is an i(χ)-valued function on G. Here U− is the unipotent subgroup
opposite to U ; also, w0 = wα1wα2 · · ·wαk ∈ K is a representative of w0, where
w0 = wα1wα2 · · ·wαk is a minimum decomposition of w0. For any c ∈ Ftn(i(χ)),
by abuse of notation, we will write λχc ∈Whψ(I (χ)) for the resulting ψ-Whittaker
functional of I (χ) from the isomorphism Ftn(i(χ)) ' i(χ)∨ 'Whψ(I (χ)). An
easy consequence is

dim Whψ(I (χ))= |Y/YQ,n|.

Let J (w, χ) be the image of Tw,χ . The operator Tw,χ induces a homomorphism
T ∗w,χ of vectors spaces with image Whψ(J (w, χ)):

T ∗w,χ :Whψ(I (wχ)) //

)) ))

Whψ(I (χ))

Whψ(J (w, χ))
?�

OO

given by 〈λ
wχ
c ,−〉 7→ 〈λ

wχ
c , Tw,χ (−)〉 for any c ∈ Ftn(i(wχ)). Letting {λ

wχ
γ }γ∈T /A

be a basis for Whψ(I (wχ)), and {λχγ ′} a basis for Whψ(I (χ)), the map T ∗w,χ is then
determined by the square matrix [τ(χ,w, γ, γ ′)]γ,γ ′∈T /A of size |Y/YQ,n| such that

T ∗w,χ (λ
wχ
γ )=

∑
γ ′∈T /A

τ(χ,w, γ, γ ′) · λχγ ′ .
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Some immediate properties are as follows.

Lemma 3.2. For w ∈W and z̄, z̄′ ∈ A, the following identity holds:

τ(χ,w, γ · z̄, γ ′ · z̄′)= (wχ)−1(z̄) · τ(χ,w, γ, γ ′) ·χ(z̄′).

Moreover, for w1,w2 ∈W such that l(w2w1)= l(w2)+ l(w1), one has

τ(χ,w2w1, γ, γ
′)=

∑
γ ′′∈T /A

τ(w1χ,w2, γ, γ
′′) · τ(χ,w1, γ

′′, γ ′),

which is referred to as the cocycle relation.

Proof. The first equality follows from a change of basis formula from a different
choice of representations for T /A. The second equality follows from the cocycle
relation of intertwining operators. �

3B. Reduction of Whψ(2(G, χ)). Let w0 be the longest Weyl element of G.
Consider the theta representation2(G, χ)= Tw0,χ (I (χ)) attached to an unramified
exceptional character χ (see Definition 2.1).

Definition 3.3. A theta representation 2(G, χ) attached to an unramified excep-
tional genuine character χ is called distinguished if

dim Whψ(2(G, χ))= 1.

The distinguishedness of a theta representation here is not to be confused with
that of a distinguished genuine character as given in Section 2C.

Proposition 3.4. Let χ be an unramified exceptional character of G, and 1 the set
of simple roots. Then

Whψ(2(G, χ))=
⋂
α∈1

Ker(T ∗wα,wαχ :Whψ(I (χ))→Whψ(I (wαχ))),

where Twα,wαχ is the intertwining operator from I (wαχ) to I (χ).

Proof. The same proof for [Kazhdan and Patterson 1984, Theorem I.2.9] applies
here mutatis mutandis. �

Let λχγ ∈Whψ(I (χ)) and α ∈1, then

T ∗wα,wαχ (λ
χ
γ )=

∑
γ ′

τ
(wαχ,wα, γ, γ ′) · λwαχ

γ ′ .

In general, let c ∈ Ftn(i(χ)), and write

λχc =
∑
γ∈T /A

c(γ )λχγ .
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Then,

T ∗wα,wαχ (λ
χ
c )=

∑
γ

c(γ )
(∑
γ ′

τ
(wαχ,wα, γ, γ ′) · λwαχ

γ ′

)
=

∑
γ ′

(∑
γ

c(γ )τ
(wαχ,wα, γ, γ ′))λwαχ

γ ′ .

As an immediate consequence of Proposition 3.4, one has (see also [Kazhdan
and Patterson 1984, page 76]):

Corollary 3.5. A function c∈Ftn(i(χ)) gives rise to a functional in Whψ(2(G, χ))
(i.e., λχc ∈Whψ(2(G, χ))) if and only if for all α ∈1,∑

γ∈T /A

c(γ )τ
(wαχ,wα, γ, γ ′)= 0 for all γ ′.

The left-hand side is independent of the choice of representatives for T /A by
Lemma 3.2.

3C. The Shahidi local coefficient matrix. We would like to compute the matrix
[τ(χ,wα, γ, γ ′)]γ,γ ′ for any unramified character χ (not necessarily exceptional)
and simple reflection wα, α ∈1.

For Kazhdan–Patterson coverings GL(n)r , the matrix [τ(χ,wα, γ, γ ′)]γ,γ ′ is first
studied in [Kazhdan and Patterson 1984]. It also appears in the work of Suzuki
[1998], Chinta and Offen [2013] among others. For a subclass of Brylinski–Deligne
covering groups, the study of matrix [τ(χ,wα, γ, γ ′)]γ,γ ′ is conducted in [McNa-
mara 2016] for unramified characters χ , generalizing that of Kazhdan and Patterson.
Meanwhile, for ramified characters, it is included in the work of [Goldberg and
Szpruch 2015]. However, in order to work with the full class of Brylinski–Deligne
covering groups and also remove the assumptionµ2n⊆ F× in [McNamara 2016], we
refine the computation in [McNamara 2016] slightly. This is achieved by invoking
the structural facts of Brylinski–Deligne covering groups, in particular those from
Section 2A. We also note that interesting phenomena dissipate when the assumption
µ2n ⊆ F× is imposed, for example for the type Ar case in Section 4. There are
subtleties arising from the fact that −1 is not a square root. For this purpose, it is
important to rigidify the formula for the matrix and express its entries in terms of
naturally defined elements of the group.

Consider the Haar measure µ of F such that µ(OF )= 1. Thus,

µ(O×F )= 1− 1/q.

The Gauss sum is given by

Gψ(a, b)=
∫

O×F

(u,$)an ·ψ($
bu)µ(u), a, b ∈ Z.
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It is known that

Gψ(a, b)=



0 if b <−1,
1− 1/q if n|a, b ≥ 0,
0 if n - a, b ≥ 0,
−1/q if n|a, b =−1,
Gψ(a,−1) with |Gψ(a,−1)| = q−1/2 if n - a, b =−1.

Recall ε := ι((−1,$)n) ∈C×. One has Gψ(a, b)= εa
·Gψ(−a, b). For any k ∈ Z,

we write

gψ(k) := Gψ(k,−1).

As in [McNamara 2016, § 9], let fγ ′ ∈ I (χ) be the function with supp( fγ ′)=
Bw0K1, and fγ ′(w−1

0 )= i(χ)(γ ′)φ0 for a certain compact open subgroup K1. Here
φ0 ∈ i(χ)T∩K is the unramified vector in i(χ). From [McNamara 2016, Corol-
lary 9.2], one has τ(χ,wα, γ, γ ′)= 〈λ

wαχ
γ , Twα,χ ( fγ ′)〉/|U−∩K1|. More precisely,

from equality (9.3) of [McNamara 2016] one could evaluate τ(χ,wα, γ, γ ′) by
applying λ

wαχ
γ ∈ i

(
wαχ

)∨ to the integral∫
F

fγ ′
(
h̄α(x−1) · ēα(−x) ·w−1

0

)
·ψ−1(ēα(x−1)

)
µ(x) ∈ i

(wαχ).(6)

Note that the integrand of (6) takes values in i(χ). However, on the one hand,
as vector spaces of functions on T , the underlying space i(χ) is identical to that
of wα i(χ) (see [Gao ≥ 2017]); on the other hand, it follows from the Stone–von
Neumann theorem that wα i(χ)' i(wαχ) as representations of T . Therefore, there
is a canonical vector space isomorphism i(χ)' i(wαχ). For the computation below,
we will follow [McNamara 2016] closely and adopt this viewpoint implicitly.

To ease notations, write π = i(χ). Use the partition F =
⋃

m∈Z$
−m O×F and

write x =$−mu−1, where u ∈ O×F . Then µ(x) = |$ |−mµ(u) and the integral in
(6) is equal to∑
m∈Z

|$ |−m
∫

O×F

fγ ′(h̄α($m
· u) · ēα(−$−mu−1) ·w−1

0 ) ·ψ−1(ēα($m
· u))µ(u)

=

∑
m∈Z

∫
O×F

(u,$)m Q(α∨)
n ·π(h̄α($m)) ·π(h̄α(u)) ·π(γ ′)φ0 ·ψ

−1($m
· u)µ(u).

Suppose γ ′ = sy ∈ T for some y ∈ Y. (We write sy := s($ y) ∈ T for y ∈ Y, see
Section 2 for notations.) Then the above is equal to

(7)
∑
m∈Z

∫
O×F

(u,$)m Q(α∨)+B(α∨,y)
n ·π(h̄α($m)) ·π(sy)φ0 ·ψ

−1($m
· u)µ(u).
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From now, we write0(m, y, α∨) :=ε(m+〈y,α〉)D(y,α
∨) and0(y, α∨) :=0(−1, y, α∨),

which lie in {±1}. Following (3), h̄α($m) · sy =wα · (0(m, y, α∨) · sy+mα∨) ·w
−1
α .

Therefore (7) is equal to∑
m∈Z

0(m, y, α∨) ·wαπ
(
swα(y+mα∨)

)
φ0 ·

∫
O×F

(u,$)m Q(α∨)+B(α∨,y)
n ψ−1($m

·u)µ(u).

There are three cases for each term in the sum:

• For m ≤ −2, the integral over O×F vanishes, and thus the contribution to
τ(χ,wα, γ, γ ′) is 0.

• For m =−1, the contribution τ(χ,wα, γ, γ ′) is nonzero only when wα(y1)≡

y−α∨ mod YQ,n where γ = sy1, γ
′
= sy . When wα(y1)= y−α∨, the contri-

bution to τ(χ,wα, γ, γ ′) is

0(y, α∨) · gψ−1(B(α∨, y)− Q(α∨))= 0(y, α∨) · gψ−1(〈yρ, α〉Q(α∨)).

• For any x ∈ R, recall that we denote by dxe the minimum integer such that
dxe ≥ x . The sum for m ≥ 0 is equal to∑

m≥0

0(m, y, α∨) · wαπ(swα(y+mα∨))φ0 ·

∫
O×F

(u,$)m Q(α∨)+B(α∨,y)
n µ(u)

=

∑
m=k·nα−B(α∨,y)/Q(α∨)
k≥dB(α∨,y)/nαQ(α∨)e

0(m, y, α∨) · ε(m+〈y,α,)〉D(α
∨,y)

·
wαπ(s(−m−〈y,α〉)α∨)

wαπ(sy)φ0 · (1− q−1)

= (1− q−1)
∑

k≥d〈y,α∨〉/nαe

εknαB(α∨,y)
·
wαπ(h̄α($−knα )) · wαπ(sy)φ0

= (1− q−1)
∑

k≥d〈y,α∨〉/nαe

χ(h̄α($ nα ))k · wαπ(sy)φ0

= (1− q−1)
χ(h̄α($ nα ))ky,α

1−χ(h̄α($ nα ))
·
wαπ(sy)φ0, where ky,α = d〈y, α〉/nαe.

The contribution is nonzero only for γ = sy1 with y1 ≡ y mod YQ,n . In particular,
if y1 = y, then the contribution to τ(χ,wα, γ, γ ′) (for γ = γ ′ = sy) is

(1− q−1)
χ(h̄α($ nα ))ky,α

1−χ(h̄α($ nα ))
, where ky,α =

⌈
〈y, α〉

nα

⌉
.

To summarize, we state the following theorem by McNamara which generalizes
[Kazhdan and Patterson 1984, Lemma I.3.3]:
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Theorem 3.6 [McNamara 2016, Theorem 13.1]. Suppose that γ = sy1 is represented
by y1 and γ ′ = sy by y. Then we can write τ(χ,wα, γ, γ ′) = τ 1(χ,wα, γ, γ ′)+
τ 2(χ,wα, γ, γ ′) with the following properties:

• τ i (χ,wα, γ · z̄, γ ′ · z̄′)= (wαχ)−1(z̄) · τ i (χ,wα, γ, γ ′) ·χ(z̄′), z̄, z̄′ ∈ A;

• τ 1(χ,wα, γ, γ ′)= 0 unless y1 ≡ y mod YQ,n;

• τ 2(χ,wα, γ, γ ′)= 0 unless y1 ≡ wα[y] mod YQ,n .

Moreover,

• If y1 = y, then

τ 1(χ,wα, γ, γ
′)= (1− q−1)

χ(h̄α($ nα ))ky,α

1−χ(h̄α($ nα ))
, where ky,α =

⌈
〈y, α〉

nα

⌉
.

• If y1 = wα[y], then

τ 2(χ,wα, γ, γ
′)= 0(y, α∨) · gψ−1(〈yρ, α〉Q(α∨)).

As an analogue of [Kazhdan and Patterson 1984, Corollary I.3.4], we have the
following result.

Corollary 3.7. Let χ be an unramified exceptional character. Let λχc ∈Whψ(I (χ))
be the ψ-Whittaker functional of I (χ) associated to some c ∈ Ftn(i(χ)). Then, λχc
lies in Whψ(2(G, χ)) if and only if for any simple root α ∈1 one has

(8) c(swα[y]))= qky,α−1
·0(y, α∨) · gψ−1(〈yρ, α〉Q(α∨))−1

· c(sy) for all y.

Proof. By Corollary 3.5, for all α ∈1, we have

c(sy) · τ(
wαχ,wα, sy, sy)+ c(swα[y]) · τ(

wαχ,wα, swα[y], sy)= 0,

where y ∈ Y is any element. The preceding theorem gives

c(swα[y])=−(1−q−1)
(χ(h̄α($ nα )))−ky,α

1−χ(h̄α($ nα ))−1
·0(y,α∨)·gψ−1(〈yρ,α〉Q(α∨))−1

·c(sy)

=qky,α−1
·0(y,α∨)·gψ−1(〈yρ,α〉Q(α∨))−1

·c(sy). �

From now on, for y ∈ Y and α ∈1, we write

(9) t(wα, y) := qky,α−1
·0(y, α∨) · gψ−1(〈yρ, α〉Q(α∨))−1,

where

ky,α =

⌈
〈yρ, α〉+ 1

nα

⌉
and 0(y, α∨)= ε〈yρ ,α〉·D(y,α

∨).

It is clear t(wα, y) 6= 0.
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Definition 3.8. For c ∈ Ftn(i(χ)), we say that c vanishes on y ∈ Y if and only if
c(sy)= 0. It is said to vanish on the orbit Oy0 ⊂ Y if and only if it vanishes on all
y ∈Oy0 , in which case we write c(Oy0)= 0.

Assume that c gives rise to λχc ∈Whψ(2(G, χ)). Since t(wα, y) 6= 0 for all y
and α ∈ 1, it follows from Corollary 3.7 that c vanishes on Oy0 if and only if it
vanishes on any y ∈Oy0 . It is therefore easy to see that

(10) dim Whψ(2(G, χ))=

∣∣∣∣∣
{
℘Q,n(Oy0) :

Oy0 ∈O is a W -orbit in Y, and there
exists c ∈ Ftn(i(χ)) satisfying (8) for
all α ∈1, y ∈Oy0 . Also c(Oy0) 6= 0.

}∣∣∣∣∣
In the remaining part of this section we will prove an effective lower and upper
bound for dim Whψ(2(G, χ)).

3D. A lower bound for dim Whψ(2(G, χ)). The Weyl group W of G has the
presentation

W = 〈wα : (wαwβ)
mαβ = 1 for α, β ∈1〉.

Lemma 3.9. Let Oy ∈Oz
Q,n,sc be a Y sc

Q,n-free orbit in Y. Then the following holds:

t(wα,wα[y]) · t(wα, y)= 1 for all α ∈1.

Proof. Note that wα[y] = wα(y) + α∨ = y + (1 − 〈y, α〉)α∨. It follows that
〈wα[y], α〉 = 2−〈y, α〉. Therefore

t(wα,wα[y])
=qd〈wα[y],α〉/nαe−1

·0(wα[y], α∨) · gψ−1(Q(α∨)(〈wα[y], α〉− 1))−1

=qd(2−〈y,α〉)/nαe−1
· ε〈yρ ,α〉·(D(y,α

∨)−〈yρ ,α∨〉Q(α∨)) · gψ−1(−Q(α∨)〈yρ, α〉)−1

and

t(wα,wα[y]) · t(wα, y)

= qd(2−〈y,α〉)/nαe+d〈y,α〉/nαe−2
· ε〈yρ ,α〉

2
·Q(α∨)

· gψ−1(Q(α∨) · 〈yρ, α〉)−1

· gψ−1(−Q(α∨) · 〈yρ, α〉)−1.

However, it follows from gψ−1(k)= εk
·gψ−1(−k) that |gψ−1(k)|=q−1/2. Moreover,

since Oy is a Y sc
Q,n-free orbit, wα[y]− y /∈ Y sc

Q,n . Therefore, nα - (1−〈y, α〉) and so⌈2−〈y, α〉
nα

⌉
+

⌈
〈y, α〉

nα

⌉
= 1.

Now it can be checked easily that t(wα,wα[y]) · t(wα, y)= 1. �
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Consider adjacent α, β ∈1 from the Dynkin diagram. We would like to show
that for the Y sc

Q,n-free orbit Oy the equality

mαβ∏
i=1

t(wαwβ, (wαwβ)
i
[y])= 1

holds, where t(wαwβ, y) := t(wα,wβ[y]) · t(wβ, y). This will follow from a case
by case discussion. We will give the details for mαβ = 3, 4 below and leave the
case for mαβ = 6 to the reader.

Case mαβ = 3: The relation (wαwβ)mαβ = 1 is equivalent to wαwβwα = wβwαwβ .
By Lemma 3.9, it suffices to show

(11) t(wα,wβwα[y])·t(wβ,wα[y])·t(wα,y)= t(wβ,wαwβ[y])·t(wα,wβ[y])·t(wβ,y).

We first note that

t(wα, y)= qd
〈yρ ,α〉+1

nα
e−1
· ε〈yρ ,α〉·D(y,α

∨)
· gψ−1(BQ(yρ, α∨))−1.

We also have 〈wβwα(yρ), α〉 = 〈yρ, β〉 since the pairing 〈−,−〉 is W -equivariant
and wαwβ(α) = β. Similarly, 〈wαwβ(yρ), β〉 = 〈yρ, α〉. A simple computation
gives

t(wα,y)= qd
〈yρ ,α〉+1

nα
e−1
·ε〈yρ ,α〉D(y,α

∨)
·gψ−1(〈yρ,α〉Q(α∨))−1,

t(wβ,wα[y])= q
d
〈yρ ,α+β〉+1

nβ
e−1
·ε〈yρ ,α+β〉D(wα[y],β

∨)
·gψ−1(〈yρ,α+β〉Q(β∨))−1,

t(wα,wβwα[y])= qd
〈yρ ,β〉+1

nα
e−1
·ε〈yρ ,β〉D(wβwα[y],α∨) ·gψ−1(〈yρ,β〉Q(α∨))−1.

Meanwhile,
t(wβ,y)= q

d
〈yρ ,β〉+1

nβ
e−1
·ε〈yρ ,β〉D(y,β

∨)
·gψ−1(〈yρ,β〉Q(β∨))−1,

t(wα,wβ[y])= qd
〈yρ ,α+β〉+1

nα
e−1
·ε〈yρ ,α+β〉D(wβ [y],α

∨)
·gψ−1(〈yρ,α+β〉Q(α∨))−1,

t(wβ,wαwβwα[y])= q
d
〈yρ ,α〉+1

nβ
e−1
·ε〈yρ ,α〉D(wαwβ [y],β∨) ·gψ−1(〈yρ,α〉Q(β∨))−1.

Since Q(α∨)=Q(β∨) and thus nα=nβ , to show that (11) holds, it suffices to check
that the powers of ε on the two sides of (11) are equal. However, a straightforward
computation shows that this is indeed the case, and we may omit the details.

Case mαβ = 4: Let α, β ∈1 be two adjacent roots such that mαβ = 4. We assume
that α is the longer one. Thus, 〈α∨, β〉 =−1, 〈β∨, α〉 =−2, and Q(β∨)= 2Q(α∨).
As in the preceding case, we want to show

(12) t(wβ,wαwβwα[y]) · t(wα,wβwα[y]) · t(wβ,wα[y]) · t(wα, y)

= t(wα,wβwαwβ[y]) · t(wβ,wαwβ[y]) · t(wα,wβ[y]) · t(wβ, y).
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A simple computation yields

t(wα,y)= qd
〈yρ ,α〉+1

nα
e−1
·ε〈yρ ,α〉D(y,α

∨)
·gψ−1(〈yρ,α〉Q(α∨))−1,

t(wβ,wα[y])= q
d
〈yρ ,α+β〉+1

nβ
e−1
·ε〈yρ ,α+β〉D(wα[y],β

∨)
·gψ−1(〈yρ,α+β〉Q(β∨))−1,

t(wα,wβwα[y])

= qd
〈yρ ,α+2β〉+1

nα
e−1
·ε〈yρ ,α+2β〉D(wβwα[y],α∨) ·gψ−1(〈yρ,α+2β〉Q(α∨))−1,

t(wβ,wαwβwα[y])= q
d
〈yρ ,β〉+1

nβ
e−1
·ε〈yρ ,β〉D(wαwβwα[y],β∨) ·gψ−1(〈yρ,β〉Q(β∨))−1.

On the other hand, for the right-hand side of (12), one has

t(wβ,y)= q
d
〈yρ ,β〉+1

nβ
e−1
·ε〈yρ ,β〉D(y,β

∨)
·gψ−1(〈yρ,β〉Q(β∨))−1,

t(wα,wβ[y])= qd
〈yρ ,α+2β〉+1

nα
e−1
·ε〈yρ ,α+2β〉D(wβ [y],α∨)·gψ−1(〈yρ,α+2β〉Q(α∨))−1,

t(wβ,wαwβwα[y])

= q
d
〈yρ ,α+β〉+1

nβ
e−1
·ε〈yρ ,α+β〉D(wαwβ [y],β∨)·gψ−1(〈yρ,α+β〉Q(β∨))−1,

t(wα,wβwαwβ[y])= qd
〈yρ ,α〉+1

nα
e−1

ε〈yρ ,α〉D(wβwαwβ [y],α∨)·gψ−1(〈yρ,α〉Q(α∨))−1.

To show equality (12), again it suffices to show that the powers of ε of the two
sides have the same parities, which is achieved from a straightforward check.

Analogous argument for mαβ = 6 works, and we give a summary.

Proposition 3.10. Let Oy be a Y sc
Q,n-free orbit. For all adjacent α, β ∈1, one has

mαβ∏
i=1

t(wαwβ, (wαwβ)
i
[y])= 1,

where t(wαwβ, y) := t(wα,wβ[y]) · t(wβ, y).

Definition 3.11. Let Oy ∈Oz
Q,n,sc be a Y sc

Q,n-free orbit. For any

w= wkwk−1 · · ·w2w1 ∈W

written as a minimum expansion, write

T (w, y) :=
k∏

i=1

t(wi ,wi−1 · · ·w1[y]),

which, by Lemma 3.9 and Proposition 3.10, is independent of the choice of minimum
expansion of w.

Let Oy ∈Oz
Q,n be a YQ,n-free orbit (and therefore Y sc

Q,n-free). We define a nonzero
c with support Oy as follows. First, let c(sy)= 1, and for any α ∈1, let

c(swα[y]) := t(wα, y) · c(sy).
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Inductively, one can define c(sw[y]) := T (w, y) · c(sy) for any w ∈ W. It is well
defined and independent of the minimum decomposition of w. Second, extend c by

c(sw[y] · z̄)= c(sw[y]) ·χ(z̄), z̄ ∈ A,

and
c(t̄)= 0 if t̄ /∈

⋃
w∈W

sw[y] · A.

By using the property that T (w, y) and c(sw[y]) are independent of the minimum
decomposition of w, we see that equality (8) is satisfied. It follows that ℘Q,n(Oy)

belongs to the right-hand side of (10). Therefore,

(13) dim Whψ(2(G, χ))≥ |℘Q,n(Oz
Q,n)|.

3E. An upper bound for dim Whψ(2(G, χ)). First we show a result in the gen-
eral setting regarding the usual Weyl action. Let 9 be a root system and 9s be a
fixed choice of simple roots. Write L := 〈9〉 for the lattice generated by 9 and
V = L⊗R. The Weyl group W associated to 9 acts on V naturally by the usual
linear transformation generated by simple reflections. Recall that we write w(v),
w ∈W, v ∈ V for this action.

Lemma 3.12. Let v ∈ V be any vector such that w(v)≡ v mod L. Then there exist
w′ ∈W and α ∈9s such that wα(w′(v))≡ w′(v) mod L .

Proof. Let Waff = LoW be the affine Weyl group, and denote any element of
Waff by wa = (y,w). We call w the Weyl component of wa. The congruence
w(v)≡ v mod L is equivalent to wa(v)= v for some wa which projects to w ∈W.

If wa(v)= v, it then follows that v ∈ V lies on the boundary of C , where C is
an alcove (i.e., a fundamental domain) of the action of Waff on V, see [Bourbaki
2002]. Note that C is a simplicial complex whose boundary consists of |9s | + 1
walls {Ei }. Moreover, we may assume that for 1≤ i ≤ |9s |, the wall Ei lies in the
hyperplane fixed by wa whose Weyl component is wαi for some αi ∈ 9s . In this
case, one also knows that E|9s |+1 is fixed by (y,wβ) ∈Waff for some β ∈9 −9s .

Since v ∈
⋃

i Ei , there are two cases. First, suppose v ∈Ei for some 1≤ i ≤ |9s |;
then clearly wαi (v)≡ v mod L for some αi ∈9s . Otherwise, suppose v ∈ E|9s |+1.
Let w′ ∈ W be such that w′(β) ∈ 9s . It follows that w′(E|9s |+1) is fixed by some
wa = (y,wα) with α ∈ 9s . That is, wα(w′(v)) ≡ w′(v) mod L. The proof is
completed. �

Proposition 3.13. Consider c ∈ Ftn(i(χ)) such that λχc is a ψ-Whittaker func-
tional on 2(G, χ). If Oy0 is not Y sc

Q,n-free, then c is zero on Oy0. It follows that
dim Whψ(2(G, χ))≤ |℘Q,n(Oz

Q,n,sc)|.

Proof. Write V = Y ⊗R. One has V = (Y sc
⊗R)⊕ V0 where V0 ⊆ V is fixed by

W pointwise with respect to the usual action, i.e., the action w(v) of W. In general
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y0
ρ ∈ V ; however, without loss of generality, we may assume y0

ρ ∈ Y sc
⊗R now.

There is a canonical W -equivariant isomorphism Y sc
Q,n ⊗R' Y sc

⊗R with respect
to that usual action. Moreover, {α∨Q,n}α∈8 forms a root system.

If Oy0 is not Y sc
Q,n-free, there exists w ∈W such that w[y0

] ≡ y0 mod Y sc
Q,n , i.e.,

w(y0
ρ)≡ y0

ρ mod Y sc
Q,n . By the preceding Lemma, there exist y ∈ Oy0 and α ∈ 1

such that wα(yρ)≡ yρ mod Y sc
Q,n. Now it suffices to show that c vanishes on y.

By Corollary 3.7, c(swα[y]) = t(wα, y) · c(sy). Since wα(yρ) ≡ yρ mod Y sc
Q,n, it

follows that nα|〈yρ, α〉. Write 〈yρ, α〉 = k · nα. Since

swα[y] = sy · s−〈yρ ,α〉)α∨ · ε
〈yρ ,α〉·D(α∨,y),

one has
c(swα[y])= χ(s−knαα∨) · c(sy) · ε

〈yρ ,α〉·D(α∨,y)

= qk
· εknα ·D(α∨,y) · c(sy).

On the other hand,

t(wα, y) · c(sy)= qky,α−1
·0(y, α∨) · gψ−1(〈yρ, α〉Q(α∨))−1

· c(sy)

= qk
· (−1,$)knα ·D(y,α∨)

n · (−q−1) · c(sy).

It follows that c(sy)=−q−1
·εknαB(y,α∨)

·c(sy)= (−q−1)·c(sy). Therefore c(sy)=0.
The proof is completed. �

Theorem 3.14. Let G be an unramified Brylinski–Deligne covering group incar-
nated by (D, η). Let χ be an unramified exceptional character and 2(G, χ) the
theta representation associated with χ . Then

|℘Q,n(Oz
Q,n)| ≤ dim Whψ(2(G, χ))≤ |℘Q,n(Oz

Q,n,sc)|.

The group Hom(YQ,n/Y sc
Q,n,C×) is identified with Z(G∨), the center of the dual

group G∨ of G, so Y sc
Q,n = YQ,n if and only if Z(G∨)= {1}. Immediately it follows

that:

Corollary 3.15. If the dual group G∨ of G is of adjoint type, i.e., Z(G∨)= 1, then
dim Whψ(2(G, χ))= |℘Q,n(Oz

Q,n)|.

For groups of type E8, F4 and G2, the complex dual group of their covering
group has trivial center and thus Corollary 3.15 applies.

More generally, if Oz
Q,n = Oz

Q,n,sc, then the dimension of Whψ(2(G, χ)) can
be uniquely determined. We will illustrate below that Theorem 3.14 recovers the
result of Kazhdan and Patterson in this case.

Example 3.16. Let {e1, e2, . . . , er } be a basis for the cocharacter lattice Y of GLr .
The simple coroots1∨ of GLr are1∨={α∨i :=ei−ei+1}1≤i≤r−1. The isomorphism
class of (D, η) in the incarnation category corresponds to a Weyl-invariant quadratic
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form Q, or equivalently, to the bilinear form BQ . Let BQ(ei , e j ) be the Weyl-
invariant bilinear form determined by

BQ(ei , ei )= 2 p, BQ(ei , e j )= q if i 6= j.

For any root α, one has Q(α∨)= 2 p− q. We assume 2 p− q =−1 and therefore
nα = n. The covering groups GL(n)r arising from such BQ are exactly those studied
by Kazhdan and Patterson. The parameter p corresponds to the twisting parameter
c in [Kazhdan and Patterson 1984].

From BQ , the lattice YQ,n is given by{∑
i

xi ei ∈

r⊕
i=1

Zei : x1 ≡ x2 ≡ · · · ≡ xr mod n, and n|(qr − 1)xi

}
.

The lattice Y sc
Q,n is generated by {α∨Q,n}α∈8. It is easy to check Y sc

Q,n = YQ,n ∩ Y sc,
and this has the following implications:

Suppose that Oy is not YQ,n-free, i.e., w[y] − y ∈ YQ,n for some w 6= 1 ∈ W.
Clearly w[y] − y ∈ Y sc as well. It follows that w[y] − y ∈ Y sc

Q,n , that is, Oy is not
Y sc

Q,n-free. Therefore, for the Kazhdan–Patterson covering group GL(n)r , one has
that Oz

Q,n is equal to Oz
Q,n,sc. Consequently, for the covering group GL(n)r with

parameter ( p, q) such that 2 p− q =−1, Theorem 3.14 yields

dim Whψ(2(G, χ))= |℘Q,n(Oz
Q,n,sc)|,

which is the content of [Kazhdan and Patterson 1984, Theorem I.3.5]. Moreover,
distinguished theta representations (see Definition 3.3) for GL(n)r are completely
determined in [Kazhdan and Patterson 1984, Corollary I.3.6].

In the remaining part of the paper, we will determine the distinguished theta
representations for coverings of simply connected groups of type Ar , Br ,Cr and G2.
To ease the computations, we will use the standard coordinates for the coroot system
of each type as in [Bourbaki 2002, pages 265–290].

4. The Ar, r ≥ 1 case

Consider the Dynkin diagram for the simple coroots of Ar :

e e e e e` ` ` ` ` ` ` ` `α∨1 α∨2 α∨r−2 α∨r−1 α∨r

The cocharacter lattice is Y =Y sc
=
⊕r

i=1 Zα∨i . As in [Bourbaki 2002, page 265],
consider the embedding i A :

⊕r
i=1 Zα∨i →

⊕r+1
i=1 Zei , which is given by

i A : y = (x1, x2, . . . , xr ) 7→ i A(y)= (x1, x2− x1, x3− x2, . . . , xr − xr−1,−xr ).

In particular, we can identify the image of i A: any (y1, y2, . . . , yr , yr+1)∈
⊕r+1

i=1 Zei

is equal to i A(y) for some y if and only if
∑r+1

i=1 yi = 0.
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Meanwhile, ρ =
∑r

i=1
i
2(r − i + 1)α∨i . We use i A :

⊕r
i=1 Qα∨i →

⊕r+1
i=1 Qei to

denote the canonical extension of i A. Then,

i A(ρ)=
(

r
2
,

r−2
2
, . . . ,

−(r−2)
2

,
−r
2

)
∈

r+1⊕
i=1

Qei .

It follows that for any y ∈ Y,

i A(yρ)=
(

x1−
r
2
, . . . , xi − xi−1+ (i − 1)− r

2
, . . . ,−xr + r − r

2

)
, 1≤ i ≤ r

=
(
x1, x2− x1+ 1, . . . , xi − xi−1+ (i − 1), . . . ,−xr + r

)
+

(
−r
2
,
−r
2
, . . . ,

−r
2

)
.

From now, we write i∗A(yρ) := (x
∗

1 , x∗2 , . . . , x∗r , x∗r+1) for(
x1, x2− x1+ 1, . . . , xi − xi−1+ (i − 1), . . . ,−xr + r

)
∈

⊕
i

Zei .

Thus,
iA(yρ)= i∗A(yρ)+

(
−r
2
,
−r
2
, . . . ,

−r
2

)
.

Meanwhile, any (x∗1 , x∗2 , . . . , x∗r , x∗r+1) ∈
⊕

i Zei is equal to i∗A(yρ) for some y if
and only if

∑r+1
i=1 x∗i = r(r + 1)/2.

Consider the quadratic form Q on Y = 〈α∨i , 1≤ i ≤ r〉 with Q(α∨i )= 1 for all i .
Then

BQ(α
∨

i , α
∨

j )=


2, if i = j,
−1, if j = i + 1,

0, if α∨i , α
∨

j are not adjacent.

This gives rise to the degree n covering group SL(n)r+1. Any element
∑r

i=1 xiα
∨

i ∈ Y
lies in YQ,n if and only if

2x1−x2, −x1+2x2−x3, −x2+2x3−x4, . . . −xr−2+2xr−1−xr , −xr−1+2xr

are in nZ.
By using i A, we see

YQ,n=

{
(y1, y2, . . . , yr )∈

r+1⊕
i=1

Zei :

r+1∑
i=1

yi =0, and y1≡· · ·≡ yr ≡ yr+1 mod n
}

and

Y sc
Q,n =

{
(y1, y2, . . . , yr ) ∈

r+1⊕
i=1

Zei :

r+1∑
i=1

yi = 0, and n|yi for all i.
}

The Weyl group W = Sr+1 acts as permutations on
⊕r+1

i=1 Zei . In particular, wαi

for αi ∈1 acts by exchanging ei and ei+1.
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4A. Case I: SL(n)r+1, n ≤ r. Suppose n ≤ r , then for any y ∈ Y with i∗A(yρ) =
(x∗1 , x∗2 , . . . , x∗r+1), there exists x∗i , x∗j , i 6= j such that n|(x∗i − x∗j ). Then clearly
w(yρ)− yρ ∈ Y sc

Q,n for some w ∈W. That is, Oy /∈Oz
Q,n,sc and one has in this case

Oz
Q,n,sc =∅.

Therefore, dim Whψ(2(SL(n)r+1, χ))= 0 for n ≤ r .

4B. Case II: SL(n)r+1, n= r + 1. In this case, the dual group for SL(n)n is SLn , see
[Weissman 2015]. Consider Oy ∈Oz

Q,n,sc such that

i∗A(yρ)= (0, 1, 2, . . . , r − 1, r) ∈
r+1⊕
i=1

Zei .

It is easy to check℘sc
Q,n(O

z
Q,n,sc)={℘

sc
Q,n(Oy)}, and this implies |℘Q,n(Oz

Q,n,sc)|=1.
However, Oy /∈Oz

Q,n . For example, let w\ be such that i∗A(w\(yρ))= (1, 2, . . . , r, 0),
then i A(w\(yρ))− i A(yρ) = (1, 1, . . . , 1,−r) ∈ YQ,n . That is, w\[y] − y ∈ YQ,n .
Therefore,

|℘Q,n(Oz
Q,n)| = 0.

It follows that 0 ≤ dim Whψ(2(SL(n)n , χ)) ≤ 1. In this case, determining
dim Whψ(2(SL(n)n , χ)) is delicate, and there are additional constraints on the
exceptional character χ such that 2(SL(n)n , χ) is distinguished. The analysis below
is devoted to this.

4B1. The reduction step. It is clear that i∗A(yρ)= (0, 1, 2, . . . , r−1, r) if and only
if y = 0. Moreover, i∗A(w\(yρ))= (1, 2, 3, . . . , r, 0) for w\ = wαr wαr−1 · · ·wα2wα1 .
As above,

w\[0] − 0=
r∑

i=1

i ·α∨i ∈ YQ,n.

Write yQ,n :=
∑r

i=1 i ·α∨i . In fact, the set {nα∨i : 2≤ i ≤ r} ∪ {yQ,n} forms a basis
for YQ,n , whereas {nα∨i : 2≤ i ≤ r} ∪ {n · yQ,n} is a basis for Y sc

Q,n . It follows that
any exceptional character χ is determined by its value at syQ,n .

We choose the bisector D on Y sc such that D(α∨i , α
∨

j ) is given by

D(α∨i , α
∨

j )=


Q(α∨i ) if i = j,
0 if i < j,
BQ(α

∨

i , α
∨

j ) if i > j.

Recall from Corollary 3.7 that c∈Ftn(i(χ)) gives rise to aψ-Whittaker functional
of 2(SL(n)n , χ) if and only if for all y and α ∈1,

c(swα[y])= qky,α−1
·0(y, α∨) · gψ−1(B(α∨, yρ))−1

· c(sy).
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For 1 ≤ i ≤ r , write y〈i〉 = wαi wαi−1 · · ·wα1[0] and we set y〈0〉 = 0. Recall that
t(wα, y) is the coefficient in the above formula. In this case, it reads t(wα, y) =
qky,α−1

· 0(y, α∨) · gψ−1(〈yρ, α〉)−1 since Q(α∨) = 1 (and therefore nα = n) for
all α ∈1. In order to have dim Whψ(2(SL(n)n , χ))= 1, we must have the equality

(14) χ(syQ,n )= T (w\, 0) where T (w\, 0)=
r∏

i=1

t(wαi , y〈i−1〉).

We would like to show that the equality (14) is also sufficient. Consider any
w′ ∈W , y ∈O0, one has c(sw′[y])= T (w′, y) · c(sy). Now assume w′[y]− y ∈ YQ,n ,
we have

c(sw′[y]−y+y)= χ(sw′[y]−y) · c(sy) · ε
D(w′[y]−y,y).

To show dim Whψ(2(SL(n)n , χ))= 1, it suffices to show c(sy) to be nonzero for all
y ∈O0 such that w′[y] − y ∈ YQ,n . That is, it requires

(15) χ(sw′[y]−y)= ε
D(w′[y]−y,y)

· T (w′, y).

Write w′[y]−y=
∑r

i=2 ki ·α
∨

i,Q,n+k1·yQ,n . Note that O0 is Y sc
Q,n-free, thus k1 6=0.

We may reduce the negative case to the positive case by a simple computation, and
therefore we can assume that k1 ≥ 1. Furthermore, we may apply induction on k1,
and thus it suffices to: i) prove the inductive step, ii) check the equality (15) when
w′[y]− y =

∑r
i=2 kiα

∨

i,Q,n + yQ,n . The assertion i) can be checked easily, and thus
we will only outline the proof of ii).

For ii), if w′[y] − y =
∑r

i=2 kiα
∨

i,Q,n + yQ,n , then it is not hard to see that
w′[y] − y = w(yQ,n), i.e., w−1w′[y] −w−1

[y] = yQ,n for some w ∈ W. We may
change w if necessary such that w−1

[y] = 0. With this assumption, w−1w′w= w\,
i.e., w′ = ww\w−1. Therefore, we need only show that for any w ∈W ,

(16) χ(sww\[0]−w[0])= ε
D(ww\[0]−w[0],w[0])

· T (ww\w
−1,w[0]).

To show (16), we would like to apply induction on the length of w. When w= 1,
it is just the equality (14). For the induction step, assuming the equality (16), we
would like to prove that for α ∈1 the following equality holds:

(17) χ(swαww\[0]−w[0])= ε
D(wαww\[0]−wαw[0],wαw[0])

· T (wαww\w
−1w−1

α ,wαw[0]).

For this purpose, write x := ww\[0] − w[0] ∈ YQ,n . We have nα|〈x, α〉. Write
〈x, α〉 = k · nα.

The left-hand side of (17) is

χ(sx−〈x,α〉α∨)= χ(sx) ·χ(s−knαα∨) · ε
D(x,−knαα∨)

= χ(sx) ·χ(h̄α($ nα ))−k
= qk
·χ(sx).
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The right-hand side of (17) is

εD(wα(x),wαw[0])
· t(wα,ww\[0]) · T (ww\w

−1,w[0]) · t(wα,wαw[0])

= εD(x,wαw[0])−w[0])
·χ(sx) · t(wα,ww\[0]) · t(wα,wαw[0]) by (16)

= εD(x,wαw[0])−w[0])
·χ(sx) · t(wα,ww\[0]) · t(wα,w[0])−1

= εD(x,wαw[0])−w[0])
· qd

〈w[0],α〉
nα
e−1+k

· gψ−1(〈w(0ρ), α〉Q(α∨))−1

· ε〈w(0ρ),α〉·D(ww\[0],α∨) ·χ(sx) · q
−d 〈w[0],α〉nα

e+1

· gψ−1(〈w(0ρ), α〉Q(α∨)) · ε〈w(0ρ),α〉·D(w[0],α
∨)

= χ(sx) · qk
· ε〈w(0ρ),α〉D(x,α

∨)
· ε〈w(0ρ),α〉D(x,α

∨)

= χ(sx) · qk,

which is clearly equal to the left-hand side. To summarize, we have:

Proposition 4.1. Let χ ∈ Homι(Z(T ),C×) be an exceptional character of SL(n)n .
Then

dim Whψ(2(SL(n)n , χ))= 1

if and only if χ is the unique exceptional character satisfying (14).

We would like to explicate the condition given by (14).

Lemma 4.2. One has

T (w\, 0)=
{

q−r/2 if n is odd,
εn(n−2)/8

· q−n/2
· gψ−1(−n/2)−1 if n is even.

Proof. We compute each t(wαi , y〈i−1〉) for 1 ≤ i ≤ r . First, one can check easily
that y〈i〉 =

∑i
j=1 i ·α∨i = α

∨

1 + 2α∨2 + · · ·+ i ·α∨i . Thus, 〈y〈i−1〉, αi 〉 = −(i − 1)
and therefore

ky〈i−1〉,αi = 0 for all 1≤ i ≤ r.

Second, 0(y〈i−1〉, α
∨

i )= ε
−i ·D(y〈i−1〉,α

∨

i ). Since D(α∨j , α
∨

i )= 0 for all j < i , we see
0(y〈i−1〉, α

∨

i )= 1. Thus, t(wαi , y〈i−1〉)= q−1
· gψ−1(−i)−1. Now, if 1 ≤ i, j ≤ n

and i + j = n, one has

gψ−1(−i)−1
· gψ−1(− j)−1

= gψ−1(−i)−1
· (gψ−1( j) · ε j )−1

= |gψ−1( j)|−2
· εi

= q · εi .

The result then follows from simply multiplying together each term. �
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4B2. Interlude: Weil-index. Let γψ be the Weil-index given in Section 2C.

Lemma 4.3. Suppose n= 2m is an even number. Then the following equality holds:

gψ−1(m)=
q−1/2

γψ($)
.

Proof. By definition, gψ−1(m) is equal to∫
O×F

(u,$)2·ψ−1($−1u)µ(u)=
∫

O×F

γψ($u)γψ($)−1γψ(u)−1
·ψ−1($−1u)µ(u)

= γψ($)
−1
·

∫
O×F

γψ($u)·ψ−1($−1u)µ(u).

However, by Equation (3.7) of [Szpruch 2009b, Lemma 3.2],

γψ($u)= q−1/2
(

1+ q
∫

O×F

ψ($−1v2u)µ(v)
)
.

Thus,

gψ−1(m)= q−1/2
· γψ($)

−1
·

∫
O×F

(
1+ q

∫
O×F

ψ($−1v2u)µ(v)
)
ψ−1($−1u)µ(u)

= q−1/2
· γψ ($)

−1
·

(
−

1
q + q ·

∫
O×F

∫
O×F

ψ($−1u(v2
− 1))µ(u)µ(v)

)
Let D = {v ∈ O×F : |1− v

2
| = 1} and H = {v ∈ O×F : |1− v

2
| ≤ q−1

}. We get∫
O×F

(∫
O×F

ψ($−1u(v2
−1))µ(u)

)
µ(v)

=

∫
v∈H

∫
O×F

ψ($−1u(v2
−1))µ(u)µ(v)+

∫
v∈D

∫
O×F

ψ($−1u(v2
−1))µ(u)µ(v)

= µ(H)·(1−q−1)+µ(D)·(−q−1) by (8.19) of [Szpruch 2009b, Lemma 8.6]

= 2q−1
·(1−q−1)+(1−3q−1)·(−q−1) by [Szpruch 2009b, Lemma 8.9]

= q−1
+q−2.

The result follows easily by simplification. �

4B3. An explicit criterion. Consider the unitary distinguished character χ 0
ψ ′ con-

structed in [Gan and Gao 2016], which we recalled and gave in (5). Then the
character χψ ′ = χ 0

ψ ′ · δB(·)
1/2n is an exceptional character. In the simply connected

case, J = Y sc
Q,n . For the definition of χ 0

ψ ′ , we pick a basis {yi } for YQ,n such that
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{ki yi } is a basis for J = Y sc
Q,n . Then by definition,

χ 0
ψ ′(syi )= γψ ′($)

2(ki−1)Q(yi )/n

and, for y =
∑

i ni yi ∈ YQ,n , one has

χ 0
ψ ′(sy)=

∏
i

χ 0
ψ ′($

ni )2(ki−1)Q(yi )/n
· ε
∑

i< j ni n j D(yi ,y j ).

For the covering group SL(n)n , we take yi = nα∨i , 2 ≤ i ≤ r and y1 = yQ,n , with
ki = 1 for 2≤ i ≤ r and k1 = n.

An easy computation shows Q(yQ,n)= r(r + 1)/2, and thus

(18) χψ ′(syQ,n )= χ
0
ψ ′(syQ,n ) · δB(syQ,n )

1
2n = γψ ′($)

(n−1)2
· q−(n−1)/2.

Proposition 4.4. For the exceptional character χψ ′ = χ 0
ψ ′ · δB(·)

1
2n given above,

one has that the dimension of Whψ(2(SL(n)n , χψ ′)) equals 1 in the following cases,
and 0 otherwise:

any ψ ′, if n is odd;
γψ ′($)= γψ($), if n ≡ 0, 2 mod 8;
γψ ′($)= (−1,$)4 · γψ($) if n ≡ 4 mod 8;
γψ ′($)= γψ($)

−1 if n ≡ 6 mod 8.

Proof. By the value of χψ ′(syQ,n ) in (18), it follows from Lemma 4.2 that the
equality (14) is equivalent to

(19) γψ ′($)(n−1)2
·q−

(n−1)
2 =

{
q−r/2 if n is odd;
(−1,$)n(n−2)/8

n ·q−
n
2 ·gψ−1(−n

2 )
−1 if n is even.

For n odd, the equality holds for any ψ ′. Now we assume n even.
For n = 4k+ 2, by Lemma 4.3, the required equality in (19) becomes

γψ ′($)= γψ($)
2k+1.

In particular, if k is even, it is equivalent to γψ ′($) = γψ($). If k is odd, it is
equivalent to γψ ′($)= γψ($)−1.

For n = 4k, applying Lemma 4.3 again, the equality in (19) reads

γψ ′($)= (−1,$)kn · γψ($)= (−1,$)4 · γψ($).

A special case is when k is even. In this case (−1,$)4 = 1 and therefore it is
equivalent to γψ ′($)= γψ($). �
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Corollary 4.5. Consider ψ ′ = ψa for some a ∈ F×. Assume ψa has conductor OF ,
i.e., a ∈ O×F . Then dim Whψ(2(SL(n)n , χψa ))= 1 if and only if the following hold:

a ∈ O×F if n is odd,
a ∈ (O×F )

2 if n ≡ 0, 2 mod 8,
a2
∈ −(O×F )

4 if n ≡ 4 mod 8,
a ∈ −(O×F )

2 if n ≡ 6 mod 8.

Remark 4.6. The facts that for any exceptional representation 2(SL(n)n , χ) there
exists ψ such that it is ψ-generic, and that dim Whψ(2(SL(n)n , χ))≤ 1 for all ψ
also follow from the work of [Kazhdan and Patterson 1984] on GL(n)n combined
with the relation between SL(n)n and GL(n)n in [Adams 2003]. (We thank the referee
for pointing this out.) However, our Corollary 4.5 gives precise information for
the matching between ψ and the distinguished theta representation in terms of the
distinguished character.

Example 4.7. The first nontrivial example is the metaplectic covering SL(2)2 . In
this case, we have YQ,n = Y = Z · α∨ and Y sc

Q,n = Z · (2α∨). As mentioned at the
beginning of Section 4B, one has that the lower and upper bounds in Theorem 3.14
are 0 and 1 respectively and thus

0≤ dim Whψ(2(SL(2)2 , χ))≤ 1

for any exceptional χ . For the character ψa , the representation 2(SL(2)2 , χψa ) is
the even Weil representation in the following exact sequence:

St(χψa )
� � // I (χψa )

// // 2(SL(2)2 , χψa ),

where St(χψa ) is the metaplectic analogue of the Steinberg representation. From
Corollary 4.5, we can recover the well-known fact, which follows from the work of
Gelbart and Piatetski-Shapiro [1980], that for SL(2)2 the even Weil representation
2(SL(2)2 , χψa ) (for unramified data) is ψ-generic if and only if a ∈ (O×F )

2. We note
that this also follows directly from the computation of the local coefficient for SL(2)2
in [Szpruch 2009a].

Example 4.8. We also discuss explicitly the example SL(3)3 . Consider SL(3)3 with
cocharacter lattice Y = 〈α∨1 , α

∨

2 〉. Consider Q such that Q(α∨i )= 1. Then

YQ,n = 〈2α∨1 +α
∨

2 , 3α∨1 〉 = 〈2α
∨

2 +α
∨

1 , 3α∨2 〉.

Note Y = 〈2α∨1 + α
∨

2 , α
∨

1 〉 = 〈2α
∨

2 + α
∨

1 , α
∨

2 〉. We know ρ = α∨1 + α
∨

2 . For y = 0
one has

yρ = 0ρ =−(α∨1 +α
∨

2 ).
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Consider w\ = wα1wα2 , then wα2[y] = α
∨

2 and moreover wα1wα2[y] = 2α∨1 + α
∨

2 .
One has

c(sw1w2[y])= qkw2[y],α1−1
·0(w2[y], α∨1 ) · gψ−1(Q(α∨1 )(〈w2[y], α1〉− 1))−1

· qky,α2−1
·0(y, α∨2 ) · gψ−1(Q(α∨2 )(〈y, α2〉− 1))−1

· c(sy)

= qd
〈α∨2 ,α1〉

3 e+d
〈y,α2〉

3 e−2
·0(α∨2 , α

∨

1 ) ·0(0, α
∨

2 )

· gψ−1(−2)−1 gψ−1(−1)−1
· c(1SL(3)3

)

= q−2
· q · c(1SL(3)3

)= q−1,

where c is normalized to take value 1 at the 1 ∈ SL(3)3 . This implies that necessarily
c(sw1w2[y])= q−1, and thus

χ(sw1w2[y])= q−1.

Note, this is not a consequence of χ being exceptional, although it is compatible.
Clearly, an exceptional character χ is such that{

χ(sw1w2[y])
3
= q−3,

χ(s3α∨1 )= q−1.

In particular, if for some third root of unity ζ 6= 1, χ(sw1w2[y]) is equal to ζ · q−1,
then dim Whψ(2(SL(3)3 , χ))= 0 for such χ .

4C. Case III: SL(n)r+1, n= r+2. For n= r+2, we show YQ,n =Y sc
Q,n and therefore

Corollary 3.15 applies. Picking any (y1, y2, . . . , yr+1) ∈ YQ,n , we have

a ≡ y1 ≡ y2 ≡ · · · ≡ yr+1 mod n,

where a ∈ {0, 1, 2, . . . , r + 1}. Write yi = ki n+ a. Since
∑r+1

i=1 yi = 0, one has

n ·
(r+1∑

i=1

ki

)
+ (r + 1) · a = 0.

In particular, n|(r + 1)a. However, gcd(n, r + 1) = 1, so n|a and a = 0. That
is, YQ,n = Y sc

Q,n and therefore dim Whψ(2(SL(r+2)
r+1 , χ))= |℘Q,n(Oz

Q,n)|. Note
that, the equality YQ,n = Y sc

Q,n reflects the fact that the dual group for SL(n+1)
n

is PGLn (see [Weissman 2015, § 2.7.2]).
We claim that the dimension is equal to 1 in this case. Let Oy ∈ Oz

Q,n,sc be a
Y sc

Q,n-free orbit with i∗A(yρ)= (0, 1, . . . , r −1, r) ∈
⊕r+1

i=1 Zei . We know that Oy is
YQ,n-free (or equally, Y sc

Q,n-free). Moreover, one can check easily that℘Q,n(Oz
Q,n)=

{℘Q,n(Oy)}. Therefore dim Whψ(2(SL(r+2)
r+1 , χ)) = 1 for the unique exceptional

character χ in this case.
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4D. Case IV: SL(n)r+1, n ≥ r + 3.

Lemma 4.9. Consider y ∈ Y such that i∗A(yρ)= (x
∗

1 , x∗2 , . . . , x∗r , x∗r+1) with x∗i =
i − 1. If n ≥ r + 3, the orbit Oy is YQ,n-free.

Proof. Suppose not, then there exists w 6= 1 such that w[y]− y ∈ YQ,n . Identify w
with a permutation, then we have

(x∗1 , x∗2 , . . . , x∗r+1)− (x
∗

w(1), x∗w(2), . . . , x∗w(r+1)) ∈ YQ,n.

More precisely, i −w(i)≡ j −w( j) mod n for all i, j. Clearly, n - (i −w(i)) for
all i , otherwise one can deduce w(i) = i for all i and therefore w = 1. That is,
(i −w(i)) is either negative or positive. We reorder the terms (i −w(i)) as

−r ≤ (i1−w(i1))≤ (i2−w(i2))≤· · ·<0< · · ·≤ (ir−w(ir ))≤ (ir+1−w(ir+1))≤ r.

Write (i1−w(i1)) = −s, s ∈ N and (ir+1−w(ir+1)) = t, t ∈ N. It is easy to see
that any negative i −w(i) must be equal to −s, and any positive i −w(i) must be
equal to t .

We claim that 2< t + s ≤ r + 1 and therefore n - (t + s), i.e., w[y] − y /∈ YQ,n

for all w 6= 1. Note 0−w(0)=−s and r −w(r)= t . Suppose t + s > r + 1, then
there exists i0 such that r +1− t < i0 < 1+ s. However, there exists no i ′ such that
w(i ′)= i0. This is a contradiction, and the claim follows.

Therefore Oy is YQ,n-free for the given y. �

It follows that dim Whψ(2(SL(n)r+1, χ))≥ 1 for n ≥ r+3. In principle, one could
proceed as in Section 4B to analyze every element in ℘Q,n(Oz

Q,n,sc) and determine
completely dim Whψ(2(SL(n)r+1, χ)) in this case. However, the level of complexity
of the computation depends inevitably on (the center of) the dual group of SL(n)r

and could be quite involved for general n ≥ r + 3.
We summarize for the n ≤ r + 2 cases below.

Theorem 4.10. Consider the Brylinski–Deligne covering SL(n)r+1, n ≤ r + 2 with
Q(α∨)= 1 for all coroots α∨. Let χ be an exceptional character of SL(n)r+1. Then
dim Whψ(2(SL(n)r+1, χ))= 1 if and only if

• n = r + 2 and χ is the only exceptional character, or

• n = r + 1 and χ is the unique exceptional character satisfying (14).

5. The Cr, r ≥ 2 case

Consider the Dynkin diagram for the simple coroots for Cr :

e e e e ep p p p p p p p p >
α∨1 α∨2 α∨r−2 α∨r−1 α∨r
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Let
Y = Y sc

= 〈α∨1 , α
∨

2 , . . . , α
∨

r−1, α
∨

r 〉

be the cocharacter lattice of Sp2r , where α∨r is the short coroot. Let Q be the
Weyl-invariant quadratic on Y such that Q(α∨r )= 1. Then the bilinear form BQ is
given by

BQ(α
∨

i , α
∨

j )=


2 if i = j = r,
4 if 1≤ i = j ≤ r − 1,
−2 if j = i + 1,

0 if α∨i , α
∨

j are not adjacent.

A simple computation gives

YQ,n =

{ n∑
i=1

xiα
∨

i : n|(2xi )

}
.

We write n2 := n/ gcd(2, n). Then

YQ,n = 〈n2α
∨

1 , n2α
∨

2 , . . . , n2α
∨

r−1, n2α
∨

r 〉

and
Y sc

Q,n = 〈n2α
∨

1 , n2α
∨

2 , . . . , n2α
∨

r−1, nα∨r 〉.

The map iC :
⊕r

i=1 Zα∨i →
⊕r

i=1 Zei is given by

iC : (x1, x2, x3, . . . , xr ) 7→ (x1, x2− x1, x3− x2, . . . , xr−1− xr−2, xr − xr−1).

Here iC is an isomorphism. The Weyl group is W = Sr o (Z/2Z)r , where Sr

is the permutation group on
⊕

i Zei and each (Z/2Z)i acts by ei 7→ ±ei . In
particular, wαi , 1≤ i ≤ r − 1, acts on (y1, y2, . . . , yr ) ∈

⊕
i Zei by exchanging yi

and yi+1, while wαr acts by (−1) on Zer .
Moreover, y ∈ Y lies in YQ,n if and only if all entries of iC(y) are divisible by n2.

It is easy to obtain

YQ,n =

{
(y1, y2, . . . , yr ) ∈

⊕r

i=1
Zei : n2|yi for all i.

}
and

Y sc
Q,n =

{
(y1, y2, . . . , yr ) ∈

⊕r

i=1
Zei : n2|yi for all i, and n

∣∣∑
i

yi .
}

We further note

2ρ =
r∑

i=1

(2r − 2i + 1)ei =

r∑
i=1

i(2r − i)α∨i .

Assume x0 = 0, then

iC(yρ)= (xi − xi−1− (r − i + 1/2))1≤i≤r .
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Write x∗i := xi − xi−1− (r − i), and also i∗C(yρ) := (x
∗

1 , x∗2 , . . . , x∗r−1, x∗r ). Then

iC(yρ)= i∗C(yρ)−
(

1
2
,

1
2
, . . . ,

1
2
,

1
2

)
.

We will discuss the two cases depending on the parity of n separately.

5A. The case where n is odd. Here, n2 = n and

nY = Y sc
Q,n = YQ,n =

{
(y1, . . . , yr ) ∈

⊕r

i=1
Zei : n|yi for all i

}
.

The complex dual group for Sp(n)2r for n odd is SO2r+1.

Proposition 5.1. Let n be an odd number, one has
|℘Q,n(Oz

Q,n,sc)| ≥ 2 if n ≥ 2r + 3,

|℘Q,n(Oz
Q,n,sc)| = 1 if n = 2r + 1,

|℘Q,n(Oz
Q,n,sc)| = 0 if n ≤ 2r − 1.

So, we have dim Whψ(2(Sp(n)2r , χ))= 1, for n odd, if and only if n = 2r + 1 for
the only exceptional character of Sp(2r+1)

2r .

Proof. We have written

iC(yρ)= i∗C(yρ)−
(

1
2
,

1
2
, . . . ,

1
2
,

1
2

)
.

Since x1, . . . , xr are arbitrary, the associated x∗i are also arbitrary.
First, when n ≥ 2r + 3, consider the orbits Oy and Oy′ where

i∗C(yρ)= (1, 2, . . . , r − 1, r) and i∗C(y
′

ρ)= (1, 2, . . . , r − 1, r + 1).

If r = 2, consider Oy and Oy′ with i∗C(yρ)= (1, 2) and i∗C(y
′
ρ)= (1, 3). Both Oy

and Oy′ are YQ,n-free orbits. For example, for Oy , this follows from the fact that
the entries of iC(w(yρ))− iC(yρ) are either j − i or j + i − 1, for 0≤ i, j ≤ r − 1.
One can check also that ℘Q,n(Oy) 6= ℘Q,n(Oy′), and therefore |℘Q,n(Oz

Q,n)| ≥ 2.
Second, assume n = 2r+1. Consider Oy such that i∗C(yρ)= (1, 2, . . . , r−1, r).

For r = 2, consider i∗C(yρ) = (1, 2). It can be checked easily that ℘Q,n(Oz
Q,n) =

{℘Q,n(Oy)}. Thus, dim Whψ(2(Sp(2r+1)
2r , χ))= 1.

Third, assume that n ≤ 2r − 1, we want to show that Oz
Q,n,sc =∅. If i∗C(yρ)=

(x∗1 , x∗2 , . . . , x∗i , . . . , x∗r ) is such that x∗i ≡ x∗j mod n for some i 6= j, then clearly
Oy /∈Oz

Q,n,sc. Now if n - (x∗i − x∗j ) for all i 6= j ; since n≤2r−1, it is not hard to see
that there always exist i, j such that n|(x∗j −1/2)+ (x∗i −1/2), i.e., n|(x∗j + x∗i −1).
In this case, one also has Oy /∈Oz

Q,n,sc. In any case, Oz
Q,n,sc =∅ for n ≤ 2r − 1.

The proof is completed. �
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5B. The case where n is even. Writing n = 2m,

YQ,n =〈mα∨1 ,mα∨2 , . . . ,mα∨r−1,mα∨r 〉, Y sc
Q,n =〈mα

∨

1 ,mα∨2 , . . . ,mα∨r−1, nα∨r 〉.

Equivalently, one has:

YQ,n =

{
(y1, y2, . . . , yr ) ∈

⊕r

i=1
Zei : m|yi for all i.

}
and

Y sc
Q,n =

{
(y1, y2, . . . , yr ) ∈

⊕r

i=1
Zei : m|yi for all i, and n|

∑
i

yi .
}

The dual group for Sp(n)2r with n even is Sp2r .

5B1. The case where m ≥ 2r + 2. Here, consider the orbits Oy,Oy′ given in the
proof of Proposition 5.1. They are YQ,n-free; moreover, Oy and Oy′ are distinct in
the image of ℘Q,n . Thus, we have |℘Q,n(Oz

Q,n)| ≥ 2.

5B2. The case where m ≤ 2r − 2. Here, we can easily check Oz
Q,n,sc =∅.

5B3. The case where m=2r−1. Consider y with i∗C(yρ)= (1, 2, . . . , r−1, r), i.e.,

iC(yρ)=
(

1− 1
2
, 2− 1

2
, . . . , (r − 1)− 1

2
, r − 1

2

)
.

Consider wαr ∈W, then iC(wαr (yρ))=
(
1− 1

2 , 2− 1
2 , . . . , (r − 1)− 1

2 ,−(r −
1
2)
)
.

Note Oy is Y sc
Q,n-free, and ℘sc

Q,n(O
z
Q,n,sc)= {℘

sc
Q,n(Oy)} = {℘

sc
Q,n(O0)}. However,

it is not YQ,n-free, since iC(yρ −wαr (yρ))= (0, 0, . . . ,m) ∈ YQ,n . Remember that
any c ∈ Ftn(i(χ)) which gives rise to λχc ∈Whψ(2(G, χ)) satisfies c(swαr [y]) =

t(wαr , y) · c(sy) where

t(wαr , y)= qky,αr−1
·0(y, α∨r ) · gψ−1(Q(α∨r ) · 〈yρ, αr 〉)

−1.

Meanwhile, in our case wαr [y] − y = (−m)α∨r ∈ YQ,n . It follows that

c(swαr [y])= ε
D(wαr (yρ)−yρ ,y) ·χ(swαr (yρ)−yρ ) · c(sy).

For c to be nonzero on Oy , i.e., ℘Q,n(Oy) contributes to the right-hand side of (10),
one has

χ(s−mα∨r )= qky,αr−1
· gψ−1(Q(α∨r ) · 〈yρ, αr 〉)

−1.

Moreover, we can argue as in Section 4B that this condition is also sufficient. One
has 〈y, αr 〉 = 2r and thus ky,αr = 1. The equality is thus simplified to

(20) χ(s−mα∨r )= gψ−1(m)−1.

Consider the exceptional character χψ ′ = χ 0
ψ ′ · δ

1/2n
B , which relies on the distin-

guished unitary character χ 0
ψ ′ depending on a nontrivial character ψ ′ : F→ C×
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(see Section 2C). Since χ 0
ψ ′(smα∨r )= γψ ′($)

m Q(α∨r ), by Lemma 4.3, equality (20)
becomes γψ($)= (−1,$)m

2

n · γψ ′($)
−m , which can be further reduced to

γψ ′($)= (−1,$)r+1
n · γψ($)= (−1,$)r+1

2 · γψ($).

In particular, if ψ ′ = ψa with a ∈ O×F , then the equality is equivalent to
(a(−1)r+1,$)2 =−1, i.e., a ∈ (−1)r+1

· (O×F )
2.

5B4. The case where m = 2r . We claim that here Oz
Q,n = Oz

Q,n,sc. Clearly it
suffices to show that Oz

Q,n ⊇Oz
Q,n,sc. Equivalently, if Oy is not YQ,n-free, we

would like to show that it is not Y sc
Q,n-free. Write i∗C(yρ) = (x

∗

1 , x∗2 , . . . , x∗r ). By
assumption,

iC(y−w[y])= i∗C(yρ −w(yρ)) ∈ YQ,n

for some w ∈W. Entries of iC(y−w[y]) cannot be of the form 2x∗i − 1 since m is
even; thus they are of the form 0, x∗i − x∗j or x∗i + x∗j − 1 for i 6= j. In this case, it
is easy to see that iC(y−w′[y]) ∈ Y sc

Q,n for some w′ ∈W, i.e., Oy is not Y sc
Q,n-free.

Consequently,
dim Whψ(2(Sp(4r)

2r , χ))= |℘Q,n(Oz
Q,n)|.

On the other hand, consider Oy with i∗C(yρ) = (1, . . . , r − 1, r). It is easy to see
℘Q,n(Oz

Q,n)={℘Q,n(Oy)}. Therefore, we always have dim Whψ(2(Sp(4r)
2r , χ))= 1

for any of the two exceptional characters of Sp(4r)
2r .

5B5. The case where m = 2r + 1. Consider Oy with i∗C(yρ)= (1, 2, . . . , r − 1, r).
One can check ℘Q,n(Oz

Q,n)= {℘Q,n(Oy)} with Oy ∈Oz
Q,n , i.e., |℘Q,n(Oz

Q,n)| = 1.
On the other hand,

℘Q,n(Oz
Q,n,sc)= {℘Q,n(Oy)} ∪ {℘Q,n(Ozi ) : 1≤ i ≤ r}

with zi described as follows. Recall that we write zi,ρ := zi − ρ. For 1≤ i ≤ r − 1,
zi is such that i∗C(zi,ρ)= (0, 2, 3, . . . , ̂i + 1, . . . , r, r+1), which denotes the r -tuple
obtained from the (r+1)-tuple (0, 2, 3, . . . , r − 1, r, r + 1) by removing the entry
i + 1. Meanwhile, zr is such that i∗C(zr,ρ)= (2, 3, . . . , r − 1, r, r + 1).

Note that Ozi ∈O
z
Q,n,sc \O

z
Q,n , since

iC(wαr [zi ] − zi )= iC(wαr (zi,ρ)− zi,ρ)=−(0, 0, . . . , 0,m)= iC(−mα∨r ) ∈ YQ,n.

The r + 1 elements ℘Q,n(Oy) and ℘Q,n(Ozi ) (1≤ i ≤ r) are all distinct. It follows
that |℘Q,n(Oz

Q,n,sc)| = r + 1. Therefore,

1≤ dim Whψ(2(Sp(4r+2)
2r , χ))≤ r + 1.

However, because there are only two exceptional characters χ , the dimension
Whψ(2(Sp(4r+2)

2r , χ)) can take at most two values. In fact, we will determine
completely the value and its dependence on χ .
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Proposition 5.2. Let χ be an exceptional character of Sp(4r+2)
2r . Then

dim Whψ(2(Sp(4r+2)
2r , χ))=

{
1 if χ(s−mα∨r )=−q1/2

· γψ($),

r + 1 if χ(s−mα∨r )= q1/2
· γψ($).

Proof. First, we show that χ(s−mα∨r ) is equal to±q1/2
·γψ($) if χ is an exceptional

character. Consider
χ(s−mα∨r )

2
= χ(s−nα∨r ) · ε

m2 Q(α∨r )

= χ(snα∨r )
−1
· ε

= q · (−1,$)2,

which has square roots exactly ±q1/2
· γψ($). That is, an exceptional character χ

of Sp(4r+2)
2r is uniquely determined by the sign.

Second, arguing as in Section 4B , we see that ℘Q,n(Ozi ), 1≤ i ≤ r contributes
to the right-hand side of equality (10) if and only if (as in equality (15))

(21) χ(swαr [zi ]−zi )= ε
D(wαr [zi ]−zi ,zi ) · t(wαr , zi ).

That is, dim Whψ(2(Sp(4r+2)
2r , χ))=1+|{zi : the equality (21) holds for zi }|. Note

that, wαr [zi ]− zi =−mα∨r for all i . On the other hand, we claim that the right-hand
side of (21) is independent of i . A simple computation gives 〈zi,ρ, αr 〉 = m and
therefore

εD(wαr [zi ]−zi ,zi ) · t(wαr , zi )

= εD(α∨r ,zi ) · qd
〈zi,ρ ,αr 〉+1

nαr
e−1
· ε〈zi,ρ ,αr 〉·D(zi ,α

∨
r ) · gψ−1(〈zi,ρ, αr 〉 · Q(α∨r ))

−1

= εBQ(zi ,α
∨
r ) · qd

m+1
n e−1

· gψ−1(m)−1

= gψ−1(m)−1, by the evenness of BQ .

Thus, it follows that dim Whψ(2(Sp(4r+2)
2r , χ))= 1 or r + 1. Moreover, it is equal

to 1 if and only if χ(s−mα∨r ) 6= gψ−1(m)−1. By Lemma 4.3,

gψ−1(m)−1
= q1/2

· γψ($).

Thus, dim Whψ(2(Sp(4r+2)
2r , χ))= 1 (respectively, r + 1) if and only if χ(s−mα∨r )

is equal to −q1/2
· γψ($) (respectively q1/2

· γψ($)). �

We summarize the results in this section as follows:

Theorem 5.3. Consider the Brylinski–Deligne covering group Sp(n)2r , where r ≥ 2,
and n≥1. Let χ be an unramified exceptional character, then dimWhψ(2(Sp(n)2r ,χ))

is equal to 1 if and only if the following hold:

• n = 4r − 2 and χ is the unique exceptional character satisfying (20), or

• n = 4r and χ is any exceptional character of Sp(4r)
2r , or
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• n = 4r + 2 and χ is the unique exceptional character from Proposition 5.2, or

• n = 2r + 1 and χ is the only exceptional character of Sp(2r+1)
2r .

Further, consider the exceptional character χψa :=χ
0
ψa
·δ

1/2n
B associated withψa .

Assume ψa has conductor OF , i.e., a ∈ O×F . Then,

dim Whψ(2(Sp(4r−2)
2r , χψa ))= 1

if and only if a ∈ (−1)r+1
·(O×F )

2, and dim Whψ(2(Sp(4r+2)
2r , χψa ))= 1 if and only

if a ∈ (−1)r · (O×F )
2.

6. The Br, r ≥ 2 case

Consider the Dynkin diagram for the simple coroots for the type Br group Spin2r+1:

e e e e ep p p p p p p p p <
α∨1 α∨2 α∨r−2 α∨r−1 α∨r

Let Y = 〈α∨1 , α
∨

2 , . . . , α
∨

r−1, α
∨
r 〉 be the cocharacter lattice of Spin2r+1, where

α∨r is the long coroot. Let Q be the Weyl-invariant quadratic form on Y such that
Q(α∨r )= 2, i.e., Q(α∨i )= 1 for 1≤ i ≤ r−1. Then the bilinear form BQ is given by

BQ(α
∨

i , α
∨

j )=



4 if i = j = r;
2 if 1≤ i = j ≤ r − 1;
−1 if 1≤ i ≤ r − 2 and j = i + 1;
−2 if i = r − 1, j = r;

0 if α∨i , α
∨

j are not adjacent.

The map iB :
⊕r

i=1 Zα∨i →
⊕r

i=1 Zei is given by

iB : (x1, x2, x3, . . . , xr ) 7→ (x1, x2− x1, x3− x2, . . . , xr−1− xr−2, 2xr − xr−1).

In particular, any (y1, . . . , yr ) ∈
⊕r

i=1 Zei is equal to iB(y) for some y if and only
if 2|(

∑
i yi ).

The Weyl group is W = Sr o (Z/2Z)r, where Sr is the permutation group
on
⊕

i Zei and (Z/2Z)i : ei 7→ ±ei . In particular, wαi , 1 ≤ i ≤ r − 1, acts on
(y1, y2, . . . , yr ) ∈

⊕
i Zei by exchanging yi and yi+1. Also, wαr acts by (−1)

on Zer .
A simple computation gives

YQ,n=
{
(y1,y2,...,yr )∈

⊕r
i=1Zei :2|

(∑r
i=1 yi

)
, y1≡···≡yr mod n, n|2yi for all i.

}
,

Y sc
Q,n=

{
(y1,y2,...,yr )∈

⊕r
i=1Zei :2|

(∑r
i=1 yi

)
, n|yi for all i.

}
In particular, if n is odd, then YQ,n = Y sc

Q,n .
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We note that 2ρ =
∑r

i=1 2(r − i + 1)ei , and therefore ρ =
∑r

i=1(r − i + 1)ei . If
y = (x1, x2, . . . , xr ) ∈

⊕
i Zα∨i , then

iB(yρ)= (x1− (r − 1+ 1), x2− x1− (r − 2+ 1), . . . , xi − xi−1− (r − i + 1),
. . . , xr−1− xr−2− (r − (r − 1)+ 1), 2xr − xr−1− (r − r + 1))

=: (x∗1 , x∗2 , . . . , x∗i , . . . x
∗

r−1, x∗r ).

Any (x∗1 , . . . , x∗r ) ∈
⊕

i Zei such that 2 |
(∑

i x∗i + r(r + 1)/2
)

is equal to iB(yρ)
for some y.

6A. The case where n is odd. Here,

nY = Y sc
Q,n = YQ,n.

Therefore, dim Whψ(2(Spin(n)2r+1, χ)) = |℘Q,n(Oz
Q,n,sc)|, where χ is the only ex-

ceptional character of Spin(n)2r+1. For n odd, the dual group for Spin(n)2r+1 is PGSp2r .

Proposition 6.1. Letting n be an odd number, one has
|℘Q,n(Oz

Q,n,sc)| ≥ 2 if n ≥ 2r + 3,

|℘Q,n(Oz
Q,n,sc)| = 0 if n ≤ 2r − 1,

|℘Q,n(Oz
Q,n,sc)| = 1 if n = 2r + 1.

Therefore, when n is odd, we have dim Whψ(2(Spin(n)2r+1, χ)) = 1 if and only if
n = 2r + 1.

Proof. First, assume that n ≥ 2r + 3. We write

iB(yρ)= (x∗1 , x∗2 , . . . , x∗i , . . . , x∗r ), with 2
∣∣( r∑

i=1

x∗i +
r(r+1)

2

)
.

For r ≥ 3, let y ∈ Y y′ be such that iB(yρ)= (1, 2, 3, . . . , r −2, r −1, r) and y′ be
such that iB(y′ρ)= (1, 2, . . . , r − 2, r, r + 1)). For r = 2, we take (x∗1 , x∗2 )= (1, 2)
or (2, 3), and let y and y′ be the associated element in Y respectively. In any case,
the two orbits Oy and Oy′ are YQ,n-free. Moreover, ℘Q,n(Oy) 6= ℘Q,n(Oy′). Thus,
for n ≥ 2r + 3, one has

|℘Q,n(Oz
Q,n,sc)| ≥ 2.

Second, assuming that n ≤ 2r − 1, we want to show that Oz
Q,n,sc =∅. If

iB(yρ) = (x∗1 , x∗2 , . . . , x∗i , . . . , x∗r ) is such that x∗i ≡ x∗j mod n for some i 6= j,
then clearly Oy /∈Oz

Q,n,sc. Suppose n - (x∗i − x∗j ) for all i 6= j, then since n≤ 2r−1,
it is not hard to see that there always exist i, j such that n|(x∗j + x∗i ). That is,
Oy /∈Oz

Q,n,sc for any Oy .
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Third, if n = 2r + 1, consider the orbit Oy with

iB(yρ)= (x∗1 , x∗2 , . . . , x∗r−1, x∗r )= (1, 2, 3, . . . , r − 2, r − 1, r).

(For r = 2, consider iB(yρ) = (1, 2).) One has ℘Q,n(Oz
Q,n,sc) = {℘Q,n(Oy)}, and

therefore |℘Q,n(Oz
Q,n,sc)| = 1 for n = 2r + 1. �

6B. The case where n is even. Write n = 2m. Here,

Y =
{
(y1, y2, . . . , yr ) ∈

⊕
i Zei : 2 |

∑r
i=1 yi

}
.

Moreover,

YQ,n=
{
(y1,y2,...,yr)∈

⊕
i Zei : 2

∣∣ r∑
i=1

yi , if yi=ki n+m for all i or yi=ki n for all i
}
,

Y sc
Q,n=

{
(y1,y2,...,yr )∈

⊕
i Zei : n|yi for all i

}
.

We see easily that for yi = ki n+m, one has (y1, y2, . . . , yr ) ∈ YQ,n if and only
if 2|(rm). In fact, for n even, the dual group for Spin(n)2r+1 is equal to SO2r+1 if m
and r are both odd; otherwise, the dual group is Spin2r+1, see [Weissman 2015].
We discuss case by case according to the parities of r and m.

6B1. The case where m and r are odd. In particular, one has r ≥ 3. In this case,
YQ,n = Y sc

Q,n , and ℘Q,n(Oz
Q,n)= ℘Q,n(Oz

Q,n,sc). Consider the following situations:

• If n > 2(r + 1) (i.e., m > r + 1 and therefore m ≥ r + 2), consider y such that
iB(yρ)= (x∗1 , x∗2 , . . . , x∗r ) is equal to

(1, 2, . . . , r − 2, r − 1, r) or (1, 2, . . . , r − 2, r, r + 1).

We can check the two orbits Oy for these two choices of y are YQ,n-free, and
moreover their images with respect to the map ℘Q,n are distinct in ℘Q,n(Oz

Q,n).
Thus, |℘Q,n(Oz

Q,n)| ≥ 2 in this case.

• If n< 2r (i.e., m < r and so m ≤ r−2), one can check that ℘Q,n(Oz
Q,n,sc)=∅.

• If n=2r (note n 6=2(r+1)), i.e., m= r , one can also check ℘Q,n(Oz
Q,n,sc)=∅.

Therefore, dim Whψ(2(Spin(n)2r+1, χ)) 6= 1 for both r and m odd.

6B2. The case where m is odd and r ≥ 2 is even. Here, YQ,n 6= Y sc
Q,n . One has the

following situations:

• Assume n > 2(r + 1) (i.e., m > r + 1 and thus m ≥ r + 3).

Case I: If r ≥ 3, consider y and y′ such that

iB(yρ)= (1, 2, . . . , r − 2, r − 1, r) and iB(y′ρ)= (1, 2, . . . , r − 2, r, r + 1).

We can check the orbits Oy,Oy′ are YQ,n-free and ℘Q,n(Oy) 6= ℘Q,n(Oy′).
Thus, |℘Q,n(Oz

Q,n)| ≥ 2.
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Case II: If r = 2 and m ≥ r + 5, consider Oy and Oy′ with iB(yρ) = (1, 2)
and iB(y′ρ) = (2, 3). Then as in the preceding case, they are YQ,n-free and
℘Q,n(Oy) 6= ℘Q,n(Oy′). Thus, |℘Q,n(Oz

Q,n)| ≥ 2.

Case III: If r = 2 and m = 5, consider Oy with iB(yρ) = (1, 2). It is easy
to check ℘Q,n(Oz

Q,n)= {℘Q,n(Oy)}. On the other hand, let z, z′ be such that
iB(zρ)= (1, 4) and iB(z′ρ)= (2, 3). Then

℘Q,n(Oz
Q,n,sc)= {℘Q,n(Oy), ℘Q,n(Oz), ℘Q,n(Oz′)},

which is a set of size 3. Note, Oz,Oz′ ∈Oz
Q,n,sc\O

z
Q,n . That is, |℘Q,n(Oz

Q,n)|=1
and |℘Q,n(Oz

Q,n,sc)| = 3 in this case.
Let w,w′ ∈W be such that

iB(w[z] − z)= iB(w
′
[z′] − z′)=−(5, 5) ∈ YQ,n.

Write yQ,n = iB(w[z] − z) ∈ YQ,n . Then, dim Whψ(2(Spin(10)
5 , χ)) is equal

to 1, as in Section 5B5, if and only if

(22) χ(syQ,n ) 6= ε
D(yQ,n,z) · T (w, z) and χ(syQ,n ) 6= ε

D(yQ,n,z′) · T (w′, z′).

However, as in Proposition 5.2, that εD(yQ,n,z) · T (w, z)= εD(yQ,n,z′) · T (w′, z′)
can be easily checked, and the condition (22) is equivalent to

(23) χ(s−5α∨r )=−q1/2
· γψ($).

This agrees with the result from Proposition 5.2 for the C (10)
2 case.

• If n<2r (i.e., m≤r and therefore m≤r−1), one can check℘Q,n(Oz
Q,n,sc)=∅.

• If n = 2(r + 1) (note n 6= 2r ), i.e., r = m− 1, one can check ℘sc
Q,n(O

z
Q,n,sc)=

{℘sc
Q,n(O0)} (and thus ℘Q,n(Oz

Q,n,sc)= {℘Q,n(O0)}) is a singleton with

iB(0ρ)= (−r,−(r − 1), . . . ,−2,−1).

That is, O0 is Y sc
Q,n-free. However, it is not YQ,n-free, since there exists

w ∈W such that iB(w(0ρ))= (1, 2, . . . , r − 1, r). It follows that

iB(w(0ρ)− 0ρ)= (m,m, . . . ,m,m) ∈ YQ,n.

Write yQ,n = w(0ρ)−0ρ = w[0]−0. It follows from an analogous argument for
Proposition 4.1 that dim Whψ(2(Spin(2r+2)

2r+1 , χ))= 1 if and only if χ is the unique
exceptional character satisfying

(24) χ(syQ,n )= T (w, 0).

One can explicate the equality by computing the right-hand side as in Lemma 4.2.
We omit the details here.
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6B3. The case where m is even and r ≥ 3 is odd. Here, YQ,n 6= Y sc
Q,n . We have:

• If n > 2(r + 1) (i.e., m > r + 1 and therefore m ≥ r + 3), consider y and y′

such that

iB(yρ)= (1, 2, . . . , r − 2, r − 1, r) and iB(y′ρ)= (1, 2, . . . , r − 2, r, r + 1).

We can check the orbits Oy,Oy′ are YQ,n-free and ℘Q,n(Oy) 6= ℘Q,n(Oy′).
Thus, |℘Q,n(Oz

Q,n)| ≥ 2.

• If n<2r (i.e., m<r and therefore m≤r−1), one can check℘Q,n(Oz
Q,n,sc)=∅.

• If n= 2(r+1) (note n 6= 2r ), i.e., r =m−1, then ℘Q,n(Oz
Q,n,sc)={℘Q,n(Oy)}

is a singleton with

iB(0ρ)= (−r,−(r − 1), . . . ,−2,−1).

The situation is exactly as in the third case of Section 6B2, i.e., O0 is Y sc
Q,n-free

but not YQ,n-free. Consider w ∈W such that iB(w(0ρ))= (1, 2, . . . , r − 1, r)
and

iB(w(0ρ)− 0ρ)= (m,m, . . . ,m,m) ∈ YQ,n.

Write yQ,n = w(0ρ)− 0ρ = w[0] − 0. Then dim Whψ(2(Spin(2r+2)
2r+1 , χ))= 1 if

and only if χ is the unique exceptional character satisfying

(25) χ(syQ,n )= T (w, 0).

6B4. The case where m is even and r ≥ 2 is even. Here, YQ,n 6= Y sc
Q,n . One has the

following situations:

• If n > 2(r + 1) (i.e., m > r + 1 and therefore m ≥ r + 2), there are two cases
to consider.

Case I: r ≥ 4. Consider y and y′ such that

iB(yρ)= (1, 2, . . . , r − 2, r − 1, r) and iB(y′ρ)= (1, 2, . . . , r − 2, r, r + 1).

We can check easily that the orbits Oy and Oy′ for these two choices are
YQ,n-free. Note that |℘Q,n(Oz

Q,n)| ≥ 2, since ℘Q,n(Oy) 6= ℘Q,n(Oy′).

Case II: r = 2. Consider y and y′ such that iB(yρ)= (1, 2) and iB(y′ρ)= (2, 3).
For m ≥ 4, Oy and Oy′ are both YQ,n-free. Moreover, we can check that
℘Q,n(Oz

Q,n,sc) ⊆ {℘Q,n(Oy), ℘Q,n(Oy′)}. Now if m ≥ 6, then ℘Q,n(Oy) 6=

℘Q,n(Oy′). On the other hand, for m = 4, one has ℘Q,n(Oy)= ℘Q,n(Oy′) and
so dim Whψ(2(Spin(8)5 , χ))= 1 for any exceptional character χ in this case.

To summarize for the case m ≥ r + 2:{
dim Whψ(2(Spin(n)2r+1, χ))= 1 if m = 4, r = 2,

dim Whψ(2(Spin(n)2r+1, χ))≥ 2 if r ≥ 4 and m ≥ r + 2, or r = 2 and m ≥ 6.
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• If n < 2r (i.e., m < r and therefore m ≤ r − 2), one can check easily that
℘Q,n(Oz

Q,n,sc)=∅.

• If n = 2r (note n 6= 2(r + 1)), i.e., r = m, one also has ℘Q,n(Oz
Q,n,sc)=∅.

From the above discussion, we observe that for r = 2, the result agrees with that
for covering groups of type C2, as expected. Therefore, we just summarize our
result for covering Spin(n)2r+1 with r ≥ 3 as follows.

Theorem 6.2. Consider Brylinski–Deligne covering Spin(n)2r+1 with r ≥ 3. Let χ be
an exceptional character, then dim Whψ(2(Spin(n)2r+1, χ))= 1 if and only if one of
the following holds:

• n = 2(r + 1) and χ is the unique exceptional character satisfying (24) or (25),

• n = 2r + 1 and χ is the only exceptional character of Spin(2r+1)
2r+1 .

7. The G2 case

Consider G2 with Dynkin diagram for its simple coroots:

e e<
α∨1 α∨2

Let Y = 〈α∨1 , α
∨

2 〉 be the cocharacter lattice of G2, where α∨1 is the short coroot.
Let Q be the Weyl-invariant quadratic on Y such that Q(α∨1 )= 1 (thus Q(α∨2 )= 3).
Then the bilinear form BQ is given by

BQ(α
∨

i , α
∨

j )=


2 if i = j = 1,
−3 if i = 1, j = 2,

6 if i = j = 2.

A simple computation gives

YQ,n = Y sc
Q,n = Z(nα1α

∨

1 )⊕Z(nα2α
∨

2 ),

where nα2 = n/ gcd(n, 3) and nα1 = n.
The map iG :

⊕2
i=1 Zα∨i →

⊕3
i=1 Zei is given by

iG : (x1, x2) 7→ (x1− 2x2, x2− x1, x2).

Any (yi )i ∈
⊕3

i=1 Zei lies in the image of iG if and only if y1+ y2+ y3 = 0.
The Weyl group W = 〈wα1,wα2〉 generated by wα1 and wα2 is the dihedral

group of order 12. In particular, wα1(y1, y2, y3)= (y2, y1, y3) ∈
⊕3

i=1 Zei , and
wα2(y1, y2, y3)= (−y1,−y3,−y2).

By using iG , we could identify

YQ,n = Y sc
Q,n =

{
(y1, y2, y3) ∈

⊕3
i=1 Zei : y1+ y2+ y3 = 0, y1 ≡ y2 ≡ y3 mod n

}
.
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We have ρ = 5α∨1 + 3α∨2 with iG(ρ)= (−1,−2, 3) ∈
⊕3

i=1 Zei . It follows that for
any y = (x1, x2) ∈

⊕2
i=1 Zα∨i ,

iG(yρ)= (x1− 2x2− 1, x2− x1− 2, x2+ 3) ∈
⊕3

i=1 Zei .

We may write iG(yρ)= (x∗1 , x∗2 , x∗3 ). In particular, (x∗1 , x∗2 , x∗3 ) ∈
⊕3

i=1 Zei lies in
the image of iG if and only if x∗1 + x∗2 + x∗3 = 0.

Since YQ,n = Y sc
Q,n , it follows that dim Whψ(2(G

(n)
2 , χ))= |℘Q,n(Oz

Q,n)|, where
χ is the only exceptional character of G(n)

2 as Z(G∨2 )= 1.
To determine the n such that dim Whψ(2(G

(n)
2 , χ))= 1, we only give an outline

of the argument, the details of which consists of basic combinatorial computations:

• For n = 7, 8 or n ≥ 10, the orbit Oy with iG(yρ)= (−2,−1, 3) is YQ,n-free.

• For n=8, 10, 11 or n≥13, the orbit Oy′ with iG(y′ρ)=(−3,−1, 4) is YQ,n-free.
Moreover, for n = 8, 10, 11 or n ≥ 13, one has ℘Q,n(Oy) 6= ℘Q,n(Oy′) for
iG(yρ)= (−2,−1, 3) and iG(y′ρ)= (−3,−1, 4).

• If Oz
Q,n,sc 6=∅, then necessarily |Y/Y sc

Q,n| ≥ |W |, i.e., n ·nα2 ≥ 12. Thus n ≥ 4.

• One can also check by hand that Oz
Q,n,sc =∅ for n = 4, 5, 6, 9.

• For n = 7 or 12, ℘Q,n(Oz
Q,n)= {℘Q,n(Oy)} with iG(yρ)= (−2,−1, 3), i.e.,

dim Whψ(2(G
(n)
2 , χ))= 1 for n = 7 or 12.

To summarize:

Theorem 7.1. Consider the Brylinski–Deligne covering G(n)
2 . Let χ be the only

exceptional character on G(n)
2 , then dim Whψ(2(G

(n)
2 , χ))= 1 if and only if n = 7

or 12.
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