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UP TO WEAK MORITA EQUIVALENCE
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A pointed fusion category is a rigid tensor category with finitely many
isomorphism classes of simple objects which moreover are invertible. Two
tensor categories C and D are weakly Morita equivalent if there exists an
indecomposable right module category M over C such that FunC(M,M)

and D are tensor equivalent. We use the Lyndon–Hochschild–Serre spec-
tral sequence associated to abelian group extensions to give necessary and
sufficient conditions in terms of cohomology classes for two pointed fusion
categories to be weakly Morita equivalent. This result allows one to clas-
sify the equivalence classes of pointed fusion categories of any given global
dimension.

Introduction

Pointed fusion categories are rigid tensor categories with finitely many isomorphism
classes of simple objects with the property that all simple objects are invertible.
Any pointed fusion category C is equivalent to the fusion category Vect(G, ω) of
complex vector spaces graded by the finite group G together with the associativity
constraint defined by the 3-cocycle ω ∈ Z3(G,C∗). Whenever we have a right
module category M over C we can define the dual category C∗M := FunC(M,M)

which becomes a tensor category via composition of functors. Whenever C is a fusion
category and M is an indecomposable fusion category, the dual category C∗M is also
a fusion category [Ostrik 2003a, §2.2]. An indecomposable module category M
of Vect(G, ω) may be defined by M=M(K , µ), where K is the space of cosets
K := A \G for A a subgroup of G and µ ∈ C2(G,Map(K ,C∗)) is a cochain that
satisfies the equation δGµ

−1
=ω. Two tensor categories C and D are weakly Morita

equivalent if there exists an indecomposable right module category M over C such
that C∗M and D are tensor equivalent [Müger 2003, Definition 4.2].
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Now, if we have two pointed fusion categories Vect(G, ω) and Vect(Ĝ, ω̂), what
are the necessary and sufficient conditions for them to be weakly Morita equivalent?
This question was raised in [Davydov 2000; Movshev 1993], it was answered by
Davydov [2000, Corollary 6.2] for the case in which both ω and ω̂ were trivial, and
the general case was answered by Naidu [2007, Theorem 5.8] in terms of the prop-
erties that A, ω and µ need to satisfy. Nevertheless these conditions were given in
equations that a priori had no interpretation in terms of known cohomology classes.

We continue the work started by Naidu [2007] and frame all the calculations
done there in the language of the double complex associated to an abelian group
extension which induces the Lyndon–Hochschild–Serre (LHS) spectral sequence.
By doing so we are able to obtain in Corollary 3.2 cohomological conditions on ω
in order for the tensor category Vect(G, ω)∗M(A\G,µ) to be pointed, namely that ω
must be cohomologous to a cocycle appearing in C2,1

⊕C3,0 of the double complex
which induces the Lyndon–Hochschild–Serre spectral sequence associated to the
extension 1→ A→ G→ K → 1.

With the previous result at hand, we construct explicit representatives of ω and µ
in terms of coordinates and we determine explicitly the groups Ĝ and the cocycles ω̂.
The main result of this paper is Theorem 3.9, in which we give the necessary and
sufficient conditions for the categories Vect(H, η) and Vect(Ĥ , η̂) to be weakly
Morita equivalent. We may summarize the conditions as follows: Vect(H, η) and
Vect(Ĥ , η̂) are weakly Morita equivalent if and only if there exist isomorphisms of
groups φ : AoF K −→∼= H and φ̂ :KnF̂ A−→

∼= Ĥ for some finite group K acting on the
abelian group A, with F ∈ Z2(K , A) and F̂ ∈ Z2(K ,A) where A := Hom(A,C∗),
such that both [F̂] and [F] survive respectively the LHS spectral sequence for the
groups AoF K and K nF̂ A, and such that φ∗η is cohomologous to

ω((a1, k1), (a2, k2), (a3, k3)) := F̂(k1, k2)(a3)ε(k1, k2, k3)

and φ̂∗η̂ is cohomologous to

ω̂((k1, ρ1), (k2, ρ2), (k3, ρ3)) := ε(k1, k2, k3)ρ1(F(k2, k3)),

where ε : K 3
→ C∗ satisfies δK ε = F̂ ∧ F.

Theorem 3.9 may be used to determine the weak Morita equivalence classes
of pointed fusion categories of a given global dimension but the cohomological
calculations can become very elaborate and are beyond the scope of this article. Nev-
ertheless in Section 4 we include a calculation in which we show how Theorem 3.9
can be used to prove that there are only seven weak Morita equivalence classes of
pointed fusion categories of global dimension four and calculate the pointed fusion
categories which are weakly Morita equivalent to Vect(Q8, η) for the quaternion
group Q8.
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1. Preliminaries

1A. Abelian group extensions. Consider the short exact sequence of finite groups

(1-1) 1→ A→ G→ K → 1

with A abelian. Consider u : K → G any section of the projection map p : G→ K ,
p(g)= (Ag) such that u(1K )= 1G and denote the right G-action on K by

kGg := p((u(k)g)

for k ∈ K and g ∈G. The elements u(k)g and u(kGg) differ by an element κk,g ∈ A
satisfying the equation

(1-2) u(k)g = κk,gu(kGg),

which furthermore satisfies the relation

κk,g1g2 = κk,g1κkGg1,g2

for k ∈ K and g1, g2 ∈ G. Since A is an abelian normal subgroup G, there is an
induced K -left action on A by conjugation:

ka := u(k)au(k)−1 for k ∈ K and a ∈ A.

Since the isomorphism class of the extension (1-1) can be classified by the
cohomology class of the cocycle F ∈ Z2(K , A), i.e., a map F : K×K→ A such that

δK F(k1, k2, k3)=
k1 F(k2, k3)F(k1k2, k3)

−1 F(k1, k2k3)F(k1, k2)
−1
= 1,

without loss of generality we will further assume that

G := AoF K ,

where the product structure of G is given by the formula

(a1, k1)(a2, k2) := (a1(
k1a2)F(k1, k2), k1k2).

With this explicit choice of the group G, we choose the function u : K → G to
be u(k) := (1A, k) and therefore we have that

κk1,(a,k2) =
k1aF(k1, k2),

thus obtaining F(k1, k2) = κk1,(1,k2). We furthermore have that for x ∈ K and
g = (a, k) ∈ G,

xGg = xG(a, k)= xk.

Denote the dual group A := Hom(A,C∗) and note that there is an induced
K -right action on A defined as ρk(a) := ρ(ka) for ρ ∈ A and k ∈ K.
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1B. Cohomology of groups and the LHS spectral sequence. In what follows we
will construct an explicit double complex whose cohomology calculates the co-
homology of the group G, and whose associated spectral sequence recovers the
Lyndon–Hochschild–Serre (LHS) spectral sequence of the extension (1-1).

Endow the set Map(K ,C∗) with the left G-action (gF f )(k) := f (kGg), where
g ∈ G, k ∈ K and f : K → C∗, and consider the complex C∗(G,Map(K ,C∗))

with elements normalized chains

Cq(G,Map(K,C∗)) :={ f :K×Gq
→C∗ | f(k;g1,...,gq)=1 whenever some gi=1}

and boundary map

(1-3) (δG f )(k;g1,...,gq)

= f(kGg1;g2,...,gq)

q−1∏
i=1

f(k;g1,...,gi gi+1,...,gq)
(−1)if(k;g1,...,gq−1)

(−1)q.

Since the natural morphism of groupoids, defined by the inclusion of the group A
into the action groupoid defined by the right action of G on K, is an equivalence of
categories, we have that the restriction map

ψ :C∗(G,Map(K ,C∗))→C∗(A,C∗), ψ( f )(a1, . . . , aq) := f (1K ; a1, . . . , aq),

is a morphism of complexes which induces an isomorphism in cohomology

ψ̃ : H∗(G,Map(K ,C∗))−→
∼= H∗(A,C∗).

The inverse map can be constructed at the level of cocycles as follows:

Lemma 1.1. The map ϕ : Cq(A,C∗)→ Cq(G,Map(K ,C∗)),

ϕ(α)(k; g1, . . . , gq) := α(κk,g1, κkGg1,g2, . . . , κkGg1g2...gq−1,gq ),

defines a map of complexes which induces an isomorphism in cohomology ϕ̃ :
H∗(A,C∗)−→

∼= H∗(G,Map(K ,C∗)) which is the inverse of the map ψ̃ .

Proof. On the one hand we have

δGϕ(α)(k;g1,...,gp)

= ϕ(α)(kGg1;g2,...,gq)

q−1∏
i=1

ϕ(α)(k;g1,...,gi gi+1,...,gq)
(−1)iϕ(α)(k;g1,...,gq−1)

(−1)q

= α(κkGg1,g2,κkGg1g2,g3,...,κkGg1...gq−1,gq )

q−1∏
i=1

α(κk,g1,κkGg1,g2,...,κkGg1...gi−1,gi gi+1,...,κkGg1...gq−1,gq )
(−1)i

α((κk,g1,κkGg1,g2,...,κkGg1...gq−2,gq−1)
(−1)q
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and on the other

ϕ(δGα)(k;g1,...,gp)

= δGα(κk,g1,κkGg1,g2,...,κkGg1g2,...,gq−1,gq )

= α(κkGg1,g2,κkGg1g2,g3,...,κkGg1...gq−1,gq )

q−1∏
i=1

α(κk,g1,κkGg1,g2,...,κkGg1...gi−1,giκkGg1...gi−1gi ,gi+1,...,κkGg1...gq−1,gq )
(−1)i

α((κk,g1,κkGg1,g2,...,κkGg1...gq−2,gq−1)
(−1)q.

The equality δGϕ(α)= ϕ(δGα) follows from the identity

κkGg1...gi−1,gi gi+1 = κkGg1...gi−1,giκkGg1...gi−1gi ,gi+1 .

Finally, the composition ψ(ϕ(α))= α follows from κ1,a = a for a ∈ A. �

The complex C∗(A,C∗) can be endowed with the structure of a right K -module
by setting for α ∈ Cq(A,C∗) and k ∈ K

αk(a1, . . . , aq) := α(u(k)a1u(k)−1, . . . , u(k)aqu(k)−1),

and the complex C∗(G,Map(K ,C∗)) can also be endowed with the structure of a
right K -module by setting for f ∈ Cq(G,Map(K ,C∗)) and k ∈ K

( f G k)(x; g1, . . . , gq) := f (kx; g1, . . . , gq).

The map ϕ fails to be a K -module map; nevertheless it induces a K -module map
at the level of cohomology:

Lemma 1.2. The isomorphism ϕ̃ : H∗(A,C∗) −→
∼= H∗(G,Map(K ,C∗)) is an iso-

morphism of K -modules.

Proof. Take α ∈ Zq(A,C∗) and k ∈ K. We claim that ψ(ϕ(α)G k)= αk, and since
ψ(ϕ(αk))= αk, we conclude that ϕ(α)G k and ϕ(αk) are cohomologous. Now, let
us calculate

ψ(ϕ(α)G k)(a1, . . . , aq)= (ϕ(α)Gk)(1; a1, . . . , aq)

= ϕ(α)(k; a1, . . . , aq)

= α(κk,a1, κkGa1,a2, . . . , κkGa1a2,...,aq−1,aq )

= α(κk,a1, κk,a2, . . . , κk,aq )

= α(u(k)a1u(k)−1, u(k)a2u(k)−1, . . . , u(k)aqu(k)−1)

= αk(a1, a2, . . . , aq);

the lemma follows. �
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1B1. Double complex. Since C∗(G,Map(K ,C∗)) is a complex of right K -modules,
we can consider the complexes

C∗(K ,Cq(G,Map(K ,C∗))),

with C p(K ,Cq(G,Map(K ,C∗)) consisting of normalized cochains

{ f : K p
→ Cq(G,Map(K ,C∗)) | f (k1, . . . , kp)= 1 whenever some ki = 1}

and whose differentials are

(δK f )(k1, . . . , kp)

= f (k2, . . . , kp)

p−1∏
i=1

f (k1, . . . , ki ki+1, . . . , kp)
(−1)i( f (k1, . . . , kp−1)G kp)

(−1)p
.

These complexes assemble into a double complex

C p,q
:= C p(K ,Cq(G,Map(K ,C∗))).

Let us denote by Tot(C∗,∗) the total complex associated to the double complex and
let δTot := δK ⊕ (δG)

(−1)p
be its differential.

We may filter the total complex by the degree of the G cochains, thus obtaining
a spectral sequence whose first page becomes

E p,q
1 = H p(K ,Cq(G,Map(K ,C∗))).

Since the K -modules Cq(G,Map(K ,C∗)) are free K -modules, we conclude that
the first page localizes on the y-axis,

E0,q
1 = H 0(K ,Cq(G,Map(K ,C∗)))= Cq(G,Map(K ,C∗))K ∼= Cq(G,C∗)

and E p,q
1 = 0 for p > 0. The spectral sequence collapses at the second page, with

the only surviving elements on the y-axis

E0,q
2 = Hq(G,C∗).

Hence we have:

Proposition 1.3. The inclusion of K -invariant cochains

C∗(G,Map(K ,C∗))K ↪→ Tot(C∗(K ,C∗(G,Map(K ,C∗))))

is a quasi-isomorphism. Therefore the cohomology groups

H∗(G,C∗)−→
∼= H∗(Tot(C∗(K ,C∗(G,Map(K ,C∗))))

are canonically isomorphic.
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Filtering the double complex by the degree of the K cochains we obtain the
Lyndon–Hochschild–Serre spectral sequence associated to the group extension
1→ A→ G→ K → 1; see [Evens 1991, §7.2]. The first page becomes

E p,q
1 = C p(K , Hq(G,Map(K ,C∗))),

and the second page becomes

E p,q
2 = H p(K , Hq(G,Map(K ,C∗))).

Since the projection map ψ̃ : Hq(G,Map(K ,C∗)) −→
∼= Hq(A,C∗) is an isomor-

phism of K -modules, we conclude:

Proposition 1.4 (LHS spectral sequence). Filtering the total complex by the degree
of the K -chains, we obtain a spectral sequence whose second page is

E p,q
2
∼= H p(K , Hq(A,C∗))

and that converges to H∗(G,C∗).

We will denote by di : E p,q
i → E p+i,q−i+1

i the differentials of this spectral
sequence.

1C. Tensor categories. Following [Bakalov and Kirillov 2001, §1], a tensor cat-
egory consists of (C,⊗, 1C, α, λ, ρ), where C is a category, ⊗ : C × C → C
is a bifunctor, α is the associativity constraint, i.e., a functorial isomorphism
αU V W : (U⊗V )⊗W −→∼ U⊗(V⊗W ) of functors C×C×C→C, 1C ∈Obj(C) is a unit
element and λ, ρ are functorial isomorphisms λV : 1C⊗V −→∼ V, ρV : V ⊗1C −→∼ V
satisfying the pentagon axiom

((V1⊗ V2)⊗ V3)⊗ V4
α1,2,3⊗id4

tt

α12,3,4

**
(V1⊗ (V2⊗ V3))⊗ V4

α1,23,4

��

(V1⊗ V2)⊗ (V3⊗ V4)

α1,2,34

��
V1⊗ ((V2⊗ V3)⊗ V4) id1⊗α2,3,4

// (V1⊗ (V2⊗ (V3⊗ V4)))

and the triangle axiom

(V1⊗ 1C)⊗ V2

ρ⊗id ''

α // V1⊗ (1C ⊗ V2)

id⊗λww
V1⊗ V2
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1D. The fusion category Vect(G, ω). A fusion category over C is a rigid semisim-
ple C-linear tensor category, with only finitely many isomorphism classes of simple
objects, such that the endomorphisms of the unit object is C; see [Etingof et al.
2005].

For G a finite group and a 3-cocycle ω ∈ Z3(G,C∗), define the category
Vect(G, ω) whose objects are G-graded complex vector spaces V =

⊕
g∈G Vg,

whose tensor product is (V⊗W )g :=
⊕

hk=gVh⊗Wk,whose associativity constraint is

αVg,Vh ,Vk = ω(g, h, k)γ with γ ((x ⊗ y)⊗ z)= x ⊗ (y⊗ z),

and whose left and right unit isomorphisms are

λVg = ω(1, 1, g)−1 idVg and ρVg = ω(g, 1, 1) idVg .

The category Vect(G, ω) is a fusion category where the simple objects are the
1-dimensional vector spaces.

We will assume that all group cochains are normalized, and hence the left and
right unit isomorphisms become identities.

For convenience we will work with a category V(G, ω) which is skeletal, i.e., one
on which isomorphic objects are equal, and which is equivalent to Vect(G, ω). The
category V(G, ω) has for simple objects the elements g of the group G, the tensor
product is g⊗ h = gh and the associativity isomorphisms are ω(g, h, k) idghk .

A finite tensor category is called pointed if all its simple objects are invertible. It
is thus easy to see that any finite tensor category which is pointed is equivalent to
Vect(G, ω) for some finite group G and some 3-cocycle ω.

1E. Module categories. Following [Ostrik 2003b, §2.3], a right module category
over the tensor category (C,⊗, 1C, α, λ, ρ) consists of (M,⊗, µ, τ ), where M is
a category, ⊗ :M× C→M is an exact bifunctor,

µM,X,Y : M ⊗ (X ⊗ Y )−→∼ (M ⊗ X)⊗ Y

is a functorial associativity and τM : M ⊗ 1C −→∼ M is a unit isomorphism for any
X, Y ∈ C, M ∈M, satisfying the pentagon axiom

(1-4) M ⊗ ((X ⊗ Y )⊗ Z)
idM⊗αX,Y,Z

uu

µM,X⊗Y,Z

))
M ⊗ (X ⊗ (Y ⊗ Z))

µM,X,Y⊗Z

��

(M ⊗ (X ⊗ Y ))⊗ Z

µM,X,Y⊗idZ

��
(M ⊗ X)⊗ (Y ⊗ Z)

µM⊗X,Y,Z
// ((M ⊗ X)⊗ Y )⊗ Z
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and the triangle axiom

(1-5) M ⊗ (1C ⊗ Y )

idM⊗λY ''

µM,1C ,Y // (M ⊗ 1C)⊗ Y

τM⊗idYww
M ⊗ Y

A module functor (F, γ ) : (M1, µ
1, τ 1)→ (M2, µ

2, τ 2) between two module
categories consists of a functor F : M1 → M2 and a functorial isomorphism
γM,X : F(M ⊗ X)→ F(M)⊗ X for any X ∈ C, M ∈M, satisfying the pentagon
axiom

F(M ⊗ (X ⊗ Y ))
F(µ1

M,X,Y )

uu

γM,X⊗Y

))
F((M ⊗ X)⊗ Y )

γM⊗X,Y

��

F(M)⊗ (X ⊗ Y )

µ2
F(M),X,Y
��

F(M ⊗ X)⊗ Y
γM,X⊗idY

// (F(M)⊗ X)⊗ Y

and the triangle axiom

F(M ⊗ 1C)

γM,1C ''

F(τ 1
M ) // F(M)

F(M)⊗ 1C

τ 1
F(M)

88

Two module categories M1 and M2 over C are equivalent if there exists a module
functor between the two which is moreover an equivalence of categories. The
direct sum M1⊕M2 is the module category with the obvious structure. A module
category is indecomposable if it is not equivalent to the direct sum of two nontrivial
module categories.

A natural module transformation η : (F1, γ 1)→ (F2, γ 2) consists of a natural
transformation η : F1

→ F2 such that the square

F1(M ⊗ X)
ηM⊗X //

γ 1
M,X
��

F2(M ⊗ X)

γ 2
M,X
��

F1(M)⊗ X
ηM⊗idX

// F2(M)⊗ X

commutes for all M ∈M and X ∈ C.
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1F. Indecomposable module categories over V(G, ω). Let M be a skeletal right
module category over V(G, ω). The set of simple objects of M is a transitive right
G-set and therefore it can be identified with the coset K := A \G for A a subgroup
of G. The isomorphisms µk,g1,g2 for k ∈ K and g1, g2 ∈ G are scalars, and we can
assemble these scalars as an element

µ ∈ C2(G,Map(K ,C∗)), µ(k; g1, g2) := µk,g1,g2 .

The pentagon axiom (1-4) translates into the equation

ω(g1, g2, g3)µ(k; g1, g2g3)µ(kGg1; g2, g3)= µ(k; g1g2, g3)µ(k; g1, g2),

which in view of the definition of the differential δG in (1-3) becomes

(1-6) δGµ
−1
= π∗ω,

where π∗ω ∈ C3(G,Map(K ,C∗))K is the K -invariant cocycle defined by ω, i.e.,

π∗ω(k; g1, g2, g3) := ω(g1, g2, g3).

Since µ is normalized and the unit constraint in V(G, ω) is trivial, we have that
the triangle axiom (1-5) implies that the unit constraint in M is trivial.

Denote this skeletal module category M=M(A\G, µ). Note that two V(G, ω)-
module categories M1 =M(A1 \G, µ1) and M2 =M(A2 \G, µ2) are equivalent
if and only if there exist a right G-equivariant isomorphism F : A1 \G −→∼= A2 \G
and an element γ ∈ C1(G,Map(A1 \G,C∗)) such that

γ (A1g; g1g2)µ2(F(A1g); g1, g2)= µ1(A1g; g1, g2)γ (A1gg1; g2)γ (A1g; g1).

This information implies that A1 and A2 are conjugate subgroups of G and that

δGγ =
F∗µ2

µ1
.

In the case that A = A1 = A2, the G-equivariant isomorphisms are parametrized
by the elements of the group A \ NG(A), and the equation δGγ = F∗µ2/µ1 im-
plies that F∗µ2/µ1 is trivial in H 2(G,Map(A \ G,C∗)). Since we know that
ψ̃ :H 2(G,Map(A\G,C∗))−→

∼= H 2(A,C∗) is an isomorphism, we can conclude that
the isomorphism classes of module categories over V(G, ω) may be parametrized
(in a noncanonical manner) by pairs ([A], [ψ(µ)]), where [A] is a conjugacy class
of subgroups of G, and [ψ(µ)] is a representative of a cohomology class in the
group of invariants H 2(A,C∗)/NG(A).

1G. Dual category. Let C be a tensor category and M an indecomposable right
module category. The dual category C∗M := FunC(M,M) is the category whose
objects are module functors from M to itself and whose morphisms are natural
module transformations.
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The category C∗M becomes a tensor category by composition of functors; namely
for (γ 1, F1), (γ

2, F2) ∈Obj(C∗M), where γ 1, γ 2 represent the module structures on
the functors F1 and F2 respectively, we define the tensor structure by

(γ 1, F1)⊗ (γ
2, F2) := (γ, F1 ◦ F2),

where the module structure γ is defined by γM,X := γ
1
F2(M),X ◦F1(γ

2
M,X ) for M ∈M

and X ∈C. For two morphisms η :(γ 1, F1)→(γ 2, F2) and η′ :(γ ′ 1, F ′1)→(γ ′ 2, F ′2)
in C∗M their tensor product is (η⊗ η′)(M) := ηF ′2(M) ◦ F1(η

′

M).
Whenever C and M are semisimple, the dual category C∗M is semisimple [Ostrik

2003a, §2.2]. Moreover, since M is itself a left module category over C∗M it has been
shown in [Ostrik 2003b, Corollary 4.1] that the double dual is tensor equivalent to
the original category, i.e., (C∗M)

∗
M' C. Furthermore, the module categories of C and

of C∗M are in canonical bijection (Proposition 2.1 of the same work) by the following
maps. For M1 a module category over C, the category FunC(M1,M) of module
functors from M1 to M is a left module category of C∗M = FunC(M,M) via the
composition of functors. Conversely, if M2 is a left module category over C∗M, then
FunC∗M(M,M2) is a right module category over FunC∗M(M,M) = (C∗M)

∗
M ' C

via composition of functors. These maps are inverse from each other.

1H. Center of a tensor category. The center Z(C) of the tensor category C is the
category whose objects are pairs (X, η), where X is an object in C and η is a
functorial set of isomorphisms ηY : X⊗Y → Y ⊗ X such that the hexagon diagram

(X ⊗ Y )⊗ Z α //

ηY⊗1
��

X ⊗ (Y ⊗ Z)
ηY⊗Z // (Y ⊗ Z)⊗ X

α

��
(Y ⊗ X)⊗ Z α // Y ⊗ (X ⊗ Z)

1⊗ηZ // Y ⊗ (Z ⊗ X)

and the triangle diagram

X ⊗ 1C
η1C //

ρ
##

1C ⊗ X

λ{{
X

are commutative. A morphism f : (X, η)→ (Y, ν) consists of a morphism f : X→Y
for which the diagram

X ⊗ Z
ηZ //

f⊗1
��

Z ⊗ X

1⊗ f
��

Y ⊗ Z
νZ
// Z ⊗ Y
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commutes for any object Z in C. The tensor structure is defined as (X, η)⊗(Y, ν) :=
(X ⊗ Y, γ ), where γZ is defined as the composition

(X ⊗ Y )⊗ Z α // X ⊗ (Y ⊗ Z)
1⊗νZ // X ⊗ (Z ⊗ Y )
α−1

vv
(X ⊗ Z)⊗ Y

ηZ⊗1 // (Z ⊗ X)⊗ Y α // Z ⊗ (X ⊗ Y )

The center Z(C) is moreover braided and the braiding for the pair (X, η), (Y, ν)
is precisely the map ηY .

The center Z(Vect(G, ω)) of the tensor category Vect(G, ω) contains the in-
formation necessary for constructing the quasi-Hopf algebra that is known as the
twisted Drinfeld double Dω(G) of the group G twisted by ω (see [Dijkgraaf et al.
1991, §3.2]).

1I. Weak Morita equivalence of tensor categories. Two tensor categories C and D
are weakly Morita equivalent if there exists an indecomposable right module cate-
gory M over C such that C∗M and D are tensor equivalent [Müger 2003, Definition
4.2]. In Proposition 4.6 of the same work it is shown that weak Morita equivalence is
an equivalence relation, and in [Etingof et al. 2011, Theorem 3.1] it is shown that two
tensor categories are weak Morita equivalent if and only if their centers are braided
equivalent. In particular we have that for M an indecomposable module category
over C there is a canonical equivalence of braided tensor categories Z(C)' Z(C∗M)
[Ostrik 2003a, Proposition 2.2].

2. The dual of V(G, ω) with respect to M(A \ G, µ)

Let us consider the tensor category C = V(G, ω) and the right module category
M=M(A\G, µ) described in Section 1F. In this chapter we will review the main
results of [Naidu 2007], where explicit conditions are stated under which the dual
category C∗M is pointed. For the sake of completeness and clarity we will review the
constructions done in §3 and §4 of that work and we will reinterpret the equations
given there in the terminology that we have set up in Section 1A and Section 1B.

2A. Conditions for C∗M to be pointed. Let us set up some notation for this section:
let K := A\G, u : K→G satisfy p◦u= 1G and u(p(1G))= 1G for p :G→ K the
projection, κ : K×G→ A satisfy u(k)g= κk,gu(kGg) and K A be the elements of K
fixed under the conjugation by elements of A. The module category M(A \G, µ)
is the skeletal category whose simple objects are the elements of K = A \G, whose
tensor structure is k ⊗ g := kGg for k ∈ K and g ∈ G and whose associativity
constraint µ satisfies δGµ

−1
= π∗ω; see (1-6). In what follows we will focus on

parametrizing the invertible objects of C∗M.
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Following [Naidu 2007, Lemma 3.2] any invertible module functor in C∗M is
of the form (Fy, γ ), where the functor Fy :M→M is the one that extends the
G-equivariant map fy : K → K, fy(k) = p(u(y)u(k)), for y ∈ K A, and γ is a
functorial isomorphism γk,g : Fy(k⊗ g)−→∼= Fy(k)⊗ g that satisfies the pentagon
axiom. Writing γk,g := γ (k; g) idp(u(y)u(kGg)) for γ ∈C1(G,Map(K ,C∗)) we have
that the pentagon axiom of a module functor translates into the equation

µ(k; g1, g2)γ (kGg1; g2)γ (k; g1)= γ (k; g1g2)µ( fy(k); g1, g2),

which can also be written as

δGγ (k; γ1, γ2)=
µ( fy(k); g1, g2)

µ(k; g1, g2)
.

The inverse of (Fy, γ ) is the module functor (Fp(u(y)−1), γ ) with

γ (k; g) := γ (p(u(y)−1u(x))−1
; g)−1.

Defining for each y ∈ K A the set

Funy :=

{
γ ∈ C1(G,Map(K ,C∗)) | δGγ (k; g1, g2)=

µ( fy(k); g1, g2)

µ(k; g1, g2)

}
for all k ∈ K and g1, g2 ∈ G, we have that of invertible objects of C∗M are precisely
the module functors (Fy, γ ) where y ∈ K A and γ ∈ Funy . To simplify the notation
we will denote such a module functor by the pair (y, γ ).

Two invertible module functors (y1, γ
1) and (y2, γ

2) in C∗M are isomorphic if
and only if y1 = y2 and if there exists natural transformation parametrized by a
map η ∈ C0(G,Map(K ,C∗)) satisfying the equation

(2-1) γ 1(k; g)η(k)= η(kGg)γ 2(k; g)

for all k ∈ K and g ∈ G. These equations can be rewritten as the equation

δGη =
γ 2

γ 1

in C1(G,Map(K ,C∗)). Therefore for each y ∈ K A we may define an equivalence
relation on the elements γ 1, γ 2

∈ Funy by setting γ 2
' γ 1 whenever there exists η

such that δGη = γ
2/γ 1; denote by Funy the associated set of equivalence classes.

For each y ∈ K A let us choose an element γy ∈ Funy , and note that the maps

Funy→ Z1(G,Map(K ,C∗)), β 7→
β

γy
,

Z1(G,Map(k,C∗))→ Funy, ε 7→ εγy
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are inverse to each other. Therefore we obtain bijections

Funy ∼= H 1(G,Map(K ,C∗))∼= H 1(A,C∗)= A,

which are realized by the maps

(2-2) ζy :A→Funy, ζy(ρ) :=γyϕ(ρ), θy :Funy→A, θy(β) :=ψ(β/γy).

Recall from [Etingof et al. 2005, Definition 2.2] that the global dimension dim(C)
of a fusion category C is the sum of the squared norms of its simple objects, and
note that by Theorem 2.15 of the same paper we have dim(C∗M)= dim(C) whenever
C is a fusion category and M is an indecomposable module category over C.

Let us suppose now that the dual category C∗M = V(G, ω)∗M(A\G,µ) is pointed.
Therefore its global dimension

dim(C∗M)= |A||K
A
|

must be equal to the number of isomorphic classes of invertible objects, since on
pointed categories all simple objects are invertible. On the other hand, by [Etingof
et al. 2005, Theorem 2.15 ] we have dim(C∗M)= dim(C) and dim(C)= |G|. There-
fore in order for the category C∗M to be pointed it is necessary that |A||K A

| = |G|.
Since |G| = |A||K |, |A| ≤ |A| and |K A

| ≤ |K |, the equality holds if and only if A
is abelian, thus giving that |A| = |A|, and if A is normal in G and K A

= K.
On the other hand, if A is abelian and normal on G, then the number of iso-

morphism classes of invertible objects in C∗M is |A||K | = |G|. Since dim(C∗M)=
dim(C) = |G|, we have that the set of isomorphism classes of invertible objects
exhausts the set of simple elements, and therefore C∗M must be pointed.

Summarizing we have:

Theorem 2.1 [Naidu 2007, Theorem 3.4]. The tensor category

C∗M = V(G, ω)∗M(A\G,µ)

is pointed if and only if A is abelian and normal in G and the cohomology class
[(µGy)/µ] is trivial in H 2(G,Map(K ,C∗)) for all y ∈ K.

Note that since A is normal in G, we may use the notation introduced in
Section 1B so that µ( fy(k); g1, g2) = µ(yk; g1, g2) = (µGy)(k; g1, g2). Since
we have that δGµ

−1
= π∗ω = δG(µ

−1
Gy), the quotient (µGy)/µ defines a cocycle

in Z2(G,Map(K ,C∗)). The equation δGγy = (µGy)/µ implies that the quotient is
trivial in cohomology.

2B. The Grothendieck ring of the pointed category C∗M. From now on we will
assume that the dual category C∗M is pointed. Therefore we have that A is abelian
and normal in G and that we can choose elements γy ∈ C1(G,Map(K ,C∗)) for
each y ∈ K such that δGγy = (µGy)/µ.
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The Grothendieck ring K0(C∗M) of the category C∗M is the ring defined by the
semiring whose elements are the isomorphism classes of objects and whose product
is the one induced by the tensor product. Since C∗M is pointed, K0(C∗M) is isomorphic
to the group ring Z[3] for some finite group 3. In this section we will recall the
construction of this isomorphism carried out in [Naidu 2007, Theorem 4.5].

The tensor product of two invertible elements (y1, γ
1), (y2, γ

2) in C∗M as defined
in Section 1G is

(y1, γ
1)⊗ (y2, γ

2)= (y1 y2, (γ
1
Gy2)γ

2).

This tensor product defines a group structure on the set of isomorphism classes of
invertible objects

3 :=
⋃
y∈K

{y}×Funy

by the equation (y1, [γ
1
]) ? (y2, [γ

2
]) = (y1 y2, [(γ

1
Gy2)γ

2
]), where [γ ] denotes

the equivalence class of γ in Funy .
Define the element γ ∈ C1(K ,C1(G,Map(K ,C∗))) by the equation

γ (y) := γy

and note that the equations δGγy = (µGy)/µ are equivalent to the equation

δGγ = δKµ.

Define the element ν̃ := δKγ , i.e., ν̃(y1, y2)= (γ (y2)γ (y1)Gy2)/γ (y1 y2), and note
that

δK ν̃ = δ
2
Kγ = 1 and δG ν̃ = δGδKγ = δK δGγ = δ

2
Kµ= 1.

Hence ν̃ ∈ Z2(K , Z1(G,Map(K ,C∗))) and we may define

(2-3) ν := ψ ◦ ν̃ ∈ Z2(K , Z1(A,C∗))= Z2(K ,A),

thus having ν(y1, y2)(a) := ν̃(y1, y2)(1; a).
With this 2-cocycle ν we may define the crossed product K nν A by setting on

pairs of elements of the set K ×A

(y1, ρ1) · (y2, ρ2) := (y1 y2, ρ
y2
1 ρ2ν(y1, y2)).

Using the notation of (2-2) we have:

Theorem 2.2 [Naidu 2007, Theorem 4.5]. The map

T : K nν A→3, T ((y, ρ))= (y, [ζy(ρ)]),

is an isomorphism of groups. Hence K0(C∗M)∼= Z[K nν A].
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Proof. On the one hand we have

T ((y1, ρ1)·(y2, ρ2))= T ((y1 y2, ρ
y2
1 ρ2ν(y1, y2)))= (y1 y2, [ζy1 y2(ρ

y2
1 ρ2ν(y1, y2))])

and on the other

T ((y1, ρ1)) ? T ((y2, ρ2))= (y1, [ζy1(ρ1)]) ? (y2, [ζy2(ρ2)])

= (y1 y2, [(ζy1(ρ1)Gy2)ζy2(ρ2)]).

The result follows if we check the equality

θy1 y2((ζy1(ρ1)Gy2)ζy2(ρ2))= ρ
y2
1 ρ2ν(y1, y2)

since this implies that ζy1 y2((ρ1Gy2)ρ2ν(y1, y2)) and (ζy1(ρ1)Gy2)ζy2(ρ2) are coho-
mologous; hence we have

θy1y2((ζy1(ρ1)Gy2)ζy2(ρ2))(a)=
((ζy1(ρ1)Gy2)(1;a))ζy2(ρ2)(1;a)

γ(y1y2)(1;a)

=
(γ(y1)Gy2ϕ(ρ1)Gy2)(1;a)(γ(y2)ϕ(ρ2))(1;a)

γ(y1y2)(1;a)

= δKγ(y1, y2)(1;a)ρ
y2
1 (a)ρ2(a)

= (ν(y1, y2)ρ
y2
1 ρ2)(a). �

2C. A skeleton of the pointed category C∗M. A skeleton sk(C∗M) of C∗M is a full
subcategory of C∗M on which each object of C∗M is isomorphic to only one object in
sk(C∗M). Let us choose for objects

Obj(sk(C∗M)) := {(y, ζy(ρ)) | (y, ρ) ∈ K nν A}

and define its tensor product • by the one induced by ?, i.e.,

((y1, ζy1(ρ1)) • (y2, ζy2(ρ2)) := (y1 y2, ζy1 y2(ν(y1, y2)ρ
y2
1 ρ1)).

For each pair of objects, choose isomorphisms in C∗M

f ((y1, ζy1(ρ1)), (y2, ζy2(ρ2))

: (y1, ζy1(ρ1)) • (y2, ζy2(ρ2))−→
∼ (y1, ζy1(ρ1))⊗ (y2, ζy2(ρ2)),

which by equation (2-1) satisfy

((ζy1(ρ1)Gy2)ζy1(ρ1))(k; g)

=
f ((y1, ζy1(ρ1)), (y2, ζy2(ρ2))(kGg)

f ((y1, ζy1(ρ1)), (y2, ζy2(ρ2))(k)
× ζy1 y2(ν(y1, y2)ρ

y2
1 ρ1)(k; g).

The tensor product ⊗ in C∗M is associative since it is defined by the composition
of functors, but the tensor product • in its skeleton sk(C∗M)may fail to be associative.
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The associativity constraint for sk(C∗M) is then

ω̂′((y1, ζy1(ρ1)), (y2, ζy2(ρ2)), (y3, ζy3(ρ3)))

=
f ((y1, ζy1(ρ1)), (y2, ζy2(ρ2))⊗ id(ζy3 (ρ3),y3)

f ((y1, ζy1(ρ1)), (y2, ζy2(ρ2)) • (y3, ζy3(ρ3)))

×
f ((y1, ζy1(ρ1)) • (y2, ζy2(ρ2)), (y3, ζy3(ρ3)))

id(ζy1 (ρ1),y1)⊗ f ((y2, ζy2(ρ2)), (y3, ζy3(ρ3))).

In [Naidu 2007, Theorem 4.9] it is shown that ω̂′ is K -invariant and moreover
that it can be given in explicit form by the equation

ω̂′((y1, ζy1(ρ1)), (y2, ζy2(ρ2)), (y3, ζy3(ρ3)))= ν̃(y1, y2)(1; u(y3))ρ1(κy2,u(y3)).

Therefore we may define the 3-cocycle on K nν A by the equation

ω̂((y1, ρ1), (y2, ρ2), (y3, ρ3))= ν̃(y1, y2)(1; u(y3))ρ1(κy2,u(y3)),

and choosing G = AoF K and u(y)= (1, y) as was done at the end of Section 1A,
the 3-cocycle on K nν A becomes

(2-4) ω̂((y1, ρ1), (y2, ρ2), (y3, ρ3))= ν̃(y1, y2)(1; (1, y3))ρ1(F(y2, y3)).

Therefore the skeleton sk(C∗M) of C∗M becomes isomorphic to V(K nν A, ω̂), which
is equivalent to Vect(K nν A, ω̂). Therefore we can conclude with:

Theorem 2.3 [Naidu 2007, Theorem 4.9]. The fusion categories

C∗M = V(G, ω)∗M(A\G,µ) and Vect(K nν A, ω̂)

are equivalent.

Applying the results of Section 1I we have:

Corollary 2.4. The categories Vect(AoF K , ω) and Vect(K nν A, ω̂) are weakly
Morita equivalent. Hence their centers

Z(Vect(AoF K , ω))' Z(Vect(K nν A, ω̂))

are canonically equivalent as braided tensor categories.

3. Weak Morita equivalence classes of group-theoretical tensor categories

We are interested in classifying group-theoretical tensor categories of a specific
global dimension up to weak Morita equivalence. For this purpose we will fix
the group G = A oF K with A abelian and normal in G and F ∈ Z2(K , A),
and we will give an explicit description of the cocycles ω ∈ Z3(AoF K ,C∗) and
ω̂∈ Z3(KnνA,C∗) such that the tensor categories V(AoF K , ω) and V(KnνA, ω̂)

are weakly Morita equivalent.
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3A. Description ofω, µ and γ . In Theorem 2.1 and in Section 2B we have seen the
conditions needed for the tensor category C∗M = V(G, ω)∗M(A\G,µ) to be pointed. In
particular we have seen that we need the existence of γ ∈C1(K,C1(G,Map(K,C∗)))
such that

δGγ = δKµ.

Since we also have that δGµ
−1
= π∗ω we can obtain the following lemma:

Lemma 3.1. In Tot(C∗(K ,C∗(G,Map(K ,C∗)))), the cocycles π∗ω and ν̃ are
cohomologous.

Proof. Recall the definition of the double complex C∗(K ,C∗(G,Map(K ,C∗)))

given in Section 1B1, and note that we have π∗ω ∈ C0,3, µ ∈ C0,2, γ ∈ C1,1 and
ν̃ = δKγ ∈ C2,1, satisfying π∗ω · δGµ= 1 and δKµ · δGγ

−1
= 1.

Consider the element µ⊕ γ ∈ Tot2 and note that

δTot(µ⊕ γ )= (δK ⊕ δ
(−1)p

G )(µ⊕ γ )= δGµ⊕ δKµ · δGγ
−1
⊕ δKγ.

Therefore π∗ω · δTot(µ⊕ γ )= ν̃. �

Lemma 3.1 implies further conditions on the cohomology class of ω for the
tensor category C∗M = V(G, ω)∗M(A\G,µ) to be pointed.

Corollary 3.2. If the tensor category C∗M = V(G, ω)∗M(A\G,µ) is pointed then ω is
cohomologous to a cocycle that lives in C2,1

⊕ C3,0 of the double complex that
induces the Lyndon–Hochschild–Serre spectral sequence.

Remark 3.3. Note that this implies that the cohomology class of ω belongs to the
subgroup of H 3(G,C∗) defined as

�(G; A) := ker(ker(H 3(G,C∗)→ E0,3
∞
)→ E1,2

∞
),

which fits into the short exact sequence

1→ E3,0
∞
→�(G; A)→ E2,1

∞
→ 1.

The cohomology classes in �(G; A) are the only cohomology classes such that
C∗M = V(G, ω)∗M(A\G,µ) is pointed.

In what follows we will construct explicit representatives for ω and µ, but to do so
we will start by constructing explicit 3-cocycles in Tot(C∗(K ,C∗(G,Map(K ,C∗))))

which appear in �(G; A). Let us start by determining the second differential
d2 : E

2,1
2 → E4,0

2 .

Lemma 3.4. The second differential d2 : E
2,1
2 → E4,0

2 is isomorphic to the homo-
morphism

H 2(K ,A)→ H 4(K ,C∗), [F̂] 7→ [(F̂ ∧ F)−1
],

where (F̂ ∧ F)(k1, k2, k3, k4) := F̂(k1, k2)(F(k3, k4)).
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Proof. First recall that

E2,1
2 = H 2(K , H 1(G,Map(K ,C∗)))∼= H 2(K ,Hom(A,C∗))= H 2(K ,A),

E4,0
2 = H 4(K , H 0(G,Map(K ,C∗)))= H 4(K ,Map(K ,C∗)G)∼= H 4(K ,C∗).

Take F̂ ∈ Z2(K ,A) and use the map ϕ of Lemma 1.1 to lift this cocycle to
ϕ(F̂) ∈ C2(K , Z1(G,Map(K ,C∗))); in coordinates:

ϕ(F̂)(k1, k2)(x1, (a2, x2))= F̂(k1, k2)(κx1,(a2,x2))

= F̂(k1, k2)(
x1a2 F(x1, x2))

= F̂(k1, k2)(
x1a2)F̂(k1, k2)(F(x1, x2)).

Its boundary is

δkϕ(F̂)(k1,k2,k3)(x1,(a2,x2))

= F̂(k2,k3)(
x1a2 F(x1,x2))F̂(k1k2,k3)(

x1a2 F(x1,x2))
−1

F̂(k1,k2k3)(
x1a2 F(x1,x2))F̂(k1,k2)(

k3x1a2 F(k3x1,x2))
−1

= F̂(k1,k2)
k3(F(x1,x2))F̂(k1,k2)(F(k3x1,x2))

−1

= F̂(k1,k2)

(
F(k3,x1)

F(k3,x1x2)

)
,

and we can define u ∈ C3(K ,C0(G,Map(K ,C∗))) as

u(k1, k2, k3)(x) := F̂(k1, k2)(F(k3, x)).

On the one hand we have

δGu(k1, k2, k3)(x1, (a2, x2))= u(k1, k2, k3)(x1x2)u(k1, k2, k3)(x1)
−1

= F̂(k1, k2)

(
F(k3, x1x2)

F(k3, x1)

)
and on the other

δK u(k1, k2, k3, k4)(x)

= F̂(k2, k3)(F(k4, x))F̂(k1k2, k3)(F(k4, x))−1 F̂(k1, k2k3)(F(k4, x))
F̂(k1, k2)(F(k3k4, x))−1 F̂(k1, k2)(F(k3, k4x))

= F̂(k1, k2)
k3(F(k4, x))F̂(k1, k2)(F(k3k4, x))−1 F̂(k1, k2)(F(k3, k4x))

= F̂(k1, k2)(F(k3, k4)).

Since δGu = δKϕ(F̂) we have that

δTot(ϕ(F̂)⊕ u−1)= δKϕ(F̂)δGu⊕ δku−1
= (F̂ ∧ F)−1

;

therefore d2[ϕ(F̂)] = [(F̂ ∧ F)−1
]. �
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Suppose that d2[ϕ(F̂)] = 0; hence there is ε ∈C3(K ,C∗) such that δK ε = F̂∧ F.
Define ε ∈ C3(K ,C0(G,Maps(K ,C∗))) by the equation

ε(k1, k2, k3)(x) := ε(k1, k2, k3)

and note δK ε = F̂ ∧ F and δGε = 1. Hence the class ϕ(F̂)⊕ εu−1
∈ C2,1

⊕C3,0

defines a 3-cocycle in the total complex:

ϕ(F̂)⊕ εu−1
∈ Z3 Tot(C∗(K ,C∗(G,Map(K ,C∗)))).

Define β ∈ C2(K ,C0(G,Maps(K ,C∗))) by the equation

β(k1, k2)(x) := ε(k1, k2, x)

and note that

δKβ(k1, k2, k3)(x)= ε(k2, k3, x)ε(k1k2, k3, x)−1ε(k1, k2k3, x)ε(k1, k2, k3x)−1

= δK ε(k1, k2, k3, x)ε(k1, k2, k3)
−1

= F̂(k1, k2)((F(k3, x))ε(k1, k2, k3)(x)−1.

Therefore δKβεu−1
=1; hence we have that the class ϕ(F̂)δGβ ∈C2,1 is a 3-cocycle

in the total complex and moreover that it is cohomologous to the class ϕ(F̂)⊕εu−1,
in coordinates:

(3-1) (ϕ(F̂)δGβ)(k1, k2)(x1, (a2, x2))

= F̂(k1, k2)(
x1a2)F̂(k1, k2)(F(x1, x2))ε(k1, k2, x1x2)ε(k1, k2, x1)

−1.

Summarizing the previous results:

Proposition 3.5. Every cohomology class which appears in �(G; A) can be rep-
resented by a 3-cocycle ϕ(F̂)δGβ ∈ C2,1 with F̂ ∈ Z2(K ,A), β(k1, k2)(x) =
ε′(k1, k2, x) and δK ε′ = F̂ ∧ F.

Proof. Take [ω] ∈�(G; A) and let [F̂] ∈ E2,1
2 be a representative of the cohomology

class of the image of [ω] in E2,1
∞

. Since d2[ϕ(F̂)] = 0 we know that the cohomology
class [ϕ(F̂)⊕ εu−1

] constructed above belongs to �(G; A). Therefore we have

[ω−1
] · [ϕ(F̂)⊕ εu−1

] ∈ E3,0
∞
.

Hence we can choose a representative cocycle [τ ] ∈ H 3(K ,C∗)∼= E3,0
2 such that

[ω] = [ϕ(F̂)⊕ ετu−1
],

with τ ∈ C3(K ,C0(G,Maps(K ,C∗))) defined as

τ(k1, k2, k3)(x) := τ(k1, k2, k3).
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Let ε′ := ετ and define β ∈ C2(K ,C0(G,Maps(K ,C∗))) by the equation

β(k1, k2)(x) := ε′(k1, k2, x).

Equation (3-1) implies that δKβ = (ετ )−1u and therefore the proposition follows
from the equation

(ϕ(F̂)⊕ ετu−1)δTotβ = ϕ(F̂)δGβ⊕ δKβετu−1
= ϕ(F̂)δGβ. �

Now we need to find an explicit description of ω ∈ Z3(G,C∗) such that π∗ω
and ϕ(F̂)δGβ are cohomologous.

Theorem 3.6. Let G= AoF K and consider ω∈C3(G,C∗), µ∈C0,2 and γ ∈C1,1

defined by the following equations:

ω((a1, x1), (a2, x2), (a3, x3)) := F̂(x1, x2)(a3)ε(x1, x2, x3),

µ(x1, (a2, x2), (a3, x3))= (F̂(x1, x2)(a3)ε(x1, x2, x3))
−1,

γ (y)(x1, (a2, x2))= F̂(y, x1)(a2)ε(y, x1, x2, ).

Then π∗ω · (δTotµ⊕ γ )= ϕ(F̂)δGβ.

Proof. Let us calculate:

δGµ(x1, (a2, x2), (a3, x3), (a4, x4))

= µ(x1x2, (a3, x3), (a4, x4))µ(x1, (a2
x2a3 F(x2, x3), x2x3), (a3, x3))

−1

µ(x1, (a2, x2)(a3
x3a4 F(x3, x4), x3x4)) µ(x1, (a2, x2), (a3, x3))

−1

= F̂(x1x2, x3)(a4)
−1 F̂(x1, x2x3)(a4)F̂(x1, x2)(a3

x3a4 F(x3, x4))
−1

F̂(x1, x2)(a3)ε(x2, x3, x4)
−1δK ε(x1, x2, x3, x4)

= F̂(x2, x3)(a4)
−1ε(x2, x3, x4)

−1,

and

π∗ω(x1, (a2, x2), (a3, x3), (a4, x4))= ω((a2, x2), (a3, x3), (a4, x4))

= F̂(x2, x3)(a4)ε(x2, x3, x4);

hence we have that δGµ ·π
∗ω = 1.

Now

δKµ(y)(x1,(a2,x2),(a3,x3))= µ(x1,(a2,x2),(a3,x3))µ(yx1,(a2,x2),(a3,x3))
−1

=
F̂(yx1,x2)(a3)ε(yx1,x2,x3)

F̂(x1,x2)(a3)ε(x1,x2,x3)
,
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and

δGγ (y)(x1, (a2, x2), (a3, x3))

= γ (y)(x1x2, (a3, x3))γ (y)(x1, (a2
x2a3 F(x2, x3), x2x3))

−1γ (y)(x1, (a2, x2))

= F̂(y, x1x2)(a3)F̂(y, x1)(a2
x2a3 F(x2, x3))

−1 F̂(y, x1)(a2)

ε(y, x1x2, x3)ε(y, x1, x2x3)
−1ε(y, x1, x2)

= F̂(yx1, x2)(a3)F̂(x1, x2)(a3)
−1ε(yx1, x2, x3)ε(x1, x2, x3)

−1
;

hence we have that
δKµ · δGγ

−1
= 1.

Finally we calculate

δKγ (k1, k2)(x1, (a2, x2))

= γ (k2)(x1, (a2, x2))γ (k1k2)(x1, (a2, x2))
−1γ (k1)(k2x1, (a2, x2))

= F̂(k2, x1)(a2)F̂(k1k2, x1)(a2)
−1 F̂(k1, k2x2)(a2)

ε(k2, x1, x2)ε(k1k2, x1, x2)
−1ε(k1, k2x1, x2)

= F̂(k1, k2)(
x1a2)δK ε(k1, k2, x1, x2)ε(k1, k2, x1x2)ε(k1, k2, x1)

−1

= F̂(k1, k2)(
x1a2)F̂(k1, k2)(F(x1, x2))ε(k1, k2, x1x2)ε(k1, k2, x1)

−1,

and since by equation (3-1) we have that

(ϕ(F̂)δGβ)(k1, k2)(x1, (a2, x2))

= F̂(k1, k2)(
x1a2)F̂(k1, k2)(F(x1, x2))ε(k1, k2, x1x2)ε(k1, k2, x1)

−1,

we have that
δKγ = ϕ(F̂)δGβ.

Hence π∗ω · (δTotµ⊕ γ )= ϕ(F̂)δGβ. �

3B. Description of ω̂ and ν. Assuming the explicit descriptions of ω, µ and γ
given in Theorem 3.6, we see that ν̃ = ϕ(F̂)δGβ. Applying this explicit description
of ν̃ to the definition of ν given in (2-3) and of ω̂ given in (2-4) we obtain

ν(k1, k2)(a) := ν̃(k1, k2)(1, (a, 1))= F̂(k1, k2)(a),

which implies that ν = F̂ and

ω̂((k1, ρ1), (k2, ρ2), (k3, ρ3)) := ν̃(k1, k2)(1; (1, k3))ρ1(F(k2, k3))

= ε(k1, k2, k3)ρ1(F(k2, k3)).

After applying Corollary 2.4 to the previous explicit construction of ω̂ we obtain
the following theorem:
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Theorem 3.7. Let K be a finite group acting on the finite abelian group A. Consider
cocycles F ∈ Z2(K , A) and F̂ ∈ Z2(K ,A) such that F̂∧F is trivial in cohomology,
i.e., there exists ε ∈ C3(K ,C∗) such that δK ε = F̂ ∧ F. Define the 3-cocycles
ω ∈ Z3(AoF K ,C∗) and ω̂ ∈ Z3(K nF̂ A,C∗) by the equations:

ω((a1, k1), (a2, k2), (a3, k3)) := F̂(k1, k2)(a3)ε(k1, k2, k3)

ω̂((k1, ρ1), (k2, ρ2), (k3, ρ3)) := ε(k1, k2, k3)ρ1(F(k2, k3)).

Then the tensor categories Vect(A oF K , ω) and Vect(K nF̂ A, ω̂) are weakly
Morita equivalent, and therefore their centers are braided equivalent:

Z(Vect(AoF K , ω))' Z(Vect(K nF̂ A, ω̂)).

Note that we may have taken a different choice of µ and γ in Section 3A
thus producing different ν̃ and ω̂. The description of ω̂ depends on the choice of
cohomology class [F̂] ∈ H 2(K ,A) ∼= E2,1

2 in the second page representing the
image of [ω] in E2,1

3 = E2,1
∞

. This choice may be changed by elements in the image
of the second differential d2 : E

0,2
2 → E2,1

2 .
Changing ω by a coboundary ω′ = ωδGα, and writing ω′ explicitly as

(3-2) ω′((a1, x1), (a2, x2), (a3, x3)) := F̂ ′(x1, x2)(a3)ε
′(x1, x2, x3)

produces a ω̂′ which becomes

(3-3) ω̂′((k1, ρ1), (k2, ρ2), (k3, ρ3)) := ε
′(k1, k2, k3)ρ1(F(k2, k3)).

Applying Theorem 3.7 and using the equivalence of categories

Vect(AoF K , ω)' Vect(AoF K , ω′)

we obtain that the tensor categories Vect(A oF K , ω) and Vect(K nF̂ ′ A, ω̂
′) are

also weakly Morita equivalent. The previous argument permits us to conclude the
following corollary:

Corollary 3.8. Suppose that the fusion category C∗M = V(A oF K , ω)∗M(K ,µ) is
pointed. Then it is equivalent to the category Vect(K nF̂ ′ A, ω̂

′), where ω̂′ and ω′

are the cocycles defined in (3-2) and (3-3) respectively and ω′ is cohomologous
to ω.

3C. Classification theorem. Now we are ready to state the key result in order to
establish the weak Morita equivalence classes of group theoretical tensor categories.

Theorem 3.9. Let H and Ĥ be finite groups, η ∈ Z3(H,C∗) and η̂ ∈ Z3(Ĥ ,C∗).
Then the tensor categories Vect(H, η) and Vect(Ĥ , η̂) are weakly Morita equivalent
if and only if the following conditions are satisfied:
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• There exist isomorphisms of groups

φ : G = AoF K −→∼= H, φ̂ : Ĝ = K nF̂ A −→
∼= Ĥ

for some finite group K acting on the abelian group A, with F ∈ Z2(K , A)
and F̂ ∈ Z2(K ,A) where A := Hom(A,C∗).

• There exists ε : K 3
→ C∗ such that F̂ ∧ F = δK ε.

• The cohomology classes satisfy the equations [φ∗η] = [ω] and [φ̂∗η̂] = [ω̂]
with

ω((a1, k1), (a2, k2), (a3, k3)) : = F̂(k1, k2)(a3)ε(k1, k2, k3),

ω̂((k1, ρ1), (k2, ρ2), (k3, ρ3)) : = ε(k1, k2, k3)ρ1(F(k2, k3)).

Proof. Suppose that Vect(H, η) and Vect(Ĥ , η̂) are weakly Morita equivalent.
Then Vect(Ĥ , η̂) is equivalent to the dual category V(H, η)∗M(A\H,µ) with K :=
A \ H, φ : G = A oF K −→∼= H and M(A \ H, µ) some module category of
V(H, η). By Corollary 3.8 the tensor category Vect(Ĥ , η̂) is furthermore equivalent
to Vect(K nF̂ ′ A, ω̂

′), where ω′ and ω̂′ are the cocycles defined in equations (3-2)
and (3-3) respectively, and such that ω′ is cohomologous to φ∗η. In particular we
have that φ̂ : Ĝ = K nF̂ A −→

∼= Ĥ and that φ̂∗η̂ is cohomologous to ω̂′.
The converse is the statement of Theorem 3.7. �

In the case that both ω and ω̂ are cohomologically trivial, we conclude that
Vect(AoF K , 1) and Vect(K nF̂ A, 1) are weakly Morita equivalent if and only if
the cohomology class [F̂] ∈ H 2(K ,A) lies in the image of the second differential
of the spectral sequence d2 : H 2(A,C∗)K

→ H 2(K ,A). This result was originally
proved in [Davydov 2000, Corollary 6.2].

4. Examples

4A. Pointed fusion categories of global dimension 4. We can now calculate the
weakly Morita equivalence classes of pointed fusion categories of global dimen-
sion 4.

For G = Z/4 we have that H∗(Z/4,Z) ∼= Z[u]/4u with |u| = 2 and that the
nontrivial automorphism of Z/4 maps u to −u; therefore

H 4(Z/4,Z)/Aut(Z/4)= 〈u2
〉 = Z/4.

For G = (Z/2)2 we have that

H 4((Z/2)2,Z)∼= ker(Sq1
: H 4((Z/2)2, F2)→ H 5((Z/2)2, F2))= 〈x4, x2 y2, y4

〉,
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where H∗((Z/2)2, F2) = F2[x, y] and Sq1 is the Steenrod operation, and up to
automorphisms of (Z/2)2 we get

H 4((Z/2)2,Z)/Aut((Z/2)2)=


0,
(x4)= {x4, y4, x4

+ y4
},

(x2 y2)= {x2 y2, x2 y2
+ x4, x2 y2

+ y4
},

(x4
+ x2 y2

+ y4)= {x4
+ x2 y2

+ y4
}.

Since we have a clear description for a base of H 4((Z/2)2,Z), we will abuse nota-
tion and denote with the symbols of H 4((Z/2)2,Z) the elements of H 3((Z/2)2,C∗).
With this clarification, the relevant terms of the second page of the LHS spectral
sequence of the extension 1→ Z/2→ Z/4→ Z/2→ 1 become

3 Z/2= 〈y4
〉

2 0 0

1 Z/2 Z/2= 〈yx〉 Z/2= 〈yx2
〉

0 C∗ Z/2 0 Z/2= 〈x4
〉 0

0 1 2 3 4

∼=

where the second differential is defined by the assignment d2(yxk) = Sq1(xk+2)

with the class x2 classifying the extension. We conclude that the only weak Morita
equivalence that appears, which does not come from an automorphism of a group, is

Vect(Z/4, 0)' Vect((Z/2)2, x2 y2).

Therefore we see that there are exactly seven weak Morita equivalence classes
of pointed fusion categories of global dimension 4, namely the three for Z/4:

Vect(Z/4, u2), Vect(Z/4, 2u2), Vect(Z/4, 3u2);

the three for (Z/2)2:

Vect((Z/2)2, 0), Vect((Z/2)2, x4), Vect((Z/2)2, x4
+ y4
+ x2 y2);

and the one that we have just constructed

Vect(Z/4, 0)'M Vect((Z/2)2, x2 y2).

4B. Nontrivial action of Z/2 on Z/4. Consider the nontrivial action of Z/2 on
Z/4 and the abelian extension 1→ Z/4→ G→ Z/2→ 1. The group G is either
the dihedral group D8 in the case that the extension is a split extension or the
quaternion group Q8 in the case that the extension is a nonsplit extension.
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In the case of D8 the relevant elements of the second page of the LHS spectral
sequence associated to the extension are

3 Z/4= 〈a〉

2 0 0

1 Z/2 Z/2= 〈e〉 Z/2= 〈b〉

0 C∗ Z/2 0 Z/2= 〈c〉 0

0 1 2 3 4

and they all survive to the page at infinity. Since H 3(D8,C∗)= Z/4⊕Z/2⊕Z/2
we may say that H 3(D8,C∗) ∼= 〈a〉 ⊕ 〈b〉 ⊕ 〈c〉, and since D8 ∼= Z/4 o Z/2 we
have that F = 0. The element b ∈ H 2(Z/2,Z/4) defines the nontrivial extension
Q8 ∼= Z/2nb Z/4.

The second page of the LHS spectral sequence of the extension Q8∼=Z/2nb Z/4
becomes

3 Z/4= 〈α〉

2 0 0

1 Z/2 Z/2= 〈e〉 Z/2= 〈4α〉

0 C∗ Z/2 0 Z/2= 〈c〉 0

0 1 2 3 4

∼=

where d2 : E
1,1
2 −→
∼= E3,0

2 is an isomorphism and H 3(Q8,C∗)= 〈α〉 = Z/8.
Therefore for these extensions we only have the weak Morita equivalences

Vect(D8, b)'M Vect(Q8, 0)'M Vect(D8, b⊕ c),

where the equivalence of the right is obtained from the fact that c does not survive
the spectral sequence for the group Q8, and the self-Morita equivalence

Vect(Q8, 4α)'M Vect(Q8, 4α).

4C. Extension of Z/2×Z/2 by Z/2. Consider the nonabelian extensions of the
form

1→ Z/2→ G→ Z/2×Z/2→ 1,

namely D8 and Q8.
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The second page of the LHS spectral sequence for these extensions becomes

3 Z/2

2 0 0

1 Z/2 (Z/2)2 (Z/2)3

0 C∗ (Z/2)2 Z/2 (Z/2)3 (Z/2)2

0 1 2 3 4

and we need only to concentrate on the differentials d2 : E
p,1
2 → E p+2,0

2 between
the first two rows since we know that E0,3

2 = Z/2 survives the spectral sequence in
all the groups.

First we will determine the differential dG
2 in the LHS spectral sequence for

coefficients in the field of two elements F2. In this case

E2 ∼= H∗(Z/2×Z/2, F2)⊗F2 H∗(Z/2, F2)∼= F2[x, y, e],

and dG
2 e ∈ H 2(Z/2×Z/2, F2) represents the class that defines the extension G. It

is known that the class x2
+ xy+ y2 defines Q8 [Adem and Milgram 1994, Lemma

2.10], the classes x2
+ xy, xy+ y2, xy define D8 (p. 130 of the same book) and

the classes x2, y2, x2
+ y2 define Z/2×Z/4.

Second we use the fact that for the group (Z/2)2 we have the isomorphism

H j ((Z/2)2,Z)∼= ker(Sq1
: H j ((Z/2)2,Z/2)→ H j+1((Z/2)2,Z/2)),

where Sq1 is the first Steenrod square. This implies that the canonical map

H j ((Z/2)2,Z/2))→ H j ((Z/2)2,C∗)

can be seen as the map

H j ((Z/2)2,Z/2))
Sq1

−→ ker(Sq1
: H j+1((Z/2)2,Z/2)−→

H j+2((Z/2)2,Z/2))∼= H j+1((Z/2)2,Z)∼= H j ((Z/2)2,C∗).

Therefore the second differential

dG
2 : H

p−2((Z/2)2,Z/2)→ H p((Z/2)2,C∗)

is isomorphic to the composite map

dG
2 : H

p−2((Z/2)2,Z/2)−→ ker(Sq1
: H p+1((Z/2)2,Z/2)−→

H p+2((Z/2)2,Z/2))∼= H p+1((Z/2)2,Z)∼= H p((Z/2)2,C∗)

taking z to Sq1(z ∪ dG
2 e).
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Without loss of generality we may choose dG
2 e = xy + x2 for calculating the

LHS spectral sequence for D8. Applying the differential dG
2 to the elements 1, x ,

y, x2, xy, y2 we obtain that the surviving terms in the infinite page of the LHS
spectral sequence for D8 become

3 Z/2

2 0 0

1 0 Z/2=〈e(y)〉 Z/2=〈e(xy+x2)〉

0 C∗ (Z/2)2=〈x2, y2
〉 0 (Z/2)2= 〈x

4, x2 y2, y4
〉

〈x2 y2+x4〉
0

0 1 2 3 4

Here we are abusing the notation and we are using the explicit base of H 4((Z/2)2,Z)

to denote the elements in H 3((Z/2)2,C∗). Since E2,1
3 = 〈e(xy + x2)〉, the weak

Morita equivalences that we obtain in the extension are

Vect(D8, 0)'M Vect((Z/2)3,Sq1(e(xy+ x2))),

Vect(D8, x4)'M Vect((Z/2)3,Sq1(e(xy+ x2))+ x4),

Vect(D8, y4)'M Vect((Z/2)3,Sq1(e(xy+ x2))+ y4),

and the self-equivalence

Vect(D8, e(xy+ x2)' Vect(D8, e(xy+ x2).

The surviving terms for Q8 with dG
2 e = x2

+ xy+ y2 are

3 Z/2

2 0 0

1 0 0 Z/2= 〈e(x2
+ xy+ y2)〉

0 C∗ (Z/2)2 = 〈x2, y2
〉 0 Z/2= 〈x2 y2

〉 0

0 1 2 3 4

with E0,3
∞
= Z/2 = 〈α〉, 〈x2

+ xy + y2
〉 = 〈2α〉 and 〈x2 y2

〉 = 〈4α〉, where α is a
generator 〈α〉 = H 3(Q8,C∗) that was defined in section Section 4B.
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Hence the only Morita equivalences that we obtain are

Vect(Q8, 0)' Vect((Z/2)3,Sq1(e(x2
+ xy+ y2)))

Vect(Q8, 4α)' Vect((Z/2)3,Sq1(e(x2
+ xy+ y2))+ x2 y2)

and the self-Morita equivalences

Vect(Q8, 2α)'M Vect(Q8, 2α) and Vect(Q8, 6α)'M Vect(Q8, 6α).

Bundling up the previous results for the group Q8 we obtain the following result:

Proposition 4.1. Let us suppose that Vect(Q8, kα) is weakly Morita equivalent to
Vect(G, η). Then:

• For k odd or k = 2, 6, the group G must be isomorphic to Q8 and η must
correspond to jα with j odd or j = 2, 6.

• For k = 4, G must be isomorphic to Q8 or (Z/2)3.

• For k = 0, G must be isomorphic to Q8, D8 or (Z/2)3.

Proof. First note the action of Aut(Q8) on H 3(Q8,C∗) is trivial. Second note the
only normal subgroups of Q8 are its center and the cyclic ones generated by roots of
unity and that they all fit into the central extension 1→ Z/2→ Q8→ (Z/2)2→ 1
or the nonsplit extension 1→ Z/4→ Q8→ Z/2→ 1 that we have studied before.
Since any weak Morita equivalence between pointed fusion categories comes from
a normal and abelian subgroup of Q8, the classification that we have done before
exhausts all possibilities. For k odd we know that kα survives to the restriction to
the center and to the cyclic subgroups isomorphic to Z/4 and therefore G can only
be Q8. The classes 2α and 6α trivialize on the center of Q8 but these classes define
extensions of (Z/2)2 by Z/2 which are isomorphic to Q8 and define cohomology
classes which are precisely 2α and 6α. The class 4α trivializes in all normal and
abelian subgroups; in the case of the subgroup Z/4 the only group that may appear
is Q8, and in the case of the center we may obtain the weak Morita equivalence

Vect(Q8, 4α)' Vect((Z/2)3, Sq1(e(x2
+ xy+ y2))+ x2 y2).

Finally, the trivial class produces only the group D8 in the case of the subgroup
Z/4 and (Z/2)3 in the case of the center; some weak Morita equivalences are

Vect(Q8, 0)' Vect((Z/2)3, Sq1(e(x2
+ xy+ y2)))'M Vect(D8, b). �
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