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CALABI–YAU PROPERTY UNDER MONOIDAL
MORITA–TAKEUCHI EQUIVALENCE

XINGTING WANG, XIAOLAN YU AND YINHUO ZHANG

Let H and L be two Hopf algebras such that their comodule categories
are monoidally equivalent. We prove that if H is a twisted Calabi–Yau
(CY) Hopf algebra, then L is a twisted CY algebra when it is homologically
smooth. In particular, if H is a Noetherian twisted CY Hopf algebra and L
has finite global dimension, then L is a twisted CY algebra.

Introduction

In noncommutative projective algebraic geometry, what is now called an Artin–
Schelter (AS) regular algebra A =

⊕
i≥0 Ai of dimension n was introduced in

[Artin and Schelter 1987] as a homological analogue of a polynomial algebra with
n variables. The connected graded noncommutative algebra A is considered as the
homogeneous coordinate ring of some noncommutative projective space Pn.

In lecture notes, Manin [1988] constructed the quantum general linear group
OA(GL) that universally coacts on an AS regular algebra A. Similarly, we can
define the quantum special linear group of A, denoted by OA(SL), by requiring the
homological codeterminant of the Hopf coaction to be trivial; see [Walton and Wang
2016, Section 2.1] for details. As pointed out in that work, it is conjectured that
these universal quantum groups should possess the same homological properties
of A, among which the Calabi–Yau (CY) property is the most interesting, since A
is always twisted CY according to [Reyes et al. 2014, Lemma 2.1] (see Section 1.2
for the definition of a twisted CY algebra). Moreover, many classical quantized
coordinate rings can be realized as universal quantum groups associated to AS
regular algebras via the above construction [Chirvasitu et al. 2016; Walton and
Wang 2016], whose CY property and rigid dualizing complexes have been discussed
in [Brown and Zhang 2008; Goodearl and Zhang 2007].

Now let us look at a nontrivial example, which is the motivation for our paper. Let
k be a field. AS regular algebras of global dimension 2 (not necessarily Noetherian)
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were classified by Zhang [1998]. They are the algebras (assume they are generated
in degree one)

A(E)= k〈x1, x2, . . . , xn〉/

( ∑
16i, j6n

ei j xi x j

)
for E = (ei j )∈GLn(k) with n> 2. It is shown in [Walton and Wang 2016, Corollary
2.17] that OA(E)(SL)∼= B(E−1) as Hopf algebras, where B(E−1) was defined by
Dubois-Violette and Launer [1990] as the quantum automorphism group of the
nondegenerate bilinear form associated to E−1. In particular, when

E =
(

0 −q
1 0

)
and E−1

= Eq =

(
0 1
−q−1 0

)
for some q ∈ k×,

we have A(E)= Aq=k〈x1, x2〉/(x2x1+qx1x2) is the quantum plane and OAq (SL)=
B(Eq)=Oq(SL2) is the quantized coordinate ring of SL2(k).

Two Hopf algebras are called monoidally Morita–Takeuchi equivalent, if their
comodule categories are monoidally equivalent. Bichon [2003, Theorem 1.1]
obtained that B(E) (for any E ∈ GLn(k) with n ≥ 2) and Oq(SL2) are monoidally
Morita–Takeuchi equivalent when q2

+ tr(E t E−1)q + 1 = 0. By applying this
monoidal equivalence, Bichon obtained a free Yetter–Drinfeld module resolution
(Definition 2.2.4) of the trivial Yetter–Drinfeld module k over B(E). This turns
out to be the key ingredient to prove the CY property of B(E); see that work or
[Walton and Wang 2016]. Note that the quantized coordinate ring Oq(SL2) is well
known to be twisted CY [Brown and Zhang 2008, Section 6.5 and 6.6]. Thus it is
natural to ask the following question:

Question 1. Let H and L be two Hopf algebras that are monoidally Morita–
Takeuchi equivalent. Suppose H is twisted CY. Is L always twisted CY?

The monoidal equivalence between the comodule categories of various universal
quantum groups have been widely observed [Bichon 2003; 2014; Mrozinski 2014;
Chirvasitu et al. 2016] by using the language of cogroupoids. In recent papers,
Raedschelders and Van den Bergh [2015; 2017] proved that, for a Koszul AS
regular algebra A, the monoidal structure of the comodule category of OA(GL) only
depends on the global dimension of A and not on A itself [Raedschelders and Van
den Bergh 2017, Theorem 1.2.6]. We expect a positive answer to Question 1, which
should play an important role in investigating the CY property of these universal
quantum groups associated to AS regular algebras.

The following is our main result, showing that in order to answer Question 1, it
suffices to prove that the homologically smooth condition is a monoidally Morita–
Takeuchi invariant.
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Theorem 2 (Theorem 2.4.5). Let H and L be two monoidally Morita–Takeuchi
equivalent Hopf algebras. If H is twisted CY of dimension d and L is homologically
smooth, then L is twisted CY of dimension d as well.

Note that for Hopf algebras, there are several equivalent descriptions of the
homological smoothness stated in Proposition A.2. Now Question 1 is reduced to
the following question:

Question 3. Let H and L be two monoidally Morita–Takeuchi equivalent Hopf
algebras. Suppose H is homologically smooth. Is L always homologically smooth?

Though we can not fully answer Question 3, it is true in certain circumstances.
We obtain the following result:

Theorem 4 (Theorem 2.4.7). Let H be a twisted CY Hopf algebra of dimension d ,
and L a Hopf algebra monoidally Morita–Takeuchi equivalent to H. If one of the
following conditions holds, then L is also twisted CY of dimension d.

(i) H admits a finitely generated relative projective Yetter–Drinfeld module resolu-
tion for the trivial Yetter–Drinfeld module k and L has finite global dimension.

(ii) H admits a bounded finitely generated relative projective Yetter–Drinfeld
module resolution for the trivial Yetter–Drinfeld module k.

(iii) H is Noetherian and L has finite global dimension.

(iv) L is Noetherian and has finite global dimension.

Relative projective Yetter–Drinfeld modules and resolutions will be explained
in Section 2.2. The trivial module k over Oq(SL2) admits a finitely generated free
Yetter–Drinfeld resolution of length 3 [Bichon 2013, Theorem 5.1]. Every free
Yetter–Drinfeld module resolution is a relative projective Yetter–Drinfeld module
resolution. According to our result above, this immediately implies that B(E) is
twisted CY since B(E) and Oq(SL2) are monoidally Morita–Takeuchi equivalent
as mentioned above.

Twisted CY algebras, of course, have finite global dimensions. Theorem 4 leads
to the last question about whether the global dimension is a monoidally Morita–
Takeuchi invariant. A similar question was asked by Bichon [2016] concerning
the Hochschild dimension, and the two questions are essentially the same by
Proposition A.1.

Question 5. Let H and L be two monoidally Morita–Takeuchi equivalent Hopf
algebras. Does gldim(H) = gldim(L), or at least, gldim(H) <∞ if and only if
gldim(L) <∞?

If the answer is positive, then the finite global dimension assumptions in condi-
tions (i), (iii), and (iv) of Theorem 4 can be dropped. This will partially answer
Question 1 under the assumption that one of the Hopf algebras is Noetherian. As
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a consequence of Theorem 4, we provide a partial answer to Question 5 answer
under the assumption that both Hopf algebras are twisted CY.

Theorem 6 (Corollary 2.4.8). Let H and L be two monoidally Morita–Takeuchi
equivalent Hopf algebras. If both H and L are twisted CY , then gldim(H) =
gldim(L).

Monoidal Morita–Takeuchi equivalence can be described by the language of
cogroupoids. If H and L are two Hopf algebras that are monoidally Morita–Takeuchi
equivalent, then there exists a connected cogroupoid with 2 objects X, Y such that
H = C(X, X) and L = C(Y, Y ). In this case, C(X, Y ) is just the H -L-bigalois object
(see Section 1.1 for details). Throughout, we will use the language of cogroupoids
to discuss Hopf algebras whose comodule categories are monoidally equivalent.
We generalize many definitions and results in [Brown and Zhang 2008] to the level
of cogroupoids (see Section 2.4). Especially for Hopf–Galois objects, we define the
left (resp. right) winding automorphisms of C(X, Y ) using the homological integrals
of C(X, X) (resp. C(Y, Y )). We also generalize the famous Radford S4 formula for
finite dimensional Hopf algebras to Hopf–Galois object C(X, Y ) by assuming both
C(X, X) and C(Y, Y ) are AS-Gorenstein Hopf algebras.

Theorem 7 (Theorem 2.4.9 and Remark 2.4.10). Let C be a connected cogroupoid.
If X and Y are two objects such that C(X, X) and C(Y, Y ) are both AS-Gorenstein
Hopf algebras. Then for the Hopf–Galois object C(X, Y ) we have

(1) (SY,X ◦ SX,Y )
2
= γ ◦φ ◦ ξ−1,

where ξ and φ are respectively the left and right winding automorphisms given by
the left integrals of C(X, X) and C(Y, Y ), and γ is an inner automorphism.

At last, we provide two examples in Section 3. One is the connected cogroupoid
associated to B(E) and the other is the connected cogroupoid associated to a generic
datum of finite Cartan type (D, λ).

1. Preliminaries

We work over a fixed field k. Unless stated otherwise all algebras and vector spaces
are over k. The unadorned tensor ⊗ means ⊗k and Hom means Homk.

Given an algebra A, we write Aop for the opposite algebra of A and Ae for the
enveloping algebra A⊗ Aop. The category of left (resp. right) A-modules is denoted
by Mod A (resp. Mod Aop). An A-bimodule can be identified with an Ae-module,
that is, an object in Mod Ae.

For an A-bimodule M and two algebra automorphisms µ and ν, we let µMν

denote the A-bimodule such that µMν ∼= M as vector spaces, and the bimodule
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structure is given by

a ·m · b = µ(a)mν(b),

for all a, b ∈ A and m ∈ M. If one of the automorphisms is the identity, we will
omit it. It is well known that Aµ ∼= A as A-bimodules if and only if µ is an inner
automorphism of A.

For a Hopf algebra H, as usual, we use the symbols 1, ε and S respectively for
its comultiplication, counit, and antipode. We use Sweedler’s (sumless) notation
for the comultiplication and coaction of H. The category of right H -comodules
is denoted by MH. We write εk (resp. kε) for the left (resp. right) trivial module
defined by the counit ε of H.

1.1. Cogroupoid. We first recall the definition of a cogroupoid.

Definition 1.1.1. A cocategory C consists of:

• A set of objects ob(C),

• For any X, Y ∈ ob(C), an algebra C(X, Y ),

• For any X, Y, Z ∈ ob(C), algebra homomorphisms

1Z
XY : C(X, Y )→ C(X, Z)⊗ C(Z , Y ) and εX : C(X, X)→ k

such that for any X, Y, Z , T ∈ ob(C), the following diagrams commute:

C(X, Y )
1Z

X,Y
−−−→ C(X, Z)⊗ C(Z , Y )

1T
X,Y

y 1T
X,Z⊗1

y
C(X, T )⊗ C(T, Y )

1⊗1Z
T,Y

−−−−→ C(X, T )⊗ C(T, Z)⊗ C(Z , Y )

C(X, Y )

1Y
X,Y

��
C(X, Y )⊗ C(Y, Y )

1⊗εY // C(X, Y )

C(X, Y )

1X
X,Y

��
C(X, X)⊗ C(X, Y )

εX⊗1 // C(X, Y ).

Thus a cocategory with one object is just a bialgebra.
A cocategory C is said to be connected if C(X, Y ) is a nonzero algebra for any

X, Y ∈ ob(C).

Definition 1.1.2. A cogroupoid C consists of a cocategory C together with, for any
X, Y ∈ ob(C), linear maps

SX,Y : C(X, Y )→ C(Y, X)
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such that for any X, Y ∈ C, the following diagrams commute:

C(X, X)

1Y
X,X
��

εX // k
u // C(X, Y )

C(X, Y )⊗ C(Y, X)
1⊗SY,X // C(X, Y )⊗ C(X, Y )

·

OO

C(X, X)

1Y
X,X
��

εX // k
u // C(Y, X)

C(X, Y )⊗ C(Y, X)
SX,Y⊗1

// C(Y, X)⊗ C(Y, X).

·

OO

From the definition, we can see C(X, X) is a Hopf algebra for each object X ∈ C.
We use Sweedler’s notation for cogroupoids. Let C be a cogroupoid. For any

aX,Y
∈ C(X, Y ), we write

1Z
X,Y (a

X,Y )= aX,Z
1 ⊗ aZ ,Y

2 .

The following lemma describes properties of the “antipodes”:

Lemma 1.1.3 [Bichon 2014, Proposition 2.13]. Let C be a cogroupoid and let
X, Y ∈ ob(C).
(i) SY,X : C(Y, X)→ C(X, Y )op is an algebra homomorphism.

(ii) For any Z ∈ ob(C) and aY,X
∈ C(Y, X),

1Z
X,Y (SY,X (aY,X ))= SZ ,X (a

Z ,X
2 )⊗ SY,Z (a

Y,Z
1 ).

For other basic properties of cogroupoids, we refer to the same work.
Bichon [2014] reformulated Schauenburg’s [1996] results by cogroupoids. This

theorem shows that discussing two Hopf algebras with monoidally equivalent
comodule categories is equivalent discussing connected cogroupoids. In what
follows, unless otherwise stated, we assume that the cogroupoids mentioned are
connected.

Theorem 1.1.4 [Bichon 2014, Theorem 2.10, 2.12]. If C is a connected cogroupoid,
then for any X, Y ∈ C, we have equivalences of monoidal categories that are inverse
to each other

MC(X,X) ∼=
⊗MC(Y,Y ) MC(Y,Y ) ∼=

⊗MC(X,X)

V 7→ V�C(X,X)C(X, Y ) V 7→ V�C(Y,Y )C(Y, X).

Conversely, if H and L are Hopf algebras such that MH ∼=
⊗ML, then there exists a

connected cogroupoid with 2 objects X, Y such that H = C(X, X) and L = C(Y, Y ).

This monoidal equivalence can be extended to categories of Yetter–Drinfeld
modules.
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Lemma 1.1.5 [Bichon 2014, Proposition 6.2]. Let C be a cogroupoid, X, Y ∈ ob(C)
and V a right C(X, X)-module.

(i) V ⊗ C(X, Y ) has a right C(Y, Y )-module structure defined by

(v⊗ aX,Y )← bY,Y
= v · bX,X

2 ⊗ SY,X (b
Y,X
1 )aX,Y bX,Y

3 .

Together with the right C(Y, Y )-comodule structure defined by 1⊗1Y
X,Y, V ⊗

C(X, Y ) is a Yetter–Drinfeld module over C(Y, Y ).

(ii) If moreover V is a Yetter–Drinfeld module, then V�C(X,X)C(X, Y ) is a Yetter–
Drinfeld submodule of V ⊗ C(X, Y ).

Theorem 1.1.6 [Bichon 2014, Theorem 6.3]. Let C be a connected cogroupoid.
Then for any X, Y ∈ ob(C), the functor

YDC(X,X)
C(X,X)→ YDC(Y,Y )

C(Y,Y ) V 7→ V�C(X,X)C(X, Y )

is a monoidal equivalence.

1.2. Calabi–Yau algebras. In this subsection, we recall the definition of (twisted)
Calabi–Yau algebras.

Definition 1.2.1. An algebra A is a twisted Calabi–Yau algebra of dimension d if

(i) A is homologically smooth, that is, A has a bounded resolution by finitely
generated projective Ae-modules;

(ii) There is an automorphism µ of A such that

(2) ExtiAe(A, Ae)∼=

{
0, i 6= d,
Aµ, i = d,

as Ae-modules.

If such an automorphism µ exists, it is unique up to an inner automorphism and
is called the Nakayama automorphism of A. In the definition, the dimension d is
usually called the Calabi–Yau dimension of A. A Calabi–Yau algebra in the sense of
Ginzburg [2007] is a twisted Calabi–Yau algebra whose Nakayama automorphism
is an inner automorphism. In what follows, Calabi–Yau is abbreviated to CY.

Twisted CY algebras include CY algebras as a subclass. They are the natural
algebraic analogues of Bieri and Eckmann’s [1973] duality groups. The twisted CY
property of noncommutative algebras has been studied under other names for many
years, even before the definition of a CY algebra. Rigid dualizing complexes of
noncommutative algebras were studied in [Van den Bergh 1997]. The twisted CY
property was called “rigid Gorenstein” in [Brown and Zhang 2008] and was called
“skew Calabi–Yau” in a recent paper [Reyes et al. 2014].
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2. Calabi–Yau property

2.1. Artin–Schelter Gorenstein Hopf algebras. Let H be a Hopf algebra. We
denote the Hochschild dimension of H by Hdim(H). In the Appendix, it is shown
that the left global dimension and the right global dimension of H are always equal.
We denote the global dimension of H by gldim(H). The left adjoint functor L :
Mod H e

→Mod H is defined by the algebra homomorphism (id⊗S)◦1 : H→ H e.
Similarly, the algebra homomorphism τ ◦(S⊗id)◦1 :H→ (H e)op

=H e defines the
right adjoint functor R :Mod(H e)op

→Mod H op, where τ : H op
⊗ H→ H ⊗ H op

is the flip map. Let M be an H -bimodule. Then L(M) is a left H -module defined
by the action

x→ m = x1mS(x2) for any x ∈ H,

while R(M) is a right H -module defined by the action

m← x = S(x1)mx2 for any x ∈ H.

The algebra H e is a left and right H e-module with left action

(3) (a⊗ b)→ (x ⊗ y)= ax ⊗ yb,

and right action

(4) (x ⊗ y)← (a⊗ b)= xa⊗ by.

for any x⊗y and a⊗b∈H e. So L(H e) and R(H e) are H -H e and H e-H -bimodules,
where the corresponding H -module structures are given by

a→ (x ⊗ y)= a1x ⊗ yS(a2) and (x ⊗ y)← a = xa2⊗ S(a1)y

for any a ∈ H and x ⊗ y ∈ H e, respectively.
Let ∗H ⊗ H be the free left H -module, where the structure is given by the left

multiplication of the first factor H. Similarly, let H∗⊗H be the free right H -module
defined by the right multiplication of the first factor H. Moreover, we give ∗H ⊗H
a right H e-module structure such that

(5) (x ⊗ y)← (a⊗ b)= xa1⊗ byS2(a2)

and H∗⊗ H a left H e-module structure via

(6) (a⊗ b)→ (x ⊗ y)= a2x ⊗ S2(a1)yb

for any x ⊗ y ∈ ∗H ⊗ H or H∗⊗ H and a⊗ b ∈ H e.

Lemma 2.1.1. Retain the above notation. Then we have:

(i) L(H e)∼= ∗H ⊗ H as H-H e-bimodules.

(ii) R(H e)∼= H∗⊗ H as H e-H-bimodules.
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Proof. It is straightforward to check the corresponding isomorphisms of bimodules
are given by the following four homomorphisms:

L(H e)→ ∗H ⊗ H, x ⊗ y 7→ x1⊗ yS2(x2)

with inverse

∗H ⊗ H → L(H e), x ⊗ y 7→ x1⊗ yS(x2),

and
R(H e)→ H∗⊗ H, x ⊗ y 7→ x2⊗ S2(x1)y

with inverse
H∗⊗ H → R(H e), x ⊗ y 7→ x2⊗ S(x1)y. �

Lemma 2.1.2. Let H be a Hopf algebra and B an algebra.

(i) Let M be an H e-B-bimodule. Then ExtiH e(H,M)∼= ExtiH (εk, L(M)) as right
B-modules for all i > 0.

(ii) Let M be an B-H e-bimodule. Then ExtiH e(H,M)∼= ExtiHop(kε, R(M)) as left
B-modules for all i > 0.

Proof. We only prove (i); the proof of (ii) is quite similar. With Lemma 2.4 in
[Brown and Zhang 2008], we only need to prove that for an H e-B-bimodule N,
there is an H e-B-bimodule monomorphism 0→ N → I, such that I is injective as
an H e-module. The H e-B-bimodule N can be viewed as an H e

⊗ Bop-module. It
can be embedded into an injective H e

⊗ Bop-module I. We have

HomH e(−, I )∼= HomH e(−,HomH e⊗Bop((H e
⊗ Bop)H e , I ))

∼= HomH e⊗Bop((H e
⊗ Bop)H e ⊗−, I ).

H e
⊗ Bop is clearly free as an H e-module. Therefore, the functor HomH e(−, I ) is

exact. That is, I is injective as an H e-module. This completes the proof. �

It is well known that there is an equivalence of categories between the category
of left H e-modules and the category of right H e-modules for (H e)op

= H e. As a
consequence, ExtiH e(H, H e) can be computed both by using the left and the right
H e-module structures on H e defined in (3) and (4).

Proposition 2.1.3. Let H be a Hopf algebra such that it is homologically smooth.
We have

ExtiH e(H, H e)∼= ExtiH (εk, H)⊗ H ∼= ExtiHop(kε, H)⊗ H

as H e-modules for all i ≥ 0, where the H e-module structures on ExtiH (εk, H)⊗ H
and on ExtiHop(kε, H)⊗ H are induced by (5) and (6), respectively.
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Proof. We prove the isomorphism ExtiH e(H, H e)∼= ExtiH (εk, H)⊗ H. The proof
of the isomorphism ExtiH e(H, H e)∼= ExtiHop(kε, H)⊗ H is quite similar.

Since H is homologically smooth, the trivial module εk admits a bounded
projective resolution P•→ εk→ 0, with each term finitely generated (Proposition
A.2). Now we have the following H e-module isomorphisms:

ExtiH e(H, H e)∼= ExtiH (εk, L(H e)) ∼= ExtiH (εk, ∗H ⊗ H)
∼= Hi (P•, ∗H ⊗ H) ∼= Hi (P•, H)⊗ H
∼= ExtiH (εk, H)⊗ H.

The first and the second isomorphism follows from Lemma 2.1.2 and 2.1.1, respec-
tively. The fourth isomorphism holds since P•→ εk→ 0 is a bounded projective
resolution with each term finitely generated. �

Now we recall the definition of an Artin–Schelter (AS) Gorenstein algebra.

Definition 2.1.4 (cf. [Brown and Zhang 2008, Definition 1.2]). Let H be a Hopf
algebra.

(i) The Hopf algebra H is said to be left AS-Gorenstein if
(a) injdim H H = d <∞,
(b) ExtiH (εk, H)= 0 for i 6= d and ExtdH (εk, H)= k.

(ii) The Hopf algebra H is said to be right AS-Gorenstein if
(c) injdim HH = d <∞,
(d) ExtiHop(kε, H)= 0 for i 6= d and ExtdHop(kε, H)= k.

(iii) If H is both left and right AS-Gorenstein (relative to the same augmentation
map ε), then H is called AS-Gorenstein.

(iv) If, in addition, the global dimension of H is finite, then H is called AS-regular.

Remark 2.1.5. In above definitions, we do not require the Hopf algebra H to be
Noetherian. For AS-regularity, the right global dimension always equals the left
global dimension by Proposition A.1. Moreover, when H is AS-Gorenstein and
homologically smooth, the right injective dimension always equals the left injective
dimension, which are both given by the integer d such that ExtdH e(H, H e) 6= 0 by
Proposition 2.1.3.

Homological integrals for an AS-Gorenstein Hopf algebra introduced in [Lu
et al. 2007] are a generalization of integrals for finite dimensional Hopf algebras
[Sweedler 1969]. The concept was further extended to any AS-Gorenstein algebra
in [Brown and Zhang 2008].

Let A be a left AS-Gorenstein algebra of injective dimension d with augmentation
ε : A→ k. One sees that ExtdA(εk, A) is a one-dimensional right A-module. Any
nonzero element in ExtdA(εk, A) is called a left homological integral of A. Usually,
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ExtdA(εk, A) is denoted by
∫ l

A. Similarly, if A is a right AS-Gorenstein algebra
of injective dimension d, any nonzero element in ExtdAop(kε, A) is called a right
homological integral. And ExtdAop(kε, A) is denoted by

∫ r
A. Abusing the language

slightly,
∫ l

A (resp.
∫ r

A) is also called the left (resp. right) homological integral.
A Noetherian Hopf algebra H with bijective antipode is AS-regular in the sense

of [Brown and Zhang 2008, Definition 1.2] if and only if H is twisted CY [Reyes
et al. 2014, Lemma 1.3]. If H is not necessarily Noetherian, we have the following
result:

Proposition 2.1.6. Let H be a Hopf algebra with bijective antipode such that it is
homologically smooth. Then the following are equivalent:

(i) H is a twisted CY algebra of dimension d.

(ii) There is an integer d such that

ExtiH (εk, H)= 0 for i 6= d and dim ExtdH (εk, H)= 1.

(iii) There is an integer d such that

ExtiHop(kε, H)= 0 for i 6= d and dim ExtdHop(kε, H)= 1.

(iv) ExtiH (εk, H) and ExtiHop(kε, H) are finite dimensional for i > 0 and there is
an integer d such that dim ExtiH (εk, H) = dim ExtiHop(kε, H) = 0 for i > d,
and dim ExtdH (εk, H) 6= 0 or dim ExtdHop(kε, H) 6= 0.

In these cases, we have gldim(H)= injdim HH = injdim H H = d.

Proof. (i)⇒(ii), (iii) This proof can be found for example in [Yu et al. 2016, Lemma
2.15].

(ii)⇒ (i) By Proposition 2.1.3, ExtiH e(H, H e)∼=ExtiH (εk, H)⊗H for all i ≥ 1 as
H e-modules. Since ExtdH (εk, H) is a one-dimensional right H -module, we simply
write it as kξ , for some algebra homomorphism ξ : H → k. Therefore,

ExtiH e(H, H e)= 0 for i 6= d and ExtdH e(H, H e)∼= kξ ⊗ H
(a)
∼= Hµ,

where µ is defined by µ(h) = ξ(h1)S2(h2) for any h ∈ H. The isomorphism (a)
holds because the H e-module structure on kξ ⊗ H is induced by the equation (5)
according to Proposition 2.1.3. Moreover, it is easy to check that µ is an algebra
automorphism of H with inverse given by µ−1(h) = ξ(S(h1))S−2(h2) for any
h ∈ H.

(iii)⇒(i) The proof is similar to that of (ii)⇒ (i).
(ii), (iii)⇒(iv) This is obvious.
(iv)⇒(ii), (iii) The proof of [Brown and Zhang 2008, Lemma 3.2] works generally

for this case. Suppose dim ExtdH (εk, H) 6= 0; the case for dim ExtdHop(kε, H) 6= 0
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is similar. Since H is homologically smooth, by Proposition A.2 and [Brown and
Goodearl 1997, Lemma 1.11], we can apply Ischebeck’s spectral sequence

Extp
Hop(Ext−q

H (εk, H), H)=⇒ TorH
−p−q(H, εk)

to obtain dim ExtiHop(kε, H)= 0 for i 6= d . From the proof of [Brown and Goodearl
1997, Lemma 1.11], dim ExtdH (M, H) = dim M · dim ExtdH (εk, H) for any finite
dimensional left H -module M. Thus by the finite dimensional assumption,

dim ExtdH (ExtdHop(kε, H), H)= dim ExtdHop(kε, H) · dim ExtdH (εk, H).

Again by the Ischebeck’s spectral sequence, ExtdH (ExtdHop(kε, H), H)∼= k. Hence,

dim ExtdH (εk, H)= dim ExtdHop(kε, H)= 1.

Now (ii) and (iii) are proved.
Finally, we can apply the same proof of [Berger and Taillefer 2007, Proposition

2.2] to show that for a twisted CY Hopf algebra H of dimension d, we have
Hdim(H) = d. Hence gldim(H) = d by Proposition A.1. The equality of the
injective dimension of H is easy to see since it is always bounded by gldim(H)= d
and we have dim ExtdH (εk, H) 6= 0 or dim ExtdHop(kε, H) 6= 0. �

Corollary 2.1.7. Let H be a Hopf algebra with bijective antipode. Then the follow-
ing are equivalent:

• H is twisted CY.

• H is left AS-Gorenstein and the left trivial module εk admits a bounded
projective resolution with each term finitely generated.

• H is right AS-Gorenstein and the right trivial module kε admits a bounded
projective resolution with each term finitely generated.

Proof. It follows from Proposition A.2 and Proposition 2.1.6. �

2.2. Yetter–Drinfeld modules. In this subsection, we recall some definitions related
to Yetter–Drinfeld modules.

Definition 2.2.1. Let H be a Hopf algebra. A (right-right) Yetter–Drinfeld module
V over H is simultaneously a right H -module and a right H -comodule satisfying
the compatibility condition

δ(v · h)= v(0) · h2⊗ S(h1)v(1)h3 for any v ∈ V, h ∈ H.

We denote by YDH
H the category of Yetter–Drinfeld modules over H with mor-

phisms given by H -linear and H -collinear maps. Endowed with the usual tensor
product of modules and comodules, YDH

H is a monoidal category, with unit the
trivial Yetter–Drinfeld module k.

We can always construct a Yetter–Drinfeld module from a right comodule.
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Lemma-Definition 2.2.2 [Bichon 2013, Proposion 3.1, Definition 3.2]. Let H be a
Hopf algebra and V a right H -comodule. Endow V ⊗ H with the right H -module
structure defined by multiplication on the right. Then the linear map

V ⊗ H → V ⊗ H ⊗ H, v⊗ h 7→ v(0)⊗ h2⊗ S(h1)v(1)h3

endows V ⊗ H with a right H -comodule structure, and with a right-right Yetter–
Drinfeld module structure. We denote by V � H the resulting Yetter–Drinfeld
module.

A Yetter–Drinfeld module over H is said to be free if it is isomorphic to V � H
for some right H -comodule V.

A free Yetter–Drinfeld module is obviously free as a right H -module. We call a
free Yetter–Drinfeld module V � H finitely generated if V is finite dimensional.

Bichon [2016] introduced the notion of relative projective Yetter–Drinfeld mod-
ule, corresponding to the notion of relative projective Hopf bimodule considered in
[Shnider and Sternberg 1993] via the monoidal equivalence between Yetter–Drinfeld
modules and Hopf bimodules.

Lemma-Definition 2.2.3 [Bichon 2016, Definition 4.1, Proposition 4.2]. Let P be
a Yetter–Drinfeld module over a Hopf algebra H. The following are equivalent:

(1) The functor HomYDH
H
(P,−) transforms exact sequences of Yetter–Drinfeld

modules that splits as sequences of comodules to exact sequences of vector
spaces.

(2) Any epimorphism of Yetter–Drinfeld modules f : M → P that admits a
comodule section admits a Yetter–Drinfeld module section.

(3) P is a direct summand of a free Yetter–Drinfeld module.

A Yetter–Drinfeld module is said to be relative projective if it satisfies one of the
above equivalent conditions.

It is clear that a relative projective Yetter–Drinfeld module is a projective module.
We call a relative projective Yetter–Drinfeld module finitely generated if it is a
direct summand of a finitely generated free Yetter–Drinfeld module.

Definition 2.2.4. Let H be a Hopf algebra and let M ∈ YDH
H . A free (resp. relative

projective) Yetter–Drinfeld module resolution of M consists of a complex of free
(resp. relative projective) Yetter–Drinfeld modules

P• : · · · → Pi+1→ Pi → · · · → P1→ P0→ 0

for which there exists a Yetter–Drinfeld module morphism ε : P0→ M such that

· · · → Pi+1→ Pi → · · · → P1→ P0
ε
−→M→ 0

is an exact sequence in YDH
H .
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If each Pi , i > 0, is a finitely generated free (resp. relative projective) Yetter–
Drinfeld module, we call this complex P• a finitely generated free (resp. relative
projective) Yetter–Drinfeld module resolution.

Of course each free Yetter–Drinfeld module resolution is a free resolution and
each relative projective Yetter–Drinfeld module resolution is a projective resolution.

Lemma 2.2.5. Let C be a cogroupoid and X, Y ∈ ob(C). The equivalence functor
−�C(X,X)C(X, Y ) sends any relative projective Yetter–Drinfeld module resolution
P• of the trivial Yetter–Drinfeld module k over C(X, X) to a relative projective
Yetter–Drinfeld module resolution P•�C(X,X)C(X, Y ) of the trivial Yetter–Drinfeld
module k over C(Y, Y ). In particular, if P• is finitely generated (resp. bounded),
then P•�C(X,X)C(X, Y ) is also finite generated (resp. bounded).

Proof. Following from Lemma-Definition 2.2.3 and Section 4 in [Bichon 2013], we
see that the functor−�C(X,X)C(X, Y ) is exact and sends a relative projective Yetter–
Drinfeld module over C(X, X) to a relative projective Yetter–Drinfeld module
over C(Y, Y ). So P•�C(X,X)C(X, Y ) is a relative projective Yetter–Drinfeld module
resolution.

Lemma-Definition 2.2.3 and [Bichon 2014, Proposition 1.16] guarantee that if P•
is finitely generated, then P•�C(X,X)C(X, Y ) is also finite generated. The argument
for boundedness is clear. �

2.3. Homological properties of cogroupoids. From now on we assume that the
Hopf algebras mentioned have bijective antipodes. We also assume that any
cogroupoid C mentioned satisfies that SX,Y is bijective for any X, Y ∈ ob(C). This
assumption is to make sure that SY,X ◦ SX,Y is an algebra automorphism of C(X, Y ).
Actually, if C is a connected cogroupoid such that for some object X, C(X, X) is a
Hopf algebra with bijective antipode, then SX,Y is bijective for any objects X, Y
(see Remark 2.6 in [Yu 2016]).

Let C be a cogroupoid and X, Y ∈ ob(C). Both the morphisms1Y
X,X : C(X, X)→

C(X, Y )⊗ C(Y, X) and SY,X : C(Y, X)→ C(X, Y )op are algebra homomorphisms
(Lemma 1.1.3), so the composition of the morphisms

(7) C(X, X)
1Y

X,X
−−−→ C(X, Y )⊗C(Y, X)

id⊗SY,X
−−−−→ C(X, Y )⊗C(Y, X)op(= C(X, Y )e)

is an algebra homomorphism. This induces a functor

LX :Mod C(X, Y )e→Mod C(X, X).

The functor LX is just the functor L defined in [Yu 2016]. Let M be a C(X, Y )-
bimodule. The left C(X, X)-module structure of LX (M) is given by

x→ m = x X,Y
1 mSY,X (x

Y,X
2 ) for any m ∈ M, x ∈ C(X, X).



CALABI–YAU PROPERTY UNDER MONOIDAL MORITA–TAKEUCHI EQUIVALENCE 495

From the cogroupoid C, we define a coopposite cogroupoid C′ as follows:

• ob(C′)= ob(C).
• For any objects Y, X, the algebra C′(Y, X) is the algebra C(X, Y ).

• For any objects Y, X and Z , the algebra homomorphism 1′ZY X : C
′(Y, X)→

C′(Y, Z) ⊗ C′(Z , X) is the algebra homomorphism τ ◦ 1Z
XY : C(X, Y ) →

C(Z , Y )⊗ C(X, Z) in C, where τ : C(X, Z)⊗ C(Z , Y )→ C(Z , Y )⊗ C(X, Z)
is the flip map.

• For any object X, ε′X : C
′(X, X)→ k is the same as εX : C(X, X)→ k in C.

• For any objects Y, X, the morphism S′Y,X :C
′(Y,X)→C′(X,Y ) is the morphism

S−1
Y,X : C(X,Y )→ C(Y,X).

It is easy to check that this indeed defines a cogroupoid.
For any objects X, Y ∈ ob(C)= ob(C′), the algebras C(X, Y ) and C(Y, Y ) in C

are just the algebras C′(Y, X) and C′(Y, Y ) in C′. So we have a functor

L′Y :Mod C(X, Y )e→Mod C(Y, Y ).

If M is a C(X,Y )-bimodule, the left C(Y,Y )-module structure of L′Y (M) is given by

y→ m = y X,Y
2 mS−1

X,Y (y
Y,X
1 ) for any m ∈ M and y ∈ C(Y, Y ).

As usual, we view C(X, Y )e as a left and a right C(X, Y )e-module respectively
in the following ways:

(8) (a⊗ b)→ (x ⊗ y)= ax ⊗ yb,

and

(9) (x ⊗ y)← (a⊗ b)= xa⊗ by,

for any x ⊗ y and a⊗ b ∈ C(X, Y )e. Then we have the modules LX (C(X, Y )e) and
L′Y (C(X, Y )e). They are all free modules.

Let ∗C(X, X)⊗ C(X, Y ) be the left C(X, X)-module defined by the left multipli-
cation of the factor C(X, X), and ∗C(Y, Y )⊗ C(X, Y ) be the left C(Y, Y )-module
defined by the left multiplication of the factor C(Y, Y ). Then we have the following:

Lemma 2.3.1. (i) LX (C(X, Y )e)∼= ∗C(X, X)⊗C(X, Y ) as left C(X, X)-modules.
The isomorphism is given by

LX (C(X, Y )e)→ ∗C(X, X)⊗ C(X, Y ), x ⊗ y 7→ x X,X
1 ⊗ ySY,X (SX,Y (x

X,Y
2 )).

(ii) L′Y (C(X, Y )e)∼= ∗C(Y, Y )⊗C(X, Y ) as left C(Y, Y )-modules. The isomorphism
is given by

L′Y (C(X, Y )e)→ ∗C(Y, Y )⊗ C(X, Y ), x ⊗ y 7→ xY,Y
2 ⊗ yS−1

X,Y (S
−1
Y,X (x

X,Y
1 )).
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Proof. (i) is Lemma 2.1 in [Yu 2016]. (ii) can be obtained by applying (i) to the
coopposite cogroupoid C′. �

Lemma 2.3.2. Let C be a cogroupoid, X, Y ∈ ob(C) and B another algebra. Let
M be a C(X, Y )e-B-bimodule.

(i) ExtiC(X,Y )e(C(X,Y ),M)∼=ExtiC(X,X)(εk,LX (M)) as right B-bimodules for all i >0.

(ii) ExtiC(X,Y )e(C(X,Y ),M)∼=ExtiC(Y,Y )(εk,L
′

Y (M)) as right B-bimodules for all i > 0.

Proof. By applying Lemma 2.2 in [Yu 2016] to the cogroupoid C and its coopposite
cogroupoid C′, we obtain vector space isomorphisms

ExtiC(X,Y )e(C(X, Y ),M)∼= ExtiC(X,X)(εk,LX (M))

and

ExtiC(X,Y )e(C(X, Y ),M)∼= ExtiC(Y,Y )(εk,L
′

Y (M))

for all i > 0. By a quite similar discussion to that in the proof of Lemma 2.1.2, we
can see that the isomorphisms above are B-linear. �

2.4. Main results. In order to state our main results we need to define winding
automorphisms of cogroupoids.

Let C be a cogroupoid and X, Y ∈ ob(C). Let ξ : C(X, X)→ k be an algebra
homomorphism. The left winding automorphism [ξ ]lX,Y of C(X, Y ) associated to ξ
is defined to be

[ξ ]lX,Y (a
X,Y )= ξ(aX,X

1 )aX,Y
2 for any a ∈ C(X, Y ).

Let η : C(Y, Y )→ k be an algebra homomorphism. Similarly, the right winding
automorphism of C(X, Y ) associated to η is defined to be

[η]rX,Y (a
X,Y )= aX,Y

1 η(aY,Y
2 ) for any a ∈ C(X, Y ).

Lemma 2.4.1. Let C be a cogroupoid and X, Y ∈ ob(C), let ξ : C(X, X)→ k, and
η : C(Y, Y )→ k be algebra homomorphisms. Then

(i) ([ξ ]lX,Y )
−1
= [ξ SX,X ]

l
X,Y .

(ii) ξ S2
X,X = ξ , so [ξ ]lX,Y = [ξ S2

X,X ]
l
X,Y .

(iii) [ξ ]lX,Y ◦ SY,X ◦ SX,Y = SY,X ◦ SX,Y ◦ [ξ ]
l
X,Y .

(i’) ([η]rX,Y )
−1
= [ηSY,Y ]

r
X,Y .

(ii’) ηS2
Y,Y = η, so [η]rX,Y = [ηS2

Y,Y ]
r
X,Y .

(iii’) [η]rX,Y ◦ SY,X ◦ SX,Y = SY,X ◦ SX,Y ◦ [η]
r
X,Y .
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Proof. (i) can be proved directly and (ii) is just Lemma 2.5 (c) in [Brown and Zhang
2008]. Now, we give a proof of (iii). For x ∈ C(X, Y ),

SY,X ◦ SX,Y ◦ [ξ ]
l
X,Y (a

X,Y )= ξ(aX,X
1 )SY,X (SX,Y (a

X,Y
2 )).

Since 1X
X,Y (SY,X (SX,Y (aX,Y )))= S2

X,X (a
X,X
1 )⊗ SY,X (SX,Y (a

X,Y
2 )),

[ξ ]lX,Y ◦ SY,X ◦ SX,Y (aX,Y )= ξ S2
X,X (a

X,X
1 )SY,X (SX,Y (a

X,Y
2 )).

By (ii), ξ S2
X,X = ξ , so

SY,X ◦ SX,Y ◦ [ξ ]
l(aX,Y )= [ξ ]l ◦ SY,X ◦ SX,Y (aX,Y ).

Therefore, SY,X ◦ SX,Y ◦ [ξ ]
l
X,Y = [ξ ]

l
X,Y ◦ SY,X ◦ SX,Y .

(i’), (ii’) and (iii’) hold symmetrically to (i), (ii) and (iii), respectively. �

The following is the main result of [Yu 2016]:

Theorem 2.4.2. Let C be a connected cogroupoid and let X ∈ ob(C) such that
C(X, X) is a twisted CY algebra of dimension d with left homological integral∫ l
C(X,X) = kξ , where ξ : C(X, X) → k is an algebra homomorphism. Then for

any Y ∈ ob(C), C(X, Y ) is a twisted CY algebra of dimension d with Nakayama
automorphism µ defined as µ= SY,X ◦ SX,Y ◦ [ξ ]

l
X,Y . That is,

µ(a)= ξ(aX,X
1 )SY,X (SX,Y (a

X,Y
2 ))

for any x ∈ C(X, Y ).

Though we do not say that the CY-dimension of C(X, X) and C(X, Y ) are the
same in the statement of [Yu 2016, Theorem 2.5], it is easy to see from its proof.
Applying Theorem 2.4.2 to the coopposite cogroupoid C′, we obtain the following
corollary:

Corollary 2.4.3. Let C be a connected cogroupoid and let Y ∈ ob(C) such that
C(Y, Y ) is a twisted CY algebra of dimension d with left homological integral∫ l
C(Y,Y ) = kη, where η : C(Y, Y ) → k is an algebra homomorphism. Then for

any X ∈ ob(C), C(X, Y ) is a twisted CY algebra of dimension d with Nakayama
automorphism µ′ defined as µ′ = S−1

X,Y ◦ S−1
Y,X ◦ [η]

r
X,Y . That is,

µ′(a)= S−1
X,Y (S

−1
Y,X (a

X,Y
1 ))η(aY,Y

2 )

for any x ∈ C(X, Y ).

Theorem 2.4.4. Let C be a connected cogroupoid and let X be an object in C such
that C(X, X) is a twisted CY Hopf algebra of dimension d. Then for any Y ∈ ob(C)
such that C(Y, Y ) is homologically smooth, C(Y, Y ) is a twisted CY algebra of
dimension d as well.
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Proof. Let Y be an object in C such that C(Y, Y ) is homologically smooth. We need
to compute the Hochschild cohomology of C(Y, Y ). By Lemma 2.3.2,

ExtiC(X,Y )e(C(X, Y ), C(X, Y )e)∼= ExtiC(Y,Y )op(εk,L′Y (C(X, Y )e))

for all i > 0. L′Y (C(X, Y )e) is a C(Y, Y )-C(X, Y )e-bimodule. The left C(Y, Y )-
module isomorphism

L′Y (C(X, Y )e)→ ∗C(Y, Y )⊗ C(X, Y ), x ⊗ y 7→ xY,Y
2 ⊗ yS−1

X,Y (S
−1
Y,X (x

X,Y
1 ))

in Lemma 2.3.1 is also an isomorphism of left C(X, Y )e-modules if we endow a
right C(X, Y )e-module structure on ∗C(Y, Y )⊗ C(X, Y ) as follows:

(x ⊗ y)← (a⊗ b)= xaY,Y
2 ⊗ byS−1

X,Y (S
−1
Y,X (a

X,Y
1 ))

for any x⊗ y ∈ ∗C(Y, Y )⊗C(X, Y ) and a⊗b ∈ C(X, Y )e. Therefore, we obtain the
following left C(X, Y )e-module isomorphisms:

ExtiC(X,Y )e(C(X, Y ), C(X, Y )e)∼= ExtiC(Y,Y )(εk,L
′

Y (C(X, Y )e))
∼= ExtiC(Y,Y )(εk, ∗C(Y, Y )⊗ C(X, Y ))
∼= ExtiC(Y,Y )(εk, C(Y, Y ))⊗ C(X, Y )

for i > 0. The third isomorphism follows from the fact that C(Y, Y ) is homologically
smooth, the trivial module εk admits a bounded projective resolution with each
term finitely generated (Proposition A.2). The right C(X, Y )e-module structure on
ExtiC(Y,Y )op(kε, C(Y, Y ))⊗ C(X, Y ) induced by the isomorphisms above is given by

(x ⊗ y)← (a⊗ b)= xaY,Y
2 ⊗ byS−1

X,Y (S
−1
Y,X (a

X,Y
1 ))

for any x ⊗ y ∈ ExtiC(Y,Y )op(εk, C(Y, Y ))⊗ C(X, Y ) and a ⊗ b ∈ C(X, Y )e. Note
that the right C(Y, Y )-module structure of C(Y, Y ) induces a right C(Y, Y )-module
structure on ExtiC(Y,Y )op(kε, C(Y, Y )).

It follows from Theorem 2.4.2 that C(X, Y ) is a twisted CY algebra of dimension
d with Nakayama automorphism µ= SY,X ◦ SX,Y ◦ [ξ ]

l
X,Y . So

ExtiC(X,Y )e(C(X, Y ), C(X, Y )e)=
{

0, i 6= d,
C(X, Y )µ, i = d.

Now we arrive at the isomorphism of left C(X, Y )e-modules

ExtiC(Y,Y )(εk, C(Y, Y ))⊗ C(X, Y )∼=
{

0, i 6= d,
C(X, Y )µ, i = d.

A right C(X, Y )e-module can be viewed as a C(X, Y )-bimodule. The left module
structure of ExtiC(Y,Y )(kε, C(Y, Y ))⊗ C(X, Y ) is just the left multiplication to the
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factor C(X, Y ). So especially, as left C(X, Y )-modules,

ExtiC(Y,Y )(εk, C(Y, Y ))⊗ C(X, Y )∼=
{

0, i 6= d,
C(X, Y ), i = d.

This shows that ExtiC(Y,Y )(εk, C(Y, Y )) = 0 for i 6= d. Moreover, for degree d,
we denote V = ExtdC(Y,Y )(εk, C(Y, Y )). Then V ⊗ C(X, Y ) ∼= C(X, Y ) as free left
C(X, Y )-modules. Hence 0 < dim V < ∞ (note that we do not know whether
C(X, Y ) has the FBN property). Similarly, ExtiC(Y,Y )op(kε, C(Y, Y )) = 0 for i 6= d
and ExtdC(Y,Y )op(kε, C(Y, Y )) is finite dimensional as well. Hence C(Y, Y ) is twisted
CY of dimension d by Proposition 2.1.6. �

Theorem 2.4.5. Let H and L be two monoidally Morita–Takeuchi equivalent Hopf
algebras. If H is twisted CY of dimension d and L is homologically smooth, then L
is twisted CY of dimension d as well.

Proof. This directly follows from Theorem 1.1.4 and Theorem 2.4.4. �

Before we present our next theorem, we need the following lemma:

Lemma 2.4.6. If H be a Noetherian Hopf algebra, then the trivial Yetter–Drinfeld
module k admits a finitely generated free Yetter–Drinfeld module resolution.

Proof. First we have an epimorphism ε :k�H→k, 1⊗h 7→ε(h) of Yetter–Drinfeld
modules. Set P0 = k� H. Since H is Noetherian, Ker ε is finitely generated as a
module over H. Say it is generated by a finite dimensional subspace V1 of P0. That
is, there exists an epimorphism V1⊗ H→Ker ε→ 0 given by v⊗h 7→ vh for any
v ∈ V1 and h ∈ H. Let C1 be the subcomodule of Ker ε generated by V1. We know
C1 is finite dimensional since V1 is finite dimensional by the fundamental theory of
comodules. Construct the epimorphism C1� H → Ker ε→ 0 via c⊗ h 7→ ch for
any c ∈ C1 and h ∈ H. It is easy to check that it is a morphism of Yetter–Drinfeld
modules. Set P1 = C1� H, we have the exact sequence P1→ P0→ k→ 0. Note
that P1 is again a Noetherian H -module. Hence we can do the procedure recursively
to obtain a finitely generated free Yetter–Drinfeld module resolution of k. �

Theorem 2.4.7. Let H be a twisted CY Hopf algebra of dimension d, and L a
Hopf algebra monoidally Morita–Takeuchi equivalent to H. If one of the following
conditions holds, then L is also twisted CY of dimension d.

(i) H admits a finitely generated relative projective Yetter–Drinfeld module resolu-
tion for the trivial Yetter–Drinfeld module k and L has finite global dimension.

(ii) H admits a bounded finitely generated relative projective Yetter–Drinfeld
module resolution for the trivial Yetter–Drinfeld module k.

(iii) H is Noetherian and L has finite global dimension.

(iv) L is Noetherian and has finite global dimension.



500 XINGTING WANG, XIAOLAN YU AND YINHUO ZHANG

Proof. By Theorem 2.4.4, we only need to prove that if one of the conditions listed
in the theorem holds, then L is homologically smooth.

In case (i) We use the language of cogroupoids. Since H and L are monoidally
Morita–Takeuchi equivalent, there exists a connected cogroupoid with 2 objects
X, Y such that H = C(X, X) and L = C(Y, Y ) (Theorem 1.1.4). By Proposition A.2,
to show L = C(Y, Y ) is homologically smooth, we only need to show that the
trivial module kε admits a bounded projective resolution with each term finitely
generated. By assumption, the trivial Yetter–Drinfeld module k over the Hopf
algebra H = C(X, X) admits a finitely generated relative projective Yetter–Drinfeld
module resolution

(10) · · · → Pi
δi
−→ Pi−1→ · · · → P1→ P0→ k→ 0.

By Lemma 2.2.5,

(11) · · · → Pi�C(X,X)C(X, Y )
δi�C(X,Y )
−−−−−−→ Pi−1�C(X,X)C(X, Y )→ · · ·

· · · → P1�C(X,X)C(X, Y )→ P0�C(X,X)C(X, Y )→ k→ 0.

is a finitely generated relative projective Yetter–Drinfeld module resolution of the
trivial Yetter–Drinfeld module k over C(Y, Y ). So each Pi�C(X,X)C(X, Y ) is a
finite generated projective C(Y, Y )-module. By assumption, the global dimension
of C(Y, Y ) is finite, say n. Set Kn = Ker(δn−1�C(X,X)C(X, Y )). Following from
Lemma 4.1.6 in [Weibel 1994], Kn is projective, so it is a direct summand of
Pn�C(X,X)C(X, Y ). Since Pn�C(X,X)C(X, Y ) is finitely generated, Kn is finitely
generated as well. Therefore,

0→ Kn→ Pn−1�C(X,X)C(X, Y )→ · · ·

· · · → P1�C(X,X)C(X, Y )→ P0�C(X,X)C(X, Y )→ k→ 0

is a bounded projective resolution with each term finitely generated. Hence, L =
C(Y, Y ) is homologically smooth.

The proof in case (ii) uses a similar argument as in case (i) since equations (10)
and (11) now are bounded finitely generated projective resolutions for k.

Case (iii) is a direct consequence of Lemma 2.4.6 and (i).
That the Hopf algebra L is homologically smooth in case (iv) follows from

[Brown and Zhang 2008, Lemma 5.2]. �

Corollary 2.4.8. Let H and L be two monoidally Morita–Takeuchi equivalent Hopf
algebras. If both H and L are twisted CY , then gldim(H)= gldim(L).

Proof. It follows from Theorem 2.4.7 and the fact that for twisted CY Hopf algebras
the CY dimension always equals the global dimension by Proposition 2.1.6. �
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Now we discuss the relation between the homological integrals of C(X, X) and
C(Y, Y ) when both of them are twisted CY.

Theorem 2.4.9. Let C be a connected cogroupoid. If X and Y are two objects such
that C(X, X) and C(Y, Y ) are both twisted CY algebras, then we have

(12) (SY,X ◦ SX,Y )
2
= [η]rX,Y ◦ ([ξ ]

l
X,Y )

−1
◦ γ,

where ξ : C(X, X)→ k and η : C(Y, Y )→ k are algebra homomorphisms given by
the left homological integrals of C(X, X) :

∫ l
C(X,X) = kξ and C(Y, Y ) :

∫ l
C(Y,Y ) = kη

respectively, and γ is an inner automorphism of C(X, Y ).

Proof. From Theorem 2.4.2 and Corollary 2.4.3, it is easy to see that the CY-
dimensions of C(X, X) and C(Y, Y ) are equal. Moreover, µ = SY,X ◦ SX,Y ◦ [ξ ]

l

and µ′ = S−1
X,Y ◦ S−1

Y,X ◦ [η]
r are the Nakayama automorphisms of C(X, Y ). Since

Nakayama automorphisms are unique up to inner automorphisms,

SY,X ◦ SX,Y ◦ [ξ ]
l
X,Y = S−1

X,Y ◦ S−1
Y,X ◦ [η]

r
X,Y ◦ γ,

for some inner automorphism γ of C(X, Y ). The automorphism [ξ ]lX,Y commutes
with SY,X ◦ SX,Y (Lemma 2.4.1), we obtain that

(SY,X ◦ SX,Y )
2
= ([ξ ]lX,Y )

−1
◦ [η]rX,Y ◦ γ. �

Remark 2.4.10. The three maps composed to give (SY,X ◦ SX,Y )
2 in (12) commute

with each other. This can be proved as in [Brown and Zhang 2008, Proposition
4.6] with the help of Lemma 2.4.1. It is not hard to see that Theorem 2.4.9
holds when C(X, X) and C(Y, Y ) are both AS-Gorenstein. The equation (12)
is just (4.6.1) in the same work when X = Y. Since the inner automorphism
γ = (SY,X ◦ SX,Y )

2
◦ ([η]rX,Y )

−1
◦ [ξ ]lX,Y is intrinsic in C(X, Y ), it prompts us

to generalize their Question 4.6 to the Hopf-bigalois object C(X, Y ) when both
C(X, X) and C(Y, Y ) are AS-Gorenstein.

Question 2.4.11. What is the inner automorphism in Theorem 2.4.9?

3. Examples

In this section, we provide some examples.

3.1. Example 1. We take the field k to be C in this subsection. Let E ∈ GLm(C)

with m > 2 and let B(E) be the algebra presented by generators (ui j )16i, j6m and
relations

E−1ut Eu = Im = uE−1ut E,

where u is the matrix (ui j )16i, j6m , ut is the transpose of u and Im is the identity
matrix. The algebra B(E) is a Hopf algebra and was defined by Dubois-Violette and
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Launer [1990] as the quantum automorphism group of the nondegenerate bilinear
form associated to E . When

E = Eq =

(
0 1
−q−1 0

)
,

B(Eq) is just the algebra Oq(SL2(C)), the quantized coordinate algebra of SL2(C).
In order to describe Hopf algebras whose comodule categories are monoidally

equivalent to the one of B(E), we recall the cogroupoid B.
Let E ∈ GLm(C) and let F ∈ GLn(C). The algebra B(E, F) is defined to be the

algebra with generators ui j , 16 i 6 m, 16 j 6 n, subject to the relations:

(13) F−1ut Eu = In; uF−1ut E = Im .

The generators ui j in B(E, F) is denoted by uE F
i j to express the dependence on E

and F when needed. It is clear that B(E)= B(E, E).
For any E ∈GLm(C), F ∈GLn(C) and G ∈GLp(C), define the following maps:

1G
E,F : B(E, F)→ B(E,G)⊗B(G, F), ui j 7→

p∑
k=1

uik ⊗ uk j ,(14)

εE : B(E)→ C, ui j 7→ δi j ,(15)

SE,F : B(E, F)→ B(F, E)op, u 7→ E−1ut F.(16)

It is clear that SE,F is bijective.
Lemma 3.2 in [Bichon 2014] ensures that with these morphisms we have a

cogroupoid. The cogroupoid B is defined as follows:

(i) ob(B)= {E ∈ GLm(C),m > 1}.

(ii) For E, F ∈ ob(B), the algebra B(E, F) is the algebra defined as in (13).

(iii) The structural maps 1•
•,•, ε• and S•,• are defined in (14), (15) and (16), respec-

tively.

Lemma 3.1.1 [Bichon 2014, Lemma 3.4, Corollary 3.5]. Let E ∈ GLm(C), F ∈
GLn(C) with m, n > 2. Then B(E, F) 6= (0) if and only if tr(E−1 E t)= tr(F−1 F t).
Consequently, let λ ∈ C, and Bλ the full subcogroupoid of B with objects

ob(Bλ)= {E ∈ GLn(C),m > 2, tr(E−1 E t)= λ}.

Then Bλ is a connected cogroupoid.

Thus, if E ∈GLm(C), F ∈GLn(C)with m, n>2 satisfy tr(E−1 E t)= tr(F−1 F t),
then the comodule categories of B(E) and B(F) are monoidally equivalent.

The Calabi–Yau property of the algebras B(E) was discussed in [Bichon 2013,
Section 6] (see also [Walton and Wang 2016] and [Yu 2016]). Theorem 2.4.7 pro-
vides a more simplified way to prove that the algebras B(E) are twisted CY algebras.
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Actually, by Lemma 5.6 in [Bichon 2013], the trivial Yetter–Drinfeld module over
the algebra B(Eq) admits a bounded finitely generated free Yetter–Drinfeld module
resolution and B(Eq) twisted CY of dimension 3 with left homological integral∫ l
B(Eq )
= Cη given by

η(u)=
(

q−2 0
0 q2

)
.

For any E ∈ GLm(C) (m > 2), there is a q ∈ C× such that

tr(E−1 E t)=−q − q−1
= tr(E−1

q E t
q),

so B(E) and B(Eq) are monoidally Morita–Takeuchi equivalent. Therefore, the
algebra B(E) is twisted CY by Theorem 2.4.7. Let

∫ l
B(E) = Cξ be the left homo-

logical integral of B(E), where ξ : B(E)→ C is an algebra homomorphism. Since
there are no nontrivial units in B(E, Eq). Then ξ and η satisfy the equation

(SEq ,E ◦ SE,Eq )
2
= [η]rE,Eq

◦ ([ξ ]lE,Eq
)−1

by Theorem 2.4.9. So ξ is defined by ξ(uE) = (E t)−1 E(E t)−1 E . Hence, the
Nakayama automorphism of B(E) is defined by µ(u)= (E t)−1 Eu(E t)−1 E [Reyes
et al. 2014, Lemma 1.3].

3.2. Example 2. In this subsection, we want to present a class of Hopf algebras
such that the inner automorphism in Theorem 2.4.9 can be calculated. We first
recall the definition of the 2-cocycle cogroupoid.

Let H be a Hopf algebra with bijective antipode. A (right) 2-cocycle on H is a
convolution invertible linear map σ : H ⊗ H → k satisfying

σ(h1, k1)σ (h2k2, l)= σ(k1, l1)σ (h, k2l2), σ (h, 1)= σ(1, h)= ε(h)

for all h, k, l ∈ H. The set of 2-cocycles on H is denoted Z2(H). They define the
2-cocycle cogroupoid of H.

Let σ, τ ∈ Z2(H). The algebra H(σ, τ ) is defined to be the vector space H
together with the multiplication given by

(17) x � y = σ(x1, y1)x2 y2τ
−1(x3, y3) for any x, y ∈ H.

The Hopf algebra H(σ, σ ) is just the cocycle deformation Hσ of H defined by
Doi [1993]. The comultiplication of Hσ is the same as the comultiplication of H.
However, the multiplication and the antipode are deformed:

h � k = σ(h1, k1)h2k2σ
−1(h3, k3), Sσ,σ (h)= σ(h1, S(h2))S(h3)σ

−1(S(h4), h5)

for any h, k ∈ Hσ.
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Now we recall the necessary structural maps for the 2-cocycle cogroupoid of H.
For any σ, τ, ω ∈ Z2(H), define the following maps:

1ωσ,τ=1:H(σ,τ)→H(σ,ω)⊗H(ω,τ), x 7→x1⊗x2.(18)

εσ=ε:H(σ,σ)→k.(19)

Sσ,τ :H(σ,τ)→H(τ,σ), x 7→σ(x1,S(x2))S(x3)τ
−1(S(x4),x5).(20)

It is routine to check that the inverse of Sσ,τ is given as follows:

(21) S−1
σ,τ : H(τ, σ )→ H(σ, τ ), x 7→ σ−1(x5, S−1(x4))S−1(x3)τ (S−1(x2), x1).

The 2-cocycle cogroupoid of H, denoted H, is the cogroupoid defined as follows:

(i) ob(H)= Z2(H).

(ii) For σ, τ ∈ Z2(H), the algebra H(σ, τ ) is the algebra H(σ, τ ) defined in (17).

(iii) The structural maps 1•
•,•, ε• and S•,• are defined in (18), (19) and (20) respec-

tively.

Following [Bichon 2014, Lemma 3.13], the morphisms 1•
•,•, ε• and S•,• indeed sat-

isfy the conditions required for a cogroupoid. It is clear that a 2-cocycle cogroupoid
is connected.

Now we recall the definition of the pointed Hopf algebras U (D, λ). For a group
0, we denote by 0

0YD the category of Yetter–Drinfeld modules over the group
algebra k0. If 0 is an abelian group, then it is well known that a Yetter–Drinfeld
module over the algebra k0 is just a 0-graded 0-module.

We fix the following terminology.

• a free abelian group 0 of finite rank s;

• a Cartan matrix A= (ai j ) ∈ Zθ×θ of finite type, where θ ∈N. Let (d1, . . . , dθ )
be a diagonal matrix of positive integers such that di ai j = d j a j i , which is
minimal with this property;

• a set X of connected components of the Dynkin diagram corresponding to the
Cartan matrix A. If 1 6 i, j 6 θ , then i ∼ j means that they belong to the
same connected component;

• a family (qI )I∈X of elements in k which are not roots of unity;

• elements g1, . . . , gθ ∈ 0 and characters χ1, . . . , χθ ∈ 0̂ such that

(22) χ j (gi )χi (g j )= qdi ai j
I , χi (gi )= qdi

I for all 16 i, j 6 θ, I ∈ X .

For simplicity, we write q j i = χi (g j ). Then equation (22) reads as follows:

(23) qi i = qdi
I and qi j q j i = qdi ai j

I for all 16 i, j 6 θ, I ∈ X .
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Let D be the collection D(0, (ai j )16i, j6θ , (qI )I∈X , (gi )16i6θ , (χi )16i6θ ). A link-
ing datum λ = (λi j ) for D is a collection of elements (λi j )16i< j6θ,i� j ∈ k such
that λi j = 0 if gi g j = 1 or χiχ j 6= ε. We write the datum λ = 0, if λi j = 0 for
all 1 6 i < j 6 θ . The datum (D, λ) = (0, (ai j ), qI , (gi ), (χi ), (λi j )) is called a
generic datum of finite Cartan type for group 0.

A generic datum of finite Cartan type for a group 0 defines a Yetter–Drinfeld mod-
ule over the group algebra k0. Let V be a vector space with basis {x1, x2, . . . , xθ }.
We set

|xi | = gi , g(xi )= χi (g)xi , 16 i 6 θ, g ∈ 0,

where |xi | denotes the degree of xi . This makes V a Yetter–Drinfeld module over the
group algebra k0. We write V = {xi , gi , χi }16i6θ ∈

0
0YD. The braiding is given by

c(xi ⊗ x j )= qi j x j ⊗ xi , 16 i, j 6 θ.

The tensor algebra T (V ) on V is a natural graded braided Hopf algebra in 0
0YD.

The smash product T (V )#k0 is a usual Hopf algebra. It is also called a bosonization
of T (V ) by k0.

Definition 3.2.1. Given a generic datum of finite Cartan type (D, λ) for a group 0,
define U (D, λ) as the quotient Hopf algebra of the smash product T (V )#k0 modulo
the ideal generated by

(adc xi )
1−ai j (x j )= 0, 16 i 6= j 6 θ, i ∼ j,

xi x j −χ j (gi )x j xi = λi j (gi g j − 1), 16 i < j 6 θ, i � j,

where adc is the braided adjoint representation defined in [Andruskiewitsch and
Schneider 2004, Sec. 1].

To present the CY property of the algebras U (D, λ), we recall the concept of
root vectors. Let 8 be the root system corresponding to the Cartan matrix A with
{α1, . . . , αθ } a set of fixed simple roots, and W the Weyl group. We fix a reduced
decomposition of the longest element w0 = si1 · · · si p of W in terms of the simple
reflections. Then the positive roots are precisely the following:

β1 = αi1, β2 = si1(αi2), . . . , βp = si1 · · · si p−1(αi p).

For βi =
∑θ

i=1 miαi , we write gβi = gm1
1 · · · g

mθ

θ and χβi = χ
m1
1 · · ·χ

mθ

θ .
Lusztig [1993] defined the root vectors for a quantum group Uq(g). Up to a

nonzero scalar, each root vector can be expressed as an iterated braided commutator.
In [Andruskiewitsch and Schneider 2002, Sec. 4.1], the root vectors were general-
ized on a pointed Hopf algebras U (D, λ). For each positive root βi , 16 i 6 p, the
root vector xβi is defined by the same iterated braided commutator of the elements
x1, . . . , xθ , but with respect to the general braiding.
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Remark 3.2.2. If βj = αl , then we have xβj = xl . That is, x1, . . . , xθ are the simple
root vectors.

Lemma 3.2.3 [Yu et al. 2016, Lemma 3.3]. Let (D, λ) be a generic datum of finite
Cartan type for a group 0, and H the Hopf algebra U (D, λ). Let s be the rank of
0 and p the number of the positive roots of the Cartan matrix.

(i) The algebra H is Noetherian AS-regular of global dimension p+ s. The left
homological integral module

∫ l
H of H is isomorphic to kξ , where ξ : H→ k is

an algebra homomorphism defined by ξ(g)=
(∏p

i=1 χβi

)
(g) for all g ∈ 0 and

ξ(xk)= 0 for all 16 k 6 θ .

(ii) The algebra H is twisted CY with Nakayama automorphism µ defined by
µ(xk)= qkk xk for all 16 k 6 θ , and µ(g)=

(∏p
i=1 χβi

)
(g) for all g ∈ 0.

Let (D, λ) be a generic datum of finite Cartan type for a group 0. The algebra
U (D, λ) is a cocycle deformation of U (D, 0). That is U (D, λ)=U (D, 0)σ, where
σ is the cocycle defined by

(24) σ(g, g′)= 1,

σ (g, xi )= σ(xi , g)= 0, 16 i 6 θ, g, g′ ∈ 0,

σ(xi , x j )=

{
λi j , i < j, i � j,
0, otherwise.

Lemma 3.2.3 shows that both U (D, 0) and its cocycle deformation U (D, λ) are
twisted CY. The algebras U (D, λ) are Noetherian with finite global dimension by
Lemma 2.1 in [Yu and Zhang 2013]. Therefore, Theorem 2.4.7 explains why for
this class of Hopf algebras, cocycle deformation preserves the CY property.

With Lemma 3.2.3, we can write the inner automorphism in Theorem 2.4.9
explicitly.

Proposition 3.2.4. Let H be U (D, 0), then U (D, λ)= Hσ, where σ is the cocycle
as defined in (24). Let

∫ l
H = kξ and

∫ r
Hσ = kη be left homological integral of H and

Hσ respectively, where ξ : H → k and η : Hσ
→ k are algebra homomorphisms.

Then the following equation holds.

(Sσ,1 ◦ S1,σ )
2
= [η]r1,σ ◦ ([ξ ]

l
1,σ )
−1
◦ γ,

where γ is the inner automorphism defined by γ (xk)=
[∏p

i=1 gβi

]−1
(xk)

[∏p
i=1 gβi

]
for 16 k 6 θ and γ (g)= g for any g ∈ 0.

Appendix

We list two basic homological properties of Hopf algebras. They are well known,
but due to a lack of convenient references, we provide in most cases their proofs.
We do not require bijectivity of antipode or Noetherianity of a Hopf algebra.
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First we want to show that for a Hopf algebra, the left global dimension always
equals the right global dimension.

Let H be a Hopf algebra. We denote the left global dimension, the right global
dimension and the Hochschild dimension of H by lgldim(H), rgldim(H) and
Hdim(H), respectively. We have the left adjoint functor L :Mod H e

→Mod H and
the right adjoint functor R :Mod(H e)op

→Mod H op. Let M be an H -bimodule.
Then L(M) is a left H -module defined by the action

x→ m = x1mS(x2) for any x ∈ H.

While R(M) is a right H -module defined by the action

m← x = S(x1)mx2 for any x ∈ H.

Proposition A.1. Let H be a Hopf algebra. Then

projdim kε = projdim εk= rgldim(H)= lgldim(H)= Hdim(H).

Proof. That projdim kε = rgldim(H) and projdim εk = lgldim(H) follows from
[Lorenz and Lorenz 1995, Section 2.4]. We know from [Cartan and Eilenberg 1956,
IX.7.6] that rgldim(H) and lgldim(H) are bounded by Hdim(H). Let M be any
H -bimodule. By Lemma 2.4 in [Brown and Zhang 2008], there are isomorphisms
ExtiH e(H,M)∼=ExtiH (εk, L(M)) for i >0. This shows that Hdim(H)6 lgldim(H).
Similarly, for i > 0, the isomorphisms ExtiH e(H,M)∼= ExtiH (kε, R(M)) hold. So
Hdim(H)6 rgldim(H). Therefore, we have rgldim(H)= lgldim(H)=Hdim(H).
In conclusion, we obtain that

projdim kε = projdim εk= rgldim(H)= lgldim(H)= Hdim(H). �

Next we want to show that to see whether a Hopf algebra H is homologically
smooth it is enough to investigate the projective resolution of the trivial module.

Proposition A.2. Let H be a Hopf algebra. The following are equivalent:

(i) The algebra H is homologically smooth.

(ii) The left trivial module εk admits a bounded projective resolution with each
term finitely generated.

(iii) The right trivial module kε admits a bounded projective resolution with each
term finitely generated.

Proof. We only need to show that (i) and (ii) are equivalent. (i)⇐⇒(iii) can be
proved symmetrically.

(i)⇒(ii) Suppose that H is homologically smooth. That is, H has a resolution

0→ Pn→ Pn−1→ · · · → P1→ P0→ H → 0
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such that each term is a finitely generated projective H e-module. Following from
Lemma 2.4 in [Berger and Taillefer 2007],

0→ Pn ⊗H εk→ Pn−1⊗H εk→ · · · → P1⊗H εk→ P0⊗H εk→ εk→ 0

is a projective resolution of εk. Clearly, it is a bounded projective resolution with
each term finitely generated as left H -module.

(ii)⇒(i) View H e as an H e-H -bimodule via

a⊗ b→ x ⊗ y = ax ⊗ yb, (x ⊗ y)← a = xa1⊗ S(a2)y

for any a ⊗ b, x ⊗ y ∈ H e and a ∈ H. Let H ⊗ H∗ be the free right H -module
defined by multiplication to the second factor H. The morphism

H e
→ H ⊗ H∗, x ⊗ y 7→ x2 y⊗ x1

is an isomorphism of right H -modules with inverse

H ⊗ H∗→ H e, x ⊗ y 7→ y1⊗ S(y2)x .

That is, H e ∼= H ⊗ H∗ as right H -modules. So the functor H e
⊗H − :Mod H →

Mod H e is exact. This functor clearly sends projective H -modules to projective
H e-modules. Moreover, H e

⊗ εk ∼= H as left H e-modules. The isomorphism
H e
⊗ εk→ H is defined by x ⊗ y 7→ xy. Therefore, if the left trivial module εk

admits a bounded projective resolution Q• with each term finitely generated, then
H e
⊗H Q• is a bounded projective resolution of H over H e with each term finitely

generated. That is, H is homologically smooth. �
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