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NONCONTRACTIBLE HAMILTONIAN LOOPS IN
THE KERNEL OF SEIDEL’S REPRESENTATION

SÍLVIA ANJOS AND RÉMI LECLERCQ

The main purpose of this note is to exhibit a Hamiltonian diffeomorphism
loop undetected by the Seidel morphism of a 1-parameter family of 2-point
blow-ups of S 2 � S 2, exactly one of which is monotone. As side remarks,
we show that Seidel’s morphism is injective on all Hirzebruch surfaces, and
discuss how to adapt the monotone example to the Lagrangian setting.

1. Introduction

The motivation for this work is the search for homotopy classes of loops of Hamil-
tonian diffeomorphisms which are not detected by Seidel’s morphism. Given a sym-
plectic manifold .M;!/ and its Hamiltonian diffeomorphism group Ham.M;!/,
recall that Seidel’s morphism

S W �1.Ham.M;!//! QH�.M;!/
�

was defined on a covering of �1.Ham.M;!// by Seidel [1997] for strongly semi-
positive symplectic manifolds and then on the fundamental group itself and for any
closed symplectic manifold by Lalonde, McDuff and Polterovich [1999].

The target space, QH�.M;!/�, is the group of invertible elements of the quantum
homology of .M;!/. More precisely, the small quantum homology of .M;!/ is
QH�.M;!/DH�.M IZ/˝…, where… is equal to…univŒ q; q�1�, with q a variable
of degree 2 and the ring …univ consisting of generalized Laurent series in a variable
t of degree 0:

(1) …univ
WD

nX
�2R

r� t
�
j r� 2Q and #f� > c j r� ¤ 0g<1; for all c 2 R

o
:

Since its construction, Seidel’s morphism has been successfully used to detect
many Hamiltonian loops (see, e.g., [McDuff 2010]), and was extended or generalized
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to various situations (see, e.g., [Hutchings 2008; Savelyev 2008; Hu and Lalonde
2010; Hu et al. 2011; Fukaya et al. 2017]). One particular extension consists of
secondary-type invariants, whose construction is based on Seidel’s construction after
enriching Floer homology by considering Leray–Serre spectral sequences introduced
by Barraud and Cornea [2007], and which should detect loops undetected by Seidel’s
morphism [Barraud and Cornea � 2017]. However, there were no Hamiltonian
loops with nontrivial homotopy class known to be undetected by Seidel’s morphism
(as far as we know). This short note intends to provide the first example of such
a loop on a family of symplectic manifolds. Moreover, the example is explicit and
thus can easily be used to test other constructions. Notice finally that this example
can also be used to construct other examples (e.g., by products, see [Leclercq 2009]).

First try: symplectically aspherical manifolds. Looking for elements in the kernel
of the Seidel morphism, one might first consider symplectically aspherical manifolds,
by which we mean that both the symplectic form and the first Chern class vanish
on the second homotopy group of the manifold. Indeed, such manifolds have trivial
Seidel morphism.

The geometric reason for this is that, by construction, the Seidel morphism of
.M;!/ counts pseudo-holomorphic section classes of a fibration over S2 with
fiber .M;!/. The difference between two such classes is thus given by elements
of �2.M/ admitting a pseudo-holomorphic representative, whose existence is
prevented by symplectic asphericity.

Alternatively, this can be proved via purely algebraic methods, using the equiva-
lent description of Seidel’s morphism, as a representation of �1.Ham.M;!// into
the Floer homology of .M;!/. Given a loop of Hamiltonian diffeomorphisms, one
gets an automorphism of HF�.M;!/ which can be shown to act trivially by using
the following facts:

(i) Morse homology (the quantum homology of symplectically aspherical mani-
folds) is a ring over which Floer homology is a module.

(ii) All involved morphisms (PSS, Seidel, continuation) are module morphisms.

(iii) Any automorphism of Morse homology preserves the fundamental class, since
it generates the top degree homology group.

(iv) The fundamental class is the unit of the Morse homology ring.

This line of ideas, which goes back to Seidel, has been used by McDuff and Salamon
[2004] to simplify Schwarz’s original proof of invariance of spectral invariants. It
has been adapted by Leclercq [2008] to Lagrangian spectral invariants and used
to prove the triviality of the relative (i.e., Lagrangian) Seidel morphism by Hu,
Lalonde and Leclercq [2011] (see Lemma 5.5).
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Now, even though aspherical manifolds seem to be ideal candidates, there are
no homotopically nontrivial loops of Hamiltonian diffeomorphisms known to the
authors in such manifolds.

Second try: symplectic toric manifolds. Symplectic toric geometry provides a large
class of natural examples of symplectic manifolds which are complicated enough
to be interesting while simple enough that many rather involved constructions
can be explicitly performed. In [Anjos and Leclercq 2015], we computed the
Seidel morphism on NEF toric 4-manifolds following work of McDuff and Tolman
[2006]. Recall that by definition .M; J / is an NEF pair if there are no J -pseudo-
holomorphic spheres in M with negative first Chern number. This gave, in the
particular case of 4-dimensional toric manifolds, an elementary and somehow purely
symplectic way to perform these computations previously obtained by Chan, Lau,
Leung, and Tseng [2017] (and using works by Fukaya, Oh, Ohta, and Ono [2016],
and González and Iritani [2012]). We also showed that one could then deduce the
Seidel morphism of some non-NEF symplectic manifolds and, as an example, we
made explicit computations for some Hirzebruch surface.

The easiest symplectic toric 4-manifolds for which we can exhibit a nontrivial
element in the kernel of the Seidel morphism are 2-point blow-ups of S2�S2. More
precisely, start with the monotone product .S2 �S2; !1/1 on which we perform
two blow-ups. Notice that the resulting symplectic manifold is monotone only when
the respective sizes of the blow-ups coincide and are equal to 1

2
.

In Section 4, we exhibit a specific loop of Hamiltonian diffeomorphisms whose
homotopy class is in the kernel of Seidel’s morphism if and only if the size of
the two blow-ups coincide. Since this loop, obtained from two circle actions, can
easily be seen to be nontrivial (Anjos and Pinsonnault [2013] computed the rational
homotopy of symplectomorphism groups of these manifolds), this obviously yields
a family of symplectic manifolds, only one of which is monotone, with noninjective
Seidel morphism.

Theorem 1.1. The Seidel morphism of the 2-point blow-ups of .S2 �S2; !1/ with
blow-ups of equal (arbitrary) sizes is not injective.

In our search for undetected Hamiltonian loops, we realized the following:

Theorem 1.2. Seidel’s morphism is injective on all Hirzebruch surfaces.

While this is not hard to prove and might be well known to experts, we did not
find it in the literature and therefore include a proof in Section 3.

1Traditionally, !� denotes the product symplectic form with total area � � 1 on the first factor
and area 1 on the second one.
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Discussion on the adaptation to the Lagrangian setting. As mentioned above,
there is a relative (i.e., Lagrangian) version of the Seidel morphism defined by Hu
and Lalonde [2010] and further studied by Hu, Lalonde and Leclercq [2011]. There
are two ways to adapt the example of Theorem 1.1 to the Lagrangian setting which
we discuss here. (However, in order to keep this note short, and to avoid too many
technical details on the standard tools involved, we will not investigate these ideas
further here.)

First, let us remark that to get the Lagrangian version of the Seidel morphism, we
need to consider a monotone Lagrangian of minimal Maslov at least 2. So, in what
follows, we have in mind the only monotone symplectic manifold of the family
mentioned above, i.e., the monotone product S2 �S2 with the area of each factor
equal to 1 on which we perform two blow-ups of size 1

2
.

The first way to relate absolute and relative settings is to consider the diagonal
of the symplectic product. More precisely, let .M;!/ be a monotone symplec-
tic manifold. The diagonal � ' M is a monotone Lagrangian of the product
.M �M;! ˚ .�!//, which we denote . yM; y!/ for short, with minimal Maslov
number equal to twice the minimal first Chern number of .M;!/ and thus greater
than or equal to 2. This allows us to consider the Lagrangian Seidel morphism:

S� W �1
�
Ham. yM; y!/;Ham�. yM; y!/

�
! QH�.�/

�;

where Ham� denotes the subgroup of Ham formed by Hamiltonian diffeomorphisms
which preserve �, and QH�.�/ denotes the Lagrangian quantum homology of �.

An element �2�1.Ham.M;!// generated by the HamiltonianH WM�Œ0; 1�!R,
induces y�2�1.Ham. yM; y!/;Ham�. yM; y!//, generated by yFDF˚0W yM�Œ0; 1�!R.
To get an element in the kernel of the Lagrangian Seidel morphism, it only remains
to prove that

(i) S.�/D S�.y�/ in QH�.M;!/' QH�.�/, and

(ii) y� is nonzero.

Note that in (i), not only are the quantum homologies canonically identified but the
chain complexes themselves coincide and this identification agrees with the PSS
morphisms in the following sense:

QH�.M;!/

PSS
��

QH�.�/

PSS
��

HF�.H; J / HF�. yH; yJ W�/

as proved in the monotone setting by Leclercq and Zapolsky [2017] (J denotes
an almost complex structure on M, compatible with and tamed by !, while yJ
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denotes an almost complex structure on yM adapted to J ). This suggests that it is
straightforward to show that (i) holds.

On the other hand, proving (ii) will require a different technique.
The second way to the Lagrangian setting is to use Albers’s comparison map

[2008] between Hamiltonian and Lagrangian Floer homologies, denoted below
by A, which relates the absolute and relative Seidel morphisms via the following
commutative diagram (see [Hu and Lalonde 2010]):

�1.Ham.M;!// //

S
��

�1.Ham.M;!/;HamL.M;!// //

SL
��

�0.HamL.M;!//

HF�.M;!/ A
// HF�.M;!IL/

where L is a closed monotone Lagrangian of .M;!/ with minimal Maslov number
at least 2.

To get an interesting example via this method, one must choose L such that
HF�.M;!IL/ ¤ 0 and prove (again) that the image of � 2 �1.Ham.M;!// in
�1.Ham.M;!/;HamL.M;!// is nontrivial.

2. Background and user manual for Sections 3 and 4

In order to prove Theorems 1.1 and 1.2 in the following sections, we need to
describe the setting and give some information whose nature we now explain. We
also give some details about previous works on which it relies.

Step A: Geometric setting. We will first introduce the symplectic toric 4-manifold
.M;!/ in which we are interested and describe the associated circle actions, moment
map, and polytope. Then we will give topological information which will be useful:

� the fundamental group of Ham.M;!/, on which the Seidel morphism is
defined, and

� the second homology group of M, which consists of generators of the quantum
homology of .M;!/ (as a module over the Novikov ring).

Background for Step A. (See [Cannas da Silva 2001] for more details.) First, consider
a Hamiltonian circle action on .M;!/. It is generated by a function � WM ! R,
called the moment map, which is assumed to be normalized, that is, satisfyingZ

M

� !nD 0:

Now .M;!/ is called toric if it admits an effective action by a Hamiltonian torus
T2 � Ham.M;!/. We will denote by ˆ the corresponding moment map and by
P Dˆ.M/ the moment polytope. If � is an outward primitive normal to the facet
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D� of P, we consider the associated Hamiltonian circle action, �� , whose moment
map is � WD h�;ˆ. � /i.2

Note that ��1.D�/ is a semifree maximum component for ��, as the action is
semifree (i.e., the stabilizer of every point is trivial or the whole circle) on some
neighborhood of ��1.D�/.

Step B: The Seidel morphism. In this step, we will give the expression of the
image of the aforementioned circle actions �� via the Seidel morphism, S.

Background for Step B. (See [McDuff and Tolman 2006; Anjos and Leclercq 2015].)
We consider a toric 4-manifold .M;!;ˆ/ as above. To compute the image

of a Hamiltonian circle action via the Seidel morphism, we pick a !-compatible,
S1-invariant almost complex structure, J. The main case we are concerned with
here is the Fano case. Recall that .M; J / is said to be Fano if any J -pseudo
holomorphic sphere in M has positive first Chern number.

When this is the case, [McDuff and Tolman 2006, Theorem 1.10] or [Anjos and
Leclercq 2015, Theorem 4.5] tells us that the associated Seidel element consists of
only one term (the one of highest order). More precisely:

Theorem 2.1 [McDuff and Tolman 2006, Theorem 1.10]. Let .M;!; J;ˆ/ be a
compact Fano toric symplectic 4-manifold. Let � be an outward primitive normal to
the facet D� of the moment polytope P and let �� be the associated Hamiltonian
circle action. Then

S.��/D ŒFmax�˝ qt
�max ;

where � is the moment map associated to �� , and Fmax D �
�1.D�/ is the maximal

fixed point component of � and �max D �.Fmax/.

Step C: The quantum homology of .M;!/. The computation of the Seidel el-
ements S.��/ in Step B also gives us explicit relations involving the quantum
product. This allows us to complete the description of the quantum homology as
an algebra. Since the generators of �1.Ham.M;!// can be expressed in terms of
the �� , this also gives us the image of the Seidel morphism so that, by understanding
im.S/� QH�.M;!/�, we can prove Theorems 1.1 and 1.2.

Background for Step C. (See [McDuff and Tolman 2006, Section 5.1] for the general
setting.) Let us recall how to obtain the quantum homology algebra in our specific
setting. Let D1; : : : ;Dn be the facets of P and �1; : : : ; �n 2 R2 the respective
outward primitive integral normal vectors. Let C be the set of primitive sets, i.e.,
subsets I D fi1; i2g � f1; : : : ; ng such that Di1 \Di2 D ∅. Let ui D ŒDi �˝ q.

2To lighten the notation, we will actually denote by Di and �i , respectively, the facet and the
circle action associated to the normal �i (instead of D�i and ��i ).



HAMILTONIAN LOOPS IN THE KERNEL OF SEIDEL’S REPRESENTATION 263

There are two linear relations,
nX
iD1

h.1; 0/; �i iui D 0 and
nX
iD1

h.0; 1/; �i iui D 0;

which generate the ideal of linear relations Lin.P / in QŒu1; : : : ; un�. Moreover,
relations between the normal vectors �i yield equations satisfied by the corre-
sponding Seidel elements S.�i /. Using these, it is then possible to exhibit the
quantum product ui1 � ui2 , for every primitive set fi1; i2g, as a linear combina-
tion of the classes p (the class of a point), 1 (the fundamental class), and ui :
fi1i2 D .˛p˝ q

2Cˇ1C
P
˛iui /t

 for some ˛; ˇ; ˛i 2 Z and  2 R. Then, the
Stanley–Reisner ideal is defined by

SRY .P /D hui1 � ui2 �fi1i2 j fi1; i2g 2 C i:

Finally, there is an isomorphism of …univ-algebras

(2) QH�.M;!/'Q Œu1; : : : ; un�˝…
univ=.Lin.P /CSRY .P //:

3. Hirzebruch surfaces

We proceed in two steps as the “even” and “odd” Hirzebruch surfaces have to be dealt
with separately. Throughout the section, we follow the notation and conventions
used in [Anjos and Leclercq 2015] (in particular in Section 5.3), most of them
having been recalled in Section 2 above.

3.1. Even Hirzebruch surfaces. Recall that the toric “even” Hirzebruch surfaces
.F2k; !�/, 0 � k � ` with ` 2 N and ` < � � `C 1, can be identified with the
symplectic manifolds M� D .S

2 �S2; !�/ where !� is the split symplectic form
with area �� 1 for the first S2-factor, and with area 1 for the second factor. The
moment polytope of F2k is

P2k D
˚
.x1; x2/ 2 R2 j 0� x1 � 1; x2C kx1 � 0; x2� kx1 � �� k

	
:

Let ƒ2ke1 and ƒ2ke2 represent the circle actions whose moment maps are, respec-
tively, the first and second components of the moment map associated to the torus
action T2k acting on F2k . We will also denote by ƒ2ke1 and ƒ2ke2 the corresponding
generators in �1.T2k/.

It is well known (see, e.g., [Abreu and McDuff 2000, Theorem 1.1 or Corol-
lary 2.7]) that for k D 0, �1.Ham.F0; !�// D Z=2˚ Z=2 and that for k � 1,
�1.Ham.F2k; !�// D Z=2˚ Z=2˚ Z. Moreover, the authors explain in [Abreu
and McDuff 2000] (see Section 2.5 and in particular Lemma 2.10) that the Z=2

terms of the fundamental groups are respectively generated by ƒ0e1 and ƒ0e2 , while
the generator of the additional Z term is ƒ2e1 .
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Let B D ŒS2�fpg� and F D Œfpg�S2�2H2.S2�S2IZ/ and denote uDB˝q
and v D F˝ q where q is the degree 2 variable entering into play in the definition
of …D…univŒ q; q�1� and …univ is the ring of generalized Laurent series defined
by (1).

We now gather from [Anjos and Leclercq 2015] the results we will need for the
proof of Theorem 1.2 in this case. First, in Section 5.3 of that paper, we computed
the image of the generators ƒ0e1 , ƒ0e2 , and ƒ2e1 by the Seidel morphism, S. Namely,
we obtained:

(3)

S.ƒ0e1/D B˝ qt
1
2 D ut

1
2 ; S.ƒ0e2/D F ˝ qt

�
2 D vt

�
2 ; and

S.ƒ2e1/D .BCF /˝ qt
1
2
��
D .uC v/t

1
2
��; with � D 1

6�
:

Note that the circle action ƒ2e1 acts on the second Hirzebruch surface F2 and the
almost complex structure in this case is not Fano, because the class B � F is
represented by a pseudo-holomorphic sphere and its first Chern number vanishes.
Nevertheless, by Theorem 4.4 in [Anjos and Leclercq 2015], the Seidel element of
this action still does not contain any lower order terms.

The computation of the Seidel elements associated to each one of the facets of
the polytope yields the quantum product identities

(4) F �F D 1˝ q�2t��; B �B D 1˝ q�2t�1; and F �B D p;

so S.ƒ0e1/
2 D S.ƒ0e2/

2 D 1. Finally recall that, thanks to [Anjos and Leclercq
2015, Proposition 5.1] (see (2) in our setting), we were able to express the (small)
quantum homology algebra as

QH�.F2k; !�/'…
univŒu; v� =hu2 D t�1; v2 D t��i:

From (3) and (4), it is now easy to check that the inverse of S.ƒ2e1/ is given by

(5) S.ƒ2e1/
�1
D .B �F /˝ q

t
1
2
C�

1� t1��
D .u� v/

t
1
2
C�

1� t1��
:

Let us now prove the theorem.

Proof of Theorem 1.2 for even Hirzebruch surfaces. Since ƒ0e1 and ƒ0e2 are of
order 2, any element in �1.Ham.F2k; !�// is of the form "1ƒ

0
e1
C "2ƒ

0
e2
C `ƒ2e1 ,

with "1 and "2 in f0; 1g and ` 2 Z. Moreover, it is in the kernel of S if and only if
S.ƒ2e1/

�` D S.ƒ0e1/
"1S.ƒ0e2/

"2 , which is equivalent to the fact that S.ƒ2e1/
�` is

either u, v, or uv, up to a power of t .
Let `0 2 N n f0g, and expand the `0-th power of S.ƒ2e1/ (whose expression is

recalled in (3) above) using the binomial theorem to get

S.ƒ2e1/
`0

D

`0X
kD0

 
`0

k

!
ukv`

0�kt .
1
2
��/`0

:



HAMILTONIAN LOOPS IN THE KERNEL OF SEIDEL’S REPRESENTATION 265

The identities u2D t�1 and v2D t�� ensure S.ƒ2e1/
`0

is of the form C1 �uCC2 �v

if `0 is odd, or C1CC2 �uv otherwise, where (in both cases) C1 and C2 are linear
combinations of powers of t with positive rational coefficients (hence nonzero), so

"1ƒ
0
e1
C "2ƒ

0
e2
C `ƒ2e1 … ker.S/

for any "1and "2 in f0; 1g and ` < 0.
We proceed along the same lines for a positive `: S.ƒ2e1/

�` is, by the binomial
theorem together with (5), of the form

C 01 �u�C
0
2 � v

.1� t1��/`
or

C 01�C
0
2 �uv

.1� t1��/`
;

which shows that "1ƒ0e1 C "2ƒ
0
e2
C `ƒ2e1 is not in ker.S/ for any ` > 0 either.

This implies that the only elements of �1.Ham.F2k; !�// which could be in
ker.S/ are of the form "1ƒ

0
e1
C "2ƒ

0
e2

so that in the end ker.S/D f0g. �

3.2. Odd Hirzebruch surfaces. Similarly, “odd” Hirzebruch surfaces .F2k�1; !0�/,
1 � k � ` with ` 2 N and ` < � � `C 1, can be identified with the symplectic
manifolds .CP2 # CP2; !0�/ where the symplectic area of the exceptional divisor is
� > 0 and the area of the projective line is �C 1. Its moment polytope is�

.x1; x2/ 2 R2 j
0� x1C x2 � 1; x2.k� 1/C kx1 � 0;

kx2C .k� 1/x1 � k��� 1

�
:

Let ƒ2k�1e1
and ƒ2k�1e2

represent the circle actions whose moment maps are, re-
spectively, the first and the second component of the moment map associated to the
torus action T2k�1 acting on F2k�1. As before, we will also denote by ƒ2k�1e1

and
ƒ2k�1e2

the generators of �1.T2k�1/.
Similarly to the even case the fundamental group of .F2k�1; !0�/ is computed

in [Abreu and McDuff 2000, Theorem 1.4 or Corollary 2.7]. More precisely,
�1.Ham.F2k�1; !0�// D Zhƒ1e1i for all k � 1, that is, ƒ1e1 is the generator of
the fundamental group as explained in [Abreu and McDuff 2000, Section 2.5 (in
particular Lemma 2.11)]. So, in order to prove that the Seidel morphism is injective,
we only need to show that the order of S.ƒ1e1/ in QH�.F2kC1; !0�/ is infinite.

We now need to expand Remark 5.6 of [Anjos and Leclercq 2015] (which quickly
dealt with the odd case), along the lines of [Anjos and Leclercq 2015, Section 5.3]
(where we focused in more detail on the even case). Let B 2H2.CP2 # CP2IZ/

denote the homology class of the exceptional divisor with self intersection�1 and F
the class of the fiber of the fibration CP2 # CP2! S2. If we set u1D .BCF /˝q,
u2 D u4 D F ˝ q, and u3 D B˝ q, clearly the additive relations are given by

(6) u2 D u4 and u1 D u2Cu3:
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The normal vectors to the moment polytope of F1 are given by �1 D .1; 1/, �2 D
.0;�1/, �3 D .�1;�1/, and �4 D .�1; 0/. We denote by �i the actions associated
to �i .

As explained in Section 2, since F1 is Fano, it follows from [McDuff and Tolman
2006, Theorem 1.10] that the Seidel elements associated to the �i are given by

S.�1/D .BCF /˝ qt1C��2" D u1t1C��2";
S.�2/D S.�4/D F ˝ qt" D u2t";

S.�3/D B˝ qt2"�� D u3t2"��;

with "D .3�2C 3�C 1/=.3.1C 2�//.
The relation �1C�3D0 yields S.�1/�S.�3/D1, that is, B�.BCF /˝q2tD1.

Similarly, since �2 C �4 D �3 it follows that S.�2/ � S.�4/ D S.�3/, which is
equivalent to F �F DB˝ q�1t��. Therefore the primitive relations are given by

(7) u1u3 D t
�1 and u2u4 D u3t

��:

Now, following Step C of Section 2 above, we set uD F ˝ q and deduce from the
relations (6) and (7) that

QH�.F2kC1; !
0
�/D…

univŒu�=.u4t2�Cu3t�� t�1/:(8)

Note that ƒ1e1 , the generator of �1.Ham.F2k�1; !0�//, is the action associated
to the vector .1; 0/. We thus get that S.ƒ1e1/D S.�4/�1.

Now we can proceed with the proof of the theorem.

Proof of Theorem 1.2 for odd Hirzebruch surfaces. From the discussion above, we
see that S.ƒ1e1/

�1D S.�4/D ut". So, in order to show that Seidel’s morphism is
injective we only need to show that

S.`ƒ1e1/
�1
D u`t`"¤ 1

for any ` 2 N n f0g.
First, note the polynomialM.u/Du4t2�Cu3t��t�12…univŒu� in (8) above has

invertible main coefficient, so that for any positive integer `, there exist uniquely
determined polynomials Q` and R` such that u`t`" � 1 DM.u/Q`.u/CR`.u/
and the degree of R` is less than the degree of M.

Assume Seidel’s morphism is not injective: then there exists `0 2 N n f0g such
that R`0 D 0. To find the polynomial Q`0 , we proceed to the long division of
u`0 t`0"� 1 by M which consists of a finite number (at most `0� 3) of steps. This
ensures that the coefficients of Q`0 are finite linear combinations of powers of t
(with rational coefficients). Therefore Q`0 induces a polynomial Q1

`0
in QŒu� when

t is set to 1, satisfying u`0 � 1D .u4Cu3� 1/Q1
`0
.u/ in QŒu�. Since the roots of

u4Cu3� 1 are not roots of unity, we get a contradiction. So, there is no positive
integer `0 such that u`0 t`0" D 1, which concludes the proof. �
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4. 2-point blow-ups of S 2 � S 2

We now consider the manifold obtained from

.M�; !�/D .S
2
�S2; !�/

(see Section 3.1) by performing two successive symplectic blow-ups of capacities c1
and c2 with 0<c2�c1<c1Cc2�1��, which we denote by .M�; c1; c2 ; !�; c1; c2/.
LetB, F 2H2.M�; c1; c2 IZ/ be the homology classes defined byBD ŒS2�fpg� and
F D Œfpg�S2� and letEi 2H2.M�; c1; c2 IZ/ be the exceptional class corresponding
to the blow-up of capacity ci .

Remark 4.1. There is an alternative description of this manifold as the 3-point
blow-up of CP2. Indeed, consider X3DCP2 # 3CP2 equipped with the symplectic
form !�I ı1; ı2; ı3 obtained from the symplectic blow-up of .CP2; !�/ at three
disjoint balls of capacities ı1; ı2 and ı3, where !� is the standard Fubini–Study
form on CP2 rescaled so that !�.CP1/D �. Let fL; V1; V2; V3g be the standard
basis of H2.X3IZ/ consisting of the class L of a line together with the classes Vi
of the exceptional divisors. It is well known that X3 is diffeomorphic to M�; c1; c2 .
The diffeomorphism X3 ! M�; c1; c2 can be chosen to map the ordered basis
fL; V1; V2; V3g to fB CF �E1; B �E1; F �E1; E2g. When one considers this
birational equivalence in the symplectic category, uniqueness of symplectic blow-ups
implies that .X3; !�I ı1; ı2; ı3/ is symplectomorphic, after rescaling, toM� blown-up
with capacities c1 and c2, where �D .��ı2/=.��ı1/, c1D .��ı1�ı2/=.��ı1/,
and c2 D ı3=.� � ı1/. In Section 2.1 of [Anjos and Pinsonnault 2013], it is
explained why it is sufficient to consider values of c1 and c2 in the range above:
0 < c2 � c1 < c1C c2 � 1� �. J

The quantum algebra of .M�; c1; c2 ; !�; c1; c2/ was computed by Entov and
Polterovich [2008] (as .X3; !�I ı1; ı2; ı3/, see their proof of Proposition 4.3). More
precisely, setting uD .F �E2/˝ q and v D .B �E2/˝ q, they proved that:

Lemma 4.2. As a …univ-algebra we have

QH�.M�; c1; c2 ; !�; c1; c2/Š…
univŒu; v�=I�;c1;c2

where I�;c1;c2 is the ideal generated by

u2v2Cu2vt�c2 D vt���c2 C tc1���1�c2 and

u2v2Cuv2t�c2 D ut�1�c2 C tc1���1�c2 :

We recall here parts of this computation, using the formalism of [Anjos and
Leclercq 2015], as they will be needed below to understand the proof of the
noninjectivity result stated as Theorem 1.1. These parts correspond to Steps B
and C of Section 2.
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Sketch of proof. Consider .M�; c1; c2 ; !�; c1; c2/ endowed with the standard action
of the torus T D S1 �S1 for which the moment polytope is given by

(9) P D
˚
.x1; x2/ 2R2 j 0� x2 ��; �1� x1 � 0; c1 � x2�x1 ��C1� c2

	
so the primitive outward normals to P are as follows:

�1 D .0; 1/; �2 D .1; 0/; �3 D .1;�1/;

�4 D .0;�1/; �5 D .�1; 0/; �6 D .�1; 1/:

The Delzant construction gives a method to obtain, from the polytope P, the
symplectic manifold .M�; c1; c2 ; !�; c1; c2/ with the toric action T : first consider
the standard action of the torus T6 on C6 and then perform a symplectic reduction
at a regular level of that action (for more details, see, for example, [Cannas da Silva
2001, Section 29]). Then the normalized moment map ˆ WM�; c1; c2 ! R2 of the
remaining T action, obtained through the Delzant construction, is given by

ˆ.z1; : : : ; z6/D
�
�
1
2
jz2j

2
C �1;�

1
2
jz1j

2
C�� �2

�
; zi 2 C;

where �1 and �2 are given by the symplectic parameters �, c1, and c2 as

(10) �1 D
c31 C 3c

2
2 � c

3
2 � 3�

3.c21 C c
2
2 � 2�/

and �2 D
c31 � c

3
2 C 3c

2
2�� 3�

2

3.c21 C c
2
2 � 2�/

:

Moreover, the homology classes Ai D Œˆ�1.Di /� of the pre-images of the corre-
sponding facets Di are: A1 D F �E2, A2 D B �E1, A3 D E1, A4 D F �E1,
A5 D B �E2, and A6 DE2.

For 1 � i � 6, let �i be the circle action associated to the primitive outward
normal �i . Since the toric complex structure on M�; c1; c2 is Fano and T -invariant,
it follows from [McDuff and Tolman 2006, Theorem 1.10] or [Anjos and Leclercq
2015, Theorem 4.5] (recalled as Theorem 2.1 in Section 2) that the Seidel elements
associated to the �i are given by the expressions

S.�1/D .F �E2/˝ qt���2 ; S.�2/D .B �E1/˝ qt�1 ;

S.�3/DE1˝ qt�1C�2�c1 ; S.�4/D .F �E1/˝ qt�2 ;(11)

S.�5/D .B �E2/˝ qt1��1 ; S.�6/DE2˝ qt�C1�c2��1��2 :

There are nine primitive sets: f1; 3g, f1; 4g, f1; 5g, f2; 4g, f2; 5g, f2; 6g, f3; 5g,
f3; 6g, and f4; 6g which yield nine multiplicative relations (which form the Stanley–
Reisner ideal) that, combined with the two linear relations .A5DA1CA2�A4 and
A6 D A3CA4�A1/, give the desired result as explained in Step C of Section 2
above. �
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x

y

�

c1C c2

c1 � c2

�c2�c1�1
x

y

�

c1

c2

�c1C c2
�c1 � c2

�1

Figure 1. .M�; c1; c2 ; !�; c1; c2/ with toric actions T1 and T2.

Assume from now on that � D 1. Recall from [Anjos and Pinsonnault 2013,
Theorem 1.1] that if c2 < c1 then

�1.Ham.M1; c1; c2 ; !1; c1; c2//' Zhx0; x1; y0; y1; zi ' Z5;

where the generators x0; x1; y0; y1; z correspond to circle actions contained in
maximal tori of the Hamiltonian group. In particular, the generators in which we
will be most interested are x0D �2 and y0D �1 where the �i are the circle actions
associated to the primitive outward normals �i to the polytope P defined in (9).

Remark 4.3. In order to understand the remaining generators, consider the two
toric manifolds given by the polytopes in Figure 1. We denote by fx0; i ; y0; ig
the generators in �1.Ti /, where Ti , i D 1; 2, represent the two torus actions in
this figure and the generators fx0; i ; y0; ig correspond to the circle actions whose
moment maps are, respectively, the first and second components of the moment map
associated to each one of the toric actions. It was shown in [Anjos and Pinsonnault
2013, Lemma 4.5] that x1 D x0;1, z D y0;2, and y1 D y0;1� x1 D z� x0;2.

Note that the case c1 D c2 is an interesting limit case in terms of the topology
of the Hamiltonian group since y1 disappears. For more details see [Anjos and
Pinsonnault 2013, Section 5.1]. J

To prove Theorem 1.1, we will prove Proposition 4.4.

Proposition 4.4. The class of 2.x0C y0/ belongs to ker.S/ if and only if � D 1
and c1 D c2.

Proof. From the computation of the Seidel elements in (11) one gets that in the
general case (by which we mean for all��1), S.�1/Dut���2 and S.�5/Dvt1��1.
As the Seidel elements are invertible quantum classes, this yields invertibility of u
and v. Note that

S.x0/D S.�2/D S.�5/�1 D v�1t"1�1 and S.y0/D S.�1/D ut��"2:
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Since �� 1 > c22 , it is straightforward to deduce from (10) that "1 D "2 if and
only if �D 1: we now restrict our attention to this case and denote by " the common
value of "1 D "2. By invertibility of u and v, the fact that 2.x0C y0/ belongs to
ker.S/ is equivalent to u2 D v2, since

S.2.x0Cy0//D S.x0/2 �S.y0/2 D v�2t��1u2t1�� D v�2u2:

On the other hand, note that multiplying the first and second relations in I1; c1; c2
by v�1tc2 and u�1tc2, respectively, these become equivalent to

u2 D t�1C v�1tc1�2�u2vtc2 and v2 D t�1Cu�1tc1�2�uv2tc2

so that u2 D v2 is equivalent to v�1tc1�2�u2vtc2 D u�1tc1�2�uv2tc2.
Multiplying both relations in I1; c1; c2 by t2c2, we see that

(12)
�u2vtc2 D .u2v2t2c2 � tc1Cc2�2/� vtc2�1; and

�uv2tc2 D .u2v2t2c2 � tc1Cc2�2/�utc2�1

so we can replace u2vtc2 and uv2tc2 in the previous equation to obtain

u2 D v2() v�1tc1�1Cutc2 D u�1tc1�1C vtc2 :(13)

Finally, (12) also induces, by subtracting one from the other, the equation

.u2v�uv2/t�c2 D .v�u/t�1�c2 ;

which is equivalent to .v�1�u�1/t�1 D v�u. Using these together with (13) we
conclude that u2 D v2 if and only if .u� v/.tc1 � tc2/D 0 which is equivalent to
c1 D c2 since otherwise tc1 � tc2 would be invertible. �
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DIFFERENTIAL HARNACK ESTIMATES
FOR FISHER’S EQUATION

XIAODONG CAO, BOWEI LIU, IAN PENDLETON AND ABIGAIL WARD

We derive several differential Harnack estimates (also known as Li–Yau–
Hamilton-type estimates) for positive solutions of Fisher’s equation. We
use the estimates to obtain lower bounds on the speed of traveling wave
solutions and to construct classical Harnack inequalities.

1. Introduction

Fisher’s equation, or the Fisher–KPP partial differential equation, is given by

(1) ft =1 f + c f (1− f ),

where f is a real-valued function on an n-dimensional Riemannian manifold Mn,
and c is a positive constant. The equation was proposed by R. A. Fisher [1937] to
describe the propagation of an evolutionarily advantageous gene in a population,
and was also independently described in a seminal paper by A. N. Kolmogorov,
I. G. Petrovskii, and N. S. Piskunov [1937] in the same year; for this reason,
it is often referred to in the literature as the Fisher–KPP equation. The density
of the gene evolves according to diffusion (the term 1 f ) and reaction (the term
c f (1− f )). Since the two papers in 1937, the equation has found many applications
including in the description of the branching Brownian motion process [McKean
1975], in neuropsychology [Tuckwell 1988], and in describing certain chemical
reactions [Ó Náraigh and Kamhawi 2013]. Because a solution f often describes a
concentration or density, it is natural to study solutions to the equation for which
0< f < 1; our main theorems will simply assume positive solutions.

It is clear that f = 0 and f = 1 are stationary solutions to this equation on any
manifold; it is also known that when Mn

= Rn the equation admits traveling wave
solutions, i.e., solutions f (x, t) that we can express as a function of z = x + ηt for
some vector η ∈ Rn. Under a broad range of conditions, general solutions to the
equation in R1 approach a traveling wave solution with a unique minimal speed
(see for example, [Kolmogorov et al. 1937, Theorem 17] or [Fisher 1937; Sherratt
1998]).

MSC2010: 58J35, 35K59.
Keywords: differential Harnack, classical Harnack, Fisher’s equation, Fisher–KPP, traveling wave.
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A bound on the minimum speed of such a traveling wave solution on R1 was
known to Kolmogorov, Petrovskii and Piskunov [1937]; our work results in bounds
for the minimum speed of a solution on Rn for n = 1, 2, 3. While our bound in
dimension 1 is weaker than the previously known bounds, the bounds in higher
dimensions are new and suggest that the study of Harnack inequalities may be used
to bound the minimal speed of traveling waves in higher dimensions as well.

Our work introduces and proves three Li–Yau–Hamilton-type Harnack inequali-
ties which constrain positive functions satisfying the Fisher–KPP equation on an
arbitrary Riemannian manifold Mn. Depending on the setting we obtain different
inequalities. The study of differential Harnack inequalities was first initiated by P. Li
and S.-T. Yau [1986] (also see [Aronson and Bénilan 1979]). Harnack inequalities
have since played an important role in the study of geometric analysis and geometric
flows (for example, see [Hamilton 1993; Perelman 2002]). Applications have also
been found to the study of nonlinear parabolic equations, e.g., in [Hamilton 2011].
One of these is a recent reproof of the classical result of H. Fujita [1966], which
states that any positive solution to the endangered species equation in dimension n,

ft =1 f + f p,

blows up in finite time provided 0< n(p− 1) < 2; see [Cao et al. 2015].
When the dimension falls into a certain range we can integrate our differential

Harnack inequality along any spacetime curve to obtain a classical Harnack inequal-
ity which allows us to compare the values of positive solutions at any two points in
spacetime when time is large.

The organization for the paper is as follows: In Section 2 we present the precise
formulations and the proofs of our two inequalities governing closed manifolds. In
Section 3 we state and prove a similar Harnack inequality for complete noncompact
manifolds. In Section 4, we end the paper with the aforementioned results on the
minimum speed of traveling wave solutions and classical Harnack inequalities.

2. On closed manifolds

In this section, we will deal with the case when the Riemannian manifold M is
closed, and we also assume that its Ricci curvature is nonnegative.

In what follows, the time derivative will always be taken to mean the derivative
from the left if the two-sided derivative does not exist.

Theorem 1. Let (Mn, g) be an n-dimensional closed Riemannian manifold with
nonnegative Ricci curvature and let f (x, t) :M×[0,∞)→R be a positive solution
of the Fisher–KPP equation ft =1 f + c f (1− f ), where f is C2 in x and C1 in t ,
and c > 0.
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(A) Let u = log f and define

φ<0 (t)=

(
βcn

cn+8β(1−α)

)
e−ct
−β

1−e−ct .

Then we have

(2) 1u+α|∇u|2+βeu
+φ<0 (t)≥ 0

for all x and t , provided that

(i) 0< α < 1, (ii) β ≤ −cn(1+α)
4α2−4α+2n

< 0 and (iii) 8β(1−α)
n

+ c < 0.

(B) Now set

φ>0 (t)=


n

2(1−α)t
if t ≤ T2,

−βc(ec(t−T2)+1)

c+ 8β(1−α)
n

+cec(t−T2)
otherwise,

where
T2 :=

n
2(1−α)(−βc)

(4β(1−α)
n

+ c
)
.

If instead of (iii) we have

(iv) 8β(1−α)
n

+ c ≥ 0,

in addition to (i) and (ii), then

(3) 1u+α|∇u|2+βeu
+φ>0 (t)≥ 0.

In summary, our theorem is that 1u+α|∇u|2+βeu
+φ0(t)≥ 0, where

φ0(t)=



(βcn/(cn+8β(1−α)))e−ct
−β

1−e−ct if (iii) holds,

n
2(1−α)t

if (iv) holds and t ≤ T2,

−βc(ec(t−T2)+1)

c+ 8β(1−α)
n

+cec(t−T2)
if (iv) holds and t > T2.

We briefly describe the main idea of our proof here, which uses the parabolic
maximum principle and an argument by contradiction. We first define a quantity

h(x, t) : M × (0,∞)→ R,

which will depend on a given solution to Fisher’s equation. We start with h(x, ε)>0
for any sufficiently small ε> 0, and our goal is to prove this quantity h(x, t) remains
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positive for all points in M ×R+. As suggested in [Cao 2008; Cao and Hamilton
2009], we then compute what we call the time evolution of h, namely ∂h/∂t , in the
following form:

∂h
∂t
(x, t)=1h(x, t)+ A1(x, t) ·∇h(x, t)+ A2(x, t),

for some A1 : M × (0,∞)→ Rn, and A2 : M × (0,∞)→ R. We then assume
for the sake of a contradiction that there exists a first (with respect to t) point
(x1, t1) where h(x, t)≤ 0; it follows that (∂h/∂t)(x1, t1)≤ 0. Since h(x1, t1) must
be a local minimum in M of the function h(x, t1) : M → R, it also follows that
1h(x1, t1)≥ 0, and ∇h(x1, t1)= (0, . . . , 0). Thus our time evolution simplifies to

∂h
∂t
(x1, t1)≥ A2(x1, t1).

By our construction of h(x, t) we will force A2(x1, t1) > 0, and so we will have

0≥ ∂h
∂t
(x1, t1)≥ A2(x1, t1) > 0,

which is a contradiction. Thereby we conclude that h(x, t) > 0 for all (x, t) ∈
M × (0,∞).

Technical lemmas. In this section we prove the technical lemmas needed in the
case that M is a closed manifold.

Lemma 2 gives us the time evolution of h in terms of 4 quantities P1, P2, P3, P4

(which sum to A2 above). Lemma 3 gives a lower bound for P2 which also applies
in the noncompact case. Lemma 4 introduces quantities P5, P5.1, P5.2 which depend
only on φ and which give a lower bound for P3. Lemma 5 puts a lower bound on
P5. Lemma 6, used for our second Harnack inequality, bounds P3 when Lemma 5
is inapplicable. Finally, P1 and P4 are bounded in the proof of the main theorem.

Lemma 2. Let (Mn, g) be a complete Riemannian manifold with Ricci curvature
bounded from below by Ric≥−K . Let f (x, t) : Mn

→ R be a positive solution to
ft =1 f + c f (1− f ) which is C2 in x and C1 in t . Let u(x, t)= log f (x, t), and
let α, β, c be any constants. Define h(x, t) as follows:

h(x, t): =1u+α|∇u|2+βeu
+ϕ,

ϕ = ϕ(x, t)= φ(t)+ψ(x),

where φ(t) is any C1 function and ψ(x) is any C2 function. Then the following
inequality holds:

ht −1h− 2∇u ·∇h ≥ P1h+ P2+ P3+ P4,
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where

P1 =
2(1−α)

n
h− 4(1−α)

n
(α|∇u|2+βeu

+φ+ψ)− ceu,

P2 =
2(1−α)

n
(α2
|∇u|4+ 2φψ)− 2K (1−α)|∇u|2+ 4α(1−α)

n
φ|∇u|2

+|∇u|2eu
(4αβ(1−α)

n
− 2β −αc− c

)
,

P3 = e2u 2β2(1−α)
n

+ eu
(4β(1−α)

n
φ+ cφ+ cβ

)
+

2(1−α)
n

φ2
+φt ,

P4 =
4α(1−α)

n
ψ |∇u|2− 2∇u ·∇ψ + euψ

(
c+ 4β(1−α)

n

)
+

2(1−α)
n

ψ2
−1ψ.

Lemma 2 will be used in the proofs of both Theorem 1 and Theorem 7, with
different choices of α, β, c, φ and ψ . The statement of Lemma 2 is independent of
these choices.

Proof. The proof is based on a straightforward but fairly long calculation. Let
f : M ×[0,∞)→ R satisfy (1); hence u must satisfy

ut =1u+ |∇u|2+ c(1− eu).

We then compute

(∂t −1)u = c− ceu
+ |∇u|2,

(∂t −1)(1u)=1|∇u|2− c(1u)eu
− c|∇u|2eu,

(∂t −1)(α|∇u|2)= 2α∇u ·∇(1u)+ 2α∇u ·∇|∇u|2− 2αc|∇u|2eu
−α1|∇u|2,

(∂t −1)(βeu)= βceu
−βce2u,

(∂t −1)ϕ(t)= φt −1ψ,

2∇u ·∇h = 2∇u ·∇(1u)+ 2α∇u ·∇|∇u|2+ 2β|∇u|2eu
+ 2∇u ·∇ψ.

Here we use the Weitzenböck-Bochner formula,

1|∇u|2 = 2|∇∇u|2+ 2∇u ·∇(1u)+ 2 Ric(∇u,∇u),

where ∇∇u is the Hessian of u(x, t).
This leads to the equality

(∂t −1)h− 2∇u · ∇h

= 2(1−α)|∇∇u|2− ceu(1u)− |∇u|2eu(2αc+ 2β + c)

+2(1−α)Ric(∇u,∇u)+βceu
−βce2u

+φt −1ψ − 2∇u ·∇ψ.
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Using Cauchy–Schwarz |∇∇u|2 ≥ (1/n)(1u)2 and Ric≥−K yields that

(∂t −1)h− 2∇u · ∇h ≥ 2(1−α)
n

(1u)2− ceu(1u)− |∇u|2eu(2αc+ 2β + c)

−2(1−α)K |∇u|2+βceu
−βce2u

+φt −1ψ − 2∇u ·∇ψ.

Finally, we substitute for 1u:

1u = h−α|∇u|2−βeu
−φ−ψ,

to expand and conclude that

ht −1h− 2∇u ·∇h

≥ h
(2(1−α)

n
h− 4(1−α)

n
(α|∇u|2+βeu

+φ+ψ)− ceu
)

+

[2(1−α)
n

(α2
|∇u|4+ 2φψ)− 2K (1−α)|∇u|2+ 4α(1−α)

n
φ|∇u|2

+ |∇u|2eu
(4αβ(1−α)

n
− 2β −αc− c

)]
+

[
e2u
(2β2(1−α)

n

)
+ eu

(4β(1−α)
n

φ+ cφ+ cβ
)
+

2(1−α)
n

φ2
+φt

]
+

[4α(1−α)
n

ψ |∇u|2− 2∇u·∇ψ + euψ
(
c+ 4β(1−α)

n

)
+

2(1−α)
n

ψ2
−1ψ

]
= P1h+ P2+ P3+ P4,

as desired. �

We now show that P2 is nonnegative under the assumptions of Theorem 1.

Lemma 3. If K = 0 and assuming that (i) and (ii) hold, then for any x , t where
φ(t), ψ(x)≥ 0 we have

P2 ≥ 0.

Proof. We have assumed that α, 1−α, φ, ψ , K ≥ 0. Note that

4αβ(1−α)
n

− 2β −αc− c ≥ 0

is equivalent to
(4α(1−α)− 2n)β − cn(α+ 1)≥ 0,

or
(−4α(1−α)+ 2n)β ≤−cn(1+α),

which is exactly condition (ii) since 2n ≥ 1≥ 4α(1−α). �

Next, we find quantities depending only on φ which we will eventually use to
guarantee that P3 is strictly positive.
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Lemma 4. Assume α < 1. Define

µ1: =
1
2

c
√

n
2(1−α)

, ν1 =
c+ 4β(1−α)

n
2β

√
n

2(1−α)
,

ω1 =

√
2(1−α)

n
,

P5(φ): = −(µ1+ ν1φ)
2
+ (ω1φ)

2
+φt ,

P5.1(φ): =
(4β(1−α)

n
+ c

)
φ+βc, P5.2(φ): =

2(1−α)
n

φ2
+φt .

Then for any (x, t), P5 > 0 implies that P3 > 0. Alternatively, if P5.1 ≥ 0 and
P5.2 > 0, then P3 > 0.

Proof. Recall that

P3(φ)= e2u
(2β2(1−α)

n

)
+ eu

(4β(1−α)
n

φ+ cφ+ cβ
)
+

2(1−α)
n

φ2
+φt .

If P5 > 0, then by using x2
+ 2xy ≥−y2, where x2

= e2u(2β2(1− a)/n), we get

P3(φ)≥−
n

8(1−α)β2

[
βc+

(
c+ 4(1−α)β

n

)
φ
]2
+

2(1−α)
n

φ2
+φt

=−(µ1+ ν1φ)
2
+ (ω1φ)

2
+φt = P5(φ) > 0.

Alternatively, if P5.1 ≥ 0 and P5.2 > 0, then since (1− α) > 0 we can ignore the
first term of P3 and get

P3(φ)≥ eu
(4β(1−α)

n
φ+ cφ+ cβ

)
+

2(1−α)
n

φ2
+φt

= eu P5.1+ P5.2 > 0. �

We now find functions φ(t) such that P3(φ) > 0. In Lemma 5 we construct φ(t)
in the case that (iii) is true, and in Lemma 6 we construct φ(t) when (iv) is true.

Lemma 5. Let µ, ν, ω be any constants such that µ 6= 0, ν2 < ω2 and ω > 0. If
for sufficiently small ε > 0 we define

φ(t) :=
µ
( 1
ν−(ω−ε)

e2µ(ω−ε)t
−

1
ν+(ω−ε)

)
1−e2µ(ω−ε)t ,

then

−(µ+ νφ)2+ (ωφ)2+φt > 0,

where lim
t→0+

φ(t)=∞ and φ(t)≥ 0 for all t .
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Proof. Choose ε small enough so that ν2 < (ω− ε)2. We claim that φ(t) satisfies
the following equation:

−(µ+ νφ)2+ [(ω− ε)φ]2+φt(t)= 0

for all time. This follows from the direct computation below. On the one hand we
get that

−(µ+ νφ)2+ [(ω− ε)φ]2 =

µ2(ω−ε)2
( e2µ(ω−ε)t

ν−(ω−ε)
−

1
ν+(ω−ε)

)2

(1−e2µ(ω−ε)t)2

−

(
µ+

µν
( e2µ(ω−ε)t

ν−(ω−ε)
−

1
ν+(ω−ε)

)
1−e2µ(ω−ε)t

)2

=
µ2
[2(ω−ε)(ω−ε−ν)][2(ω−ε)(ω−ε+ν)e2µ(ω−ε)t

]

(1−e2µ(ω−ε)t)2(ν−(ω−ε))2(ν+(ω−ε))2

=−
4µ2(ω−ε)2e2µ(ω−ε)t

(ν+(ω−ε))(ν−(ω−ε))(e2µ(ω−ϕ)t−1)2
.

On the other hand we have

φt(t)=
2µ2(ω−ε)e2µ(ω−ε)t

(1−e2µ(ω−ε)t)(ν−(ω−ε))
+

2µ2(ω−ε)e2µ(ω−ε)t
( e2µ(ω−ε)t

ν−(ω−ε)
−

1
ν+(ω−ε)

)
(1−e2µ(ω−ε)t)2

=
4µ2(ω−ε)2e2µ(ω−ε)t

(ν+(ω−ε))(ν−(ω−ε))(1−e2µ(ω−ε)t)2
.

Therefore it follows that

−(µ+ νφ)2+ [(ω− ε)φ]2+φt = 0,

and hence

−(µ+ νφ)2+ (ωφ)2+φt = 2εωφ2
− ε2φ2

= φ2(2εω− ε2).

Note that ν−(ω−ε) and ν+(ω−ε)must have different signs since their product
is ν2
− (ω−ε)2 < 0; hence φ(t) 6= 0 for all time. It then follows that for sufficiently

small ε,
−(µ+ νφ)2+ (ωφ)2+φt = φ

2(2εω− ε2) > 0.

To show that limt→0+ φ(t)=∞, we split φ(t) into two parts. First, note that

lim
t→0+

( 1
ν−(ω−ε)

e2µ(ω−ε)t
−

1
ν+(ω−ε)

)
=

1
ν−(ω−ε)

−
1

ν+(ω−ε)

=
2(ω−ε)

ν2−(ω−ε)2
< 0.
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Further, it is clear that
lim

t→0+
µ

1−e2µ(ω−ε)t =−∞.

Combining these two calculations lets us conclude that

lim
t→0+

φ(t)=∞.

Finally, since φ(t) is continuous and starts out positive and φ(t) 6= 0 for any t > 0,
it follows that φ(t) > 0 for all t > 0. �

Remark. We can also compute lim
t→∞

φ(t).

If µ > 0 then e2µ(ω−ε)t
→∞ as t→∞; hence we find that

lim
t→∞

φ(t)=

µ

ν−(ω−ε)

−1
=

µ

−ν+(ω−ε)
.

If µ < 0 then e2µ(ω−ε)t
→ 0 as t→∞, which gives us

lim
t→∞

φ(t)= −µ

ν+(ω−ε)
.

Next we deal with the other case.

Lemma 6. Let µ1, ν1, ω1 be defined as in Lemma 4, and suppose (iv) is true (i.e.,
(iii) becomes false). Let

T2 = T2(ε) :=
n

2(1−α)(1−ε)(−βc)
·

(4β(1−α)
n

+ c
)
.

If for some sufficiently small ε > 0 we define

φ(t) :=


n

2(1−α)(1−ε)t
if t ≤ T2,

−µ1(e2µ1(ω1−ε)(t−T2)+1)
(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)

if t > T2,

then for t ≤ T2 we get P5.1≥ 0 and P5.2> 0, and for t > T2 we get P5> 0. Therefore
P3(φ) > 0 for all t .

In addition, limt→0+ φ(t)=∞ and φ(t) > 0 for all t .

Proof. For ε < 1, we have

lim
t→0+

φ(t)= lim
t→0+

n
2(1−α)(1−ε)t

=∞.

To show that φ(t) is continuous at T2, we check its limits from the left and right.
The limit from the left is

lim
t→T−2

φ(t)= n
2(1−α)(1−ε)T2

=
−βcn

4β(1−α)+cn
.

And the limit from the right is
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lim
t→T+2

φ(t)= −µ1(1+1)
(ν1+(ω1−ε))+(ν1−(ω1−ε))

=
−2µ1
2ν1

=−
c
2
·

2βn
(cn+4β(1−α))

=
−βcn

4β(1−α)+cn
.

Therefore φ(t) is continuous.
Next we check that φ(t) > 0 for all t > 0. Note that φ(t) is continuous, and

clearly is positive between 0 and T2. For t ≥ T2, since µ1 6= 0, it follows that

−µ1(e2µ1(ω1−ε)(t−T2)+ 1) 6= 0,

and therefore φ(t) 6= 0 for any t ≥ T2. By continuity, it follows that φ(t) > 0 for
all t > 0.

Next we show that for t ≤ T2 we have P5.1 ≥ 0. That is, we need

P5.1 =

(4β(1−α)
n

+ c
)
φ(t)+βc ≥ 0.

First we note that condition (iv) states that 4β(1− α)/n + c ≥ 0. Since φ(t) is
decreasing in t < T2, it suffices to check that P5.1 ≥ 0 holds for t = T2:(4β(1−α)

n
+ c

)
φ(t)+βc ≥

(4β(1−α)
n

+ c
)
φ(T2)+βc

=

(4β(1−α)
n

+ c
)(

−βc
4β(1−α)

n
+c

)
+βc = 0.

Therefore P5.1 ≥ 0 for all t ≤ T2.

Now we show that P5.2 > 0 for all t ≤ T2. That is, we need

P5.2 =
2(1−α)

n
φ(t)2+φt(t) > 0.

We have

P5.2 =
2(1−α)

n

[ n
2(1−α)(1−ε)t

]2
+

−n
2(1−α)(1−ε)t2

=
n

2(1−α)(1−ε)2t2 −
n

2(1−α)(1−ε)t2 =
εn

2(1−α)(1−ε)2t2 > 0.

This implies that P3(φ) > 0 for t ≤ T2. Next we show that P5 > 0 for all t > T2.
That is, we need that

P5 =−(µ1+ ν1φ)
2
+ (ω1φ)

2
+φt > 0

for

φ(t)= −µ1(e2µ1(ω1−ε)(t−T2)+1)
(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)

.
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We first show that for t > T2, φ(t) satisfies

−(µ1+ ν1φ)
2
+ [(ω1− ε)φ]

2
+φt = 0.

Plugging in φ(t) for t > T2 gives us that

−(µ1+ ν1φ)
2
+ [(ω1− ε)φ]

2

=−

[
µ1−

µ1ν1(e2µ1(ω1−ε)(t−T2)+1)
(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)

]2

+

[
(ω1− ε)

−µ1(e2µ1(ω1−ε)(t−T2)+1)
(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)

]2

=
µ2

1(ω1−ε)
2
[−(1−e2µ1(ω1−ε)(t−T2))2+(e2µ1(ω1−ε)(t−T2)+1)2]

[(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)]2

=
4µ2

1(ω1−ε)
2e2µ1(ω1−ε)(t−T2)

[(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)]2
.

Similarly, we have

φt(t)=
−2µ2

1(ω1−ε)e2µ1(ω1−ε)(t−T2)[(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)]

[(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)]2

−
(ν1−(ω1−ε))(2µ1(ω1−ε))e2µ1(ω1−ε)(t−T2)[−µ1(e2µ1(ω1−ε)(t−T2)+1)]

[(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)]2

=−
4µ2

1(ω1−ε)
2e2µ1(ω1−ε)(t−T2)

[(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)]2
.

Therefore

−(µ1+ ν1φ)
2
+ [(ω1− ε)φ]

2
+φt = 0,

and it follows that

P5 =−(µ1+ ν1φ)
2
+ (ω1φ)

2
+φt = (2εω1− ε

2)φ2 > 0

for small enough ε. Therefore P3(φ) > 0 for t > T2. �

Remark. Here we observe that

lim
t→∞

φ(t)= lim
t→∞

−µ1(e2µ1(ω1−ε)(t−T2)+1)
(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)

=
−µ1

ν1−(ω1−ε)
=

µ1
−ν1+(ω1−ε)

,

which is the same limit as φ(t) from Lemma 5 since µ1 > 0.

Now we are ready to finish the proof of Theorem 1.
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Proof of Theorem 1. Let f : M × [0,∞) → R be a positive solution of ft =

1 f + c f (1− f ) for c > 0, and assume that the following hold:

(i) 0< α < 1,

(ii) β ≤ −cn(1+α)
4α2−4α+2n

< 0.

Let u = log f , and define

h(x, t) :=1u+α|∇u|2+βeu
+ϕ,

where

ϕ = ϕ(x, t)= φ(t)+ψ(x),

and since we are in the closed case we set ψ(x)= 0.
With µ1, ν1, ω1, and T2 as defined in Lemma 4 and Lemma 6, and ε > 0 small

enough to satisfy Lemmas 5 and 6, we let

φ(t)=



µ1

( 1
ν1−(ω1−ε)

e2µ1(ω1−ε)t−
1

ν1+(ω1−ε)

)
1−e2µ1(ω1−ε)t

if (iii),
n

2(1−α)(1−ε)t
if (iv) and t ≤ T2,

−µ1(e2µ1(ω1−ε)(t−T2)+1)
(ν1+(ω1−ε))+(ν1−(ω1−ε))e2µ1(ω1−ε)(t−T2)

if (iv) and t > T2.

We first show that h(x, t) > 0 for all t . Suppose for the sake of a contradiction
that h ≤ 0 somewhere; let t1 be the first time such that minx h(x, t)= 0. Since M
is closed the minimum is attained, say at the point (x1, t1). By Lemmas 5 and 6,
limt→0+ φ(t)=∞ so it follows that t1 exists.

By applying Lemma 2, we get that

(4) ht −1h− 2∇u ·∇h ≥ P1h+ P2+ P3+ P4,

where P1, . . . , P4 are defined as in Lemma 2. Note that in the case (iv), the derivative
φt at t = T2 is considered to be the derivative from the left.

We have P1h = 0 since h(x1, t1)= 0. Lemma 3 yields that P2 ≥ 0 since K = 0,
and P4 = 0 since ψ(x)≡ 0.

Since (x1, t1) is the first spacetime where h(x, t)= 0, the maximum principle
yields that ht(x1, t1)≤ 0 (where this is a derivative as t→ t−1 ), 1h(x1, t1)≥ 0 and
∇h(x1, t1)= 0.

Hence (4) yields that

(5) 0≥ ht −1h− 2∇u ·∇h ≥ P1h+ P2+ P3+ P4 ≥ P3.

Now we split into cases based on whether (iii) or (iv) holds.
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If (iii) is true, since c > 0 we have the following inequalities:

4β(1−α)
n

< c+ 4β(1−α)
n

<−
4β(1−α)

n
,∣∣∣c+ 4β(1−α)

n

∣∣∣< ∣∣∣4β(1−α)n

∣∣∣,(
c+4β(1−α)/n

2β

)2

<
(2(1−α)

n

)2
,

ν2
1 =

(
c+4β(1−α)/n

2β

)2
n

2(1−α)
< ω2

1 =
2(1−α)

n
.

Therefore by Lemmas 4 and 5 it follows that P3 > 0, which contradicts (5).
Otherwise, if (iv) is true, it follows from Lemmas 4 and 6 that P3 > 0 again,

which still contradicts (5).
This proves that h(x, t) > 0 for all x , t . Finally, letting ε→ 0 with

T2
∣∣
ε=0 =

n
2(1−α)(−βc)

(4β(1−α)
n

+ c
)
,

we get that φ(t)→ φ0(t), where

φ0(t)=



(
βcn

cn+8β(1−α)

)
e−ct
−β

1−e−ct if (iii) holds,

n
2(1−α)t

if (iv) holds and t ≤ T2
∣∣
ε=0,

−βc(ec(t−T2)+1)

c+ 8β(1−α)
n

+cec(t−T2)
if (iv) holds and t > T2

∣∣
ε=0.

Therefore limε→0 h(x, t)=1u+α|∇u|2+βeu
+φ0(t)≥ 0 as desired. �

3. On complete noncompact manifolds

In this section, we study the case in which the manifold is complete but noncompact.
The idea is similar to the case when the manifold is compact without boundary.
The main technical difficulty here is to ensure that the minimum of the Harnack
quantity is attained in a compact region. We first state our main theorem of this
section.

Theorem 7. Let (Mn, g) be an n-dimensional complete (noncompact) Riemannian
manifold with nonnegative Ricci curvature. Let f (x, t) : M × [0,∞)→ R be a
positive solution of the Fisher–KPP equation ft =1 f + c f (1− f ), where f is C2

in x and C1 in t , and c > 0 is a constant. Let u = log f . Then we have

(6) 1u+α|∇u|2+βeu
+φ1(t)≥ 0,
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provided the following constraints are satisfied:

(i) 0< α < 1,

(ii) β < −cn(1+α)
2(2α2−2α+n)

< 0,

(iii) −cn(2+
√

2)
4(1−α)

< β <
−cn(2−

√
2)

4(1−α)
,

where

φ1(t)=
µ2

( 1
ν2−ω2

e2µ2ω2t
−

1
µ2+ω2

)
1− e2µ2ω2t ,

with

µ2 = βc
√

2(1−α)
c(−cn−8β(1−α))

,

ν2 =

(4β(1−α)
n

+ c
)
·

√
2(1−α)

c(−cn−8β(1−α))
, ω2=

√
2(1−α)

n
.

Technical lemmas. In this subsection, we state and prove some additional lemmas
which will be needed in the proof of Theorem 7. Lemma 8 allows us to substitute
the sum P6+ P7 for P3+ P4; then Lemma 9 bounds P6 using a new quantity P8.
Lemma 10 allows us to apply Lemma 5 to control P8. Lemma 11 gives sufficient
conditions for bounding P7. After bounding P1, we are in a position to prove our
theorem.

For any given ε′ > 0, let

A = A(ε′) := 2β2(1−α)
n

−

n
(

c+ 4β(1−α)
n

)2

8(1−α− ε′)
.

Lemma 8. Let P3 and P4 be as defined in Lemma 2. Define

P6: = Ae2u
+ eu

(4β(1−α)φ
n

+ cβ + cφ
)
+

2(1−α)
n

φ2
+φt ,

P7: =
4α(1−α)

n
ψ |∇u|2− 2∇u ·∇ψ + 2ε′

n
ψ2
−1ψ.

For any ε′ > 0 and any (x, t) we have

P3+ P4 ≥ P6+ P7.

Proof of Lemma 8. Recall that,

P3+ P4 =
2β2(1−α)

n
e2u
+ eu

(4β(1−α)
n

φ+ cφ+ cβ
)
+

2(1−α)
n

φ2
+φt

+
4α(1−α)

n
ψ|∇u|2− 2∇u·∇ψ−1ψ+ euψ

(
c+ 4β(1−α)

n

)
+

2(1−α)
n

ψ2.
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We write the last two terms as

euψ
(

c+4β(1−α)
n

)
+

2(1−α)
n

ψ2
=euψ

(
c+4β(1−α)

n

)
+

2(1−α−ε′)
n

ψ2
+

2ε′

n
ψ2.

Using 2xy+ x2
≥−y2 in the form

euψ
(

c+ 4β(1−α)
n

)
+

2(1−α−ε′)
n

ψ2
≥−

n
(

c+ 4β(1−α)
n

)2

8(1−α− ε′)
e2u,

gives us

euψ
(

c+ 4β(1−α)
n

)
+

2(1−α)
n

ψ2
≥

2ε′

n
ψ2
−

n
(

c+ 4β(1−α)
n

)2

8(1−α− ε′)
e2u.

Applying this inequality then gives

P3+ P4 ≥ e2u

(
2β2(1−α)

n
−

n
(

c+ 4β(1−α)
n

)2

8(1−α− ε′)

)
+ eu

(4β(1−α)φ
n

+ cβ + cφ
)

+
2(1−α)

n
φ2
+φt +

4α(1−α)
n

ψ |∇u|2− 2∇u ·∇ψ + 2ε′

n
ψ2
−1ψ,

= P6+ P7,

which finishes the proof. �

Lemma 9. For µ1 = βc/(2
√

A), ν1 = (4β(1 − α)/n + c)/(2
√

A), and ω1 =
√

2(1−α)/n, define

P8(φ) := −(µ1+ ν1φ)
2
+ (ω1φ)

2
+φt .

If A > 0, then P8 > 0 implies P6 > 0 for any (x, t).

Proof of Lemma 9. Recall that

P6 = Ae2u
+

[(4β(1−α)
n

+ c
)
φ+βc

]
eu
+

2(1−α)
n

φ2
+φt .

Since A > 0, we use the fact that x2
+ xy ≥− 1

4 y2 in the form

Ae2u
+

[(4β(1−α)
n

+ c
)
φ+βc

]
eu
≥−

[(4β(1−α)
n

+ c
)
φ+βc

]2

4A
.
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This gives

P6 ≥−

[(4β(1−α)
n

+ c
)
φ+βc

]2

4A
+

2(1−α)
n

φ2
+φt

=−

[
βc

2
√

A
+

1
2
√

A

(4β(1−α)
n

+ c
)
φ
]2
+

(
φ

√
2(1−α)

n

)2

+φt

as desired. �

Lemma 10. If condition (iii) of Theorem 7 holds, then there always exists some
ε′ > 0 such that A > 0 and ν2

1 < ω
2
1.

Proof of Lemma 10. We first want to show that A(ε′) > 0 for some ε′ > 0. We will
show that A(0) > 0, and since A is a continuous function of ε′, this implies that
A(ε′) > 0 for some ε′ > 0.

We have

A(0)= 2β2(1−α)
n

−

n
(

c+ 4β(1−α)
n

)2

8(1−α− 0)

=
16β2(1−α)2−(cn+4β(1−α))2

8n(1−α)

=
−c2n2

−8βcn(1−α)
8n(1−α)

.

It follows from (iii) that

−8<−4− 2
√

2< cn
β(1−α)

,

which rearranges to give c2n2
+ 8βcn(1− α) < 0. Thus A(0) > 0, and so there

exists some ε′ > 0 such that A(ε′) > 0.

Next we want to show that ν2
1 < ω

2
1 for some ε′ > 0, where

ν1 =
4β(1−α)/n+c

2
√

A
and ω1 =

√
2(1−α)

n
.

Since ν1 and ω1 are continuous functions of ε′, if we can show that ν2
1 < ω

2
1 for

ε′ = 0, then it must be that ν2
1 < ω

2
1 for some ε′ > 0.

When ε′ = 0, ν2
1 < ω

2
1 is equivalent to

c2n2
+8βcn(1−α)+16(1−α)2β2

−c2n2−8βcn(1−α)
< 1.

Restriction (iii) implies

−4− 2
√

2< cn
β(1−α)

<−4+ 2
√

2,
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which leads to
c2n2

β2(1−α)2
+

8cn
β(1−α)

+ 8< 0.

This is equivalent to

c2n2
+ 8βcn(1−α)+ 16(1−α)2β2 <−(c2n2

+ 8βcn(1−α)),

and therefore ν2
1 < ω

2
1 for ε′ = 0. �

Lemma 11. Suppose R≥ 1 is a constant and ρ :Mn
→R is a function that satisfies

ρ(x)≥ 0, |∇ρ(x)| ≤ 1, 1ρ ≤
c1
ρ
,

for some constant c1 > 0. Define

(7) ψ(x) := k R2
+ρ2

(R2−ρ2)2
.

Then for k sufficiently large, ψ(x) satisfies P7 > 0.

Proof of Lemma 11. Let

9(x) := R2
+ρ2

(R2−ρ2)2
,

so that ψ = k9. We claim that 9 satisfies

(8) |∇9|2 ≤ 1893 and 19 ≤ c29
2,

where c2 depends only on c1.
Indeed, we can compute

∇9 =∇ρ
(6ρR2

+2ρ3

(R2−ρ2)3

)
,

|∇9|2 ≤ 4ρ2 (3R2
+ρ2)2

(R2−ρ2)6
≤ 1893,

and

19 =1ρ
(6ρR2

+2ρ3

(R2−ρ2)3

)
+ |∇ρ|2

(6R4
+36ρ2 R2

+6ρ4

(R2−ρ2)4

)
≤ 6c1

R2
+ρ2

(R2−ρ2)3
+ 18(R

2
+ρ2)2

(R2−ρ2)4

≤ (6c1+ 18)92.

Recall that

P7 =
4α(1−α)

n
ψ |∇u|2− 2∇u · ∇ψ + 2ε′

n
ψ2
−1ψ.
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Completing the square gives us

P7 ≥
2ε′

n
ψ2
−1ψ −

n
4α(1−α)ψ

|∇ψ |2.

By (8), we know that

ε′

n
k292

≥
ε′k
c2n

k19 and ε′

n
k292

≥
ε′k
18n
·

k2
|∇9|2

k9
,

so if

k >max
(c2n
ε′
,

18n2

4α(1−α)ε′

)
,

we immediately obtain P7 > 0. �

Proof of Theorem 7. Fix a point p ∈ M , let r = r(x) := d(x, p), where d( · , · )
denotes the geodesic distance in M . We define the Harnack quantity h on the
geodesic ball BR(p) := {x ∈ M | d(x, p) < R}. The quantity h depends on the
positive constants ε, ε′, k, R and is defined as follows:

h(x, t)=1u+α|∇u|2+βeu
+φ(t)+ψ(x),

φ = φ(t) :=
µ2

( 1
ν2−(ω2−ε)

e2µ2(ω2−ε)t −
1

ν2+(ω2−ε)

)
1− e2µ2(ω2−ε)t

,

ψ = ψ(x) := k R2
+r2

(R2−r2)2
,

with µ2, ν2, ω2, and A defined as in Lemma 9 and the paragraph following
Theorem 7. Fix R > 1. Let ε, ε′ and k be positive constants to be chosen later. Note
that h is C1 in t and C2 in x , except possibly for those x in the cut locus C(p). We
will show that we can choose ε, ε′, and k so that h(x, t) > 0 for all x, t . Assume
for the sake of a contradiction that h(x, t)≤ 0 for some x , t .

Let t1 be the first time t such that infx∈BR(p) h(x, t)= 0. Since limt→0+ h(t)=∞
by Lemma 5, it follows that t1 exists. Note also that ψ(x)→∞ as r = d(x, p)
approaches R, so the infimum of h is attained inside BR(p); let (x1, t1) be such a
point, so that h(x1, t1)= 0. Now we split into cases based on whether or not x1 is
in the cut locus C(p).

Case 1: Suppose that x1 /∈ C(p), so that ψ(x) is twice differentiable at x1. Then
by Lemmas 2 and 3 and 8 we have

0> ht −1h− 2∇h ·∇u− P1h ≥ P2+ P3+ P4 ≥ P6+ P7.

By Lemma 10, we can choose ε′ > 0 small enough such that A > 0 and ν2 < ω2;
then, since φ is the same as the one defined as in Lemma 5, it follows by Lemmas
5 and 9 that we can choose ε small enough so that P6 > 0.
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Note thatψ takes the form of (7), with the distance function ρ(x)=r(x)=d(x, p).
We have r ≥ 0 and |∇r |2 = 1; furthermore, by the Laplacian comparison theorem
we have 1r ≤ (n− 1)/r . Thus we can apply Lemma 11 and choose k sufficiently
large such that P7 > 0 as well, which leads to a contradiction.

Case 2: Suppose that x1 ∈ C(p). We apply Calabi’s trick. Let δ ∈ (0, d(x1, p)/2)
be a positive constant, and let γ (t) be any length-minimizing geodesic from p to x1.
Define pδ := γ (δ), so that x1 /∈ C(pδ), and define

rδ(x) := d(x, pδ)+ δ, ψδ(x) := k
R2
+ r2

δ

(R2− rδ)2
,

hδ :=1u+α|∇u|2+βeu
+φ+ψδ.

Note that by the triangle inequality, rδ(x)=d(x, pδ)+d(pδ, p)≥r(x),with equality
at x = x1. Since ψ is an increasing function of r , it follows that ψδ(x)≥ψ(x) with
equality at x = x1. This implies that (x1, t1) is still the first time and place where
hδ(x, t)= 0. Furthermore, hδ is now C2 at (x1, t1) so applying Lemmas 2, 3, 8, 5,
and 9 gives that 0> P7.

Note that clearly rδ ≥ 0 and |∇rδ| ≤ 1, and at x1 we get

1rδ =1(d(x1, pδ))≤
n−1

d(x1, pδ)
=

n−1
r(x1)−δ

≤
2(n−1)

r(x1)
,

since we assumed that δ ≤ 1
2r(x1). Therefore applying Lemma 11 gets us a

contradiction in this case as well.
This shows that h(x, t) > 0 for all x , t . Since h varies continuously as a function

of R, ε, ε′, we can take the limit R→∞ to get ψ→ 0. Then by taking ε, ε′→ 0,
we get that φ→ φ1 and so

1u+α|∇u|2+βeu
+

µ2

( 1
ν2−ω2

e2µ2ω2t
−

1
µ2+ω2

)
1− e2µ2ω2t ≥ 0,

with

µ2 = βc
√

2(1−α)
c(−cn−8β(1−α))

,

ν2 =

(4β(1−α)
n

+ c
)
·

√
2(1−α)

c(−cn−8β(1−α))
, ω2 =

√
2(1−α)

n
,

which finishes the proof. �

4. Applications

In this section, we derive two applications of our differential Harnack estimates.
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Bounds on the wave speed of traveling wave solutions. The first such application
shows that our Harnack inequality can be used to prove an interesting fact about
traveling wave solutions to Fisher’s equation. In particular we look at traveling
plane waves, i.e., solutions to (1) of the form

f (x, t)= v(z) := v(x + ηt â),

for some function v : Rn
→ R and some wave direction â ∈ Rn, |â| = 1 and wave

speed η > 0. For n = 1, these solutions were first studied by Fisher [1937] (also
see [Kolmogorov et al. 1937; Sherratt 1998]) and were considered by him to be a
natural model for propagation of mutations. He was able to show that if n = 1 and

lim
t→−∞

f (x, t)= 0, then it must be that η ≥ 2
√

c.

We will show a weaker bound that generalizes to higher dimensions.

Theorem 12. Let f (x, t)= v(x + ηt â) be a traveling plane wave solution to (1),
with wave speed η and wave direction â. Suppose that

(9) lim
x=kb̂,
k→∞

v(x)= 0 for some direction b̂ ∈ Rn, |b̂| 6= 0.

Then

η ≥


√

(3−
√

3)c if n = 1,
√

2c if n = 2,
√

(7− 3
√

3)c if n = 3.

When n = 1, η ≥ 2
√

c is both a necessary and sufficient condition for the
existence of traveling wave solutions. The same condition is sufficient in any higher
dimension, but it is not known (at least to us) if it is necessary as well. Our bounds
above give a weaker necessary wave speed in dimensions two and three.

Remark. In the proof below we have not used the fact that the traveling wave v
approaches 1 in some direction. Although we were ourselves unsuccessful, the
authors would like to encourage an attempt to use this additional restriction to
obtain a better bound on the wave speed η.

Lemma 13. For any v(z) and any η that satisfy the conditions of Theorem 12, and
for any α, β that satisfy (i), (ii), and (iii) as in Theorem 7, we have

η2
≥ M ′ := 4(1−α)[(c−φ(t))− (β + c)v(z)],

for all x , t , where

φ(t)=
µ
( 1
ν−ω

e2µωt
−

1
ν+ω

)
(1− e2µωt)

(which appears as φ1(t) in the statement of Theorem 7).
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Proof. Since Fisher’s equation is spherically symmetric, we may assume without
loss of generality that â = x̂1 = (1, 0, 0, . . . , 0). Therefore

f (x, t)= v(x1+ ηt, x2, . . . , xn)= v(z1, z2, . . . , zn)= v(ẑ).

It then follows from (1) that (where ∂i := ∂/∂zi )

η∂1v =1v+ cv(1− v).

Combining this with Theorem 7 gives

1(log v)+α|∇(log v)|2+βv+φ ≥ 0,

1v

v
− (1−α) |∇v|

2

v2 +βv+φ ≥ 0,

η∂1v−cv(1−v)
v

− (1−α) |∇v|
2

v2 +βv+φ ≥ 0,

(1−α)
∑n

i=2(∂iv)
2

v2 + (1−α)(∂1v)
2

v2 − η
∂1v

v
− (β + c)v+ (c−φ)≤ 0.

It follows from standard Cauchy–Schwarz that

−
η2

4(1−α)
− (β + c)v+ (c−φ)≤ 0,

hence η2
≥ 4(1−α)[(c−φ)− (β + c)v], as desired. �

Lemma 14. Assume that v(x)→ 0 along some path, as in (9). Then for any ε3 > 0
there exists (x3, t3), possibly depending on n, α, β, and c, such that at (x3, t3)

M ′ > M ′′− 1
3ε3,

where

M ′′ := 4(1−α)
(

c− −µ
ν+ω

)
.

Proof. Fix ε3 > 0. Note that

lim
t→∞

φ(t)= −µ
ν+ω

.

Choosing t ≥ t3 large enough gives∣∣∣φ(t3)− −µ
ν+ω

∣∣∣< ε3
24(1−α)

,

so that

4(1−α)(c−φ) > 4(1−α)
(

c− −µ
ν+ω

)
−
ε3
6
.
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Having fixed t3, we then set x3 := −ηt3â+λb̂ with λ sufficiently large. Then by
(9) it follows that

|v− 0|< ε3
24(1−α)

1
|β+c|

and − 4(1−α)(β + c)v > 0− 1
6ε3.

Therefore

M ′ = 4(1−α)[(c−φ)− (β + c)φ]> M ′′− 1
3ε3. �

Remark. Condition (9) can be weakened; it suffices to have lim
z→∞

v(z) = 0 along
some path that goes to infinity.

Lemma 15. If n ≤ 3, and β =−cn(1+α)/(4α2
− 4α+ 2n), and 0< α < α0(ε3)

is sufficiently close to 0, then conditions (i), (ii), and (iii) are satisfied, and
M ′′ > M ′′′− 1

3ε3, where

M ′′′ := M ′′′(n)= 2c
(

n−4+2
√

4n−n2

n−2+
√

4n−n2

)
.

Proof. Conditions (i) and (ii) are clearly satisfied by construction. And note that
(iii) is equivalent to

−
2+
√

2
4

<
β(1−α)

cn
<−

2−
√

2
4

.

But the quantity in the middle varies continuously with α near α = 0, so it suffices
to check it at α = 0, where we indeed have

−
2+
√

2
4

<−
1

2n
<−

2−
√

2
4

,

which holds for all n ≤ 3, so there must exist some α0 sufficiently small such that
(iii) holds for all α < α0.

Next, we compute M ′′:

M ′′ = 4(1−α)
(

c− −µ
ν+ω

)

= 4(1−α)

c+

βc
2
√

A
1

2
√

A

(4β(1−α)
n

+c
)
+

√
2(1−α)

n



= 4(1−α)

c+ βc(
c+ 4β(1−α)

n

)
+

√
8A(1−α)

n

 .
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Here A = A(ε′ = 0), so that

8A(1−α)
n

=
16β2(1−α)2

n2 −

(
c+ 4β(1−α)

n

)2
= c2

(
−1− 8β(1−α)

cn

)
.

This gives

M ′′ = 4(1−α)c

1+ β/c

1+ 4β(1−α)
cn

+

√
−1− 8β(1−α)

cn

 .
Again, this involves only (1− α) and β, both of which are continuous at α = 0,
where we have β =−c/2, so

M ′′ = 4c

(
1+ −1/2

1− 2
n+

√
−1+ 4

n

)
= 2c

(
2− n

n−2+
√

4n−n2

)
= M ′′′.

Hence for α sufficiently close to 0 we can get |M ′′−M ′′′|< ε3/3, which gives
us the desired conclusion. �

Proof of Theorem 12. Fix a solution f (x, t)= v(x+ηt â) of (1) which also satisfies
(9), and fix a ε3 > 0.

Let α<α0 and β=−c/(2(1−α)), so that (i), (ii), (iii) are satisfied (by Lemma 15).
Applying Lemma 13 then gives η2

≥ M for all x, t .
Applying Lemma 14, we find a pair (x3, t3) such that M ′ > M ′′− ε3/3. Then

applying Lemma 15 again, we have M ′′ > M ′′′− ε3/3 so that

η2 > M ′′′− ε3.

However, note that M ′′′ depends only on n. Hence we send ε3→ 0, to get that

η2
≥ M ′′′(n)=


c(3−

√
3), n = 1,

2c, n = 2,
c(7− 3

√
3), n = 3,

as desired. �

Classical Harnack inequality. In this subsection, we integrate our differential
Harnack estimates along a spacetime curve to derive classical Harnack inequalities.
We further assume that M is closed, and that f (x, t) < 1 for all x , t .

Theorem 16. Let M be a closed Riemannian manifold with nonnegative Ricci
curvature, and 0< f < 1 be a bounded positive solution to Fisher’s equation. Let
α and β satisfy the conditions of Theorem 1. Furthermore, if α ≤ n/4, then there
will always exist β such that β + c ≥ 0 in addition to the constraints of Theorem 1.
For such an α and β,
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(i) if 8β(1−α)+ cn < 0, then we have

f (x2, t2)
f (x1, t1)

≥

(1−e−ct2

1−e−ct1

) 8β2(1−α)
c2n+8βc(1−α) exp

(
−

d(x1, x2)
2

4(1−α)(t2− t1)

)
;

(ii) if 8β(1−α)+ cn > 0, t2 > t1 > T2, then we have

f (x2, t2)
f (x1, t1)

≥


(
1+ 8β(1−α)

cn

)
e−c(t2−T2)+ 1(

1+ 8β(1−α)
cn

)
e−c(t1−T2)+ 1


8β2(1−α)

c(cn+8β(1−α))

exp
(
−

d(x1, x2)
2

4(1−α)(t2− t1)

)
;

(iii) if 8β(1−α)+ cn = 0, t2 > t1 > T2, then we have

f (x2, t2)
f (x1, t1)

≥ exp
[
−
β

c

(
e−c(t2−T2)− e−c(t1−T2)

)]
exp

(
−

d(x1, x2)
2

4(1−α)(t2− t1)

)
.

Proof of Theorem 16. Let f (x, t) solve ft =1 f + c f (1− f ), and u = log f . Fix
points (x1, t1), (x2, t2) and let γ : [t1, t2] → Mn be an arbitrary spacetime path
connecting them, i.e., γ (t1)= x1, γ (t2)= x2.

Let v(t) := u(γ (t), t) be the value of u along γ . We compute

v′(t)= ut +∇u ·
dγ
dt
.

Using the time evolution for ut = (log f )t = ft/ f , this is equal to

v′(t)=1u+ |∇u|2+ c(1− eu)+∇u ·
dγ
dt
.

Applying the Harnack inequality gives

v′(t)≥ (1−α)|∇u|2+ (c−φ)− (β + c)eu
+∇u ·

dγ
dt
.

By assumption, f < 1 and β + c ≥ 0. This implies −(β + c)eu
≥ −(β + c), so

defining φ̃(t)=−β −φ(t), we then get

v′(t)≥ (1−α)|∇u|2+ (c−φ)− (β + c)+∇u ·
dγ
dt

=−β −φ+ (1−α)|∇u|2+∇u ·
dγ
dt

= φ̃(t)+ (1−α)|∇u|2+∇u ·
dγ
dt
,

v′(t)≥ φ̃(t)− 1
4(1−α)

∣∣∣dγ
dt

∣∣∣2.
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Integrating in time, we get

u(x2, t2)−u(x1, t1)=v(t2)−v(t1)=
∫ t2

t1
v′(t) dt≥

∫ t2

t1
φ̃(t) dt− 1

4(1−α)

∫ t2

t1

∣∣∣dγ
dt

∣∣∣2dt.

Since γ was chosen to be an arbitrary path, we can choose it to be the path
minimizing

∫
|γ ′|2, which is the minimizing geodesic between the two endpoints.

The integral thus becomes ∫ t2

t1
|γ ′|2 dt =

d(x1, x2)
2

t2− t1
.

Thus the spacetime Harnack is given by

log
( f (x2, t2)

f (x1, t1)

)
= u(x2, t2)− u(x1, t1)≥

∫ t2

t1
φ̃(t) dt −

d(x1, x2)
2

4(1−α)(t2− t1)
.

We compute the definite integral, dividing into three cases. First we deal with
the case 8β(1−α)+ cn < 0. In this case we have

φ(t)=

(
βcn

cn+8β(1−α)

)
e−ct
−β

1−e−ct ,

and

φ̃(t)=
(
βe−ct

−
βcne−ct

cn+8β(1−α)

) 1
1−e−ct = β ·

8β(1−α)
cn+8β(1−α)

·
e−ct

1−e−ct .

Then we can explicitly integrate∫ t2

t1
φ̃(t) dt = β

c

( 8β(1−α)
cn+8β(1−α)

)
log
[1−e−ct2

1−e−ct1

]
.

Therefore we get that

exp
(∫ t2

t1
φ̃(t) dt

)
=

(1−e−ct2

1−e−ct1

) 8β2(1−α)
c2n+8βc(1−α) ,

and the claim follows.
Second, we deal with the case 8β(1−α)+cn> 0. Then for t > T2 (recall that T2

is a constant) we have

φ(t)= −βcnec(t−T2)−βcn
cn+8β(1−α)+cnec(t−T2)

,

and so

φ̃(t)=−β −φ(t)= −8β2(1−α)e−c(t−T2)

(8β(1−α)+cn)e−c(t−T2)+cn
.
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If we let B =−8β2(1−α) and D = cn+ 8β(1−α), then we get that

φ̃(t)= Be−c(t−T2)

De−c(t−T2)+cn
.

We can integrate∫ t2

t1
φ̃(t) dt =

( 8β2(1−α)
c2n+8βc(1−α)

)
log
(
(8β(1−α)+cn)e−c(t2−T2)+cn
(8β(1−α)+cn)e−c(t1−T2)+cn

)
.

Therefore

exp
(∫ t2

t1
φ̃(t) dt

)
=


(

1+ 8β(1−α)/(cn)
)

e−c(t2−T2)+ 1(
1+ 8β(1−α)/(cn)

)
e−c(t1−T2)+ 1


8β2(1−α)

c2n+8βc(1−α)

as claimed in the statement of Theorem 16.
In the last case that 8β(1−α)+ cn = 0, we have

φ(t)= −βec(t−T2)−β

ec(t−T2)
,

and so
φ̃(t)=−β −φ(t)= β

ec(t−T2)
.

Therefore

exp
(∫ t2

t1
φ̃(t) dt

)
= exp

[
−
β

c
(
e−c(t2−T2)− e−c(t1−T2)

)]
as desired.

To finish the proof of our theorem we need to show that we can choose β+c≥ 0,
i.e., β ≥−c. We have the constraint (ii):

β ≤
−cn(1+α)

4α2−4α+2n
,

so we need to have
−c ≤ β ≤ −cn(1+α)

4α2−4α+2n
.

Note that since 0< α < 1, we have 4α2
− 4α+ 2n ≥−1+ 2n ≥ 1; thus it remains

to choose α so that
−(4α2

− 4α+ 2n)≤−n(1+α),

which simplifies to
α ≤ 1

4 n.

This is automatically true if n ≥ 4, which means we can choose any α we wish,
and there will be at least one β satisfying all the constraints including β+c≥ 0. �
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Note that limt→∞ φ(t) = −β, and limt→∞ φ̃(t) = 0. Thus, as t1, t2→∞, the
estimate approaches the classical Li–Yau–Harnack [Li and Yau 1986].

Remark. In the compact case we obtain a good bound as t1 and t2 get large. In the
complete noncompact case, one can still integrate along spacetime curves to obtain
an inequality, but the estimate degenerates when time becomes large.
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A DIRECT METHOD OF MOVING PLANES FOR THE SYSTEM
OF THE FRACTIONAL LAPLACIAN

CHUNXIA CHENG, ZHONGXUE LÜ AND YINGSHU LÜ

We establish a direct method of moving planes for systems of fractional
Laplacian equations. By using this direct method of moving planes, we
obtain symmetry and nonexistence of positive solutions for the following
system of fractional Laplacian equations:{

(−1)α/2u(x)= vq(x), x ∈ Rn,

(−1)α/2v(x)= u p(x), x ∈ Rn.

1. Introduction

In this paper, we consider the following system of fractional Laplacian equations:

(1-1)
{
(−1)α/2u(x)= vq(x), x ∈ Rn,

(−1)α/2v(x)= u p(x), x ∈ Rn.

When α = 2, system (1-1) is an important model, the Lane–Emden system. It is
conjectured that if 1/(p+ 1)+ 1/(q + 1) > (n− 2)/n, then there are no nontrivial
classical solutions of (1-1) in RN with N ≥ 3. The conjecture has been proved
to be true for radial solutions in all dimensions in [Mitidieri 1996]. The cases of
N = 3, 4 for the conjecture in general have also been solved recently in [Poláčik
et al. 2007] and [Souplet 2009], respectively. The interested reader can refer to the
above papers for detailed descriptions (see also the works [Busca and Manásevich
2002; Serrin and Zou 1998], etc.).

More generally, Troy [1981] used the maximum principle and the method of
moving parallel planes to investigate symmetry properties of solutions of systems of
semilinear elliptic equations 1ui + fi (u1, . . . , un)= 0, i = 1, . . . , n, in a domain
of Rn.

The work was partially supported by NSFC(No.11271166), sponsored by Qing Lan Project.
MSC2010: 35B09, 35B50, 35B53, 35J61.
Keywords: the fractional Laplacian, maximum principles for antisymmetric functions, narrow region

principle, decay at infinity, method of moving planes, radial symmetry, nonexistence of positive
solutions.
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In the special case p = q , u = v, (1-1) changes to

(1-2) (−1)α/2u(x)= u p(x), x ∈ Rn.

Here the fractional Laplacian in Rn is a nonlocal pseudodifferential operator assum-
ing the form

(1-3) (−1)α/2u(x)= Cn,α lim
ε→0

∫
Rn\Bε(x)

u(x)− u(z)
|x − z|n+α

dz,

where α is any real number between 0 and 2. This operator is well defined in S,
the Schwartz space of rapidly decreasing C∞ functions in Rn. In this space, it can
also be equivalently defined in terms of the Fourier transform

̂(−1)α/2u(ξ)= |ξ |αû(ξ),

where û is the Fourier transform of u. One can extend this operator to a wider space
of functions.

Let

Lα =
{

u : Rn
→ R |

∫
Rn

|u(x)|
1+ |x |n+α

dx <∞
}
.

Then it is easy to verify that for u ∈ Lα∩C1,1
loc , the integral on the right-hand side of

(1-3) is well defined. Throughout this paper, we consider the fractional Laplacian
in this setting.

The nonlocality of the fractional Laplacian makes it difficult to study. To circum-
vent this difficulty, Caffarelli and Silvestre [2007] introduced the extension method,
which reduced this nonlocal problem into a local one in higher dimensions. For a
function u : Rn

→ R, consider the extension U : Rn
×[0,∞)→ R that satisfies{

div(y1−α
∇U )= 0, (x, y) ∈ Rn

×[0,∞),
U (x, 0)= u(x).

Then
(−1)α/2u =−Cn,α lim

y→0+
y1−α ∂U

∂y
.

This extension method has been applied successfully to study equations involving
the fractional Laplacian, and a series of fruitful results have been obtained (see the
references in that work).

In [Busca and Manásevich 2002], among many interesting results, when the
authors considered the properties of the positive solutions for (1-2), they first used
the above extension method to reduce the nonlocal problem into a local one for
U (x, y) in one higher dimensional half space Rn

×[0,∞), then applied the method
of moving planes to show the symmetry of U (x, y) in x , and hence derived the
nonexistence in the subcritical case.
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Proposition 1.1. Let 1≤ α < 2. Then the problem{
div(y1−α

∇U )= 0, (x, y) ∈ Rn
×[0,∞),

− lim
y→0+

y1−α ∂U
∂y =U p(x, 0), x ∈ Rn,

has no positive bounded solution provided p < (n+α)/(n−α).

They then took trace to obtain:

Corollary 1.2. Assume that 1≤ α < 2 and 1< p< (n−α)/(n−α). Then equation
(1-2) possesses no bounded positive solution.

A similar extension method was adapted in [Chen and Zhu 2016] to obtain the
nonexistence of positive solutions for an indefinite fractional problem.

Proposition 1.3. Let 1≤ α < 2 and 1< p <∞. Then the equation

(−1)α/2 = x1u p, x ∈ Rn,

possesses no positive bounded solutions.

The common restriction α ≥ 1 is due to the approach that they need to carry out
the method of moving planes on the solutions U of the extended problem

(1-4) div(y1−α
∇U )= 0, (x, y) ∈ Rn

×[0,∞).

Because of the monotonicity requirement, they have to assume that α ≥ 1.
Jarohs and Weth [2016] without going through the extended equation (1-4),

introduced antisymmetric maximum principles and applied them to carry on the
method of moving planes directly on nonlocal problems to show the symmetry of
solutions. The operators they considered are quite general; however, their maximum
principles only apply to bounded regions.

Chen, Li and Li [Chen et al. 2017] developed a systematic approach to carry
out the method of moving planes for nonlocal problems, either on bounded or
unbounded domains, corresponding to approaches for local elliptic operators that
were introduced more than twenty years ago in the paper [Chen and Li 1991] and
then summarized in the book [Chen and Li 2010].

In this paper, we will establish the direct method of moving planes for the system
of the fractional Laplacian equations. This will be accomplished in Section 2, in
which the main results are the following:

Theorem 2.1 (maximum principle for antisymmetric functions). Let T be a hyper-
plane in Rn. Without loss of generality, we may assume that

T = {x ∈ Rn
| x1 = λ, for some λ ∈ R}.

Let
x̃ = (2λ− x1, x2, . . . , xn)
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be the reflection of x about the plane T. Denote

H = {x ∈ Rn
| x1 < λ} and H̃ = {x | x̃ ∈ H}.

Let � be a bounded domain in H. Assume that u ∈ Lα ∩ C1,1
loc (�) and is lower

semicontinuous on �. If

(−1)α/2u(x)≥ 0 in �,
(−1)α/2v(x)≥ 0 in �,
u(x)≥ 0 and v(x)≥ 0 in H \�,
u(x̃)=−u(x) in H,
v(x̃)=−v(x) in H,

then
u(x)≥ 0 and v(x)≥ 0 in �.

This conclusion holds for unbounded region � if we further assume that

lim
|x |→∞

u(x)≥ 0 and lim
|x |→∞

v(x)≥ 0.

If u = 0 and v = 0 at some point in �, then

u(x)= 0 and v(x)= 0 almost everywhere in Rn.

Theorem 2.2 (narrow region principle). Let T be a hyperplane in Rn. Without loss
of generality,we may assume that

T = {x = (x1, x ′) ∈ Rn
| x1 = λ for some λ ∈ R}.

Let
x̃ = (2λ− x1, x2, . . . , xn),

be the reflection of x about the plane T. Denote

H = {x ∈ Rn
| x1 < λ}, H̃ = {x | x̃ ∈ H}.

Let� be a bounded narrow region in H such that it is contained in {x |λ−l< x1<λ}

with small l. Suppose that u, v ∈ Lα ∩C1,1
loc (�) and both are lower semicontinuous

on�. If c1(x) and c2(x) are both bounded from below in�, c1(x)≤ 0 and c2(x)≤ 0
and 

(−1)α/2u(x)+ c1(x)v(x)≥ 0 in �,
(−1)α/2v(x)+ c2(x)u(x)≥ 0 in �,
u(x)≥ 0 and v(x)≥ 0 in H \�,
u(x̃)=−u(x) in H,
u(x̃)=−u(x) in H,
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then for sufficiently small l, we have

u(x)≥ 0 and v(x)≥ 0 in �.

This conclusion holds for unbounded regions � if we further assume that

lim
|x |→∞

u(x)≥ 0 and lim
|x |→∞

v(x)≥ 0.

Theorem 2.3 (decay at infinity). Let H = {x ∈ Rn
| x1 < λ for some λ ∈ R} and

let � be an unbounded region in H. Assume

(−1)α/2u(x)+ c1(x)v(x)≥ 0 in �,
(−1)α/2v(x)+ c2(x)u(x)≥ 0 in �,
u(x)≥ 0 and v(x)≥ 0 in H \�,
u(x̃)=−u(x) in H,
v(x̃)=−v(x) in H,

with

lim
|x |→∞

|x |αc1(x)= 0, c1(x)≤ 0,

and

lim
|x |→∞

|x |αc2(x)= 0, c2(x)≤ 0,

then there exists a constant R0 such that if

u(x0)=min
�

u(x) < 0 or v(x0)=min
�
v(x) < 0,

then

|x0
| ≤ R0.

As a simple application, we consider system (1-1).

Theorem 3.1. Assume that 0<α< 2 and u, v ∈ Lα∪C1,1
loc is a nonnegative solution

of equation (1-1). Then

(i) in the subcritical case 1< p, q < (n+α)/(n−α), (u, v)≡ (0, 0);

(ii) in the critical case p= q = (n+α)/(n−α), (u, v) is radially symmetric about
some point.

2. Various maximum principles

Maximum principle for antisymmetric functions.
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Theorem 2.1. Let T be a hyperplane in Rn. Without loss of generality, we may
assume that

T = {x ∈ Rn
| x1 = λ for some λ ∈ R}.

Let

x̃ = (2λ− x1, x2, . . . , xn)

be the reflection of x about the plane T. Denote

H = {x ∈ Rn
| x1 < λ} and H̃ = {x | x̃ ∈ H}.

Let � be a bounded domain in H. Assume that u ∈ Lα ∩C1,1
loc (�) is lower semicon-

tinuous on �. If

(2-1)



(−1)α/2u(x)≥ 0 in �,
(−1)α/2v(x)≥ 0 in �,
u(x)≥ 0 and v(x)≥ 0 in H \�,
u(x̃)=−u(x) in H,
v(x̃)=−v(x) in H,

then

(2-2) u(x)≥ 0 and v(x)≥ 0 in �.

This conclusion holds for unbounded region � if we further assume that

lim
|x |→∞

u(x)≥ 0 and lim
|x |→∞

v(x)≥ 0.

If u = 0 and v = 0 at some point in �, then

u(x)= 0 and v(x)= 0 almost everywhere in Rn.

Proof. If (2-2) does not hold, then the lower semicontinuity of u and v on �
indicates that there exists a x0

∈� such that

u(x0)=min
�

u < 0

or

v(x0)=min
�

v < 0,

and one can further deduce from condition (2-1) that x0 is in the interior of �.
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If u(x0) < 0, it follows that

(−1)α/2u(x0)= Cn,αPV
∫

Rn

u(x0)− u(y)
|x0− y|n+α

dy

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H̃

u(x0)− u(y)
|x0− y|n+α

dy
}

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H

u(x0)− u(ỹ)
|x0− ỹ|n+α

dy
}

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H

u(x0)+ u(y)
|x0− ỹ|n+α

dy
}

≤ Cn,α

∫
H

{
u(x0)− u(y)
|x0− ỹ|n+α

+
u(x0)+ u(y)
|x0− ỹ|n+α

}
dy

= Cn,α

∫
H

2u(x0)

|x0− ỹ|n+α
dy

< 0,

which contradicts inequality (2-1).
Similarly, if v(x0) < 0, we also get a contradiction with (2-1). This verifies (2-2).
Now we show that u ≥ 0 and v ≥ 0 in H. If there is some point x0

∈ �, such
that u(x0)= 0 and v(x0)= 0, then from

0≤ (−1)α/2u(x0)= Cn,αPV
∫

H

−u(y)
|x0− y|n+α

dy,

0≤ (−1)α/2v(x0) = Cn,αPV
∫

H

−v(y)
|x0− y|n+α

dy,

we derive immediately that

u(x)= 0 and v(x)= 0 almost everywhere in Rn.

This completes the proof. �

Narrow region principle.

Theorem 2.2. Let T be a hyperplane in Rn. Without loss of generality, we may
assume that

T = {x = (x1, x ′) ∈ Rn
| x1 = λ for some λ ∈ R}.

Let
x̃ = (2λ− x1, x2, . . . , xn),

be the reflection of x about the plane T. Denote

H = {x ∈ Rn
| x1 < λ}, H̃ = {x | x̃ ∈ H}.
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Let� be a bounded narrow region in H such that it is contained in {x |λ−l< x1<λ}

with small l. Suppose that u, v ∈ Lα ∩C1,1
loc (�) and both are lower semicontinuous

on�. If c1(x) and c2(x) are both bounded from below in�, c1(x)≤ 0 and c2(x)≤ 0
and

(2-3)



(−1)α/2u(x)+ c1(x)v(x)≥ 0 in �,
(−1)α/2v(x)+ c2(x)u(x)≥ 0 in �,
u(x)≥ 0 and v(x)≥ 0 in H \�,
u(x̃)=−u(x) in H,
v(x̃)=−v(x) in H,

then for sufficiently small l, we have

(2-4) u(x)≥ 0 and v(x)≥ 0 in �.

This conclusion holds for unbounded regions � if we further assume that

lim
|x |→∞

u(x)≥ 0 and lim
|x |→∞

v(x)≥ 0.

Proof. If (2-4) does not hold, then the lower semicontinuity of u and v on �
indicates that there exists an x0

∈� such that

u(x0)=min
�

u < 0 or v(x0)=min
�

v < 0,

and one can further deduce from condition (2-3) that x0 is in the interior of �.
Next we discuss the problem in three different cases.

Case i. (u(x0)=min� u < 0 and v(x0)≥ 0).
It follows that

(−1)α/2u(x0)= Cn,αPV
∫

Rn

u(x0)− u(y)
|x0− y|n+α

dy

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H̃

u(x0)− u(y)
|x0− y|n+α

dy
}

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H

u(x0)− u(ỹ)
|x0− ỹ|n+α

dy
}

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H

u(x0)+ u(y)
|x0− ỹ|n+α

dy
}

(2-5)

≤ Cn,α

∫
H

{
u(x0)− u(y)
|x0− ỹ|n+α

+
u(x0)+ u(y)
|x0− ỹ|n+α

}
dy

= Cn,α

∫
H

2u(x0)

|x0− ỹ|n+α
dy.



A DIRECT METHOD OF MOVING PLANES 309

Let D = {y | l < y1− x0
1 < 1, |y′− (x0)′| < 1}, s = y1− x0

1 , τ = y′− (x0)′ and
ωn−2 = |B1(0)| in Rn−2. Now we have∫

H

1
|x0− ỹ|n+α

dy ≥
∫

D

1
|x0− y|n+α

dy

=

∫ 1

l

∫ 1

0

ωn−2τ
n−2

(s2+ τ 2)
n+α

2
dτ ds

=

∫ 1

l

∫ 1
s

0

ωn−2(st)n−2s

sn+α(1+ t2)
n+α

2
dt ds(2-6)

=

∫ 1

l

1
s1+α

∫ 1
s

0

ωn−2tn−2

(1+ t2)
n+α

2
dt ds

≥

∫ 1

l

1
s1+α

∫ 1

0

ωn−2tn−2

(1+ t2)
n+α

2
dt ds

≥ C
∫ 1

l

1
s1+α ds→∞,(2-7)

where (2-6) follows from the substitution τ = st and (2-7) is true when l→ 0.
Hence c1(x)≤ 0 leads to

(−1)α/2u(x0)+ c1(x)v(x0)≤ C
∫ 1

l

1
s1+α ds u(x0)+ c1(x0)v(x0)

= u(x0)

[
C
∫ 1

l

1
s1+α ds+ c1(x0)

v(x0)

u(x0)

]
< 0,

when l sufficiently small. This is a contradiction with condition (2-3).

Case ii (v(x0)=min
�
v < 0 and u(x0)≥ 0). Similarly to Case i, c2(x)≤ 0 leads to

(−1)α/2v(x0)+ c2(x0)u(x0)≤ v(x0)

[
C
∫ 1

l

1
s1+α ds+ c2(x0)

u(x0)

v(x0)

]
< 0,

when l sufficiently small. This is a contradiction with condition (2-3).

Case iii (u(x0)=min
�

u < 0 and v(x0) < 0). Similarly to Case i, by (2-3), we have

(2-8) 0≤ (−1)α/2u(x0)+ c1(x0)v(x0)≤ C
∫ 1

l

1
s1+α ds u(x0)+ c1(x0)v(x0).
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By v(x0) < 0, there exists x1
∈ � such that v(x1) = min� v < 0. Similarly to

Case ii, by (2-3) and c2(x)≤ 0, we have

(2-9) 0≤ (−1)α/2v(x1)+ c2(x1)u(x1)≤ C
∫ 1

l

1
s1+α ds v(x0)+ c2(x1)u(x0).

Adding (2-8) to (2-9), we get

(2-10)
[

C
∫ 1

l

1
s1+α ds+ c2(x1)

]
u(x0)+

[
C
∫ 1

l

1
s1+α ds+ c1(x0)

]
v(x0)≥ 0.

As u(x0) < 0 and v(x0) < 0, if (2-10) holds, then at least one of

C
∫ 1

l

1
s1+α ds+ c2(x1)≤ 0 or C

∫ 1

l

1
s1+α ds+ c1(x0)≤ 0

holds.
Equivalently,

(2-11) C
∫ 1

l

1
s1+α ds+ c2(x1)≤ 0 or C

∫ 1

l

1
s1+α ds+ c1(x0)≤ 0.

However, when l sufficiently small, from the fact that c1(x) and c2(x) are both
bounded from below in �, we have

C
∫ 1

l

1
s1+α ds+ c2(x1) > 0 and C

∫ 1

l

1
s1+α ds+ c1(x0) > 0.

which is a contradiction with (2-11).

Similarly, we can prove the case v(x0)=min� v < 0 and u(x0) < 0.
Therefore, (2-4) must be true. This completes the proof. �

Decay at infinity.

Theorem 2.3. Let H = {x ∈ Rn
| x1 < λ for some λ ∈ R} and let � be an

unbounded region in H. Assume

(2-12)



(−1)α/2u(x)+ c1(x)v(x)≥ 0 in �,
(−1)α/2v(x)+ c2(x)u(x)≥ 0 in �,
u(x)≥ 0 and v(x)≥ 0 in H \�,
u(x̃)=−u(x) in H
v(x̃)=−v(x) in H

with

(2-13) lim
|x |→∞

|x |αc1(x)= 0, c1(x)≤ 0,
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and

(2-14) lim
|x |→∞

|x |αc2(x)= 0, c2(x)≤ 0.

Then there exists a constant R0 such that if

(2-15) u(x0)=min
�

u(x) < 0 or v(x0)=min
�
v(x) < 0,

then

(2-16) |x0
| ≤ R0.

Proof. Following from (2-15), there are three different cases for this proof.

Case i (u(x0) < 0 and v(x0)≥ 0). It follows that

(−1)α/2u(x0)= Cn,αPV
∫

Rn

u(x0)− u(y)
|x0− y|n+α

dy

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H̃

u(x0)− u(y)
|x0− y|n+α

dy
}

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H

u(x0)− u(ỹ)
|x0− ỹ|n+α

dy
}

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H

u(x0)+ u(y)
|x0− ỹ|n+α

dy
}

≤ Cn,α

∫
H

{
u(x0)− u(y)
|x0− ỹ|n+α

+
u(x0)+ u(y)
|x0− ỹ|n+α

}
dy

= Cn,α

∫
H

2u(x0)

|x0− ỹn+α|
dy.

For each fixed λ, when |x0
|≥λ, we have B|x0|(x1)⊂ H̃ with x1

= (3|x0
|+x0

1 , (x
0)′),

and it follows that

(2-17)

∫
H

1
|x0− ỹ|n+α

dy =
∫

H̃

1
|x0− y|n+α

dy

≥

∫
B
|x0|(x

1)

1
|x0− y|n+α

dy

≥

∫
B
|x0|(x

1)

1
4n+α|x0|n+α

dy =
ωn

4n+α|x0|n+α
,

where (2-17) follows from |x0
− y| ≤ |x0

− x1| + |x0
| = 4|x0

| for all y ∈ B|x0|(x1).
Then we have

(2-18) 0≤ (−1)α/2u(x0)+ c1(x0)v(x0)≤
2ωnCn,α

4n+α|x0|α
u(x0)+ c1(x0)v(x0).
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Following from (2-13), c1(x0)≤ 0 for all x0
∈ H, we have

2ωnCn,α

4n+α|x0|α
u(x0)+ c1(x0)v(x0) < 0.

This contradicts (2-18).

Case ii (v(x0) < 0 and u(x0)≥ 0). Using the same method as Case i, we have

2ωnCn,α

4n+α|x0|α
v(x0)+ c2(x0)u(x0)≥ 0,

which is a contradiction with

2ωnCn,α

4n+α|x0|α
v(x0)+ c2(x0)u(x0) < 0,

for c2(x0)≤ 0 for all x0
∈ H.

Case iii (u(x0) < 0 and v(x0) < 0). We have

0≤ (−1)α/2u(x0)+ c1(x0)v(x0)≤
2ωnCn,α

4n+α|x0|α
u(x0)+ c1(x0)v(x0),(2-19)

0≤ (−1)α/2v(x0)+ c2(x0)u(x0)≤
2ωnCn,α

4n+α|x0|α
v(x0)+ c2(x0)u(x0).(2-20)

Adding (2-19) to (2-20), we get

(2-21)
[

2ωnCn,α

4n+α|x0|α
+ c2(x0)

]
u(x0)+

[
2ωnCn,α

4n+α|x0|α
+ c1(x0)

]
v(x0)≥ 0.

As u(x0) < 0 and v(x0) < 0, if (2-21) holds, at least one of

2ωnCn,α

4n+α|x0|α
+ c2(x0)≤ 0 or

2ωnCn,α

4n+α|x0|α
+ c1(x0)≤ 0

holds. Equivalently,

(2-22)
2ωnCn,α

4n+α|x0|α
+ c2(x0)≤ 0 or

2ωnCn,α

4n+α|x0|α
+ c1(x0)≤ 0.

However, if |x0
| is sufficiently large, following from (2-13) and (2-14), we have

2ωnCn,α

4n+α|x0|α
+ c2(x0) > 0 and

2ωnCn,α

4n+α|x0|α
+ c1(x0) > 0.

which is a contradiction with (2-22).

Therefore, (2-16) holds. This completes the proof. �
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3. Method of moving planes and its applications

Theorem 3.1. Assume that u, v ∈ C1,1
loc ∩ Lα and

(3-1)
{
(−1)α/2u(x)= vq(x), x ∈ Rn,

(−1)α/2v(x)= u p(x), x ∈ Rn.

Then

(i) in the subcritical case 1 < p, q < (n + α)/(n − α), (3-1) has no positive
solution;

(ii) in the critical case p = q = (n+ α)/(n− α), the positive solutions must be
radially symmetric about some point in Rn.

Proof. Because no decay condition on u near infinity is assumed, we are not able to
carry out the method of moving planes on u directly. To circumvent this difficulty,
we make a Kelvin transform.

Let x0 be a point in Rn, and let

u(x0)=
1

|x − x0|n−α
u
(

x − x0

|x − x0|2
+x0

)
, v(x0)=

1
|x − x0|n−α

v

(
x − x0

|x − x0|2
+x0

)
be the Kelvin transform of (u, v) centered at x0. Then it follows that

u(x)=
1

|x − x0|n−α
u
(

x − x0

|x − x0|2
+ x0

)
=

1
|x − x0|n−α

∫
Rn

vq(y)

|y− x−x0

|x−x0|2
− x0|n−α

dy

=
1

|x − x0|n−α

∫
Rn

( 1
|y−x0|n−α

)q
vq( y−x0

|y−x0|2
+ x0

)∣∣y− x0− x−x0

|x−x0|2

∣∣n−α dy

=
1

|x − x0|n−α

∫
Rn

|z− x0
|
q(n−α)vq(z)∣∣ z−x0

|z−x0|2
−

x−x0

|x−x0|2

∣∣n−α 1
|z− x0|2n dz(3-2)

=

∫
Rn

vq(z)
|z− x0|τ |x − z|n−α

dz,

where the step (3-2) follows from the substitution z = (y− x0)/|y− x0
|
2
+ x0 and

τ = n+α− q(n−α).
This means

(3-3) (−1)α/2u(x)=
vq(x)
|x − x0|τ

.
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Similarly, we have

(3-4) (−1)α/2v(x)=
u p(x)
|x − x0|γ

,

with γ = n+α− p(n−α). Obviously, τ = γ = 0 in the critical case.
Choose any direction to be the x1 direction. For λ < x0

1 , let

Tλ = {x ∈ Rn
| x1 = λ}, xλ = (2λ− x1, x ′), uλ(x)= u(xλ),

wλ(x)= uλ(x)− u(x), vλ(x)= v(xλ), ϕλ(x)= vλ(x)− v(x),

and
6λ = {x ∈ Rn

| x1 < λ}, 6̃λ = {xλ | x ∈6λ}.

First, notice that, by the definition of wλ and ϕλ, we have

lim
|x |→∞

wλ(x)= 0, lim
|x |→∞

ϕλ(x)= 0.

Hence, if wλ or ϕλ is negative somewhere in 6λ, then the negative minima of wλ
or ϕλ was attained in the interior of 6λ.

From (3-3), at points where ϕλ is negative, we have

(3-5)

(−1)α/2wλ(x)=
v

q
λ(x)

|xλ− x0|τ
−

vq(x)
|x − x0|τ

≥
v

q
λ(x)− v

q(x)
|x − x0|τ

≥
qvq−1(x)ϕλ(x)
|x − x0|τ

,

where (3-5) follows from the mean value theorem, that is,

(−1)α/2wλ(x)+ c1(x)ϕλ(x)≥ 0

with

(3-6) c1(x)=−
qvq−1(x)
|x − x0|τ

.

From (3-4), at points where wλ is negative, we similarly have

(3-7) (−1)α/2ϕλ(x)+ c2(x)wλ(x)≥ 0

with

(3-8) c2(x)=−
pu p−1(x)
|x − x0|γ

.
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The subcritical case. For 1< p, q < (n+α)/(n−α), we show that (3-1) admits
no positive solution.

Step 1. We show that, for λ sufficiently negative,

(3-9) wλ(x)≥ 0 and ϕλ(x)≥ 0 in 6λ.

This is done by using Theorem 2.3 (decay at infinity).
It follows from (3-6) that,

c1(x)=−
q
( 1
|x−x0|n−α

)q−1
vq−1

( x−x0

|x−x0|2
+ x0

)
|x − x0|n+α−q(n−α)

=−

qvq−1
( x−x0

|x−x0|2
+ x0

)
|x − x0|2α

.

It is easy to verify that, for |x | sufficiently large,

(3-10) c1(x)∼
1
|x |2α

.

In the same way,

(3-11) c2(x)∼
1
|x |2α

.

In addition, following from (3-6) and (3-8), we have c1(x)≤ 0 and c2(x)≤ 0. Hence,
c1(x) and c2(x) satisfy conditions (2-13) and (2-14) respectively in Theorem 2.3.
Applying Theorem 2.3 to wλ and ϕλ with � = H = 6λ, we conclude that, there
exists an R0 > 0 (independent of λ), such that if x is a negative minimum of wλ or
ϕλ in 6λ, then

(3-12) |x | ≤ R0.

Now for λ≤−R0, we must have

wλ(x)≥ 0 and ϕλ(x)≥ 0 for all x ∈6λ.

This verifies (3-9).

Step 2. Step 1 provides a starting point, from which we can now move the plane Tλ
to the right as long as (3-9) holds to its limiting position.

Let

λ0 = sup{λ≤ x0
1 | wµ(x)≥ 0 and ϕµ(x)≥ 0, for all x ∈6µ, µ≤ λ}.

In this part, we show that
λ0 = x0

1
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and

(3-13) wλ0(x)≡ 0 and ϕλ0(x)≡ 0, for all x ∈6λ0 .

Suppose that λ0 < x0
1 . We show that the plane Tλ can be moved further right. To be

more rigorous, there exists some ε > 0, such that for any λ ∈ (λ0, λ0+ ε), we have

(3-14) wλ(x)≥ 0 and ϕλ(x)≥ 0, for all x ∈6λ.

This is a contradiction with the definition of λ0. Hence we must have

(3-15) λ0 = x0
1 .

Now we prove (3-14) by combining the use of the narrow region principle and
decay at infinity.

Again by (3-12), the negative minimum of wλ cannot be attained outside of
BR0(0). Next we argue that it can neither be attained inside of BR0(0). Actually, we
will show that for λ sufficiently close to λ0,

(3-16) wλ(x)≥ 0 and ϕλ(x)≥ 0, for all x ∈6λ ∩ BR0(0).

From the narrow region principle, there is a small δ>0, such that for λ∈[λ0, λ0+δ),
if

(3-17) wλ(x)≥ 0 and ϕλ(x)≥ 0 for all x ∈6λ0−δ,

then

(3-18) wλ(x)≥ 0 and ϕλ(x)≥ 0 for all x ∈6λ \6λ0−δ.

To see this, in Theorem 2.2, we let H =6λ and the narrow region �=6λ \6λ0−δ ,
while the lower bound of c1(x), c2(x) can be seen from (3-10) and (3-11).

Then what is left to show is (3-17), and actually we only need

(3-19) wλ(x)≥ 0 and ϕλ(x)≥ 0 for all x ∈6λ0−δ ∩ BR0(0).

In fact, when λ0 < x0
1 , we have

(3-20) wλ0(x) > 0 and ϕλ0(x) > 0 for all x ∈6λ0.

If not, there exists some x̂ such that

wλ0(x̂)=min
6λ0

wλ0(x)= 0 or ϕλ0(x̂)=min
6λ0

ϕλ0(x)= 0.
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Case i (wλ0(x̂)= 0 and ϕλ0(x̂) > 0). It follows that

(3-21)

(−1)α/2wλ0(x̂)= Cn,αPV
∫

Rn

−wλ0(y)
|x̂ − y|n+α

dy

= Cn,αPV
[∫

6λ0

−wλ0(y)
|x̂ − y|n+α

dy+
∫
6̃λ0

−wλ0(y)
|x̂ − y|n+α

dy
]

= Cn,αPV
[∫

6λ0

−wλ0(y)
|x̂ − y|n+α

dy+
∫
6λ0

−wλ0(ỹ)
|x̂ − ỹ|n+α

dy
]

= Cn,αPV
[∫

6λ0

−wλ0(y)
|x̂ − y|n+α

dy+
∫
6λ0

wλ0(y)
|x̂ − ỹ|n+α

dy
]

≤ Cn,α

∫
6λ0

[
−wλ0(y)
|x̂ − y|n+α

+
wλ0(y)
|x̂ − y|n+α

]
dy

= 0.

On the other hand,

(−1)
α
2wλ0(x̂)=

v
q
λ0
(x̂)

|x̂λ0 − x0|τ
−

vq(x̂)
|x̂ − x0|τ

>
v

q
λ0
(x̂)− vq(x̂)

|x̂ − x0|τ

>
qvq−1(x̂)ϕλ0(x̂)
|x̂ − x0|τ

> 0,

which is a contradiction with (3-21).

Case ii (ϕλ0(x̂)= 0 and wλ0(x̂) > 0). As in Case i, there will be a contradiction.

Case iii (wλ0(x̂)= 0 and ϕλ0(x̂)= 0). We have

(−1)
α
2wλ0(x̂)=

v
q
λ0
(x̂)

|x̂λ0 − x0|τ
−

vq(x̂)
|x̂ − x0|τ

=
vq(x̂)
|x̂λ0 − x0|τ

−
vq(x̂)
|x̂ − x0|τ

> 0,

a contradiction with (3-21).

These three cases prove (3-20). It follows from (3-20) that there exists a constant
c0 > 0, such that

wλ0(x)≥ c0 and ϕλ0(x)≥ c0 for all x ∈6λ0−δ ∩ BR0(0).

Since wλ and ϕλ both depend on λ continuously, there exist ε > 0 and ε < δ, such
that for all λ ∈ (λ0, λ0+ ε), we have

(3-22) wλ0(x)≥ 0 and ϕλ0(x)≥ 0 for all x ∈6λ0−δ ∩ BR0(0).
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Combining (3-18), (3-12) and (3-22), we conclude that for all λ ∈ (λ0, λ0+ ε),

(3-23) wλ(x)≥ 0 and ϕλ(x)≥ 0 for all x ∈6λ.

This contradicts the definition of λ0. Therefore, we must have

λ0 = x0
1 and wλ0 ≥ 0, ϕλ0 ≥ 0 for all x ∈6λ0 .

Similarly, one can move the plane Tλ from +∞ to the left and show that

(3-24) wλ0(x)≥ 0 and ϕλ0(x)≥ 0 for all x ∈6λ0 .

Now we have shown that

λ0 = x0
1 and wλ0(x)≡ 0, ϕλ0(x)≡ 0 for all x ∈6λ0 .

This completes Step 2.

So far, we have proved that (u, v) is symmetric about the plane Tx0
1
. Since the

x1 direction can be chosen arbitrarily, we have actually shown that (u, v) is radially
symmetric about x0.

For any two points X i
∈ Rn, i = 1, 2. Choose x0 to be the midpoint, i.e.,

x0
= (X1

+ X2)/2. Since (u, v) is radially symmetric about x0, so is (u, v), hence
(u(X1), v(X1)) = (u(X2), v(X2)). This implies that u is constant. A positive
constant function does not satisfy (3-1). This proves the nonexistence of positive
solutions for (3-1) when 1< p, q < (n+α)/(n−α).

The critical case. Let (u, v) be the Kelvin transform of (u, v) centered at the origin.
Then

(3-25) (−1)α/2u(x)= vq(x), (−1)α/2v(x)= u p(x).

We will show that either (u, v) is symmetric about the origin or (u, v) is symmetric
about some point.

We still use the notation as in the subcritical case. Step 1 is entirely the same as
that in the subcritical case, that is, we can show that for λ sufficiently negative,

wλ(x)≥ 0 and ϕλ(x)≥ 0 for all x ∈6λ.

Let

λ0 = sup{λ≥ 0 | wµ(x)≥ 0 and ϕµ(x)≥ 0 for all x ∈6µ, µ≤ λ}.

Case i. λ0 < 0. Similarly to the subcritical case, one can show that

wλ0(x)≡ 0 and ϕλ0(x)≡ 0 for all x ∈6λ0 .
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It follows that 0 is not a singular point of u or v, and hence following from Kelvin
transform of u centered at the origin

u(x)= 1
|x |n−α

u
( x
|x |2

)
,

we have
lim
|x |→∞

|x |n−αu(x)= lim
|x |→∞

u
( x
|x |2

)
= u(0) > 0,

that is,

u(x)= O
( 1
|x |n−α

)
when |x | →∞.

Similarly for v,

v(x)= O
( 1
|x |n−α

)
when |x | →∞.

This enables us to apply the method of moving planes to (u, v) directly and show
that (u, v) is symmetric about some point in Rn.

Case ii. λ0 = 0. Then by moving planes from near x1 =+∞, we derive that (u, v)
is symmetric about the origin, and so is (u, v).

In any case, (u, v) is symmetric about some point in Rn. �

References

[Busca and Manásevich 2002] J. Busca and R. Manásevich, “A Liouville-type theorem for Lane–
Emden systems”, Indiana Univ. Math. J. 51:1 (2002), 37–51. MR Zbl

[Caffarelli and Silvestre 2007] L. Caffarelli and L. Silvestre, “An extension problem related to the
fractional Laplacian”, Comm. Partial Differential Equations 32:8 (2007), 1245–1260. MR Zbl

[Chen and Li 1991] W. X. Chen and C. Li, “Classification of solutions of some nonlinear elliptic
equations”, Duke Math. J. 63:3 (1991), 615–622. MR Zbl

[Chen and Li 2010] W. Chen and C. Li, Methods on nonlinear elliptic equations, AIMS Series Diff.
Equations Dyn. Syst. 4, Amer. Inst. Math. Sci., Springfield, MO, 2010. MR Zbl

[Chen and Zhu 2016] W. Chen and J. Zhu, “Indefinite fractional elliptic problem and Liouville
theorems”, J. Differential Equations 260:5 (2016), 4758–4785. MR Zbl

[Chen et al. 2017] W. Chen, C. Li, and Y. Li, “A direct method of moving planes for the fractional
Laplacian”, Adv. Math. 308 (2017), 404–437. MR Zbl

[Jarohs and Weth 2016] S. Jarohs and T. Weth, “Symmetry via antisymmetric maximum principles in
nonlocal problems of variable order”, Ann. Mat. Pura Appl. (4) 195:1 (2016), 273–291. MR Zbl

[Mitidieri 1996] E. Mitidieri, “Nonexistence of positive solutions of semilinear elliptic systems in
RN ”, Differential Integral Equations 9:3 (1996), 465–479. MR Zbl
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A VECTOR-VALUED BANACH–STONE THEOREM
WITH DISTORTION

√
2

ELÓI MEDINA GALEGO AND ANDRÉ LUIS PORTO DA SILVA

Let K and S be locally compact Hausdorff spaces and H a real Hilbert space
of finite dimension at least two. We prove that if T is an isomorphism from
C0(K, H) onto C0(S, H) whose distortion ‖T‖‖T−1‖ is exactly

√
2, then K

and S are homeomorphic. This is the vector-valued Banach–Stone theorem
via isomorphisms with the largest distortion that is known. It improves a
1976 classical result due to Cambern.

1. Introduction

If K is a locally compact Hausdorff space and X is a Banach space, we denote
by C0(K , X) the Banach space of continuous functions vanishing at infinity on K ,
taking values in X , and provided with the usual supremum norm. If K is compact,
we use the notation C(K , X) to represent this space. Moreover, if X = R we will
denote these spaces by C0(K ) and C(K ) respectively. In the present paper, the
word “isomorphism” means “linear homeomorphism”.

The well-known Banach–Stone theorem states that if K and S are locally compact
Hausdorff spaces, then the existence of an isometric isomorphism T of C0(K ) onto
C0(S) implies that K and S are homeomorphic [Banach 1932; Behrends 1979;
Stone 1937]. Cambern [1966; 1967] strengthened this theorem by showing that the
conclusion holds if the requirement that T be an isometric isomorphism is replaced
by the requirement that T be an isomorphism satisfying ‖T ‖‖T−1

‖ < 2. Amir
[1965] established the same result independently for K and S compact. Cambern
[1970] showed that 2 is indeed the greatest number for which the formulation of
the Banach–Stone theorem given in [Cambern 1967] is valid, by exhibiting a pair
of locally compact Hausdorff spaces K and S, with K compact, S noncompact,
and an isomorphism T of C(K ) onto C0(S) with ‖T ‖‖T−1

‖ = 2. Cohen [1975]
showed there was such an example where both K and S are compact.

Cambern [1976] was also the first to get a vector-valued Banach–Stone theorem
via isomorphisms with distortion λ > 1. He proved:

MSC2010: primary 46B03, 46E15; secondary 46B25, 46E40.
Keywords: vector-valued Banach–Stone theorem, C0(K , X) spaces, finite-dimensional Hilbert space.
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Theorem 1.1. Let K and S be locally compact Hausdorff spaces and H a finite-
dimensional Hilbert space. If there exists an isomorphism T from C0(K , H) onto
C0(S, H) satisfying ‖T ‖‖T−1

‖<
√

2, then K and S are homeomorphic

It is still an open question whether the bound
√

2 can be improved. Moreover,
after Cambern’s theorem, all vector-valued Banach–Stone theorems have been
obtained via isomorphisms with distortion 1≤ λ <

√
2; see [Cidral et al. 2015].

Thus, in view of the above mentioned isomorphisms with distortion 2 between
C0(K , H) spaces constructed independently by Cambern and Cohen in the case
where H is the scalar field, it is natural to turn our attention to the isomorphisms with
distortion

√
2 between C0(K , H) spaces in the case where H is an n-dimensional

Hilbert space with n ≥ 2. In other words, the following question arises naturally.

Problem 1.2. Let K and S be locally compact Hausdorff spaces and H a Hilbert
space of finite dimension greater than or equal to 2. Suppose that there exists an
isomorphism T from C0(K , H) onto C0(S, H) satisfying ‖T ‖‖T−1

‖ =
√

2. Does
it follow that K and S are homeomorphic?

The principal purpose of this paper is to show that Problem 1.2 has a positive
solution when the scalar field is the real numbers R.

So, henceforward H = Rn
2 the space of n tuples of real numbers with the usual 2

norm and n ≥ 2. Our main theorem is as follows.

Theorem 1.3. Let K and S be locally compact Hausdorff spaces. Suppose that
there exists an isomorphism T from C0(K , H) onto C0(S, H) satisfying

(1-1)
‖ f ‖

4
√

2
≤ ‖T ( f )‖ ≤ 4

√
2‖ f ‖,

for every f ∈ C0(K , H). Then K and S are homeomorphic.

Then, the solution of Problem 1.2 follows immediately from Theorem 1.3 by
considering τ = T ‖T−1

‖2−1/4 and noticing that (1-1) holds for the isomorphism τ .
Moreover, Theorem 1.1 in the real case is also a direct consequence of Theorem 1.3.
Indeed, put ‖T ‖‖T−1

‖ = λ <
√

2 and τ = T ‖T−1
‖λ−1/2. Therefore, it suffices to

observe that (1-1) again holds for the isomorphism τ .
It is worth mentioning that Theorem 1.3 cannot be extended to infinite dimen-

sional Hilbert spaces. Indeed, let I be an infinite set and write I = I1 ∪ I2 with
I1 ∩ I2 = ∅ and the cardinalities of I1 and I2 equal to the cardinality of I . Let
K1 = {1} and K2 = {1, 2} be two discrete compact Hausdorff spaces. Consider the
natural isometries

2 : C(K2, l2(I ))→ l2(I1)⊕∞ l2(I2) and ϒ : l2(I )→ C(K1, l2(I )).

Now, define T : l2(I1)⊕∞ l2(I2)→ l2(I ) by

T ((ai )i∈I1, (bi )i∈I2)= (ci )i∈I ,
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where ci = ai if i ∈ I1 and ci = bi if i ∈ I2. Then, it is easy to check that

‖ϒT2‖ =
√

2 and ‖(ϒT2)−1
‖ = 1.

But, of course K1 and K2 are not homeomorphic.
As we will see, the proof of Theorem 1.3 depends not only on the fact that H

has finite dimension but the intrinsic geometry of H as a real Hilbert space. It is
divided into five sections.

2. Special sets associated to isomorphisms between C0(K, H) spaces

We begin by recalling that a bijective map T : C0(K , H)→ C0(S, H) is said to
be a bijective coarse quasi-isometry if for some constants M > 0 and L ≥ 0 the
inequalities

1
M
‖ f − g‖− L ≤ ‖T ( f )− T (g)‖ ≤ M‖ f − g‖+ L ,

are satisfied for all f, g ∈ C0(K , H).
In our recent study of these maps ([Galego and Porto da Silva 2016]; henceforth

abbreaviated [GPS]) we introduced some classes of subsets 0w(k, v) and 0v(s, w)
of S and K respectively, where k ∈ K , s ∈ S and v and w are suitable elements of
R. We shall define these sets for v,w ∈ H instead of R.

In order to prove Theorem 1.3, we will need to state some new properties of
these sets in the particular case where T is linear, M = 4

√
2 and L = 0. So, in this

short preliminary section we will remember some definitions and results already
adapted to the context of Theorem 1.3.

From now on M= 4
√

2 and T will be an isomorphism of C0(K , H) onto C0(S, H)
satisfying

(2-1)
‖ f ‖
M
≤ ‖T ( f )‖ ≤ M‖ f ‖,

for every f ∈ C0(K , H).
Let k ∈ K , f ∈ C0(K , H) and v ∈ H . Following [GPS, Definition 2.2] we set

ω(k, f, v)=max{‖ f ‖, ‖ f (k)− v‖}.

Moreover, if v,w ∈ H with v 6= 0 satisfy ‖w‖ = ‖v‖/M , following [GPS,
Definition 3.1], we also set

0w(k, v)= {s ∈ S : ‖T f (s)−w‖ ≤ Mω(k, f, v),∀ f ∈ C0(K , H)}.

Analogously, for s ∈ S, w and v ∈ H with w 6= 0 and ‖v‖ = ‖w‖/M , we set

0v(s, w)= {k ∈ K : ‖T−1g(k)− v‖ ≤ Mω(s, g, w),∀g ∈ C0(S, H)}.
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Let us summarize the results concerning these sets which will be used in the
present paper. We will denote by 〈 · , · 〉 the usual inner product on H . When the
vectors v and w of H are orthogonal we will write v ⊥ w.

Proposition 2.1. Let k ∈ K and v ∈ H with v 6= 0.

(1) There exists w ∈ H such that 0w(k, v) 6=∅.

(2) For all t ∈ R with t 6= 0 and w ∈ H we have 0w(k, v)= 0tw(k, tv).

(3) Let v′, w,w′ ∈ H and k ′ ∈ K with k 6= k ′. Suppose that

0w(k, v)∩0w′(k ′, v′) 6=∅,

then w ⊥ w′.

(4) Let w ∈ H and suppose that s ∈ 0w(k, v). If 0z(s, w) 6= ∅ for some z ∈ H
then 0z(s, w)= {k}.

Proof. (1) The proof is essentially the same proof of [GPS, Proposition 3.2]. We
leave it to the reader to transpose to the Hilbert context.

(2) It suffices to prove that 0w(k, v)⊂ 0tw(k, tv) for all t 6= 0. Let s ∈ 0w(k, v).
Given f ∈ C0(K , H) put f ′ = t−1 f . By the definition of 0w(k, v) it follows that

‖T f ′(s)−w‖ ≤ Mω(k, f ′, v),
and hence

‖T f (s)− tw‖ = |t |‖T f ′(s)−w‖ ≤ M |t |ω(k, f ′, v)= Mω(k, f, tv).

Consequently s ∈ 0tw(k, tv).
(3) By item (2) of the proposition we may assume that ‖v‖ = ‖v′‖ = 1. By

Urysohn’s lemma pick f ∈C0(K , H) such that ‖ f ‖ = 1
2 , f (k)= v

2 and f (k ′)= v′

2 .
It is easy to check that ω(k, f, v)=ω(k ′, f, v′)= 1

2 . Pick s ∈0w(k, v)∩0w′(k ′, v′).
Then, by the definitions of these sets we have

‖w−w′‖ ≤ ‖T f (s)−w‖+‖T f (s)−w′‖ ≤ M
2
+

M
2
= M.

Now, by applying the law of cosines we see that

〈w,w′〉 ≥ 1
2(‖w‖

2
+‖w′‖2−M2),

Since ‖w‖ = ‖w′‖ = 1/M and M = 4
√

2, it follows that

〈w,w′〉 ≥
1
2

(
2

M2 −M2
)
= 0.

On the other hand, by item (2) of the proposition we have

s ∈ 0w(k, v)∩0−w′(k ′,−v′).

So, proceeding as above we obtain that 〈w,−w′〉 ≥ 0. Hence 〈w,w′〉 = 0.



A VECTOR-VALUED BANACH–STONE THEOREM WITH DISTORTION
√

2 325

(4) According to item (2) of the proposition we may assume that ‖v‖ = 1. By
item (1) of the proposition there is z ∈ H such that 0z(s, w) 6=∅. Fix m ∈0z(s, w);
we need to show that m = k. Assume then that m 6= k and choose h ∈ C0(K )
satisfying

‖h‖ = 1
2
, h(k)= v

2
and h(m)=−1

2
z
‖z‖

.

Since 0w(k, v) and 0z(s, w) are well defined, we have ‖z‖ = 1/M2
= 1/
√

2.
Moreover, observe that z is negatively proportional to h(m). Thus, we have

‖h(m)− z‖ = ‖h(m)‖+‖z‖ = 1
2
+

1
√

2
.(2-2)

On the other hand, ω(k, h, v)= 1
2 and s ∈ 0w(k, v) imply that

‖Th(s)−w‖ ≤ M
2
.

Since ‖Th‖ ≤ M/2 it follows that ω(s, Th, w) ≤ M/2 and by the definition of
0z(s, w) (using the function Th and the map T−1)

‖h(m)− z‖ ≤ Mω(s, Th, w)≤ M2

2
=

1
√

2
,

which by (2-2) lead us to a contradiction. �

Note that since the definitions of 0w(k, v) and 0v(s, w) are symmetric the
properties proved in Proposition 2.1 on k ∈ K and 0w(k, v) are also valid for s ∈ S
and 0v(s, w).

Henceforth our task will be to construct a homeomorphism ϕ : K → S using the
subsets 0w(k, v), for every k ∈ K . In fact, we will see that these subsets contain
the candidates to be the image of k by ϕ.

3. On the subsets 0w(k, v) of K containing irregular points

The purpose of this section is to establish Proposition 3.1. It allows us to relate the
vectors v and w involved in the construction of certain special sets 0w(k, v). For
convenience, we introduce the following definition.

A point s ∈ S is said to be irregular if there exist two different points k and k ′ ∈ K
such that s ∈ 0w(k, v)∩0w′(k ′, v′) for some v,w, v′, w′ ∈ H . Symmetrically, we
will say that a point k ∈ K is irregular if k ∈0v(s, w)∩0v′(s ′, w′) for some different
points s, s ′ ∈ S and v,w, v′, w′ ∈ H .

Proposition 3.1. Suppose that k ∈ K and s is an irregular point of S.

(1) If s ∈ 0w1(k, v1)∩0w2(k, v2) for some v1, v2, w1, w2 ∈ H then

〈v1, v2〉 = M2
〈w1, w2〉.
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(2) If (vi )1≤i≤l is a linearly independent set of H and s ∈ 0wi (k, vi ), for some
wi ∈ H , 1≤ i ≤ l, then (wi )1≤i≤l is a linearly independent set.

Proof. In virtue of Proposition 2.1(2) we can assume that ‖v1‖ = ‖v2‖ = 1. Hence
‖w1‖ = ‖w2‖ = 1/M . Since s is irregular, there exists k ′ ∈ K , k ′ 6= k and vectors
v′, w′ ∈ H with ‖v′‖ = 1 and ‖w′‖ = 1/M such that s ∈ 0w′(k ′, v′). According to
Proposition 2.1(3) we have

(3-1) w′⊥ w1 and w′⊥ w2.

Since k 6= k ′ by Urysohn’s lemma there exist f, f ′ ∈ C0(K ) satisfying:

(i) f (K ), f ′(K )⊂ [0, 1].

(ii) f (k)= f ′(k ′)= 1.

(iii) supp f ∩ supp f ′ =∅.

Put h1 = f · (v1/2), h2 = f · (v2/2), h3 = f ′ · (v′/2) and

(3-2) h = h1+ h2+‖v1+ v2‖h3.

According to (iii)

(3-3) ‖h‖ = 1
2‖v1+ v2‖.

Next we will calculate ‖Th(s)‖. In order to do this consider the function h1+ h3.
It is easy to see that

ω(k, h1+ h3, v1)= ω(k ′, h1+ h3, v
′)= 1

2 .

Thus, since s ∈ 0w1(k, v1)∩0w′(k ′, v′) it follows by the definition of these sets that

(3-4) ‖T (h1+ h3)(s)−w1‖ ≤
M
2

and ‖T (h1+ h3)(s)−w′‖ ≤
M
2
.

On the other hand, (3-1) gives us that

(3-5) ‖w1−w
′
‖ =

√
‖w1‖2+‖w′‖2 =

√
2

M2 = M.

By (3-4) and (3-5) we deduce that

(3-6) T (h1+ h3)(s)=
w1+w

′

2
.
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In the same way we obtain

(3-7) T (h1− h3)(s)=
w1−w

′

2
,

and

(3-8) T (h2+ h3)(s)=
w2+w

′

2
.

By combining (3-6), (3-7) and (3-8) we infer that

Th1(s)=
w1
2
, Th2(s)=

w2
2

and Th3(s)=
w′

2
.

Thus, taking in mind (3-1) and (3-2) we get

‖Th(s)‖2 =
‖w1+w2‖

2

4
+‖v1+ v2‖

2 ‖w
′
‖

2

4
.

Since that ‖Th‖ ≤ M‖h‖ and (3-3) holds, it follows that

‖w1+w2‖
2

4
+‖v1+ v2‖

2 ‖w
′
‖

2

4
≤ M2 ‖v1+ v2‖

2

4
.

Recalling that ‖w′‖ = 1/M , we have

‖w1+w2‖
2
≤

(
M2
−

1
M2

)
‖v1+ v2‖

2.

But ‖w1+w2‖
2
= 2/M2

+ 2〈w1, w2〉 and ‖v1+ v2‖
2
= 2+ 2〈v1, v2〉. Hence

2
M2 + 2〈w1, w2〉 ≤

(
M2
−

1
M2

)
(2+ 2〈v1, v2〉).

By using that M2
=
√

2 we conclude

M2
〈w1, w2〉 ≤ 〈v1, v2〉.

Similarly working with −v2 and −w2 instead of v2 and w2 we derive that

M2
〈w1,−w2〉 ≤ 〈v1,−v2〉,

so the equality holds.
(2) It suffices to notice that item (1) of the proposition implies the following

identity of matrices:

[〈vi , vj 〉]1≤i, j≤l = M2
[〈wi , wj 〉]1≤i, j≤l . �
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4. The functions 8 : K → P(S) and 9 : S→ P(K )

Here it is convenient to introduce two functions 8 : K →P(S) and 9 : S→P(K )
given by

8(k)=
⋃{

0w(k, v) : v 6= 0 and ‖w‖ =
‖v‖

M

}
,

and

9(s)=
⋃{

0v(s, w) : w 6= 0 and ‖v‖ =
‖w‖

M

}
.

Our next step is to prove that the sets 8(k) and 9(s) are singletons, see
Proposition 5.1. The next proposition works on the assumption that 8(k) is not
a singleton set. Later, in the proof of Proposition 4.1, we will use it to derive a
contradiction.

Proposition 4.1. Let k ∈ K . Suppose that 8(k) is not a singleton set. Then:

(1) k is an irregular point of K .

(2) 8(k) contains only irregular points of S.

Proof. (1) Pick two different points s, s ′ ∈ 8(k). So, there are v, v′, w,w′ ∈ H
such that

s ∈ 0w(k, v) and s ′ ∈ 0w′(k, v′).

By Proposition 2.1.4 there exist z and z′ ∈ H satisfying

k ∈ 0z(s, w)∩0z′(s ′, w′),

hence k is an irregular point of K .
(2) First of all notice that by item (1) of the proposition applied to 9(s), it

suffices to prove that for all s ∈8(k), 9(s) is not a singleton set.
Assume by contradiction that 9(s) is a singleton set for some s ∈8(k). Since

s ∈8(k), there exist v,w ∈ H such that s ∈ 0w(k, v). By Proposition 2.1(4) there
exists z ∈ H satisfying 0z(s, w)= {k}. Then k ∈9(s) and therefore

(4-1) 9(s)= {k}.

Now fix (wi )1≤i≤n , a basis of H with ‖wi‖ = 1 for every 1 ≤ i ≤ n. There exist,
by Proposition 2.1(1), (vi )1≤i≤n in H such that 0vi (s, wi ) 6=∅ for every 1≤ i ≤ n.
Thus (4-1) implies that

(4-2) 0vi (s, wi )= {k},

for every 1≤ i ≤ n.
On the other hand, since by item (1) of the proposition k is an irregular point of K ,

it follows from (4-2) and Proposition 3.1(2) that (vi )1≤i≤n is linearly independent.
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Next, since k is an irregular point of K , there exist s ′ ∈ S, s ′ 6= s and w′, v′ ∈ H
such that k ∈ 0v′(s ′, w′). So, by (4-2) and Proposition 2.1(3) we conclude that

v′ ⊥ vi ,

for every 1≤ i ≤ n, a contradiction because the dimension of H is n. �

5. The cardinality of 8(k) for every k ∈ K

We are now in position to state the key proposition for proving Theorem 1.3. The
span of a subset V of E will be denoted by [V ].

Proposition 5.1. 8(k) is a singleton set for every k ∈ K .

Proof. Assume that there exists k ∈ K such that 8(k)= {si : i ∈ I } with cardinality
of I greater than or equal two. For all i ∈ I put

Vi = {v ∈ H, v 6= 0 : si ∈ 0w(k, v) for some w ∈ H}.

It follows from the definition of 8(k) that Vi 6=∅ for every i ∈ I , and according to
Proposition 2.1(1) ⋃

i∈I

Vi = Hr {0},

and therefore

(5-1)
⋃
i∈I

[Vi ] = H.

On the other hand, for all i ∈ I set

Zi = {z ∈ H, z 6= 0 : k ∈ 0z(si , w) for some w ∈ H}.

Pick i ∈ I . Since Vi 6=∅ there exists v ∈ H such that si ∈0w(k, v) for some w ∈ H .
By Proposition 2.1(4), 0z(si , w)= {k} for some z ∈ H . Hence Zi 6=∅.

According to Proposition 2.1(2) we can assume that ‖zi‖ = ‖z j‖ and by the
definition of (Zi )i∈I there are wi and wj ∈ H such that

k ∈ 0zi (si , wi )∩0z j (sj , wj ).

So by Proposition 2.1(3), zi ⊥ z j . Consequently

(5-2) [Zi ] ⊥ [Z j ].

Now we will prove that for all i ∈ I

(5-3) [Zi ] = [Vi ].
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First we will show that Zi ⊂ Vi . Indeed, let z ∈ Zi and take w ∈ H such that
k ∈ 0z(si , w). By Proposition 2.1(4) there exists w′ ∈ H satisfying 0w′(k, z)= {si }.
So z ∈ Vi .

Next we will complete the proof of (5-3) by showing that the dimension of [Vi ]

is less than or equal to the dimension of [Zi ]. Let {v1, . . . , vl} ⊂ Vi be a basis
of [Vi ]. Thus, by the definition of Vi there are {w1, . . . , wl} ⊂ H such that

(5-4) si ∈ 0wj (k, vj ),

for every 1≤ j ≤ l. Since the cardinality of I is greater than or equal to two, k is
an irregular element of K . Thus, according to Proposition 4.1(2), si is an irregular
element of S. Then, by (5-4) and Proposition 3.1(2) we see that {w1, . . . , wl} is
linearly independent.

In view of (5-4), Proposition 2.1(4) implies that there are {z1, . . . , zl} ⊂ H such
that for all 1≤ j ≤ l,

(5-5) 0z j (si , wj )= {k}.

So, for all 1≤ j ≤ l, z j ∈ Zi and by (5-5) and Proposition 3.1(2) we deduce that
{z1, . . . , zl} is linearly independent. Then, we are done.

Finally, by combining (5-2) and (5-3) it follows that for all i, j ∈ I with i 6= j

[Vi ] ⊥ [Vj ],

a contradiction with (5-1), because H would be a union of nontrivial mutually
perpendicular subspaces. �

6. The isomorphisms between C0(K, H) spaces with distortion
√

2

Proposition 5.1 allows us to define two functions ϕ : K → S and ψ : S→ K by

8(k)= {ϕ(k)} and 9(s)= {ψ(s)}.

Thus, to complete the proof of Theorem 1.3 it remains to prove the following
proposition.

Proposition 6.1. The functions ϕ : K → S and ψ : S → K are continuous
and ψ = ϕ−1.

Proof. First we will show that ψ = ϕ−1. Fix k ∈ K . By the definition of 8(k) there
are v,w ∈ H such that

ϕ(k) ∈ 0w(k, v).

Thus, applying the items (1) and (3) of Proposition 2.1, there exists z ∈ H satisfying

0z(ϕ(k), w)= {k}.
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Therefore k ∈ 9(ϕ(k)) = {ψ(ϕ(k))}. That is, k = ψ(ϕ(k)). Hence ψ ◦ ϕ = IdK .
Analogously we deduce that ϕ ◦ψ = IdS .

We now prove that ϕ is continuous. The proof that ψ is continuous is analogous.
Observe that it suffices to prove that each net (kj )j∈J of K converging to k ∈ K

admits a subnet (kjp)p∈P such that (ϕ(kjp))p∈P converges to ϕ(k).
Assume then that (kj )j∈J is a net of K converging to k. By Propositions 2.1(1)

and 5.1, for all j ∈ J take vj and wj ∈ H with ‖vj‖ = 1 such that

(6-1) ϕ(kj ) ∈ 0wj (kj , vj ).

Since the nets (vj )j∈J and (wj )j∈J are contained in compact sets, we can assume
that there are v,w ∈ H such that vj → v and wj → w.

For each f ∈ C0(K , H) we have

(6-2) ω(kj , f, vj )→ ω(k, f, v),

and according to (6-1),

(6-3) ‖T f (ϕ(kj ))−wj‖ ≤ Mω(kj , f, vj ), ∀ j ∈ J.

Fix f1 ∈ C0(K , H) satisfying ‖ f1‖ =
1
2 and f1(x) = v

2 . Then (6-2) and (6-3)
imply that

‖T f1(ϕ(kj ))‖ ≥ ‖wj‖−‖T f1(ϕ(kj ))−wj‖ ≥
1
M
−Mω(kj , f1, vj ),

for every j ∈ J . Notice that ω(k, f1, v)=
‖v‖

2 =
1
2 , so by (6-2) we have

lim inf
j∈J
‖T f1(ϕ(kj ))‖ ≥

1
M
−

M
2
> 0.

Since T f1 vanishes at infinity, this implies that (ϕ(kj ))j∈J admits a subnet converg-
ing to some s ∈ S, so we assume that ϕ(kj )→ s. Hence, by (6-2) and (6-3),

‖T f (s)−w‖ ≤ Mω(k, f, v), ∀ f ∈ C0(K , H),

which means that s ∈ 0w(k, v)⊂8(k)= {ϕ(k)}, and consequently s = ϕ(k). �

7. Open questions

In view of Theorem 1.3, the following questions arise naturally:

Problem 7.1. Is Theorem 1.3 optimal, in the sense that 4
√

2 is the best number for
formalizing it?

Problem 7.2. What are the Banach spaces X satisfying the following property:
whenever K and S are locally compact Hausdorff spaces and there exists an
isomorphism T from C0(K , X) onto C0(S, X) with ‖T ‖‖T−1

‖ =
√

2, then K and
S are homeomorphic?



332 ELÓI MEDINA GALEGO AND ANDRÉ LUIS PORTO DA SILVA

References

[Amir 1965] D. Amir, “On isomorphisms of continuous function spaces”, Israel J. Math. 3 (1965),
205–210. MR Zbl

[Banach 1932] S. Banach, Théorie des opérations linéaires, Monografie Matematyczne 1, Seminar-
ium Matematyczne Uniwersytetu Warszawskiego, Warsaw, 1932. Zbl JFM

[Behrends 1979] E. Behrends, M-structure and the Banach–Stone theorem, Lecture Notes in Mathe-
matics 736, Springer, Berlin, 1979. MR Zbl

[Cambern 1966] M. Cambern, “A generalized Banach–Stone theorem”, Proc. Amer. Math. Soc. 17
(1966), 396–400. MR Zbl

[Cambern 1967] M. Cambern, “On isomorphisms with small bound”, Proc. Amer. Math. Soc. 18
(1967), 1062–1066. MR Zbl

[Cambern 1970] M. Cambern, “Isomorphisms of C0(Y ) onto C(X)”, Pacific J. Math. 35 (1970),
307–312. MR Zbl

[Cambern 1976] M. Cambern, “Isomorphisms of spaces of continuous vector-valued functions”,
Illinois J. Math. 20:1 (1976), 1–11. MR Zbl

[Cidral et al. 2015] F. C. Cidral, E. M. Galego, and M. A. Rincón-Villamizar, “Optimal extensions of
the Banach–Stone theorem”, J. Math. Anal. Appl. 430:1 (2015), 193–204. MR Zbl

[Cohen 1975] H. B. Cohen, “A bound-two isomorphism between C(X) Banach spaces”, Proc. Amer.
Math. Soc. 50 (1975), 215–217. MR Zbl

[Galego and Porto da Silva 2016] E. M. Galego and A. L. Porto da Silva, “An optimal nonlinear
extension of Banach–Stone theorem”, J. Funct. Anal. 271:8 (2016), 2166–2176. MR Zbl

[Stone 1937] M. H. Stone, “Applications of the theory of Boolean rings to general topology”, Trans.
Amer. Math. Soc. 41:3 (1937), 375–481. MR Zbl

Received September 19, 2016. Revised March 31, 2017.

ELÓI MEDINA GALEGO

DEPARTMENT OF MATHEMATICS, IME
UNIVERSITY OF SÃO PAULO

05508-090 SÃO PAULO

BRAZIL

eloi@ime.usp.br

ANDRÉ LUIS PORTO DA SILVA

DEPARTMENT OF MATHEMATICS, IME
UNIVERSITY OF SÃO PAULO

05508-090 SÃO PAULO

BRAZIL

porto@ime.usp.br

http://dx.doi.org/10.1007/BF03008398
http://msp.org/idx/mr/0200708
http://msp.org/idx/zbl/0141.31301
http://msp.org/idx/zbl/0005.20901
http://msp.org/idx/jfm/58.0420.01
http://msp.org/idx/mr/547509
http://msp.org/idx/zbl/0436.46013
http://dx.doi.org/10.2307/2035175
http://msp.org/idx/mr/0196471
http://msp.org/idx/zbl/0156.36902
http://dx.doi.org/10.2307/2035796
http://msp.org/idx/mr/0217580
http://msp.org/idx/zbl/0165.47402
http://dx.doi.org/10.2140/pjm.1970.35.307
http://msp.org/idx/mr/0433201
http://msp.org/idx/zbl/0191.13103
http://projecteuclid.org/euclid.ijm/1256050155
http://msp.org/idx/mr/0388078
http://msp.org/idx/zbl/0317.46030
http://dx.doi.org/10.1016/j.jmaa.2015.04.060
http://dx.doi.org/10.1016/j.jmaa.2015.04.060
http://msp.org/idx/mr/3347209
http://msp.org/idx/zbl/1331.46006
http://dx.doi.org/10.2307/2040542
http://msp.org/idx/mr/0380379
http://msp.org/idx/zbl/0317.46025
http://dx.doi.org/10.1016/j.jfa.2016.07.008
http://dx.doi.org/10.1016/j.jfa.2016.07.008
http://msp.org/idx/mr/3539349
http://msp.org/idx/zbl/1353.46007
http://dx.doi.org/10.2307/1989788
http://msp.org/idx/mr/1501905
http://msp.org/idx/zbl/0017.13502
mailto:eloi@ime.usp.br
mailto:porto@ime.usp.br


PACIFIC JOURNAL OF MATHEMATICS
Vol. 290, No. 2, 2017

dx.doi.org/10.2140/pjm.2017.290.333

DISTINGUISHED THETA REPRESENTATIONS
FOR CERTAIN COVERING GROUPS

FAN GAO

To Professor Freydoon Shahidi on his 70th birthday

For Brylinski–Deligne covering groups of an arbitrary split reductive group,
we consider theta representations attached to certain exceptional genuine
characters. The goal of the paper is to study the dimension of the space of
Whittaker functionals of a theta representation. In particular, we investi-
gate when the dimension is exactly one, in which case the theta representa-
tion is called distinguished. For this purpose, we first give effective lower
and upper bounds for the dimension of Whittaker functionals for general
theta representations. Consequently, the dimension in many cases can be re-
duced to simple combinatorial computations, e.g., the Kazhdan–Patterson
covering groups of the general linear groups, or covering groups whose
complex dual groups (à la Finkelberg, Lysenko, McNamara and Reich) are
of adjoint type. In the second part of the paper, we consider coverings of
certain semisimple simply connected groups and give necessary and suffi-
cient conditions for the theta representation to be distinguished. There are
subtleties arising from the relation between the rank and the degree of the
covering group. However, in each case we will determine the exceptional
character whose associated theta representation is distinguished.

1. Introduction and main results

1A. Introduction. Let F be a nonarchimedean local field of characteristic 0 and
residue characteristic p. Let G be a connected split reductive group over F, and
let G :=G(F) be its rational points. One of the central ingredients in the study of
irreducible admissible representation of G is the uniqueness of Whittaker functionals
(see [Rodier 1973; Shalika 1974]). For instance, this uniqueness property is crucial
in the Langlands–Shahidi theory of L-functions [Shahidi 2010] for the so-called
generic representations of G, i.e., those with nontrivial Whittaker functionals.
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For a natural number n ≥ 1, we assume that F× contains the full subgroup
of the n-th roots of unity, which is then denoted by µn . In this paper, we work
with the Brylinski–Deligne n-fold covering groups G(n) of G, see Section 2A for a
description on such covering groups. We may write G(n) and G interchangeably
if no confusion arises. For simplicity, the phrase covering groups in this paper
is used to refer to the Brylinski–Deligne covering groups. For this purpose, it is
noteworthy to mention that the Brylinski–Deligne framework is quite encompassing
and contains almost all classically interesting covering groups [Steinberg 1962;
Moore 1968; Matsumoto 1969], in particular the Matsumoto covering groups of
semisimple simply connected groups [Moore 1968] and the Kazhdan–Patterson
covering groups GL(n)r of GLr [Kazhdan and Patterson 1984].

For covering groups, the uniqueness of Whittaker functionals for genuine rep-
resentations of G(n) holds rarely and one nontrivial example is the classical double
cover Sp(2)2r of the symplectic group Sp2r , see [Szpruch 2007]. This uniqueness plays
a pivotal role in the work of Szpruch [2009b; 2013] generalizing the method of Lang-
lands and Shahidi to Sp(2)2r . Besides this special family of examples, the uniqueness
of Whittaker functionals fails widely, and one almost never expects such a uniform
property for all genuine representations of a general covering group. For example, it
is well known that certain theta representations for the Kazhdan–Patterson coverings
GL(n)r of GLr could have high dimensional space of Whittaker functionals [Kazhdan
and Patterson 1984]. In fact, such theta representations show that the analogous
standard module conjecture (which is a theorem for linear algebraic groups from
[Casselman and Shahidi 1998]) does not hold for covering groups.

The failure of the uniqueness of Whittaker functionals for general genuine
representations of covering groups, however, has been the source of both obstacles
and inspirations to some advancement of the representation theory of such groups.
On the one hand, for instance, it is not a priori clear how to generalize the Langlands–
Shahidi theory of L-functions to covering groups because of the nonuniqueness of
Whittaker functionals for unramified principal series representations. Equivalently,
the difficulty for such generalization is essentially due to the fact that the analogous
Casselman–Shalika formula for covering groups as in [Chinta and Offen 2013;
McNamara 2016] is vector-valued, whereas for linear algebraic groups it is scalar-
valued; see [Casselman and Shalika 1980].

On the other hand, there are various streams of rich theories stemming from the
nonexistence or multidimensionality of Whittaker functionals. For instance, for
genuine representations of covering groups without Whittaker functionals, one may
consider semi-Whittaker functionals as in [Takeda 2014] or degenerate Whittaker-
functionals [Mœglin and Waldspurger 1987], which interact fruitfully with the
arithmetic and character theory of the representations. Meanwhile, the theory of
unipotent orbit as discussed in [Ginzburg 2006; Friedberg and Ginzburg 2014;
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Friedberg and Ginzburg 2016a] for instance also rectify the situation in the absence
of Whittaker functionals. In the latter case where multidimensionality holds, the
theory of multiple Weyl Dirichlet series makes deep and fascinating connections
between representation theory of covering groups, quantum physics and statistical
mechanics etc, see [Brubaker et al. 2011; Bump et al. 1990; 2012] for some of the
ideas involved. In particular, the book [Bump et al. 2012] contains several excellent
expository articles on multiple Dirichlet series.

Nevertheless, in this paper we consider only the so-called theta representations
2(G(n), χ) which appear as the local representations for the residue of the Borel
Eisenstein series (see Definition 2.1). Moreover, we are mostly interested in deter-
mining when the space of Whittaker functionals for 2(G(n), χ) has dimension one,
in which case 2(G(n), χ) is called distinguished following Suzuki [1998]. Here χ
is an exceptional genuine character (see Definition 2.1) of the center Z(T ) of the
covering torus T ⊆ G. The reason for considering this problem is two-fold.

First, 2(G(n), χ) is in a certain sense the simplest family of genuine repre-
sentations of a general covering group G(n). Indeed, if n = 1, then it follows
from definition that 2(G(n), χ) could be the trivial representation of the linear
group G = G(1), depending on a proper choice of the exceptional character χ .
Therefore, for the genericity question regarding Whittaker functionals of genuine
representations, it is reasonable to consider this family first. Moreover, theta
representations for the Kazhdan–Patterson covering groups of GLr , to which we
have just alluded, are already studied in depth in the seminal paper [Kazhdan and
Patterson 1984]. Despite the fact that the idea therein could be applicable for
general covering groups, to the best of our knowledge, it seems that there is no
systematic treatment on theta representations for general covering groups in the
literature. Perhaps this gap is caused by the tedious cocycle computation to be
carried out by any potential author. However, the Brylinski–Deligne framework
enables us to compute by invoking some neat structural fact of the covering groups
of interest, and to handle only a minimized usage of a cocycle on the torus. In
brief, we wish to fill in the gap by generalizing the relevant work of Kazhdan and
Patterson to Brylinski–Deligne covering groups.

Second, distinguished theta representations have important and emergingly wider
applications. Theta representations are the representation-theoretic analogues of
theta functions, one of the early applications of which was given by Riemann in his
seminal paper to prove the functional equation of the Riemann zeta function. In
the language of modern theory of representations, theta representations for Sp(2)2r
gain deep applications in the Shimura correspondence [Shimura 1973; Gelbart
1976]. On the other hand, following the work of Kazhdan and Patterson, theta
representations for GL(n)r are also studied extensively in [Bump and Hoffstein 1987;
Suzuki 1998; 2012], to mention a few. In particular, these authors made some deep
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conjectures and also provided evidence for a generalized Shimura correspondence
regarding GL(n)r , and the distinguishedness property is exploited to achieve the goals
in their work. Another significant direction of applications is the Rankin–Selberg
integral representation for the symmetric square and cube L-functions [Bump and
Ginzburg 1992; Bump et al. 1996; Takeda 2014; Kaplan 2016]. Evidently, it should
be mentioned that for distinguished theta representations, the theory of L-functions
could be developed as in the linear algebraic case, since the Casselman–Shalika
formula is then scalar-valued. More recently, the work of E. Kaplan [2015a; 2015b],
and S. Friedberg and D. Ginzburg [2014; 2016a] also relies heavily on the local and
global theta representations in their consideration of Fourier coefficient, Rankin–
Selberg L-function and descent integral etc. Notably in their work, distinguishedness
is responsible for proving that a global integral admits an Euler factorization into
local factors. Besides these, the problem on global cuspidal theta representations
is important and many problems are open (see [Friedberg and Ginzburg 2016a;
Suzuki 1998]). In any case, we believe that distinguished theta representations are
objects of great interest and significance, and we hope that our paper could shed
some light on the relevant questions.

1B. Main results. We consider a Brylinski–Deligne n-fold covering group G(n).
Let χ be an exceptional character for G(n). Fix an unramified additive character ψ
of F and consider the space Whψ(2(G(n), χ)) of ψ-Whittaker functionals of the
theta representation 2(G(n), χ). The pair (G(n), χ) such that

dim Whψ(2(G(n), χ))= 1

is quite unique, and the goal is to investigate when 2(G(n), χ) is distinguished. We
remark that for fixed G(n), the set of unramified exceptional characters χ is a torsor
over Z(G∨), the center of the complex dual group G∨ of G. For details on G∨, see
[Finkelberg and Lysenko 2010; McNamara 2012; Reich 2012; Weissman 2015].

We outline the structure of the paper and state the main results.
In Section 2, we recall the basic structural facts on a Brylinski–Deligne covering

group G(n) which will be crucial for our computations. In this paper, we consider
exclusively unramified covering group G(n) and unramified exceptional character
χ . In Section 3, the space Whψ(2(G(n)), χ) is analyzed following the strategy
in [Kazhdan and Patterson 1984] closely. In particular, it relies crucially on the
Shahidi local coefficient matrix [τ(χ,wα, γ, γ ′)]γ,γ ′ for covering groups. Note
that [τ(χ,wα, γ, γ ′)]γ,γ ′ is also referred to as the scattering matrix in [Brubaker
et al. 2016] and transition matrix in [Chinta and Offen 2013]. Since the matrix is
an analogue (and in fact the reciprocal) of Shahidi’s local coefficient in the linear
algebraic case [Shahidi 2010, Chapter 5], we call it the Shahidi local coefficient
matrix in this paper. See also [Budden 2006; Szpruch 2016]. In the unramified
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setting, the matrix is computed in [McNamara 2016]; it is also computed for ramified
places in [Goldberg and Szpruch 2015].

The first main result is Theorem 3.14 from Section 3:

Theorem 1.1. Let G(n) be an arbitrary unramified Brylinski–Deligne covering
group. Let χ be an unramified exceptional genuine character of G(n) with associated
theta representation 2(G(n), χ). Then,

|℘Q,n(Oz
Q,n)| ≤ dim Whψ(2(G(n), χ))≤ |℘Q,n(Oz

Q,n,sc)|.

These two bounds are combinatorial quantities involving certain Weyl-action on
lattices. The readers are referred to Section 2 for details. We highlight here some
consequences from the above theorem.

Firstly, Theorem 1.1 recovers the results of Kazhdan and Patterson. More
precisely, for covering groups GL(n)r studied in [Kazhdan and Patterson 1984], the
authors determine that dim Whψ(2(GL(n)r , χ))= 1 if and only if

(1) n = r and GL(n)r is any Kazhdan–Patterson covering group, or

(2) n = r + 1 and GL(n)r belongs to a special type of degree n Kazhdan–Patterson
covering groups.

In fact, for any covering group GL(n)r studied in [Kazhdan and Patterson 1984],
one has Oz

Q,n =Oz
Q,n,sc. Therefore dim Whψ(2(GL(n)r , χ))= |℘Q,n(Oz

Q,n,sc)|. In
particular, the dimension does not depend on the choice of the exceptional character
χ and can be computed effectively. For details, see Example 3.16.

In general, for cases where the two bounds in Theorem 1.1 actually agree,
the computation of the dimension is reduced to a purely combinatorial problem,
and thus amenable to a straightforward calculation. This includes the case where
YQ,n = Y sc

Q,n , or equivalently Z(G∨)= 1. For example, odd degree coverings of
simply connected groups of type Br ,Cr have this property. See Sections 5 and 6.

Secondly in contrast, when the two bounds in Theorem 1.1 do not agree,
dim Whψ(2(G, χ)) becomes sensitive to the choice of the exceptional character χ .
The second half of this paper is devoted to investigating this. This phenomenon al-
ready occurs for the degree two metaplectic covering SL(2)2 , see Example 4.7. In this
case 2(SL(2)2 , χ) is the even Weil representation. Consider 2(SL(2)2 , χψa ), where
χψa is an exceptional character defined by using the twisted additive character ψa ,
where a ∈ F×. It is well known that dim Whψ(2(SL(2)2 , χψa ))≤ 1 and the equality
holds if and only if a ∈ (F×)2. Our analysis shows that similar phenomenon occurs
for higher rank groups, see Section 4B, in particular Corollary 4.5.

In any case, we summarize our results for certain coverings of simply connected
groups as follows. We write for instance A(n)r for the degree n covering of the
simply connected group of type Ar of rank r . Here the covering group arises from
a quadratic form Q on the coroot lattice Y = Y sc such that Q(α∨) = 1 for any
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short coroot α∨. The following theorem is an amalgam of Theorems 4.10, 5.3, 6.2
and 7.1. Only for A(n)r , we impose the condition n ≤ r + 2 for technical reasons.

Theorem 1.2. Let G(n) be an unramified Brylinski–Deligne degree n covering of
a simply connected semisimple group of type Ar , Br ,Cr or G2. If G(n)

= A(n)r , we
further assume n ≤ r +2. Let χ be an unramified exceptional character for G(n). In
each case for G(n) below, if dim Whψ(2(G(n), χ))= 1, then the following relations
between r and n must hold:

A(n)r , r ≥ 1, n ≤ r + 2, n = r + 2 or r + 1;

C (n)
r , r ≥ 2, n = 4r − 2, 4r, 4r + 2 or 2r + 1;

B(n)r , r ≥ 3, n = 2r + 1 or 2r + 2;

G(n)
2 , n = 7 or 12.

Conversely, suppose that r and n satisfy the above relations; then for every
case above except C (4r)

r , there exists a unique exceptional character χ such that
dim Whψ(2(G(n), χ))= 1 for above G(n).

We actually determine the unique exceptional character specified in Theorem 1.2,
see Theorems 4.10, 5.3, 6.2 and 7.1. In the A(r+1)

r case, our result generalizes the re-
sult for the even Weil representation of SL(2)2 mentioned above. As noted, the collec-
tion of unramified exceptional characters is a torsor over Z(G∨). Moreover, for cov-
ering groups of simply connected groups, the choice of ψ actually gives a base point
for this torsor. Thus, any exceptional character χ gives rise to an element in Z(G∨),
depending on the choice of ψ . That is, the explicit requirement given in those
theorems could be viewed as determining the corresponding element in Z(G∨).

We note that for classical groups and similitude groups, an extensive study is
included in [Friedberg et al. ≥ 2017]. Our result from Theorem 1.2 also agrees
with the pertinent discussion in [Friedberg and Ginzburg 2016b] for symplectic
groups. For example, the local statement for the second part of Conjecture 1 in
Friedberg and Ginzburg’s paper follows from our Proposition 5.1 here. Moreover,
the factorizability property of the Whittaker function in that paper for Sp(4n−2)

2n also
agrees with our result for the C (n)

r case in Theorem 1.2.
Finally, we remark that groups of type Dr , E6, E7, E8, F4 could be analyzed by

the same procedure. In principle, Theorem 1.1 coupled with the analogous argument
for Theorem 1.2 enable one to determine completely dim Whψ(2(G(n), χ)) for
arbitrary (G(n), χ).

2. Basic setup

2A. Structural facts on G. For ease of reading, we first recall some structural facts
on G. The main references are [Brylinski and Deligne 2001; Finkelberg and Lysenko
2010; Reich 2012; McNamara 2012; 2016; Weissman 2015; Gan and Gao 2016].
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In this paper, we concentrate exclusively on unramified Brylinski–Deligne covering
groups G (to be explained below). We follow the notations in [Gan and Gao 2016].

Let F be a nonarchimedean field of characteristic 0, with residual characteristic p.
Fix a uniformizer $ of F. Let G be a split linear algebraic group over F with
maximal split torus T. Write (X,8,1, Y,8∨,1∨) for the root data of G. Here
X (respectively, Y ) is the character lattice (respectively, cocharacter lattice) for
(G,T). Choose a set 1⊆8 of simple roots from the set of roots 8, and 1∨ the
corresponding simple coroots from 8∨. Let B be the Borel subgroup associated
with 1. Write Y sc

⊆ Y for the lattice generated by 8∨.
Fix a Chevalley system of pinnings for (G,T,B). That is, fix an isomorphism

eα :Ga→Uα for each α ∈8, where Uα ⊆G is the root subgroup associated with α.
Moreover, for each α ∈8, there is a unique morphism φα : SL2→G which restricts
to e±α on the upper and lower triangular subgroup of unipotent matrices of SL2.

Consider the algebro-geometric covering G of G by K2, which is categorically
equivalent to the pairs {(D, η)} (see [Gan and Gao 2016]). Here η : Y sc

→ F× is a
homomorphism. On the other hand, D is a bisector associated to a Weyl-invariant
quadratic form Q : Y → Z. That is, let BQ be the Weyl-invariant bilinear form
associated to Q such that BQ(y1, y2)= Q(y1+ y2)− Q(y1)− Q(y2), then D is a
bilinear form on Y satisfying

D(y1, y2)+ D(y2, y1)= BQ(y1, y2).

The bisector D is not necessarily symmetric. Any G is, up to isomorphism, incar-
nated by (i.e., categorically associated to) (D, η) for a bisector D and some η.

Let n ≥ 1 be a natural number. Assume that F× contains the full group µn

of n-th roots of unity and p - n. Let G be incarnated by (D, η). One naturally
obtains degree n topological covering groups G, T , B of the rational points G :=
G(F), T := T(F), B := B(F), such as

µn
� � // G // // G.

We may write G(n) for G to emphasize the degree of covering. For any set H ⊆ G,
we write H ⊆ G for the preimage of H with respect to the quotient map G→ G.
The Bruhat–Tits theory gives a maximal compact subgroup K ⊆ G, which depends
on the fixed pinnings. We assume that G splits over K and fixes such a splitting;
call G an unramified Brylinski–Deligne covering group in this case. We remark
that if the derived group of G is simply connected, then G splits over K (see [Gan
and Gao 2016, Theorem 4.2]). On the other hand, we refer the reader to [Gan and
Gao 2016, § 4.6] for a counterexample from a certain double cover of PGL2 where
the splitting does not exist.

The data (D, η) play the following role for the structural fact on G:
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• The group G splits canonically over any unipotent element of G. In particular,
we write ēα(u) ∈ G, α ∈8, u ∈ F for the canonical lifting of eα(u) ∈ G. For
any α ∈ 8, there is a natural representative wα := eα(1)e−α(−1)eα(1) ∈ K
(and therefore w̄α ∈ G by the splitting of K ) of the Weyl element wα ∈ W.
Moreover, for hα(a) := α∨(a) ∈ G, α ∈8, a ∈ F×, there is a natural lifting
h̄α(a) ∈ G of hα(a), which depends only on the pinning and the canonical
unipotent splitting. For details, see [Gan and Gao 2016].

• There is a section s of T over T such that the group law on T is given by

(1) s(y1(a)) · s(y2(b))= (a, b)D(y1,y2)
n · s(y1(a) · y2(b)).

Moreover, for the natural lifting h̄α(a), one has

(2) h̄α(a)= (η(α∨), a)n · s(hα(a)) ∈ T .

• Let wα ∈ G be the natural representative of wα ∈W. For any y(a) ∈ T ,

(3) wα · y(a) ·w−1
α = y(a) · h̄α(a−〈y,α〉),

where 〈−,−〉 is the pairing between Y and X.

Consider the sublattice YQ,n := {y ∈ Y : BQ(y, y′) ∈ nZ} of Y. For every
α∨ ∈8∨, define nα := n/gcd(n, Q(α∨)). Write α∨Q,n := nαα∨ and αQ,n := n−1

α α.
Let Y sc

Q,n ⊆ Y be the sublattice generated by {α∨Q,n}α∈8. The complex dual group
G∨ for G as given in [Finkelberg and Lysenko 2010; McNamara 2012; Reich 2012]
has root data (YQ,n, {α

∨

Q,n},Hom(YQ,n,Z), {αQ,n}). In particular, Y sc
Q,n is the root

lattice for G∨. What is most pertinent to our paper is that the center Z(G∨) could
be identified as

Z(G∨) := Hom(YQ,n/Y sc
Q,n,C×).

2B. Theta representations2(G, χ). Fix an embedding ι :µn ↪→C×. A represen-
tation of G is called ι-genuine if µn acts via ι. We consider throughout the paper
ι-genuine (or simply genuine) representations of G.

Let U be the unipotent subgroup of B = T U. As U splits canonically in G, we
have B = T U. The covering torus T is a Heisenberg group with center Z(T ). The
image of Z(T ) in T is equal to the image of the isogeny YQ,n ⊗ F×→ T induced
from YQ,n→ Y.

Let χ ∈ Homι(Z(T ),C×) be a genuine character of Z(T ), write i(χ) := IndT
A χ
′

for the induced representation on T , where A is any maximal abelian subgroup of T ,
and χ ′ is any extension of χ . By the Stone–von Neumann theorem (see [Weissman
2009, Theorem 3.1; McNamara 2012, Theorem 3]), the construction χ 7→ i(χ)
gives a bijection between isomorphism classes of genuine representations of Z(T )
and T . Since we consider an unramified covering group G in this paper, we take A
to be Z(T ) · (K ∩ T ) from now.
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View i(χ) as a genuine representation of B by inflation from the quotient map
B→ T . Write I (i(χ)) := IndG

B
i(χ) for the normalized induced principal series

representation of G. For simplicity, we may also write I (χ) for I (i(χ)). One
knows that I (χ) is unramified (i.e., I (χ)K

6= 0) if and only if χ is unramified,
i.e., χ is trivial on Z(T )∩ K. We consider in this paper only unramified genuine
representations (and characters). In fact, one has the naturally arising abelian
extension

(4) µn
� � // Y Q,n // // YQ,n

such that unramified genuine characters of χ of Z(T ) correspond to genuine char-
acters of Y Q,n . Here Y Q,n := Z(T )/Z(T )∩ K. Since A/(T ∩ K )' Y Q,n as well,
there is a canonical extension (also denoted by χ ) of an unramified character χ of
Z(T ) to A, by composing χ with A � Y Q,n . Therefore, we will identify i(χ)
as IndT

A
χ for this χ .

For any w ∈W, the intertwining operator Tw,χ : I (χ)→ I (wχ) is defined by

(Tw,χ f )(ḡ)=
∫

Uw

f (w−1uḡ) du

whenever it is absolutely convergent. Moreover, it can be meromorphically contin-
ued for all χ (see [McNamara 2012, § 7]). For I (χ) unramified and w= wα with
α ∈1, Twα,χ is determined by

Twα,χ ( f0)= c(wα, χ) · f ′0 with c(wα, χ)=
1− q−1χ(h̄α($ nα ))

1−χ(h̄α($ nα )
,

where f0 ∈ I (χ) and f ′0 ∈ I (wαχ) are the unramified vectors. Moreover, Tw,χ

satisfies the cocycle condition as in the linear case. The coefficient c(wα, χ) was
determined in [McNamara 2016, Theorem 12.1] and later reformulated in [Gao
≥ 2017]. We use the latter formalism which is more suitable for our needs in
this paper.

The following definition mimics that in [Kazhdan and Patterson 1984, § I.2].

Definition 2.1. An unramified genuine character χ of Z(T ) is called exceptional if
χ(h̄α($ nα ))= q−1 for all α ∈1. The theta representation 2(G, χ) associated to
an exceptional character χ is the unique Langlands quotient (see [Ban and Jantzen
2013]) of I (χ), which is also equal to the image of the intertwining operator
Tw0,χ : I (χ)→ I (w0χ), where w0 ∈W is the longest Weyl element.

The extension Y Q,n gives rise to an extension Y sc
Q,n of Y sc

Q,n by restriction. All
exceptional characters agree on Y sc

Q,n , and therefore the set of exceptional characters
is a torsor over Z(G∨).

2C. Unitary distinguished characters. Depending on the choice of a nontrivial
additive character ψ ′ of F, a special class of the so-called distinguished genuine



342 FAN GAO

characters of Z(T ) is singled out in [Gan and Gao 2016] for the consideration of
the L-group extension for G. Distinguished characters, in the sense of [Gan and
Gao 2016], may not exist for general Brylinski–Deligne covering groups. However,
if G has a simply connected derived group or if the composition

η : Y sc
→ F×→ F/(F×)n

is trivial, such characters exist. One special property of a distinguished character is
its Weyl-invariance, and thus it could serve as a distinguished base point in the set
of genuine characters of Z(T ).

For the purpose of Sections 4 to 7, we recall the explicit construction in [Gan
and Gao 2016] when a distinguished character exists. In particular, we make the
above assumption on G, which is clearly satisfied in the simply connected case in
Sections 4 to 7.

First, let {yi } be a basis of YQ,n such that {ki yi } is a basis for the lattice J =
nY + Y sc

Q,n for some ki ∈ Z. Let ψ ′ be a nontrivial additive character of F. Let γψ ′
be the Weil index valued in µ4 satisfying

γψ ′(b2)= 1, γψ ′(b)2 = (b, b)2, γψ ′(bc)= γψ ′(b)γψ ′(c) · (b, c)2.

For any a ∈ F×, let ψ ′a : x 7→ ψ ′(ax) be the twisted additive character. Then

γψ ′a (b)= γψ ′(b) · (a, b)2.

By definition, a unitary distinguished character χ 0
ψ ′ of Z(T ) is given by

χ 0
ψ ′(yi (a))= γψ ′(a)2(ki−1)Q(yi )/n,

and for y =
∑

i ni yi and a ∈ F×,

(5) χ 0
ψ ′(y(a))= (a, a)

∑
i< j ni n j D(yi ,y j )

n ·

∏
i

χ 0
ψ ′(yi (ani ))2(ki−1)Q(yi )/n.

Note that in [Gan and Gao 2016], the exponent of γψ ′(a) in the formula of
χ 0
ψ ′(yi (a)) is the negative of what we use here. However, both give rise to distin-

guished characters.

2D. Conventions and notations. Let 2ρ :=
∑

α∨>0 α
∨ be the sum of all positive

coroots of G. Consider the affine translation `ρ :Y⊗Q→Y⊗Q given by y 7→ y−ρ.
Write w(y) for the natural Weyl group action on Y and Y⊗Q. Endow the codomain
of `ρ with this action. By transport of structure, one has an induced action of W on
the domain of `ρ (i.e., the first Y ⊗Q), which we denote by w[y]. That is,

w[y] := w(y− ρ)+ ρ.

Clearly Y is stable under this action. Write yρ := y − ρ for any y ∈ Y, then
w[y] − y = w(yρ)− yρ . From now, by Weyl orbits in Y or Y ⊗Q we always refer
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to the ones with respect to the action w[y]. Write O (respectively Oz) for the set
of W -orbits (respectively, free W -orbits) in Y.

We remark that for GLr , the Weyl-action considered by Kazhdan and Patterson
[1984, page 78] is actually w(y + ρ)− ρ. However, the indexing of Whittaker
functionals also differs from ours by taking an “inverse”, thus our terminology is
different but equivalent to that of [Kazhdan and Patterson 1984].

Definition 2.2. For any subgroup 3⊆ Y, a free orbit Oy ∈Oz is called 3-free if
the quotient map Y → Y/3 is injective on Oy . We write Oz

3 ⊆Oz for the set of
3-free orbits of Y.

Note that 3-free orbits are assumed to be free by definition. For simplicity, we
write Oz

Q,n,sc and Oz
Q,n for the set of Y sc

Q,n and YQ,n-free orbits of Y , respectively.
Clearly, the inclusions O ⊇Oz

⊇Oz
Q,n,sc ⊇Oz

Q,n hold.
Generally, notations will be either self-explanatory or explained the first time they

occur. For convenience, we list some notations which appear frequently in the text:
ε: the element ι((−1,$)n) ∈ C×. In particular, for n odd, ε = 1. We use the

following identity freely in the paper:

εD(y,y′)
= εD(y′,y) for any y ∈ YQ,n, y′ ∈ Y.

℘Q,n: the projection Y → Y/YQ,n .
℘sc

Q,n: the projection Y → Y/Y sc
Q,n .

ψ : a fixed additive character of F into C× with conductor OF . For any a ∈ F×,
the twisted character ψa is given by ψa : x 7→ ψ(ax).

sy : for any y ∈ Y, we write sy := s($ y) ∈ T .
dxe: the minimum integer such that dxe ≥ x for a real number x .

3. Bounds for dim Whψ(2(G, χ))

3A. Whittaker functionals. We follow the notations in Section 2B. Consider,
in particular, the principal series I (χ) := I (i(χ)) for an unramified character
χ ∈ Homι(Z(T ),C×).

Let Ftn(i(χ)) be the vector space of functions c on T satisfying

c(t̄ · z̄)= c(t̄) ·χ(z̄), t̄ ∈ T and z̄ ∈ A.

The support of any c ∈ Ftn(i(χ)) is a disjoint union of cosets in T /A. Moreover,
dim(Ftn(i(χ)))= |Y/YQ,n| since T /A has the same size as Y/YQ,n .

There is a natural isomorphism of vector spaces Ftn(i(χ)) ' i(χ)∨, where
i(χ)∨ is the complex dual space of functionals of i(χ). More explicitly, letting
{γi } ⊆ T be a chosen set of representatives of T /A, consider cγi ∈ Ftn(i(χ))
which has support γi · A and cγi (γi ) = 1. It gives rise to a linear functional
λ
χ
γi ∈ i(χ)∨ such that λχγi ( fγ j )= δi j , where fγ j ∈ i(χ) is the unique element such
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that supp( fγ j ) = A · γ−1
j and fγ j (γ

−1
j ) = 1. That is, fγ j = i(χ)(γ j )φ0, where

φ0 ∈ i(χ) is the normalized unramified vector of i(χ) such that φ0(1T )= 1. Thus,
the isomorphism Ftn(i(χ))' i(χ)∨ is given explicitly by

c 7→ λχc :=
∑

γi∈T /A

c(γi )λ
χ
γi
.

It can be checked easily that the isomorphism does not depend on the choice of
representatives for T /A.

LetψU :U→C× be the character on U such that its restriction to every Uα, α∈1

is given by ψ ◦ e−1
α . We may write ψ for ψU if no confusion arises.

Definition 3.1. For any genuine representation (σ , Vσ ) of G, a linear functional
` : Vσ → C is called a ψ-Whittaker functional if `(σ (u)v)= ψ(u) · v for all u ∈U
and v ∈ Vσ . Write Whψ(σ ) for the space of ψ-Whittaker functionals for σ .

An isomorphism exists between i(χ)∨ and the space Whψ(I (χ)) of ψ-Whittaker
functionals on I (χ) (see [McNamara 2016, § 6]), given by λ 7→Wλ with

Wλ : I (χ)→ C, f 7→ λ

(∫
U

f (w−1
0 u)ψ(u)−1µ(u)

)
,

where f ∈ I (χ) is an i(χ)-valued function on G. Here U− is the unipotent subgroup
opposite to U ; also, w0 = wα1wα2 · · ·wαk ∈ K is a representative of w0, where
w0 = wα1wα2 · · ·wαk is a minimum decomposition of w0. For any c ∈ Ftn(i(χ)),
by abuse of notation, we will write λχc ∈Whψ(I (χ)) for the resulting ψ-Whittaker
functional of I (χ) from the isomorphism Ftn(i(χ)) ' i(χ)∨ 'Whψ(I (χ)). An
easy consequence is

dim Whψ(I (χ))= |Y/YQ,n|.

Let J (w, χ) be the image of Tw,χ . The operator Tw,χ induces a homomorphism
T ∗w,χ of vectors spaces with image Whψ(J (w, χ)):

T ∗w,χ :Whψ(I (wχ)) //

)) ))

Whψ(I (χ))

Whψ(J (w, χ))
?�

OO

given by 〈λ
wχ
c ,−〉 7→ 〈λ

wχ
c , Tw,χ (−)〉 for any c ∈ Ftn(i(wχ)). Letting {λ

wχ
γ }γ∈T /A

be a basis for Whψ(I (wχ)), and {λχγ ′} a basis for Whψ(I (χ)), the map T ∗w,χ is then
determined by the square matrix [τ(χ,w, γ, γ ′)]γ,γ ′∈T /A of size |Y/YQ,n| such that

T ∗w,χ (λ
wχ
γ )=

∑
γ ′∈T /A

τ(χ,w, γ, γ ′) · λχγ ′ .
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Some immediate properties are as follows.

Lemma 3.2. For w ∈W and z̄, z̄′ ∈ A, the following identity holds:

τ(χ,w, γ · z̄, γ ′ · z̄′)= (wχ)−1(z̄) · τ(χ,w, γ, γ ′) ·χ(z̄′).

Moreover, for w1,w2 ∈W such that l(w2w1)= l(w2)+ l(w1), one has

τ(χ,w2w1, γ, γ
′)=

∑
γ ′′∈T /A

τ(w1χ,w2, γ, γ
′′) · τ(χ,w1, γ

′′, γ ′),

which is referred to as the cocycle relation.

Proof. The first equality follows from a change of basis formula from a different
choice of representations for T /A. The second equality follows from the cocycle
relation of intertwining operators. �

3B. Reduction of Whψ(2(G, χ)). Let w0 be the longest Weyl element of G.
Consider the theta representation2(G, χ)= Tw0,χ (I (χ)) attached to an unramified
exceptional character χ (see Definition 2.1).

Definition 3.3. A theta representation 2(G, χ) attached to an unramified excep-
tional genuine character χ is called distinguished if

dim Whψ(2(G, χ))= 1.

The distinguishedness of a theta representation here is not to be confused with
that of a distinguished genuine character as given in Section 2C.

Proposition 3.4. Let χ be an unramified exceptional character of G, and 1 the set
of simple roots. Then

Whψ(2(G, χ))=
⋂
α∈1

Ker(T ∗wα,wαχ :Whψ(I (χ))→Whψ(I (wαχ))),

where Twα,wαχ is the intertwining operator from I (wαχ) to I (χ).

Proof. The same proof for [Kazhdan and Patterson 1984, Theorem I.2.9] applies
here mutatis mutandis. �

Let λχγ ∈Whψ(I (χ)) and α ∈1, then

T ∗wα,wαχ (λ
χ
γ )=

∑
γ ′

τ
(wαχ,wα, γ, γ ′) · λwαχ

γ ′ .

In general, let c ∈ Ftn(i(χ)), and write

λχc =
∑
γ∈T /A

c(γ )λχγ .
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Then,

T ∗wα,wαχ (λ
χ
c )=

∑
γ

c(γ )
(∑
γ ′

τ
(wαχ,wα, γ, γ ′) · λwαχ

γ ′

)
=

∑
γ ′

(∑
γ

c(γ )τ
(wαχ,wα, γ, γ ′))λwαχ

γ ′ .

As an immediate consequence of Proposition 3.4, one has (see also [Kazhdan
and Patterson 1984, page 76]):

Corollary 3.5. A function c∈Ftn(i(χ)) gives rise to a functional in Whψ(2(G, χ))
(i.e., λχc ∈Whψ(2(G, χ))) if and only if for all α ∈1,∑

γ∈T /A

c(γ )τ
(wαχ,wα, γ, γ ′)= 0 for all γ ′.

The left-hand side is independent of the choice of representatives for T /A by
Lemma 3.2.

3C. The Shahidi local coefficient matrix. We would like to compute the matrix
[τ(χ,wα, γ, γ ′)]γ,γ ′ for any unramified character χ (not necessarily exceptional)
and simple reflection wα, α ∈1.

For Kazhdan–Patterson coverings GL(n)r , the matrix [τ(χ,wα, γ, γ ′)]γ,γ ′ is first
studied in [Kazhdan and Patterson 1984]. It also appears in the work of Suzuki
[1998], Chinta and Offen [2013] among others. For a subclass of Brylinski–Deligne
covering groups, the study of matrix [τ(χ,wα, γ, γ ′)]γ,γ ′ is conducted in [McNa-
mara 2016] for unramified characters χ , generalizing that of Kazhdan and Patterson.
Meanwhile, for ramified characters, it is included in the work of [Goldberg and
Szpruch 2015]. However, in order to work with the full class of Brylinski–Deligne
covering groups and also remove the assumptionµ2n⊆ F× in [McNamara 2016], we
refine the computation in [McNamara 2016] slightly. This is achieved by invoking
the structural facts of Brylinski–Deligne covering groups, in particular those from
Section 2A. We also note that interesting phenomena dissipate when the assumption
µ2n ⊆ F× is imposed, for example for the type Ar case in Section 4. There are
subtleties arising from the fact that −1 is not a square root. For this purpose, it is
important to rigidify the formula for the matrix and express its entries in terms of
naturally defined elements of the group.

Consider the Haar measure µ of F such that µ(OF )= 1. Thus,

µ(O×F )= 1− 1/q.

The Gauss sum is given by

Gψ(a, b)=
∫

O×F

(u,$)an ·ψ($
bu)µ(u), a, b ∈ Z.
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It is known that

Gψ(a, b)=



0 if b <−1,
1− 1/q if n|a, b ≥ 0,
0 if n - a, b ≥ 0,
−1/q if n|a, b =−1,
Gψ(a,−1) with |Gψ(a,−1)| = q−1/2 if n - a, b =−1.

Recall ε := ι((−1,$)n) ∈C×. One has Gψ(a, b)= εa
·Gψ(−a, b). For any k ∈ Z,

we write

gψ(k) := Gψ(k,−1).

As in [McNamara 2016, § 9], let fγ ′ ∈ I (χ) be the function with supp( fγ ′)=
Bw0K1, and fγ ′(w−1

0 )= i(χ)(γ ′)φ0 for a certain compact open subgroup K1. Here
φ0 ∈ i(χ)T∩K is the unramified vector in i(χ). From [McNamara 2016, Corol-
lary 9.2], one has τ(χ,wα, γ, γ ′)= 〈λ

wαχ
γ , Twα,χ ( fγ ′)〉/|U−∩K1|. More precisely,

from equality (9.3) of [McNamara 2016] one could evaluate τ(χ,wα, γ, γ ′) by
applying λ

wαχ
γ ∈ i

(
wαχ

)∨ to the integral∫
F

fγ ′
(
h̄α(x−1) · ēα(−x) ·w−1

0

)
·ψ−1(ēα(x−1)

)
µ(x) ∈ i

(wαχ).(6)

Note that the integrand of (6) takes values in i(χ). However, on the one hand,
as vector spaces of functions on T , the underlying space i(χ) is identical to that
of wα i(χ) (see [Gao ≥ 2017]); on the other hand, it follows from the Stone–von
Neumann theorem that wα i(χ)' i(wαχ) as representations of T . Therefore, there
is a canonical vector space isomorphism i(χ)' i(wαχ). For the computation below,
we will follow [McNamara 2016] closely and adopt this viewpoint implicitly.

To ease notations, write π = i(χ). Use the partition F =
⋃

m∈Z$
−m O×F and

write x =$−mu−1, where u ∈ O×F . Then µ(x) = |$ |−mµ(u) and the integral in
(6) is equal to∑
m∈Z

|$ |−m
∫

O×F

fγ ′(h̄α($m
· u) · ēα(−$−mu−1) ·w−1

0 ) ·ψ−1(ēα($m
· u))µ(u)

=

∑
m∈Z

∫
O×F

(u,$)m Q(α∨)
n ·π(h̄α($m)) ·π(h̄α(u)) ·π(γ ′)φ0 ·ψ

−1($m
· u)µ(u).

Suppose γ ′ = sy ∈ T for some y ∈ Y. (We write sy := s($ y) ∈ T for y ∈ Y, see
Section 2 for notations.) Then the above is equal to

(7)
∑
m∈Z

∫
O×F

(u,$)m Q(α∨)+B(α∨,y)
n ·π(h̄α($m)) ·π(sy)φ0 ·ψ

−1($m
· u)µ(u).
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From now, we write0(m, y, α∨) :=ε(m+〈y,α〉)D(y,α
∨) and0(y, α∨) :=0(−1, y, α∨),

which lie in {±1}. Following (3), h̄α($m) · sy =wα · (0(m, y, α∨) · sy+mα∨) ·w
−1
α .

Therefore (7) is equal to∑
m∈Z

0(m, y, α∨) ·wαπ
(
swα(y+mα∨)

)
φ0 ·

∫
O×F

(u,$)m Q(α∨)+B(α∨,y)
n ψ−1($m

·u)µ(u).

There are three cases for each term in the sum:

• For m ≤ −2, the integral over O×F vanishes, and thus the contribution to
τ(χ,wα, γ, γ ′) is 0.

• For m =−1, the contribution τ(χ,wα, γ, γ ′) is nonzero only when wα(y1)≡

y−α∨ mod YQ,n where γ = sy1, γ
′
= sy . When wα(y1)= y−α∨, the contri-

bution to τ(χ,wα, γ, γ ′) is

0(y, α∨) · gψ−1(B(α∨, y)− Q(α∨))= 0(y, α∨) · gψ−1(〈yρ, α〉Q(α∨)).

• For any x ∈ R, recall that we denote by dxe the minimum integer such that
dxe ≥ x . The sum for m ≥ 0 is equal to∑

m≥0

0(m, y, α∨) · wαπ(swα(y+mα∨))φ0 ·

∫
O×F

(u,$)m Q(α∨)+B(α∨,y)
n µ(u)

=

∑
m=k·nα−B(α∨,y)/Q(α∨)
k≥dB(α∨,y)/nαQ(α∨)e

0(m, y, α∨) · ε(m+〈y,α,)〉D(α
∨,y)

·
wαπ(s(−m−〈y,α〉)α∨)

wαπ(sy)φ0 · (1− q−1)

= (1− q−1)
∑

k≥d〈y,α∨〉/nαe

εknαB(α∨,y)
·
wαπ(h̄α($−knα )) · wαπ(sy)φ0

= (1− q−1)
∑

k≥d〈y,α∨〉/nαe

χ(h̄α($ nα ))k · wαπ(sy)φ0

= (1− q−1)
χ(h̄α($ nα ))ky,α

1−χ(h̄α($ nα ))
·
wαπ(sy)φ0, where ky,α = d〈y, α〉/nαe.

The contribution is nonzero only for γ = sy1 with y1 ≡ y mod YQ,n . In particular,
if y1 = y, then the contribution to τ(χ,wα, γ, γ ′) (for γ = γ ′ = sy) is

(1− q−1)
χ(h̄α($ nα ))ky,α

1−χ(h̄α($ nα ))
, where ky,α =

⌈
〈y, α〉

nα

⌉
.

To summarize, we state the following theorem by McNamara which generalizes
[Kazhdan and Patterson 1984, Lemma I.3.3]:
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Theorem 3.6 [McNamara 2016, Theorem 13.1]. Suppose that γ = sy1 is represented
by y1 and γ ′ = sy by y. Then we can write τ(χ,wα, γ, γ ′) = τ 1(χ,wα, γ, γ ′)+
τ 2(χ,wα, γ, γ ′) with the following properties:

• τ i (χ,wα, γ · z̄, γ ′ · z̄′)= (wαχ)−1(z̄) · τ i (χ,wα, γ, γ ′) ·χ(z̄′), z̄, z̄′ ∈ A;

• τ 1(χ,wα, γ, γ ′)= 0 unless y1 ≡ y mod YQ,n;

• τ 2(χ,wα, γ, γ ′)= 0 unless y1 ≡ wα[y] mod YQ,n .

Moreover,

• If y1 = y, then

τ 1(χ,wα, γ, γ
′)= (1− q−1)

χ(h̄α($ nα ))ky,α

1−χ(h̄α($ nα ))
, where ky,α =

⌈
〈y, α〉

nα

⌉
.

• If y1 = wα[y], then

τ 2(χ,wα, γ, γ
′)= 0(y, α∨) · gψ−1(〈yρ, α〉Q(α∨)).

As an analogue of [Kazhdan and Patterson 1984, Corollary I.3.4], we have the
following result.

Corollary 3.7. Let χ be an unramified exceptional character. Let λχc ∈Whψ(I (χ))
be the ψ-Whittaker functional of I (χ) associated to some c ∈ Ftn(i(χ)). Then, λχc
lies in Whψ(2(G, χ)) if and only if for any simple root α ∈1 one has

(8) c(swα[y]))= qky,α−1
·0(y, α∨) · gψ−1(〈yρ, α〉Q(α∨))−1

· c(sy) for all y.

Proof. By Corollary 3.5, for all α ∈1, we have

c(sy) · τ(
wαχ,wα, sy, sy)+ c(swα[y]) · τ(

wαχ,wα, swα[y], sy)= 0,

where y ∈ Y is any element. The preceding theorem gives

c(swα[y])=−(1−q−1)
(χ(h̄α($ nα )))−ky,α

1−χ(h̄α($ nα ))−1
·0(y,α∨)·gψ−1(〈yρ,α〉Q(α∨))−1

·c(sy)

=qky,α−1
·0(y,α∨)·gψ−1(〈yρ,α〉Q(α∨))−1

·c(sy). �

From now on, for y ∈ Y and α ∈1, we write

(9) t(wα, y) := qky,α−1
·0(y, α∨) · gψ−1(〈yρ, α〉Q(α∨))−1,

where

ky,α =

⌈
〈yρ, α〉+ 1

nα

⌉
and 0(y, α∨)= ε〈yρ ,α〉·D(y,α

∨).

It is clear t(wα, y) 6= 0.
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Definition 3.8. For c ∈ Ftn(i(χ)), we say that c vanishes on y ∈ Y if and only if
c(sy)= 0. It is said to vanish on the orbit Oy0 ⊂ Y if and only if it vanishes on all
y ∈Oy0 , in which case we write c(Oy0)= 0.

Assume that c gives rise to λχc ∈Whψ(2(G, χ)). Since t(wα, y) 6= 0 for all y
and α ∈ 1, it follows from Corollary 3.7 that c vanishes on Oy0 if and only if it
vanishes on any y ∈Oy0 . It is therefore easy to see that

(10) dim Whψ(2(G, χ))=

∣∣∣∣∣
{
℘Q,n(Oy0) :

Oy0 ∈O is a W -orbit in Y, and there
exists c ∈ Ftn(i(χ)) satisfying (8) for
all α ∈1, y ∈Oy0 . Also c(Oy0) 6= 0.

}∣∣∣∣∣
In the remaining part of this section we will prove an effective lower and upper
bound for dim Whψ(2(G, χ)).

3D. A lower bound for dim Whψ(2(G, χ)). The Weyl group W of G has the
presentation

W = 〈wα : (wαwβ)
mαβ = 1 for α, β ∈1〉.

Lemma 3.9. Let Oy ∈Oz
Q,n,sc be a Y sc

Q,n-free orbit in Y. Then the following holds:

t(wα,wα[y]) · t(wα, y)= 1 for all α ∈1.

Proof. Note that wα[y] = wα(y) + α∨ = y + (1 − 〈y, α〉)α∨. It follows that
〈wα[y], α〉 = 2−〈y, α〉. Therefore

t(wα,wα[y])
=qd〈wα[y],α〉/nαe−1

·0(wα[y], α∨) · gψ−1(Q(α∨)(〈wα[y], α〉− 1))−1

=qd(2−〈y,α〉)/nαe−1
· ε〈yρ ,α〉·(D(y,α

∨)−〈yρ ,α∨〉Q(α∨)) · gψ−1(−Q(α∨)〈yρ, α〉)−1

and

t(wα,wα[y]) · t(wα, y)

= qd(2−〈y,α〉)/nαe+d〈y,α〉/nαe−2
· ε〈yρ ,α〉

2
·Q(α∨)

· gψ−1(Q(α∨) · 〈yρ, α〉)−1

· gψ−1(−Q(α∨) · 〈yρ, α〉)−1.

However, it follows from gψ−1(k)= εk
·gψ−1(−k) that |gψ−1(k)|=q−1/2. Moreover,

since Oy is a Y sc
Q,n-free orbit, wα[y]− y /∈ Y sc

Q,n . Therefore, nα - (1−〈y, α〉) and so⌈2−〈y, α〉
nα

⌉
+

⌈
〈y, α〉

nα

⌉
= 1.

Now it can be checked easily that t(wα,wα[y]) · t(wα, y)= 1. �
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Consider adjacent α, β ∈1 from the Dynkin diagram. We would like to show
that for the Y sc

Q,n-free orbit Oy the equality

mαβ∏
i=1

t(wαwβ, (wαwβ)
i
[y])= 1

holds, where t(wαwβ, y) := t(wα,wβ[y]) · t(wβ, y). This will follow from a case
by case discussion. We will give the details for mαβ = 3, 4 below and leave the
case for mαβ = 6 to the reader.

Case mαβ = 3: The relation (wαwβ)mαβ = 1 is equivalent to wαwβwα = wβwαwβ .
By Lemma 3.9, it suffices to show

(11) t(wα,wβwα[y])·t(wβ,wα[y])·t(wα,y)= t(wβ,wαwβ[y])·t(wα,wβ[y])·t(wβ,y).

We first note that

t(wα, y)= qd
〈yρ ,α〉+1

nα
e−1
· ε〈yρ ,α〉·D(y,α

∨)
· gψ−1(BQ(yρ, α∨))−1.

We also have 〈wβwα(yρ), α〉 = 〈yρ, β〉 since the pairing 〈−,−〉 is W -equivariant
and wαwβ(α) = β. Similarly, 〈wαwβ(yρ), β〉 = 〈yρ, α〉. A simple computation
gives

t(wα,y)= qd
〈yρ ,α〉+1

nα
e−1
·ε〈yρ ,α〉D(y,α

∨)
·gψ−1(〈yρ,α〉Q(α∨))−1,

t(wβ,wα[y])= q
d
〈yρ ,α+β〉+1

nβ
e−1
·ε〈yρ ,α+β〉D(wα[y],β

∨)
·gψ−1(〈yρ,α+β〉Q(β∨))−1,

t(wα,wβwα[y])= qd
〈yρ ,β〉+1

nα
e−1
·ε〈yρ ,β〉D(wβwα[y],α∨) ·gψ−1(〈yρ,β〉Q(α∨))−1.

Meanwhile,
t(wβ,y)= q

d
〈yρ ,β〉+1

nβ
e−1
·ε〈yρ ,β〉D(y,β

∨)
·gψ−1(〈yρ,β〉Q(β∨))−1,

t(wα,wβ[y])= qd
〈yρ ,α+β〉+1

nα
e−1
·ε〈yρ ,α+β〉D(wβ [y],α

∨)
·gψ−1(〈yρ,α+β〉Q(α∨))−1,

t(wβ,wαwβwα[y])= q
d
〈yρ ,α〉+1

nβ
e−1
·ε〈yρ ,α〉D(wαwβ [y],β∨) ·gψ−1(〈yρ,α〉Q(β∨))−1.

Since Q(α∨)=Q(β∨) and thus nα=nβ , to show that (11) holds, it suffices to check
that the powers of ε on the two sides of (11) are equal. However, a straightforward
computation shows that this is indeed the case, and we may omit the details.

Case mαβ = 4: Let α, β ∈1 be two adjacent roots such that mαβ = 4. We assume
that α is the longer one. Thus, 〈α∨, β〉 =−1, 〈β∨, α〉 =−2, and Q(β∨)= 2Q(α∨).
As in the preceding case, we want to show

(12) t(wβ,wαwβwα[y]) · t(wα,wβwα[y]) · t(wβ,wα[y]) · t(wα, y)

= t(wα,wβwαwβ[y]) · t(wβ,wαwβ[y]) · t(wα,wβ[y]) · t(wβ, y).
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A simple computation yields

t(wα,y)= qd
〈yρ ,α〉+1

nα
e−1
·ε〈yρ ,α〉D(y,α

∨)
·gψ−1(〈yρ,α〉Q(α∨))−1,

t(wβ,wα[y])= q
d
〈yρ ,α+β〉+1

nβ
e−1
·ε〈yρ ,α+β〉D(wα[y],β

∨)
·gψ−1(〈yρ,α+β〉Q(β∨))−1,

t(wα,wβwα[y])

= qd
〈yρ ,α+2β〉+1

nα
e−1
·ε〈yρ ,α+2β〉D(wβwα[y],α∨) ·gψ−1(〈yρ,α+2β〉Q(α∨))−1,

t(wβ,wαwβwα[y])= q
d
〈yρ ,β〉+1

nβ
e−1
·ε〈yρ ,β〉D(wαwβwα[y],β∨) ·gψ−1(〈yρ,β〉Q(β∨))−1.

On the other hand, for the right-hand side of (12), one has

t(wβ,y)= q
d
〈yρ ,β〉+1

nβ
e−1
·ε〈yρ ,β〉D(y,β

∨)
·gψ−1(〈yρ,β〉Q(β∨))−1,

t(wα,wβ[y])= qd
〈yρ ,α+2β〉+1

nα
e−1
·ε〈yρ ,α+2β〉D(wβ [y],α∨)·gψ−1(〈yρ,α+2β〉Q(α∨))−1,

t(wβ,wαwβwα[y])

= q
d
〈yρ ,α+β〉+1

nβ
e−1
·ε〈yρ ,α+β〉D(wαwβ [y],β∨)·gψ−1(〈yρ,α+β〉Q(β∨))−1,

t(wα,wβwαwβ[y])= qd
〈yρ ,α〉+1

nα
e−1

ε〈yρ ,α〉D(wβwαwβ [y],α∨)·gψ−1(〈yρ,α〉Q(α∨))−1.

To show equality (12), again it suffices to show that the powers of ε of the two
sides have the same parities, which is achieved from a straightforward check.

Analogous argument for mαβ = 6 works, and we give a summary.

Proposition 3.10. Let Oy be a Y sc
Q,n-free orbit. For all adjacent α, β ∈1, one has

mαβ∏
i=1

t(wαwβ, (wαwβ)
i
[y])= 1,

where t(wαwβ, y) := t(wα,wβ[y]) · t(wβ, y).

Definition 3.11. Let Oy ∈Oz
Q,n,sc be a Y sc

Q,n-free orbit. For any

w= wkwk−1 · · ·w2w1 ∈W

written as a minimum expansion, write

T (w, y) :=
k∏

i=1

t(wi ,wi−1 · · ·w1[y]),

which, by Lemma 3.9 and Proposition 3.10, is independent of the choice of minimum
expansion of w.

Let Oy ∈Oz
Q,n be a YQ,n-free orbit (and therefore Y sc

Q,n-free). We define a nonzero
c with support Oy as follows. First, let c(sy)= 1, and for any α ∈1, let

c(swα[y]) := t(wα, y) · c(sy).
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Inductively, one can define c(sw[y]) := T (w, y) · c(sy) for any w ∈ W. It is well
defined and independent of the minimum decomposition of w. Second, extend c by

c(sw[y] · z̄)= c(sw[y]) ·χ(z̄), z̄ ∈ A,

and
c(t̄)= 0 if t̄ /∈

⋃
w∈W

sw[y] · A.

By using the property that T (w, y) and c(sw[y]) are independent of the minimum
decomposition of w, we see that equality (8) is satisfied. It follows that ℘Q,n(Oy)

belongs to the right-hand side of (10). Therefore,

(13) dim Whψ(2(G, χ))≥ |℘Q,n(Oz
Q,n)|.

3E. An upper bound for dim Whψ(2(G, χ)). First we show a result in the gen-
eral setting regarding the usual Weyl action. Let 9 be a root system and 9s be a
fixed choice of simple roots. Write L := 〈9〉 for the lattice generated by 9 and
V = L⊗R. The Weyl group W associated to 9 acts on V naturally by the usual
linear transformation generated by simple reflections. Recall that we write w(v),
w ∈W, v ∈ V for this action.

Lemma 3.12. Let v ∈ V be any vector such that w(v)≡ v mod L. Then there exist
w′ ∈W and α ∈9s such that wα(w′(v))≡ w′(v) mod L .

Proof. Let Waff = LoW be the affine Weyl group, and denote any element of
Waff by wa = (y,w). We call w the Weyl component of wa. The congruence
w(v)≡ v mod L is equivalent to wa(v)= v for some wa which projects to w ∈W.

If wa(v)= v, it then follows that v ∈ V lies on the boundary of C , where C is
an alcove (i.e., a fundamental domain) of the action of Waff on V, see [Bourbaki
2002]. Note that C is a simplicial complex whose boundary consists of |9s | + 1
walls {Ei }. Moreover, we may assume that for 1≤ i ≤ |9s |, the wall Ei lies in the
hyperplane fixed by wa whose Weyl component is wαi for some αi ∈ 9s . In this
case, one also knows that E|9s |+1 is fixed by (y,wβ) ∈Waff for some β ∈9 −9s .

Since v ∈
⋃

i Ei , there are two cases. First, suppose v ∈Ei for some 1≤ i ≤ |9s |;
then clearly wαi (v)≡ v mod L for some αi ∈9s . Otherwise, suppose v ∈ E|9s |+1.
Let w′ ∈ W be such that w′(β) ∈ 9s . It follows that w′(E|9s |+1) is fixed by some
wa = (y,wα) with α ∈ 9s . That is, wα(w′(v)) ≡ w′(v) mod L. The proof is
completed. �

Proposition 3.13. Consider c ∈ Ftn(i(χ)) such that λχc is a ψ-Whittaker func-
tional on 2(G, χ). If Oy0 is not Y sc

Q,n-free, then c is zero on Oy0. It follows that
dim Whψ(2(G, χ))≤ |℘Q,n(Oz

Q,n,sc)|.

Proof. Write V = Y ⊗R. One has V = (Y sc
⊗R)⊕ V0 where V0 ⊆ V is fixed by

W pointwise with respect to the usual action, i.e., the action w(v) of W. In general
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y0
ρ ∈ V ; however, without loss of generality, we may assume y0

ρ ∈ Y sc
⊗R now.

There is a canonical W -equivariant isomorphism Y sc
Q,n ⊗R' Y sc

⊗R with respect
to that usual action. Moreover, {α∨Q,n}α∈8 forms a root system.

If Oy0 is not Y sc
Q,n-free, there exists w ∈W such that w[y0

] ≡ y0 mod Y sc
Q,n , i.e.,

w(y0
ρ)≡ y0

ρ mod Y sc
Q,n . By the preceding Lemma, there exist y ∈ Oy0 and α ∈ 1

such that wα(yρ)≡ yρ mod Y sc
Q,n. Now it suffices to show that c vanishes on y.

By Corollary 3.7, c(swα[y]) = t(wα, y) · c(sy). Since wα(yρ) ≡ yρ mod Y sc
Q,n, it

follows that nα|〈yρ, α〉. Write 〈yρ, α〉 = k · nα. Since

swα[y] = sy · s−〈yρ ,α〉)α∨ · ε
〈yρ ,α〉·D(α∨,y),

one has
c(swα[y])= χ(s−knαα∨) · c(sy) · ε

〈yρ ,α〉·D(α∨,y)

= qk
· εknα ·D(α∨,y) · c(sy).

On the other hand,

t(wα, y) · c(sy)= qky,α−1
·0(y, α∨) · gψ−1(〈yρ, α〉Q(α∨))−1

· c(sy)

= qk
· (−1,$)knα ·D(y,α∨)

n · (−q−1) · c(sy).

It follows that c(sy)=−q−1
·εknαB(y,α∨)

·c(sy)= (−q−1)·c(sy). Therefore c(sy)=0.
The proof is completed. �

Theorem 3.14. Let G be an unramified Brylinski–Deligne covering group incar-
nated by (D, η). Let χ be an unramified exceptional character and 2(G, χ) the
theta representation associated with χ . Then

|℘Q,n(Oz
Q,n)| ≤ dim Whψ(2(G, χ))≤ |℘Q,n(Oz

Q,n,sc)|.

The group Hom(YQ,n/Y sc
Q,n,C×) is identified with Z(G∨), the center of the dual

group G∨ of G, so Y sc
Q,n = YQ,n if and only if Z(G∨)= {1}. Immediately it follows

that:

Corollary 3.15. If the dual group G∨ of G is of adjoint type, i.e., Z(G∨)= 1, then
dim Whψ(2(G, χ))= |℘Q,n(Oz

Q,n)|.

For groups of type E8, F4 and G2, the complex dual group of their covering
group has trivial center and thus Corollary 3.15 applies.

More generally, if Oz
Q,n = Oz

Q,n,sc, then the dimension of Whψ(2(G, χ)) can
be uniquely determined. We will illustrate below that Theorem 3.14 recovers the
result of Kazhdan and Patterson in this case.

Example 3.16. Let {e1, e2, . . . , er } be a basis for the cocharacter lattice Y of GLr .
The simple coroots1∨ of GLr are1∨={α∨i :=ei−ei+1}1≤i≤r−1. The isomorphism
class of (D, η) in the incarnation category corresponds to a Weyl-invariant quadratic
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form Q, or equivalently, to the bilinear form BQ . Let BQ(ei , e j ) be the Weyl-
invariant bilinear form determined by

BQ(ei , ei )= 2 p, BQ(ei , e j )= q if i 6= j.

For any root α, one has Q(α∨)= 2 p− q. We assume 2 p− q =−1 and therefore
nα = n. The covering groups GL(n)r arising from such BQ are exactly those studied
by Kazhdan and Patterson. The parameter p corresponds to the twisting parameter
c in [Kazhdan and Patterson 1984].

From BQ , the lattice YQ,n is given by{∑
i

xi ei ∈

r⊕
i=1

Zei : x1 ≡ x2 ≡ · · · ≡ xr mod n, and n|(qr − 1)xi

}
.

The lattice Y sc
Q,n is generated by {α∨Q,n}α∈8. It is easy to check Y sc

Q,n = YQ,n ∩ Y sc,
and this has the following implications:

Suppose that Oy is not YQ,n-free, i.e., w[y] − y ∈ YQ,n for some w 6= 1 ∈ W.
Clearly w[y] − y ∈ Y sc as well. It follows that w[y] − y ∈ Y sc

Q,n , that is, Oy is not
Y sc

Q,n-free. Therefore, for the Kazhdan–Patterson covering group GL(n)r , one has
that Oz

Q,n is equal to Oz
Q,n,sc. Consequently, for the covering group GL(n)r with

parameter ( p, q) such that 2 p− q =−1, Theorem 3.14 yields

dim Whψ(2(G, χ))= |℘Q,n(Oz
Q,n,sc)|,

which is the content of [Kazhdan and Patterson 1984, Theorem I.3.5]. Moreover,
distinguished theta representations (see Definition 3.3) for GL(n)r are completely
determined in [Kazhdan and Patterson 1984, Corollary I.3.6].

In the remaining part of the paper, we will determine the distinguished theta
representations for coverings of simply connected groups of type Ar , Br ,Cr and G2.
To ease the computations, we will use the standard coordinates for the coroot system
of each type as in [Bourbaki 2002, pages 265–290].

4. The Ar, r ≥ 1 case

Consider the Dynkin diagram for the simple coroots of Ar :

e e e e e` ` ` ` ` ` ` ` `α∨1 α∨2 α∨r−2 α∨r−1 α∨r

The cocharacter lattice is Y =Y sc
=
⊕r

i=1 Zα∨i . As in [Bourbaki 2002, page 265],
consider the embedding i A :

⊕r
i=1 Zα∨i →

⊕r+1
i=1 Zei , which is given by

i A : y = (x1, x2, . . . , xr ) 7→ i A(y)= (x1, x2− x1, x3− x2, . . . , xr − xr−1,−xr ).

In particular, we can identify the image of i A: any (y1, y2, . . . , yr , yr+1)∈
⊕r+1

i=1 Zei

is equal to i A(y) for some y if and only if
∑r+1

i=1 yi = 0.
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Meanwhile, ρ =
∑r

i=1
i
2(r − i + 1)α∨i . We use i A :

⊕r
i=1 Qα∨i →

⊕r+1
i=1 Qei to

denote the canonical extension of i A. Then,

i A(ρ)=
(

r
2
,

r−2
2
, . . . ,

−(r−2)
2

,
−r
2

)
∈

r+1⊕
i=1

Qei .

It follows that for any y ∈ Y,

i A(yρ)=
(

x1−
r
2
, . . . , xi − xi−1+ (i − 1)− r

2
, . . . ,−xr + r − r

2

)
, 1≤ i ≤ r

=
(
x1, x2− x1+ 1, . . . , xi − xi−1+ (i − 1), . . . ,−xr + r

)
+

(
−r
2
,
−r
2
, . . . ,

−r
2

)
.

From now, we write i∗A(yρ) := (x
∗

1 , x∗2 , . . . , x∗r , x∗r+1) for(
x1, x2− x1+ 1, . . . , xi − xi−1+ (i − 1), . . . ,−xr + r

)
∈

⊕
i

Zei .

Thus,
iA(yρ)= i∗A(yρ)+

(
−r
2
,
−r
2
, . . . ,

−r
2

)
.

Meanwhile, any (x∗1 , x∗2 , . . . , x∗r , x∗r+1) ∈
⊕

i Zei is equal to i∗A(yρ) for some y if
and only if

∑r+1
i=1 x∗i = r(r + 1)/2.

Consider the quadratic form Q on Y = 〈α∨i , 1≤ i ≤ r〉 with Q(α∨i )= 1 for all i .
Then

BQ(α
∨

i , α
∨

j )=


2, if i = j,
−1, if j = i + 1,

0, if α∨i , α
∨

j are not adjacent.

This gives rise to the degree n covering group SL(n)r+1. Any element
∑r

i=1 xiα
∨

i ∈ Y
lies in YQ,n if and only if

2x1−x2, −x1+2x2−x3, −x2+2x3−x4, . . . −xr−2+2xr−1−xr , −xr−1+2xr

are in nZ.
By using i A, we see

YQ,n=

{
(y1, y2, . . . , yr )∈

r+1⊕
i=1

Zei :

r+1∑
i=1

yi =0, and y1≡· · ·≡ yr ≡ yr+1 mod n
}

and

Y sc
Q,n =

{
(y1, y2, . . . , yr ) ∈

r+1⊕
i=1

Zei :

r+1∑
i=1

yi = 0, and n|yi for all i.
}

The Weyl group W = Sr+1 acts as permutations on
⊕r+1

i=1 Zei . In particular, wαi

for αi ∈1 acts by exchanging ei and ei+1.
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4A. Case I: SL(n)r+1, n ≤ r. Suppose n ≤ r , then for any y ∈ Y with i∗A(yρ) =
(x∗1 , x∗2 , . . . , x∗r+1), there exists x∗i , x∗j , i 6= j such that n|(x∗i − x∗j ). Then clearly
w(yρ)− yρ ∈ Y sc

Q,n for some w ∈W. That is, Oy /∈Oz
Q,n,sc and one has in this case

Oz
Q,n,sc =∅.

Therefore, dim Whψ(2(SL(n)r+1, χ))= 0 for n ≤ r .

4B. Case II: SL(n)r+1, n= r + 1. In this case, the dual group for SL(n)n is SLn , see
[Weissman 2015]. Consider Oy ∈Oz

Q,n,sc such that

i∗A(yρ)= (0, 1, 2, . . . , r − 1, r) ∈
r+1⊕
i=1

Zei .

It is easy to check℘sc
Q,n(O

z
Q,n,sc)={℘

sc
Q,n(Oy)}, and this implies |℘Q,n(Oz

Q,n,sc)|=1.
However, Oy /∈Oz

Q,n . For example, let w\ be such that i∗A(w\(yρ))= (1, 2, . . . , r, 0),
then i A(w\(yρ))− i A(yρ) = (1, 1, . . . , 1,−r) ∈ YQ,n . That is, w\[y] − y ∈ YQ,n .
Therefore,

|℘Q,n(Oz
Q,n)| = 0.

It follows that 0 ≤ dim Whψ(2(SL(n)n , χ)) ≤ 1. In this case, determining
dim Whψ(2(SL(n)n , χ)) is delicate, and there are additional constraints on the
exceptional character χ such that 2(SL(n)n , χ) is distinguished. The analysis below
is devoted to this.

4B1. The reduction step. It is clear that i∗A(yρ)= (0, 1, 2, . . . , r−1, r) if and only
if y = 0. Moreover, i∗A(w\(yρ))= (1, 2, 3, . . . , r, 0) for w\ = wαr wαr−1 · · ·wα2wα1 .
As above,

w\[0] − 0=
r∑

i=1

i ·α∨i ∈ YQ,n.

Write yQ,n :=
∑r

i=1 i ·α∨i . In fact, the set {nα∨i : 2≤ i ≤ r} ∪ {yQ,n} forms a basis
for YQ,n , whereas {nα∨i : 2≤ i ≤ r} ∪ {n · yQ,n} is a basis for Y sc

Q,n . It follows that
any exceptional character χ is determined by its value at syQ,n .

We choose the bisector D on Y sc such that D(α∨i , α
∨

j ) is given by

D(α∨i , α
∨

j )=


Q(α∨i ) if i = j,
0 if i < j,
BQ(α

∨

i , α
∨

j ) if i > j.

Recall from Corollary 3.7 that c∈Ftn(i(χ)) gives rise to aψ-Whittaker functional
of 2(SL(n)n , χ) if and only if for all y and α ∈1,

c(swα[y])= qky,α−1
·0(y, α∨) · gψ−1(B(α∨, yρ))−1

· c(sy).
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For 1 ≤ i ≤ r , write y〈i〉 = wαi wαi−1 · · ·wα1[0] and we set y〈0〉 = 0. Recall that
t(wα, y) is the coefficient in the above formula. In this case, it reads t(wα, y) =
qky,α−1

· 0(y, α∨) · gψ−1(〈yρ, α〉)−1 since Q(α∨) = 1 (and therefore nα = n) for
all α ∈1. In order to have dim Whψ(2(SL(n)n , χ))= 1, we must have the equality

(14) χ(syQ,n )= T (w\, 0) where T (w\, 0)=
r∏

i=1

t(wαi , y〈i−1〉).

We would like to show that the equality (14) is also sufficient. Consider any
w′ ∈W , y ∈O0, one has c(sw′[y])= T (w′, y) · c(sy). Now assume w′[y]− y ∈ YQ,n ,
we have

c(sw′[y]−y+y)= χ(sw′[y]−y) · c(sy) · ε
D(w′[y]−y,y).

To show dim Whψ(2(SL(n)n , χ))= 1, it suffices to show c(sy) to be nonzero for all
y ∈O0 such that w′[y] − y ∈ YQ,n . That is, it requires

(15) χ(sw′[y]−y)= ε
D(w′[y]−y,y)

· T (w′, y).

Write w′[y]−y=
∑r

i=2 ki ·α
∨

i,Q,n+k1·yQ,n . Note that O0 is Y sc
Q,n-free, thus k1 6=0.

We may reduce the negative case to the positive case by a simple computation, and
therefore we can assume that k1 ≥ 1. Furthermore, we may apply induction on k1,
and thus it suffices to: i) prove the inductive step, ii) check the equality (15) when
w′[y]− y =

∑r
i=2 kiα

∨

i,Q,n + yQ,n . The assertion i) can be checked easily, and thus
we will only outline the proof of ii).

For ii), if w′[y] − y =
∑r

i=2 kiα
∨

i,Q,n + yQ,n , then it is not hard to see that
w′[y] − y = w(yQ,n), i.e., w−1w′[y] −w−1

[y] = yQ,n for some w ∈ W. We may
change w if necessary such that w−1

[y] = 0. With this assumption, w−1w′w= w\,
i.e., w′ = ww\w−1. Therefore, we need only show that for any w ∈W ,

(16) χ(sww\[0]−w[0])= ε
D(ww\[0]−w[0],w[0])

· T (ww\w
−1,w[0]).

To show (16), we would like to apply induction on the length of w. When w= 1,
it is just the equality (14). For the induction step, assuming the equality (16), we
would like to prove that for α ∈1 the following equality holds:

(17) χ(swαww\[0]−w[0])= ε
D(wαww\[0]−wαw[0],wαw[0])

· T (wαww\w
−1w−1

α ,wαw[0]).

For this purpose, write x := ww\[0] − w[0] ∈ YQ,n . We have nα|〈x, α〉. Write
〈x, α〉 = k · nα.

The left-hand side of (17) is

χ(sx−〈x,α〉α∨)= χ(sx) ·χ(s−knαα∨) · ε
D(x,−knαα∨)

= χ(sx) ·χ(h̄α($ nα ))−k
= qk
·χ(sx).
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The right-hand side of (17) is

εD(wα(x),wαw[0])
· t(wα,ww\[0]) · T (ww\w

−1,w[0]) · t(wα,wαw[0])

= εD(x,wαw[0])−w[0])
·χ(sx) · t(wα,ww\[0]) · t(wα,wαw[0]) by (16)

= εD(x,wαw[0])−w[0])
·χ(sx) · t(wα,ww\[0]) · t(wα,w[0])−1

= εD(x,wαw[0])−w[0])
· qd

〈w[0],α〉
nα
e−1+k

· gψ−1(〈w(0ρ), α〉Q(α∨))−1

· ε〈w(0ρ),α〉·D(ww\[0],α∨) ·χ(sx) · q
−d 〈w[0],α〉nα

e+1

· gψ−1(〈w(0ρ), α〉Q(α∨)) · ε〈w(0ρ),α〉·D(w[0],α
∨)

= χ(sx) · qk
· ε〈w(0ρ),α〉D(x,α

∨)
· ε〈w(0ρ),α〉D(x,α

∨)

= χ(sx) · qk,

which is clearly equal to the left-hand side. To summarize, we have:

Proposition 4.1. Let χ ∈ Homι(Z(T ),C×) be an exceptional character of SL(n)n .
Then

dim Whψ(2(SL(n)n , χ))= 1

if and only if χ is the unique exceptional character satisfying (14).

We would like to explicate the condition given by (14).

Lemma 4.2. One has

T (w\, 0)=
{

q−r/2 if n is odd,
εn(n−2)/8

· q−n/2
· gψ−1(−n/2)−1 if n is even.

Proof. We compute each t(wαi , y〈i−1〉) for 1 ≤ i ≤ r . First, one can check easily
that y〈i〉 =

∑i
j=1 i ·α∨i = α

∨

1 + 2α∨2 + · · ·+ i ·α∨i . Thus, 〈y〈i−1〉, αi 〉 = −(i − 1)
and therefore

ky〈i−1〉,αi = 0 for all 1≤ i ≤ r.

Second, 0(y〈i−1〉, α
∨

i )= ε
−i ·D(y〈i−1〉,α

∨

i ). Since D(α∨j , α
∨

i )= 0 for all j < i , we see
0(y〈i−1〉, α

∨

i )= 1. Thus, t(wαi , y〈i−1〉)= q−1
· gψ−1(−i)−1. Now, if 1 ≤ i, j ≤ n

and i + j = n, one has

gψ−1(−i)−1
· gψ−1(− j)−1

= gψ−1(−i)−1
· (gψ−1( j) · ε j )−1

= |gψ−1( j)|−2
· εi

= q · εi .

The result then follows from simply multiplying together each term. �
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4B2. Interlude: Weil-index. Let γψ be the Weil-index given in Section 2C.

Lemma 4.3. Suppose n= 2m is an even number. Then the following equality holds:

gψ−1(m)=
q−1/2

γψ($)
.

Proof. By definition, gψ−1(m) is equal to∫
O×F

(u,$)2·ψ−1($−1u)µ(u)=
∫

O×F

γψ($u)γψ($)−1γψ(u)−1
·ψ−1($−1u)µ(u)

= γψ($)
−1
·

∫
O×F

γψ($u)·ψ−1($−1u)µ(u).

However, by Equation (3.7) of [Szpruch 2009b, Lemma 3.2],

γψ($u)= q−1/2
(

1+ q
∫

O×F

ψ($−1v2u)µ(v)
)
.

Thus,

gψ−1(m)= q−1/2
· γψ($)

−1
·

∫
O×F

(
1+ q

∫
O×F

ψ($−1v2u)µ(v)
)
ψ−1($−1u)µ(u)

= q−1/2
· γψ ($)

−1
·

(
−

1
q + q ·

∫
O×F

∫
O×F

ψ($−1u(v2
− 1))µ(u)µ(v)

)
Let D = {v ∈ O×F : |1− v

2
| = 1} and H = {v ∈ O×F : |1− v

2
| ≤ q−1

}. We get∫
O×F

(∫
O×F

ψ($−1u(v2
−1))µ(u)

)
µ(v)

=

∫
v∈H

∫
O×F

ψ($−1u(v2
−1))µ(u)µ(v)+

∫
v∈D

∫
O×F

ψ($−1u(v2
−1))µ(u)µ(v)

= µ(H)·(1−q−1)+µ(D)·(−q−1) by (8.19) of [Szpruch 2009b, Lemma 8.6]

= 2q−1
·(1−q−1)+(1−3q−1)·(−q−1) by [Szpruch 2009b, Lemma 8.9]

= q−1
+q−2.

The result follows easily by simplification. �

4B3. An explicit criterion. Consider the unitary distinguished character χ 0
ψ ′ con-

structed in [Gan and Gao 2016], which we recalled and gave in (5). Then the
character χψ ′ = χ 0

ψ ′ · δB(·)
1/2n is an exceptional character. In the simply connected

case, J = Y sc
Q,n . For the definition of χ 0

ψ ′ , we pick a basis {yi } for YQ,n such that
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{ki yi } is a basis for J = Y sc
Q,n . Then by definition,

χ 0
ψ ′(syi )= γψ ′($)

2(ki−1)Q(yi )/n

and, for y =
∑

i ni yi ∈ YQ,n , one has

χ 0
ψ ′(sy)=

∏
i

χ 0
ψ ′($

ni )2(ki−1)Q(yi )/n
· ε
∑

i< j ni n j D(yi ,y j ).

For the covering group SL(n)n , we take yi = nα∨i , 2 ≤ i ≤ r and y1 = yQ,n , with
ki = 1 for 2≤ i ≤ r and k1 = n.

An easy computation shows Q(yQ,n)= r(r + 1)/2, and thus

(18) χψ ′(syQ,n )= χ
0
ψ ′(syQ,n ) · δB(syQ,n )

1
2n = γψ ′($)

(n−1)2
· q−(n−1)/2.

Proposition 4.4. For the exceptional character χψ ′ = χ 0
ψ ′ · δB(·)

1
2n given above,

one has that the dimension of Whψ(2(SL(n)n , χψ ′)) equals 1 in the following cases,
and 0 otherwise:

any ψ ′, if n is odd;
γψ ′($)= γψ($), if n ≡ 0, 2 mod 8;
γψ ′($)= (−1,$)4 · γψ($) if n ≡ 4 mod 8;
γψ ′($)= γψ($)

−1 if n ≡ 6 mod 8.

Proof. By the value of χψ ′(syQ,n ) in (18), it follows from Lemma 4.2 that the
equality (14) is equivalent to

(19) γψ ′($)(n−1)2
·q−

(n−1)
2 =

{
q−r/2 if n is odd;
(−1,$)n(n−2)/8

n ·q−
n
2 ·gψ−1(−n

2 )
−1 if n is even.

For n odd, the equality holds for any ψ ′. Now we assume n even.
For n = 4k+ 2, by Lemma 4.3, the required equality in (19) becomes

γψ ′($)= γψ($)
2k+1.

In particular, if k is even, it is equivalent to γψ ′($) = γψ($). If k is odd, it is
equivalent to γψ ′($)= γψ($)−1.

For n = 4k, applying Lemma 4.3 again, the equality in (19) reads

γψ ′($)= (−1,$)kn · γψ($)= (−1,$)4 · γψ($).

A special case is when k is even. In this case (−1,$)4 = 1 and therefore it is
equivalent to γψ ′($)= γψ($). �
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Corollary 4.5. Consider ψ ′ = ψa for some a ∈ F×. Assume ψa has conductor OF ,
i.e., a ∈ O×F . Then dim Whψ(2(SL(n)n , χψa ))= 1 if and only if the following hold:

a ∈ O×F if n is odd,
a ∈ (O×F )

2 if n ≡ 0, 2 mod 8,
a2
∈ −(O×F )

4 if n ≡ 4 mod 8,
a ∈ −(O×F )

2 if n ≡ 6 mod 8.

Remark 4.6. The facts that for any exceptional representation 2(SL(n)n , χ) there
exists ψ such that it is ψ-generic, and that dim Whψ(2(SL(n)n , χ))≤ 1 for all ψ
also follow from the work of [Kazhdan and Patterson 1984] on GL(n)n combined
with the relation between SL(n)n and GL(n)n in [Adams 2003]. (We thank the referee
for pointing this out.) However, our Corollary 4.5 gives precise information for
the matching between ψ and the distinguished theta representation in terms of the
distinguished character.

Example 4.7. The first nontrivial example is the metaplectic covering SL(2)2 . In
this case, we have YQ,n = Y = Z · α∨ and Y sc

Q,n = Z · (2α∨). As mentioned at the
beginning of Section 4B, one has that the lower and upper bounds in Theorem 3.14
are 0 and 1 respectively and thus

0≤ dim Whψ(2(SL(2)2 , χ))≤ 1

for any exceptional χ . For the character ψa , the representation 2(SL(2)2 , χψa ) is
the even Weil representation in the following exact sequence:

St(χψa )
� � // I (χψa )

// // 2(SL(2)2 , χψa ),

where St(χψa ) is the metaplectic analogue of the Steinberg representation. From
Corollary 4.5, we can recover the well-known fact, which follows from the work of
Gelbart and Piatetski-Shapiro [1980], that for SL(2)2 the even Weil representation
2(SL(2)2 , χψa ) (for unramified data) is ψ-generic if and only if a ∈ (O×F )

2. We note
that this also follows directly from the computation of the local coefficient for SL(2)2
in [Szpruch 2009a].

Example 4.8. We also discuss explicitly the example SL(3)3 . Consider SL(3)3 with
cocharacter lattice Y = 〈α∨1 , α

∨

2 〉. Consider Q such that Q(α∨i )= 1. Then

YQ,n = 〈2α∨1 +α
∨

2 , 3α∨1 〉 = 〈2α
∨

2 +α
∨

1 , 3α∨2 〉.

Note Y = 〈2α∨1 + α
∨

2 , α
∨

1 〉 = 〈2α
∨

2 + α
∨

1 , α
∨

2 〉. We know ρ = α∨1 + α
∨

2 . For y = 0
one has

yρ = 0ρ =−(α∨1 +α
∨

2 ).
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Consider w\ = wα1wα2 , then wα2[y] = α
∨

2 and moreover wα1wα2[y] = 2α∨1 + α
∨

2 .
One has

c(sw1w2[y])= qkw2[y],α1−1
·0(w2[y], α∨1 ) · gψ−1(Q(α∨1 )(〈w2[y], α1〉− 1))−1

· qky,α2−1
·0(y, α∨2 ) · gψ−1(Q(α∨2 )(〈y, α2〉− 1))−1

· c(sy)

= qd
〈α∨2 ,α1〉

3 e+d
〈y,α2〉

3 e−2
·0(α∨2 , α

∨

1 ) ·0(0, α
∨

2 )

· gψ−1(−2)−1 gψ−1(−1)−1
· c(1SL(3)3

)

= q−2
· q · c(1SL(3)3

)= q−1,

where c is normalized to take value 1 at the 1 ∈ SL(3)3 . This implies that necessarily
c(sw1w2[y])= q−1, and thus

χ(sw1w2[y])= q−1.

Note, this is not a consequence of χ being exceptional, although it is compatible.
Clearly, an exceptional character χ is such that{

χ(sw1w2[y])
3
= q−3,

χ(s3α∨1 )= q−1.

In particular, if for some third root of unity ζ 6= 1, χ(sw1w2[y]) is equal to ζ · q−1,
then dim Whψ(2(SL(3)3 , χ))= 0 for such χ .

4C. Case III: SL(n)r+1, n= r+2. For n= r+2, we show YQ,n =Y sc
Q,n and therefore

Corollary 3.15 applies. Picking any (y1, y2, . . . , yr+1) ∈ YQ,n , we have

a ≡ y1 ≡ y2 ≡ · · · ≡ yr+1 mod n,

where a ∈ {0, 1, 2, . . . , r + 1}. Write yi = ki n+ a. Since
∑r+1

i=1 yi = 0, one has

n ·
(r+1∑

i=1

ki

)
+ (r + 1) · a = 0.

In particular, n|(r + 1)a. However, gcd(n, r + 1) = 1, so n|a and a = 0. That
is, YQ,n = Y sc

Q,n and therefore dim Whψ(2(SL(r+2)
r+1 , χ))= |℘Q,n(Oz

Q,n)|. Note
that, the equality YQ,n = Y sc

Q,n reflects the fact that the dual group for SL(n+1)
n

is PGLn (see [Weissman 2015, § 2.7.2]).
We claim that the dimension is equal to 1 in this case. Let Oy ∈ Oz

Q,n,sc be a
Y sc

Q,n-free orbit with i∗A(yρ)= (0, 1, . . . , r −1, r) ∈
⊕r+1

i=1 Zei . We know that Oy is
YQ,n-free (or equally, Y sc

Q,n-free). Moreover, one can check easily that℘Q,n(Oz
Q,n)=

{℘Q,n(Oy)}. Therefore dim Whψ(2(SL(r+2)
r+1 , χ)) = 1 for the unique exceptional

character χ in this case.
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4D. Case IV: SL(n)r+1, n ≥ r + 3.

Lemma 4.9. Consider y ∈ Y such that i∗A(yρ)= (x
∗

1 , x∗2 , . . . , x∗r , x∗r+1) with x∗i =
i − 1. If n ≥ r + 3, the orbit Oy is YQ,n-free.

Proof. Suppose not, then there exists w 6= 1 such that w[y]− y ∈ YQ,n . Identify w
with a permutation, then we have

(x∗1 , x∗2 , . . . , x∗r+1)− (x
∗

w(1), x∗w(2), . . . , x∗w(r+1)) ∈ YQ,n.

More precisely, i −w(i)≡ j −w( j) mod n for all i, j. Clearly, n - (i −w(i)) for
all i , otherwise one can deduce w(i) = i for all i and therefore w = 1. That is,
(i −w(i)) is either negative or positive. We reorder the terms (i −w(i)) as

−r ≤ (i1−w(i1))≤ (i2−w(i2))≤· · ·<0< · · ·≤ (ir−w(ir ))≤ (ir+1−w(ir+1))≤ r.

Write (i1−w(i1)) = −s, s ∈ N and (ir+1−w(ir+1)) = t, t ∈ N. It is easy to see
that any negative i −w(i) must be equal to −s, and any positive i −w(i) must be
equal to t .

We claim that 2< t + s ≤ r + 1 and therefore n - (t + s), i.e., w[y] − y /∈ YQ,n

for all w 6= 1. Note 0−w(0)=−s and r −w(r)= t . Suppose t + s > r + 1, then
there exists i0 such that r +1− t < i0 < 1+ s. However, there exists no i ′ such that
w(i ′)= i0. This is a contradiction, and the claim follows.

Therefore Oy is YQ,n-free for the given y. �

It follows that dim Whψ(2(SL(n)r+1, χ))≥ 1 for n ≥ r+3. In principle, one could
proceed as in Section 4B to analyze every element in ℘Q,n(Oz

Q,n,sc) and determine
completely dim Whψ(2(SL(n)r+1, χ)) in this case. However, the level of complexity
of the computation depends inevitably on (the center of) the dual group of SL(n)r

and could be quite involved for general n ≥ r + 3.
We summarize for the n ≤ r + 2 cases below.

Theorem 4.10. Consider the Brylinski–Deligne covering SL(n)r+1, n ≤ r + 2 with
Q(α∨)= 1 for all coroots α∨. Let χ be an exceptional character of SL(n)r+1. Then
dim Whψ(2(SL(n)r+1, χ))= 1 if and only if

• n = r + 2 and χ is the only exceptional character, or

• n = r + 1 and χ is the unique exceptional character satisfying (14).

5. The Cr, r ≥ 2 case

Consider the Dynkin diagram for the simple coroots for Cr :

e e e e ep p p p p p p p p >
α∨1 α∨2 α∨r−2 α∨r−1 α∨r
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Let
Y = Y sc

= 〈α∨1 , α
∨

2 , . . . , α
∨

r−1, α
∨

r 〉

be the cocharacter lattice of Sp2r , where α∨r is the short coroot. Let Q be the
Weyl-invariant quadratic on Y such that Q(α∨r )= 1. Then the bilinear form BQ is
given by

BQ(α
∨

i , α
∨

j )=


2 if i = j = r,
4 if 1≤ i = j ≤ r − 1,
−2 if j = i + 1,

0 if α∨i , α
∨

j are not adjacent.

A simple computation gives

YQ,n =

{ n∑
i=1

xiα
∨

i : n|(2xi )

}
.

We write n2 := n/ gcd(2, n). Then

YQ,n = 〈n2α
∨

1 , n2α
∨

2 , . . . , n2α
∨

r−1, n2α
∨

r 〉

and
Y sc

Q,n = 〈n2α
∨

1 , n2α
∨

2 , . . . , n2α
∨

r−1, nα∨r 〉.

The map iC :
⊕r

i=1 Zα∨i →
⊕r

i=1 Zei is given by

iC : (x1, x2, x3, . . . , xr ) 7→ (x1, x2− x1, x3− x2, . . . , xr−1− xr−2, xr − xr−1).

Here iC is an isomorphism. The Weyl group is W = Sr o (Z/2Z)r , where Sr

is the permutation group on
⊕

i Zei and each (Z/2Z)i acts by ei 7→ ±ei . In
particular, wαi , 1≤ i ≤ r − 1, acts on (y1, y2, . . . , yr ) ∈

⊕
i Zei by exchanging yi

and yi+1, while wαr acts by (−1) on Zer .
Moreover, y ∈ Y lies in YQ,n if and only if all entries of iC(y) are divisible by n2.

It is easy to obtain

YQ,n =

{
(y1, y2, . . . , yr ) ∈

⊕r

i=1
Zei : n2|yi for all i.

}
and

Y sc
Q,n =

{
(y1, y2, . . . , yr ) ∈

⊕r

i=1
Zei : n2|yi for all i, and n

∣∣∑
i

yi .
}

We further note

2ρ =
r∑

i=1

(2r − 2i + 1)ei =

r∑
i=1

i(2r − i)α∨i .

Assume x0 = 0, then

iC(yρ)= (xi − xi−1− (r − i + 1/2))1≤i≤r .
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Write x∗i := xi − xi−1− (r − i), and also i∗C(yρ) := (x
∗

1 , x∗2 , . . . , x∗r−1, x∗r ). Then

iC(yρ)= i∗C(yρ)−
(

1
2
,

1
2
, . . . ,

1
2
,

1
2

)
.

We will discuss the two cases depending on the parity of n separately.

5A. The case where n is odd. Here, n2 = n and

nY = Y sc
Q,n = YQ,n =

{
(y1, . . . , yr ) ∈

⊕r

i=1
Zei : n|yi for all i

}
.

The complex dual group for Sp(n)2r for n odd is SO2r+1.

Proposition 5.1. Let n be an odd number, one has
|℘Q,n(Oz

Q,n,sc)| ≥ 2 if n ≥ 2r + 3,

|℘Q,n(Oz
Q,n,sc)| = 1 if n = 2r + 1,

|℘Q,n(Oz
Q,n,sc)| = 0 if n ≤ 2r − 1.

So, we have dim Whψ(2(Sp(n)2r , χ))= 1, for n odd, if and only if n = 2r + 1 for
the only exceptional character of Sp(2r+1)

2r .

Proof. We have written

iC(yρ)= i∗C(yρ)−
(

1
2
,

1
2
, . . . ,

1
2
,

1
2

)
.

Since x1, . . . , xr are arbitrary, the associated x∗i are also arbitrary.
First, when n ≥ 2r + 3, consider the orbits Oy and Oy′ where

i∗C(yρ)= (1, 2, . . . , r − 1, r) and i∗C(y
′

ρ)= (1, 2, . . . , r − 1, r + 1).

If r = 2, consider Oy and Oy′ with i∗C(yρ)= (1, 2) and i∗C(y
′
ρ)= (1, 3). Both Oy

and Oy′ are YQ,n-free orbits. For example, for Oy , this follows from the fact that
the entries of iC(w(yρ))− iC(yρ) are either j − i or j + i − 1, for 0≤ i, j ≤ r − 1.
One can check also that ℘Q,n(Oy) 6= ℘Q,n(Oy′), and therefore |℘Q,n(Oz

Q,n)| ≥ 2.
Second, assume n = 2r+1. Consider Oy such that i∗C(yρ)= (1, 2, . . . , r−1, r).

For r = 2, consider i∗C(yρ) = (1, 2). It can be checked easily that ℘Q,n(Oz
Q,n) =

{℘Q,n(Oy)}. Thus, dim Whψ(2(Sp(2r+1)
2r , χ))= 1.

Third, assume that n ≤ 2r − 1, we want to show that Oz
Q,n,sc =∅. If i∗C(yρ)=

(x∗1 , x∗2 , . . . , x∗i , . . . , x∗r ) is such that x∗i ≡ x∗j mod n for some i 6= j, then clearly
Oy /∈Oz

Q,n,sc. Now if n - (x∗i − x∗j ) for all i 6= j ; since n≤2r−1, it is not hard to see
that there always exist i, j such that n|(x∗j −1/2)+ (x∗i −1/2), i.e., n|(x∗j + x∗i −1).
In this case, one also has Oy /∈Oz

Q,n,sc. In any case, Oz
Q,n,sc =∅ for n ≤ 2r − 1.

The proof is completed. �
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5B. The case where n is even. Writing n = 2m,

YQ,n =〈mα∨1 ,mα∨2 , . . . ,mα∨r−1,mα∨r 〉, Y sc
Q,n =〈mα

∨

1 ,mα∨2 , . . . ,mα∨r−1, nα∨r 〉.

Equivalently, one has:

YQ,n =

{
(y1, y2, . . . , yr ) ∈

⊕r

i=1
Zei : m|yi for all i.

}
and

Y sc
Q,n =

{
(y1, y2, . . . , yr ) ∈

⊕r

i=1
Zei : m|yi for all i, and n|

∑
i

yi .
}

The dual group for Sp(n)2r with n even is Sp2r .

5B1. The case where m ≥ 2r + 2. Here, consider the orbits Oy,Oy′ given in the
proof of Proposition 5.1. They are YQ,n-free; moreover, Oy and Oy′ are distinct in
the image of ℘Q,n . Thus, we have |℘Q,n(Oz

Q,n)| ≥ 2.

5B2. The case where m ≤ 2r − 2. Here, we can easily check Oz
Q,n,sc =∅.

5B3. The case where m=2r−1. Consider y with i∗C(yρ)= (1, 2, . . . , r−1, r), i.e.,

iC(yρ)=
(

1− 1
2
, 2− 1

2
, . . . , (r − 1)− 1

2
, r − 1

2

)
.

Consider wαr ∈W, then iC(wαr (yρ))=
(
1− 1

2 , 2− 1
2 , . . . , (r − 1)− 1

2 ,−(r −
1
2)
)
.

Note Oy is Y sc
Q,n-free, and ℘sc

Q,n(O
z
Q,n,sc)= {℘

sc
Q,n(Oy)} = {℘

sc
Q,n(O0)}. However,

it is not YQ,n-free, since iC(yρ −wαr (yρ))= (0, 0, . . . ,m) ∈ YQ,n . Remember that
any c ∈ Ftn(i(χ)) which gives rise to λχc ∈Whψ(2(G, χ)) satisfies c(swαr [y]) =

t(wαr , y) · c(sy) where

t(wαr , y)= qky,αr−1
·0(y, α∨r ) · gψ−1(Q(α∨r ) · 〈yρ, αr 〉)

−1.

Meanwhile, in our case wαr [y] − y = (−m)α∨r ∈ YQ,n . It follows that

c(swαr [y])= ε
D(wαr (yρ)−yρ ,y) ·χ(swαr (yρ)−yρ ) · c(sy).

For c to be nonzero on Oy , i.e., ℘Q,n(Oy) contributes to the right-hand side of (10),
one has

χ(s−mα∨r )= qky,αr−1
· gψ−1(Q(α∨r ) · 〈yρ, αr 〉)

−1.

Moreover, we can argue as in Section 4B that this condition is also sufficient. One
has 〈y, αr 〉 = 2r and thus ky,αr = 1. The equality is thus simplified to

(20) χ(s−mα∨r )= gψ−1(m)−1.

Consider the exceptional character χψ ′ = χ 0
ψ ′ · δ

1/2n
B , which relies on the distin-

guished unitary character χ 0
ψ ′ depending on a nontrivial character ψ ′ : F→ C×
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(see Section 2C). Since χ 0
ψ ′(smα∨r )= γψ ′($)

m Q(α∨r ), by Lemma 4.3, equality (20)
becomes γψ($)= (−1,$)m

2

n · γψ ′($)
−m , which can be further reduced to

γψ ′($)= (−1,$)r+1
n · γψ($)= (−1,$)r+1

2 · γψ($).

In particular, if ψ ′ = ψa with a ∈ O×F , then the equality is equivalent to
(a(−1)r+1,$)2 =−1, i.e., a ∈ (−1)r+1

· (O×F )
2.

5B4. The case where m = 2r . We claim that here Oz
Q,n = Oz

Q,n,sc. Clearly it
suffices to show that Oz

Q,n ⊇Oz
Q,n,sc. Equivalently, if Oy is not YQ,n-free, we

would like to show that it is not Y sc
Q,n-free. Write i∗C(yρ) = (x

∗

1 , x∗2 , . . . , x∗r ). By
assumption,

iC(y−w[y])= i∗C(yρ −w(yρ)) ∈ YQ,n

for some w ∈W. Entries of iC(y−w[y]) cannot be of the form 2x∗i − 1 since m is
even; thus they are of the form 0, x∗i − x∗j or x∗i + x∗j − 1 for i 6= j. In this case, it
is easy to see that iC(y−w′[y]) ∈ Y sc

Q,n for some w′ ∈W, i.e., Oy is not Y sc
Q,n-free.

Consequently,
dim Whψ(2(Sp(4r)

2r , χ))= |℘Q,n(Oz
Q,n)|.

On the other hand, consider Oy with i∗C(yρ) = (1, . . . , r − 1, r). It is easy to see
℘Q,n(Oz

Q,n)={℘Q,n(Oy)}. Therefore, we always have dim Whψ(2(Sp(4r)
2r , χ))= 1

for any of the two exceptional characters of Sp(4r)
2r .

5B5. The case where m = 2r + 1. Consider Oy with i∗C(yρ)= (1, 2, . . . , r − 1, r).
One can check ℘Q,n(Oz

Q,n)= {℘Q,n(Oy)} with Oy ∈Oz
Q,n , i.e., |℘Q,n(Oz

Q,n)| = 1.
On the other hand,

℘Q,n(Oz
Q,n,sc)= {℘Q,n(Oy)} ∪ {℘Q,n(Ozi ) : 1≤ i ≤ r}

with zi described as follows. Recall that we write zi,ρ := zi − ρ. For 1≤ i ≤ r − 1,
zi is such that i∗C(zi,ρ)= (0, 2, 3, . . . , ̂i + 1, . . . , r, r+1), which denotes the r -tuple
obtained from the (r+1)-tuple (0, 2, 3, . . . , r − 1, r, r + 1) by removing the entry
i + 1. Meanwhile, zr is such that i∗C(zr,ρ)= (2, 3, . . . , r − 1, r, r + 1).

Note that Ozi ∈O
z
Q,n,sc \O

z
Q,n , since

iC(wαr [zi ] − zi )= iC(wαr (zi,ρ)− zi,ρ)=−(0, 0, . . . , 0,m)= iC(−mα∨r ) ∈ YQ,n.

The r + 1 elements ℘Q,n(Oy) and ℘Q,n(Ozi ) (1≤ i ≤ r) are all distinct. It follows
that |℘Q,n(Oz

Q,n,sc)| = r + 1. Therefore,

1≤ dim Whψ(2(Sp(4r+2)
2r , χ))≤ r + 1.

However, because there are only two exceptional characters χ , the dimension
Whψ(2(Sp(4r+2)

2r , χ)) can take at most two values. In fact, we will determine
completely the value and its dependence on χ .
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Proposition 5.2. Let χ be an exceptional character of Sp(4r+2)
2r . Then

dim Whψ(2(Sp(4r+2)
2r , χ))=

{
1 if χ(s−mα∨r )=−q1/2

· γψ($),

r + 1 if χ(s−mα∨r )= q1/2
· γψ($).

Proof. First, we show that χ(s−mα∨r ) is equal to±q1/2
·γψ($) if χ is an exceptional

character. Consider
χ(s−mα∨r )

2
= χ(s−nα∨r ) · ε

m2 Q(α∨r )

= χ(snα∨r )
−1
· ε

= q · (−1,$)2,

which has square roots exactly ±q1/2
· γψ($). That is, an exceptional character χ

of Sp(4r+2)
2r is uniquely determined by the sign.

Second, arguing as in Section 4B , we see that ℘Q,n(Ozi ), 1≤ i ≤ r contributes
to the right-hand side of equality (10) if and only if (as in equality (15))

(21) χ(swαr [zi ]−zi )= ε
D(wαr [zi ]−zi ,zi ) · t(wαr , zi ).

That is, dim Whψ(2(Sp(4r+2)
2r , χ))=1+|{zi : the equality (21) holds for zi }|. Note

that, wαr [zi ]− zi =−mα∨r for all i . On the other hand, we claim that the right-hand
side of (21) is independent of i . A simple computation gives 〈zi,ρ, αr 〉 = m and
therefore

εD(wαr [zi ]−zi ,zi ) · t(wαr , zi )

= εD(α∨r ,zi ) · qd
〈zi,ρ ,αr 〉+1

nαr
e−1
· ε〈zi,ρ ,αr 〉·D(zi ,α

∨
r ) · gψ−1(〈zi,ρ, αr 〉 · Q(α∨r ))

−1

= εBQ(zi ,α
∨
r ) · qd

m+1
n e−1

· gψ−1(m)−1

= gψ−1(m)−1, by the evenness of BQ .

Thus, it follows that dim Whψ(2(Sp(4r+2)
2r , χ))= 1 or r + 1. Moreover, it is equal

to 1 if and only if χ(s−mα∨r ) 6= gψ−1(m)−1. By Lemma 4.3,

gψ−1(m)−1
= q1/2

· γψ($).

Thus, dim Whψ(2(Sp(4r+2)
2r , χ))= 1 (respectively, r + 1) if and only if χ(s−mα∨r )

is equal to −q1/2
· γψ($) (respectively q1/2

· γψ($)). �

We summarize the results in this section as follows:

Theorem 5.3. Consider the Brylinski–Deligne covering group Sp(n)2r , where r ≥ 2,
and n≥1. Let χ be an unramified exceptional character, then dimWhψ(2(Sp(n)2r ,χ))

is equal to 1 if and only if the following hold:

• n = 4r − 2 and χ is the unique exceptional character satisfying (20), or

• n = 4r and χ is any exceptional character of Sp(4r)
2r , or
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• n = 4r + 2 and χ is the unique exceptional character from Proposition 5.2, or

• n = 2r + 1 and χ is the only exceptional character of Sp(2r+1)
2r .

Further, consider the exceptional character χψa :=χ
0
ψa
·δ

1/2n
B associated withψa .

Assume ψa has conductor OF , i.e., a ∈ O×F . Then,

dim Whψ(2(Sp(4r−2)
2r , χψa ))= 1

if and only if a ∈ (−1)r+1
·(O×F )

2, and dim Whψ(2(Sp(4r+2)
2r , χψa ))= 1 if and only

if a ∈ (−1)r · (O×F )
2.

6. The Br, r ≥ 2 case

Consider the Dynkin diagram for the simple coroots for the type Br group Spin2r+1:

e e e e ep p p p p p p p p <
α∨1 α∨2 α∨r−2 α∨r−1 α∨r

Let Y = 〈α∨1 , α
∨

2 , . . . , α
∨

r−1, α
∨
r 〉 be the cocharacter lattice of Spin2r+1, where

α∨r is the long coroot. Let Q be the Weyl-invariant quadratic form on Y such that
Q(α∨r )= 2, i.e., Q(α∨i )= 1 for 1≤ i ≤ r−1. Then the bilinear form BQ is given by

BQ(α
∨

i , α
∨

j )=



4 if i = j = r;
2 if 1≤ i = j ≤ r − 1;
−1 if 1≤ i ≤ r − 2 and j = i + 1;
−2 if i = r − 1, j = r;

0 if α∨i , α
∨

j are not adjacent.

The map iB :
⊕r

i=1 Zα∨i →
⊕r

i=1 Zei is given by

iB : (x1, x2, x3, . . . , xr ) 7→ (x1, x2− x1, x3− x2, . . . , xr−1− xr−2, 2xr − xr−1).

In particular, any (y1, . . . , yr ) ∈
⊕r

i=1 Zei is equal to iB(y) for some y if and only
if 2|(

∑
i yi ).

The Weyl group is W = Sr o (Z/2Z)r, where Sr is the permutation group
on
⊕

i Zei and (Z/2Z)i : ei 7→ ±ei . In particular, wαi , 1 ≤ i ≤ r − 1, acts on
(y1, y2, . . . , yr ) ∈

⊕
i Zei by exchanging yi and yi+1. Also, wαr acts by (−1)

on Zer .
A simple computation gives

YQ,n=
{
(y1,y2,...,yr )∈

⊕r
i=1Zei :2|

(∑r
i=1 yi

)
, y1≡···≡yr mod n, n|2yi for all i.

}
,

Y sc
Q,n=

{
(y1,y2,...,yr )∈

⊕r
i=1Zei :2|

(∑r
i=1 yi

)
, n|yi for all i.

}
In particular, if n is odd, then YQ,n = Y sc

Q,n .
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We note that 2ρ =
∑r

i=1 2(r − i + 1)ei , and therefore ρ =
∑r

i=1(r − i + 1)ei . If
y = (x1, x2, . . . , xr ) ∈

⊕
i Zα∨i , then

iB(yρ)= (x1− (r − 1+ 1), x2− x1− (r − 2+ 1), . . . , xi − xi−1− (r − i + 1),
. . . , xr−1− xr−2− (r − (r − 1)+ 1), 2xr − xr−1− (r − r + 1))

=: (x∗1 , x∗2 , . . . , x∗i , . . . x
∗

r−1, x∗r ).

Any (x∗1 , . . . , x∗r ) ∈
⊕

i Zei such that 2 |
(∑

i x∗i + r(r + 1)/2
)

is equal to iB(yρ)
for some y.

6A. The case where n is odd. Here,

nY = Y sc
Q,n = YQ,n.

Therefore, dim Whψ(2(Spin(n)2r+1, χ)) = |℘Q,n(Oz
Q,n,sc)|, where χ is the only ex-

ceptional character of Spin(n)2r+1. For n odd, the dual group for Spin(n)2r+1 is PGSp2r .

Proposition 6.1. Letting n be an odd number, one has
|℘Q,n(Oz

Q,n,sc)| ≥ 2 if n ≥ 2r + 3,

|℘Q,n(Oz
Q,n,sc)| = 0 if n ≤ 2r − 1,

|℘Q,n(Oz
Q,n,sc)| = 1 if n = 2r + 1.

Therefore, when n is odd, we have dim Whψ(2(Spin(n)2r+1, χ)) = 1 if and only if
n = 2r + 1.

Proof. First, assume that n ≥ 2r + 3. We write

iB(yρ)= (x∗1 , x∗2 , . . . , x∗i , . . . , x∗r ), with 2
∣∣( r∑

i=1

x∗i +
r(r+1)

2

)
.

For r ≥ 3, let y ∈ Y y′ be such that iB(yρ)= (1, 2, 3, . . . , r −2, r −1, r) and y′ be
such that iB(y′ρ)= (1, 2, . . . , r − 2, r, r + 1)). For r = 2, we take (x∗1 , x∗2 )= (1, 2)
or (2, 3), and let y and y′ be the associated element in Y respectively. In any case,
the two orbits Oy and Oy′ are YQ,n-free. Moreover, ℘Q,n(Oy) 6= ℘Q,n(Oy′). Thus,
for n ≥ 2r + 3, one has

|℘Q,n(Oz
Q,n,sc)| ≥ 2.

Second, assuming that n ≤ 2r − 1, we want to show that Oz
Q,n,sc =∅. If

iB(yρ) = (x∗1 , x∗2 , . . . , x∗i , . . . , x∗r ) is such that x∗i ≡ x∗j mod n for some i 6= j,
then clearly Oy /∈Oz

Q,n,sc. Suppose n - (x∗i − x∗j ) for all i 6= j, then since n≤ 2r−1,
it is not hard to see that there always exist i, j such that n|(x∗j + x∗i ). That is,
Oy /∈Oz

Q,n,sc for any Oy .
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Third, if n = 2r + 1, consider the orbit Oy with

iB(yρ)= (x∗1 , x∗2 , . . . , x∗r−1, x∗r )= (1, 2, 3, . . . , r − 2, r − 1, r).

(For r = 2, consider iB(yρ) = (1, 2).) One has ℘Q,n(Oz
Q,n,sc) = {℘Q,n(Oy)}, and

therefore |℘Q,n(Oz
Q,n,sc)| = 1 for n = 2r + 1. �

6B. The case where n is even. Write n = 2m. Here,

Y =
{
(y1, y2, . . . , yr ) ∈

⊕
i Zei : 2 |

∑r
i=1 yi

}
.

Moreover,

YQ,n=
{
(y1,y2,...,yr)∈

⊕
i Zei : 2

∣∣ r∑
i=1

yi , if yi=ki n+m for all i or yi=ki n for all i
}
,

Y sc
Q,n=

{
(y1,y2,...,yr )∈

⊕
i Zei : n|yi for all i

}
.

We see easily that for yi = ki n+m, one has (y1, y2, . . . , yr ) ∈ YQ,n if and only
if 2|(rm). In fact, for n even, the dual group for Spin(n)2r+1 is equal to SO2r+1 if m
and r are both odd; otherwise, the dual group is Spin2r+1, see [Weissman 2015].
We discuss case by case according to the parities of r and m.

6B1. The case where m and r are odd. In particular, one has r ≥ 3. In this case,
YQ,n = Y sc

Q,n , and ℘Q,n(Oz
Q,n)= ℘Q,n(Oz

Q,n,sc). Consider the following situations:

• If n > 2(r + 1) (i.e., m > r + 1 and therefore m ≥ r + 2), consider y such that
iB(yρ)= (x∗1 , x∗2 , . . . , x∗r ) is equal to

(1, 2, . . . , r − 2, r − 1, r) or (1, 2, . . . , r − 2, r, r + 1).

We can check the two orbits Oy for these two choices of y are YQ,n-free, and
moreover their images with respect to the map ℘Q,n are distinct in ℘Q,n(Oz

Q,n).
Thus, |℘Q,n(Oz

Q,n)| ≥ 2 in this case.

• If n< 2r (i.e., m < r and so m ≤ r−2), one can check that ℘Q,n(Oz
Q,n,sc)=∅.

• If n=2r (note n 6=2(r+1)), i.e., m= r , one can also check ℘Q,n(Oz
Q,n,sc)=∅.

Therefore, dim Whψ(2(Spin(n)2r+1, χ)) 6= 1 for both r and m odd.

6B2. The case where m is odd and r ≥ 2 is even. Here, YQ,n 6= Y sc
Q,n . One has the

following situations:

• Assume n > 2(r + 1) (i.e., m > r + 1 and thus m ≥ r + 3).

Case I: If r ≥ 3, consider y and y′ such that

iB(yρ)= (1, 2, . . . , r − 2, r − 1, r) and iB(y′ρ)= (1, 2, . . . , r − 2, r, r + 1).

We can check the orbits Oy,Oy′ are YQ,n-free and ℘Q,n(Oy) 6= ℘Q,n(Oy′).
Thus, |℘Q,n(Oz

Q,n)| ≥ 2.
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Case II: If r = 2 and m ≥ r + 5, consider Oy and Oy′ with iB(yρ) = (1, 2)
and iB(y′ρ) = (2, 3). Then as in the preceding case, they are YQ,n-free and
℘Q,n(Oy) 6= ℘Q,n(Oy′). Thus, |℘Q,n(Oz

Q,n)| ≥ 2.

Case III: If r = 2 and m = 5, consider Oy with iB(yρ) = (1, 2). It is easy
to check ℘Q,n(Oz

Q,n)= {℘Q,n(Oy)}. On the other hand, let z, z′ be such that
iB(zρ)= (1, 4) and iB(z′ρ)= (2, 3). Then

℘Q,n(Oz
Q,n,sc)= {℘Q,n(Oy), ℘Q,n(Oz), ℘Q,n(Oz′)},

which is a set of size 3. Note, Oz,Oz′ ∈Oz
Q,n,sc\O

z
Q,n . That is, |℘Q,n(Oz

Q,n)|=1
and |℘Q,n(Oz

Q,n,sc)| = 3 in this case.
Let w,w′ ∈W be such that

iB(w[z] − z)= iB(w
′
[z′] − z′)=−(5, 5) ∈ YQ,n.

Write yQ,n = iB(w[z] − z) ∈ YQ,n . Then, dim Whψ(2(Spin(10)
5 , χ)) is equal

to 1, as in Section 5B5, if and only if

(22) χ(syQ,n ) 6= ε
D(yQ,n,z) · T (w, z) and χ(syQ,n ) 6= ε

D(yQ,n,z′) · T (w′, z′).

However, as in Proposition 5.2, that εD(yQ,n,z) · T (w, z)= εD(yQ,n,z′) · T (w′, z′)
can be easily checked, and the condition (22) is equivalent to

(23) χ(s−5α∨r )=−q1/2
· γψ($).

This agrees with the result from Proposition 5.2 for the C (10)
2 case.

• If n<2r (i.e., m≤r and therefore m≤r−1), one can check℘Q,n(Oz
Q,n,sc)=∅.

• If n = 2(r + 1) (note n 6= 2r ), i.e., r = m− 1, one can check ℘sc
Q,n(O

z
Q,n,sc)=

{℘sc
Q,n(O0)} (and thus ℘Q,n(Oz

Q,n,sc)= {℘Q,n(O0)}) is a singleton with

iB(0ρ)= (−r,−(r − 1), . . . ,−2,−1).

That is, O0 is Y sc
Q,n-free. However, it is not YQ,n-free, since there exists

w ∈W such that iB(w(0ρ))= (1, 2, . . . , r − 1, r). It follows that

iB(w(0ρ)− 0ρ)= (m,m, . . . ,m,m) ∈ YQ,n.

Write yQ,n = w(0ρ)−0ρ = w[0]−0. It follows from an analogous argument for
Proposition 4.1 that dim Whψ(2(Spin(2r+2)

2r+1 , χ))= 1 if and only if χ is the unique
exceptional character satisfying

(24) χ(syQ,n )= T (w, 0).

One can explicate the equality by computing the right-hand side as in Lemma 4.2.
We omit the details here.
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6B3. The case where m is even and r ≥ 3 is odd. Here, YQ,n 6= Y sc
Q,n . We have:

• If n > 2(r + 1) (i.e., m > r + 1 and therefore m ≥ r + 3), consider y and y′

such that

iB(yρ)= (1, 2, . . . , r − 2, r − 1, r) and iB(y′ρ)= (1, 2, . . . , r − 2, r, r + 1).

We can check the orbits Oy,Oy′ are YQ,n-free and ℘Q,n(Oy) 6= ℘Q,n(Oy′).
Thus, |℘Q,n(Oz

Q,n)| ≥ 2.

• If n<2r (i.e., m<r and therefore m≤r−1), one can check℘Q,n(Oz
Q,n,sc)=∅.

• If n= 2(r+1) (note n 6= 2r ), i.e., r =m−1, then ℘Q,n(Oz
Q,n,sc)={℘Q,n(Oy)}

is a singleton with

iB(0ρ)= (−r,−(r − 1), . . . ,−2,−1).

The situation is exactly as in the third case of Section 6B2, i.e., O0 is Y sc
Q,n-free

but not YQ,n-free. Consider w ∈W such that iB(w(0ρ))= (1, 2, . . . , r − 1, r)
and

iB(w(0ρ)− 0ρ)= (m,m, . . . ,m,m) ∈ YQ,n.

Write yQ,n = w(0ρ)− 0ρ = w[0] − 0. Then dim Whψ(2(Spin(2r+2)
2r+1 , χ))= 1 if

and only if χ is the unique exceptional character satisfying

(25) χ(syQ,n )= T (w, 0).

6B4. The case where m is even and r ≥ 2 is even. Here, YQ,n 6= Y sc
Q,n . One has the

following situations:

• If n > 2(r + 1) (i.e., m > r + 1 and therefore m ≥ r + 2), there are two cases
to consider.

Case I: r ≥ 4. Consider y and y′ such that

iB(yρ)= (1, 2, . . . , r − 2, r − 1, r) and iB(y′ρ)= (1, 2, . . . , r − 2, r, r + 1).

We can check easily that the orbits Oy and Oy′ for these two choices are
YQ,n-free. Note that |℘Q,n(Oz

Q,n)| ≥ 2, since ℘Q,n(Oy) 6= ℘Q,n(Oy′).

Case II: r = 2. Consider y and y′ such that iB(yρ)= (1, 2) and iB(y′ρ)= (2, 3).
For m ≥ 4, Oy and Oy′ are both YQ,n-free. Moreover, we can check that
℘Q,n(Oz

Q,n,sc) ⊆ {℘Q,n(Oy), ℘Q,n(Oy′)}. Now if m ≥ 6, then ℘Q,n(Oy) 6=

℘Q,n(Oy′). On the other hand, for m = 4, one has ℘Q,n(Oy)= ℘Q,n(Oy′) and
so dim Whψ(2(Spin(8)5 , χ))= 1 for any exceptional character χ in this case.

To summarize for the case m ≥ r + 2:{
dim Whψ(2(Spin(n)2r+1, χ))= 1 if m = 4, r = 2,

dim Whψ(2(Spin(n)2r+1, χ))≥ 2 if r ≥ 4 and m ≥ r + 2, or r = 2 and m ≥ 6.
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• If n < 2r (i.e., m < r and therefore m ≤ r − 2), one can check easily that
℘Q,n(Oz

Q,n,sc)=∅.

• If n = 2r (note n 6= 2(r + 1)), i.e., r = m, one also has ℘Q,n(Oz
Q,n,sc)=∅.

From the above discussion, we observe that for r = 2, the result agrees with that
for covering groups of type C2, as expected. Therefore, we just summarize our
result for covering Spin(n)2r+1 with r ≥ 3 as follows.

Theorem 6.2. Consider Brylinski–Deligne covering Spin(n)2r+1 with r ≥ 3. Let χ be
an exceptional character, then dim Whψ(2(Spin(n)2r+1, χ))= 1 if and only if one of
the following holds:

• n = 2(r + 1) and χ is the unique exceptional character satisfying (24) or (25),

• n = 2r + 1 and χ is the only exceptional character of Spin(2r+1)
2r+1 .

7. The G2 case

Consider G2 with Dynkin diagram for its simple coroots:

e e<
α∨1 α∨2

Let Y = 〈α∨1 , α
∨

2 〉 be the cocharacter lattice of G2, where α∨1 is the short coroot.
Let Q be the Weyl-invariant quadratic on Y such that Q(α∨1 )= 1 (thus Q(α∨2 )= 3).
Then the bilinear form BQ is given by

BQ(α
∨

i , α
∨

j )=


2 if i = j = 1,
−3 if i = 1, j = 2,

6 if i = j = 2.

A simple computation gives

YQ,n = Y sc
Q,n = Z(nα1α

∨

1 )⊕Z(nα2α
∨

2 ),

where nα2 = n/ gcd(n, 3) and nα1 = n.
The map iG :

⊕2
i=1 Zα∨i →

⊕3
i=1 Zei is given by

iG : (x1, x2) 7→ (x1− 2x2, x2− x1, x2).

Any (yi )i ∈
⊕3

i=1 Zei lies in the image of iG if and only if y1+ y2+ y3 = 0.
The Weyl group W = 〈wα1,wα2〉 generated by wα1 and wα2 is the dihedral

group of order 12. In particular, wα1(y1, y2, y3)= (y2, y1, y3) ∈
⊕3

i=1 Zei , and
wα2(y1, y2, y3)= (−y1,−y3,−y2).

By using iG , we could identify

YQ,n = Y sc
Q,n =

{
(y1, y2, y3) ∈

⊕3
i=1 Zei : y1+ y2+ y3 = 0, y1 ≡ y2 ≡ y3 mod n

}
.
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We have ρ = 5α∨1 + 3α∨2 with iG(ρ)= (−1,−2, 3) ∈
⊕3

i=1 Zei . It follows that for
any y = (x1, x2) ∈

⊕2
i=1 Zα∨i ,

iG(yρ)= (x1− 2x2− 1, x2− x1− 2, x2+ 3) ∈
⊕3

i=1 Zei .

We may write iG(yρ)= (x∗1 , x∗2 , x∗3 ). In particular, (x∗1 , x∗2 , x∗3 ) ∈
⊕3

i=1 Zei lies in
the image of iG if and only if x∗1 + x∗2 + x∗3 = 0.

Since YQ,n = Y sc
Q,n , it follows that dim Whψ(2(G

(n)
2 , χ))= |℘Q,n(Oz

Q,n)|, where
χ is the only exceptional character of G(n)

2 as Z(G∨2 )= 1.
To determine the n such that dim Whψ(2(G

(n)
2 , χ))= 1, we only give an outline

of the argument, the details of which consists of basic combinatorial computations:

• For n = 7, 8 or n ≥ 10, the orbit Oy with iG(yρ)= (−2,−1, 3) is YQ,n-free.

• For n=8, 10, 11 or n≥13, the orbit Oy′ with iG(y′ρ)=(−3,−1, 4) is YQ,n-free.
Moreover, for n = 8, 10, 11 or n ≥ 13, one has ℘Q,n(Oy) 6= ℘Q,n(Oy′) for
iG(yρ)= (−2,−1, 3) and iG(y′ρ)= (−3,−1, 4).

• If Oz
Q,n,sc 6=∅, then necessarily |Y/Y sc

Q,n| ≥ |W |, i.e., n ·nα2 ≥ 12. Thus n ≥ 4.

• One can also check by hand that Oz
Q,n,sc =∅ for n = 4, 5, 6, 9.

• For n = 7 or 12, ℘Q,n(Oz
Q,n)= {℘Q,n(Oy)} with iG(yρ)= (−2,−1, 3), i.e.,

dim Whψ(2(G
(n)
2 , χ))= 1 for n = 7 or 12.

To summarize:

Theorem 7.1. Consider the Brylinski–Deligne covering G(n)
2 . Let χ be the only

exceptional character on G(n)
2 , then dim Whψ(2(G

(n)
2 , χ))= 1 if and only if n = 7

or 12.
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LIOUVILLE THEOREMS FOR f -HARMONIC MAPS
INTO HADAMARD SPACES

BOBO HUA, SHIPING LIU AND CHAO XIA

We study harmonic functions on weighted manifolds and harmonic maps
from weighted manifolds into Hadamard spaces introduced by Korevaar and
Schoen. We prove several Liouville-type theorems for these harmonic maps.

1. Introduction

Weighted Riemannian manifolds, also called manifolds with density or smooth
metric measure spaces in the literature, are Riemannian manifolds equipped with
weighted measures. Appearing naturally in the study of self-shrinkers, Ricci solitons,
harmonic heat flows and many others, weighted manifolds have been proven to
be nontrivial generalizations of Riemannian manifolds. There are many geometric
investigations of weighted manifolds; see Morgan [2005], Wei and Wylie [2009]
and many others. In this paper, we investigate various Liouville-type theorems for
harmonic functions on weighted manifolds as well as harmonic maps from weighted
manifolds into Hadamard spaces, i.e., globally nonpositively curved spaces in the
sense of Alexandrov (also called CAT(0) spaces), see, e.g., [Jost 1997b; Burago
et al. 2001].

A weighted Riemannian manifold is a triple (M, g, e− f dVg), where (M, g) is
an n-dimensional Riemannian manifold, dVg is the Riemannian volume element
induced by the metric g and f is a smooth positive function on M. The f -Laplacian

1 f =1−∇ f · ∇

is a natural generalization of Laplace–Beltrami operator 1 as it is self-adjoint with

The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement
n◦ 267087. B. H. is partially supported by NSFC (Grant No. 11401106). S. L. is partially supported
by the EPSRC Grant EP/K016687/1. C. X. is partially supported by the Fundamental Research Funds
for the Central Universities (Grant No. 20720150012) and NSFC (Grant No. 11501480).
MSC2010: primary 53C43; secondary 31C05.
Keywords: harmonic map, Liouville theorem, Hadamard space.
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respect to the weighted measure e− f dVg, i.e.,∫
M
1 f uve− f dVg =

∫
M

u1 f ve− f dVg for u, v ∈ C∞0 (M).

A function u ∈W 1,2
loc (M) is called f -harmonic ( f -subharmonic, f -superharmonic

resp.) if it satisfies 1 f u = 0 (≥ 0, ≤ 0 resp.) in the weak sense, i.e.,∫
M
〈∇u,∇ϕ〉e− f dVg = 0 (≤ 0, ≥ 0 resp.) for any 0≤ ϕ ∈ C∞0 (M).

The Dirichlet f -energy of u is defined by

D f(u)=
∫

M
|∇u|2e− f dVg.

On the other hand, f -harmonic maps from weighted manifolds (M, g, e− f dVg)

to (singular) metric spaces (Y, d) have wide geometric applications. Harmonic
maps into metric spaces were initiated by Gromov and Schoen [1992] and then
investigated independently by Korevaar and Schoen [1993] and Jost [1994]. In
particular, when the domain is a Riemannian manifold, Korevaar and Schoen [1993;
1997] gave a complete exposition. In this paper we call a map u :M→Y f -harmonic
if u locally minimizes the f -energy functional E f in the sense of Korevaar and
Schoen. For a detailed definition and its properties, we refer to [Korevaar and
Schoen 1993] or Section 4 below. For the special case, f -harmonic maps from
the Gaussian spaces, (Rn, | · |, e−|x |

2/4 dx), to Riemannian manifolds are called
quasiharmonic spheres, which emerge in the blowup analysis of harmonic heat flow
[Lin and Wang 1999; Li and Tian 2000]. In this paper, we study Liouville theorems
for f -harmonic maps into metric spaces, which generalize the previous results for
harmonic maps in both aspects of domain manifolds and target spaces.

Analysis on weighted manifolds and the corresponding f -Laplacian have been
extensively studied recently. We refer to [Munteanu and Wang 2011, 2012; Brighton
2013; Li 2005, 2016] for the f -harmonic functions on weighted manifolds, to [Li
and Wang 2009; Zhu and Wang 2010; Li and Zhu 2010; Li and Yang 2012] for
f -harmonic functions on the Gaussian spaces, to [Grigor’yan 2006, 2009] for heat
kernel estimates, and to [Lin and Wang 1999; Wang and Xu 2012; Chen et al. 2012;
Rimoldi and Veronelli 2013; Sinaei 2014, 2016] for f -harmonic maps.

In the first part of the paper we are concerned with Liouville-type theorems for
f -harmonic functions on weighted manifolds. Several Liouville-type theorems for
f -harmonic functions on the Gaussian spaces, also called quasiharmonic functions,
have been proved in [Zhu and Wang 2010; Li and Wang 2009], in which the main
techniques adopted are gradient estimates and separation of variables coupled with
ODE results. In this paper, we propose another approach, which seems to be
overlooked in the literature, to reprove many previous results. This method can
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be easily generalized, so that we may obtain Liouville theorems for f -harmonic
functions for a large class of weighted manifolds; see Section 2.

Our observation is that the weighted version of L p-Liouville theorem for weighted
manifolds can be used to derive various Liouville theorems concerning the growth
of f -harmonic functions. Yau [1976] first proved the L p-Liouville theorem (for
1< p <∞) for harmonic functions on any complete Riemannian manifold. Later,
Karp [1982] obtained a quantitative version of this result. Li and Schoen [1984]
proved other L p-Liouville theorems (e.g., 0< p<1) under the curvature assumption
of manifolds. Karp’s version of L p-Liouville theorem has been generalized by
Sturm [1994] to the setting of strongly local regular Dirichlet forms. In particular,
our f -harmonic functions lie in this setting. By applying Sturm’s L p-Liouville
theorem to f -harmonic functions, we immediately obtain several consequences
which generalize previous results of [Zhu and Wang 2010; Li and Wang 2009; Li
and Zhu 2010; Li and Yang 2012]. Although the proof of L p-Liouville theorem is
quite general and only involves integration by parts and the Caccioppoli inequality
(thus it holds for all reasonable spaces), it is surprisingly powerful to obtain various
Liouville theorems for weighted manifolds with slow volume growth, especially
for the Gaussian spaces; see Corollaries 2.5 and 2.6 in Section 2. This does provide
another approach to derive Liouville theorems without using any gradient estimate.

In the second part, we study Liouville-type theorems for harmonic maps from
weighted manifolds to Hadamard spaces. For applications of f -harmonic maps with
singular targets we refer to Gromov and Schoen [1992]. Our first result is an ana-
logue to Kendall’s theorem [1990, Theorem 3.2]. The essence of Kendall’s theorem
is that validity of a Liouville theorem for f -harmonic maps into Hadamard spaces, a
priori a nonlinear problem, is reduced to that of a Liouville theorem of f -harmonic
functions, a linear problem. Kendall [1990] proved this theorem for harmonic maps
between Riemannian manifolds, by using probabilistic methods and potential theory.
Kuwae and Sturm [2008] generalized Kendall’s method to a class of harmonic maps
between general metric spaces in the framework of Markov processes. Note that
the harmonic maps they were concerned with are different from those of Korevaar
and Schoen [1993] when targets are singular. In this paper, we consider harmonic
maps into Hadamard spaces in the sense of Korevaar and Schoen. Following the
argument by Li and Wang [1998], we are able to prove the following Kendall-type
theorem by assuming local compactness of the targets. Recall that a geodesic space
(Y, d) is called locally compact if every closed geodesic ball is compact.

Theorem 1.1. Let (M, g, e− f dVg) be a complete weighted Riemannian manifold
satisfying that any bounded f -harmonic function is constant. Let (Y, d) be a locally
compact Hadamard space. Then any f -harmonic map from M to Y having bounded
image is a constant map.
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In the same spirit as Kendall’s theorem, Cheng, Tam and Wan [Cheng et al. 1996]
proved a Liouville-type theorem for harmonic maps with finite energy. Our second
result is a generalization of their theorem to f -harmonic maps into Hadamard spaces.

Theorem 1.2. Let (M, g, e− f dVg) be a complete noncompact weighted Riemann-
ian manifold satisfying that any f -harmonic function with finite Dirichlet f -energy
is bounded. Let (Y, d) be an Hadamard space. Then any f -harmonic map from M
to Y with finite f -energy has bounded image.

We will follow the line of Cheng, Tam and Wan’s reasoning, but using the
techniques in potential theory, especially the theory of Royden and Nakai’s decom-
position on Riemannian manifolds [Royden 1952; Nakai 1960; Sario and Nakai
1970]. This possible approach of potential theory was implicitly suggested by Lyons
in [Cheng et al. 1996, pp. 278]. We figure out the detailed arguments of this insight
and apply them to Liouville theorems of f -harmonic maps. The Royden–Nakai
decomposition theorem and Virtanen’s theorem, see, e.g., Section 5 for weighted
versions, play important roles in the classification theory of Riemannian manifolds
developed by Royden, Nakai, Sario et al. many years ago. We shall dwell on these
theories in the framework of weighted manifolds in Section 5 and utilize them to
prove Theorem 1.2.

The following theorem is, more or less, a consequence of the combination of
Theorems 1.1 and 1.2.

Theorem 1.3. Let (M, g, e− f dVg) be a complete noncompact weighted Riemann-
ian manifold satisfying that any bounded f -harmonic functions is constant. Let
(Y, d) be a locally compact Hadamard space. Then any f -harmonic map from M
to Y with finite f -energy is a constant map.

This theorem has an interesting application which motivates our studies in some
sense. Bakry and Émery [1985] introduced weighted Ricci curvature for weighted
manifolds. In particular, the so-called∞-Bakry–Émery Ricci curvature

Ric f := Ric+∇2 f

turns out to be a suitable and important curvature quantity for weighted mani-
folds. The nonnegativity of Ric f corresponds to the curvature-dimension condition
CD(0,∞) on metric measure spaces via optimal transport, in the sense of Lott
and Villani [2009] and Sturm [2006a; 2006b]. By a theorem of Brighton [2013],
see also [Li 2016], the weighted manifold (M, g, e− f dVg) satisfying Ric f ≥ 0
admits no nonconstant bounded f -harmonic functions. Hence by Theorem 1.3 we
immediately have:

Theorem 1.4. Let (M, g, e− f dVg) be a complete noncompact weighted Riemann-
ian manifold satisfying Ric f ≥ 0 and (Y, d) be a locally compact Hadamard space.
Then any f -harmonic map from M to Y with finite f -energy is a constant map.
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The novelty of the result lies in the generality of targets, i.e., including singular
metric spaces. In the smooth setting, Hadamard spaces are in fact Cartan–Hadamard
manifolds, i.e., simply connected Riemannian manifolds with nonpositive sectional
curvature. On Riemannian manifolds, Theorem 1.4 has been proved by Wang and
Xu [2012] and Rimoldi and Veronelli [2013] independently under an additional
assumption of

∫
M e− f dVg =∞ for domain manifolds, while simply-connectedness

of the targets is not needed. Note that the weighted volume assumption here
cannot be derived from the curvature condition Ric f ≥ 0 in general. In addition,
there is a nontrivial f -harmonic map from a domain manifold with Ric f ≥ 0 and∫

M e− f dVg <∞ to a nonpositively curved target manifold, constructed by Rimoldi
and Veronelli [2013, Remark 3.7]. Our contribution is to drop the weighted volume
assumption by assuming simply-connectedness of the targets and to extend the
result to singular spaces.

For harmonic maps into singular Hadamard spaces, the arguments in [Wang and
Xu 2012; Rimoldi and Veronelli 2013], both following Schoen and Yau [1976], do
not work any more since we cannot apply Bochner techniques as in those works
due to the singularity of targets. Although a weak Bochner formula can also be
derived following Korevaar and Schoen [1993], it is insufficient for our purpose.
Fortunately, we can circumvent these technical problems by proving Theorem 1.3,
which follows from Kendall-type theorems. This does provide another approach to
Liouville theorems for f -harmonic maps without using Bochner techniques. This
is one of the main points of the paper.

The rest of the paper is organized as follows. In Section 2, we study L p Liouville
theorem for f -harmonic functions and give some applications. In Section 3, we
consider harmonic maps with smooth targets. In Section 4, we define f -harmonic
maps into Hadamard spaces and prove Theorem 1.1. In Section 5, we dwell on the
Royden-Nakai theory and prove Theorems 1.2 and 1.3.

2. f -harmonic functions

In this section, we study L p-Liouville theorems for f -harmonic functions and
their applications. We will show that L p-Liouville theorems are quite powerful for
weighted manifolds with finite volume.

The L p-Liouville theorem, 1< p <∞, for harmonic functions (or nonnegative
subharmonic functions) was initiated by Yau [1976] on complete Riemannian
manifolds. Karp [1982] obtained a quantitative version of this Liouville theorem.
Later, Sturm [1994] proved an L p-Liouville theorem for strongly local regular
Dirichlet forms. The following theorem is a special case of Sturm’s result for
f -harmonic functions. We denote by Br := Br (x0) the closed geodesic ball of
radius r centered at a fixed point x0 ∈ M.
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Theorem 2.1 [Sturm 1994, Theorem 1]. Let (M, g, e− fdVg) be a complete weighted
Riemannian manifold and u be a nonnegative f -subharmonic function (or an f -
harmonic function). For 1< p <∞, set v(r) :=

∫
Br
|u|pe− f dVg. Then either

inf
a>0

∫
∞

a

r
v(r)

dr <∞,

or u is a constant.

We state several consequences of Theorem 2.1.
A quite useful consequence is about f -parabolicity of M. Recall that a weighted

manifold (M, g, e− f dVg) is called f -parabolic if there are no nonconstant nonneg-
ative f -superharmonic functions on M. For a compact set K ⊂ M, the f -capacity
of K is defined as

cap f(K ) := inf
ϕ∈Lip0(M)
ϕ|K=1

∫
M
|∇ϕ|2e− f dVg,

where Lip0(M) is the space of compactly supported Lipschitz functions on M.

Proposition 2.2 ( f -parabolicity). Let (M, g, e− f dVg) be a complete weighted man-
ifold. Then the following are equivalent:

(i) M is f -parabolic;

(ii) cap f(K )= 0 for some (then any) compact set K ⊂ M ;

(iii) any bounded f -superharmonic function on M is constant.

Proof. (i)⇔ (ii). This follows from [Grigor’yan 1985, Proposition 3]; see also
Proposition 2.1 of [Grigor’yan 1999].
(i)⇔ (iii). This follows from the fact that any nonnegative f -superharmonic

function u can be approximated by bounded f -superharmonic functions un =

min{u, n}, n ∈ N. �

We say a weighted manifold (M, g, e− f dVg) has the moderate volume growth
property if

(1)
∫
∞

1

r
Vf (Br )

dr =∞,

where Vf (Br ) :=
∫

Br
e− f dVg.

Corollary 2.3. Let (M, g, e− f dVg) be a complete weighted Riemannian manifold
satisfying the moderate volume growth property. Then M is f -parabolic.

Proof. Let u be a bounded f -superharmonic function on M. Then for any a > 0,∫
∞

a

r
v(r)

dr ≥ C
∫
∞

a

r
Vf (Br )

dr =∞.
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Theorem 2.1 yields that u is a constant. This proves the corollary. �

Remark 2.4. Corollary 2.3 slightly generalizes [Wang and Xu 2012, Theorem 1.4].
In particular, this corollary implies [Zhu and Wang 2010, Theorem 2].

We can also derive several Liouville-type theorems for f -harmonic functions
from Theorem 2.1.

Corollary 2.5. Let (M, g, e− f dVg) be a complete weighted Riemannian manifold
and u be a nonnegative f -subharmonic function (or f -harmonic function). Assume
one of the following holds:

(i) u= O(wα) for some nonnegative functionw with
∫

Mwd−2( · ,x0)e− f dVg <∞

and some α ∈ (0, 1);

(ii)
∫

M dk( · , x0)e− f dVg <∞ for some k > −2 and u = O(dβ( · , x0)) for some
β ∈ (0, k+ 2);

(iii)
∫

M e− f dVg <∞ and u = O(dβ( · , x0)) for β ∈ (0, 2);

(iv) f ≥ Cd( · , x0)
β for some C > 0, β > 0 and

∫
M e−δ f dVg < ∞ for some

0< δ < 1 and u has polynomial growth;

(v) f ≥ Cd( · , x0)
β for some C > 0, β > 0 and the Riemannian volume has

polynomial volume growth and u = O(eαCd( · ,x0)
β

), α ∈ (0, 1).

Then u is a constant.

Proof. For (i), we see that there exists p ∈ (1,∞) such that |u|p = O(w). Hence

1
r2 log r

v(r)= 1
r2 log r

∫
Br

|u|pe− f dVg

≤
C

log r

∫
Br

w(x)
d2(x, x0)

e− f (x) dVg(x)= o(1).

It follows from Theorem 2.1 that u is a constant. The case (ii) follows from (i) by
letting w = dk+2( · , x0). The case (iii) follows from (ii) by letting k = 0.

For (iv), let us observe for any 1< p <∞,∫
M
|u|pe− f dVg ≤ C

∫
M

dsp(x, x0)e− f (x) dVg(x)≤ C
∫

M
e−δ f dVg <∞,

where s > 0. Then the statement also follows from Theorem 2.1. The case (v) can
be proved in a similar way. �

The following result is a direct corollary of the above (v).

Corollary 2.6. Let u be an f -harmonic function on the Gaussian space, i.e.,

1u− 1
2〈x,∇u〉 = 0.

If u = O(eα|x |
2/4) as x→∞, for some 0< α < 1, then u is a constant.
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Remark 2.7. Corollary 2.6 implies that there are no nonconstant polynomial growth
f -harmonic functions on the Gaussian space. This improves the result in [Li and

Wang 2009, Theorem 4.2]. By Caccioppoli’s inequality, Corollary 2.6 can be also
derived from Li and Yang [2012, Corollary 1.2] .

In the remaining part of this section, we study the L p-Liouville theorem in-
troduced by Zhu and Wang [2010] using a different measure from ours. We
shall explain why the critical exponent of the L p-Liouville theorem in [Zhu and
Wang 2010, Theorem 3] is p = n/(n − 2) (n ≥ 3) by applying our result. Let
(M, g, e− f dVg) be an n-dimensional (n ≥ 3) complete weighted manifold. In fact,
they consider the L p space with respect to the Riemannian volume in a modified
Riemannian manifold M̃ = (M, g̃, dVg̃), denoted by L p(M̃, dVg̃), where g̃ is a
conformal change of g given by g̃ = e−2 f/(n−2)g. Since this new manifold M̃ may
be incomplete, e.g., Gaussian space, Yau’s L p-Liouville theorem fails in this setting.
In the following, we use the L p-Liouville theorem on weighted manifolds to show
the one on modified Riemannian manifolds.

Theorem 2.8. Let (M, g, e− f dVg) be an n-dimensional (n ≥ 3) complete weighted
manifold, M̃ = (M, g̃, dVg̃) be the modified Riemannian manifold and u be a
nonnegative f -subharmonic function (or f -harmonic function) on M. For any p >
n/(n−2), there exists a constant δ = δ(p, n) ∈ (0, 1) such that if

∫
M e−δ f dVg <∞

and u ∈ L p(M̃, dVg̃), then u is a constant.

Proof. For any p> n/(n−2), let q = 2p/(p+n/(n−2))> 1, α= p/q > n/(n−2)
and α∗ = α/(α− 1) ∈ (1, n/2). Set δ = (n− 2α∗)/(n− 2) ∈ (0, 1). By Hölder’s
inequality, we can verify that∫

M
uqe− f dVg =

∫
M

uqe
2 f

n−2 dVg̃ ≤

(∫
M

uqα dVg̃

)1
α
(∫

M
e

2α∗ f
n−2 dVg̃

) 1
α∗

=

(∫
M

u p dVg̃

)1
α
(∫

M
e−δ f dVg

) 1
α∗

<∞.

The statement follows from Theorem 2.1. �

This yields a direct corollary which generalizes [Zhu and Wang 2010, Theorem 3],
which is restricted to the Gaussian spaces, to general weighted manifolds. The
Riemannian manifold (M, g, dVg) is said to be of subexponential volume growth if
Vg(r) := Vg(Br (x0))= eo(r) for some (then all) x0 ∈ M.

Corollary 2.9. Let (M, g, e− f dVg) be an n-dimensional (n≥ 3) complete weighted
manifold satisfying that f ≥ Cdβ( · , x0) for some C > 0, β > 0 and Vg(r)= eo(rβ ).
Let M̃ = (M, g̃, dVg̃) be the modified Riemannian manifold. Then for any p >
n/(n− 2), the f -harmonic function in L p(M̃, dVg̃) is constant. In particular, for
β = 1, it suffices to assume (M, g, dVg) has subexponential volume growth.
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Proof. By virtue of Theorem 2.8, it is sufficient to prove
∫

M e−δ f dVg <∞ where δ
is the constant in Theorem 2.8. We see by the coarea formula that∫

M
e−δ f dVg =

∫ 1

0

∫
Sr (x0)

e−δ f d Ar dr +
∫
∞

1

∫
Sr (x0)

e−δ f d Ar dr

≤ C0+

∫
∞

1

∫
Sr (x0)

e−δCrβ

= C0+

∫
∞

1
e−δCrβ d

dr
Vg(r) dr

= C0+ e−δCrβVg(r)
∣∣∞
1 + δC

∫
∞

1
βrβ−1e−δCrβVg(r) dr.

Since Vg(r)= eo(rβ ), there exists R large such that

Vg(r)≤ e
1
2 δCrβ for r > R.

It follows that limr→∞ e−δCrβVg(r) = 0 and
∫
∞

1 βrβ−1e−δCrβVg(r) dr < ∞. It
follows that

∫
M e−δ f dVg <∞. This completes the proof. �

3. f -harmonic maps into Cartan–Hadamard manifolds

In this section, we prove Theorem 1.4 in the case that the target Y = N is a
Cartan–Hadamard manifold.

Theorem 3.1. Let (M, g, e− f dVg) be a complete weighted Riemannian manifold
which is f -parabolic and N be a Cartan–Hadamard manifold. Then any f -
harmonic map with finite f -energy, i.e., E f(u) :=

∫
M |∇u|2e− f dVg < ∞, is a

constant map.

Proof. We use a construction by Rimoldi and Veronelli [2013] which associates an
f -harmonic map with a harmonic map on some higher dimensional warped product
manifold.

Precisely, let M := M ×e− f S1 denote a warped product, where S1
= R/Z with

Vol(S1)= 1, with the metric on M given by g(x, t)= g(x)+e−2 f (x)dt2. Note that
M is complete. It follows from [Rimoldi and Veronelli 2013, Proposition 2.5 and
Lemma 2.6] that M is parabolic and the map u : M→ N, defined by u(x, t)= u(x)
is a harmonic map. Moreover, EM(u)= E f

M(u) <∞.
Now by applying [Cheng et al. 1996, Proposition 2.1 and Theorem 3.1] to u and

M , we know that the image of u, u(M) = u(M), is bounded in N. Since N is a
Cartan–Hadamard manifold, d2(u( · ), Q) is a subharmonic function for any Q ∈ N,
which is also bounded. By the parabolicity of M, we know that d2(u( · ), Q) is
constant for any Q ∈ N. This proves the theorem. �
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Theorem 3.2. Let (M, g, e− f dVg) be a complete weighted Riemannian manifold
satisfying Ric f ≥ 0 and N be a Cartan–Hadamard manifold. Then any f -harmonic
map with finite f -energy E f(u) <∞ is a constant map.

Proof. We divide the theorem into two cases:

(a)
∫

M e− f dVg =∞,

(b)
∫

M e− f dVg <∞.

For case (a), it was already proved in [Wang and Xu 2012, Theorem 1.2] or [Rimoldi
and Veronelli 2013, Theorem 3.3] for general Riemannian target of nonpositive
curvature (without the assumption of simply-connectedness). For case (b), we
observe that M satisfies the moderate volume growth property (1). By Corollary 2.3,
M is f -parabolic. Then the statement follows from Theorem 3.1. �

Remark 3.3. Comparing Theorem 3.2 with [Wang and Xu 2012, Theorem 1.2] or
[Rimoldi and Veronelli 2013, Theorem 3.3], we remove the condition of the infinity
of f -volume for M but add the assumption that N is simply connected.

4. f -harmonic maps into Hadamard spaces

In this section, we define f -harmonic maps from an n-dimensional complete
weighted Riemannian manifold (M, g, e− f dVg) to a general metric space (Y, d).
For that purpose we investigate an f -energy functional E f whose definition given
here follows Korevaar and Schoen [1993], where a Sobolev space theory for maps
from Riemannian domains to metric spaces was developed. Note that the energy
functional has been further extended to maps from complete noncompact Rie-
mannian manifolds, and even more generally the so-called admissible Riemannian
polyhedrons with simplexwise smooth Riemannian metric, in Eells and Fuglede
[2001] (see Chapter 9 therein).

We consider Borel-measurable (equivalently, measurable with respect to e− f dVg)
maps u : M→ Y (u then has separable range since M is a separable metric space;
see [Dudley 2002, Problem 10 in Section 4.2]). The space L2

loc(M f , Y ) is defined
as the set of Borel-measurable maps u for which d(u( · ), Q) ∈ L2

loc(M, e− f dVg)

for some point Q (and hence for any Q by the triangle inequality) in Y. Since this
space is unchanged if we use the unweighted measure dVg instead of e− f dVg in
its definition, we will write L2

loc(M, Y ) for simplicity in the following. When M is
compact, L2

loc(M, Y ) is a complete metric space, with distance function d̂ defined by

d̂2(u, v) :=
∫

M
d2(u(x), v(x))e− f (x) dVg(x),

provided that (Y, d) is complete.
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The approximate energy density for a map u ∈ L2
loc(M, Y ) is defined for ε > 0 as

(2) eε(u) :=
1
ωn

∫
S(x,ε)

d2(u(x), u(y))
ε2

dσx,ε(y)
εn−1 ,

where dσx,ε(y) is the (n− 1)-dimensional surface measure on the sphere S(x, ε)
of radius ε centered at x induced by the Riemannian metric g, and ωn is the
volume of the n-dimensional unit Euclidean ball. One can check that the function
eε(u) ∈ L1

loc(M) (see [Korevaar and Schoen 1993]). Then we can define the f -
energy functional E f by

E f(u) := sup
η∈C0(M)
0≤η≤1

(
lim sup
ε→0

∫
M
ηeε(u)e− f dVg

)
.

We say a map u ∈ L2
loc(M, Y ) is locally of finite energy, denoted by u ∈

W 1,2
loc (M, Y ), if E f(u|�) <∞ for any relatively compact domain �⊂ M.

Theorem 4.1. If u ∈W 1,2
loc (M, Y ), then there exists a function e(u) ∈ L1

loc(M), such
that for any η ∈ C0(M), the following limit exists

(3) lim
ε→0

∫
M
ηeε(u)e− f dVg =:

∫
M
ηe(u)e− f dVg,

which serves as the definition of e(u).

Proof. By definition, u ∈ W 1,2
loc (M, Y ) implies that for any connected, open and

relatively compact subset �⊂ M, u|� ∈ L2(�, Y ) and

sup
ζ∈C0(�)
0≤ζ≤1

(
lim sup
ε→0

∫
�

ζeε(u|�) dVg

)
<∞,

that is, u|� ∈W 1,2(�, Y ) in Korevaar and Schoen’s notation [1993].
Now by their Theorem 1.5.1 and Theorem 1.10, we know that there exists a

function e(u|�) ∈ L1(�) such that

(4) lim
ε→0

∫
�

ζeε(u) dVg =

∫
�

ζe(u|�) dVg for all ζ ∈ C0(�).

In particular, one has

(5) lim
ε→0

∫
�

ηeε(u)e− f dVg =

∫
�

ηe(u|�)e− f dVg for all η ∈ C0(�).

We then define a function e(u) on M by e(u)|� := e(u|�) for any � ⊂ M with
smooth boundary. One can show that e(u) is well defined. For that purpose, one
only needs to check e(u|�)= e(u|�1) on �1 ⊂� where both �1 and � \�1 have
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Lipschitz boundary. This is true since by the trace theory [Korevaar and Schoen
1993, Theorem 1.12.3], one has∫

�

e(u|�) dVg =

∫
�1

e(u|�1) dVg +

∫
�\�1

e(u|�\�1) dVg.

Then (3) follows from (5) which proves this theorem. �

Remark 4.2. By the definition of e(u) and (4), we know

e(u)(x)= |∇u|2(x),

where |∇u|2(x) is the energy density function in [Korevaar and Schoen 1993]. This
function is consistent with the usual way of defining |du|2 for maps between Rie-
mannian manifolds. Therefore we use |∇u|2(x) instead of e(u)(x) in the following.

Remark 4.3. By a polarization argument, we can check that for any two functions
h1, h2 ∈W 1,2

loc (M, e− f dVg),

lim
ε→0

∫
M
η(x)

1
ωn

∫
S(x,ε)

(h1(x)− h1(y))(h2(x)− h2(y))
ε2

dσx,ε(y)
εn−1 e− f (x) dVg(x)

=

∫
M
η(x)〈∇h1(x),∇h2(x)〉e− f (x) dVg(x) for all η ∈ C0(M).

Remark 4.4. With (3) in hand, by the definition of E f , we can derive (see [Eells
and Fuglede 2001, Theorem 9.1]),

E f(u)=
∫

M
|∇u|2e− f dVg for all u ∈W 1,2

loc (M, Y ).

In particular, we define D f(u)= E f(u) when u is a scalar function.

Remark 4.5. As in [Korevaar and Schoen 1993], the definition of E f is unchanged
if we replace eε(x) by νeε(x) :=

∫ 2
0 eλε(x) dν(λ), where ν is any Borel measure on

the interval (0, 2) satisfying ν ≥ 0, ν((0, 2))= 1,
∫ 2

0 λ
−2 dν(λ) <∞. For example,

the approximate energy density function can be chosen as follows.

(1) When n ≥ 3, for the measure dν1(λ)= nλn−1dλ, 0< λ < 1,

ν1eε(x)=
n
ωn

∫
B(x,ε)

d2(u(x), u(y))
d2(x, y)

dVg(y)
εn ;

(2) For the measure dν2(λ)= (n+ 2)λn+1dλ, 0< λ < 1,

ν2eε(x)=
n+ 2
ωn

∫
B(x,ε)

d2(u(x), u(y))
ε2

dVg(y)
εn .

Remark 4.6. For n ≥ 3, by introducing a conformal change of the metric M̃ =
(M, g̃, dVg̃) where g̃ = e−2 f/(n−2)g and employing the energy density ν1eε, many
problems for weighted manifolds can be reduced to those on (possibly incomplete)
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unweighted manifolds. However, we prefer to write the proofs in a unified way
which includes the case n = 2.

We call a map u ∈ W 1,2
loc (M, Y ) f -harmonic if it is a local minimizer of the

energy functional E f , i.e., for any connected, open and relatively compact domain
�⊂ M, E f (u)≤ E f (v) for every map v ∈W 1,2

loc (M, Y ) such that u = v in M \�.
We now investigate the properties of the function d(u( · ), Q) on M, where

u : M→ Y is an f -harmonic map and Q ∈ Y. The first observation is that

(6) E f(d(u, Q))≤ E f(u).

This can be derived from the triangle inequality

(d(u(x), Q)− d(u(y), Q))2 ≤ d2(u(x), u(y)).

Recall that an Hadamard space (also called global NPC space) is a complete
geodesic space which is globally nonpositively curved in the sense of Alexandrov,
i.e., Toponogov’s triangle comparison for nonpositive curvature holds for any
geodesic triangle. The class of Hadamard spaces, natural generalizations of Cartan–
Hadamard manifolds, includes all simply connected local NPC spaces (see, e.g.,
[Burago et al. 2001]). When the target space (Y, d) is an Hadamard space, we have
the following theorem.

Theorem 4.7. If u ∈W 1,2
loc (M, Y ) is an f -harmonic map into an Hadamard space Y,

then for any Q ∈ Y,

(7) −

∫
M
〈∇η(x),∇d(u(x), Q)〉e− f dVg ≥ 0 for all 0≤ η ∈ Lip0(M),

i.e., d(u(x), Q) ∈W 1,2
loc (M) is an f -subharmonic function.

This theorem is a consequence of Jost [1997a, Lemma 5]. The subharmonicity
of d(u( · ), Q) for harmonic maps from an admissible Riemannian polyhedron with
simplexwise smooth Riemannian metric to an Hadamard space was obtained by Eells
and Fuglede [2001, Lemma 10.2]. Their argument essentially also works in our set-
ting. Using Remark 4.3, Jost’s lemma can be reformulated in our setting as follows.

Lemma 4.8 [Jost 1997a, Lemma 5]. If u ∈W 1,2
loc (M, Y ) is an f -harmonic map into

an Hadamard space Y, then for any Q ∈ Y and η ∈ Lip0(M), 0≤ η ≤ 1,

(8) −
∫

M
〈∇η(x),∇d2(u(x), Q)〉e− f (x) dVg(x)≥ 2

∫
M
η(x)|∇u|2(x)e− f (x) dVg(x).

In fact, (8) still holds for nonnegative functions η ∈ W 1,2(M) with compact
support. (When E f(u) is finite, (8) even holds for 0≤ η ∈W 1,2

0 (M).) Now we can
prove Theorem 4.7 concerning the f -subharmonicity of d(u( · ), Q).
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Proof of Theorem 4.7. Denote ϕ(x) :=
√

x2+ ε for ε > 0. For any 0≤ η ∈Lip0(M),
we choose a compactly supported function

η1(x) :=
η(x)

2ϕ(d(u(x), Q))
∈W 1,2(M).

Then we calculate (we suppress the measure e− f dVg in the notation)

−

∫
M

〈
∇η(x),∇

√
d2(u(x),Q)+ ε

〉
=−

∫
M

〈
∇η(x),

∇d2(u(x),Q)
2ϕ(d(u(x),Q))

〉
=−

∫
M
〈∇η1(x),∇d2(u(x),Q)〉

−

∫
M

2η1
d(u(x),Q)ϕ′(d(u(x),Q))

ϕ(d(u(x),Q))
|∇d(u(x),Q)|2.

Note that
d(u(x), Q)ϕ′(d(u(x), Q))

ϕ(d(u(x), Q))
=

d2(u(x), Q)
d2(u(x), Q)+ ε

≤ 1,

and by (6), |∇d(u(x), Q)|2 ≤ |∇u(x)|2, we obtain

(9) −
∫

M

〈
∇η(x),∇

√
d2(u(x),Q)+ε

〉
≥−

∫
M
〈∇η1(x),∇d2(u(x),Q)〉−2

∫
M
η1|∇u(x)|2.

Applying Lemma 4.8, and letting ε→ 0, we complete the proof. �

Now we adopt the method of Li and Wang [1998], a geometric analysis method,
to prove Kendall’s theorem when the target is a locally compact Hadamard space.

Proof of Theorem 1.1. By assumption, the space of bounded f -harmonic functions
is of dimension one. Then by the arguments of Grigor’yan [1990], every two
f -massive subsets of M have a nonempty intersection. Here by a f -massive subset,

we mean an open proper subset of�⊂M on which there is a bounded, nonnegative,
nontrivial, f -subharmonic function h such that h|∂� = 0. Such function h is called
an f -potential of the set �.

Let M̂ be the Stone–Čech compactification of M. Then every bounded continuous
function on M can be continuously extended to M̂ . Let � be an f -massive subset
of M, we then define the set

S :=
⋂

h: f -potential
functions of �

{x̂ ∈ M̂ | h(x̂)= sup h}.

By the maximum principle for f -subharmonic functions, we know S ⊂ M̂ \M.
Then, by the same arguments as in [Li and Wang 1998, Theorem 2.1], we can

prove S 6=∅. Furthermore, for any bounded f -subharmonic function v, we have
S ⊂ {x̂ ∈ M̂ | v(x̂)= sup v}.
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Let us take a point Q0 ∈ u(M). If u(M) = {Q0}, then we complete the
proof. Otherwise, we have u(M) \ {Q0} 6= ∅. Since u is an f -harmonic map,
by Theorem 4.7, the function h1(x) := d(u(x), Q0) is an f -subharmonic function,
which is bounded and nonconstant. Hence h1 attains its maximum at every point
of S. For a point x̂ ∈ S, there is a sequence {xn} in M converging to x̂ in M̂ . Note
that u has bounded image. Thus by local compactness of the target Y, there exists
a subsequence of {u(xn)} converging to Q1 ∈ Y. Now again, if u(M)= {Q1}, the
proof is complete. Therefore, we can assume u(M) \ {Q1} 6=∅. By Theorem 4.7,
the function h2(x) := d(u(x), Q1) is a bounded f -subharmonic function. Thus h2

achieves its maximum on S, in particular at x̂ . That is,

sup h2(x)= h2(x̂)= d(Q1, Q1)= 0.

This contradicts our assumption. Therefore u(M)= {Q1} is a constant map. �

Remark 4.9. As pointed out to us by K. Kuwae, one can prove Kendall’s theorem
by combining the methods of Li and Wang [1998] and Kuwae and Sturm [2008] for
harmonic maps into Hadamard spaces if the weak topology on the target (see [Jost
1994, Definition 2.7]) coincides with the strong one, or equivalently any distance
function d(x, · ) on the target is weakly continuous for any x ∈ Y.

5. Liouville-type theorems

In this section, we shall prove our main theorem. First, we review the classical clas-
sification theory of Riemannian manifolds in the framework of weighted manifolds.
For more details we refer to [Glasner and Nakai 1972] and [Sario and Nakai 1970].

We recall some function spaces of (M, g, e− f dVg). Let D f(M) be the set
of Tonelli functions1 on M with finite Dirichlet f -energy. The Royden algebra
BD f(M) is the set of bounded functions in D f(M). Under the norm ‖u‖ =
supM |u| +

√
D f(u), BD f(M) becomes a Banach algebra. For a sequence {un} in

D f(M), we say u = C − lim un if un converges to u uniformly on compact subsets
and u= B−lim un if in addition {un} is uniformly bounded. We say u=D f

−lim un

if lim D f(un − u) = 0. We also write u = CD f
− lim un or u = BD f

− lim un to
indicate two types of convergence.

Let C∞0 (M) be the set of smooth functions with compact support and D f
0 (M) be

its closure under the CD f -topology. We also denote by HD f(M) and HBD f(M)
the sets of f -harmonic functions in D f(M) and BD f(M) respectively.

Proposition 5.1. Let (M, g, e− f dVg) be an f -parabolic weighted Riemannian
manifold. Then any f -subharmonic function with finite Dirichlet f -energy is
constant. In particular, any function in HD f(M) is constant.

1A Tonelli function is a continuous function with locally L2-integrable weak derivatives.
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Proof. Let u ∈ D f(M) be f -subharmonic. we may assume u ≥ 0 since max{u, 0}
is also f -subharmonic. Let {Mn} be an exhaustion of M and take wk ∈ BD f(M)
with wk |M0 = 1, wk |M\Mk = 0 and f -harmonic in Mk \ M0. It follows from the
f -parabolicity of M that BD f

− limwk = 1. On the other hand, set vk ∈ BD f(M)
with vk |M0 = u, vk |M\Mk = 0 and f -harmonic in Mk \ M0, one can verify that
v = BD f

− lim vk exists. Set now ũ = u − v, and ũm = min{ũ,m}. Then ũ =
D f
− lim ũm . Since ũ is nonnegative and f -subharmonic, we can compute

(10) 0≥−
∫

Mk\M0

ũmwk1 f ũe− f dVg =

∫
M
〈∇(ũmwk),∇ũ〉e− f dVg.

As wk→ 1 in D f -topology, we deduce from (10) by letting k→∞ that∫
M
〈∇ũm,∇ũ〉e− f dVg = 0,

which yields D f(ũ)= 0 by letting m→∞. Since ũ|M0 = 0, we see u = v. Finally,

D f(u)=
∫

M
〈∇u,∇v〉e− f dVg = lim

k→∞

∫
M
〈∇u,∇vk〉e− f dVg ≤ 0,

and hence u is a constant. �

The following are the weighted version of the Royden–Nakai decomposition
theorem and the Virtanen theorem. The proofs are almost the same as the unweighted
case. For the convenience of the reader, we shall give proofs here.

Theorem 5.2 (Royden–Nakai decomposition theorem). Let (M, g, e− f dVg) be a
non- f -parabolic weighted Riemannian manifold. Then any function u ∈ D f(M) has
a unique decomposition u = h+g, where h ∈ HD f(M) and g ∈ D f

0 (M). Moreover,
if u is f -subharmonic, then u ≤ h.

Proof. Let u ∈ D f(M). Assume first u ≥ 0. Let {Mk} be an exhaustion of M.
Take hk ∈ D f(M) such that hk is f -harmonic in Mk and hk |M\Mk = u. Denote
gk = u− hk . It follows from the maximum principle that hk ≥ 0. One can check

D f(u)=
∫

M
(|∇hk |

2
+ |∇gk |

2
+ 2〈∇hk,∇gk〉)e− f dVg = D f(hk)+ D f(gk),

where in the second equality we used integration by parts and the facts gk |M\Mk = 0
and hk is f -harmonic in Mk . Similarly we have for m ≤ k

D f(hk − hm)= D f(hk)− D f(hm).

Thus {hk} is a D f -Cauchy sequence, i.e., D f(hk − hm) is small enough when m
and k are large enough.
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Let wk ∈ BD f(M) with wk |M0 = 1, wk |M\Mk = 0 and harmonic in Mk \ M0.
It follows from the non- f -parabolicity of M that w = BD f

− limwk satisfies
D f(w) > 0.

We can compute∫
M
〈∇gk,∇wk〉e− f dVg =

∫
Mk\M0

〈∇gk,∇wk〉e− f dVg =

∫
∂M0

gk
∂wk

∂ν
e− f d Ag,

where ν is the unit inward normal of ∂M0. Since wk is f -harmonic in Mk \M0, it
follows from the Hopf lemma that ∂wk/∂ν > 0 along M0. It follows that

( inf
∂M0

hk − sup
∂M0

u)
∫
∂M0

∂wk

∂ν
e− f d Ag ≤

∫
∂M0

−gk
∂wk

∂ν
e− f d Ag

=−

∫
M
〈∇gk,∇wk〉e− f dVg

≤
[
D f(gk)D f(wk)

]1/2
≤
[
D f(u)D f(wk)

]1/2
.

Combining this with the fact that
∫
∂M0

(∂wk/∂ν)e− f dVg = D f(wk), we find

inf
M0

hk ≤ inf
∂M0

hk ≤ sup
M0

u+
[ D f(u)

D f(wk)

]1/2
.

Since w = BD f
− limwk satisfies D f(w) > 0, we see infM0 hk is bounded. Conse-

quently, by the Harnack inequality for f -harmonic functions, supM0
hk is bounded.

Hence there exists a subsequence of hk , still denoted by hk , such that {hk} is a
C f -Cauchy sequence.

Together with the fact {hk} is a D f -Cauchy sequence, we conclude that hk

converges to some h in the CD f -topology and h ∈ HD f(M). One may directly
check that gk converges to g = u− h in the CD f-topology and thus g ∈ D f

0 (M).
Furthermore, if u is f -subharmonic, from the construction of hk we see u− hk

is f -subharmonic and vanishes on ∂Mk and in turn by the maximum principle that
h ≥ u.

If u is not nonnegative, we can run the same process for u+ = max{u, 0} and
u− =−min{u, 0} as before and get the same result.

The uniqueness follows from the fact that any h ∈ HD f(M) and g ∈ D f
0 (M)

satisfy
∫

M〈∇h,∇g〉e− f dVg = 0. �

Theorem 5.3 (Virtanen’s theorem). For every u ∈ HD f(M) there exists a sequence
hk ∈ HBD f(M) such that u = CD f

− lim hk . In particular, M admits no noncon-
stant f -harmonic function on M with finite Dirichlet f -energy if and only if M
admits no nonconstant bounded f -harmonic function on M with finite Dirichlet
f -energy.
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Proof. We may assume M is non- f -parabolic, since otherwise, any u ∈ HD f(M)
is constant, due to Proposition 5.1, whence the statement is trivial. We may also
assume u ≥ 0, since otherwise we do the same analysis on u+ and u−. Set for any
k ∈ N, uk = min{u, k}. Then uk is f -superharmonic and u = D f

− lim uk . By
Royden–Nakai decomposition, uk = hk+gk , where hk ∈ HD f(M) and gk ∈ D f

0 (M).
Moreover, gk ≥ 0. One can verify

D f(u− uk)= D f(u− hk)+ D f(gk).

Hence D f(u − hk)→ 0 and D f(gk)→ 0. Since 0 ≤ gk ≤ uk ≤ u is bounded in
any compact set of M, we conclude that gk converges to some constant function
c in the CD f -topology. It follows from the non- f -parabolicity of M that c = 0.
Therefore hk converges to u in the CD f -topology.

The second assertion follows easily from this approximation. �

The following lemma was first proved by Cheng, Tam and Wan [Cheng et al.
1996, Theorem 1.2].

Lemma 5.4. Let (M, g, e− f dVg) be a weighted Riemannian manifold. Then the
following two statements are equivalent:

(i) any u ∈ HD f(M) is bounded;

(ii) any nonnegative f -subharmonic function on M with finite Dirichlet f -energy
is bounded.

Proof. (ii)⇒(i). This is quite simple by observing the fact that if u ∈ HD f(M),
then
√

u2+ 1 is a nonnegative f -subharmonic function on M with finite Dirichlet
f -energy.

(i)⇒(ii). Assume u is a nonnegative f -subharmonic function on M with finite
Dirichlet f -energy. If M is f -parabolic, then the two statements are both true by
virtue of Proposition 5.1 and hence equivalent. If M is non- f -parabolic, then by
Theorem 5.2, u = h+ g for h ∈ HD f(M) and g ∈ D f

0 (M). Moreover, since u is
f -subharmonic, we know u ≤ h. By the assumption (i), h is bounded. Thus u is
also bounded. This proves the lemma. �

Using Lemma 5.4, we can prove the main Theorem 1.2.

Proof of Theorem 1.2. Let u be an f -harmonic map from M to Y with finite f -energy.
It follows from Theorem 4.7 that the function v :M→R, v(x)=

√
d2(u(x), Q)+ 1

is subharmonic, where Q ∈ Y. Also, the finiteness of the f -energy of u implies the
finiteness of the Dirichlet f -energy of v (recall (6)). Using the assumption and the
equivalence in Lemma 5.4, we know that any nonnegative f -subharmonic function
on M with finite Dirichlet f -energy is bounded. Hence v is bounded, and in turn,
u has bounded image. This proves the theorem. �
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For harmonic maps from f -parabolic weighted manifolds, we don’t need the
local compactness assumption of the targets to obtain the Liouville theorem.

Corollary 5.5. Let (M,g,e− fdVg) be a complete noncompact f -parabolic weighted
Riemannian manifold and (Y, d) be an Hadamard space. Then any f -harmonic
map from M to Y with finite f -energy is a constant map.

Proof. Let u be an f -harmonic map from M to Y with finite f -energy. By
Proposition 5.1 and Theorem 1.2, the image of u is bounded. Hence for any Q ∈ Y,
the f -subharmonic function d(u(x), Q) is bounded. By the f -parabolicity of M
and Proposition 2.2, the function d(u(x), Q) is constant for any Q ∈ Y. This yields
that u is a constant map. The corollary follows. �

Combining Theorems 1.1 and 1.2, we obtain Theorem 1.3 by the potential theory.

Proof of Theorem 1.3.. By assumption, any bounded f -harmonic function on M is
constant. By Theorem 5.3, we know that any f -harmonic function on M with finite
Dirichlet f -energy is constant. Using Theorem 1.2, we see that any f -harmonic
map from M to Y with finite f -energy must have bounded image.

On the other hand, by Theorem 1.1, we know that any f -harmonic map from M
to Y having bounded image is constant. Hence any f -harmonic map from M to Y
with finite f -energy is a constant map. This proves the theorem. �

Proof of Theorem 1.4.. By a theorem of Brighton [2013], the weighted manifold
(M, g, e− f dVg) satisfying Ric f ≥ 0 admits no nonconstant bounded f -harmonic
functions. The assertion follows from Theorem 1.3 immediately. �
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THE AMBIENT OBSTRUCTION TENSOR AND CONFORMAL
HOLONOMY

THOMAS LEISTNER AND ANDREE LISCHEWSKI

For a conformal manifold, we describe a new relation between the ambient
obstruction tensor of Fefferman and Graham and the holonomy of the nor-
mal conformal Cartan connection. This relation allows us to prove several
results on the vanishing and the rank of the obstruction tensor, for exam-
ple for conformal structures admitting twistor spinors or normal conformal
Killing forms. As our main tool we introduce the notion of a conformal
holonomy distribution and show that its integrability is closely related to
the exceptional conformal structures in dimensions five and six that were
found by Nurowski and Bryant.

1. Introduction

A conformal structure of signature (p, q) on a smooth manifold M is an equivalence
class c of semi-Riemannian metrics on M of signature (p, q), where two metrics g
and ĝ are equivalent if ĝ = e2 f g for a smooth function f . For conformal structures
the construction of local invariants is more complicated than for semi-Riemannian
structures, where all local invariants can be derived from the Levi-Civita connection
and its curvature. For conformal geometry, essentially there are two invariant
constructions: the conformal ambient metric of Fefferman and Graham [1985;
2012] and the normal conformal Cartan [1924] connection with the induced tractor
calculus [Bailey et al. 1994]. We investigate a new relationship between two essential
ingredients of these invariant constructions, the ambient obstruction tensor on one
hand, and the conformal holonomy on the other. We briefly introduce these notions:

The ambient metric construction assigns to any conformal manifold (M, [g])
of signature (p, q) and dimension n a pseudo-Riemannian metric g̃ on an open
neighborhood M̃ of Q = M ×R>0 in R× Q, of signature (p+ 1, q + 1) and with
specific properties that link [g] and g̃ as closely as possible. More precisely, denoting

This research was supported by the Australian Research Council via the grants FT110100429 and
DP120104582.
MSC2010: primary 53A30; secondary 53C29.
Keywords: Fefferman–Graham ambient metric, obstruction tensor, conformal holonomy, exceptional
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the coordinates on R>0 and R by t and ρ, respectively, g̃ is required to restrict to t2g
along Q and moreover its Ricci tensor vanishes along Q to infinite order in ρ when
n is odd and to order ρ(n/2)−1 when n is even. The seminal result in [Fefferman and
Graham 1985; 2012] is that for smooth conformal structures, such an ambient metric
always exists and is unique to all orders for n odd or n = 2 and up to order ρ(n/2)−1

when n ≥ 4 is even. Moreover, in even dimensions the existence of an ambient
metric whose Ricci tensor vanishes along Q to all orders is closely related to the
vanishing of a certain symmetric, divergence-free and conformally covariant (0, 2)-
tensor O on M, the Fefferman–Graham obstruction tensor or ambient obstruction
tensor. In four dimensions the obstruction tensor is given by the well-known Bach
tensor, but in general even dimension no general explicit formula for O exists. The
obstruction tensor will be the focus of the present article.

The other invariant construction in conformal geometry is the normal conformal
Cartan connection. This is an so(p+ 1, q + 1)-valued Cartan connection defined
on a P-bundle, where P is the parabolic subgroup defined by the stabilizer in
O(p+1, q+1) of a lightlike line in Rp+1,q+1, and it satisfies a certain normalization
condition that defines it uniquely. The normal conformal Cartan connection defines
a covariant derivative ∇nc on a vector bundle T , the conformal tractor connection
on the standard tractor bundle. To (T ,∇nc) one can associate the holonomy group
of ∇nc-parallel transports along loops based at x ∈ M. As this group only depends
on the conformal structure, it is denoted by Holx(M, c) and called the conformal
holonomy. It is contained in O(p+ 1, q + 1) and its Lie algebra is denoted by

holx(M, c)⊂ so(p+ 1, q + 1).

Many interesting conformal structures are related to conformal holonomy re-
ductions, i.e., conformal structures for which the conformal holonomy algebra
is a proper subalgebra of so(p + 1, q + 1). Examples are manifolds admitting
twistor spinors, for which the spin representation of the conformal holonomy group
admits an invariant spinor. This includes conformal Fefferman [1976] spaces
that are closely related to CR-geometry, and for which the conformal holonomy
reduces to the special unitary group. Other fascinating examples are the conformal
structures that are determined by generic distributions of rank 2 in dimension 5.
Such distributions played an important role in the history of the simple Lie algebra
with exceptional root system G2: Cartan [1893] discovered that for some of these
distributions the Lie algebra of symmetries is given by the noncompact exceptional
Lie algebra g2 of type G2. Related to the equivalence problem for such distributions,
Cartan [1910] constructed the corresponding g2-valued Cartan connection. It was
then realized by Nurowski [2005] that to any such distribution one can associate
a conformal structure of signature (2, 3) whose conformal holonomy is reduced
from so(3, 4) to g2. Similarly, Bryant associated to any generic rank 3 distribution



THE AMBIENT OBSTRUCTION TENSOR AND CONFORMAL HOLONOMY 405

in dimension 6 a conformal structure of signature (3, 3) whose holonomy reduces
to spin(3, 4)⊂ so(4, 4). Both, and in particular the latter will be relevant to us.

The ambient metric construction and the normal conformal Cartan connection
turn out to be closely related. Indeed, in [Čap and Gover 2003] tractor data are
formulated entirely in terms of ambient data, and in [Gover and Peterson 2006] the
ambient curvature tensors are rewritten in terms of tractor curvature and derivatives
thereof. The main result in our paper reveals another interesting correspondence,
now between the ambient obstruction tensor O and the conformal holonomy. We
show that the image of O, when considered as a (1, 1)-tensor, can be identified
with a distinguished subspace in the conformal holonomy algebra holx(M, c). To
be more precise, recall that the Lie algebra so(p + 1, q + 1) is |1|-graded as
so(p+1, q+1)= g−1⊕g0⊕g1, where g0 ' co(p, q) is the conformal Lie algebra
and g0⊕ g1 = p is the Lie algebra of the parabolic subgroup P. It is important to
note that g1 can be identified with Rp,q and hence with the tangent space Tx M. This
allows us to prove the following theorem:

Theorem 1.1. Let (M p,q , c) be a smooth conformal manifold of even dimension
n ≥ 4 and with ambient obstruction tensor O. Then the image of O at x ∈ M
is contained in holx(M, c) ∩ g1. In particular, the rank of O at each point is
limited by the dimension of holx(M, c)∩ g1. Moreover, if hol(M, c) is a proper
subalgebra of so(p+1, q+1), then the image of O is totally lightlike. In particular,
rk(O)≤min(p, q).

The implications of this result are evident. On the one hand it shows that if the
obstruction tensor has maximal rank n at some point, then the holonomy is generic.
Hence, O can be interpreted as a universal obstruction to the existence of parallel
tractors on (M, c) of any type. Namely for such a tractor to exist, O needs to have
a nontrivial kernel everywhere. On the other hand, conformal holonomy reductions
can be used to restrict the rank of the obstruction tensor. For example, it is well
known that the existence of a parallel standard tractor (and hence of a local Einstein
metric in c) forces the obstruction tensor to vanish, however no substantially more
general conditions on the conformal class are known to have a similar effect on O.
Our results provide such conditions. For example, we obtain:

Corollary 1.2. Under the assumptions of Theorem 1.1, O = 0 for each of the
following cases:

(1) the conformal structure is Riemannian and hol(M, c)( so(1, n+ 1);

(2) the conformal structure is Lorentzian and hol(M, c)( su(1, n/2);

(3) the conformal class contains an almost Einstein metric or special Einstein
product (in the sense of [Gover and Leitner 2009]);
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(4) there is a normal conformal vector field V of nonzero length or the dimension
of the space of normal conformal vector fields is ≥ 2. In particular, this is the
case for Fefferman spaces over quaternionic contact structures in signature
(4k+ 3, 4l + 3) (characterized by hol(M, c)⊂ sp(k+ 1, l + 1));

(5) (M, c) is spin and for g ∈ c with spinor bundle Sg there are twistor spinors
ϕi=1,2∈0(M, Sg) such that the spaces {X ∈TM | X ·ϕi=0} are complementary
at each point.

Corollary 1.3. Under the assumptions of Theorem 1.1, rk(O)≤ 1 for each of the
following cases:

(1) (p, q)= (3, 3) and hol(M, c)( spin(3, 4);

(2) (p, q)= (n, n) and hol(M, c)⊂ gl(n+ 1);

(3) Hol(M, c) fixes a nontrivial 2-form, i.e., (M, c) admits a normal conformal
vector field. In particular, this applies to Fefferman conformal structures, i.e.,
to (p, q)= (2r + 1, 2s+ 1) and hol(M, c)⊂ su(r + 1, s+ 1);

(4) the action of Hol(M, c) on the light cone N ⊂ Rp+1,q+1 does not have an
open orbit.

For each of these geometries one can give an explicit subspace V ⊂ TM with
Im(O)⊂ V at each point.

Two results in these corollaries can be found in the literature — the statement
about almost Einstein [Fefferman and Graham 1985] and special Einstein products
[Gover and Leitner 2009] in Corollary 1.2 and the statement about Fefferman
conformal structures [Graham and Hirachi 2008] in Corollary 1.3 — but the general
theory as developed here allows alternative proofs of these facts. Note also that the
last two conditions in Corollary 1.2 are conformally invariant and do not refer to a
distinguished metric in the conformal class.

As the main tool in proving these results, we introduce what we call the conformal
holonomy distribution. At each point x ∈ M it is defined as

Ex := holx(M, c)∩ g1.

The vector space Ex can be canonically identified with a subspace in Tx M. When
varying x , its dimension however may not be constant. Instead, varying x provides
a stratification of the manifold into sets over which the dimension of Ex is constant.
We will see in Theorem 4.1 that these strata are unions of the curved orbits defined
by conformal holonomy reductions, introduced recently in [Čap et al. 2014] in
the context of Cartan geometries. Moreover we will show that an open and dense
set in M can be covered by open sets over which the dimension of Ex is constant.
Very surprisingly, we find that, when considered over such an open set, E is closely
related to the aforementioned generic distributions:
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Theorem 1.4. Let (M p,q , c) be a smooth conformal manifold. Then there is an
open and dense set in M that is covered by open sets U over which E|U is a vector
distribution. Over each such U, E|U is either integrable, or

• (p, q)= (2, 3) and E|U is a generic rank 2 distribution, or

• (p, q)= (3, 3) and E|U is a generic rank 3 distribution.

In both cases, E|U defines the conformal class c on U in the sense of [Nurowski
2005; Bryant 2006].

We should also point out that the statements in Theorem 1.1 remain valid when
rk(O) at x is replaced by the dimension of Ex . We believe that the conformal
holonomy distribution will turn out to be a powerful tool that allows us to obtain
not only results about the obstruction tensor but also about other aspects of special
conformal structures.

This article is organized as follows: Section 2 reviews the relevant tractor calculus
and the ambient metric construction in conformal geometry. Moreover, we discuss
special conformal structures that will be important in the sequel from the point of
view of holonomy reductions. Section 3 is then devoted to the proof of the first
part of Theorem 1.1. The key ingredient is a recently established relation between
conformal and ambient holonomy [Čap et al. 2016]. In Section 4A we introduce
the conformal holonomy distribution E and study its basic properties. These results
are then applied in Section 5 to derive constraints on the obstruction tensor for
many families of special conformal structures, in particular those in signature (3, 3)
discovered by Bryant.

2. Conformal structures, tractors and ambient metrics

2A. Conventions. Let (M, g) be a semi-Riemannian manifold with Levi-Civita
connection ∇g. denote by 3k

:= 3k T ∗M the k-forms and by so(TM) the endo-
morphisms of TM that are skew with respect to g. By R= Rg

∈32
⊗ so(TM) we

will denote the curvature endomorphism of ∇g, i.e., one has for all vector fields
X, Y ∈ X(M)

Rg(X, Y )= [∇g
X ,∇

g
Y ] −∇

g
[X,Y ].

By contraction one obtains the Ricci tensor and scalar curvature,

Ricg(X, Y ) := tr(Z 7→ Rg(Z , X)Y ), scalg
:= trg Ricg,

and we denote by Pg the Schouten tensor

(1) Pg
:=

1
n−2

(
Ricg
−

1
2(n−1)

scalg g
)
.
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Using g to raise and lower indices, we will also consider Pg and Ricg as g-symmetric
endomorphisms of TM denoted with the same symbol. The metric dual 1-form of
a vector V ∈ TM is V [

= g(V, · ) and from a 1-form α ∈ T ∗M we obtain a tangent
vector α] via g(α], · )= α. From the Schouten tensor we obtain the Cotton tensor
C ∈32

⊗ TM,
Cg(X, Y ) := (∇g

XP
g)(Y )− (∇g

YP
g)(X),

and the Weyl tensor W ∈ 32
⊗ so(TM), considered as skew-symmetric bilinear

map from TM × TM to so(TM),

W g(X, Y ) := Rg(X, Y )+ X [
⊗Pg(Y )+Pg(X)⊗ Y −Pg(Y )⊗ X − Y [⊗Pg(X).

We will also write Cg(Z; X, Y ) := g(Z ,Cg(X, Y )) for the metric dual of Cg, drop
the g and use the index convention Cki j = C(∂k; ∂i , ∂j ).

2B. Conformal tractor calculus. Let (M, c) be a smooth conformal manifold of
signature (p, q), dimension n= p+q≥3 and let T →M denote the standard tractor
bundle for (M, c)with normal conformal Cartan connection∇nc and tractor metric h
as introduced in [Bailey et al. 1994]. The tractor bundle T is equipped with a canon-
ical filtration I ⊂ I⊥ ⊂ T , where I is a distinguished lightlike line. For each metric
g ∈ c, one finds distinguished lightlike tractors s± which lead to an identification

(2) T → R⊕ TM ⊕R, T 7→ αs−+ V +βs+ 7→ (α, V, β)>,

under which the tractor metric becomes

h((α1, V1, β1), (α2, V2, β2))= α1β2+α2β1+ g(V1, V2),

and in this identification, s− generates I. Under a conformal change g̃ = e2σ g, the
transformation of the metric identification (2) of a standard tractor is given by

(3)

αY
β

 7→
α̃Ỹ
β̃

=
e−σ (α− Y (σ )− 1

2β · ‖ gradg σ‖2g)

e−σ (Y +β · gradg σ)

eσβ

 .
From this one observes the image of a linear subspace H ⊂ I⊥ ⊂ T under the map

I⊥→ I⊥/I→ TM, αs−+ V 7→ [αs−+ V ] 7→ V

is conformally invariant, i.e., independent of the choice of g ∈ c. For ∇nc expressed
in terms of the splitting (2) we find

(4) ∇
nc
X

αY
β

=
 X (α)−Pg(X, Y )
∇

g
X Y +αX +βPg(X)

X (β)− g(X, Y )

 .
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The curvature of ∇nc is given by Rnc(X, Y )= Cg(X, Y )∧ s[−+W g(X, Y ), where
we identified the bundles so(T , h) and 32T ∗ by means of h in the usual way by
the musical isomorphisms [ and ].

Turning to adjoint tractors, it follows from identification (2) that for fixed g ∈ c,
each fiber of the bundle so(T , h) of skew-symmetric endomorphisms of the tractor
bundle can be identified with skew-symmetric matrices of the form

8(µ, (a, A), Z) :=

−a µ 0
Z A −µ]

0 −Z [ a

,
where Z is a vector, µ a 1-form, a ∈R, and A is skew-symmetric for g. For example,
the curvature of ∇nc is identified with

(5) Rnc(X, Y )=

0 Cg(X, Y )[ 0
0 W g(X, Y ) −Cg(X, Y )
0 0 0

 .
In particular, each choice of g yields an obvious pointwise |1|-grading of so(T , h)
according to the splitting

(6) g−1 = {8(0, 0, Z)}, g0 = {8(0, (a, A), 0)}, g1 = {8(µ, 0, 0)},

with brackets given by

[(a, A), Z ]= (a+A)Z , [(a, A), µ]=−µ◦(A+aId), [Z , µ]= (µ(Z), µ∧Z [).

In particular, [gi , g j ] ⊂ gi+ j . It follows that the induced derivative ∇nc on a section
8=8(µ, (a, A), Z) of so(T , h) is given by

(7) ∇
nc
X 8

=

−X (a)−Pg(X,Z)−µ(X) ∇g
Xµ−P

g(X,(A+aId)·) 0
∇

g
X Z−(A+a)X ∇

g
X A+µ∧X [

−Z [∧Pg(X,·)−∇g
Xµ

]
+(a−A)Pg(X)

0 −∇
g
X Z [+(AX)[+aX [ X (a)+Pg(X,Z)+µ(X)

.
2C. Holonomy reductions of conformal structures. In this section we list def-
initions and properties of the conformal structures which have appeared in the
introduction and to which the main Theorem 1.1 can be applied. They all turn out to
be characterized in terms of a conformal holonomy reduction. Here, for (M p,q , c)
a smooth conformal manifold, its conformal holonomy at x ∈ M is defined as

Holx(M, c) := Holx(T ,∇nc)

and gives a class of conjugated subgroups in O(p+1, q+1). The interplay between
conformal holonomy reductions, i.e., when Hol0x(M, c) is a proper subgroup of
SO(p+ 1, q + 1), and distinguished metrics in the conformal class has been the
focus of active research. We will review the most important ones relevant here.
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2C.1. Geometries with reducible holonomy representation. One initial result is that
holonomy invariant lines L ⊂Rp+1,q+1 are in one-to-one correspondence to almost
Einstein scales in c [Gauduchon 1990; Bailey et al. 1994; Gover 2005; Gover and
Nurowski 2006; Leitner 2005; Leistner 2006] by which we mean that on an open,
dense subset of M there exists around each point locally an Einstein metric g ∈ c. If
L is lightlike, g is Ricci flat and otherwise one has sgn(scalg)=− sgn〈L , L〉p+1,q+1.

A holonomy-invariant nondegenerate subspace H ⊂ Rp+1,q+1 of dimension
k ≥ 2 corresponds locally and off a singular set to the existence of a special Einstein
product in the conformal class [Leitner 2004; Armstrong 2007; Armstrong and
Leitner 2012]. Here, we say that a pseudo-Riemannian manifold (M, g) is a special
Einstein product if (M, g) is isometric to a product (M1, g1)× (M2, g2), where
(Mi , gi ) are Einstein manifolds of dimensions k− 1 and n− k− 1 for k ≥ 2 and in
case k 6= 2, n we additionally require that

scalg1 =−
(k− 1)(n− 2)

(n− k+ 1)(n− k)
scalg2 6= 0.

Finally, if H ⊂ Rp+1,q+1 is totally degenerate, of dimension k + 1 ≥ 2 and
holonomy invariant, there exists — again locally and off a singular set — a metric
g ∈ c admitting a ∇g-invariant and totally degenerate distribution L⊂ TM of rank
k which additionally satisfies Im(Ricg)⊂ L, as has been shown in [Leistner 2006;
Leistner and Nurowski 2012; Lischewski 2015].

2C.2. Geometries defined via normal conformal Killing forms. Suppose next that
Hol(M, c) lies in the isotropy subgroup of a (k+ 1)-form, i.e., there exists a ∇nc-
parallel tractor k + 1-form α̂ ∈ 0(M,3k+1T ∗). Such holonomy reductions have
been studied in [Leitner 2005]. For fixed g ∈ c, consider the splitting of T with
respect to g and write α̂ as

(8) α̂ = s[+ ∧α+α0+ s[− ∧ s[+ ∧α±+ s[− ∧α−

for uniquely determined differential forms α, α0, α±, α− on M. The k-form α ∈

�k(M) turns out to be normal conformal (nc), that is α is a conformal Killing form
subject to additional conformally covariant differential normalization conditions
that can be found in [Leitner 2005]. Moreover, α0, α±, α− can be expressed in
terms of α and ∇g. Conversely, every normal conformal Killing form determines a
parallel tractor form. The situation simplifies considerably if k = 1, i.e., there is
a parallel adjoint tractor. In this case it is convenient to consider the metric dual
V = α] ∈ X(M) of the associated normal conformal Killing form α, which is a
normal conformal vector field. By this, we mean that V is a conformal vector field
which additionally satisfies Cg(V, · )=W g(V, · )= 0.

Examples of manifolds admitting normal conformal vector fields are so-called
Fefferman spaces [Fefferman 1976]. They yield conformal structures (M, c) of
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signature (2r + 1, 2s + 1) defined on the total spaces of S1-bundles over strictly
pseudoconvex CR manifolds. From the holonomy point of view they are (at least
locally) equivalently characterized by the existence of a parallel adjoint tractor
[Leitner 2007; Čap and Gover 2010], which is an almost complex structure for
the tractor metric, i.e., Hol(M, c)⊂ SU(r + 1, s+ 1). Here, we used a result from
[Leitner 2008; Čap and Gover 2010] which asserts that unitary conformal holonomy
is automatically special unitary.

Other geometries that are characterized by the existence of distinguished normal
conformal vector fields include pseudo-Riemannian manifolds (M, g) of signature
(4r + 3, 4m+ 3) with conformal holonomy group in the symplectic group

Sp(r + 1,m+ 1)⊂ SO(4r + 4, 4m+ 4),

see [Alt 2008]. The models of such manifolds are S3-bundles over a quaternionic
contact manifold equipped with a canonical conformal structure, introduced in
[Biquard 2000].

2C.3. Conformal holonomy and twistor spinors. If (M, c) is actually spin for one,
and hence all, g ∈ c, the presence of conformal Killing spinors always leads to
reductions of Hol(M, c). To formulate these, let Sg

→M denote the real or complex
spinor bundle over M which possesses a spinor covariant derivative ∇Sg

and vectors
act on spinors by Clifford multiplication cl= · , see [Baum 1981]. Given these data,
the spin Dirac operator is given as Dg

= cl ◦∇Sg
. Now assume that (M, g) admits

a twistor spinor, i.e., a section ϕ ∈ 0(M, Sg) solving

(9) ∇
Sg

X ϕ+
1
n

X · Dgϕ = 0.

Equation (9) is conformally invariant, see [Baum et al. 1991], and to ϕ we can
associate the union of subspaces

Lϕ := {X ∈ TM | X ·ϕ = 0} ⊂ TM,

which does not depend on the choice of g ∈ c. Equation (9) can be prolonged, see
[Baum et al. 1991], and using this prolonged system it becomes immediately clear
that a twistor spinor ϕ is equivalently described as a parallel section ψ of the spin
tractor bundle associated to (M, c). Its construction can be found in [Leitner 2007],
for instance. As ψ is parallel, it is at each point annihilated by holx(M, c) under
Clifford multiplication, i.e.,

(10) holx(M, c) ·ψx = 0 for all x ∈ M.

2C.4. Exceptional cases. Finally we describe conformal structures in dimension 5
and 6 with holonomy algebra contained in g2 ⊂ so(3, 4), the noncompact simple
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Lie algebra of dimension 14, or in spin(3, 4) ⊂ so(4, 4), respectively. They turn
out to be closely related to generic distributions:

Recall that a distribution D of rank 2 on a 5-manifold M is generic if

[D, [D,D]] + [D,D] +D = TM.

It is known by work of Nurowski [2005] that D canonically defines a conformal
structure cD of signature (2, 3) on M5 whose conformal holonomy is reduced to
g2 ⊂ so(3, 4), see also [Čap and Sagerschnig 2009]. Analogously, a distribution D
of rank 3 on a 6-manifold M is generic if [D,D] +D = TM, and Bryant [2006]
showed that D canonically defines a conformal structure cD of signature (3, 3) on
M whose conformal holonomy is reduced to spin(4, 3)⊂ so(4, 4). In both cases,
the holonomy characterization implies that (M, cD) admits a parallel tractor 3- or
4-form, respectively. Moreover, [Hammerl and Sagerschnig 2011b] shows that there
is in both cases a distinguished twistor spinor ϕ which encodes D in the sense that

(11) Lϕ = D at each point.

2D. Conformal ambient metrics. Let (M, c) be a smooth conformal manifold of
dimension ≥ 3. For our purposes we do not need the general theory of ambient
metrics as presented in [Fefferman and Graham 2012], which can be consulted for
more details, but it suffices to deal with ambient metrics which are in normal form
with respect to some g ∈ c. A (straight) preambient metric in normal form with
respect to g ∈ c is a pseudo-Riemannian metric g̃ on an open neighborhood M̃ of
{1}×M ×{0} in R+×M ×R such that for (t, x, ρ) ∈ M̃

(12) g̃ = 2t dt dρ+ 2ρ dt2
+ t2gρ(x),

with g0 = g. We call (M̃, g̃) an ambient metric for (M, [g]) in normal form with
respect to g if

• R̃ic= O(ρ∞) if n is odd, and

• R̃ic= O(ρ(n/2)−1) and trg(ρ
1−(n/2)R̃ic|TM⊗TM)= 0 along ρ = 0, if n is even.

The existence and uniqueness assertion for ambient metrics [Fefferman and Graham
1985; 2012] states that for each choice of g there is an ambient metric in normal
form with respect to g. In all dimensions n ≥ 3, gρ has an expansion of the form
gρ =

∑
k≥0 g(k)ρk starting with

gρ = g+ 2ρPg
+ O(ρ2),

and in odd dimensions the Ricci flatness condition determines g(k) for all k, whereas
in even dimensions only the g(k<n/2) and the trace of g(n/2) are determined.
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We shall sometimes work with ambient indices I ∈ {0, i,∞}, where the i are
indices for coordinates on M, 0 refers to ∂t and∞ to ∂ρ , i.e.,

TM̃ 3 V = V 0∂t + V i∂i + V∞∂ρ .

For the Levi-Civita connection of any metric of the form (12) one computes [Fef-
ferman and Graham 2012, Lemma 3.2],

(13)
∇̃∂i ∂j =−

1
2

t ġi j∂t +0
k
i j∂k + (ρ ġi j − gi j )∂ρ, ∇̃∂t ∂t =∇̃∂ρ∂ρ = 0,

∇̃∂i ∂t =
1
t
∂i , ∇̃∂i ∂ρ =

1
2

gkl ġil∂k, ∇̃∂ρ∂t =
1
t
∂ρ,

where, abusing notation, gi j denotes the components of gρ and 0k
i j the Christoffel

symbols of gρ . In particular, T := t∂t is an Euler vector field for (M̃, g̃), i.e.,

(14) ∇̃T = Id.

For n even a conformally invariant (0, 2)-tensor on M, the ambient obstruction
tensor O, obstructs the existence of smooth solutions to R̃ic= O(ρn/2). For g̃ in
normal form with respect to g it is given by

(15) O = cn(ρ
1−(n/2)(R̃ic|TM⊗TM))ρ=0,

where cn is some known nonzero constant; see [Fefferman and Graham 2012].
From this one can deduce that O is trace- and divergence-free.

Tractor data can be recovered from ambient data as shown in [Čap and Gover
2003]. For ambient metrics in normal form with respect to g ∈ c, this reduces to the
following observation, see [Graham and Willse 2012] for more details: Identify M
with the level set {ρ=0, t=1} in M̃ . Then TM̃|M splits into R∂t⊕TM⊕R∂ρ , which
is isomorphic to the g-metric identification of the tractor bundle T under the map

(16) ∂t 7→ s−, TM
Id
7−→ TM, ∂ρ 7→ s+.

The map (16) is an isometry of bundles over M with respect to g̃ and h and the
pullback of ∇̃, the Levi-Civita connection of g̃, to TM̃|M coincides with (4). This
also follows directly from an inspection of (3) and (13). With these identifications,
for fixed g ∈ c we view the tractor data as restrictions of ambient data for an ambient
metric which is in normal form with respect to g.

3. The ambient obstruction tensor and conformal holonomy

We outline how the image of the obstruction tensor can be identified with a distin-
guished subspace of the infinitesimal conformal holonomy algebra at each point.
This requires some preparation:
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Let V be a vector space. The standard action # of End(V ) on V extends to an
action on the space T r,s V of (r, s) tensors over V. This action will be denoted by
the same symbol. Thus, End(V )⊗End(V ) acts on T r,s V with a double #-action,
explicitly given by

(17) (A⊗ B) ## (η)= A # (B # η).

Given a pseudo-Riemannian manifold (N , h), we can view its curvature tensor Rh

as section of the bundle so(N , h)⊗ so(N , h), and applying (17) pointwise yields
an action Rh## of the curvature on arbitrary tensor bundles of N.

Returning to the original setting, let (M, g) be a pseudo-Riemannian manifold of
even dimension and let (M̃, g̃) be an associated ambient metric which is in normal
form with respect to g. Let 1̃=∇̃A∇̃

A denote the usual connection Laplacian on the
ambient manifold. In [Gover and Peterson 2006] a modified Laplace-type operator

(18) /1= 1̃+ 1
2 R̃##

is introduced and will be used in the subsequent calculations.
The previous observations enable us to prove the main result of this section:

Theorem 3.1. Let (M, c = [g]) be of even dimension > 2. For every g ∈ c one has

s[− ∧ (X O) ∈ holx(M, [g]) for all x ∈ M and X ∈ Tx M.

Proof. The proof uses the notion of infinitesimal holonomy: within in the Lie algebra
holx(M, c) of Holx(M, c) at a point x ∈ M, we consider the infinitesimal holonomy
algebra at x , i.e., the Lie algebra of iterated derivatives of the tractor curvature
evaluated at x ,

hol′x(M,c) := spanR{∇
nc
X1
(···(∇nc

Xl−1
(Rnc(Xl−1,Xl))))(x) | l≥2,X1,...,Xl ∈X(M)}.

For more details on the infinitesimal holonomy refer to [Kobayashi and Nomizu
1963, Chap. II.10] or [Nijenhuis 1953a; 1953b; 1954]. We will in fact show that
s[− ∧ (X O) ∈ hol′x(M, [g]) for all x ∈ M and X ∈ Tx M.

Assume first that n > 4. Let (M̃, g̃) be an associated ambient manifold for
(M, [g]) which is in normal form with respect to some fixed g in the conformal
class. For x ∈ M let

holx(M̃, g̃) := spanR{∇̃X1(· · · ∇̃Xl−2(R̃(Xl−1, Xl)))(x) | l ≥ 2, X i ∈ X(M̃)}

denote the infinitesimal holonomy algebra of (M̃, g̃) at x and for k≥0 let holkx(M̃, g̃)
denote the subspace of elements for which at most k of the X i have a not identically
zero ∂ρ-component. Then [Čap et al. 2016, Theorem 3.1] asserts that under the
identifications from Section 2D,

(19) hol′x(M, c)= hol(n/2)−2
x (M̃, g̃).
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Indeed, for (M̃, g̃) which is in normal form with respect to g, equality (19) can be
verified as follows:

From the identifications from Section 2D one obtains immediately the inclusion⊂
in (19). In order to prove the converse, we obtain with [Graham and Willse 2012,
Lemma 3.1] and [Fefferman and Graham 2012, Propositon 6.1] that

(20)
R̃(∂i , ∂ j )(x)= Rnc(∂i , ∂ j )(x), R̃(∂t , ∂I )(x)= 0,

R̃(∂ρ, ∂i )(x)= 3gkl(∇nc
∂k

Rnc)(∂l, ∂i )(x).

The right sides of these expressions clearly lie in hol′x(M, c). To proceed, using
linearity and commuting covariant derivatives, it suffices to prove that

(21) (∇̃k
X i
∇̃

l
∂ρ
∇̃

j
∂t

R̃)(Y, Z)(x) ∈ hol′x(M, c),

where k, j, l ≥ 0, X i ∈ Tx M, Y, Z ∈ Tx M̃ and l ≤ 1
2 n− 3 or 1

2 n− 2 (depending on
whether one of Y, Z has a ∂ρ-component): given an element of the form (21) one
first applies Proposition 6.1 from [Fefferman and Graham 2012], which rewrites ∂t

derivatives of R̃, and obtains a linear combination of elements of the form (21) with
j = 0 and Y, Z have no ∂t -component. Thus, it suffices to prove (21) for j = 0.
This is then achieved by induction over l. Indeed, for l = 0 the statement follows
from the last equation in (20). Furthermore, we may assume that Y = ∂ρ (otherwise
all differentiations are tangent to M or we use the second Bianchi identity) and
Z ∈ Tx M. However, Lemma 3.1 from [Graham and Willse 2012] allows us to
rewrite ∂ρ-derivatives (∇̃l

∂ρ
R̃)(∂ρ, Z) up to l ≤ 1

2 n− 3 in terms of (∇̃l
∂ρ

R̃)|TM×TM .
Then applying the second Bianchi identity and the induction hypothesis shows the
claim (21). This proves the equality (19).

Using again the identifications from Section 2D, we will now show that for
x ∈ M and X ∈ Tx M we have

(22) ∂
[
t (x)∧ (X O)(x) ∈ hol(n/2)−2

x (M̃, g̃).

With this, equality (19) and the inclusion hol′x(M, c) ⊂ hol(M, c) will imply
Theorem 3.1. In order to verify property (22), note that, as observed in [Gover and
Peterson 2006], on any pseudo-Riemannian manifold one has (in abstract indices)

(23) 4∇̃A1∇̃B1R̃icA2 B2 = /1R̃A1 A2 B1 B2 − R̃icC A1R̃C
A2 B1 B2

+ R̃icC B1R̃C
B2 A1 A2

,

where here A1, A2 and B1, B2 are pairwise skew-symmetrized. Indeed, (23) is a
straightforward consequence of the second Bianchi identity. As in our situation,
R̃ic= O(ρ(n/2)−1), it follows that

(24) 4∇̃A1∇̃B1R̃icA2 B2 = /1R̃A1 A2 B1 B2 + O(ρ(n/2)−1).
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In the next steps we use the general fact that if B is a tensor field on M̃, for example
a (0, 2)-tensor field, such that B = O(ρm) for an m ≥ 1, then, for all X, Y ∈ TM

(25)
ρ−m B(X, Y )|ρ=0 = (∇̃

m
∂ρ

B)(X, Y )|ρ=0,

(∇̃k
∂ρ

B)(X, Y )|ρ=0 = 0 for k = 0, . . . ,m− 1.

Indeed, B = O(ρm) implies for k = 0, . . . ,m− 1 that

0= ∂k
ρ(B(X, Y ))|ρ=0 = (∇̃

k
∂ρ

B)(X, Y )|ρ=0,

where the second equality holds because of ∇̃∂ρ∂ρ = 0 and ∇̃∂ρ X ∈ X(M) for
X ∈ X(M). This also implies that

ρ−m B(X, Y )|ρ=0 = ∂
m
ρ (B(X, Y ))|ρ=0 = (∇̃

m
∂ρ

B)(X, Y )|ρ=0,

proving both relations in (25).
Now we return to equation (24) and see, using (25), that it implies

(26) (∇̃
(n/2)−3
∂ρ

/1R̃)(Y1, Y2, Z1, Z2)(x)= 4(∇̃(n/2)−3
∂ρ

∇̃Y1∇̃Z1R̃ic)(Y2, Z2)(x),

where now x ∈ M, Yi , Zi are ambient vector fields and Y1, Y2 as well as Z1, Z2

are skew-symmetrized. Now let Y1 = ∂ρ and Y2 = X ∈ X(M) and insert R̃ic =
O(ρ(n/2)−1) into the right side of (26). It follows that, with x ∈ M, the resulting
expression is zero unless one of the Zi is proportional to ∂ρ and the other one is a
tangent vector Y ∈ Tx M. For this choice of vectors we have

(27) (∇̃
(n/2)−3
∂ρ

/1R̃)(∂ρ, X, ∂ρ, Y )(x)= (∇̃(n/2)−1
∂ρ

R̃ic)(X, Y )(x),

for X, Y ∈ TM. Hence, by definition (15) and the observation (25), one obtains a
multiple of O(X, Y ),

(28) (∇̃
(n/2)−3
∂ρ

/1R̃)(∂ρ, X)(x)= k(n) · ∂[t (x)∧ (X O)(x),

for some nonzero numerical constant k(n) which depends only on the dimension n.
Note that along M = {ρ = 0, t = 1} we have ∂[t = dρ. To proceed, we analyze the
left side in (28). Equations (13) show that the ambient Laplacian applied to some
tensor field η has an expansion of the form

(29) 1̃η= g̃ IJ
∇̃I ∇̃Jη=

1
t
∇̃∂ρ (∇̃∂tη)+

1
t
∇̃∂t (∇̃∂ρη)−

2ρ
t2 ∇̃∂ρ (∇̃∂ρη)+ f ∇̃∂ρη+D̃η,

where f is a certain known function on M̃ and D̃ is an operator of the form

(30) D̃η =
∑
i, j

ai j ∇̃i (∇̃jη)+
∑

K∈{k,0}

bK ∇̃Kη.
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We conclude inductively that for an arbitrary ambient tensor field η and an element
Z ∈ so(TM̃) one has

(31)
η = O(ρl)⇒ 1̃kη = O(ρl−k),

Z(x) ∈ hollx(M̃, g̃)⇒ (1̃k Z)(x) ∈ holk+l
x (M̃, g̃).

Moreover, a straightforward linear algebra calculation using the algebraic Bianchi
identity for the ambient curvature reveals that (in abstract ambient indices and with
brackets denoting skew symmetrization)

(R̃ ## R̃)ABC D

= 2R̃ABV W R̃V W
C D + 8R̃ P Q

C [A R̃B]P DQ − 2(R̃icV
[AR̃B]V C D + R̃icV

[C R̃D]V AB).

For each A, B the first term on the right hand side is contained in the holonomy
algebra as it is a linear combination of curvature tensors. Similarly, the second term
is a linear combination of commutators of curvature tensors and hence also in the
holonomy algebra. Differentiating this 1

2 n− 3 times in ∂ρ direction and using that
R̃ic vanishes to order 1

2 n− 1 shows via induction that

(∇̃
(n/2)−3
∂ρ

(R̃ ## R̃))(∂ρ, X)(x) ∈ hol(n/2)−2
x (M̃, g̃).

Next, we focus on the ρ-derivatives of 1̃ in (28). Using the form of 1̃ in (29) and
(30) and calculating mod hol(n/2)−2

x (M̃, g̃), we find they are given by

(∇̃
(n/2)−3
∂ρ

1̃R̃)(∂ρ, X)(x)= ∇̃(n/2)−3
∂ρ

(1̃R̃(∂ρ, X))(x)= l(n)(∇̃(n/2)−2
∂ρ

R̃)(∂ρ, X)(x)

for some numerical constant l(n). Thus, we have found that for x ∈ M, X ∈ Tx M,

(32) k(n)∂[t (x)∧ (X O)(x)− l(n) · (∇̃(n/2)−2
∂ρ

R̃)(∂ρ, X)= EX

for some EX ∈ hol
(n/2)−2
x (M̃, g̃). Now insert Y ∈ Tx M and ∂ρ into the 2-forms in

(32). One obtains

(33) k(n)O(X, Y )− l(n)(∇̃(n/2)−2
∂ρ

R̃)(∂ρ, X, Y, ∂ρ)= EX (Y, ∂ρ).

By [Fefferman and Graham 2012, Proposition 6.6] we have

2(∇̃(n/2)−2
∂ρ

R̃)(∂ρ, ∂i , ∂ j , ∂ρ)= tf(∂(n/2)ρ gi j )+ Ki j ,

where Ki j can be expressed algebraically in terms of (∂k
ρgi j )|ρ=0, k < 1

2 n, as well
as gi j

|ρ=0. Moreover, as follows from reviewing the above argument, E can be
expressed algebraically in terms of derivatives of gρ and its inverse in M-directions
and at most 1

2 n− 1 derivatives in ρ-direction and O is a natural tensor invariant.
But then, as the ambiguity, i.e., the term tf(∂n/2

ρ gi j ), can be arbitrary, equation (33)
can only be true if l(n)= 0 from which the theorem follows if n > 4.
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In general, it holds in every dimension that for X ∈ TM one has

trg ∇
nc
· Rnc(X, · )= (n− 4)C(X; · , · )+ B(X)∧ s[− ∈ hol(M, c),

where
Bi j =∇

kCi jk − Pkl Wki jl

is the Bach tensor, and where for each pair j, k we understand Rnc
jk as an element

in 32T ∗. From this observation the theorem follows in case n = 4, as here O is a
multiple of the Bach tensor �

Remark. Consider the case n = 6. It is an entirely mechanical process to turn the
formulas in [Gover and Peterson 2006], section 4B into an explicit formula for
derivatives of the tractor curvature, which gives a more explicit proof of Theorem 3.1
for this dimension. In order to make this more explicit, assume that there is a metric
g ∈ c and a totally lightlike subspace L ⊂ TM such that Im(Ricg) ⊂ L and L is
∇

g invariant. Such geometries correspond to invariant null subspaces which are
invariant under Hol(M, c) and are of importance in Section 5B. Let ∇ denote the
tractor derivative ∇nc coupled to ∇g. One can explicitly compute for this case that

gi j s[− ∧Omi∂
[
j = gi j gkl

∇i∇j∇kRnc
ml + 4Pi j

∇i Rnc
mj + 2[Rnc

mi ,∇
nc
j Rnci j

] + 2Cm
klRnc

kl .

4. The conformal holonomy distribution

In this section we will introduce and study the fundamental object that provides us
with the link between conformal holonomy and the ambient obstruction tensor.

4A. The conformal holonomy distribution. Let (M, c= [g]) be a smooth confor-
mal manifold of arbitrary signature (p, q) and dimension n = p+ q. For x ∈ M
consider the conformal holonomy algebra holx(M, c) ⊂ so(Tx , hx). Fix g ∈ c.
Theorem 3.1 motivates us to study the following subspaces of Tx M,

(34) Eg
x := {prTx M Im(A) | A ∈ holx(M, c), AI = 0, h(AI⊥, I⊥)= 0} ⊂ Tx M.

It follows immediately from the transformation formulas that Eg
x does not depend

on the choice of g ∈ c, so that we can write Ex . With respect to g ∈ c, however, Ex

is identified with the space of elements of the holonomy algebra that are of the form
s[−∧ X [ for some X ∈ Tx M. Equivalently and more invariantly, the space Ex can be
identified with the space holx(M, c)∩ g1. We call the subset of TM defined by

E :=
⋃
x∈M

Ex ⊂ TM

the conformal holonomy distribution. This is a slight abuse of terminology, as the
dimension of Ex may vary with x , so that E is not a vector distribution in the usual
sense. Indeed, the holonomy algebras with respect to different base points are
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related by the adjoint action of elements in O(p+ 1, q + 1) that generically do not
lie in the stabilizer of s−. Instead, define a function on M by

rE(x) := dim Ex .

The function rE need not be constant over M but leads to an obvious stratification

M =
n⋃

k=0

Mk,

where Mk = {x ∈ M | rE(x)= k}.

4B. Relation to the curved orbit decomposition. We now proceed to establish a
relation between the stratification defined by E and the curved orbit decomposition
for holonomy reductions of arbitrary Cartan geometries in [Čap et al. 2014]. When
doing this, we restrict to the case that hol(M, c) equals the stabilizer of some tensor:

Starting with the tractor data (T →M, h,∇nc), one recovers an underlying Cartan
geometry as follows [Čap and Gover 2003]: Fix a lightlike line L ⊂ Rp+1,q+1 and
at each point x ∈ M consider the set of all linear, orthogonal maps Rp+1,q+1

→ Tx

which additionally map L to Ix . This defines a principal P-bundle G→ M, where
P⊂G=O(p+1, q+1) is the stabilizer subgroup of L . Then the tractor connection
∇

nc induces a Cartan connection ω ∈�1(G, g) of type (G, P), i.e., ω is equivariant
with respect to the P-right action, reproduces the generators of fundamental vector
fields, and provides a global parallelism TG ∼= G× g. In this way, (G→ M, ω) is
a Cartan geometry of type (G, P). Conversely, one obtains the standard tractor
bundle from these data as T = G×P Rp+1,q+1

= Ĝ×G Rp+1,q+1, where Ĝ= G×P G
denotes the enlarged G-bundle. The Cartan connection ω lifts to a principal bundle
connection ω̂ on Ĝ and ∇nc is then the induced covariant derivative on the associated
bundle T .

Now assume that there is a faithful representation ρ of G on some vector space V
with associated vector bundle H= Ĝ×G V and induced covariant derivative∇H such
that Hol(M, c) equals pointwise the stabilizer of a∇H-parallel sectionψ ∈0(M,H)
(if actually (M, c) is spin, the same discussion is possible for spin coverings of
the groups and bundles under consideration). Such a ψ is equivalently encoded in
a G-equivariant map s : Ĝ→ V which is constant along ω̂-horizontal curves. To
this situation the general machinery developed in [Čap et al. 2014] applies and one
defines for x ∈ M the P-type of x (with respect to ψ) to be the P-orbit s(Gx)⊂ V.
Then M decomposes into a union of initial submanifolds Mα of elements with the
same P-type, where α runs over all possible P-types, which in turn can be found
by looking at the homogeneous model G→ G/P. In that work, the Mα are called
curved orbits and it was shown that they carry a naturally induced Cartan geometry
of type (H, P ∩ H).
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Theorem 4.1. If Hol(M, c) is equal to the stabilizer of a tensor, then the subsets
of M on which rE is constant are unions of curved orbits in the sense of [Čap et al.
2014]. In particular, they are unions of initial submanifolds.

Proof. We fix a curved orbit Mα with element x1. By definition, x2 ∈ Mα if and
only if

(35) s(Gx1)= s(Gx2).

We unwind the condition (35) as follows: Let uxi ∈ Gxi and let

[uxi ] : V 3 v 7→ [uxi , v] ∈Hxi

denote the associated fiber isomorphism. As ρ is faithful the holonomy group
Holuxi

(ω̂)⊂G will coincide with the stabilizer of [uxi ]
−1ψxi ∈ V under the (ρ,G)-

action. Moreover (35) is equivalent to the existence of p ∈ P such that

ρ(p)([ux1]
−1ψx1)= [ux2]

−1ψx2,

from which one deduces that

(36) Ad(p−1)(holux1
(ω̂))= holux2

(ω̂).

Using that [gi , g j ] ⊂ gi+ j , one sees that (36) restricts to a map between the g1-
components of holuxi

(ω̂) which therefore have the same dimension. As

holx = [ux ] ◦ holux
(ω̂) ◦ [ux ]

−1
⊂ so(Tx , hx)

and [ux ] preserves the lightlike line by definition of G, we obtain that the dimensions
of holxi

∩ g1 also agree. Consequently, rE is constant on the curved orbit Mα. �

Theorem 4.1 shows that, in general, the holonomy distribution E as studied here
will induce a stratification of M that is coarser than the curved orbit decomposition
in [Čap et al. 2014]. The following example shows that in some cases it induces
the same stratification.

Example. Suppose (M, c) is of Riemannian signature and Holx(M, c) equals the
stabilizer of some tractor ζx ∈ Tx . For any metric g ∈ c write ζ = (α, Y, β)> for
smooth functions α, β and a vector field Y on M. Evaluating ∇ncζ = 0 using (4)
yields

Y = gradg β, αg = βPg
−Hessg(β).

An element V [
∧ s[− lies in holx(M, c)∩ g1 if and only if dβ(V ) = 0 as well as

β · V = 0 at x . If h(ζ, ζ ) 6= 0, we conclude that

M = M0 ∪Mn−1, with M0 = {β 6= 0} and Mn−1 = {β = 0}.
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For x ∈ Mn−1 we have Ex = ker dβ 6= Tx M. In particular, Mn−1 is a smooth
embedded submanifold of M. Similarly, if h(ζ, ζ )= 0, we have

M = M0 ∪Mn = {β 6= 0} ∪ {β = 0}.

Here {β=0} consists only of isolated points because β(x)=0 implies that dβ(x)=0
and Hessg(β)(x) is proportional to gx .

4C. Open sets adapted to the holonomy distribution. We analyze the function rE

in more detail. Obviously, if holx(M, c) is generic at some point of M, i.e., if
holx(M, c)= so(p+ 1, q + 1), then rE ≡ n. Conversely, one finds:

Proposition 4.2. Suppose that there is a curve γ in M with g(γ̇ , γ̇ ) 6= 0 and
rE ◦ γ ≡ n. Then hol(M, c) is generic. In particular, rE ≡ n.

Proof. All calculations are carried out with respect to some fixed g ∈ c. By
assumption, s[− ∧ V [

∈ holγ (t)(M, c) for every vector field V along γ . Applying
∇

nc
γ̇ to this expression using (7) reveals that

(37) −g(V, γ̇ )s[− ∧ s[++ γ̇
[
∧ V [

∈ holγ (t)(M, c).

Letting V = γ̇ shows that s[− ∧ s[+ ∈ holγ (t)(M, c). Moreover, letting (V1, V2, γ̇ )

be mutually orthogonal to each other and taking the Lie brackets of the expressions
(37) with V = V1 and V = V2, respectively, shows that

‖γ̇ ‖2V [

1 ∧ V [

2 ∈ holγ (t)(M, c).

But this establishes that g0 ∈ holγ (t)(M, c). Thus, g1 ⊕ g0 ∈ holγ (t)(M, c). Dif-
ferentiating elements γ̇ [ ∧ V [

∈ holγ (t)(M, c) in the direction of γ , where V is
again a vector field along γ shows using (7) that also g−1 ∩ γ̇

⊥ is contained in the
infinitesimal holonomy along γ and differentiating s[− ∧ s[+ along γ shows that all
of g−1 is contained in the holonomy. Thus, holγ (t)(M, c) is generic along γ , and
thus generic everywhere. �

In order to continue with our analysis, we need to show that there are sufficiently
many open sets U on which rE is constant, i.e., such that E|U is a vector bundle,
and on which there is a basis of local smooth sections of U → E . For this purpose
we define: An open set U ⊂ M is an E-adapted open set if

(1) rE ≡ k constant on U,

(2) there are smooth and pointwise linearly independent sections V1,...,Vk :U→E .

Then:

Theorem 4.3. For each open set U ⊂ M there exists an E-adapted open subset
V ⊂ U. In particular, there is an open dense subset of M which is the union of
E-adapted open sets.
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Proof. After restricting U if necessary, we may assume that U is contained in
a coordinate neighborhood for M. It is then possible to choose a local basis of
holx(M, c) over U which depends smoothly on x . Write such a basis as

(38) U 3 x 7→ (v
[
i (x)∧ s[−+ Ai (x)),

where i = 1, . . . ,m := dim hol(M, c), for certain vi ∈ Tx M and Ai
∈ g0⊕g−1. With

respect to the fixed coordinates we may think of the Ai
= (Ai

jk) j,k as so(p+1, q+1)-
matrices. Let

Ãi
:= (Ai

11, Ai
12, . . . , Ai

n+1,n+2, Ai
n+2,n+2)

>

and introduce the (n+2)2×m-matrix A := ( Ã1
··· Ãm). By elementary linear algebra,

(39) rE(x)= k⇐⇒ k = dim ker A = dim holx(M, c)− rk Ax .

The set of matrices with rank greater or equal to some fixed integer is open in the
set of all matrices. Thus, it follows from (39) that {x | rE(x)≤ k} is open in M. In
particular, (rE)−1(0)= {x | rE(x)≤ 0} is open and rE < n is an open condition.

Assume now that there is x ∈U with rE(x)= 0. It follows that rE = 0 on some
open subset V ⊂ U. Thus the claim follows for this case. Otherwise, we have
rE ≥ 1 everywhere. If there is x ∈ U with rE(x) = 1, it follows that there is an
open neighborhood V in U with rE ≤ 1 of x in U. Thus, rE = 1 on V. Otherwise
we have rE ≥ 2 on U etc. So the statement regarding the existence of V with
rE |V =: l = constant follows inductively. The above proof starts with a smooth
local basis (38) and constructs (on an open subset of V ) via smooth linear algebra
operations a basis on V of the form (ṽ

[

i=1,...,l ∧ s[−, . . .). It is thus clear that the ṽi

depend smoothly on x ∈ V and yield local sections.
Finally, if every open set in M contains an E-adapted open subset, the union of

all E-adapted open sets is open and dense in M. �

By virtue of this theorem, after restricting to an open and dense subset of M if
necessary, we may from now on always assume that M is the union of E-adapted
open sets. In particular, the level sets of rE are then (possibly empty) unions of
E-adapted open sets. From this point of view, we may restrict ourselves to such
open sets in the following local analysis. Note that restricting to an open and dense
subset in the context of Cartan holonomy reductions is a basic feature of the curved
orbit decomposition as revealed in [Čap et al. 2014].

Proposition 4.4. Let U ⊂ M be a E-adapted open set. Then Ex is a totally lightlike
subspace of Tx M for every x ∈U or hol(M, c) is generic.

Proof. Let V be a vector field defined on U such that s[− ∧ V [(x) ∈ holx(M, c) for
x ∈U. Differentiating in the direction of some X ∈ TM using (7) reveals that

(40) −∇nc
X (s

[
−∧V [)(x)= g(V, X)s[−∧s[++X [

∧V [
+(∇X V )[∧s[− ∈ holx(M, c).
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Suppose that there is x ∈U with g(V, V )(x) 6= 0. It follows that g(V, V ) 6= 0 on
some open neighborhood x ∈W ⊂U. Let X be orthogonal to V on W. As holx(M, c)
is a Lie algebra with the usual commutator Lie bracket, it follows that on W also

(41) [X [
∧ V [
+ (∇X V )[ ∧ s[−, s[− ∧ V [

] = −g(V, V )X [
∧ s[− ∈ hol(M, c).

Thus, rE |W = n and the statement follows from Proposition 4.2. �

4D. Rank and integrability of the holonomy distribution. Interestingly, it turns
out that, at least locally, E is always integrable or it is maximally nonintegrable and
one of the exceptional holonomy reductions occurs. More precisely, we will see
that if E is not integrable, M is of dimension 5 or 6, E is generic and of rank 2 or 3,
respectively, and hol(M, c) is g2 or spin(4, 3), respectively.

In order to analyze the integrability of E , we need some preparations.

Proposition 4.5. Let (Mn, c) be a conformal manifold of even dimension. Either
there is an open dense subset of M on which rE ≤ 1 or Hol0(M, c) acts on the
lightcone N ⊂ Rp+1,q+1 with an open orbit.

Proof. Suppose first that rE ≥ 2 on some open set U ⊂ M. After restricting to
an open, dense subset of U, if necessary, we may assume that U is an E-adapted
open set. We may also assume that the holonomy is not generic and hence that E is
lightlike. Let V be a local section of E and let V ′ be a lightlike vector field with
g(V, V ′)= 1. Moreover, let X ∈ (V, V ′)⊥. We have on U

∇
nc
V ′ (s

[
− ∧ V [)= s[− ∧ s[++ A1 ∈ hol(M, c),(42)

∇
nc
X (∇

nc
V ′ (s

[
− ∧ V [))=−X [

∧ s[++ A2 ∈ hol(M, c),(43)

where A1,2 ∈ g0⊕ g1 = p. As rE ≥ 2 on U and E is totally lightlike, linear algebra
shows that at x ∈U, equation (43) implies

(44) so(p+ 1, q + 1)= holx(M, c)+ p.

This, together with equation (42) shows that the orbit of Hol0(M, c) through s− ∈N
has dimension n+1, i.e., it is open. Otherwise, the subset of M on which rE ≤ 1 is
dense. It is also open as follows from the proof of Theorem 4.3. �

In relation to this proposition, we point out that conformal structures for which
the holonomy group acts not only with an open orbit on N, but transitively and
irreducibly on the homogeneous model were classified in [Alt 2012].

Proposition 4.6. Suppose that (M, [g]) admits an nc-Killing form α ∈ �k(M).
Then V [

∧α = 0 for every V ∈ E .

Proof. Following the discussion in Section 2C, every nc-Killing k-form α uniquely
determines a parallel tractor (k + 1)-form α̂. With respect to a metric g in the
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conformal class, decompose α̂ as in (8). Pointwise, α̂ is annihilated by the action #
of hol(M, c) on forms. In particular, one has for every V ∈ Ex that

(s[− ∧ V [) # α̂x = 0.

Inserting (8), one immediately obtains that V [
∧α = 0. �

Proposition 4.7. Suppose M is orientable and the action of hol(M, c) leaves
invariant a nontrivial nondegenerate subspace of Rp+1,q+1. Then E = 0 on an open,
dense subset of M.

Proof. As the holonomy invariant space (of dimension k+ 1) is nondegenerate and
M is orientable, there is actually a decomposable parallel tractor form in�kT ∗. The
associated nc-Killing form α is of the form α= t1∧· · ·∧tk , defining a k-dimensional
nondegenerate subspace H ⊂ TM on an open, dense subset of M as follows from
the discussion in [Leitner 2005], Thus, Proposition 4.6 implies that E ⊂ H on an
open dense subset M ′ of M. On the other hand, by Proposition 4.2, E is over M ′

contained in a totally degenerate subspace. We conclude E|M ′ = 0. �

Proposition 4.8. Suppose that Hol(M, c) fixes a totally lightlike (with respect to h)
subbundle H⊂ T . Then there is an open and dense subset of M and at least locally
a metric g ∈ c such that with respect to g

(45) H= Rs+⊕L,

with L⊂ TM a ∇g-parallel distribution containing E and the image of Ricg.

Proof. The existence of a parallel distribution L⊂ TM containing the image of Ricg

was proven in [Lischewski 2015]. To see that at each x ∈ M, the fiber Lx contains
Ex , consider V ∈ Ex such that s[− ∧ V [

∈ holx(M, c). Then (s[− ∧ V [)(s+)= V lies
in H, which shows that E ⊂ L. �

These results enable us to prove the main result of this section:

Theorem 4.9. Let U ⊂ M be a E-adapted open set. Then exactly one of the
following cases occurs on U :

(1) E is integrable.

(2) The dimension of M is 5 and E is a generic rank 2 distribution. Moreover,
hol(M, c) = g2 and hence the conformal structure c = cE is defined by the
generic distribution E .

(3) The dimension of M is 6 and E is a generic rank 3 distribution. Moreover,
hol(M, c) = spin(3, 4) and the conformal structure c = cE is defined by the
generic distribution E .
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Proof. If hol(M, c) is generic the statement is trivial as E = TM in this case.
Thus, we may assume that the holonomy algebra is reduced and by the previous
Proposition, Ex is a totally lightlike subspace of Tx M for x ∈U.

Let V1, V2 be vector fields on U such that s[−∧V [

i=1,2 ∈ holx(M, c) for x ∈U. It
follows that

(46) ∇nc
V1
(s[− ∧ V [

2 )−∇
nc
V2
(s[− ∧ V [

1 )=−V [

1 ∧ V [

2 + s[− ∧ ([V1, V2])
[
∈ hol(M, c).

Moreover, let X be a vector field on U which is orthogonal to Vi for i = 1, 2. It
follows from evaluating [∇nc

X (s
[
− ∧ V [

1 ),∇
nc
X (s

[
− ∧ V [

2 )] that

(47) 2g(∇X V1, V2)X [
∧ s[−+ g(X, X)V [

1 ∧ V [

2 ∈ hol(M, c).

Combining (46) and (47) it follows for X orthogonal to (V1, V2) that

X · g(∇X V1, V2) ∈ E for g(X, X)= 0,(48)

[V1, V2] −
2g(∇X V1, V2)

g(X, X)
· X ∈ E for g(X, X) 6= 0.(49)

Now we distinguish several cases: Obviously the statement is trivial in case
rE ≤ 1. Thus, we may assume that V1, V2 are linearly independent. Fix a local
g-pseudoorthonormal basis (s1, . . . , sn) over U such that

(50) E = span(Vi := s2i−1+ s2i | i = 1, . . . , rE).

Moreover, let V ′i := s2i−1− s2i for i = 1, . . . , e. That is, g(Vi , V ′j )= 2δi j .

Case 1: rE ≥ 3 and n > 6. In (48) let X = V ′3. It follows that g(∇s5 V1, V2) =

g(∇s6 V1, V2). But then letting X= s5, s6, (49) can only be true if [V1, V2]− f ·V ′3∈E
for some function f . On the other hand, applying (49) to X = sn reveals that
[V1, V2] − h · sn ∈ E for some function h. But this can only be true if f = h = 0,
i.e., [V1, V2] ∈ E .

Case 2: rE = 2 and n > 5. In complete analogy to the previous case, we obtain
that [V1, V2]− f s5 ∈ E for some function f as well as [V1, V2]− hs6 ∈ E for some
function h from which one has to conclude that f = h = 0.

Case 3: rE = 2 and n = 4. Necessarily, M is of signature (2, 2). It follows
from (48) that for i, j, k ∈ {1, 2} we have g(∇Vi , Vj , Vk)= 0. But this implies that
g(∇V1 V2−∇V2 V1, Vk)= 0, i.e., [V1, V2] ∈ E⊥ = E .

It remains to show that in signatures (3, 2) with E of dimension 2 and in signature
(3, 3) with E being of dimension 3 and not integrable, E is generic.

First, let us consider signature (3, 2) and assume that E is not integrable. In
particular, E is of rank 2 on an open and dense set. One could proceed with the
proof for this case analogously as with the (3, 3) case below. However, as we
are considering a conformal structure in odd dimension, one of the main results
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in [Čap et al. 2016] yields that hol(M, c) is the holonomy algebra of a Ricci
flat pseudo-Riemannian manifold of signature (4, 3). If the standard action of
hol(M, c) was reducible, then by Propositions 4.7 and 4.8, E would be either zero
or contained in an integrable totally lightlike distribution, both contradicting the
assumptions in the current case. Thus, the action of the holonomy algebra is
irreducible and from E 6= TM and the pseudo-Riemannian version of the Berger
list it follows that hol(M, c) = g2, where g2 denotes the noncompact simple Lie
algebra of dimension 14. For this case, however, E is generic. This follows from
the discussion of g2-conformal structures in Section 2C in complete analogy to the
proof of Corollary 5.11 in Section 5B.

Let us now treat the 6-dimensional case. Fix a local basis (V1, V2, V3, V ′1, V ′2, V ′3)
for TM over U as specified in (50) such that g(Vi , V ′j )= 2δi j . Moreover, without
loss of generality, we may assume that

(51) [V1, V2] /∈ E .

From (48) we obtain g(∇V ′3 V1, V2)= 0 and (49) applied to X = V3+V ′3 then yields

(52) [V1, V2] − g(∇V3 V1, V2)V ′3 ∈ E .

We conclude from (51) that g(∇V3 V1, V2) 6=0. Moreover, it follows from subtracting
∇V2(s

[
− ∧ V [

1 ) ∈ hol(M, c) from (46) that

(53) ∇V2 V1+ [V1, V2] ∈ E .

In complete analogy to the derivation of (52) we obtain [V1,V3]−g(∇V2 V1,V3)V ′2∈E .
Inserting (53) and then using (51) and (52) reveals that the coefficient g(∇V2 V1, V3)

is nonzero. The same argument applies to [V2, V3] and we conclude that there are
nowhere vanishing functions fk for k = 1, 2, 3 such that

[Vi , Vj ] = εi jk fk V ′k mod E .

In particular, [E, E] = TM.
It remains to show that in this case we have hol(M, c)= spin(3, 4). Using (7),

it is straightforward to compute that the 15 elements, i, j = 1, 2, 3,

(54) s[− ∧ V [
i , ∇

nc
V ′i
(s[− ∧ V [

j ) and ∇
nc
Vi
(s[− ∧ V [

j ), i < j

are pointwise linearly independent in hol(M, c)∩ p. Then Proposition 4.5 comes
into play, which ensures that so(p+ 1, q + 1)= hol(M, c)+ p and hence that dim
hol(M, c)≥ 15+ 6= 21, which is the dimension of spin(4, 3). Then the equality
hol(M, c) = spin(4, 3), and with it the last point in the theorem, follows from
Lemma 4.10 below. �
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Lemma 4.10. Let h ( so(4, 4) be irreducible of dimension at least 21. Then
h= spin(3, 4).

Proof. Since h acts irreducibly, it is reductive. Then either h is semisimple and the
complexified representation C⊗R4,4 is irreducible, or h ⊂ u(2, 2) and C⊗R4,4

is not irreducible (see for example [Di Scala and Leistner 2011, Section 2]). The
second case however is excluded by the assumption dim(h) ≥ 21. Hence, we
may consider hC

⊂ so(8,C) semisimple acting irreducibly on C8. Inspecting the
dimensions of simple complex Lie algebras below 28, it turns out that the only
possibilities for h, apart from so(7,C), are sl5C and sl2C⊕ sl3C. Then sl5C is
excluded as it does not have an irreducible representation of dimension 8. On the
other hand, any irreducible representation of sl2C⊕ sl3C is a tensor product of
irreducible representations, which is excluded as sl3C does not have an irreducible
representations of dimension 2 or 4. �

Finally, we want to derive universal integrability conditions for the Weyl and
Cotton tensors for conformal manifolds with reduced holonomy.

Proposition 4.11. Let (M, c) be a conformal manifold with nongeneric holonomy.
Locally, and off a singular set there is a totally degenerate subspace L⊂ TM, which
is integrable if (p, q) /∈ {(3, 2), (3, 3)}, such that

W (L,L⊥)= 0,(55)

(n− 4)C(L,L⊥)= 0.(56)

In even dimensions, one has Im(O)⊂ L. In particular, if a conformal manifold in
even dimension ≥ 4 admits a parallel tractor (of any type) other than the tractor
metric, then the conformally invariant system (55) – (56) either becomes a nontrivial
integrability condition on the curvature (and it couples O to the curvature) or O= 0.

Proof. We restrict the local analysis to E-adapted open sets and let L = E . The
conditions (55) and (56) are easily seen to be an equivalent reformulation of

[Rnc(X, Y ), s[− ∧ V [
] ∈ hol(M, c),(57)

[trg ∇·Rnc( · , X), s[− ∧ V [
] ∈ hol(M, c),(58)

where X, Y ∈ TM and V ∈ E . The statement follows from the definition of E and
Theorems 3.1 and 4.9. �

5. Applications to the obstruction tensor

Recall that according to Theorem 3.1 the image of the obstruction tensor O is
contained in the holonomy distribution E . In this section we apply the results about
E to obtain the results in Corollaries 1.2 and 1.3. In the following we will always



428 THOMAS LEISTNER AND ANDREE LISCHEWSKI

assume we have given a smooth conformal manifold (M, c) of even dimension n
and with obstruction tensor O. We view O as a (1, 1)-tensor by means of some
g ∈ c and define the rank of O at a point to be the rank of this (1, 1)-tensor. The
holonomy reductions we will consider now were described in Section 2C.

5A. The obstruction tensor and holonomy reductions. We begin with a well-
known case of a conformal holonomy reduction, the case of a parallel standard
tractor. The existence of a parallel standard tractor is equivalent to the existence of
an open dense subset in M, on which the conformal class contains local Einstein
metrics. It is well known since [Fefferman and Graham 1985, Proposition 3.5], see
also [Gover and Peterson 2006, Theorem 4.3] and [Fefferman and Graham 2012]
that the existence of local Einstein metrics in the conformal class forces O = 0.
Our Theorem 3.1 provides us with an independent and alternative proof:

Corollary 5.1. If locally on an open and dense subset of M there is an Einstein
metric g ∈ c, then O = 0.

Proof. Given an Einstein metric on U ⊂ M and splitting the tractor bundle over U
with respect to g, there is on U a parallel standard tractor

T =−
scalg

2n(n− 1)
s−+ s+.

In particular, holx(U, [g])Tx =0. Theorem 3.1 yields (s[−∧(X O))(T )=O(X)=0
on U for each X ∈ T U which is equivalent to O = 0 on U. �

A weaker condition than admitting a parallel tractor is the existence of a subspace
that is invariant under the conformal holonomy. In this situation Propositions 4.7
and 4.8 imply:

Corollary 5.2. Suppose M is orientable and the action of Hol(M, c) leaves invari-
ant a nontrivial subspace H of Rp+1,q+1. Then we have the following alternatives
(possibly replacing H with H∩H⊥ if it is degenerate):

(1) If H is nondegenerate, then O = 0.

(2) If H is totally lightlike, then, locally on an open dense subset of M there is a
metric g ∈ c and a ∇g-parallel distribution L⊂ TM containing the image of
Ricg and of O.

Specializing the total lightlike case in this corollary further, in Section 5B we
will consider Bryant’s conformal structures as examples. Another example is the
following:

Example. Suppose that M is of split signature (n, n) and that Hol(M, c) leaves
invariant two complementary totally lightlike distributions H ⊕ H′ = T , i.e.,
Hol(M, c) ⊂ GL(n+ 1,R) ⊂ SO(n+ 1, n+ 1). Such conformal structures arise
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from Fefferman type constructions starting with n-dimensional projective structures,
see [Hammerl and Sagerschnig 2011a; Hammerl et al. 2015]. For H and H′ define
L and L ′ as above and fix a local metric g such that H is of the form (45) on some
set U ⊂ M. Elementary linear algebra shows that on U the space L ∩ L ′ is at each
point at most 1-dimensional. Moreover, we have from the conformal covariance of
O and Corollary 5.2 that Im(O)⊂ L ∩ L ′. It follows that the rank of O is less than
or equal to one on an open, dense subset of M.

Proposition 5.3. Let (M, c) be an even-dimensional conformal manifold admitting
a twistor spinor ϕ. Then, at each point

(59) Im(O)⊂ Lϕ.

In particular, O vanishes if there are twistor spinors whose associated subspaces L
are transversal on an open and dense subset of M.

Proof. Combining Theorem 1.1 with relation (10) yields that

(60) s− ·O(X) ·ψ = 0.

Filling in the technical details how ψ is related to ϕ by means of a metric in the
conformal class as done in [Leitner 2007] reveals that (60) is equivalent to

(61) O(X) ·ϕ(x)= 0 for ϕ(x) 6= 0,

which is clearly equivalent to (59). �

We continue by combining Theorem 3.1 with the results in Section 4C. In the
nongeneric case, i.e., when hol(M, c) 6= so(p+ 1, q + 1), Proposition 4.4 shows
that the image of O is lightlike over an open dense set in M, and hence everywhere:

Corollary 5.4. If hol(M, c) is not generic, then Im(O) is totally lightlike. In
particular, if (M, c) is Riemannian and hol(M, c) is not generic, then O = 0.

The statement in Corollary 5.4 about Riemannian conformal structure can be
pieced together from several results in the literature: The decomposition theorem
in [Armstrong 2007] states that a conformal structure with holonomy reduced from
so(1, n+ 1), locally over an open dense subset of M, contains an Einstein metric
or a certain product of Einstein metrics. Corollary 5.1 and the results in [Gover and
Leitner 2009] about products of Einstein metrics then ensure that (M, c) admits
an ambient metric whose Ricci tensor vanishes to infinite order, and hence that
the obstruction tensor vanishes. Our proof of O = 0 for Riemannian nongeneric
conformal classes in Corollary 5.4 is self-contained and does not make use of the
results in the literature.

We consider now several options for the rank of O. From Proposition 4.5 we get:
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Corollary 5.5. If Hol0(M, c) has no open orbit on the lightcone N ⊂ Rp+1,q+1,
then rk(O)≤ 1.

Indeed, if Hol0(M, c) has no open orbit on the lightcone N ⊂ Rp+1,q+1, then by
Proposition 4.5 the rank of O is ≤ 1 on an open dense set. Hence, the rank is ≤ 1
everywhere.

Again we refer to [Alt 2012], where conformal structures with a transitive and irre-
ducible action of the conformal holonomy are classified. Moreover, Proposition 4.2
implies:

Corollary 5.6. If the rank of O is maximal at some point x ∈ M, then hol(M, c)=
so(p+ 1, q + 1) is generic. In particular, all parallel tractors are obtained from
the tractor metric h only.

Corollary 5.6 demonstrates that the ambient obstruction tensor O can also be
interpreted as an obstruction to the existence of parallel tractors on (M, c) of any
type. Namely for such a tractor to exist, O needs to have a nontrivial kernel
everywhere. We analyze this phenomenon in more detail by focusing on parallel
tractor forms and the associated normal conformal Killing forms (see Section 2C).
Proposition 4.6 implies:

Corollary 5.7. If (M, c) admits a nc-Killing form α ∈�k(M), then Im(O)∧α = 0.

Corollary 5.8. If V is a normal conformal vector field for (M, c), then Im(O)⊂RV
whenever V 6= 0. In particular, O vanishes if there is a normal conformal vector
field that is not lightlike, or if the space of normal conformal vector fields has
dimension greater than 1.

In particular, Corollary 5.8 applies to Fefferman conformal structures (M, c)
of signature (2k + 1, 2r + 1), i.e., Hol(M, c) ⊂ SU(k + 1, r + 1). They admit a
distinguished normal conformal Killing vector field VF. Thus,

(62) ImO ⊂ RVF ,

for which an independent proof can be found in [Graham and Hirachi 2008]. For
the Lorentzian case, i.e., k = 0, any additional holonomy reduction will force O to
vanish.

Proposition 5.9. Let (M, c) be a Lorentzian conformal manifold of even dimension
n with hol(M, c)( su(1, n

2 ). Then O = 0.

Proof. From the classification of irreducibly acting subalgebras of so(2, n) in
[Di Scala and Leistner 2011] and the results in [Alt et al. 2014] it follows that
hol(M, c) has to act with an invariant subspace. If the holonomy representation
fixes a nondegenerate subspace or a lightlike line in R2,n the result follows with
Corollaries 5.1 and 5.2. Otherwise, hol(M, c) fixes a totally lightlike 2-plane in
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R2,n and again Corollary 5.2 applies. That is, there is (at least locally) a metric g ∈ c
admitting a recurrent and nowhere vanishing null vector field U, i.e., ∇gU = θ⊗U
for some 1-form θ and Im(O)⊂ RU. Assume now that O is nonzero at some point.
It follows from (62) that there is an open subset of M on which RVF =RU. However,
this contradicts the fact that the twist1 of U is given by ωU = θ ∧U [

∧U [
= 0 but

ωVF 6= 0; see [Baum and Leitner 2004]. Thus, O ≡ 0. �

Remark. In similar fashion, Fefferman spaces over quaternionic contact structures,
see [Alt 2008], admit 3 linearly independent Hol(M, c)-invariant almost complex
structures which descend to pointwise linear independent nc-vector fields (or 1-
forms) on M. Thus O ≡ 0 for this case by Corollary 5.8.

5B. The obstruction tensor for Bryant conformal structures. We now specialize
to Bryant conformal structures in signature (3, 3) induced by a generic 3-distribution
D ⊂ TM as in Section 2C, and deduce several new results about the relation of the
generic distribution D and the image of O.

Every Bryant conformal structure admits (and is equivalently characterized by) a
parallel tractor 4-form α̂ ∈ 0(M,34T ) whose stabilizer under the SO(4, 4)-action
at each point is isomorphic to Spin(4, 3) ⊂ SO(4, 4). In particular, Hol(M, c) ⊂
Spin(4, 3). For a fixed metric g ∈ c and the corresponding splitting (8), i.e.,

(63) α̂ = s[+ ∧α+α0+ · · · ,

one finds that α= l[1∧l[2∧l[3 for li=1,2,3 some basis of D and α transforms conformally
covariantly under a change of g. Using this, we can derive constraints on the
obstruction tensor for Bryant conformal structures.

As an immediate consequence of Proposition 4.6 and Corollary 5.7 we obtain:

Corollary 5.10. Let (M, cD) be a Bryant conformal structure induced by a generic
3-distribution D ⊂ TM. Then E ⊂ D, and in particular, Im(O)⊂ D.

Moreover:

Corollary 5.11. If hol(M, c)= spin(4, 3), then D = E everywhere on M.

Proof. The Lie algebra spin(4, 3) equals the stabilizer algebra of a spinor ψ of
nonzero length in signature (4, 4) which corresponds via some g ∈ c to a twistor
spinor ϕ with Lϕ = D at every point (see Section 2C). Thus, (s[− ∧ l[) ·ψ = 0 for
every l ∈ D, i.e., D ⊂ E . �

Remark. This agrees with the curved orbit decomposition from [Čap et al. 2014],
cf., the discussion in Section 4B for this particular case. Indeed, as discussed in
that work for the general case, the curved orbits correspond to the Spin(4, 3)-orbits

1 Recall that for a vector field X ∈ X(M), its twist is the 3-form ωX := d X[ ∧ X[. Clearly, the
condition dωX = 0 depends on RX only.
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on SO(4, 4)/StabSO(4,4)(L), where L⊂ R4,4 is a null line. However, there is only
one such orbit as Spin(4, 3) acts transitively on the projectivized lightcone in R4,4.

Proposition 5.12. Assume that hol(M, c)( spin(4, 3)⊂ so(4, 4). Then rk(O)≤ 1.

Proof. Suppose first that there is an open set U ⊂M on which E has dimension 3, i.e.,
by Corollary 5.10 we have E =D over U. By passing to a subset of U if necessary,
we may assume that U is a E-adapted open set. Let Vi=1,2,3 be a pointwise basis
of E over U depending smoothly on x . Let V ′i be lightlike vector fields on U such
that g(Vi , V ′j ) = δi j . We have seen that in this case the 15 elements in (54) are
pointwise linearly independent in hol(M, c)∩ p. But then it follows immediately
from Proposition 4.5 that dim hol(M, c)≥ 15+ 6= 21, which is the dimension of
spin(4, 3). Thus hol(M, c) is no proper subalgebra of so(4, 4).

We have to conclude that the set on which rE ≤ 2 is open and dense in M. In
particular, rk(O) < 3 on an open and dense subset of M. However, the set on which
rk(O) < 3 is also closed and since M is connected it follows that rk(O) < 3 on M.
Assume next that there is x ∈M such that rk(O)= 2 at x . Since the subset on which
rk(O)≥ 2 is open in M it follows that rk(O)= 2 on some open set U of M. After
restricting U we may assume that U is a E-adapted open set and rE = 2 on U. Thus,
E is over U a 2-dimensional subbundle of D. By Theorem 4.9, E is integrable over
U which contradicts D being generic. Consequently, rk(O)≤ 1 everywhere. �

Example. Proposition 5.12 applies to the situation when Hol(M, c) lies in the in-
tersection of Spin(4, 3) with the stabilizer of a totally degenerate subspace H⊂R4,4.
For dim H= 4, this intersection is isomorphic to

spin(3, 4)H =
{(

Z X
0 −Z>

)
| Z ∈ csp2R, X ∈ so(4), tr(X J)= 0

}
,

where

J =
(

0 12

−12 0

)
,

and

csp2R=
{

Z ∈ gl4R | Z> J + J Z − 1
2 tr(Z)J = 0

}
= R14⊕ sp2R.

Moreover, since the Lie group Spin(3, 4)⊂ SO(4, 4) corresponding to spin(3, 4)⊂
so(4, 4) acts transitively on triples

{(s+,H, s−) |H a totally null 4-plane, s+ ∈H, s− ∈ R8 null, g(s+, s−)= 1},
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we can express the stabilizer of H in conjunction with the |1|-grading spin(3, 4)=
g−1⊕ g0⊕ g1 in a basis (s+, ea, s−, ea) for a = 1, 2, 3 and a = a+ 3, as

spin(3, 4)H

=




r w> 0 w>

v> Z −w X
0 0 −r −v
0 0 −w −Z>

 |
w = (wa) ∈ R3, w = (wa) ∈ R3, v = (vb) ∈ (R

3)∗,

X = (Xb
a) ∈ so(3), Z = (Zb

a) ∈ gl3R,

w3
= Z2

1, w
1
=−Z2

3, v1 =−Z3
2, v3 = Z1

2,

r = Z1
1− Z2

2+ Z3
3, w

2
=−X1

3.

 .
Here (r, Z , X) corresponds to the g0 part whereas (w,w) correspond tot he g−1 and
v to the g1-part. In particular, the intersection pH of spin(3, 4)H with the parabolic
p is given by setting w and w to zero, and the intersection E of spin(3, 4)H with g1

by requiring in addition that X = Z = r = 0. Note that E is one dimensional.
In regards to examples of this situation, we recall that in [Anderson et al. 2015]

a certain class of Bryant’s conformal structures was studied. They are defined by a
rank 3 distribution D f on R6 with coordinates (x1, x2, x3, y1, y2, y3) given by the
annihilator of three 1-forms

θ1 = dy1
+ x2dx3, θ2 = dy2

+ f dx1, θ3 = dy3
+ x1dx2,

where f = f (x1, x2, x3) is a differentiable function of the variables (x1, x2, x3)

only. It was shown that, whenever f depends only on x3 and x1, the corresponding
conformal class contains a metric for which the image of the Schouten tensor lies in
a parallel rank 3 distribution, which implies [Lischewski 2015] that the conformal
holonomy is contained in spin(3, 4)H. In addition, these conformal structures
turned out to have vanishing obstruction tensor, and therefore they admit ambient
metrics. For the conformal class defined by D f with f = x1(x3)2, an ambient
metric with holonomy equal to spin(3, 4)H was found, and for this example also
the conformal holonomy is equal to spin(3, 4)H.

Remark. We point out that there is a large class of examples of Bryant conformal
structures with f depending on three variables x1, x2, x3 for which the obstruction
tensor has rank 3, e.g., the one with f = x3

+ x1x2
+ (x2)2 + (x3)2 in [Ander-

son et al. 2015]. From our Proposition 5.12 it follows that these examples have
hol(M, cD f )= spin(4, 3).

More difficult is the question of finding examples with rk(O)= 1. Of course, a
general conformal structure with holonomy su(2, 2)⊂ spin(4, 3) has rk(O)= 1, but
we are not aware of an explicit example with rk(O)=1 and hol(M,cD)⊂spin(4,3)H.
Other examples with rk(O)= 1, not necessarily with hol(M,cD)⊂ spin(4,3), are
given by pp-waves and their generalization to arbitrary signature [Leistner and
Nurowski 2010; Anderson et al. 2017].

Finally, Theorem 4.9 implies:
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Corollary 5.13. Suppose (M, c) is of signature (3, 3) and rk(O)≤ 3 on some open
set and Im(O) is not integrable. Then hol(M, c) is either equal to so(4, 4) or to
spin(4, 3).

Proof. From the assumptions, rk(O)≥ 2 on an open set. If rk(O)= 2 on an open
set, it follows from Theorem 4.9 that E must have dimension at least 3 on this set.
Otherwise the image of O would be integrable. But then the statement follows
from Theorem 4.9. Otherwise the set on which rk(O)≥ 3 is open and dense and
the statement is an immediate consequence of Theorem 4.9. �
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[Čap and Sagerschnig 2009] A. Čap and K. Sagerschnig, “On Nurowski’s conformal structure
associated to a generic rank two distribution in dimension five”, J. Geom. Phys. 59:7 (2009), 901–
912. MR Zbl
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ON THE CLASSIFICATION
OF POINTED FUSION CATEGORIES

UP TO WEAK MORITA EQUIVALENCE

BERNARDO URIBE

A pointed fusion category is a rigid tensor category with finitely many
isomorphism classes of simple objects which moreover are invertible. Two
tensor categories C and D are weakly Morita equivalent if there exists an
indecomposable right module category M over C such that FunC(M,M)

and D are tensor equivalent. We use the Lyndon–Hochschild–Serre spec-
tral sequence associated to abelian group extensions to give necessary and
sufficient conditions in terms of cohomology classes for two pointed fusion
categories to be weakly Morita equivalent. This result allows one to clas-
sify the equivalence classes of pointed fusion categories of any given global
dimension.

Introduction

Pointed fusion categories are rigid tensor categories with finitely many isomorphism
classes of simple objects with the property that all simple objects are invertible.
Any pointed fusion category C is equivalent to the fusion category Vect(G, ω) of
complex vector spaces graded by the finite group G together with the associativity
constraint defined by the 3-cocycle ω ∈ Z3(G,C∗). Whenever we have a right
module category M over C we can define the dual category C∗M := FunC(M,M)

which becomes a tensor category via composition of functors. Whenever C is a fusion
category and M is an indecomposable fusion category, the dual category C∗M is also
a fusion category [Ostrik 2003a, §2.2]. An indecomposable module category M
of Vect(G, ω) may be defined by M=M(K , µ), where K is the space of cosets
K := A \G for A a subgroup of G and µ ∈ C2(G,Map(K ,C∗)) is a cochain that
satisfies the equation δGµ

−1
=ω. Two tensor categories C and D are weakly Morita

equivalent if there exists an indecomposable right module category M over C such
that C∗M and D are tensor equivalent [Müger 2003, Definition 4.2].
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Now, if we have two pointed fusion categories Vect(G, ω) and Vect(Ĝ, ω̂), what
are the necessary and sufficient conditions for them to be weakly Morita equivalent?
This question was raised in [Davydov 2000; Movshev 1993], it was answered by
Davydov [2000, Corollary 6.2] for the case in which both ω and ω̂ were trivial, and
the general case was answered by Naidu [2007, Theorem 5.8] in terms of the prop-
erties that A, ω and µ need to satisfy. Nevertheless these conditions were given in
equations that a priori had no interpretation in terms of known cohomology classes.

We continue the work started by Naidu [2007] and frame all the calculations
done there in the language of the double complex associated to an abelian group
extension which induces the Lyndon–Hochschild–Serre (LHS) spectral sequence.
By doing so we are able to obtain in Corollary 3.2 cohomological conditions on ω
in order for the tensor category Vect(G, ω)∗M(A\G,µ) to be pointed, namely that ω
must be cohomologous to a cocycle appearing in C2,1

⊕C3,0 of the double complex
which induces the Lyndon–Hochschild–Serre spectral sequence associated to the
extension 1→ A→ G→ K → 1.

With the previous result at hand, we construct explicit representatives of ω and µ
in terms of coordinates and we determine explicitly the groups Ĝ and the cocycles ω̂.
The main result of this paper is Theorem 3.9, in which we give the necessary and
sufficient conditions for the categories Vect(H, η) and Vect(Ĥ , η̂) to be weakly
Morita equivalent. We may summarize the conditions as follows: Vect(H, η) and
Vect(Ĥ , η̂) are weakly Morita equivalent if and only if there exist isomorphisms of
groups φ : AoF K −→∼= H and φ̂ :KnF̂ A−→

∼= Ĥ for some finite group K acting on the
abelian group A, with F ∈ Z2(K , A) and F̂ ∈ Z2(K ,A) where A := Hom(A,C∗),
such that both [F̂] and [F] survive respectively the LHS spectral sequence for the
groups AoF K and K nF̂ A, and such that φ∗η is cohomologous to

ω((a1, k1), (a2, k2), (a3, k3)) := F̂(k1, k2)(a3)ε(k1, k2, k3)

and φ̂∗η̂ is cohomologous to

ω̂((k1, ρ1), (k2, ρ2), (k3, ρ3)) := ε(k1, k2, k3)ρ1(F(k2, k3)),

where ε : K 3
→ C∗ satisfies δK ε = F̂ ∧ F.

Theorem 3.9 may be used to determine the weak Morita equivalence classes
of pointed fusion categories of a given global dimension but the cohomological
calculations can become very elaborate and are beyond the scope of this article. Nev-
ertheless in Section 4 we include a calculation in which we show how Theorem 3.9
can be used to prove that there are only seven weak Morita equivalence classes of
pointed fusion categories of global dimension four and calculate the pointed fusion
categories which are weakly Morita equivalent to Vect(Q8, η) for the quaternion
group Q8.
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1. Preliminaries

1A. Abelian group extensions. Consider the short exact sequence of finite groups

(1-1) 1→ A→ G→ K → 1

with A abelian. Consider u : K → G any section of the projection map p : G→ K ,
p(g)= (Ag) such that u(1K )= 1G and denote the right G-action on K by

kGg := p((u(k)g)

for k ∈ K and g ∈G. The elements u(k)g and u(kGg) differ by an element κk,g ∈ A
satisfying the equation

(1-2) u(k)g = κk,gu(kGg),

which furthermore satisfies the relation

κk,g1g2 = κk,g1κkGg1,g2

for k ∈ K and g1, g2 ∈ G. Since A is an abelian normal subgroup G, there is an
induced K -left action on A by conjugation:

ka := u(k)au(k)−1 for k ∈ K and a ∈ A.

Since the isomorphism class of the extension (1-1) can be classified by the
cohomology class of the cocycle F ∈ Z2(K , A), i.e., a map F : K×K→ A such that

δK F(k1, k2, k3)=
k1 F(k2, k3)F(k1k2, k3)

−1 F(k1, k2k3)F(k1, k2)
−1
= 1,

without loss of generality we will further assume that

G := AoF K ,

where the product structure of G is given by the formula

(a1, k1)(a2, k2) := (a1(
k1a2)F(k1, k2), k1k2).

With this explicit choice of the group G, we choose the function u : K → G to
be u(k) := (1A, k) and therefore we have that

κk1,(a,k2) =
k1aF(k1, k2),

thus obtaining F(k1, k2) = κk1,(1,k2). We furthermore have that for x ∈ K and
g = (a, k) ∈ G,

xGg = xG(a, k)= xk.

Denote the dual group A := Hom(A,C∗) and note that there is an induced
K -right action on A defined as ρk(a) := ρ(ka) for ρ ∈ A and k ∈ K.
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1B. Cohomology of groups and the LHS spectral sequence. In what follows we
will construct an explicit double complex whose cohomology calculates the co-
homology of the group G, and whose associated spectral sequence recovers the
Lyndon–Hochschild–Serre (LHS) spectral sequence of the extension (1-1).

Endow the set Map(K ,C∗) with the left G-action (gF f )(k) := f (kGg), where
g ∈ G, k ∈ K and f : K → C∗, and consider the complex C∗(G,Map(K ,C∗))

with elements normalized chains

Cq(G,Map(K,C∗)) :={ f :K×Gq
→C∗ | f(k;g1,...,gq)=1 whenever some gi=1}

and boundary map

(1-3) (δG f )(k;g1,...,gq)

= f(kGg1;g2,...,gq)

q−1∏
i=1

f(k;g1,...,gi gi+1,...,gq)
(−1)if(k;g1,...,gq−1)

(−1)q.

Since the natural morphism of groupoids, defined by the inclusion of the group A
into the action groupoid defined by the right action of G on K, is an equivalence of
categories, we have that the restriction map

ψ :C∗(G,Map(K ,C∗))→C∗(A,C∗), ψ( f )(a1, . . . , aq) := f (1K ; a1, . . . , aq),

is a morphism of complexes which induces an isomorphism in cohomology

ψ̃ : H∗(G,Map(K ,C∗))−→
∼= H∗(A,C∗).

The inverse map can be constructed at the level of cocycles as follows:

Lemma 1.1. The map ϕ : Cq(A,C∗)→ Cq(G,Map(K ,C∗)),

ϕ(α)(k; g1, . . . , gq) := α(κk,g1, κkGg1,g2, . . . , κkGg1g2...gq−1,gq ),

defines a map of complexes which induces an isomorphism in cohomology ϕ̃ :
H∗(A,C∗)−→

∼= H∗(G,Map(K ,C∗)) which is the inverse of the map ψ̃ .

Proof. On the one hand we have

δGϕ(α)(k;g1,...,gp)

= ϕ(α)(kGg1;g2,...,gq)

q−1∏
i=1

ϕ(α)(k;g1,...,gi gi+1,...,gq)
(−1)iϕ(α)(k;g1,...,gq−1)

(−1)q

= α(κkGg1,g2,κkGg1g2,g3,...,κkGg1...gq−1,gq )

q−1∏
i=1

α(κk,g1,κkGg1,g2,...,κkGg1...gi−1,gi gi+1,...,κkGg1...gq−1,gq )
(−1)i

α((κk,g1,κkGg1,g2,...,κkGg1...gq−2,gq−1)
(−1)q
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and on the other

ϕ(δGα)(k;g1,...,gp)

= δGα(κk,g1,κkGg1,g2,...,κkGg1g2,...,gq−1,gq )

= α(κkGg1,g2,κkGg1g2,g3,...,κkGg1...gq−1,gq )

q−1∏
i=1

α(κk,g1,κkGg1,g2,...,κkGg1...gi−1,giκkGg1...gi−1gi ,gi+1,...,κkGg1...gq−1,gq )
(−1)i

α((κk,g1,κkGg1,g2,...,κkGg1...gq−2,gq−1)
(−1)q.

The equality δGϕ(α)= ϕ(δGα) follows from the identity

κkGg1...gi−1,gi gi+1 = κkGg1...gi−1,giκkGg1...gi−1gi ,gi+1 .

Finally, the composition ψ(ϕ(α))= α follows from κ1,a = a for a ∈ A. �

The complex C∗(A,C∗) can be endowed with the structure of a right K -module
by setting for α ∈ Cq(A,C∗) and k ∈ K

αk(a1, . . . , aq) := α(u(k)a1u(k)−1, . . . , u(k)aqu(k)−1),

and the complex C∗(G,Map(K ,C∗)) can also be endowed with the structure of a
right K -module by setting for f ∈ Cq(G,Map(K ,C∗)) and k ∈ K

( f G k)(x; g1, . . . , gq) := f (kx; g1, . . . , gq).

The map ϕ fails to be a K -module map; nevertheless it induces a K -module map
at the level of cohomology:

Lemma 1.2. The isomorphism ϕ̃ : H∗(A,C∗) −→
∼= H∗(G,Map(K ,C∗)) is an iso-

morphism of K -modules.

Proof. Take α ∈ Zq(A,C∗) and k ∈ K. We claim that ψ(ϕ(α)G k)= αk, and since
ψ(ϕ(αk))= αk, we conclude that ϕ(α)G k and ϕ(αk) are cohomologous. Now, let
us calculate

ψ(ϕ(α)G k)(a1, . . . , aq)= (ϕ(α)Gk)(1; a1, . . . , aq)

= ϕ(α)(k; a1, . . . , aq)

= α(κk,a1, κkGa1,a2, . . . , κkGa1a2,...,aq−1,aq )

= α(κk,a1, κk,a2, . . . , κk,aq )

= α(u(k)a1u(k)−1, u(k)a2u(k)−1, . . . , u(k)aqu(k)−1)

= αk(a1, a2, . . . , aq);

the lemma follows. �
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1B1. Double complex. Since C∗(G,Map(K ,C∗)) is a complex of right K -modules,
we can consider the complexes

C∗(K ,Cq(G,Map(K ,C∗))),

with C p(K ,Cq(G,Map(K ,C∗)) consisting of normalized cochains

{ f : K p
→ Cq(G,Map(K ,C∗)) | f (k1, . . . , kp)= 1 whenever some ki = 1}

and whose differentials are

(δK f )(k1, . . . , kp)

= f (k2, . . . , kp)

p−1∏
i=1

f (k1, . . . , ki ki+1, . . . , kp)
(−1)i( f (k1, . . . , kp−1)G kp)

(−1)p
.

These complexes assemble into a double complex

C p,q
:= C p(K ,Cq(G,Map(K ,C∗))).

Let us denote by Tot(C∗,∗) the total complex associated to the double complex and
let δTot := δK ⊕ (δG)

(−1)p
be its differential.

We may filter the total complex by the degree of the G cochains, thus obtaining
a spectral sequence whose first page becomes

E p,q
1 = H p(K ,Cq(G,Map(K ,C∗))).

Since the K -modules Cq(G,Map(K ,C∗)) are free K -modules, we conclude that
the first page localizes on the y-axis,

E0,q
1 = H 0(K ,Cq(G,Map(K ,C∗)))= Cq(G,Map(K ,C∗))K ∼= Cq(G,C∗)

and E p,q
1 = 0 for p > 0. The spectral sequence collapses at the second page, with

the only surviving elements on the y-axis

E0,q
2 = Hq(G,C∗).

Hence we have:

Proposition 1.3. The inclusion of K -invariant cochains

C∗(G,Map(K ,C∗))K ↪→ Tot(C∗(K ,C∗(G,Map(K ,C∗))))

is a quasi-isomorphism. Therefore the cohomology groups

H∗(G,C∗)−→
∼= H∗(Tot(C∗(K ,C∗(G,Map(K ,C∗))))

are canonically isomorphic.
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Filtering the double complex by the degree of the K cochains we obtain the
Lyndon–Hochschild–Serre spectral sequence associated to the group extension
1→ A→ G→ K → 1; see [Evens 1991, §7.2]. The first page becomes

E p,q
1 = C p(K , Hq(G,Map(K ,C∗))),

and the second page becomes

E p,q
2 = H p(K , Hq(G,Map(K ,C∗))).

Since the projection map ψ̃ : Hq(G,Map(K ,C∗)) −→
∼= Hq(A,C∗) is an isomor-

phism of K -modules, we conclude:

Proposition 1.4 (LHS spectral sequence). Filtering the total complex by the degree
of the K -chains, we obtain a spectral sequence whose second page is

E p,q
2
∼= H p(K , Hq(A,C∗))

and that converges to H∗(G,C∗).

We will denote by di : E p,q
i → E p+i,q−i+1

i the differentials of this spectral
sequence.

1C. Tensor categories. Following [Bakalov and Kirillov 2001, §1], a tensor cat-
egory consists of (C,⊗, 1C, α, λ, ρ), where C is a category, ⊗ : C × C → C
is a bifunctor, α is the associativity constraint, i.e., a functorial isomorphism
αU V W : (U⊗V )⊗W −→∼ U⊗(V⊗W ) of functors C×C×C→C, 1C ∈Obj(C) is a unit
element and λ, ρ are functorial isomorphisms λV : 1C⊗V −→∼ V, ρV : V ⊗1C −→∼ V
satisfying the pentagon axiom

((V1⊗ V2)⊗ V3)⊗ V4
α1,2,3⊗id4

tt

α12,3,4

**
(V1⊗ (V2⊗ V3))⊗ V4

α1,23,4

��

(V1⊗ V2)⊗ (V3⊗ V4)

α1,2,34

��
V1⊗ ((V2⊗ V3)⊗ V4) id1⊗α2,3,4

// (V1⊗ (V2⊗ (V3⊗ V4)))

and the triangle axiom

(V1⊗ 1C)⊗ V2

ρ⊗id ''

α // V1⊗ (1C ⊗ V2)

id⊗λww
V1⊗ V2
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1D. The fusion category Vect(G, ω). A fusion category over C is a rigid semisim-
ple C-linear tensor category, with only finitely many isomorphism classes of simple
objects, such that the endomorphisms of the unit object is C; see [Etingof et al.
2005].

For G a finite group and a 3-cocycle ω ∈ Z3(G,C∗), define the category
Vect(G, ω) whose objects are G-graded complex vector spaces V =

⊕
g∈G Vg,

whose tensor product is (V⊗W )g :=
⊕

hk=gVh⊗Wk,whose associativity constraint is

αVg,Vh ,Vk = ω(g, h, k)γ with γ ((x ⊗ y)⊗ z)= x ⊗ (y⊗ z),

and whose left and right unit isomorphisms are

λVg = ω(1, 1, g)−1 idVg and ρVg = ω(g, 1, 1) idVg .

The category Vect(G, ω) is a fusion category where the simple objects are the
1-dimensional vector spaces.

We will assume that all group cochains are normalized, and hence the left and
right unit isomorphisms become identities.

For convenience we will work with a category V(G, ω) which is skeletal, i.e., one
on which isomorphic objects are equal, and which is equivalent to Vect(G, ω). The
category V(G, ω) has for simple objects the elements g of the group G, the tensor
product is g⊗ h = gh and the associativity isomorphisms are ω(g, h, k) idghk .

A finite tensor category is called pointed if all its simple objects are invertible. It
is thus easy to see that any finite tensor category which is pointed is equivalent to
Vect(G, ω) for some finite group G and some 3-cocycle ω.

1E. Module categories. Following [Ostrik 2003b, §2.3], a right module category
over the tensor category (C,⊗, 1C, α, λ, ρ) consists of (M,⊗, µ, τ ), where M is
a category, ⊗ :M× C→M is an exact bifunctor,

µM,X,Y : M ⊗ (X ⊗ Y )−→∼ (M ⊗ X)⊗ Y

is a functorial associativity and τM : M ⊗ 1C −→∼ M is a unit isomorphism for any
X, Y ∈ C, M ∈M, satisfying the pentagon axiom

(1-4) M ⊗ ((X ⊗ Y )⊗ Z)
idM⊗αX,Y,Z

uu

µM,X⊗Y,Z

))
M ⊗ (X ⊗ (Y ⊗ Z))

µM,X,Y⊗Z

��

(M ⊗ (X ⊗ Y ))⊗ Z

µM,X,Y⊗idZ

��
(M ⊗ X)⊗ (Y ⊗ Z)

µM⊗X,Y,Z
// ((M ⊗ X)⊗ Y )⊗ Z
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and the triangle axiom

(1-5) M ⊗ (1C ⊗ Y )

idM⊗λY ''

µM,1C ,Y // (M ⊗ 1C)⊗ Y

τM⊗idYww
M ⊗ Y

A module functor (F, γ ) : (M1, µ
1, τ 1)→ (M2, µ

2, τ 2) between two module
categories consists of a functor F : M1 → M2 and a functorial isomorphism
γM,X : F(M ⊗ X)→ F(M)⊗ X for any X ∈ C, M ∈M, satisfying the pentagon
axiom

F(M ⊗ (X ⊗ Y ))
F(µ1

M,X,Y )

uu

γM,X⊗Y

))
F((M ⊗ X)⊗ Y )

γM⊗X,Y

��

F(M)⊗ (X ⊗ Y )

µ2
F(M),X,Y
��

F(M ⊗ X)⊗ Y
γM,X⊗idY

// (F(M)⊗ X)⊗ Y

and the triangle axiom

F(M ⊗ 1C)

γM,1C ''

F(τ 1
M ) // F(M)

F(M)⊗ 1C

τ 1
F(M)

88

Two module categories M1 and M2 over C are equivalent if there exists a module
functor between the two which is moreover an equivalence of categories. The
direct sum M1⊕M2 is the module category with the obvious structure. A module
category is indecomposable if it is not equivalent to the direct sum of two nontrivial
module categories.

A natural module transformation η : (F1, γ 1)→ (F2, γ 2) consists of a natural
transformation η : F1

→ F2 such that the square

F1(M ⊗ X)
ηM⊗X //

γ 1
M,X
��

F2(M ⊗ X)

γ 2
M,X
��

F1(M)⊗ X
ηM⊗idX

// F2(M)⊗ X

commutes for all M ∈M and X ∈ C.
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1F. Indecomposable module categories over V(G, ω). Let M be a skeletal right
module category over V(G, ω). The set of simple objects of M is a transitive right
G-set and therefore it can be identified with the coset K := A \G for A a subgroup
of G. The isomorphisms µk,g1,g2 for k ∈ K and g1, g2 ∈ G are scalars, and we can
assemble these scalars as an element

µ ∈ C2(G,Map(K ,C∗)), µ(k; g1, g2) := µk,g1,g2 .

The pentagon axiom (1-4) translates into the equation

ω(g1, g2, g3)µ(k; g1, g2g3)µ(kGg1; g2, g3)= µ(k; g1g2, g3)µ(k; g1, g2),

which in view of the definition of the differential δG in (1-3) becomes

(1-6) δGµ
−1
= π∗ω,

where π∗ω ∈ C3(G,Map(K ,C∗))K is the K -invariant cocycle defined by ω, i.e.,

π∗ω(k; g1, g2, g3) := ω(g1, g2, g3).

Since µ is normalized and the unit constraint in V(G, ω) is trivial, we have that
the triangle axiom (1-5) implies that the unit constraint in M is trivial.

Denote this skeletal module category M=M(A\G, µ). Note that two V(G, ω)-
module categories M1 =M(A1 \G, µ1) and M2 =M(A2 \G, µ2) are equivalent
if and only if there exist a right G-equivariant isomorphism F : A1 \G −→∼= A2 \G
and an element γ ∈ C1(G,Map(A1 \G,C∗)) such that

γ (A1g; g1g2)µ2(F(A1g); g1, g2)= µ1(A1g; g1, g2)γ (A1gg1; g2)γ (A1g; g1).

This information implies that A1 and A2 are conjugate subgroups of G and that

δGγ =
F∗µ2

µ1
.

In the case that A = A1 = A2, the G-equivariant isomorphisms are parametrized
by the elements of the group A \ NG(A), and the equation δGγ = F∗µ2/µ1 im-
plies that F∗µ2/µ1 is trivial in H 2(G,Map(A \ G,C∗)). Since we know that
ψ̃ :H 2(G,Map(A\G,C∗))−→

∼= H 2(A,C∗) is an isomorphism, we can conclude that
the isomorphism classes of module categories over V(G, ω) may be parametrized
(in a noncanonical manner) by pairs ([A], [ψ(µ)]), where [A] is a conjugacy class
of subgroups of G, and [ψ(µ)] is a representative of a cohomology class in the
group of invariants H 2(A,C∗)/NG(A).

1G. Dual category. Let C be a tensor category and M an indecomposable right
module category. The dual category C∗M := FunC(M,M) is the category whose
objects are module functors from M to itself and whose morphisms are natural
module transformations.
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The category C∗M becomes a tensor category by composition of functors; namely
for (γ 1, F1), (γ

2, F2) ∈Obj(C∗M), where γ 1, γ 2 represent the module structures on
the functors F1 and F2 respectively, we define the tensor structure by

(γ 1, F1)⊗ (γ
2, F2) := (γ, F1 ◦ F2),

where the module structure γ is defined by γM,X := γ
1
F2(M),X ◦F1(γ

2
M,X ) for M ∈M

and X ∈C. For two morphisms η :(γ 1, F1)→(γ 2, F2) and η′ :(γ ′ 1, F ′1)→(γ ′ 2, F ′2)
in C∗M their tensor product is (η⊗ η′)(M) := ηF ′2(M) ◦ F1(η

′

M).
Whenever C and M are semisimple, the dual category C∗M is semisimple [Ostrik

2003a, §2.2]. Moreover, since M is itself a left module category over C∗M it has been
shown in [Ostrik 2003b, Corollary 4.1] that the double dual is tensor equivalent to
the original category, i.e., (C∗M)

∗
M' C. Furthermore, the module categories of C and

of C∗M are in canonical bijection (Proposition 2.1 of the same work) by the following
maps. For M1 a module category over C, the category FunC(M1,M) of module
functors from M1 to M is a left module category of C∗M = FunC(M,M) via the
composition of functors. Conversely, if M2 is a left module category over C∗M, then
FunC∗M(M,M2) is a right module category over FunC∗M(M,M) = (C∗M)

∗
M ' C

via composition of functors. These maps are inverse from each other.

1H. Center of a tensor category. The center Z(C) of the tensor category C is the
category whose objects are pairs (X, η), where X is an object in C and η is a
functorial set of isomorphisms ηY : X⊗Y → Y ⊗ X such that the hexagon diagram

(X ⊗ Y )⊗ Z α //

ηY⊗1
��

X ⊗ (Y ⊗ Z)
ηY⊗Z // (Y ⊗ Z)⊗ X

α

��
(Y ⊗ X)⊗ Z α // Y ⊗ (X ⊗ Z)

1⊗ηZ // Y ⊗ (Z ⊗ X)

and the triangle diagram

X ⊗ 1C
η1C //

ρ
##

1C ⊗ X

λ{{
X

are commutative. A morphism f : (X, η)→ (Y, ν) consists of a morphism f : X→Y
for which the diagram

X ⊗ Z
ηZ //

f⊗1
��

Z ⊗ X

1⊗ f
��

Y ⊗ Z
νZ
// Z ⊗ Y
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commutes for any object Z in C. The tensor structure is defined as (X, η)⊗(Y, ν) :=
(X ⊗ Y, γ ), where γZ is defined as the composition

(X ⊗ Y )⊗ Z α // X ⊗ (Y ⊗ Z)
1⊗νZ // X ⊗ (Z ⊗ Y )
α−1

vv
(X ⊗ Z)⊗ Y

ηZ⊗1 // (Z ⊗ X)⊗ Y α // Z ⊗ (X ⊗ Y )

The center Z(C) is moreover braided and the braiding for the pair (X, η), (Y, ν)
is precisely the map ηY .

The center Z(Vect(G, ω)) of the tensor category Vect(G, ω) contains the in-
formation necessary for constructing the quasi-Hopf algebra that is known as the
twisted Drinfeld double Dω(G) of the group G twisted by ω (see [Dijkgraaf et al.
1991, §3.2]).

1I. Weak Morita equivalence of tensor categories. Two tensor categories C and D
are weakly Morita equivalent if there exists an indecomposable right module cate-
gory M over C such that C∗M and D are tensor equivalent [Müger 2003, Definition
4.2]. In Proposition 4.6 of the same work it is shown that weak Morita equivalence is
an equivalence relation, and in [Etingof et al. 2011, Theorem 3.1] it is shown that two
tensor categories are weak Morita equivalent if and only if their centers are braided
equivalent. In particular we have that for M an indecomposable module category
over C there is a canonical equivalence of braided tensor categories Z(C)' Z(C∗M)
[Ostrik 2003a, Proposition 2.2].

2. The dual of V(G, ω) with respect to M(A \ G, µ)

Let us consider the tensor category C = V(G, ω) and the right module category
M=M(A\G, µ) described in Section 1F. In this chapter we will review the main
results of [Naidu 2007], where explicit conditions are stated under which the dual
category C∗M is pointed. For the sake of completeness and clarity we will review the
constructions done in §3 and §4 of that work and we will reinterpret the equations
given there in the terminology that we have set up in Section 1A and Section 1B.

2A. Conditions for C∗M to be pointed. Let us set up some notation for this section:
let K := A\G, u : K→G satisfy p◦u= 1G and u(p(1G))= 1G for p :G→ K the
projection, κ : K×G→ A satisfy u(k)g= κk,gu(kGg) and K A be the elements of K
fixed under the conjugation by elements of A. The module category M(A \G, µ)
is the skeletal category whose simple objects are the elements of K = A \G, whose
tensor structure is k ⊗ g := kGg for k ∈ K and g ∈ G and whose associativity
constraint µ satisfies δGµ

−1
= π∗ω; see (1-6). In what follows we will focus on

parametrizing the invertible objects of C∗M.
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Following [Naidu 2007, Lemma 3.2] any invertible module functor in C∗M is
of the form (Fy, γ ), where the functor Fy :M→M is the one that extends the
G-equivariant map fy : K → K, fy(k) = p(u(y)u(k)), for y ∈ K A, and γ is a
functorial isomorphism γk,g : Fy(k⊗ g)−→∼= Fy(k)⊗ g that satisfies the pentagon
axiom. Writing γk,g := γ (k; g) idp(u(y)u(kGg)) for γ ∈C1(G,Map(K ,C∗)) we have
that the pentagon axiom of a module functor translates into the equation

µ(k; g1, g2)γ (kGg1; g2)γ (k; g1)= γ (k; g1g2)µ( fy(k); g1, g2),

which can also be written as

δGγ (k; γ1, γ2)=
µ( fy(k); g1, g2)

µ(k; g1, g2)
.

The inverse of (Fy, γ ) is the module functor (Fp(u(y)−1), γ ) with

γ (k; g) := γ (p(u(y)−1u(x))−1
; g)−1.

Defining for each y ∈ K A the set

Funy :=

{
γ ∈ C1(G,Map(K ,C∗)) | δGγ (k; g1, g2)=

µ( fy(k); g1, g2)

µ(k; g1, g2)

}
for all k ∈ K and g1, g2 ∈ G, we have that of invertible objects of C∗M are precisely
the module functors (Fy, γ ) where y ∈ K A and γ ∈ Funy . To simplify the notation
we will denote such a module functor by the pair (y, γ ).

Two invertible module functors (y1, γ
1) and (y2, γ

2) in C∗M are isomorphic if
and only if y1 = y2 and if there exists natural transformation parametrized by a
map η ∈ C0(G,Map(K ,C∗)) satisfying the equation

(2-1) γ 1(k; g)η(k)= η(kGg)γ 2(k; g)

for all k ∈ K and g ∈ G. These equations can be rewritten as the equation

δGη =
γ 2

γ 1

in C1(G,Map(K ,C∗)). Therefore for each y ∈ K A we may define an equivalence
relation on the elements γ 1, γ 2

∈ Funy by setting γ 2
' γ 1 whenever there exists η

such that δGη = γ
2/γ 1; denote by Funy the associated set of equivalence classes.

For each y ∈ K A let us choose an element γy ∈ Funy , and note that the maps

Funy→ Z1(G,Map(K ,C∗)), β 7→
β

γy
,

Z1(G,Map(k,C∗))→ Funy, ε 7→ εγy
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are inverse to each other. Therefore we obtain bijections

Funy ∼= H 1(G,Map(K ,C∗))∼= H 1(A,C∗)= A,

which are realized by the maps

(2-2) ζy :A→Funy, ζy(ρ) :=γyϕ(ρ), θy :Funy→A, θy(β) :=ψ(β/γy).

Recall from [Etingof et al. 2005, Definition 2.2] that the global dimension dim(C)
of a fusion category C is the sum of the squared norms of its simple objects, and
note that by Theorem 2.15 of the same paper we have dim(C∗M)= dim(C) whenever
C is a fusion category and M is an indecomposable module category over C.

Let us suppose now that the dual category C∗M = V(G, ω)∗M(A\G,µ) is pointed.
Therefore its global dimension

dim(C∗M)= |A||K
A
|

must be equal to the number of isomorphic classes of invertible objects, since on
pointed categories all simple objects are invertible. On the other hand, by [Etingof
et al. 2005, Theorem 2.15 ] we have dim(C∗M)= dim(C) and dim(C)= |G|. There-
fore in order for the category C∗M to be pointed it is necessary that |A||K A

| = |G|.
Since |G| = |A||K |, |A| ≤ |A| and |K A

| ≤ |K |, the equality holds if and only if A
is abelian, thus giving that |A| = |A|, and if A is normal in G and K A

= K.
On the other hand, if A is abelian and normal on G, then the number of iso-

morphism classes of invertible objects in C∗M is |A||K | = |G|. Since dim(C∗M)=
dim(C) = |G|, we have that the set of isomorphism classes of invertible objects
exhausts the set of simple elements, and therefore C∗M must be pointed.

Summarizing we have:

Theorem 2.1 [Naidu 2007, Theorem 3.4]. The tensor category

C∗M = V(G, ω)∗M(A\G,µ)

is pointed if and only if A is abelian and normal in G and the cohomology class
[(µGy)/µ] is trivial in H 2(G,Map(K ,C∗)) for all y ∈ K.

Note that since A is normal in G, we may use the notation introduced in
Section 1B so that µ( fy(k); g1, g2) = µ(yk; g1, g2) = (µGy)(k; g1, g2). Since
we have that δGµ

−1
= π∗ω = δG(µ

−1
Gy), the quotient (µGy)/µ defines a cocycle

in Z2(G,Map(K ,C∗)). The equation δGγy = (µGy)/µ implies that the quotient is
trivial in cohomology.

2B. The Grothendieck ring of the pointed category C∗M. From now on we will
assume that the dual category C∗M is pointed. Therefore we have that A is abelian
and normal in G and that we can choose elements γy ∈ C1(G,Map(K ,C∗)) for
each y ∈ K such that δGγy = (µGy)/µ.
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The Grothendieck ring K0(C∗M) of the category C∗M is the ring defined by the
semiring whose elements are the isomorphism classes of objects and whose product
is the one induced by the tensor product. Since C∗M is pointed, K0(C∗M) is isomorphic
to the group ring Z[3] for some finite group 3. In this section we will recall the
construction of this isomorphism carried out in [Naidu 2007, Theorem 4.5].

The tensor product of two invertible elements (y1, γ
1), (y2, γ

2) in C∗M as defined
in Section 1G is

(y1, γ
1)⊗ (y2, γ

2)= (y1 y2, (γ
1
Gy2)γ

2).

This tensor product defines a group structure on the set of isomorphism classes of
invertible objects

3 :=
⋃
y∈K

{y}×Funy

by the equation (y1, [γ
1
]) ? (y2, [γ

2
]) = (y1 y2, [(γ

1
Gy2)γ

2
]), where [γ ] denotes

the equivalence class of γ in Funy .
Define the element γ ∈ C1(K ,C1(G,Map(K ,C∗))) by the equation

γ (y) := γy

and note that the equations δGγy = (µGy)/µ are equivalent to the equation

δGγ = δKµ.

Define the element ν̃ := δKγ , i.e., ν̃(y1, y2)= (γ (y2)γ (y1)Gy2)/γ (y1 y2), and note
that

δK ν̃ = δ
2
Kγ = 1 and δG ν̃ = δGδKγ = δK δGγ = δ

2
Kµ= 1.

Hence ν̃ ∈ Z2(K , Z1(G,Map(K ,C∗))) and we may define

(2-3) ν := ψ ◦ ν̃ ∈ Z2(K , Z1(A,C∗))= Z2(K ,A),

thus having ν(y1, y2)(a) := ν̃(y1, y2)(1; a).
With this 2-cocycle ν we may define the crossed product K nν A by setting on

pairs of elements of the set K ×A

(y1, ρ1) · (y2, ρ2) := (y1 y2, ρ
y2
1 ρ2ν(y1, y2)).

Using the notation of (2-2) we have:

Theorem 2.2 [Naidu 2007, Theorem 4.5]. The map

T : K nν A→3, T ((y, ρ))= (y, [ζy(ρ)]),

is an isomorphism of groups. Hence K0(C∗M)∼= Z[K nν A].
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Proof. On the one hand we have

T ((y1, ρ1)·(y2, ρ2))= T ((y1 y2, ρ
y2
1 ρ2ν(y1, y2)))= (y1 y2, [ζy1 y2(ρ

y2
1 ρ2ν(y1, y2))])

and on the other

T ((y1, ρ1)) ? T ((y2, ρ2))= (y1, [ζy1(ρ1)]) ? (y2, [ζy2(ρ2)])

= (y1 y2, [(ζy1(ρ1)Gy2)ζy2(ρ2)]).

The result follows if we check the equality

θy1 y2((ζy1(ρ1)Gy2)ζy2(ρ2))= ρ
y2
1 ρ2ν(y1, y2)

since this implies that ζy1 y2((ρ1Gy2)ρ2ν(y1, y2)) and (ζy1(ρ1)Gy2)ζy2(ρ2) are coho-
mologous; hence we have

θy1y2((ζy1(ρ1)Gy2)ζy2(ρ2))(a)=
((ζy1(ρ1)Gy2)(1;a))ζy2(ρ2)(1;a)

γ(y1y2)(1;a)

=
(γ(y1)Gy2ϕ(ρ1)Gy2)(1;a)(γ(y2)ϕ(ρ2))(1;a)

γ(y1y2)(1;a)

= δKγ(y1, y2)(1;a)ρ
y2
1 (a)ρ2(a)

= (ν(y1, y2)ρ
y2
1 ρ2)(a). �

2C. A skeleton of the pointed category C∗M. A skeleton sk(C∗M) of C∗M is a full
subcategory of C∗M on which each object of C∗M is isomorphic to only one object in
sk(C∗M). Let us choose for objects

Obj(sk(C∗M)) := {(y, ζy(ρ)) | (y, ρ) ∈ K nν A}

and define its tensor product • by the one induced by ?, i.e.,

((y1, ζy1(ρ1)) • (y2, ζy2(ρ2)) := (y1 y2, ζy1 y2(ν(y1, y2)ρ
y2
1 ρ1)).

For each pair of objects, choose isomorphisms in C∗M

f ((y1, ζy1(ρ1)), (y2, ζy2(ρ2))

: (y1, ζy1(ρ1)) • (y2, ζy2(ρ2))−→
∼ (y1, ζy1(ρ1))⊗ (y2, ζy2(ρ2)),

which by equation (2-1) satisfy

((ζy1(ρ1)Gy2)ζy1(ρ1))(k; g)

=
f ((y1, ζy1(ρ1)), (y2, ζy2(ρ2))(kGg)

f ((y1, ζy1(ρ1)), (y2, ζy2(ρ2))(k)
× ζy1 y2(ν(y1, y2)ρ

y2
1 ρ1)(k; g).

The tensor product ⊗ in C∗M is associative since it is defined by the composition
of functors, but the tensor product • in its skeleton sk(C∗M)may fail to be associative.
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The associativity constraint for sk(C∗M) is then

ω̂′((y1, ζy1(ρ1)), (y2, ζy2(ρ2)), (y3, ζy3(ρ3)))

=
f ((y1, ζy1(ρ1)), (y2, ζy2(ρ2))⊗ id(ζy3 (ρ3),y3)

f ((y1, ζy1(ρ1)), (y2, ζy2(ρ2)) • (y3, ζy3(ρ3)))

×
f ((y1, ζy1(ρ1)) • (y2, ζy2(ρ2)), (y3, ζy3(ρ3)))

id(ζy1 (ρ1),y1)⊗ f ((y2, ζy2(ρ2)), (y3, ζy3(ρ3))).

In [Naidu 2007, Theorem 4.9] it is shown that ω̂′ is K -invariant and moreover
that it can be given in explicit form by the equation

ω̂′((y1, ζy1(ρ1)), (y2, ζy2(ρ2)), (y3, ζy3(ρ3)))= ν̃(y1, y2)(1; u(y3))ρ1(κy2,u(y3)).

Therefore we may define the 3-cocycle on K nν A by the equation

ω̂((y1, ρ1), (y2, ρ2), (y3, ρ3))= ν̃(y1, y2)(1; u(y3))ρ1(κy2,u(y3)),

and choosing G = AoF K and u(y)= (1, y) as was done at the end of Section 1A,
the 3-cocycle on K nν A becomes

(2-4) ω̂((y1, ρ1), (y2, ρ2), (y3, ρ3))= ν̃(y1, y2)(1; (1, y3))ρ1(F(y2, y3)).

Therefore the skeleton sk(C∗M) of C∗M becomes isomorphic to V(K nν A, ω̂), which
is equivalent to Vect(K nν A, ω̂). Therefore we can conclude with:

Theorem 2.3 [Naidu 2007, Theorem 4.9]. The fusion categories

C∗M = V(G, ω)∗M(A\G,µ) and Vect(K nν A, ω̂)

are equivalent.

Applying the results of Section 1I we have:

Corollary 2.4. The categories Vect(AoF K , ω) and Vect(K nν A, ω̂) are weakly
Morita equivalent. Hence their centers

Z(Vect(AoF K , ω))' Z(Vect(K nν A, ω̂))

are canonically equivalent as braided tensor categories.

3. Weak Morita equivalence classes of group-theoretical tensor categories

We are interested in classifying group-theoretical tensor categories of a specific
global dimension up to weak Morita equivalence. For this purpose we will fix
the group G = A oF K with A abelian and normal in G and F ∈ Z2(K , A),
and we will give an explicit description of the cocycles ω ∈ Z3(AoF K ,C∗) and
ω̂∈ Z3(KnνA,C∗) such that the tensor categories V(AoF K , ω) and V(KnνA, ω̂)

are weakly Morita equivalent.
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3A. Description ofω, µ and γ . In Theorem 2.1 and in Section 2B we have seen the
conditions needed for the tensor category C∗M = V(G, ω)∗M(A\G,µ) to be pointed. In
particular we have seen that we need the existence of γ ∈C1(K,C1(G,Map(K,C∗)))
such that

δGγ = δKµ.

Since we also have that δGµ
−1
= π∗ω we can obtain the following lemma:

Lemma 3.1. In Tot(C∗(K ,C∗(G,Map(K ,C∗)))), the cocycles π∗ω and ν̃ are
cohomologous.

Proof. Recall the definition of the double complex C∗(K ,C∗(G,Map(K ,C∗)))

given in Section 1B1, and note that we have π∗ω ∈ C0,3, µ ∈ C0,2, γ ∈ C1,1 and
ν̃ = δKγ ∈ C2,1, satisfying π∗ω · δGµ= 1 and δKµ · δGγ

−1
= 1.

Consider the element µ⊕ γ ∈ Tot2 and note that

δTot(µ⊕ γ )= (δK ⊕ δ
(−1)p

G )(µ⊕ γ )= δGµ⊕ δKµ · δGγ
−1
⊕ δKγ.

Therefore π∗ω · δTot(µ⊕ γ )= ν̃. �

Lemma 3.1 implies further conditions on the cohomology class of ω for the
tensor category C∗M = V(G, ω)∗M(A\G,µ) to be pointed.

Corollary 3.2. If the tensor category C∗M = V(G, ω)∗M(A\G,µ) is pointed then ω is
cohomologous to a cocycle that lives in C2,1

⊕ C3,0 of the double complex that
induces the Lyndon–Hochschild–Serre spectral sequence.

Remark 3.3. Note that this implies that the cohomology class of ω belongs to the
subgroup of H 3(G,C∗) defined as

�(G; A) := ker(ker(H 3(G,C∗)→ E0,3
∞
)→ E1,2

∞
),

which fits into the short exact sequence

1→ E3,0
∞
→�(G; A)→ E2,1

∞
→ 1.

The cohomology classes in �(G; A) are the only cohomology classes such that
C∗M = V(G, ω)∗M(A\G,µ) is pointed.

In what follows we will construct explicit representatives for ω and µ, but to do so
we will start by constructing explicit 3-cocycles in Tot(C∗(K ,C∗(G,Map(K ,C∗))))

which appear in �(G; A). Let us start by determining the second differential
d2 : E

2,1
2 → E4,0

2 .

Lemma 3.4. The second differential d2 : E
2,1
2 → E4,0

2 is isomorphic to the homo-
morphism

H 2(K ,A)→ H 4(K ,C∗), [F̂] 7→ [(F̂ ∧ F)−1
],

where (F̂ ∧ F)(k1, k2, k3, k4) := F̂(k1, k2)(F(k3, k4)).
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Proof. First recall that

E2,1
2 = H 2(K , H 1(G,Map(K ,C∗)))∼= H 2(K ,Hom(A,C∗))= H 2(K ,A),

E4,0
2 = H 4(K , H 0(G,Map(K ,C∗)))= H 4(K ,Map(K ,C∗)G)∼= H 4(K ,C∗).

Take F̂ ∈ Z2(K ,A) and use the map ϕ of Lemma 1.1 to lift this cocycle to
ϕ(F̂) ∈ C2(K , Z1(G,Map(K ,C∗))); in coordinates:

ϕ(F̂)(k1, k2)(x1, (a2, x2))= F̂(k1, k2)(κx1,(a2,x2))

= F̂(k1, k2)(
x1a2 F(x1, x2))

= F̂(k1, k2)(
x1a2)F̂(k1, k2)(F(x1, x2)).

Its boundary is

δkϕ(F̂)(k1,k2,k3)(x1,(a2,x2))

= F̂(k2,k3)(
x1a2 F(x1,x2))F̂(k1k2,k3)(

x1a2 F(x1,x2))
−1

F̂(k1,k2k3)(
x1a2 F(x1,x2))F̂(k1,k2)(

k3x1a2 F(k3x1,x2))
−1

= F̂(k1,k2)
k3(F(x1,x2))F̂(k1,k2)(F(k3x1,x2))

−1

= F̂(k1,k2)

(
F(k3,x1)

F(k3,x1x2)

)
,

and we can define u ∈ C3(K ,C0(G,Map(K ,C∗))) as

u(k1, k2, k3)(x) := F̂(k1, k2)(F(k3, x)).

On the one hand we have

δGu(k1, k2, k3)(x1, (a2, x2))= u(k1, k2, k3)(x1x2)u(k1, k2, k3)(x1)
−1

= F̂(k1, k2)

(
F(k3, x1x2)

F(k3, x1)

)
and on the other

δK u(k1, k2, k3, k4)(x)

= F̂(k2, k3)(F(k4, x))F̂(k1k2, k3)(F(k4, x))−1 F̂(k1, k2k3)(F(k4, x))
F̂(k1, k2)(F(k3k4, x))−1 F̂(k1, k2)(F(k3, k4x))

= F̂(k1, k2)
k3(F(k4, x))F̂(k1, k2)(F(k3k4, x))−1 F̂(k1, k2)(F(k3, k4x))

= F̂(k1, k2)(F(k3, k4)).

Since δGu = δKϕ(F̂) we have that

δTot(ϕ(F̂)⊕ u−1)= δKϕ(F̂)δGu⊕ δku−1
= (F̂ ∧ F)−1

;

therefore d2[ϕ(F̂)] = [(F̂ ∧ F)−1
]. �
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Suppose that d2[ϕ(F̂)] = 0; hence there is ε ∈C3(K ,C∗) such that δK ε = F̂∧ F.
Define ε ∈ C3(K ,C0(G,Maps(K ,C∗))) by the equation

ε(k1, k2, k3)(x) := ε(k1, k2, k3)

and note δK ε = F̂ ∧ F and δGε = 1. Hence the class ϕ(F̂)⊕ εu−1
∈ C2,1

⊕C3,0

defines a 3-cocycle in the total complex:

ϕ(F̂)⊕ εu−1
∈ Z3 Tot(C∗(K ,C∗(G,Map(K ,C∗)))).

Define β ∈ C2(K ,C0(G,Maps(K ,C∗))) by the equation

β(k1, k2)(x) := ε(k1, k2, x)

and note that

δKβ(k1, k2, k3)(x)= ε(k2, k3, x)ε(k1k2, k3, x)−1ε(k1, k2k3, x)ε(k1, k2, k3x)−1

= δK ε(k1, k2, k3, x)ε(k1, k2, k3)
−1

= F̂(k1, k2)((F(k3, x))ε(k1, k2, k3)(x)−1.

Therefore δKβεu−1
=1; hence we have that the class ϕ(F̂)δGβ ∈C2,1 is a 3-cocycle

in the total complex and moreover that it is cohomologous to the class ϕ(F̂)⊕εu−1,
in coordinates:

(3-1) (ϕ(F̂)δGβ)(k1, k2)(x1, (a2, x2))

= F̂(k1, k2)(
x1a2)F̂(k1, k2)(F(x1, x2))ε(k1, k2, x1x2)ε(k1, k2, x1)

−1.

Summarizing the previous results:

Proposition 3.5. Every cohomology class which appears in �(G; A) can be rep-
resented by a 3-cocycle ϕ(F̂)δGβ ∈ C2,1 with F̂ ∈ Z2(K ,A), β(k1, k2)(x) =
ε′(k1, k2, x) and δK ε′ = F̂ ∧ F.

Proof. Take [ω] ∈�(G; A) and let [F̂] ∈ E2,1
2 be a representative of the cohomology

class of the image of [ω] in E2,1
∞

. Since d2[ϕ(F̂)] = 0 we know that the cohomology
class [ϕ(F̂)⊕ εu−1

] constructed above belongs to �(G; A). Therefore we have

[ω−1
] · [ϕ(F̂)⊕ εu−1

] ∈ E3,0
∞
.

Hence we can choose a representative cocycle [τ ] ∈ H 3(K ,C∗)∼= E3,0
2 such that

[ω] = [ϕ(F̂)⊕ ετu−1
],

with τ ∈ C3(K ,C0(G,Maps(K ,C∗))) defined as

τ(k1, k2, k3)(x) := τ(k1, k2, k3).
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Let ε′ := ετ and define β ∈ C2(K ,C0(G,Maps(K ,C∗))) by the equation

β(k1, k2)(x) := ε′(k1, k2, x).

Equation (3-1) implies that δKβ = (ετ )−1u and therefore the proposition follows
from the equation

(ϕ(F̂)⊕ ετu−1)δTotβ = ϕ(F̂)δGβ⊕ δKβετu−1
= ϕ(F̂)δGβ. �

Now we need to find an explicit description of ω ∈ Z3(G,C∗) such that π∗ω
and ϕ(F̂)δGβ are cohomologous.

Theorem 3.6. Let G= AoF K and consider ω∈C3(G,C∗), µ∈C0,2 and γ ∈C1,1

defined by the following equations:

ω((a1, x1), (a2, x2), (a3, x3)) := F̂(x1, x2)(a3)ε(x1, x2, x3),

µ(x1, (a2, x2), (a3, x3))= (F̂(x1, x2)(a3)ε(x1, x2, x3))
−1,

γ (y)(x1, (a2, x2))= F̂(y, x1)(a2)ε(y, x1, x2, ).

Then π∗ω · (δTotµ⊕ γ )= ϕ(F̂)δGβ.

Proof. Let us calculate:

δGµ(x1, (a2, x2), (a3, x3), (a4, x4))

= µ(x1x2, (a3, x3), (a4, x4))µ(x1, (a2
x2a3 F(x2, x3), x2x3), (a3, x3))

−1

µ(x1, (a2, x2)(a3
x3a4 F(x3, x4), x3x4)) µ(x1, (a2, x2), (a3, x3))

−1

= F̂(x1x2, x3)(a4)
−1 F̂(x1, x2x3)(a4)F̂(x1, x2)(a3

x3a4 F(x3, x4))
−1

F̂(x1, x2)(a3)ε(x2, x3, x4)
−1δK ε(x1, x2, x3, x4)

= F̂(x2, x3)(a4)
−1ε(x2, x3, x4)

−1,

and

π∗ω(x1, (a2, x2), (a3, x3), (a4, x4))= ω((a2, x2), (a3, x3), (a4, x4))

= F̂(x2, x3)(a4)ε(x2, x3, x4);

hence we have that δGµ ·π
∗ω = 1.

Now

δKµ(y)(x1,(a2,x2),(a3,x3))= µ(x1,(a2,x2),(a3,x3))µ(yx1,(a2,x2),(a3,x3))
−1

=
F̂(yx1,x2)(a3)ε(yx1,x2,x3)

F̂(x1,x2)(a3)ε(x1,x2,x3)
,
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and

δGγ (y)(x1, (a2, x2), (a3, x3))

= γ (y)(x1x2, (a3, x3))γ (y)(x1, (a2
x2a3 F(x2, x3), x2x3))

−1γ (y)(x1, (a2, x2))

= F̂(y, x1x2)(a3)F̂(y, x1)(a2
x2a3 F(x2, x3))

−1 F̂(y, x1)(a2)

ε(y, x1x2, x3)ε(y, x1, x2x3)
−1ε(y, x1, x2)

= F̂(yx1, x2)(a3)F̂(x1, x2)(a3)
−1ε(yx1, x2, x3)ε(x1, x2, x3)

−1
;

hence we have that
δKµ · δGγ

−1
= 1.

Finally we calculate

δKγ (k1, k2)(x1, (a2, x2))

= γ (k2)(x1, (a2, x2))γ (k1k2)(x1, (a2, x2))
−1γ (k1)(k2x1, (a2, x2))

= F̂(k2, x1)(a2)F̂(k1k2, x1)(a2)
−1 F̂(k1, k2x2)(a2)

ε(k2, x1, x2)ε(k1k2, x1, x2)
−1ε(k1, k2x1, x2)

= F̂(k1, k2)(
x1a2)δK ε(k1, k2, x1, x2)ε(k1, k2, x1x2)ε(k1, k2, x1)

−1

= F̂(k1, k2)(
x1a2)F̂(k1, k2)(F(x1, x2))ε(k1, k2, x1x2)ε(k1, k2, x1)

−1,

and since by equation (3-1) we have that

(ϕ(F̂)δGβ)(k1, k2)(x1, (a2, x2))

= F̂(k1, k2)(
x1a2)F̂(k1, k2)(F(x1, x2))ε(k1, k2, x1x2)ε(k1, k2, x1)

−1,

we have that
δKγ = ϕ(F̂)δGβ.

Hence π∗ω · (δTotµ⊕ γ )= ϕ(F̂)δGβ. �

3B. Description of ω̂ and ν. Assuming the explicit descriptions of ω, µ and γ
given in Theorem 3.6, we see that ν̃ = ϕ(F̂)δGβ. Applying this explicit description
of ν̃ to the definition of ν given in (2-3) and of ω̂ given in (2-4) we obtain

ν(k1, k2)(a) := ν̃(k1, k2)(1, (a, 1))= F̂(k1, k2)(a),

which implies that ν = F̂ and

ω̂((k1, ρ1), (k2, ρ2), (k3, ρ3)) := ν̃(k1, k2)(1; (1, k3))ρ1(F(k2, k3))

= ε(k1, k2, k3)ρ1(F(k2, k3)).

After applying Corollary 2.4 to the previous explicit construction of ω̂ we obtain
the following theorem:
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Theorem 3.7. Let K be a finite group acting on the finite abelian group A. Consider
cocycles F ∈ Z2(K , A) and F̂ ∈ Z2(K ,A) such that F̂∧F is trivial in cohomology,
i.e., there exists ε ∈ C3(K ,C∗) such that δK ε = F̂ ∧ F. Define the 3-cocycles
ω ∈ Z3(AoF K ,C∗) and ω̂ ∈ Z3(K nF̂ A,C∗) by the equations:

ω((a1, k1), (a2, k2), (a3, k3)) := F̂(k1, k2)(a3)ε(k1, k2, k3)

ω̂((k1, ρ1), (k2, ρ2), (k3, ρ3)) := ε(k1, k2, k3)ρ1(F(k2, k3)).

Then the tensor categories Vect(A oF K , ω) and Vect(K nF̂ A, ω̂) are weakly
Morita equivalent, and therefore their centers are braided equivalent:

Z(Vect(AoF K , ω))' Z(Vect(K nF̂ A, ω̂)).

Note that we may have taken a different choice of µ and γ in Section 3A
thus producing different ν̃ and ω̂. The description of ω̂ depends on the choice of
cohomology class [F̂] ∈ H 2(K ,A) ∼= E2,1

2 in the second page representing the
image of [ω] in E2,1

3 = E2,1
∞

. This choice may be changed by elements in the image
of the second differential d2 : E

0,2
2 → E2,1

2 .
Changing ω by a coboundary ω′ = ωδGα, and writing ω′ explicitly as

(3-2) ω′((a1, x1), (a2, x2), (a3, x3)) := F̂ ′(x1, x2)(a3)ε
′(x1, x2, x3)

produces a ω̂′ which becomes

(3-3) ω̂′((k1, ρ1), (k2, ρ2), (k3, ρ3)) := ε
′(k1, k2, k3)ρ1(F(k2, k3)).

Applying Theorem 3.7 and using the equivalence of categories

Vect(AoF K , ω)' Vect(AoF K , ω′)

we obtain that the tensor categories Vect(A oF K , ω) and Vect(K nF̂ ′ A, ω̂
′) are

also weakly Morita equivalent. The previous argument permits us to conclude the
following corollary:

Corollary 3.8. Suppose that the fusion category C∗M = V(A oF K , ω)∗M(K ,µ) is
pointed. Then it is equivalent to the category Vect(K nF̂ ′ A, ω̂

′), where ω̂′ and ω′

are the cocycles defined in (3-2) and (3-3) respectively and ω′ is cohomologous
to ω.

3C. Classification theorem. Now we are ready to state the key result in order to
establish the weak Morita equivalence classes of group theoretical tensor categories.

Theorem 3.9. Let H and Ĥ be finite groups, η ∈ Z3(H,C∗) and η̂ ∈ Z3(Ĥ ,C∗).
Then the tensor categories Vect(H, η) and Vect(Ĥ , η̂) are weakly Morita equivalent
if and only if the following conditions are satisfied:
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• There exist isomorphisms of groups

φ : G = AoF K −→∼= H, φ̂ : Ĝ = K nF̂ A −→
∼= Ĥ

for some finite group K acting on the abelian group A, with F ∈ Z2(K , A)
and F̂ ∈ Z2(K ,A) where A := Hom(A,C∗).

• There exists ε : K 3
→ C∗ such that F̂ ∧ F = δK ε.

• The cohomology classes satisfy the equations [φ∗η] = [ω] and [φ̂∗η̂] = [ω̂]
with

ω((a1, k1), (a2, k2), (a3, k3)) : = F̂(k1, k2)(a3)ε(k1, k2, k3),

ω̂((k1, ρ1), (k2, ρ2), (k3, ρ3)) : = ε(k1, k2, k3)ρ1(F(k2, k3)).

Proof. Suppose that Vect(H, η) and Vect(Ĥ , η̂) are weakly Morita equivalent.
Then Vect(Ĥ , η̂) is equivalent to the dual category V(H, η)∗M(A\H,µ) with K :=
A \ H, φ : G = A oF K −→∼= H and M(A \ H, µ) some module category of
V(H, η). By Corollary 3.8 the tensor category Vect(Ĥ , η̂) is furthermore equivalent
to Vect(K nF̂ ′ A, ω̂

′), where ω′ and ω̂′ are the cocycles defined in equations (3-2)
and (3-3) respectively, and such that ω′ is cohomologous to φ∗η. In particular we
have that φ̂ : Ĝ = K nF̂ A −→

∼= Ĥ and that φ̂∗η̂ is cohomologous to ω̂′.
The converse is the statement of Theorem 3.7. �

In the case that both ω and ω̂ are cohomologically trivial, we conclude that
Vect(AoF K , 1) and Vect(K nF̂ A, 1) are weakly Morita equivalent if and only if
the cohomology class [F̂] ∈ H 2(K ,A) lies in the image of the second differential
of the spectral sequence d2 : H 2(A,C∗)K

→ H 2(K ,A). This result was originally
proved in [Davydov 2000, Corollary 6.2].

4. Examples

4A. Pointed fusion categories of global dimension 4. We can now calculate the
weakly Morita equivalence classes of pointed fusion categories of global dimen-
sion 4.

For G = Z/4 we have that H∗(Z/4,Z) ∼= Z[u]/4u with |u| = 2 and that the
nontrivial automorphism of Z/4 maps u to −u; therefore

H 4(Z/4,Z)/Aut(Z/4)= 〈u2
〉 = Z/4.

For G = (Z/2)2 we have that

H 4((Z/2)2,Z)∼= ker(Sq1
: H 4((Z/2)2, F2)→ H 5((Z/2)2, F2))= 〈x4, x2 y2, y4

〉,
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where H∗((Z/2)2, F2) = F2[x, y] and Sq1 is the Steenrod operation, and up to
automorphisms of (Z/2)2 we get

H 4((Z/2)2,Z)/Aut((Z/2)2)=


0,
(x4)= {x4, y4, x4

+ y4
},

(x2 y2)= {x2 y2, x2 y2
+ x4, x2 y2

+ y4
},

(x4
+ x2 y2

+ y4)= {x4
+ x2 y2

+ y4
}.

Since we have a clear description for a base of H 4((Z/2)2,Z), we will abuse nota-
tion and denote with the symbols of H 4((Z/2)2,Z) the elements of H 3((Z/2)2,C∗).
With this clarification, the relevant terms of the second page of the LHS spectral
sequence of the extension 1→ Z/2→ Z/4→ Z/2→ 1 become

3 Z/2= 〈y4
〉

2 0 0

1 Z/2 Z/2= 〈yx〉 Z/2= 〈yx2
〉

0 C∗ Z/2 0 Z/2= 〈x4
〉 0

0 1 2 3 4

∼=

where the second differential is defined by the assignment d2(yxk) = Sq1(xk+2)

with the class x2 classifying the extension. We conclude that the only weak Morita
equivalence that appears, which does not come from an automorphism of a group, is

Vect(Z/4, 0)' Vect((Z/2)2, x2 y2).

Therefore we see that there are exactly seven weak Morita equivalence classes
of pointed fusion categories of global dimension 4, namely the three for Z/4:

Vect(Z/4, u2), Vect(Z/4, 2u2), Vect(Z/4, 3u2);

the three for (Z/2)2:

Vect((Z/2)2, 0), Vect((Z/2)2, x4), Vect((Z/2)2, x4
+ y4
+ x2 y2);

and the one that we have just constructed

Vect(Z/4, 0)'M Vect((Z/2)2, x2 y2).

4B. Nontrivial action of Z/2 on Z/4. Consider the nontrivial action of Z/2 on
Z/4 and the abelian extension 1→ Z/4→ G→ Z/2→ 1. The group G is either
the dihedral group D8 in the case that the extension is a split extension or the
quaternion group Q8 in the case that the extension is a nonsplit extension.
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In the case of D8 the relevant elements of the second page of the LHS spectral
sequence associated to the extension are

3 Z/4= 〈a〉

2 0 0

1 Z/2 Z/2= 〈e〉 Z/2= 〈b〉

0 C∗ Z/2 0 Z/2= 〈c〉 0

0 1 2 3 4

and they all survive to the page at infinity. Since H 3(D8,C∗)= Z/4⊕Z/2⊕Z/2
we may say that H 3(D8,C∗) ∼= 〈a〉 ⊕ 〈b〉 ⊕ 〈c〉, and since D8 ∼= Z/4 o Z/2 we
have that F = 0. The element b ∈ H 2(Z/2,Z/4) defines the nontrivial extension
Q8 ∼= Z/2nb Z/4.

The second page of the LHS spectral sequence of the extension Q8∼=Z/2nb Z/4
becomes

3 Z/4= 〈α〉

2 0 0

1 Z/2 Z/2= 〈e〉 Z/2= 〈4α〉

0 C∗ Z/2 0 Z/2= 〈c〉 0

0 1 2 3 4

∼=

where d2 : E
1,1
2 −→
∼= E3,0

2 is an isomorphism and H 3(Q8,C∗)= 〈α〉 = Z/8.
Therefore for these extensions we only have the weak Morita equivalences

Vect(D8, b)'M Vect(Q8, 0)'M Vect(D8, b⊕ c),

where the equivalence of the right is obtained from the fact that c does not survive
the spectral sequence for the group Q8, and the self-Morita equivalence

Vect(Q8, 4α)'M Vect(Q8, 4α).

4C. Extension of Z/2×Z/2 by Z/2. Consider the nonabelian extensions of the
form

1→ Z/2→ G→ Z/2×Z/2→ 1,

namely D8 and Q8.
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The second page of the LHS spectral sequence for these extensions becomes

3 Z/2

2 0 0

1 Z/2 (Z/2)2 (Z/2)3

0 C∗ (Z/2)2 Z/2 (Z/2)3 (Z/2)2

0 1 2 3 4

and we need only to concentrate on the differentials d2 : E
p,1
2 → E p+2,0

2 between
the first two rows since we know that E0,3

2 = Z/2 survives the spectral sequence in
all the groups.

First we will determine the differential dG
2 in the LHS spectral sequence for

coefficients in the field of two elements F2. In this case

E2 ∼= H∗(Z/2×Z/2, F2)⊗F2 H∗(Z/2, F2)∼= F2[x, y, e],

and dG
2 e ∈ H 2(Z/2×Z/2, F2) represents the class that defines the extension G. It

is known that the class x2
+ xy+ y2 defines Q8 [Adem and Milgram 1994, Lemma

2.10], the classes x2
+ xy, xy+ y2, xy define D8 (p. 130 of the same book) and

the classes x2, y2, x2
+ y2 define Z/2×Z/4.

Second we use the fact that for the group (Z/2)2 we have the isomorphism

H j ((Z/2)2,Z)∼= ker(Sq1
: H j ((Z/2)2,Z/2)→ H j+1((Z/2)2,Z/2)),

where Sq1 is the first Steenrod square. This implies that the canonical map

H j ((Z/2)2,Z/2))→ H j ((Z/2)2,C∗)

can be seen as the map

H j ((Z/2)2,Z/2))
Sq1

−→ ker(Sq1
: H j+1((Z/2)2,Z/2)−→

H j+2((Z/2)2,Z/2))∼= H j+1((Z/2)2,Z)∼= H j ((Z/2)2,C∗).

Therefore the second differential

dG
2 : H

p−2((Z/2)2,Z/2)→ H p((Z/2)2,C∗)

is isomorphic to the composite map

dG
2 : H

p−2((Z/2)2,Z/2)−→ ker(Sq1
: H p+1((Z/2)2,Z/2)−→

H p+2((Z/2)2,Z/2))∼= H p+1((Z/2)2,Z)∼= H p((Z/2)2,C∗)

taking z to Sq1(z ∪ dG
2 e).
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Without loss of generality we may choose dG
2 e = xy + x2 for calculating the

LHS spectral sequence for D8. Applying the differential dG
2 to the elements 1, x ,

y, x2, xy, y2 we obtain that the surviving terms in the infinite page of the LHS
spectral sequence for D8 become

3 Z/2

2 0 0

1 0 Z/2=〈e(y)〉 Z/2=〈e(xy+x2)〉

0 C∗ (Z/2)2=〈x2, y2
〉 0 (Z/2)2= 〈x

4, x2 y2, y4
〉

〈x2 y2+x4〉
0

0 1 2 3 4

Here we are abusing the notation and we are using the explicit base of H 4((Z/2)2,Z)

to denote the elements in H 3((Z/2)2,C∗). Since E2,1
3 = 〈e(xy + x2)〉, the weak

Morita equivalences that we obtain in the extension are

Vect(D8, 0)'M Vect((Z/2)3,Sq1(e(xy+ x2))),

Vect(D8, x4)'M Vect((Z/2)3,Sq1(e(xy+ x2))+ x4),

Vect(D8, y4)'M Vect((Z/2)3,Sq1(e(xy+ x2))+ y4),

and the self-equivalence

Vect(D8, e(xy+ x2)' Vect(D8, e(xy+ x2).

The surviving terms for Q8 with dG
2 e = x2

+ xy+ y2 are

3 Z/2

2 0 0

1 0 0 Z/2= 〈e(x2
+ xy+ y2)〉

0 C∗ (Z/2)2 = 〈x2, y2
〉 0 Z/2= 〈x2 y2

〉 0

0 1 2 3 4

with E0,3
∞
= Z/2 = 〈α〉, 〈x2

+ xy + y2
〉 = 〈2α〉 and 〈x2 y2

〉 = 〈4α〉, where α is a
generator 〈α〉 = H 3(Q8,C∗) that was defined in section Section 4B.
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Hence the only Morita equivalences that we obtain are

Vect(Q8, 0)' Vect((Z/2)3,Sq1(e(x2
+ xy+ y2)))

Vect(Q8, 4α)' Vect((Z/2)3,Sq1(e(x2
+ xy+ y2))+ x2 y2)

and the self-Morita equivalences

Vect(Q8, 2α)'M Vect(Q8, 2α) and Vect(Q8, 6α)'M Vect(Q8, 6α).

Bundling up the previous results for the group Q8 we obtain the following result:

Proposition 4.1. Let us suppose that Vect(Q8, kα) is weakly Morita equivalent to
Vect(G, η). Then:

• For k odd or k = 2, 6, the group G must be isomorphic to Q8 and η must
correspond to jα with j odd or j = 2, 6.

• For k = 4, G must be isomorphic to Q8 or (Z/2)3.

• For k = 0, G must be isomorphic to Q8, D8 or (Z/2)3.

Proof. First note the action of Aut(Q8) on H 3(Q8,C∗) is trivial. Second note the
only normal subgroups of Q8 are its center and the cyclic ones generated by roots of
unity and that they all fit into the central extension 1→ Z/2→ Q8→ (Z/2)2→ 1
or the nonsplit extension 1→ Z/4→ Q8→ Z/2→ 1 that we have studied before.
Since any weak Morita equivalence between pointed fusion categories comes from
a normal and abelian subgroup of Q8, the classification that we have done before
exhausts all possibilities. For k odd we know that kα survives to the restriction to
the center and to the cyclic subgroups isomorphic to Z/4 and therefore G can only
be Q8. The classes 2α and 6α trivialize on the center of Q8 but these classes define
extensions of (Z/2)2 by Z/2 which are isomorphic to Q8 and define cohomology
classes which are precisely 2α and 6α. The class 4α trivializes in all normal and
abelian subgroups; in the case of the subgroup Z/4 the only group that may appear
is Q8, and in the case of the center we may obtain the weak Morita equivalence

Vect(Q8, 4α)' Vect((Z/2)3, Sq1(e(x2
+ xy+ y2))+ x2 y2).

Finally, the trivial class produces only the group D8 in the case of the subgroup
Z/4 and (Z/2)3 in the case of the center; some weak Morita equivalences are

Vect(Q8, 0)' Vect((Z/2)3, Sq1(e(x2
+ xy+ y2)))'M Vect(D8, b). �
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LENGTH-PRESERVING EVOLUTION
OF IMMERSED CLOSED CURVES

AND THE ISOPERIMETRIC INEQUALITY

XIAO-LIU WANG, HUI-LING LI AND XIAO-LI CHAO

It is shown that all immersed closed, locally convex curves with total curva-
ture of 2mπ and n-fold rotational symmetry (m/n ≤ 1) finally evolve into
m-fold circles under the length-preserving curvature flow. Sufficient condi-
tions for the occurrence of the finite-time singularities in the flow are also
established. As a byproduct, an isoperimetric inequality for rotationally
symmetric, locally convex curves is proved via the flow method.

1. Introduction

In this paper we investigate the evolution of immersed closed curves X (p, t)
parametrized by p and driven by the inner normal speed

(1-1) V (p, t)=
(
−

∫
X ( · ,t)

k2 ds
/∫

X ( · ,t)
k ds+ k(p, t)

)
n(p, t),

where k(p, t) denotes the curvature of X (p, t) with respect to inner normal n(p, t).
Denote by X0 the given smooth closed initial curve. When X0 is a simple convex
closed curve (m = 1), this flow has been studied by Ma and Zhu [2012]. It is shown
that the flow preserves convexity and length while it increases the enclosed area,
finally converging to a round circle in the C∞ metric.

When X0 is an immersed, locally convex closed curve, it is not difficult to show
that the convexity and length of evolving curves are still preserved under the flow,
and the enclosed algebraic area is increasing. Moreover, in [Wang and Wo 2014],
two special classes of rotationally symmetric, locally convex closed initial curves,
which both enclose a positive algebraic area, are found to guarantee the convergence
of the flow (1-1) to m-fold circles. One class consists of highly symmetric convex
curves. Specifically, they are locally convex closed curves with total curvature
2mπ and n-fold rotational symmetry where n > 2m. The other is Abresch–Langer
type convex curves, which still have total curvature of 2mπ and n-fold rotational
symmetry but with n < 2m and some additional conditions on the curvature (see

MSC2010: 35B40, 35K59, 53C44.
Keywords: curvature flow, nonlocal, blow-up, convergence, isoperimetric inequality.
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its definition in [Wang and Wo 2014]). Note that Abresch–Langer curves [1986]
belong to the later class.

One may naturally ask about the behavior for a general rotationally symmetric
curve under the flow (1-1). Furthermore, is there any possibility of the occurrence
of singularity in the flow (1-1)? We devote this short paper to answering these
questions. For the convenience of the reader, we use the following notation:

ds the differential element of arclength,

θ the normal angle of X ( · , t),

L(t) the length of X ( · , t),

A(t) the algebraic area of X ( · , t) defined by− 1
2

∫
X
〈X, n〉 ds,

k( · , t) the curvature of X ( · , t) with respect to n.

Here, we always take the orientation of X ( · , t) to be counterclockwise.
Define

k =

∫
X k2 ds∫
X k ds

=

∫
X k2 ds
2mπ

.

We write down the evolution of various geometric quantities along the flow (1-1).
They can be deduced from the general formulas in [Chou and Zhu 2001].

∂k
∂t
= kss + k2(k− k), dL

dt
=−

∫
X

k(k− k) ds = 0, dA
dt
=−

∫
X
(k− k) ds ≥ 0.

Here, it can be seen that the length of the evolving curves is preserved while the
enclosed algebraic area is increasing.

Each point on the locally convex solution X ( · , t) has a unique tangent and one
can use the tangent angle θ ∈ S1

m :=R/2mπZ to parametrize it. Generally speaking,
θ is a function depending on t . One can make θ independent of time t by adding
a tangential component to the velocity vector ∂X/∂t , which does not affect the
geometric shape of the evolving curve (see, for instance, [Gage 1986]). Then the
evolution equations can be expressed in the coordinates of θ and t . If we denote
by k(θ, t) the curvature function of X (θ, t), the evolution problem of (1-1) can be
reformulated equivalently into equations of the curvature k:

(1-2)
{

kt = k2(kθθ + k− k), (θ, t) ∈ I × (0, T ),
k(θ, 0)= k0(θ), θ ∈ I,

where k0 is the curvature of X0 and T is the maximal existence time of the flow. Here
and after, I always denotes the circle S1

m . In terms of the new coordinates, we have

k =

∫
I k(θ, t) dθ

2mπ
.
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The first main theorem is:

Theorem 1. If the initial curve is locally convex, closed and its curvature k0(θ)

satisfies

(1-3)
∫

I
(k0− k0)

2 dθ ≥
∫

I
(k0θ )

2 dθ,

and k0(θ) is nonconstant in I, then the solution k(θ, t) to problem (1-2) blows up in
some finite time and a singularity appears during the evolution of the flow (1-1).

We note that the condition (1-3) is not void since by the Poincaré inequality,∫
I
(k0− k0)

2 dθ ≤ m2
∫

I
(k0θ )

2 dθ.

If the curvature of initial curve does not satisfy (1-3), how about the behavior of
the flow? In fact, we find a large class of initial curves which do not satisfy the
condition (1-3) and can evolve into m-fold circles under the flow. This is our second
main theorem.

Theorem 2. If the initial curve is locally convex, closed and has total curvature
of 2mπ and n-fold rotational symmetry with m/n ≤ 1, then the flow (1-1) exists
globally and converges to an m-fold circle in the C∞-metric as time goes to infinity.

When the initial curve is simple closed and convex, it can be regarded as the case
of m = n = 1 in Theorem 2. In addition, its curvature cannot satisfy the condition
(1-3) except by being a constant, in view of the Poincaré inequality.

The third theorem gives an isoperimetric condition such that the singularity
appears.

Theorem 3. Assume the initial curve X0 is locally convex, closed and has total
curvature of 2mπ . If X0 satisfies

(1-4) L2
0 < 4mπ A0,

where L0 and A0 denote its length and enclosed algebraic area respectively, then
the solution k(θ, t) to problem (1-2) blows up in some finite time and a singularity
appears during the evolution of the flow (1-1)

As a result, we can present a new proof of the following isoperimetric inequality
for the rotationally symmetric and locally convex curves, which was proven in
[Chou 2003] and [Süssmann 2011]:

Proposition 4. For the rotationally symmetric and locally convex curves, with total
curvature of 2mπ and n-fold symmetry (m/n < 1), the length L and the enclosed
algebraic area A satisfy

(1-5) L2
≥ 4mπ A.
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We give some remarks on the above theorems and the nonlocal flow. As an
interesting variant of the popular curve shortening flow [Gage and Hamilton 1986;
Angenent 1991; Andrews 1998; Chou and Zhu 2001], the nonlocal curvature flow,
arising in many application fields [Sapiro and Tannenbaum 1995; Capuzzo Dolcetta
et al. 2002; Xu and Yang 2014], such as phase transitions, image processing, etc.,
has received much attention in recent years. Before the work of Ma and Zhu [2012],
there was an original study by Gage [1986], where an area-preserving flow was
investigated with its inner normal velocity given by

(1-6) V =
(
−

∫
X ( · ,t)

k ds
/∫

X ( · ,t)
ds+ k

)
n.

After that, there are a lot of papers on the nonlocal flow for simple convex curves,
including [Jiang and Pan 2008; Lin and Tsai 2012]. In the higher dimensional case,
people also consider nonlocal flows. For example, there are volume-preserving mean
curvature flows; see [Huisken 1987; McCoy 2005; Cabezas-Rivas and Sinestrari
2010]. And also there are surface area-preserving mean curvature flows, see [McCoy
2003]. Recently, the study of nonlocal flow extends to the case of Riemannian
manifolds; see [Xu et al. 2014].

In all of the papers mentioned above, the main concern is the global existence
and convergence of the flow. For a study of the singularity, one can refer to [Escher
and Ito 2005], or to [Wang and Kong 2014], where the area-preserving flow of
immersed curves is studied and some geometric initial conditions are given to
guarantee the occurrence of singularity. This urges us to carry the present work on
the length-preserving flow of immersed curves.

One interesting aspect of this paper is that we have obtained the sufficient
conditions for the flow (1-1) to yield the singularity. Moreover, the geometric
condition (1-4) given in Theorem 3 can be interpreted as

(1-7)
∫

I
(h0− h0)

2 dθ >
∫

I
(h0θ )

2 dθ,

where h0(θ) is the support function of the initial curve X0, defined by h0(θ) =

−〈X0(θ), n0(θ)〉 with n0 being the inner normal of X0, and h0 =
∫

I h0 dθ/(2mπ).
Indeed, we can deduce (1-7) from the following observations:

k0 = (h0+ h0θθ )
−1, L0 =

∫
I

dθ
k0
=

∫
I

h0 dθ,

and

A0 =
1
2

∫
X0

h0 ds = 1
2

∫
I

h0(h0+ h0θθ ) dθ,

where k0 is the curvature function of X0.
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Another interesting aspect is that we have refined the results of [Wang and Wo
2014] in Theorem 2 and showed that the convergence result holds for all rotationally
symmetric, locally convex immersed curves whether the enclosed algebraic area
A0 of the initial curve X0 is negative or not. This differs with the flow (1-6), since
a singularity must happen in the flow (1-6) if A0 < 0, see [Escher and Ito 2005]
for reference. One may also compare it with the different evolution of rotationally
symmetric curves in the curve shortening flow, see [Au 2010].

We organize this paper in the following way. Some basic and useful lemmas are
prepared in Section 2. Then we prove Theorems 1 and 2 in Section 3, and prove
Theorem 3 in Section 4.

2. Lemmas

In this section, we present some lemmas for later use. The first lemma shows the
flow exists as long as its curvature is bounded.

Lemma 2.1. When the initial curve is immersed closed, locally convex and smooth,
problem (1-1) has a unique smooth, locally convex solution in a time interval [0, T )
for some T > 0, which can be continued as long as the curvature of evolving curves
is finite.

Proof. The unique existence of the flow can be proven by applying the classical
Leray–Schauder fixed point theorem to problem (1-2). See details in [Mao et al.
2013], where a general area-preserving flow is studied. One can also find the relative
references in [McCoy 2003; 2005; Cabezas-Rivas and Sinestrari 2010], where the
nonlocal flows in higher dimensions are discussed. The preserved convexity will
be proved in the next lemma. �

By the maximum principle, we can show that the local convexity of the initial
curve is preserved by the flow (1-1).

Lemma 2.2. If the initial curve X0 is locally convex, then X ( · , t) is locally convex
as long as the flow exists.

Proof. By the continuity, minθ∈I k(θ, t) remains positive on a small time interval.
Assume that the time span of the flow is T. Suppose to the contrary that the
conclusion is not true. Then there must be a first time, say t1 < T, such that

(2-1) min
θ∈I

k(θ, t1)= 0.

We will deduce a contradiction. Consider the quantity

8(θ, t)= 1
k(θ, t)

−
L(t)
2mπ

−
1

2mπ

∫ t

0

∫ 2mπ

0
k(θ, τ ) dθ dτ,
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with (θ, t) ∈ I ×[0, t1). By (1-2), we have

8t(θ, t)=−kθθ − k ≤ k2(θ, t)8θθ (θ, t).

Hence by the maximum principle,

1
k(θ, t)

≤max
θ∈I

( 1
k0(θ)

)
+

L(t)−L(0)
2mπ

+
1

2mπ

∫ t

0

∫ 2mπ

0
k(θ, τ ) dθ dτ

for all (θ, t) ∈ I ×[0, t1), where we note that L(t)= L(0) for all time t and

sup
(θ,t)∈I×[0,t1)

k(θ, t)≤ C1(t1) <∞

for some constant C1(t1). Therefore,

inf
θ∈I

k(θ, t)≥ C2(t1) > 0 for all t ∈ [0, t1)

for some constant C2(t1). This is a contraction with (2-1)! The proof is done. �

The following lemma is the gradient estimate.

Lemma 2.3. Along the flow (1-1), we have∫
I
(kθ )2 dθ ≤

∫
I

k2 dθ +C

for some constant C independent of time.

Proof. From (1-2), we have

1
2

d
dt

∫
I
[(kθ )2− k2

+ 2kk] dθ =−
∫

I
k2(kθθ + k− k)2+ dk

dt

∫
I

k dθ ≤ dk
dt

∫
I

k dθ.

Hence,
d
dt

∫
I
(kθ )2 dθ ≤ d

dt

∫
I
(k2
− 2kk) dθ + 2dk

dt

∫
I

k dθ,

and the integration yields∫
I
(kθ )2 ≤

∫
I
(k2
− 2kk) dθ + 1

2mπ

∫ t

0

d
dτ

(∫
I

k dθ
)2

dτ +C1

=

∫
I
(k2
− 2kk) dθ +

1
2mπ

(∫
I

k dθ
)2

+C2

=

∫
I

k2 dθ − k
∫

I
k dθ +C2

≤

∫
I

k2 dθ +C2,

where C1, C2 only depend on the initial data. The proof is done. �
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By the obtained gradient estimate, if the curvature k blows up, we can show that
the blow-up set for k must contain at least some open interval.

Denote
kmax(t)=max

θ∈I
k(θ, t), t ∈ [0, T ).

Lemma 2.4. Assume that kmax(t)= k(θt , t) for some θt ∈ [0, 2mπ ]. Then for any
small ε > 0, there exists a number δ > 0, depending only on ε, such that

(1− ε)kmax(t)≤ k(θ, t)+
√

2mπ |C |

for all θ ∈ (θt−δ
2, θt+δ

2) and all t ∈ (0, T ), where C is the constant in Lemma 2.3.

Proof. An easy integration combined with the Hölder inequality shows that

kmax(t)= k(θ, t)+
∫ θt

θ

kθ (θ, t) dθ ≤ k(θ, t)+ |θt − θ |
1/2
(∫ θt

θ

k2
θ dθ

)1/2

.

Then from Lemma 2.3 we have

kmax(t)≤ k(θ, t)+ |θt − θ |
1/2
(∫

I
k2 dθ + |C |

)1/2

≤ k(θ, t)+ |θt − θ |
1/2(2mπk2

max(t)+ |C |)
1/2

≤ k(θ, t)+ |θt − θ |
1/2
√

2mπkmax(t)+ |θt − θ |
1/2
|C |1/2

≤ k(θ, t)+ |θt − θ |
1/2
√

2mπkmax(t)+
√

2mπ |C |.

Take δ such that |θt − θ |
1/2
≤ δ := ε/

√
2mπ and the lemma is proved. �

We need the following lemma, proven in [Wang and Wo 2014], to conclude the
convergence of the flow after we obtain the a priori estimate for the curvature.

Lemma 2.5. If there is a constant C independent of time such that

max
θ∈I

k(θ, t)≤ C, t ∈ [0, T ),

with T being the maximal existence time, then the flow (1-1) must exist for all time
and converge smoothly to an m-fold circle as time goes to infinity.

3. Proofs of Theorems 1 and 2

First, we deduce a sufficient condition for the occurrence of the singularity at some
finite time. The following two lemmas are useful in the proof.

Lemma 3.1. If the flow (1-1) exists for all time, then there exists a sequence
{tj }
∞

j=1→∞ such that ∫
I

k(θ, tj ) dθ ≤ C

for some constant C independent of time.
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Proof. We have

dA
dt
=−

∫
I
(k− k) ds = L(t)

2mπ

∫
I

k dθ − 2mπ ≥ 0.

Since an isoperimetric inequality of Rado (see [Osserman 1978]) says that

L(t)2 ≥ 4π A(t)

and L(t)= L0, we know that A(t) is uniformly bounded from above. Notice that
A(t) is increasing in time. We have

∫
∞

0 (dA/dτ) dτ <∞. Thus for any small ε > 0,
there exists a sequence {tj }

∞

j=1→∞, such that

dA
dt
(tj ) < ε,

that is, ∫
I

k(θ, tj ) dθ < 2mπ
L0

(ε+ 2mπ).

Then we can draw the conclusion by fixing an ε > 0. �

Denote

E(t)=
∫

I
(kθ )2 dθ −

∫
I

k2 dθ + 1
2mπ

(∫
I

k dθ
)2

.

That is,

E(t)=
∫

I
(kθ )2 dθ −

∫
I
(k− k)2 dθ.

Lemma 3.2. For the energy E(t) defined as above, we have

dE(t)
dt
≤ 0.

Proof. From the equation (1-2), we have∫
I

(kt)
2

k2 dθ =
∫

I
(kθθ + k− k)kt dθ =−1

2
d
dt

∫
I
[(kθ )2− k2

] dθ − k
∫

I
kt dθ,

where

k
∫

I
kt dθ = d

dt

∫ t

0
k(τ )

∫
I

kτ dθdτ = 1
4mπ

d
dt

∫ t

0

d
dτ

(∫
I

k dθ
)2

dτ.

Thus,

−
1
2

dE(t)
dt
=

∫
I

(kt)
2

k2 dθ ≥ 0,

and the proof is done. �
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Proof of Theorem 1. Using the equation (1-2) and integrating by parts yield

d
dt

∫
I

ln k dθ =
∫

I
k(kθθ + k− k) dθ =−E(t).

From Lemma 3.2, we have

d
dt

∫
I

ln k dθ ≥−E(0)=−
∫

I
(k0θ )

2 dθ +
∫

I
(k0− k0)

2 dθ.

First, we consider the case of E(0) < 0. If we suppose to the contrary the flow
exists for all time, then limt→∞

∫
I ln k dθ =∞. This implies that for any t > 0, we

can find a θt ∈ I, such that limt→∞ k(θt , t) =∞. Then by Lemma 2.4, we have
limt→∞

∫
I k(θ, t) dθ =∞, which is a contradiction to Lemma 3.1. Thus the flow

must exist for some finite time.
If E(0)= 0, we claim that k0θθ + k0− k0 6= 0 must hold at some point of I and

hence in some interval of I by the continuity. Indeed, if k0θθ + k0− k0 = 0 holds
everywhere in I, we set w = k0− k0 and w satisfies

wθθ +w = 0 in I,

which implies that w is a 2π-periodic function and so is k0. Hence, E(0)=0 tells
us that k0 is a constant function in view of the Poincaré inequality, a contradiction
with the assumption! Thus we have shown that k0θθ + k0− k0 6= 0 must hold in
some interval of I. Then by recalling the proof of Lemma 3.2, we have

dE(t)
dt
=−2

∫
I

(kt)
2

k2 dθ < 0,

which implies that E(t) < 0 for t > 0. At last, we can still show the conclusion
holds via a similar method to the one above. The proof is finished. �

One may naturally ask what happens if the condition (1-3) does not hold for the
initial curve. A large class of rotationally symmetric curves belong to this case. In
fact, the Poincaré inequality tells us the following lemma:

Lemma 3.3. If a curve is locally convex, closed and has total curvature of 2mπ
and n-fold rotational symmetry with m/n ≤ 1, then its curvature k(θ) satisfies∫

I
(k− k)2 dθ ≤

(m
n

)2
∫

I
(kθ )2 dθ.

Proof. By the Poincaré inequality, we have∫ 2mπ/n

0
(k− k)2 dθ ≤

(m
n

)2
∫ 2mπ/n

0
(kθ )2 dθ,

and then the conclusion follows. �
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Proof of Theorem 2. By equation (1-2) and integration by parts, we have

d
dt

∫
I

ln k dθ =
∫

I
k(kθθ + k− k) dθ =−

∫
I
(kθ )2 dθ +

∫
I
(k− k)2 dθ.

From Lemma 3.3, we have d
(∫

I ln k dθ
)
/dt ≤ 0. Thus there is a constant C1

independent of time, such that
∫

I ln k(θ, t) dθ ≤ C1 for all t ∈ [0, T ). This implies
that there is a constant C2 independent of time, such that

(3-1) max
θ∈I

k(θ, t)≤ C2

for all t ∈ [0, T ). Indeed, for m/n < 1, using Lemma 3.3 and the fact that E(t)≤
E(0), we can deduce an estimate of kθ , which implies (3-1) holds. As a result of
the a priori estimate (3-1), we can show the flow’s global existence and its smooth
convergence to an m-fold circle as time goes to infinity by using Lemma 2.5. �

4. Proof of Theorem 3

To prove Theorem 3, we need to show the following lemma holds, which states a
subconvergence of the global flow without any a priori estimate on the curvature
like that in Lemma 2.5.

Lemma 4.1. If the flow (1-1) starts from a locally convex closed curve and exists
for all time, then it subconverges to an m-fold circle in C2 sense, that is, there exists
a time sequence {tj }

∞

j=1→∞ such that k(θ, tj ) converges to a positive constant
function in the L∞ norm.

Proof. Notice that a careful choice of {tj }
∞

j=1 in Lemma 3.1 can guarantee that
(dA/dt)(tj )→ 0 as j→∞, that is,

(4-1)
L0

2mπ

∫
I

k(θ, tj ) dθ→ 2mπ, j→∞.

We claim that along the sequence {tj }
∞

j=1 we have

(4-2) max
θ∈I

k(θ, tj )≤ C1

for some constant C1 independent of time. Suppose limsup j→∞maxθ∈I k(θ,tj )=∞.
Then we can find a subsequence, still denoted by {tj}

∞

j=1, and a sequence {θj}
∞

j=1⊂ I,
such that t j →∞ and k(θj , t j )→∞. By Lemma 2.4,

∫
I k(θ, t j ) dθ→∞, contra-

dicting Lemma 3.1! Thus we have (4-2). Furthermore, by Lemma 2.3,

(4-3)
∫

I
(kθ )2(θ, tj ) dθ ≤ C2,

for some constant C2 independent of time. Combining (4-2) with (4-3) we obtain

‖k( · , tj )‖W 1,2(I ) ≤ C3
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for some constant C3 independent of time. The compactness yields a subsequence
of {k(θ, tj )}

∞

j=1, still denoted by {k(θ, tj )}
∞

j=1, which converges to a continuous
function k∞(θ) in the L∞ norm as j→∞. Taking the limit in (4-1) along the time
sequence {tj }

∞

j=1, we have

(4-4)
L0

2mπ

∫
I

k∞(θ) dθ = 2mπ.

By Fatou’s lemma,

(4-5)
∫

I

dθ
k∞(θ)

≤

∫
I

dθ
k(θ, tj )

= L0.

Thus, substituting (4-5) into (4-4) yields∫
I

k∞ dθ
∫

I

dθ
k∞(θ)

≤ (2mπ)2.

We notice that

(2mπ)2 =
(∫

I
1 dθ

)2

≤

∫
I

k∞ dθ
∫

I

dθ
k∞
.

Thus k∞ must be a constant function, i.e., the sequence {k(θ, tj )}
∞

j=1 converges to
a constant function in L∞ norm as j→∞. �

Proof of Theorem 3. Assume the initial curve satisfies

L2
0 < 4mπ A0.

Since dL(t)/dt ≡ 0 and dA(t)/dt ≥ 0, we have L0 = L(∞) := limt→∞ L(t) and
A0 ≤ A(∞) := limt→∞ A(t). Thus,

(4-6) L2(∞) < 4mπ A(∞).

Suppose to the contrary that the flow exists for all time. Then by Lemma 4.1 the flow
converges to an m-fold circle along some time sequence {tj }

∞

j=1→∞, implying

L2(∞)= 4mπ A(∞).

This contradicts (4-6)! Thus, the singularity must happen at some finite time during
the evolution of the flow. �

As a result of Theorem 3, we can give a proof for Proposition 4.

Proof of Proposition 4. On one hand, by Theorem 2 the flow (1-1) starting from such
rotationally symmetric curves must converge to m-fold circles at t→∞. However,
on the other hand, if (1-5) does not hold, then by Theorem 3 there is a finite-time
singularity during the evolution. This contradiction shows (1-5) holds. �
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CALABI–YAU PROPERTY UNDER MONOIDAL
MORITA–TAKEUCHI EQUIVALENCE

XINGTING WANG, XIAOLAN YU AND YINHUO ZHANG

Let H and L be two Hopf algebras such that their comodule categories
are monoidally equivalent. We prove that if H is a twisted Calabi–Yau
(CY) Hopf algebra, then L is a twisted CY algebra when it is homologically
smooth. In particular, if H is a Noetherian twisted CY Hopf algebra and L
has finite global dimension, then L is a twisted CY algebra.

Introduction

In noncommutative projective algebraic geometry, what is now called an Artin–
Schelter (AS) regular algebra A =

⊕
i≥0 Ai of dimension n was introduced in

[Artin and Schelter 1987] as a homological analogue of a polynomial algebra with
n variables. The connected graded noncommutative algebra A is considered as the
homogeneous coordinate ring of some noncommutative projective space Pn.

In lecture notes, Manin [1988] constructed the quantum general linear group
OA(GL) that universally coacts on an AS regular algebra A. Similarly, we can
define the quantum special linear group of A, denoted by OA(SL), by requiring the
homological codeterminant of the Hopf coaction to be trivial; see [Walton and Wang
2016, Section 2.1] for details. As pointed out in that work, it is conjectured that
these universal quantum groups should possess the same homological properties
of A, among which the Calabi–Yau (CY) property is the most interesting, since A
is always twisted CY according to [Reyes et al. 2014, Lemma 2.1] (see Section 1.2
for the definition of a twisted CY algebra). Moreover, many classical quantized
coordinate rings can be realized as universal quantum groups associated to AS
regular algebras via the above construction [Chirvasitu et al. 2016; Walton and
Wang 2016], whose CY property and rigid dualizing complexes have been discussed
in [Brown and Zhang 2008; Goodearl and Zhang 2007].

Now let us look at a nontrivial example, which is the motivation for our paper. Let
k be a field. AS regular algebras of global dimension 2 (not necessarily Noetherian)
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were classified by Zhang [1998]. They are the algebras (assume they are generated
in degree one)

A(E)= k〈x1, x2, . . . , xn〉/

( ∑
16i, j6n

ei j xi x j

)
for E = (ei j )∈GLn(k) with n> 2. It is shown in [Walton and Wang 2016, Corollary
2.17] that OA(E)(SL)∼= B(E−1) as Hopf algebras, where B(E−1) was defined by
Dubois-Violette and Launer [1990] as the quantum automorphism group of the
nondegenerate bilinear form associated to E−1. In particular, when

E =
(

0 −q
1 0

)
and E−1

= Eq =

(
0 1
−q−1 0

)
for some q ∈ k×,

we have A(E)= Aq=k〈x1, x2〉/(x2x1+qx1x2) is the quantum plane and OAq (SL)=
B(Eq)=Oq(SL2) is the quantized coordinate ring of SL2(k).

Two Hopf algebras are called monoidally Morita–Takeuchi equivalent, if their
comodule categories are monoidally equivalent. Bichon [2003, Theorem 1.1]
obtained that B(E) (for any E ∈ GLn(k) with n ≥ 2) and Oq(SL2) are monoidally
Morita–Takeuchi equivalent when q2

+ tr(E t E−1)q + 1 = 0. By applying this
monoidal equivalence, Bichon obtained a free Yetter–Drinfeld module resolution
(Definition 2.2.4) of the trivial Yetter–Drinfeld module k over B(E). This turns
out to be the key ingredient to prove the CY property of B(E); see that work or
[Walton and Wang 2016]. Note that the quantized coordinate ring Oq(SL2) is well
known to be twisted CY [Brown and Zhang 2008, Section 6.5 and 6.6]. Thus it is
natural to ask the following question:

Question 1. Let H and L be two Hopf algebras that are monoidally Morita–
Takeuchi equivalent. Suppose H is twisted CY. Is L always twisted CY?

The monoidal equivalence between the comodule categories of various universal
quantum groups have been widely observed [Bichon 2003; 2014; Mrozinski 2014;
Chirvasitu et al. 2016] by using the language of cogroupoids. In recent papers,
Raedschelders and Van den Bergh [2015; 2017] proved that, for a Koszul AS
regular algebra A, the monoidal structure of the comodule category of OA(GL) only
depends on the global dimension of A and not on A itself [Raedschelders and Van
den Bergh 2017, Theorem 1.2.6]. We expect a positive answer to Question 1, which
should play an important role in investigating the CY property of these universal
quantum groups associated to AS regular algebras.

The following is our main result, showing that in order to answer Question 1, it
suffices to prove that the homologically smooth condition is a monoidally Morita–
Takeuchi invariant.
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Theorem 2 (Theorem 2.4.5). Let H and L be two monoidally Morita–Takeuchi
equivalent Hopf algebras. If H is twisted CY of dimension d and L is homologically
smooth, then L is twisted CY of dimension d as well.

Note that for Hopf algebras, there are several equivalent descriptions of the
homological smoothness stated in Proposition A.2. Now Question 1 is reduced to
the following question:

Question 3. Let H and L be two monoidally Morita–Takeuchi equivalent Hopf
algebras. Suppose H is homologically smooth. Is L always homologically smooth?

Though we can not fully answer Question 3, it is true in certain circumstances.
We obtain the following result:

Theorem 4 (Theorem 2.4.7). Let H be a twisted CY Hopf algebra of dimension d ,
and L a Hopf algebra monoidally Morita–Takeuchi equivalent to H. If one of the
following conditions holds, then L is also twisted CY of dimension d.

(i) H admits a finitely generated relative projective Yetter–Drinfeld module resolu-
tion for the trivial Yetter–Drinfeld module k and L has finite global dimension.

(ii) H admits a bounded finitely generated relative projective Yetter–Drinfeld
module resolution for the trivial Yetter–Drinfeld module k.

(iii) H is Noetherian and L has finite global dimension.

(iv) L is Noetherian and has finite global dimension.

Relative projective Yetter–Drinfeld modules and resolutions will be explained
in Section 2.2. The trivial module k over Oq(SL2) admits a finitely generated free
Yetter–Drinfeld resolution of length 3 [Bichon 2013, Theorem 5.1]. Every free
Yetter–Drinfeld module resolution is a relative projective Yetter–Drinfeld module
resolution. According to our result above, this immediately implies that B(E) is
twisted CY since B(E) and Oq(SL2) are monoidally Morita–Takeuchi equivalent
as mentioned above.

Twisted CY algebras, of course, have finite global dimensions. Theorem 4 leads
to the last question about whether the global dimension is a monoidally Morita–
Takeuchi invariant. A similar question was asked by Bichon [2016] concerning
the Hochschild dimension, and the two questions are essentially the same by
Proposition A.1.

Question 5. Let H and L be two monoidally Morita–Takeuchi equivalent Hopf
algebras. Does gldim(H) = gldim(L), or at least, gldim(H) <∞ if and only if
gldim(L) <∞?

If the answer is positive, then the finite global dimension assumptions in condi-
tions (i), (iii), and (iv) of Theorem 4 can be dropped. This will partially answer
Question 1 under the assumption that one of the Hopf algebras is Noetherian. As
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a consequence of Theorem 4, we provide a partial answer to Question 5 answer
under the assumption that both Hopf algebras are twisted CY.

Theorem 6 (Corollary 2.4.8). Let H and L be two monoidally Morita–Takeuchi
equivalent Hopf algebras. If both H and L are twisted CY , then gldim(H) =
gldim(L).

Monoidal Morita–Takeuchi equivalence can be described by the language of
cogroupoids. If H and L are two Hopf algebras that are monoidally Morita–Takeuchi
equivalent, then there exists a connected cogroupoid with 2 objects X, Y such that
H = C(X, X) and L = C(Y, Y ). In this case, C(X, Y ) is just the H -L-bigalois object
(see Section 1.1 for details). Throughout, we will use the language of cogroupoids
to discuss Hopf algebras whose comodule categories are monoidally equivalent.
We generalize many definitions and results in [Brown and Zhang 2008] to the level
of cogroupoids (see Section 2.4). Especially for Hopf–Galois objects, we define the
left (resp. right) winding automorphisms of C(X, Y ) using the homological integrals
of C(X, X) (resp. C(Y, Y )). We also generalize the famous Radford S4 formula for
finite dimensional Hopf algebras to Hopf–Galois object C(X, Y ) by assuming both
C(X, X) and C(Y, Y ) are AS-Gorenstein Hopf algebras.

Theorem 7 (Theorem 2.4.9 and Remark 2.4.10). Let C be a connected cogroupoid.
If X and Y are two objects such that C(X, X) and C(Y, Y ) are both AS-Gorenstein
Hopf algebras. Then for the Hopf–Galois object C(X, Y ) we have

(1) (SY,X ◦ SX,Y )
2
= γ ◦φ ◦ ξ−1,

where ξ and φ are respectively the left and right winding automorphisms given by
the left integrals of C(X, X) and C(Y, Y ), and γ is an inner automorphism.

At last, we provide two examples in Section 3. One is the connected cogroupoid
associated to B(E) and the other is the connected cogroupoid associated to a generic
datum of finite Cartan type (D, λ).

1. Preliminaries

We work over a fixed field k. Unless stated otherwise all algebras and vector spaces
are over k. The unadorned tensor ⊗ means ⊗k and Hom means Homk.

Given an algebra A, we write Aop for the opposite algebra of A and Ae for the
enveloping algebra A⊗ Aop. The category of left (resp. right) A-modules is denoted
by Mod A (resp. Mod Aop). An A-bimodule can be identified with an Ae-module,
that is, an object in Mod Ae.

For an A-bimodule M and two algebra automorphisms µ and ν, we let µMν

denote the A-bimodule such that µMν ∼= M as vector spaces, and the bimodule
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structure is given by

a ·m · b = µ(a)mν(b),

for all a, b ∈ A and m ∈ M. If one of the automorphisms is the identity, we will
omit it. It is well known that Aµ ∼= A as A-bimodules if and only if µ is an inner
automorphism of A.

For a Hopf algebra H, as usual, we use the symbols 1, ε and S respectively for
its comultiplication, counit, and antipode. We use Sweedler’s (sumless) notation
for the comultiplication and coaction of H. The category of right H -comodules
is denoted by MH. We write εk (resp. kε) for the left (resp. right) trivial module
defined by the counit ε of H.

1.1. Cogroupoid. We first recall the definition of a cogroupoid.

Definition 1.1.1. A cocategory C consists of:

• A set of objects ob(C),

• For any X, Y ∈ ob(C), an algebra C(X, Y ),

• For any X, Y, Z ∈ ob(C), algebra homomorphisms

1Z
XY : C(X, Y )→ C(X, Z)⊗ C(Z , Y ) and εX : C(X, X)→ k

such that for any X, Y, Z , T ∈ ob(C), the following diagrams commute:

C(X, Y )
1Z

X,Y
−−−→ C(X, Z)⊗ C(Z , Y )

1T
X,Y

y 1T
X,Z⊗1

y
C(X, T )⊗ C(T, Y )

1⊗1Z
T,Y

−−−−→ C(X, T )⊗ C(T, Z)⊗ C(Z , Y )

C(X, Y )

1Y
X,Y

��
C(X, Y )⊗ C(Y, Y )

1⊗εY // C(X, Y )

C(X, Y )

1X
X,Y

��
C(X, X)⊗ C(X, Y )

εX⊗1 // C(X, Y ).

Thus a cocategory with one object is just a bialgebra.
A cocategory C is said to be connected if C(X, Y ) is a nonzero algebra for any

X, Y ∈ ob(C).

Definition 1.1.2. A cogroupoid C consists of a cocategory C together with, for any
X, Y ∈ ob(C), linear maps

SX,Y : C(X, Y )→ C(Y, X)
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such that for any X, Y ∈ C, the following diagrams commute:

C(X, X)

1Y
X,X
��

εX // k
u // C(X, Y )

C(X, Y )⊗ C(Y, X)
1⊗SY,X // C(X, Y )⊗ C(X, Y )

·

OO

C(X, X)

1Y
X,X
��

εX // k
u // C(Y, X)

C(X, Y )⊗ C(Y, X)
SX,Y⊗1

// C(Y, X)⊗ C(Y, X).

·

OO

From the definition, we can see C(X, X) is a Hopf algebra for each object X ∈ C.
We use Sweedler’s notation for cogroupoids. Let C be a cogroupoid. For any

aX,Y
∈ C(X, Y ), we write

1Z
X,Y (a

X,Y )= aX,Z
1 ⊗ aZ ,Y

2 .

The following lemma describes properties of the “antipodes”:

Lemma 1.1.3 [Bichon 2014, Proposition 2.13]. Let C be a cogroupoid and let
X, Y ∈ ob(C).
(i) SY,X : C(Y, X)→ C(X, Y )op is an algebra homomorphism.

(ii) For any Z ∈ ob(C) and aY,X
∈ C(Y, X),

1Z
X,Y (SY,X (aY,X ))= SZ ,X (a

Z ,X
2 )⊗ SY,Z (a

Y,Z
1 ).

For other basic properties of cogroupoids, we refer to the same work.
Bichon [2014] reformulated Schauenburg’s [1996] results by cogroupoids. This

theorem shows that discussing two Hopf algebras with monoidally equivalent
comodule categories is equivalent discussing connected cogroupoids. In what
follows, unless otherwise stated, we assume that the cogroupoids mentioned are
connected.

Theorem 1.1.4 [Bichon 2014, Theorem 2.10, 2.12]. If C is a connected cogroupoid,
then for any X, Y ∈ C, we have equivalences of monoidal categories that are inverse
to each other

MC(X,X) ∼=
⊗MC(Y,Y ) MC(Y,Y ) ∼=

⊗MC(X,X)

V 7→ V�C(X,X)C(X, Y ) V 7→ V�C(Y,Y )C(Y, X).

Conversely, if H and L are Hopf algebras such that MH ∼=
⊗ML, then there exists a

connected cogroupoid with 2 objects X, Y such that H = C(X, X) and L = C(Y, Y ).

This monoidal equivalence can be extended to categories of Yetter–Drinfeld
modules.
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Lemma 1.1.5 [Bichon 2014, Proposition 6.2]. Let C be a cogroupoid, X, Y ∈ ob(C)
and V a right C(X, X)-module.

(i) V ⊗ C(X, Y ) has a right C(Y, Y )-module structure defined by

(v⊗ aX,Y )← bY,Y
= v · bX,X

2 ⊗ SY,X (b
Y,X
1 )aX,Y bX,Y

3 .

Together with the right C(Y, Y )-comodule structure defined by 1⊗1Y
X,Y, V ⊗

C(X, Y ) is a Yetter–Drinfeld module over C(Y, Y ).

(ii) If moreover V is a Yetter–Drinfeld module, then V�C(X,X)C(X, Y ) is a Yetter–
Drinfeld submodule of V ⊗ C(X, Y ).

Theorem 1.1.6 [Bichon 2014, Theorem 6.3]. Let C be a connected cogroupoid.
Then for any X, Y ∈ ob(C), the functor

YDC(X,X)
C(X,X)→ YDC(Y,Y )

C(Y,Y ) V 7→ V�C(X,X)C(X, Y )

is a monoidal equivalence.

1.2. Calabi–Yau algebras. In this subsection, we recall the definition of (twisted)
Calabi–Yau algebras.

Definition 1.2.1. An algebra A is a twisted Calabi–Yau algebra of dimension d if

(i) A is homologically smooth, that is, A has a bounded resolution by finitely
generated projective Ae-modules;

(ii) There is an automorphism µ of A such that

(2) ExtiAe(A, Ae)∼=

{
0, i 6= d,
Aµ, i = d,

as Ae-modules.

If such an automorphism µ exists, it is unique up to an inner automorphism and
is called the Nakayama automorphism of A. In the definition, the dimension d is
usually called the Calabi–Yau dimension of A. A Calabi–Yau algebra in the sense of
Ginzburg [2007] is a twisted Calabi–Yau algebra whose Nakayama automorphism
is an inner automorphism. In what follows, Calabi–Yau is abbreviated to CY.

Twisted CY algebras include CY algebras as a subclass. They are the natural
algebraic analogues of Bieri and Eckmann’s [1973] duality groups. The twisted CY
property of noncommutative algebras has been studied under other names for many
years, even before the definition of a CY algebra. Rigid dualizing complexes of
noncommutative algebras were studied in [Van den Bergh 1997]. The twisted CY
property was called “rigid Gorenstein” in [Brown and Zhang 2008] and was called
“skew Calabi–Yau” in a recent paper [Reyes et al. 2014].
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2. Calabi–Yau property

2.1. Artin–Schelter Gorenstein Hopf algebras. Let H be a Hopf algebra. We
denote the Hochschild dimension of H by Hdim(H). In the Appendix, it is shown
that the left global dimension and the right global dimension of H are always equal.
We denote the global dimension of H by gldim(H). The left adjoint functor L :
Mod H e

→Mod H is defined by the algebra homomorphism (id⊗S)◦1 : H→ H e.
Similarly, the algebra homomorphism τ ◦(S⊗id)◦1 :H→ (H e)op

=H e defines the
right adjoint functor R :Mod(H e)op

→Mod H op, where τ : H op
⊗ H→ H ⊗ H op

is the flip map. Let M be an H -bimodule. Then L(M) is a left H -module defined
by the action

x→ m = x1mS(x2) for any x ∈ H,

while R(M) is a right H -module defined by the action

m← x = S(x1)mx2 for any x ∈ H.

The algebra H e is a left and right H e-module with left action

(3) (a⊗ b)→ (x ⊗ y)= ax ⊗ yb,

and right action

(4) (x ⊗ y)← (a⊗ b)= xa⊗ by.

for any x⊗y and a⊗b∈H e. So L(H e) and R(H e) are H -H e and H e-H -bimodules,
where the corresponding H -module structures are given by

a→ (x ⊗ y)= a1x ⊗ yS(a2) and (x ⊗ y)← a = xa2⊗ S(a1)y

for any a ∈ H and x ⊗ y ∈ H e, respectively.
Let ∗H ⊗ H be the free left H -module, where the structure is given by the left

multiplication of the first factor H. Similarly, let H∗⊗H be the free right H -module
defined by the right multiplication of the first factor H. Moreover, we give ∗H ⊗H
a right H e-module structure such that

(5) (x ⊗ y)← (a⊗ b)= xa1⊗ byS2(a2)

and H∗⊗ H a left H e-module structure via

(6) (a⊗ b)→ (x ⊗ y)= a2x ⊗ S2(a1)yb

for any x ⊗ y ∈ ∗H ⊗ H or H∗⊗ H and a⊗ b ∈ H e.

Lemma 2.1.1. Retain the above notation. Then we have:

(i) L(H e)∼= ∗H ⊗ H as H-H e-bimodules.

(ii) R(H e)∼= H∗⊗ H as H e-H-bimodules.
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Proof. It is straightforward to check the corresponding isomorphisms of bimodules
are given by the following four homomorphisms:

L(H e)→ ∗H ⊗ H, x ⊗ y 7→ x1⊗ yS2(x2)

with inverse

∗H ⊗ H → L(H e), x ⊗ y 7→ x1⊗ yS(x2),

and
R(H e)→ H∗⊗ H, x ⊗ y 7→ x2⊗ S2(x1)y

with inverse
H∗⊗ H → R(H e), x ⊗ y 7→ x2⊗ S(x1)y. �

Lemma 2.1.2. Let H be a Hopf algebra and B an algebra.

(i) Let M be an H e-B-bimodule. Then ExtiH e(H,M)∼= ExtiH (εk, L(M)) as right
B-modules for all i > 0.

(ii) Let M be an B-H e-bimodule. Then ExtiH e(H,M)∼= ExtiHop(kε, R(M)) as left
B-modules for all i > 0.

Proof. We only prove (i); the proof of (ii) is quite similar. With Lemma 2.4 in
[Brown and Zhang 2008], we only need to prove that for an H e-B-bimodule N,
there is an H e-B-bimodule monomorphism 0→ N → I, such that I is injective as
an H e-module. The H e-B-bimodule N can be viewed as an H e

⊗ Bop-module. It
can be embedded into an injective H e

⊗ Bop-module I. We have

HomH e(−, I )∼= HomH e(−,HomH e⊗Bop((H e
⊗ Bop)H e , I ))

∼= HomH e⊗Bop((H e
⊗ Bop)H e ⊗−, I ).

H e
⊗ Bop is clearly free as an H e-module. Therefore, the functor HomH e(−, I ) is

exact. That is, I is injective as an H e-module. This completes the proof. �

It is well known that there is an equivalence of categories between the category
of left H e-modules and the category of right H e-modules for (H e)op

= H e. As a
consequence, ExtiH e(H, H e) can be computed both by using the left and the right
H e-module structures on H e defined in (3) and (4).

Proposition 2.1.3. Let H be a Hopf algebra such that it is homologically smooth.
We have

ExtiH e(H, H e)∼= ExtiH (εk, H)⊗ H ∼= ExtiHop(kε, H)⊗ H

as H e-modules for all i ≥ 0, where the H e-module structures on ExtiH (εk, H)⊗ H
and on ExtiHop(kε, H)⊗ H are induced by (5) and (6), respectively.
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Proof. We prove the isomorphism ExtiH e(H, H e)∼= ExtiH (εk, H)⊗ H. The proof
of the isomorphism ExtiH e(H, H e)∼= ExtiHop(kε, H)⊗ H is quite similar.

Since H is homologically smooth, the trivial module εk admits a bounded
projective resolution P•→ εk→ 0, with each term finitely generated (Proposition
A.2). Now we have the following H e-module isomorphisms:

ExtiH e(H, H e)∼= ExtiH (εk, L(H e)) ∼= ExtiH (εk, ∗H ⊗ H)
∼= Hi (P•, ∗H ⊗ H) ∼= Hi (P•, H)⊗ H
∼= ExtiH (εk, H)⊗ H.

The first and the second isomorphism follows from Lemma 2.1.2 and 2.1.1, respec-
tively. The fourth isomorphism holds since P•→ εk→ 0 is a bounded projective
resolution with each term finitely generated. �

Now we recall the definition of an Artin–Schelter (AS) Gorenstein algebra.

Definition 2.1.4 (cf. [Brown and Zhang 2008, Definition 1.2]). Let H be a Hopf
algebra.

(i) The Hopf algebra H is said to be left AS-Gorenstein if
(a) injdim H H = d <∞,
(b) ExtiH (εk, H)= 0 for i 6= d and ExtdH (εk, H)= k.

(ii) The Hopf algebra H is said to be right AS-Gorenstein if
(c) injdim HH = d <∞,
(d) ExtiHop(kε, H)= 0 for i 6= d and ExtdHop(kε, H)= k.

(iii) If H is both left and right AS-Gorenstein (relative to the same augmentation
map ε), then H is called AS-Gorenstein.

(iv) If, in addition, the global dimension of H is finite, then H is called AS-regular.

Remark 2.1.5. In above definitions, we do not require the Hopf algebra H to be
Noetherian. For AS-regularity, the right global dimension always equals the left
global dimension by Proposition A.1. Moreover, when H is AS-Gorenstein and
homologically smooth, the right injective dimension always equals the left injective
dimension, which are both given by the integer d such that ExtdH e(H, H e) 6= 0 by
Proposition 2.1.3.

Homological integrals for an AS-Gorenstein Hopf algebra introduced in [Lu
et al. 2007] are a generalization of integrals for finite dimensional Hopf algebras
[Sweedler 1969]. The concept was further extended to any AS-Gorenstein algebra
in [Brown and Zhang 2008].

Let A be a left AS-Gorenstein algebra of injective dimension d with augmentation
ε : A→ k. One sees that ExtdA(εk, A) is a one-dimensional right A-module. Any
nonzero element in ExtdA(εk, A) is called a left homological integral of A. Usually,
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ExtdA(εk, A) is denoted by
∫ l

A. Similarly, if A is a right AS-Gorenstein algebra
of injective dimension d, any nonzero element in ExtdAop(kε, A) is called a right
homological integral. And ExtdAop(kε, A) is denoted by

∫ r
A. Abusing the language

slightly,
∫ l

A (resp.
∫ r

A) is also called the left (resp. right) homological integral.
A Noetherian Hopf algebra H with bijective antipode is AS-regular in the sense

of [Brown and Zhang 2008, Definition 1.2] if and only if H is twisted CY [Reyes
et al. 2014, Lemma 1.3]. If H is not necessarily Noetherian, we have the following
result:

Proposition 2.1.6. Let H be a Hopf algebra with bijective antipode such that it is
homologically smooth. Then the following are equivalent:

(i) H is a twisted CY algebra of dimension d.

(ii) There is an integer d such that

ExtiH (εk, H)= 0 for i 6= d and dim ExtdH (εk, H)= 1.

(iii) There is an integer d such that

ExtiHop(kε, H)= 0 for i 6= d and dim ExtdHop(kε, H)= 1.

(iv) ExtiH (εk, H) and ExtiHop(kε, H) are finite dimensional for i > 0 and there is
an integer d such that dim ExtiH (εk, H) = dim ExtiHop(kε, H) = 0 for i > d,
and dim ExtdH (εk, H) 6= 0 or dim ExtdHop(kε, H) 6= 0.

In these cases, we have gldim(H)= injdim HH = injdim H H = d.

Proof. (i)⇒(ii), (iii) This proof can be found for example in [Yu et al. 2016, Lemma
2.15].

(ii)⇒ (i) By Proposition 2.1.3, ExtiH e(H, H e)∼=ExtiH (εk, H)⊗H for all i ≥ 1 as
H e-modules. Since ExtdH (εk, H) is a one-dimensional right H -module, we simply
write it as kξ , for some algebra homomorphism ξ : H → k. Therefore,

ExtiH e(H, H e)= 0 for i 6= d and ExtdH e(H, H e)∼= kξ ⊗ H
(a)
∼= Hµ,

where µ is defined by µ(h) = ξ(h1)S2(h2) for any h ∈ H. The isomorphism (a)
holds because the H e-module structure on kξ ⊗ H is induced by the equation (5)
according to Proposition 2.1.3. Moreover, it is easy to check that µ is an algebra
automorphism of H with inverse given by µ−1(h) = ξ(S(h1))S−2(h2) for any
h ∈ H.

(iii)⇒(i) The proof is similar to that of (ii)⇒ (i).
(ii), (iii)⇒(iv) This is obvious.
(iv)⇒(ii), (iii) The proof of [Brown and Zhang 2008, Lemma 3.2] works generally

for this case. Suppose dim ExtdH (εk, H) 6= 0; the case for dim ExtdHop(kε, H) 6= 0
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is similar. Since H is homologically smooth, by Proposition A.2 and [Brown and
Goodearl 1997, Lemma 1.11], we can apply Ischebeck’s spectral sequence

Extp
Hop(Ext−q

H (εk, H), H)=⇒ TorH
−p−q(H, εk)

to obtain dim ExtiHop(kε, H)= 0 for i 6= d . From the proof of [Brown and Goodearl
1997, Lemma 1.11], dim ExtdH (M, H) = dim M · dim ExtdH (εk, H) for any finite
dimensional left H -module M. Thus by the finite dimensional assumption,

dim ExtdH (ExtdHop(kε, H), H)= dim ExtdHop(kε, H) · dim ExtdH (εk, H).

Again by the Ischebeck’s spectral sequence, ExtdH (ExtdHop(kε, H), H)∼= k. Hence,

dim ExtdH (εk, H)= dim ExtdHop(kε, H)= 1.

Now (ii) and (iii) are proved.
Finally, we can apply the same proof of [Berger and Taillefer 2007, Proposition

2.2] to show that for a twisted CY Hopf algebra H of dimension d, we have
Hdim(H) = d. Hence gldim(H) = d by Proposition A.1. The equality of the
injective dimension of H is easy to see since it is always bounded by gldim(H)= d
and we have dim ExtdH (εk, H) 6= 0 or dim ExtdHop(kε, H) 6= 0. �

Corollary 2.1.7. Let H be a Hopf algebra with bijective antipode. Then the follow-
ing are equivalent:

• H is twisted CY.

• H is left AS-Gorenstein and the left trivial module εk admits a bounded
projective resolution with each term finitely generated.

• H is right AS-Gorenstein and the right trivial module kε admits a bounded
projective resolution with each term finitely generated.

Proof. It follows from Proposition A.2 and Proposition 2.1.6. �

2.2. Yetter–Drinfeld modules. In this subsection, we recall some definitions related
to Yetter–Drinfeld modules.

Definition 2.2.1. Let H be a Hopf algebra. A (right-right) Yetter–Drinfeld module
V over H is simultaneously a right H -module and a right H -comodule satisfying
the compatibility condition

δ(v · h)= v(0) · h2⊗ S(h1)v(1)h3 for any v ∈ V, h ∈ H.

We denote by YDH
H the category of Yetter–Drinfeld modules over H with mor-

phisms given by H -linear and H -collinear maps. Endowed with the usual tensor
product of modules and comodules, YDH

H is a monoidal category, with unit the
trivial Yetter–Drinfeld module k.

We can always construct a Yetter–Drinfeld module from a right comodule.
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Lemma-Definition 2.2.2 [Bichon 2013, Proposion 3.1, Definition 3.2]. Let H be a
Hopf algebra and V a right H -comodule. Endow V ⊗ H with the right H -module
structure defined by multiplication on the right. Then the linear map

V ⊗ H → V ⊗ H ⊗ H, v⊗ h 7→ v(0)⊗ h2⊗ S(h1)v(1)h3

endows V ⊗ H with a right H -comodule structure, and with a right-right Yetter–
Drinfeld module structure. We denote by V � H the resulting Yetter–Drinfeld
module.

A Yetter–Drinfeld module over H is said to be free if it is isomorphic to V � H
for some right H -comodule V.

A free Yetter–Drinfeld module is obviously free as a right H -module. We call a
free Yetter–Drinfeld module V � H finitely generated if V is finite dimensional.

Bichon [2016] introduced the notion of relative projective Yetter–Drinfeld mod-
ule, corresponding to the notion of relative projective Hopf bimodule considered in
[Shnider and Sternberg 1993] via the monoidal equivalence between Yetter–Drinfeld
modules and Hopf bimodules.

Lemma-Definition 2.2.3 [Bichon 2016, Definition 4.1, Proposition 4.2]. Let P be
a Yetter–Drinfeld module over a Hopf algebra H. The following are equivalent:

(1) The functor HomYDH
H
(P,−) transforms exact sequences of Yetter–Drinfeld

modules that splits as sequences of comodules to exact sequences of vector
spaces.

(2) Any epimorphism of Yetter–Drinfeld modules f : M → P that admits a
comodule section admits a Yetter–Drinfeld module section.

(3) P is a direct summand of a free Yetter–Drinfeld module.

A Yetter–Drinfeld module is said to be relative projective if it satisfies one of the
above equivalent conditions.

It is clear that a relative projective Yetter–Drinfeld module is a projective module.
We call a relative projective Yetter–Drinfeld module finitely generated if it is a
direct summand of a finitely generated free Yetter–Drinfeld module.

Definition 2.2.4. Let H be a Hopf algebra and let M ∈ YDH
H . A free (resp. relative

projective) Yetter–Drinfeld module resolution of M consists of a complex of free
(resp. relative projective) Yetter–Drinfeld modules

P• : · · · → Pi+1→ Pi → · · · → P1→ P0→ 0

for which there exists a Yetter–Drinfeld module morphism ε : P0→ M such that

· · · → Pi+1→ Pi → · · · → P1→ P0
ε
−→M→ 0

is an exact sequence in YDH
H .
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If each Pi , i > 0, is a finitely generated free (resp. relative projective) Yetter–
Drinfeld module, we call this complex P• a finitely generated free (resp. relative
projective) Yetter–Drinfeld module resolution.

Of course each free Yetter–Drinfeld module resolution is a free resolution and
each relative projective Yetter–Drinfeld module resolution is a projective resolution.

Lemma 2.2.5. Let C be a cogroupoid and X, Y ∈ ob(C). The equivalence functor
−�C(X,X)C(X, Y ) sends any relative projective Yetter–Drinfeld module resolution
P• of the trivial Yetter–Drinfeld module k over C(X, X) to a relative projective
Yetter–Drinfeld module resolution P•�C(X,X)C(X, Y ) of the trivial Yetter–Drinfeld
module k over C(Y, Y ). In particular, if P• is finitely generated (resp. bounded),
then P•�C(X,X)C(X, Y ) is also finite generated (resp. bounded).

Proof. Following from Lemma-Definition 2.2.3 and Section 4 in [Bichon 2013], we
see that the functor−�C(X,X)C(X, Y ) is exact and sends a relative projective Yetter–
Drinfeld module over C(X, X) to a relative projective Yetter–Drinfeld module
over C(Y, Y ). So P•�C(X,X)C(X, Y ) is a relative projective Yetter–Drinfeld module
resolution.

Lemma-Definition 2.2.3 and [Bichon 2014, Proposition 1.16] guarantee that if P•
is finitely generated, then P•�C(X,X)C(X, Y ) is also finite generated. The argument
for boundedness is clear. �

2.3. Homological properties of cogroupoids. From now on we assume that the
Hopf algebras mentioned have bijective antipodes. We also assume that any
cogroupoid C mentioned satisfies that SX,Y is bijective for any X, Y ∈ ob(C). This
assumption is to make sure that SY,X ◦ SX,Y is an algebra automorphism of C(X, Y ).
Actually, if C is a connected cogroupoid such that for some object X, C(X, X) is a
Hopf algebra with bijective antipode, then SX,Y is bijective for any objects X, Y
(see Remark 2.6 in [Yu 2016]).

Let C be a cogroupoid and X, Y ∈ ob(C). Both the morphisms1Y
X,X : C(X, X)→

C(X, Y )⊗ C(Y, X) and SY,X : C(Y, X)→ C(X, Y )op are algebra homomorphisms
(Lemma 1.1.3), so the composition of the morphisms

(7) C(X, X)
1Y

X,X
−−−→ C(X, Y )⊗C(Y, X)

id⊗SY,X
−−−−→ C(X, Y )⊗C(Y, X)op(= C(X, Y )e)

is an algebra homomorphism. This induces a functor

LX :Mod C(X, Y )e→Mod C(X, X).

The functor LX is just the functor L defined in [Yu 2016]. Let M be a C(X, Y )-
bimodule. The left C(X, X)-module structure of LX (M) is given by

x→ m = x X,Y
1 mSY,X (x

Y,X
2 ) for any m ∈ M, x ∈ C(X, X).
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From the cogroupoid C, we define a coopposite cogroupoid C′ as follows:

• ob(C′)= ob(C).
• For any objects Y, X, the algebra C′(Y, X) is the algebra C(X, Y ).

• For any objects Y, X and Z , the algebra homomorphism 1′ZY X : C
′(Y, X)→

C′(Y, Z) ⊗ C′(Z , X) is the algebra homomorphism τ ◦ 1Z
XY : C(X, Y ) →

C(Z , Y )⊗ C(X, Z) in C, where τ : C(X, Z)⊗ C(Z , Y )→ C(Z , Y )⊗ C(X, Z)
is the flip map.

• For any object X, ε′X : C
′(X, X)→ k is the same as εX : C(X, X)→ k in C.

• For any objects Y, X, the morphism S′Y,X :C
′(Y,X)→C′(X,Y ) is the morphism

S−1
Y,X : C(X,Y )→ C(Y,X).

It is easy to check that this indeed defines a cogroupoid.
For any objects X, Y ∈ ob(C)= ob(C′), the algebras C(X, Y ) and C(Y, Y ) in C

are just the algebras C′(Y, X) and C′(Y, Y ) in C′. So we have a functor

L′Y :Mod C(X, Y )e→Mod C(Y, Y ).

If M is a C(X,Y )-bimodule, the left C(Y,Y )-module structure of L′Y (M) is given by

y→ m = y X,Y
2 mS−1

X,Y (y
Y,X
1 ) for any m ∈ M and y ∈ C(Y, Y ).

As usual, we view C(X, Y )e as a left and a right C(X, Y )e-module respectively
in the following ways:

(8) (a⊗ b)→ (x ⊗ y)= ax ⊗ yb,

and

(9) (x ⊗ y)← (a⊗ b)= xa⊗ by,

for any x ⊗ y and a⊗ b ∈ C(X, Y )e. Then we have the modules LX (C(X, Y )e) and
L′Y (C(X, Y )e). They are all free modules.

Let ∗C(X, X)⊗ C(X, Y ) be the left C(X, X)-module defined by the left multipli-
cation of the factor C(X, X), and ∗C(Y, Y )⊗ C(X, Y ) be the left C(Y, Y )-module
defined by the left multiplication of the factor C(Y, Y ). Then we have the following:

Lemma 2.3.1. (i) LX (C(X, Y )e)∼= ∗C(X, X)⊗C(X, Y ) as left C(X, X)-modules.
The isomorphism is given by

LX (C(X, Y )e)→ ∗C(X, X)⊗ C(X, Y ), x ⊗ y 7→ x X,X
1 ⊗ ySY,X (SX,Y (x

X,Y
2 )).

(ii) L′Y (C(X, Y )e)∼= ∗C(Y, Y )⊗C(X, Y ) as left C(Y, Y )-modules. The isomorphism
is given by

L′Y (C(X, Y )e)→ ∗C(Y, Y )⊗ C(X, Y ), x ⊗ y 7→ xY,Y
2 ⊗ yS−1

X,Y (S
−1
Y,X (x

X,Y
1 )).
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Proof. (i) is Lemma 2.1 in [Yu 2016]. (ii) can be obtained by applying (i) to the
coopposite cogroupoid C′. �

Lemma 2.3.2. Let C be a cogroupoid, X, Y ∈ ob(C) and B another algebra. Let
M be a C(X, Y )e-B-bimodule.

(i) ExtiC(X,Y )e(C(X,Y ),M)∼=ExtiC(X,X)(εk,LX (M)) as right B-bimodules for all i >0.

(ii) ExtiC(X,Y )e(C(X,Y ),M)∼=ExtiC(Y,Y )(εk,L
′

Y (M)) as right B-bimodules for all i > 0.

Proof. By applying Lemma 2.2 in [Yu 2016] to the cogroupoid C and its coopposite
cogroupoid C′, we obtain vector space isomorphisms

ExtiC(X,Y )e(C(X, Y ),M)∼= ExtiC(X,X)(εk,LX (M))

and

ExtiC(X,Y )e(C(X, Y ),M)∼= ExtiC(Y,Y )(εk,L
′

Y (M))

for all i > 0. By a quite similar discussion to that in the proof of Lemma 2.1.2, we
can see that the isomorphisms above are B-linear. �

2.4. Main results. In order to state our main results we need to define winding
automorphisms of cogroupoids.

Let C be a cogroupoid and X, Y ∈ ob(C). Let ξ : C(X, X)→ k be an algebra
homomorphism. The left winding automorphism [ξ ]lX,Y of C(X, Y ) associated to ξ
is defined to be

[ξ ]lX,Y (a
X,Y )= ξ(aX,X

1 )aX,Y
2 for any a ∈ C(X, Y ).

Let η : C(Y, Y )→ k be an algebra homomorphism. Similarly, the right winding
automorphism of C(X, Y ) associated to η is defined to be

[η]rX,Y (a
X,Y )= aX,Y

1 η(aY,Y
2 ) for any a ∈ C(X, Y ).

Lemma 2.4.1. Let C be a cogroupoid and X, Y ∈ ob(C), let ξ : C(X, X)→ k, and
η : C(Y, Y )→ k be algebra homomorphisms. Then

(i) ([ξ ]lX,Y )
−1
= [ξ SX,X ]

l
X,Y .

(ii) ξ S2
X,X = ξ , so [ξ ]lX,Y = [ξ S2

X,X ]
l
X,Y .

(iii) [ξ ]lX,Y ◦ SY,X ◦ SX,Y = SY,X ◦ SX,Y ◦ [ξ ]
l
X,Y .

(i’) ([η]rX,Y )
−1
= [ηSY,Y ]

r
X,Y .

(ii’) ηS2
Y,Y = η, so [η]rX,Y = [ηS2

Y,Y ]
r
X,Y .

(iii’) [η]rX,Y ◦ SY,X ◦ SX,Y = SY,X ◦ SX,Y ◦ [η]
r
X,Y .
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Proof. (i) can be proved directly and (ii) is just Lemma 2.5 (c) in [Brown and Zhang
2008]. Now, we give a proof of (iii). For x ∈ C(X, Y ),

SY,X ◦ SX,Y ◦ [ξ ]
l
X,Y (a

X,Y )= ξ(aX,X
1 )SY,X (SX,Y (a

X,Y
2 )).

Since 1X
X,Y (SY,X (SX,Y (aX,Y )))= S2

X,X (a
X,X
1 )⊗ SY,X (SX,Y (a

X,Y
2 )),

[ξ ]lX,Y ◦ SY,X ◦ SX,Y (aX,Y )= ξ S2
X,X (a

X,X
1 )SY,X (SX,Y (a

X,Y
2 )).

By (ii), ξ S2
X,X = ξ , so

SY,X ◦ SX,Y ◦ [ξ ]
l(aX,Y )= [ξ ]l ◦ SY,X ◦ SX,Y (aX,Y ).

Therefore, SY,X ◦ SX,Y ◦ [ξ ]
l
X,Y = [ξ ]

l
X,Y ◦ SY,X ◦ SX,Y .

(i’), (ii’) and (iii’) hold symmetrically to (i), (ii) and (iii), respectively. �

The following is the main result of [Yu 2016]:

Theorem 2.4.2. Let C be a connected cogroupoid and let X ∈ ob(C) such that
C(X, X) is a twisted CY algebra of dimension d with left homological integral∫ l
C(X,X) = kξ , where ξ : C(X, X) → k is an algebra homomorphism. Then for

any Y ∈ ob(C), C(X, Y ) is a twisted CY algebra of dimension d with Nakayama
automorphism µ defined as µ= SY,X ◦ SX,Y ◦ [ξ ]

l
X,Y . That is,

µ(a)= ξ(aX,X
1 )SY,X (SX,Y (a

X,Y
2 ))

for any x ∈ C(X, Y ).

Though we do not say that the CY-dimension of C(X, X) and C(X, Y ) are the
same in the statement of [Yu 2016, Theorem 2.5], it is easy to see from its proof.
Applying Theorem 2.4.2 to the coopposite cogroupoid C′, we obtain the following
corollary:

Corollary 2.4.3. Let C be a connected cogroupoid and let Y ∈ ob(C) such that
C(Y, Y ) is a twisted CY algebra of dimension d with left homological integral∫ l
C(Y,Y ) = kη, where η : C(Y, Y ) → k is an algebra homomorphism. Then for

any X ∈ ob(C), C(X, Y ) is a twisted CY algebra of dimension d with Nakayama
automorphism µ′ defined as µ′ = S−1

X,Y ◦ S−1
Y,X ◦ [η]

r
X,Y . That is,

µ′(a)= S−1
X,Y (S

−1
Y,X (a

X,Y
1 ))η(aY,Y

2 )

for any x ∈ C(X, Y ).

Theorem 2.4.4. Let C be a connected cogroupoid and let X be an object in C such
that C(X, X) is a twisted CY Hopf algebra of dimension d. Then for any Y ∈ ob(C)
such that C(Y, Y ) is homologically smooth, C(Y, Y ) is a twisted CY algebra of
dimension d as well.
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Proof. Let Y be an object in C such that C(Y, Y ) is homologically smooth. We need
to compute the Hochschild cohomology of C(Y, Y ). By Lemma 2.3.2,

ExtiC(X,Y )e(C(X, Y ), C(X, Y )e)∼= ExtiC(Y,Y )op(εk,L′Y (C(X, Y )e))

for all i > 0. L′Y (C(X, Y )e) is a C(Y, Y )-C(X, Y )e-bimodule. The left C(Y, Y )-
module isomorphism

L′Y (C(X, Y )e)→ ∗C(Y, Y )⊗ C(X, Y ), x ⊗ y 7→ xY,Y
2 ⊗ yS−1

X,Y (S
−1
Y,X (x

X,Y
1 ))

in Lemma 2.3.1 is also an isomorphism of left C(X, Y )e-modules if we endow a
right C(X, Y )e-module structure on ∗C(Y, Y )⊗ C(X, Y ) as follows:

(x ⊗ y)← (a⊗ b)= xaY,Y
2 ⊗ byS−1

X,Y (S
−1
Y,X (a

X,Y
1 ))

for any x⊗ y ∈ ∗C(Y, Y )⊗C(X, Y ) and a⊗b ∈ C(X, Y )e. Therefore, we obtain the
following left C(X, Y )e-module isomorphisms:

ExtiC(X,Y )e(C(X, Y ), C(X, Y )e)∼= ExtiC(Y,Y )(εk,L
′

Y (C(X, Y )e))
∼= ExtiC(Y,Y )(εk, ∗C(Y, Y )⊗ C(X, Y ))
∼= ExtiC(Y,Y )(εk, C(Y, Y ))⊗ C(X, Y )

for i > 0. The third isomorphism follows from the fact that C(Y, Y ) is homologically
smooth, the trivial module εk admits a bounded projective resolution with each
term finitely generated (Proposition A.2). The right C(X, Y )e-module structure on
ExtiC(Y,Y )op(kε, C(Y, Y ))⊗ C(X, Y ) induced by the isomorphisms above is given by

(x ⊗ y)← (a⊗ b)= xaY,Y
2 ⊗ byS−1

X,Y (S
−1
Y,X (a

X,Y
1 ))

for any x ⊗ y ∈ ExtiC(Y,Y )op(εk, C(Y, Y ))⊗ C(X, Y ) and a ⊗ b ∈ C(X, Y )e. Note
that the right C(Y, Y )-module structure of C(Y, Y ) induces a right C(Y, Y )-module
structure on ExtiC(Y,Y )op(kε, C(Y, Y )).

It follows from Theorem 2.4.2 that C(X, Y ) is a twisted CY algebra of dimension
d with Nakayama automorphism µ= SY,X ◦ SX,Y ◦ [ξ ]

l
X,Y . So

ExtiC(X,Y )e(C(X, Y ), C(X, Y )e)=
{

0, i 6= d,
C(X, Y )µ, i = d.

Now we arrive at the isomorphism of left C(X, Y )e-modules

ExtiC(Y,Y )(εk, C(Y, Y ))⊗ C(X, Y )∼=
{

0, i 6= d,
C(X, Y )µ, i = d.

A right C(X, Y )e-module can be viewed as a C(X, Y )-bimodule. The left module
structure of ExtiC(Y,Y )(kε, C(Y, Y ))⊗ C(X, Y ) is just the left multiplication to the
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factor C(X, Y ). So especially, as left C(X, Y )-modules,

ExtiC(Y,Y )(εk, C(Y, Y ))⊗ C(X, Y )∼=
{

0, i 6= d,
C(X, Y ), i = d.

This shows that ExtiC(Y,Y )(εk, C(Y, Y )) = 0 for i 6= d. Moreover, for degree d,
we denote V = ExtdC(Y,Y )(εk, C(Y, Y )). Then V ⊗ C(X, Y ) ∼= C(X, Y ) as free left
C(X, Y )-modules. Hence 0 < dim V < ∞ (note that we do not know whether
C(X, Y ) has the FBN property). Similarly, ExtiC(Y,Y )op(kε, C(Y, Y )) = 0 for i 6= d
and ExtdC(Y,Y )op(kε, C(Y, Y )) is finite dimensional as well. Hence C(Y, Y ) is twisted
CY of dimension d by Proposition 2.1.6. �

Theorem 2.4.5. Let H and L be two monoidally Morita–Takeuchi equivalent Hopf
algebras. If H is twisted CY of dimension d and L is homologically smooth, then L
is twisted CY of dimension d as well.

Proof. This directly follows from Theorem 1.1.4 and Theorem 2.4.4. �

Before we present our next theorem, we need the following lemma:

Lemma 2.4.6. If H be a Noetherian Hopf algebra, then the trivial Yetter–Drinfeld
module k admits a finitely generated free Yetter–Drinfeld module resolution.

Proof. First we have an epimorphism ε :k�H→k, 1⊗h 7→ε(h) of Yetter–Drinfeld
modules. Set P0 = k� H. Since H is Noetherian, Ker ε is finitely generated as a
module over H. Say it is generated by a finite dimensional subspace V1 of P0. That
is, there exists an epimorphism V1⊗ H→Ker ε→ 0 given by v⊗h 7→ vh for any
v ∈ V1 and h ∈ H. Let C1 be the subcomodule of Ker ε generated by V1. We know
C1 is finite dimensional since V1 is finite dimensional by the fundamental theory of
comodules. Construct the epimorphism C1� H → Ker ε→ 0 via c⊗ h 7→ ch for
any c ∈ C1 and h ∈ H. It is easy to check that it is a morphism of Yetter–Drinfeld
modules. Set P1 = C1� H, we have the exact sequence P1→ P0→ k→ 0. Note
that P1 is again a Noetherian H -module. Hence we can do the procedure recursively
to obtain a finitely generated free Yetter–Drinfeld module resolution of k. �

Theorem 2.4.7. Let H be a twisted CY Hopf algebra of dimension d, and L a
Hopf algebra monoidally Morita–Takeuchi equivalent to H. If one of the following
conditions holds, then L is also twisted CY of dimension d.

(i) H admits a finitely generated relative projective Yetter–Drinfeld module resolu-
tion for the trivial Yetter–Drinfeld module k and L has finite global dimension.

(ii) H admits a bounded finitely generated relative projective Yetter–Drinfeld
module resolution for the trivial Yetter–Drinfeld module k.

(iii) H is Noetherian and L has finite global dimension.

(iv) L is Noetherian and has finite global dimension.
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Proof. By Theorem 2.4.4, we only need to prove that if one of the conditions listed
in the theorem holds, then L is homologically smooth.

In case (i) We use the language of cogroupoids. Since H and L are monoidally
Morita–Takeuchi equivalent, there exists a connected cogroupoid with 2 objects
X, Y such that H = C(X, X) and L = C(Y, Y ) (Theorem 1.1.4). By Proposition A.2,
to show L = C(Y, Y ) is homologically smooth, we only need to show that the
trivial module kε admits a bounded projective resolution with each term finitely
generated. By assumption, the trivial Yetter–Drinfeld module k over the Hopf
algebra H = C(X, X) admits a finitely generated relative projective Yetter–Drinfeld
module resolution

(10) · · · → Pi
δi
−→ Pi−1→ · · · → P1→ P0→ k→ 0.

By Lemma 2.2.5,

(11) · · · → Pi�C(X,X)C(X, Y )
δi�C(X,Y )
−−−−−−→ Pi−1�C(X,X)C(X, Y )→ · · ·

· · · → P1�C(X,X)C(X, Y )→ P0�C(X,X)C(X, Y )→ k→ 0.

is a finitely generated relative projective Yetter–Drinfeld module resolution of the
trivial Yetter–Drinfeld module k over C(Y, Y ). So each Pi�C(X,X)C(X, Y ) is a
finite generated projective C(Y, Y )-module. By assumption, the global dimension
of C(Y, Y ) is finite, say n. Set Kn = Ker(δn−1�C(X,X)C(X, Y )). Following from
Lemma 4.1.6 in [Weibel 1994], Kn is projective, so it is a direct summand of
Pn�C(X,X)C(X, Y ). Since Pn�C(X,X)C(X, Y ) is finitely generated, Kn is finitely
generated as well. Therefore,

0→ Kn→ Pn−1�C(X,X)C(X, Y )→ · · ·

· · · → P1�C(X,X)C(X, Y )→ P0�C(X,X)C(X, Y )→ k→ 0

is a bounded projective resolution with each term finitely generated. Hence, L =
C(Y, Y ) is homologically smooth.

The proof in case (ii) uses a similar argument as in case (i) since equations (10)
and (11) now are bounded finitely generated projective resolutions for k.

Case (iii) is a direct consequence of Lemma 2.4.6 and (i).
That the Hopf algebra L is homologically smooth in case (iv) follows from

[Brown and Zhang 2008, Lemma 5.2]. �

Corollary 2.4.8. Let H and L be two monoidally Morita–Takeuchi equivalent Hopf
algebras. If both H and L are twisted CY , then gldim(H)= gldim(L).

Proof. It follows from Theorem 2.4.7 and the fact that for twisted CY Hopf algebras
the CY dimension always equals the global dimension by Proposition 2.1.6. �
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Now we discuss the relation between the homological integrals of C(X, X) and
C(Y, Y ) when both of them are twisted CY.

Theorem 2.4.9. Let C be a connected cogroupoid. If X and Y are two objects such
that C(X, X) and C(Y, Y ) are both twisted CY algebras, then we have

(12) (SY,X ◦ SX,Y )
2
= [η]rX,Y ◦ ([ξ ]

l
X,Y )

−1
◦ γ,

where ξ : C(X, X)→ k and η : C(Y, Y )→ k are algebra homomorphisms given by
the left homological integrals of C(X, X) :

∫ l
C(X,X) = kξ and C(Y, Y ) :

∫ l
C(Y,Y ) = kη

respectively, and γ is an inner automorphism of C(X, Y ).

Proof. From Theorem 2.4.2 and Corollary 2.4.3, it is easy to see that the CY-
dimensions of C(X, X) and C(Y, Y ) are equal. Moreover, µ = SY,X ◦ SX,Y ◦ [ξ ]

l

and µ′ = S−1
X,Y ◦ S−1

Y,X ◦ [η]
r are the Nakayama automorphisms of C(X, Y ). Since

Nakayama automorphisms are unique up to inner automorphisms,

SY,X ◦ SX,Y ◦ [ξ ]
l
X,Y = S−1

X,Y ◦ S−1
Y,X ◦ [η]

r
X,Y ◦ γ,

for some inner automorphism γ of C(X, Y ). The automorphism [ξ ]lX,Y commutes
with SY,X ◦ SX,Y (Lemma 2.4.1), we obtain that

(SY,X ◦ SX,Y )
2
= ([ξ ]lX,Y )

−1
◦ [η]rX,Y ◦ γ. �

Remark 2.4.10. The three maps composed to give (SY,X ◦ SX,Y )
2 in (12) commute

with each other. This can be proved as in [Brown and Zhang 2008, Proposition
4.6] with the help of Lemma 2.4.1. It is not hard to see that Theorem 2.4.9
holds when C(X, X) and C(Y, Y ) are both AS-Gorenstein. The equation (12)
is just (4.6.1) in the same work when X = Y. Since the inner automorphism
γ = (SY,X ◦ SX,Y )

2
◦ ([η]rX,Y )

−1
◦ [ξ ]lX,Y is intrinsic in C(X, Y ), it prompts us

to generalize their Question 4.6 to the Hopf-bigalois object C(X, Y ) when both
C(X, X) and C(Y, Y ) are AS-Gorenstein.

Question 2.4.11. What is the inner automorphism in Theorem 2.4.9?

3. Examples

In this section, we provide some examples.

3.1. Example 1. We take the field k to be C in this subsection. Let E ∈ GLm(C)

with m > 2 and let B(E) be the algebra presented by generators (ui j )16i, j6m and
relations

E−1ut Eu = Im = uE−1ut E,

where u is the matrix (ui j )16i, j6m , ut is the transpose of u and Im is the identity
matrix. The algebra B(E) is a Hopf algebra and was defined by Dubois-Violette and
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Launer [1990] as the quantum automorphism group of the nondegenerate bilinear
form associated to E . When

E = Eq =

(
0 1
−q−1 0

)
,

B(Eq) is just the algebra Oq(SL2(C)), the quantized coordinate algebra of SL2(C).
In order to describe Hopf algebras whose comodule categories are monoidally

equivalent to the one of B(E), we recall the cogroupoid B.
Let E ∈ GLm(C) and let F ∈ GLn(C). The algebra B(E, F) is defined to be the

algebra with generators ui j , 16 i 6 m, 16 j 6 n, subject to the relations:

(13) F−1ut Eu = In; uF−1ut E = Im .

The generators ui j in B(E, F) is denoted by uE F
i j to express the dependence on E

and F when needed. It is clear that B(E)= B(E, E).
For any E ∈GLm(C), F ∈GLn(C) and G ∈GLp(C), define the following maps:

1G
E,F : B(E, F)→ B(E,G)⊗B(G, F), ui j 7→

p∑
k=1

uik ⊗ uk j ,(14)

εE : B(E)→ C, ui j 7→ δi j ,(15)

SE,F : B(E, F)→ B(F, E)op, u 7→ E−1ut F.(16)

It is clear that SE,F is bijective.
Lemma 3.2 in [Bichon 2014] ensures that with these morphisms we have a

cogroupoid. The cogroupoid B is defined as follows:

(i) ob(B)= {E ∈ GLm(C),m > 1}.

(ii) For E, F ∈ ob(B), the algebra B(E, F) is the algebra defined as in (13).

(iii) The structural maps 1•
•,•, ε• and S•,• are defined in (14), (15) and (16), respec-

tively.

Lemma 3.1.1 [Bichon 2014, Lemma 3.4, Corollary 3.5]. Let E ∈ GLm(C), F ∈
GLn(C) with m, n > 2. Then B(E, F) 6= (0) if and only if tr(E−1 E t)= tr(F−1 F t).
Consequently, let λ ∈ C, and Bλ the full subcogroupoid of B with objects

ob(Bλ)= {E ∈ GLn(C),m > 2, tr(E−1 E t)= λ}.

Then Bλ is a connected cogroupoid.

Thus, if E ∈GLm(C), F ∈GLn(C)with m, n>2 satisfy tr(E−1 E t)= tr(F−1 F t),
then the comodule categories of B(E) and B(F) are monoidally equivalent.

The Calabi–Yau property of the algebras B(E) was discussed in [Bichon 2013,
Section 6] (see also [Walton and Wang 2016] and [Yu 2016]). Theorem 2.4.7 pro-
vides a more simplified way to prove that the algebras B(E) are twisted CY algebras.
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Actually, by Lemma 5.6 in [Bichon 2013], the trivial Yetter–Drinfeld module over
the algebra B(Eq) admits a bounded finitely generated free Yetter–Drinfeld module
resolution and B(Eq) twisted CY of dimension 3 with left homological integral∫ l
B(Eq )
= Cη given by

η(u)=
(

q−2 0
0 q2

)
.

For any E ∈ GLm(C) (m > 2), there is a q ∈ C× such that

tr(E−1 E t)=−q − q−1
= tr(E−1

q E t
q),

so B(E) and B(Eq) are monoidally Morita–Takeuchi equivalent. Therefore, the
algebra B(E) is twisted CY by Theorem 2.4.7. Let

∫ l
B(E) = Cξ be the left homo-

logical integral of B(E), where ξ : B(E)→ C is an algebra homomorphism. Since
there are no nontrivial units in B(E, Eq). Then ξ and η satisfy the equation

(SEq ,E ◦ SE,Eq )
2
= [η]rE,Eq

◦ ([ξ ]lE,Eq
)−1

by Theorem 2.4.9. So ξ is defined by ξ(uE) = (E t)−1 E(E t)−1 E . Hence, the
Nakayama automorphism of B(E) is defined by µ(u)= (E t)−1 Eu(E t)−1 E [Reyes
et al. 2014, Lemma 1.3].

3.2. Example 2. In this subsection, we want to present a class of Hopf algebras
such that the inner automorphism in Theorem 2.4.9 can be calculated. We first
recall the definition of the 2-cocycle cogroupoid.

Let H be a Hopf algebra with bijective antipode. A (right) 2-cocycle on H is a
convolution invertible linear map σ : H ⊗ H → k satisfying

σ(h1, k1)σ (h2k2, l)= σ(k1, l1)σ (h, k2l2), σ (h, 1)= σ(1, h)= ε(h)

for all h, k, l ∈ H. The set of 2-cocycles on H is denoted Z2(H). They define the
2-cocycle cogroupoid of H.

Let σ, τ ∈ Z2(H). The algebra H(σ, τ ) is defined to be the vector space H
together with the multiplication given by

(17) x � y = σ(x1, y1)x2 y2τ
−1(x3, y3) for any x, y ∈ H.

The Hopf algebra H(σ, σ ) is just the cocycle deformation Hσ of H defined by
Doi [1993]. The comultiplication of Hσ is the same as the comultiplication of H.
However, the multiplication and the antipode are deformed:

h � k = σ(h1, k1)h2k2σ
−1(h3, k3), Sσ,σ (h)= σ(h1, S(h2))S(h3)σ

−1(S(h4), h5)

for any h, k ∈ Hσ.
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Now we recall the necessary structural maps for the 2-cocycle cogroupoid of H.
For any σ, τ, ω ∈ Z2(H), define the following maps:

1ωσ,τ=1:H(σ,τ)→H(σ,ω)⊗H(ω,τ), x 7→x1⊗x2.(18)

εσ=ε:H(σ,σ)→k.(19)

Sσ,τ :H(σ,τ)→H(τ,σ), x 7→σ(x1,S(x2))S(x3)τ
−1(S(x4),x5).(20)

It is routine to check that the inverse of Sσ,τ is given as follows:

(21) S−1
σ,τ : H(τ, σ )→ H(σ, τ ), x 7→ σ−1(x5, S−1(x4))S−1(x3)τ (S−1(x2), x1).

The 2-cocycle cogroupoid of H, denoted H, is the cogroupoid defined as follows:

(i) ob(H)= Z2(H).

(ii) For σ, τ ∈ Z2(H), the algebra H(σ, τ ) is the algebra H(σ, τ ) defined in (17).

(iii) The structural maps 1•
•,•, ε• and S•,• are defined in (18), (19) and (20) respec-

tively.

Following [Bichon 2014, Lemma 3.13], the morphisms 1•
•,•, ε• and S•,• indeed sat-

isfy the conditions required for a cogroupoid. It is clear that a 2-cocycle cogroupoid
is connected.

Now we recall the definition of the pointed Hopf algebras U (D, λ). For a group
0, we denote by 0

0YD the category of Yetter–Drinfeld modules over the group
algebra k0. If 0 is an abelian group, then it is well known that a Yetter–Drinfeld
module over the algebra k0 is just a 0-graded 0-module.

We fix the following terminology.

• a free abelian group 0 of finite rank s;

• a Cartan matrix A= (ai j ) ∈ Zθ×θ of finite type, where θ ∈N. Let (d1, . . . , dθ )
be a diagonal matrix of positive integers such that di ai j = d j a j i , which is
minimal with this property;

• a set X of connected components of the Dynkin diagram corresponding to the
Cartan matrix A. If 1 6 i, j 6 θ , then i ∼ j means that they belong to the
same connected component;

• a family (qI )I∈X of elements in k which are not roots of unity;

• elements g1, . . . , gθ ∈ 0 and characters χ1, . . . , χθ ∈ 0̂ such that

(22) χ j (gi )χi (g j )= qdi ai j
I , χi (gi )= qdi

I for all 16 i, j 6 θ, I ∈ X .

For simplicity, we write q j i = χi (g j ). Then equation (22) reads as follows:

(23) qi i = qdi
I and qi j q j i = qdi ai j

I for all 16 i, j 6 θ, I ∈ X .
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Let D be the collection D(0, (ai j )16i, j6θ , (qI )I∈X , (gi )16i6θ , (χi )16i6θ ). A link-
ing datum λ = (λi j ) for D is a collection of elements (λi j )16i< j6θ,i� j ∈ k such
that λi j = 0 if gi g j = 1 or χiχ j 6= ε. We write the datum λ = 0, if λi j = 0 for
all 1 6 i < j 6 θ . The datum (D, λ) = (0, (ai j ), qI , (gi ), (χi ), (λi j )) is called a
generic datum of finite Cartan type for group 0.

A generic datum of finite Cartan type for a group 0 defines a Yetter–Drinfeld mod-
ule over the group algebra k0. Let V be a vector space with basis {x1, x2, . . . , xθ }.
We set

|xi | = gi , g(xi )= χi (g)xi , 16 i 6 θ, g ∈ 0,

where |xi | denotes the degree of xi . This makes V a Yetter–Drinfeld module over the
group algebra k0. We write V = {xi , gi , χi }16i6θ ∈

0
0YD. The braiding is given by

c(xi ⊗ x j )= qi j x j ⊗ xi , 16 i, j 6 θ.

The tensor algebra T (V ) on V is a natural graded braided Hopf algebra in 0
0YD.

The smash product T (V )#k0 is a usual Hopf algebra. It is also called a bosonization
of T (V ) by k0.

Definition 3.2.1. Given a generic datum of finite Cartan type (D, λ) for a group 0,
define U (D, λ) as the quotient Hopf algebra of the smash product T (V )#k0 modulo
the ideal generated by

(adc xi )
1−ai j (x j )= 0, 16 i 6= j 6 θ, i ∼ j,

xi x j −χ j (gi )x j xi = λi j (gi g j − 1), 16 i < j 6 θ, i � j,

where adc is the braided adjoint representation defined in [Andruskiewitsch and
Schneider 2004, Sec. 1].

To present the CY property of the algebras U (D, λ), we recall the concept of
root vectors. Let 8 be the root system corresponding to the Cartan matrix A with
{α1, . . . , αθ } a set of fixed simple roots, and W the Weyl group. We fix a reduced
decomposition of the longest element w0 = si1 · · · si p of W in terms of the simple
reflections. Then the positive roots are precisely the following:

β1 = αi1, β2 = si1(αi2), . . . , βp = si1 · · · si p−1(αi p).

For βi =
∑θ

i=1 miαi , we write gβi = gm1
1 · · · g

mθ

θ and χβi = χ
m1
1 · · ·χ

mθ

θ .
Lusztig [1993] defined the root vectors for a quantum group Uq(g). Up to a

nonzero scalar, each root vector can be expressed as an iterated braided commutator.
In [Andruskiewitsch and Schneider 2002, Sec. 4.1], the root vectors were general-
ized on a pointed Hopf algebras U (D, λ). For each positive root βi , 16 i 6 p, the
root vector xβi is defined by the same iterated braided commutator of the elements
x1, . . . , xθ , but with respect to the general braiding.
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Remark 3.2.2. If βj = αl , then we have xβj = xl . That is, x1, . . . , xθ are the simple
root vectors.

Lemma 3.2.3 [Yu et al. 2016, Lemma 3.3]. Let (D, λ) be a generic datum of finite
Cartan type for a group 0, and H the Hopf algebra U (D, λ). Let s be the rank of
0 and p the number of the positive roots of the Cartan matrix.

(i) The algebra H is Noetherian AS-regular of global dimension p+ s. The left
homological integral module

∫ l
H of H is isomorphic to kξ , where ξ : H→ k is

an algebra homomorphism defined by ξ(g)=
(∏p

i=1 χβi

)
(g) for all g ∈ 0 and

ξ(xk)= 0 for all 16 k 6 θ .

(ii) The algebra H is twisted CY with Nakayama automorphism µ defined by
µ(xk)= qkk xk for all 16 k 6 θ , and µ(g)=

(∏p
i=1 χβi

)
(g) for all g ∈ 0.

Let (D, λ) be a generic datum of finite Cartan type for a group 0. The algebra
U (D, λ) is a cocycle deformation of U (D, 0). That is U (D, λ)=U (D, 0)σ, where
σ is the cocycle defined by

(24) σ(g, g′)= 1,

σ (g, xi )= σ(xi , g)= 0, 16 i 6 θ, g, g′ ∈ 0,

σ(xi , x j )=

{
λi j , i < j, i � j,
0, otherwise.

Lemma 3.2.3 shows that both U (D, 0) and its cocycle deformation U (D, λ) are
twisted CY. The algebras U (D, λ) are Noetherian with finite global dimension by
Lemma 2.1 in [Yu and Zhang 2013]. Therefore, Theorem 2.4.7 explains why for
this class of Hopf algebras, cocycle deformation preserves the CY property.

With Lemma 3.2.3, we can write the inner automorphism in Theorem 2.4.9
explicitly.

Proposition 3.2.4. Let H be U (D, 0), then U (D, λ)= Hσ, where σ is the cocycle
as defined in (24). Let

∫ l
H = kξ and

∫ r
Hσ = kη be left homological integral of H and

Hσ respectively, where ξ : H → k and η : Hσ
→ k are algebra homomorphisms.

Then the following equation holds.

(Sσ,1 ◦ S1,σ )
2
= [η]r1,σ ◦ ([ξ ]

l
1,σ )
−1
◦ γ,

where γ is the inner automorphism defined by γ (xk)=
[∏p

i=1 gβi

]−1
(xk)

[∏p
i=1 gβi

]
for 16 k 6 θ and γ (g)= g for any g ∈ 0.

Appendix

We list two basic homological properties of Hopf algebras. They are well known,
but due to a lack of convenient references, we provide in most cases their proofs.
We do not require bijectivity of antipode or Noetherianity of a Hopf algebra.



CALABI–YAU PROPERTY UNDER MONOIDAL MORITA–TAKEUCHI EQUIVALENCE 507

First we want to show that for a Hopf algebra, the left global dimension always
equals the right global dimension.

Let H be a Hopf algebra. We denote the left global dimension, the right global
dimension and the Hochschild dimension of H by lgldim(H), rgldim(H) and
Hdim(H), respectively. We have the left adjoint functor L :Mod H e

→Mod H and
the right adjoint functor R :Mod(H e)op

→Mod H op. Let M be an H -bimodule.
Then L(M) is a left H -module defined by the action

x→ m = x1mS(x2) for any x ∈ H.

While R(M) is a right H -module defined by the action

m← x = S(x1)mx2 for any x ∈ H.

Proposition A.1. Let H be a Hopf algebra. Then

projdim kε = projdim εk= rgldim(H)= lgldim(H)= Hdim(H).

Proof. That projdim kε = rgldim(H) and projdim εk = lgldim(H) follows from
[Lorenz and Lorenz 1995, Section 2.4]. We know from [Cartan and Eilenberg 1956,
IX.7.6] that rgldim(H) and lgldim(H) are bounded by Hdim(H). Let M be any
H -bimodule. By Lemma 2.4 in [Brown and Zhang 2008], there are isomorphisms
ExtiH e(H,M)∼=ExtiH (εk, L(M)) for i >0. This shows that Hdim(H)6 lgldim(H).
Similarly, for i > 0, the isomorphisms ExtiH e(H,M)∼= ExtiH (kε, R(M)) hold. So
Hdim(H)6 rgldim(H). Therefore, we have rgldim(H)= lgldim(H)=Hdim(H).
In conclusion, we obtain that

projdim kε = projdim εk= rgldim(H)= lgldim(H)= Hdim(H). �

Next we want to show that to see whether a Hopf algebra H is homologically
smooth it is enough to investigate the projective resolution of the trivial module.

Proposition A.2. Let H be a Hopf algebra. The following are equivalent:

(i) The algebra H is homologically smooth.

(ii) The left trivial module εk admits a bounded projective resolution with each
term finitely generated.

(iii) The right trivial module kε admits a bounded projective resolution with each
term finitely generated.

Proof. We only need to show that (i) and (ii) are equivalent. (i)⇐⇒(iii) can be
proved symmetrically.

(i)⇒(ii) Suppose that H is homologically smooth. That is, H has a resolution

0→ Pn→ Pn−1→ · · · → P1→ P0→ H → 0
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such that each term is a finitely generated projective H e-module. Following from
Lemma 2.4 in [Berger and Taillefer 2007],

0→ Pn ⊗H εk→ Pn−1⊗H εk→ · · · → P1⊗H εk→ P0⊗H εk→ εk→ 0

is a projective resolution of εk. Clearly, it is a bounded projective resolution with
each term finitely generated as left H -module.

(ii)⇒(i) View H e as an H e-H -bimodule via

a⊗ b→ x ⊗ y = ax ⊗ yb, (x ⊗ y)← a = xa1⊗ S(a2)y

for any a ⊗ b, x ⊗ y ∈ H e and a ∈ H. Let H ⊗ H∗ be the free right H -module
defined by multiplication to the second factor H. The morphism

H e
→ H ⊗ H∗, x ⊗ y 7→ x2 y⊗ x1

is an isomorphism of right H -modules with inverse

H ⊗ H∗→ H e, x ⊗ y 7→ y1⊗ S(y2)x .

That is, H e ∼= H ⊗ H∗ as right H -modules. So the functor H e
⊗H − :Mod H →

Mod H e is exact. This functor clearly sends projective H -modules to projective
H e-modules. Moreover, H e

⊗ εk ∼= H as left H e-modules. The isomorphism
H e
⊗ εk→ H is defined by x ⊗ y 7→ xy. Therefore, if the left trivial module εk

admits a bounded projective resolution Q• with each term finitely generated, then
H e
⊗H Q• is a bounded projective resolution of H over H e with each term finitely

generated. That is, H is homologically smooth. �

Acknowledgement

The authors sincerely thank the referee for his/her valuable comments and sugges-
tions that helped them to improve the paper quite a lot. Wang and Yu are grateful to
the Department of Mathematics of Zhejiang Normal University for the hospitality
they received during a visit in summer 2016. Wang is supported by AMS-Simons
travel grant. Yu is supported by grants from NSFC (No. 11301126, No. 11571316,
No. 11671351).

References

[Andruskiewitsch and Schneider 2002] N. Andruskiewitsch and H.-J. Schneider, “Finite quantum
groups over abelian groups of prime exponent”, Ann. Sci. École Norm. Sup. (4) 35:1 (2002), 1–26.
MR Zbl

[Andruskiewitsch and Schneider 2004] N. Andruskiewitsch and H.-J. Schneider, “A characterization
of quantum groups”, J. Reine Angew. Math. 577 (2004), 81–104. MR Zbl

[Artin and Schelter 1987] M. Artin and W. F. Schelter, “Graded algebras of global dimension 3”, Adv.
in Math. 66:2 (1987), 171–216. MR Zbl

http://dx.doi.org/10.1016/S0012-9593(01)01082-5
http://dx.doi.org/10.1016/S0012-9593(01)01082-5
http://msp.org/idx/mr/1886004
http://msp.org/idx/zbl/1007.16028
http://dx.doi.org/10.1515/crll.2004.2004.577.81
http://dx.doi.org/10.1515/crll.2004.2004.577.81
http://msp.org/idx/mr/2108213
http://msp.org/idx/zbl/1084.16027
http://dx.doi.org/10.1016/0001-8708(87)90034-X
http://msp.org/idx/mr/917738
http://msp.org/idx/zbl/0633.16001


CALABI–YAU PROPERTY UNDER MONOIDAL MORITA–TAKEUCHI EQUIVALENCE 509

[Berger and Taillefer 2007] R. Berger and R. Taillefer, “Poincaré–Birkhoff–Witt deformations of
Calabi–Yau algebras”, J. Noncommut. Geom. 1:2 (2007), 241–270. MR Zbl

[Bichon 2003] J. Bichon, “The representation category of the quantum group of a non-degenerate
bilinear form”, Comm. Algebra 31:10 (2003), 4831–4851. MR Zbl

[Bichon 2013] J. Bichon, “Hochschild homology of Hopf algebras and free Yetter–Drinfeld resolu-
tions of the counit”, Compos. Math. 149:4 (2013), 658–678. MR Zbl

[Bichon 2014] J. Bichon, “Hopf–Galois objects and cogroupoids”, Rev. Un. Mat. Argentina 55:2
(2014), 11–69. MR Zbl

[Bichon 2016] J. Bichon, “Gerstenhaber–Schack and Hochschild cohomologies of Hopf algebras”,
Doc. Math. 21 (2016), 955–986. MR Zbl

[Bieri and Eckmann 1973] R. Bieri and B. Eckmann, “Groups with homological duality generalizing
Poincaré duality”, Invent. Math. 20 (1973), 103–124. MR Zbl

[Brown and Goodearl 1997] K. A. Brown and K. R. Goodearl, “Homological aspects of Noetherian PI
Hopf algebras and irreducible modules and maximal dimension”, J. Algebra 198:1 (1997), 240–265.
MR Zbl

[Brown and Zhang 2008] K. A. Brown and J. J. Zhang, “Dualising complexes and twisted Hochschild
(co)homology for Noetherian Hopf algebras”, J. Algebra 320:5 (2008), 1814–1850. MR Zbl

[Cartan and Eilenberg 1956] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press,
1956. MR Zbl

[Chirvasitu et al. 2016] A. Chirvasitu, C. Walton, and X. Wang, “On quantum groups associated to a
pair of preregular forms”, preprint, 2016. arXiv

[Doi 1993] Y. Doi, “Braided bialgebras and quadratic bialgebras”, Comm. Algebra 21:5 (1993),
1731–1749. MR Zbl

[Dubois-Violette and Launer 1990] M. Dubois-Violette and G. Launer, “The quantum group of a
nondegenerate bilinear form”, Phys. Lett. B 245:2 (1990), 175–177. MR Zbl

[Ginzburg 2007] V. Ginzburg, “Calabi–Yau algebras”, preprint, 2007. arXiv

[Goodearl and Zhang 2007] K. R. Goodearl and J. J. Zhang, “Homological properties of quantized
coordinate rings of semisimple groups”, Proc. Lond. Math. Soc. (3) 94:3 (2007), 647–671. MR Zbl

[Lorenz and Lorenz 1995] M. E. Lorenz and M. Lorenz, “On crossed products of Hopf algebras”,
Proc. Amer. Math. Soc. 123:1 (1995), 33–38. MR Zbl

[Lu et al. 2007] D.-M. Lu, Q.-S. Wu, and J. J. Zhang, “Homological integral of Hopf algebras”, Trans.
Amer. Math. Soc. 359:10 (2007), 4945–4975. MR Zbl

[Lusztig 1993] G. Lusztig, Introduction to quantum groups, Progress in Mathematics 110, Birkhäuser,
Boston, 1993. MR Zbl

[Manin 1988] Y. I. Manin, “Quantum groups and noncommutative geometry”, lecture notes, Centre
de Recherches Mathématiques, Université de Montréal, 1988. MR

[Mrozinski 2014] C. Mrozinski, “Quantum groups of GL(2) representation type”, J. Noncommut.
Geom. 8:1 (2014), 107–140. MR Zbl

[Raedschelders and Van den Bergh 2015] T. Raedschelders and M. Van den Bergh, “The representa-
tion theory of noncommutative O(GL2)”, preprint, 2015. arXiv

[Raedschelders and Van den Bergh 2017] T. Raedschelders and M. Van den Bergh, “The Manin
Hopf algebra of a Koszul Artin–Schelter regular algebra is quasi-hereditary”, Adv. Math. 305 (2017),
601–660. MR Zbl

[Reyes et al. 2014] M. Reyes, D. Rogalski, and J. J. Zhang, “Skew Calabi–Yau algebras and homo-
logical identities”, Adv. Math. 264 (2014), 308–354. MR Zbl

http://dx.doi.org/10.4171/JNCG/6
http://dx.doi.org/10.4171/JNCG/6
http://msp.org/idx/mr/2308306
http://msp.org/idx/zbl/1161.16022
http://dx.doi.org/10.1081/AGB-120023135
http://dx.doi.org/10.1081/AGB-120023135
http://msp.org/idx/mr/1998031
http://msp.org/idx/zbl/1034.16042
http://dx.doi.org/10.1112/S0010437X12000656
http://dx.doi.org/10.1112/S0010437X12000656
http://msp.org/idx/mr/3049699
http://msp.org/idx/zbl/06165761
http://inmabb.criba.edu.ar/revuma/pdf/v55n2/v55n2a02.pdf
http://msp.org/idx/mr/3285340
http://msp.org/idx/zbl/1322.16021
https://www.math.uni-bielefeld.de/documenta/vol-21/26.pdf
http://msp.org/idx/mr/3548138
http://msp.org/idx/zbl/06638970
http://dx.doi.org/10.1007/BF01404060
http://dx.doi.org/10.1007/BF01404060
http://msp.org/idx/mr/0340449
http://msp.org/idx/zbl/0274.20066
http://dx.doi.org/10.1006/jabr.1997.7109
http://dx.doi.org/10.1006/jabr.1997.7109
http://msp.org/idx/mr/1482982
http://msp.org/idx/zbl/0892.16022
http://dx.doi.org/10.1016/j.jalgebra.2007.03.050
http://dx.doi.org/10.1016/j.jalgebra.2007.03.050
http://msp.org/idx/mr/2437632
http://msp.org/idx/zbl/1159.16009
http://msp.org/idx/mr/0077480
http://msp.org/idx/zbl/0075.24305
http://msp.org/idx/arx/1605.06428
http://dx.doi.org/10.1080/00927879308824649
http://msp.org/idx/mr/1213985
http://msp.org/idx/zbl/0779.16015
http://dx.doi.org/10.1016/0370-2693(90)90129-T
http://dx.doi.org/10.1016/0370-2693(90)90129-T
http://msp.org/idx/mr/1068703
http://msp.org/idx/zbl/1119.16307
http://msp.org/idx/arx/math/0612139
http://dx.doi.org/10.1112/plms/pdl022
http://dx.doi.org/10.1112/plms/pdl022
http://msp.org/idx/mr/2325315
http://msp.org/idx/zbl/1120.16039
http://dx.doi.org/10.2307/2160606
http://msp.org/idx/mr/1227522
http://msp.org/idx/zbl/0826.16037
http://dx.doi.org/10.1090/S0002-9947-07-04159-1
http://msp.org/idx/mr/2320655
http://msp.org/idx/zbl/1145.16022
http://msp.org/idx/mr/1227098
http://msp.org/idx/zbl/0788.17010
http://msp.org/idx/mr/1016381
http://dx.doi.org/10.4171/JNCG/150
http://msp.org/idx/mr/3275027
http://msp.org/idx/zbl/1292.16027
http://msp.org/idx/arx/1509.03869
http://dx.doi.org/10.1016/j.aim.2016.09.017
http://dx.doi.org/10.1016/j.aim.2016.09.017
http://msp.org/idx/mr/3570144
http://msp.org/idx/zbl/06652650
http://dx.doi.org/10.1016/j.aim.2014.07.010
http://dx.doi.org/10.1016/j.aim.2014.07.010
http://msp.org/idx/mr/3250287
http://msp.org/idx/zbl/1336.16011


510 XINGTING WANG, XIAOLAN YU AND YINHUO ZHANG

[Schauenburg 1996] P. Schauenburg, “Hopf bi-Galois extensions”, Comm. Algebra 24:12 (1996),
3797–3825. MR Zbl

[Shnider and Sternberg 1993] S. Shnider and S. Sternberg, Quantum groups: from coalgebras to
Drinfel’d algebras, International Press, Cambridge, MA, 1993. MR Zbl

[Sweedler 1969] M. E. Sweedler, “Integrals for Hopf algebras”, Ann. of Math. (2) 89 (1969), 323–335.
MR Zbl

[Van den Bergh 1997] M. Van den Bergh, “Existence theorems for dualizing complexes over non-
commutative graded and filtered rings”, J. Algebra 195:2 (1997), 662–679. MR Zbl

[Walton and Wang 2016] C. Walton and X. Wang, “On quantum groups associated to non-Noetherian
regular algebras of dimension 2”, Math. Z. 284:1-2 (2016), 543–574. MR Zbl

[Weibel 1994] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced
Mathematics 38, Cambridge Univ. Press, 1994. MR Zbl

[Yu 2016] X. Yu, “Hopf–Galois objects of Calabi–Yau Hopf algebras”, J. Algebra Appl. 15:10 (2016),
art. id. 1650194. MR Zbl

[Yu and Zhang 2013] X. Yu and Y. Zhang, “Calabi–Yau pointed Hopf algebras of finite Cartan type”,
J. Noncommut. Geom. 7:4 (2013), 1105–1144. MR Zbl

[Yu et al. 2016] X. Yu, F. Van Oystaeyen, and Y. Zhang, “Cleft extensions of Koszul twisted Calabi–
Yau algebras”, Israel J. Math. 214:2 (2016), 785–829. MR Zbl

[Zhang 1998] J. J. Zhang, “Non-Noetherian regular rings of dimension 2”, Proc. Amer. Math. Soc.
126:6 (1998), 1645–1653. MR Zbl

Received October 12, 2016. Revised February 17, 2017.

XINGTING WANG

DEPARTMENT OF MATHEMATICS

TEMPLE UNIVERSITY

PHILADELPHIA, PA 19122
UNITED STATES

xingting@temple.edu

XIAOLAN YU

DEPARTMENT OF MATHEMATICS

HANGZHOU NORMAL UNIVERSITY

310036 HANGZHOU

CHINA

xlyu@hznu.edu.cn

YINHUO ZHANG

DEPARTMENT OF MATHEMATICS AND STATISTICS

UNIVERSITY OF HASSELT

UNIVERSITAIRE CAMPUS

3590 DIEPEENBEEK

BELGIUM

yinhuo.zhang@uhasselt.be

http://dx.doi.org/10.1080/00927879608825788
http://msp.org/idx/mr/1408508
http://msp.org/idx/zbl/0878.16020
http://msp.org/idx/mr/1287162
http://msp.org/idx/zbl/0845.17015
http://dx.doi.org/10.2307/1970672
http://msp.org/idx/mr/0242840
http://msp.org/idx/zbl/0174.06903
http://dx.doi.org/10.1006/jabr.1997.7052
http://dx.doi.org/10.1006/jabr.1997.7052
http://msp.org/idx/mr/1469646
http://msp.org/idx/zbl/0894.16020
http://dx.doi.org/10.1007/s00209-016-1666-1
http://dx.doi.org/10.1007/s00209-016-1666-1
http://msp.org/idx/mr/3545505
http://msp.org/idx/zbl/06642715
http://dx.doi.org/10.1017/CBO9781139644136
http://msp.org/idx/mr/1269324
http://msp.org/idx/zbl/0797.18001
http://dx.doi.org/10.1142/S0219498816501942
http://msp.org/idx/mr/3575984
http://msp.org/idx/zbl/06667909
http://dx.doi.org/10.4171/JNCG/144
http://msp.org/idx/mr/3148617
http://msp.org/idx/zbl/1296.16032
http://dx.doi.org/10.1007/s11856-016-1362-1
http://dx.doi.org/10.1007/s11856-016-1362-1
http://msp.org/idx/mr/3544702
http://msp.org/idx/zbl/06627513
http://dx.doi.org/10.1090/S0002-9939-98-04480-3
http://msp.org/idx/mr/1459158
http://msp.org/idx/zbl/0902.16036
mailto:xingting@temple.edu
mailto:xlyu@hznu.edu.cn
mailto:yinhuo.zhang@uhasselt.be


CONTENTS

Volume 290, no. 1 and no. 2

Michał Adamaszek and Henry Adams: The Vietoris–Rips complexes of a circle 1

Sílvia Anjos and Rémi Leclercq: Noncontractible Hamiltonian loops in the kernel of
Seidel’s representation 257

Xiaodong Cao, Bowei Liu, Ian Pendleton and Abigail Ward: Differential Harnack
estimates for Fisher’s equation 273

Xiao-Li Chao with Xiao-Liu Wang and Hui-Ling Li 467

Chunxia Cheng, Zhongxue Lü and Yingshu Lü: A direct method of moving planes
for the system of the fractional Laplacian 301

Elói Medina Galego and André Luis Porto da Silva: A vector-valued Banach–Stone
theorem with distortion

√
2 321

Fan Gao: Distinguished theta representations for certain covering groups 333

Allen Gehret: A tale of two Liouville closures 41

Joseph Grant and Robert J. Marsh: Braid groups and quiver mutation 77

Bobo Hua, Shiping Liu and Chao Xia: Liouville theorems for f -harmonic maps into
Hadamard spaces 381

Shin Koizumi: A Paley–Wiener theorem for the spectral projection of symmetric
graphs 117

Rémi Leclercq with Sílvia Anjos 257

Lee Tim Weng and Takao Watanabe: Fundamental domains of arithmetic quotients
of reductive groups over number fields 139

Thomas Leistner and Andree Lischewski: The ambient obstruction tensor and
conformal holonomy 403

Hui-Ling Li with Xiao-Liu Wang and Xiao-Li Chao 467

Andree Lischewski with Thomas Leistner 403

Bowei Liu with Xiaodong Cao, Ian Pendleton and Abigail Ward 273

Shiping Liu with Bobo Hua and Chao Xia 381

Yingshu Lü with Chunxia Cheng and Zhongxue Lü 301

Zhongxue Lü with Chunxia Cheng and Yingshu Lü 301



512

Robert J. Marsh with Joseph Grant 77

Ian Pendleton with Xiaodong Cao, Bowei Liu and Abigail Ward 273

Guangbin Ren and Xieping Wang: Growth and distortion theorems for slice
monogenic functions 169

André Luis Porto da Silva with Elói Medina Galego 321

Shuichiro Takeda: Remarks on metaplectic tensor products for covers of GLr 199

Bernardo Uribe: On the classification of pointed fusion categories up to weak Morita
equivalence 437

Xiao-Liu Wang, Hui-Ling Li and Xiao-Li Chao: Length-preserving evolution of
immersed closed curves and the isoperimetric inequality 467

Xieping Wang with Guangbin Ren 169

Xingting Wang, Xiaolan Yu and Yinhuo Zhang: Calabi–Yau property under
monoidal Morita–Takeuchi equivalence 481

Yuan Wang: On relative rational chain connectedness of threefolds with anti-big
canonical divisors in positive characteristics 231

Abigail Ward with Xiaodong Cao, Bowei Liu and Ian Pendleton 273

Chao Xia with Bobo Hua and Shiping Liu 381

Xiaolan Yu with Xingting Wang and Yinhuo Zhang 481

Chong Zhang: An orthogonality relation for spherical characters of supercuspidal
representations 247

Yinhuo Zhang with Xingting Wang and Xiaolan Yu 481



Guidelines for Authors

Authors may submit articles at msp.org/pjm/about/journal/submissions.html and choose an
editor at that time. Exceptionally, a paper may be submitted in hard copy to one of the
editors; authors should keep a copy.

By submitting a manuscript you assert that it is original and is not under consideration
for publication elsewhere. Instructions on manuscript preparation are provided below. For
further information, visit the web address above or write to pacific@math.berkeley.edu or
to Pacific Journal of Mathematics, University of California, Los Angeles, CA 90095–1555.
Correspondence by email is requested for convenience and speed.

Manuscripts must be in English, French or German. A brief abstract of about 150 words or
less in English must be included. The abstract should be self-contained and not make any
reference to the bibliography. Also required are keywords and subject classification for the
article, and, for each author, postal address, affiliation (if appropriate) and email address if
available. A home-page URL is optional.

Authors are encouraged to use LATEX, but papers in other varieties of TEX, and exceptionally
in other formats, are acceptable. At submission time only a PDF file is required; follow
the instructions at the web address above. Carefully preserve all relevant files, such as
LATEX sources and individual files for each figure; you will be asked to submit them upon
acceptance of the paper.

Bibliographical references should be listed alphabetically at the end of the paper. All ref-
erences in the bibliography should be cited in the text. Use of BibTEX is preferred but not
required. Any bibliographical citation style may be used but tags will be converted to the
house format (see a current issue for examples).

Figures, whether prepared electronically or hand-drawn, must be of publication quality.
Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or
in a form that can be converted to EPS, such as GnuPlot, Maple or Mathematica. Many
drawing tools such as Adobe Illustrator and Aldus FreeHand can produce EPS output.
Figures containing bitmaps should be generated at the highest possible resolution. If there
is doubt whether a particular figure is in an acceptable format, the authors should check
with production by sending an email to pacific@math.berkeley.edu.

Each figure should be captioned and numbered, so that it can float. Small figures occupying
no more than three lines of vertical space can be kept in the text (“the curve looks like
this:”). It is acceptable to submit a manuscript will all figures at the end, if their placement
is specified in the text by means of comments such as “Place Figure 1 here”. The same
considerations apply to tables, which should be used sparingly.

Forced line breaks or page breaks should not be inserted in the document. There is no point
in your trying to optimize line and page breaks in the original manuscript. The manuscript
will be reformatted to use the journal’s preferred fonts and layout.

Page proofs will be made available to authors (or to the designated corresponding author)
at a website in PDF format. Failure to acknowledge the receipt of proofs or to return
corrections within the requested deadline may cause publication to be postponed.

http://msp.org/pjm/about/journal/submissions.html
mailto:pacific@math.berkeley.edu
mailto:pacific@math.berkeley.edu


PACIFIC JOURNAL OF MATHEMATICS

Volume 290 No. 2 October 2017

257Noncontractible Hamiltonian loops in the kernel of Seidel’s
representation

SÍLVIA ANJOS and RÉMI LECLERCQ

273Differential Harnack estimates for Fisher’s equation
XIAODONG CAO, BOWEI LIU, IAN PENDLETON and ABIGAIL
WARD

301A direct method of moving planes for the system of the fractional
Laplacian

CHUNXIA CHENG, ZHONGXUE LÜ and YINGSHU LÜ

321A vector-valued Banach–Stone theorem with distortion
√

2
ELÓI MEDINA GALEGO and ANDRÉ LUIS PORTO DA SILVA

333Distinguished theta representations for certain covering groups
FAN GAO

381Liouville theorems for f -harmonic maps into Hadamard spaces
BOBO HUA, SHIPING LIU and CHAO XIA

403The ambient obstruction tensor and conformal holonomy
THOMAS LEISTNER and ANDREE LISCHEWSKI

437On the classification of pointed fusion categories up to weak Morita
equivalence

BERNARDO URIBE

467Length-preserving evolution of immersed closed curves and the
isoperimetric inequality

XIAO-LIU WANG, HUI-LING LI and XIAO-LI CHAO

481Calabi–Yau property under monoidal Morita–Takeuchi equivalence
XINGTING WANG, XIAOLAN YU and YINHUO ZHANG

Pacific
JournalofM

athem
atics

2017
Vol.290,N

o.2


	 vol. 290, no. 2, 2017
	Masthead and Copyright
	Sílvia Anjos and Rémi Leclercq
	1. Introduction
	2. Background and user manual for Sections 3 and 4
	3. Hirzebruch surfaces
	3.1. Even Hirzebruch surfaces
	3.2. Odd Hirzebruch surfaces

	4. 2-point blow-ups of Lg
	References

	Xiaodong Cao and Bowei Liu and Ian Pendleton and Abigail Ward
	1. Introduction
	2. On closed manifolds
	3. On complete noncompact manifolds
	4. Applications
	Acknowledgements
	References

	Chunxia Cheng and Zhongxue Lü and Yingshu Lü
	1. Introduction
	2. Various maximum principles
	Maximum principle for antisymmetric functions
	Narrow region principle
	Decay at infinity

	3. Method of moving planes and its applications
	The subcritical case
	The critical case

	References

	Elói Medina Galego and André Luis Porto da Silva
	1. Introduction
	2. Special sets associated to isomorphisms between C0(K, H) spaces
	3. On the subsets w (k, v ) of K containing irregular points
	4. The functions : K P(S) and : S P(K)
	5. The cardinality of (k) for every k K
	6. The isomorphisms between C0(K, H) spaces with distortion 2
	7. Open questions
	References

	Fan Gao
	1. Introduction and main results
	1A. Introduction
	1B. Main results

	2. Basic setup
	2A. Structural facts on 3mu-3mu G-1mu1mu
	2B. Theta representations O(G,X)
	2C. Unitary distinguished characters
	2D. Conventions and notations

	3. Bounds for dim Wh(O(G,X))
	3A. Whittaker functionals
	3B. Reduction of Wh(O(G,X))
	3C. The Shahidi local coefficient matrix
	3D. A lower bound for dim Wh(O(G,X))
	3E. An upper bound for dim Wh(O(G,X))

	4. The A_r,r>=1 case
	4A. Case I: SL(n)_{r+1},n<=r
	4B. Case II: SL(n)_{r+1},n=r+1
	4B1. The reduction step
	4B2. Interlude: Weil-index
	4B3. An explicit criterion

	4C. Case III: SL(n)_{r+1},n=r+2
	4D. Case IV: SL(n)_{r+1},n>=r+3

	5. The C_r,r>=2 case
	5A. The case where n is odd
	5B. The case where n is even
	5B1. The case where m>=2r+2
	5B2. The case where m<=2r-2
	5B3. The case where m=2r-1
	5B4. The case where m=2r
	5B5. The case where m= 2r+1


	6. The B_r,r>=2 case
	6A. The case where n is odd
	6B. The case where n is even
	6B1. The case where m and r are odd
	6B2. The case where m is odd and r>=2 is even
	6B3. The case where m is even and r>=3 is odd
	6B4. The case where m is even and r>=2 is even


	7. The G2 case
	References

	Bobo Hua and Shiping Liu and Chao Xia
	1. Introduction
	2. f-harmonic functions
	3. f-harmonic maps into Cartan–Hadamard manifolds
	4. f-harmonic maps into Hadamard spaces
	5. Liouville-type theorems
	Acknowledgements
	References

	Thomas Leistner and Andree Lischewski
	1. Introduction
	2. Conformal structures, tractors and ambient metrics
	2A. Conventions
	2B. Conformal tractor calculus
	2C. Holonomy reductions of conformal structures
	2C.1. Geometries with reducible holonomy representation
	2C.2. Geometries defined via normal conformal Killing forms
	2C.3. Conformal holonomy and twistor spinors
	2C.4. Exceptional cases

	2D. Conformal ambient metrics

	3. The ambient obstruction tensor and conformal holonomy
	4. The conformal holonomy distribution
	4A. The conformal holonomy distribution
	4B. Relation to the curved orbit decomposition
	4C. Open sets adapted to the holonomy distribution
	4D. Rank and integrability of the holonomy distribution

	5. Applications to the obstruction tensor
	5A. The obstruction tensor and holonomy reductions
	5B. The obstruction tensor for Bryant conformal structures

	References

	Bernardo Uribe
	Introduction
	1. Preliminaries
	1A. Abelian group extensions
	1B. Cohomology of groups and the LHS spectral sequence
	1B1. Double complex

	1C. Tensor categories
	1D. The fusion category Vect(G, )
	1E. Module categories
	1F. Indecomposable module categories over V(G, )
	1G. Dual category
	1H. Center of a tensor category
	1I. Weak Morita equivalence of tensor categories

	2. The dual of V(G, ) with respect to M(A G, )
	2A. Conditions for CM* to be pointed
	2B. The Grothendieck ring of the pointed category CM*
	2C. A skeleton of the pointed category CM*

	3. Weak Morita equivalence classes of group-theoretical tensor categories
	3A. Description of ,  and 
	3B. Description of  and 
	3C. Classification theorem

	4. Examples
	4A. Pointed fusion categories of global dimension 4
	4B. Nontrivial action of Z/2 on Z/4
	4C. Extension of Z/2 Z/2 by Z/2

	References

	Xiao-Liu Wang and Hui-Ling Li and Xiao-Li Chao
	1. Introduction
	2. Lemmas
	3. Proofs of Theorems 1 and 2
	4. Proof of 3
	Acknowledgments
	References

	Xingting Wang and Xiaolan Yu and Yinhuo Zhang
	Introduction
	1. Preliminaries
	1.1. Cogroupoid
	1.2. Calabi–Yau algebras

	2. Calabi–Yau property
	2.1. Artin–Schelter Gorenstein Hopf algebras
	2.2. Yetter–Drinfeld modules
	2.3. Homological properties of cogroupoids
	2.4. Main results

	3. Examples
	3.1. Example 1
	3.2. Example 2

	Appendix
	Acknowledgement
	References

	Index
	Guidelines for Authors
	Table of Contents

