Vol. 291, No. 1, 2017

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Spinorial representation of submanifolds in Riemannian space forms

Pierre Bayard, Marie-Amélie Lawn and Julien Roth

Vol. 291 (2017), No. 1, 51–80
Abstract

We give a spinorial representation of submanifolds of any dimension and codimension into Riemannian space forms in terms of the existence of generalized Killing spinors. We discuss several applications, among them a new and concise proof of the fundamental theorem of submanifold theory. We also recover results of T. Friedrich, B. Morel and the authors in dimensions 2 and 3.

Keywords
Spin geometry, isometric immersions, Weierstrass representation
Mathematical Subject Classification 2010
Primary: 53C27, 53C40
Milestones
Received: 23 May 2016
Revised: 7 February 2017
Accepted: 10 March 2017
Published: 20 August 2017
Authors
Pierre Bayard
Facultad de Ciencias
UNAM
Av. Universidad 3000, Circuito Exterior S/N
Ciudad Universitaria
04510 Ciudad de México,
Mexico
Marie-Amélie Lawn
Department of Mathematics
Imperial College
London
SW7 2AZ
United Kingdom
Julien Roth
Laboratoire d’Analyse et de Mathématiques Appliquées
Université Paris-Est Marne-la-Vallée
77454 Marne-la-Vallée Cedex 2
France