Vol. 291, No. 1, 2017

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Regularity of the analytic torsion form on families of normal coverings

Bing Kwan So and GuangXiang Su

Vol. 291 (2017), No. 1, 149–181
Abstract

We prove the smoothness of the L2-analytic torsion form for fiber bundles with positive Novikov–Shubin invariant. We do so by generalizing the arguments of Azzali, Goette and Schick to an appropriate Sobolev space, and proving that the Novikov–Shubin invariant is also positive in the Sobolev setting, using an argument of Alvarez Lopez and Kordyukov.

Keywords
$L^2$-analytic torsion form, Novikov-Shubin invariant, Sobolev space, superconnection
Mathematical Subject Classification 2010
Primary: 58J52
Secondary: 58J35
Milestones
Received: 9 June 2014
Revised: 16 July 2016
Accepted: 7 October 2016
Published: 20 August 2017
Authors
Bing Kwan So
Mathematics Institute
Jilin University
2699 Qianjin Street
Changchun, 130012
China
GuangXiang Su
Chern Institute of Mathematics and LPMC
Nankai University
Tianjin, 300071
China