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SPINORIAL REPRESENTATION OF SUBMANIFOLDS
IN RIEMANNIAN SPACE FORMS

PIERRE BAYARD, MARIE-AMÉLIE LAWN AND JULIEN ROTH

We give a spinorial representation of submanifolds of any dimension and
codimension into Riemannian space forms in terms of the existence of gen-
eralized Killing spinors. We discuss several applications, among them a new
and concise proof of the fundamental theorem of submanifold theory. We
also recover results of T. Friedrich, B. Morel and the authors in dimensions
2 and 3.

1. Introduction

One of the fundamental problems in submanifold theory deals with the existence
of isometric immersions from a Riemannian manifold Mn into another fixed Rie-
mannian manifold N n+p. If the ambient manifold is the space form Rn+p, Sn+p or
Hn+p, the fundamental theorem of submanifold theory states that the Gauss, Ricci
and Codazzi equations, also called structure equations, are necessary and sufficient
conditions.

In the case of surfaces, another approach is given by the study of Weierstrass rep-
resentations. Historically, these representations are describing a conformal minimal
immersion of a Riemann surface M into the three-dimensional Euclidean space R3.
Precisely, given a pair (h, g) consisting of a holomorphic and a meromorphic
function, the formula

f (x, y)=<e
∫
((1− g2(z))h(z), (1+ g2(z))h(z), 2g(z)h(z)) dz,

with z = x + iy some complex coordinate, gives a local parametrization of a
minimal surface in Euclidean three-space. Conversely every minimal surface can be
parametrized in this way with respect to isothermal coordinates. However, relaxing
the condition of holomorphicity on the pair (h, g), this representation is much more
general and can actually describe all surfaces in R3 as shown in [Kenmotsu 1979].

This approach was reformulated in a more concise and simpler way in terms of
spinor fields by B.G. Konopelchenko [1996], Konopelchenko and I.A. Taı̆manov
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[1996], Taı̆manov [1997a] and R. Kusner and N. Schmitt [1996]. These so-called
spinorial Weierstrass representations were studied extensively by these authors and
many others, in dimension 3 and 4 (see [Taı̆manov 1997b; Konopelchenko 2000;
Konopelchenko and Landolfi 1999; 2000] and the references there).

However these formulae were given in local coordinates and remained purely
computational until Friedrich [1998] gave an elegant and geometrically invariant
description using spinor bundles. We point out that the equivalence between the two
approaches was recently showed in [Romon and Roth 2013]. The main idea is to
use the identification between the ambient spinor bundle restricted to the surface and
the spinor bundle of the surface. Note that the condition to be a spin manifold is not
restrictive here since any oriented surface is also spin. More generally, the restriction
ϕ of a parallel spinor field on Rn+1 to an oriented Riemannian hypersurface Mn is
a solution of a generalized Killing equation

∇
6M
X ϕ = A(X) ·ϕ,

where∇6M and · are respectively the spin connection and the Clifford multiplication
on M, and A is the shape operator of the immersion. Conversely, Friedrich showed
that in the case where M is a simply connected surface, if there exists a particular
spinor field ϕ satisfying the generalized Killing equation, where A is an arbitrary
field of symmetric endomorphisms of the tangent bundle, then there exists an
isometric immersion of M into R3 with shape operator A. Moreover, ϕ is the
restriction to M of a parallel spinor of R3. The proof consists of showing that A
indeed satisfies the structure equations. This result was generalized to surfaces into
other three-dimensional ambient spaces [Morel 2005; Nakad and Roth 2012; Roth
2010; Taı̆manov 2004], to three-dimensional manifolds into four-dimensional space
forms [Lawn and Roth 2010; Nakad and Roth 2012] and also to the two-dimensional
pseudo-Riemannian setting [Lawn and Roth 2011]. However the question whether
a generalized Killing spinor on a manifold of arbitrary dimension gives rise to an
isometric immersion into some Euclidean space remained until now unanswered.
Some of the few achievements in this direction were obtained in [Ammann et al.
2013] for real analytic manifolds and in [Bär et al. 2005; Nakad 2011] when A is a
Codazzi tensor, showing the existence of an immersion into a Ricci flat manifold
admitting a parallel spinor which restricts to ϕ.

Similarly, in higher codimension, very little is known. In [Bayard et al. 2013], we
extended the approach to the case of surfaces in four-dimensional space forms. The
key point was to use the remark due to Bär [1998] that an ambient spinor restricted to
an immersed submanifold M can be identified with a section of the spinor bundle of
the submanifold twisted with the spin bundle of the normal bundle. This was then ex-
tended to the pseudo-Riemannian setting in [Bayard 2013; Bayard and Patty 2015].
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Following the same idea, we use in this paper a particular twisted spin bundle over
a spin manifold of arbitrary dimension to give a geometrically invariant spinorial
representation of submanifolds of Euclidean spaces in any codimension. Note
that our proof does not use the structure equations but merely the existence of a
special generalized Killing spinor on the manifold. Precise definitions are given
in the first sections of the paper. We later show that one indeed recovers the
previously mentioned result of Friedrich [1998] in the case of surfaces in R3, as
well as the one of Lawn and Roth [2010] for three-dimensional hypersurfaces and
of Bayard, Lawn and Roth [Bayard et al. 2013] for surfaces in R4 (Section 7). It is
worth pointing out that the study of generalized Killing spinors has revealed very
interesting applications. Moroianu and Semmelmann [2014] were for instance able
to construct new examples of Lagrangian submanifolds of the nearly Kähler S3

×S3

using the existence of such spinors on the sphere S3. Moreover it is well known that
there is a close relationship to G-structures: for instance a generalized Killing spinor
defines a cocalibrated G2-structure on the manifold in dimension 7 and a half-flat
SU(3)-structure in dimension 6 (see for example [Chiossi and Salamon 2002]).
However the existence of such spinors is a nontrivial problem: our construction is
therefore of particular interest.

Besides the above mentioned, we discuss several other applications. A notable
achievement is a new and concise proof of the fundamental theorem of submanifold
theory. In the special case of surfaces, we show that our approach is equivalent to
the spinorial Weierstrass representations, i.e., we obtain explicit formulae in terms
of functions involving the components of the spinor field which are holomorphic if
the surface is minimal. Our result can thus be seen as a generalization of most of the
concrete Weierstrass representation formulae existing in the literature: it provides
a general framework to understand formulae appearing in a variety of contexts.
Moreover, since the basic ideas and constructions behind our representation are fairly
simple, we hope that our result will be useful to obtain new concrete Weierstrass
representation formulae, once some geometric context is specified: this is especially
interesting for surfaces, in low-dimensional pseudo-Riemannian space forms, under
some curvature assumptions.

Finally, in the last section, we extend our result to submanifolds immersed into
the other space forms Sn and Hn, and recover the results of Morel [2005] and
Taı̆manov [2004] if n = 3.

2. Preliminaries

The spin representation. Let us denote by Cln the real Clifford algebra on Rn with
its standard scalar product. We consider the representation

ρ : Cln→ End(Cln), a 7→ (ξ 7→ aξ)
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and its restriction to the group Spin(n)

ρ|Spin(n) : Spin(n)→ GL(Cln), a 7→ (ξ 7→ aξ).

Note that this is not the adjoint representation of the spin group on the Clifford
algebra, but rather the representation given by left multiplication.

Moreover we want to point out that we are not taking as usual the restriction
of an irreducible representation of the Clifford algebra to the spin group, but that
we consider instead the restriction of the entire real Clifford algebra. This real
representation splits into a sum of 2k copies of spinor spaces of dimension 2n−k,
where the number k depends on the dimension n and can be computed using the
Radon–Hurwitz numbers (we refer to [Lounesto 2001] for further details).

If p+ q = n, we have a natural map

Spin(p)×Spin(q)→ Spin(n)

associated to the splitting Rn
= Rp

⊕Rq and to the corresponding isomorphism of
Clifford algebras

Cln = Clp ⊗̂Clq ,

where ⊗̂ denotes the Z2-graded tensor product. We get thus the following represen-
tation, still denoted by ρ,

(1) ρ : Spin(p)×Spin(q)→ GL(Cln), a 7→ (ξ 7→ aξ).

The twisted spinor bundle 6. We consider M a p-dimensional Riemannian mani-
fold, E→ M a bundle of rank q , with a fiber metric and a compatible connection.
We assume that E and TM are oriented and spin, with given spin structures

Q̃M
2:1
−→ QM and Q̃E

2:1
−→ QE

where QM and QE are the bundles of positively oriented orthonormal frames of
TM and E , and we set

Q̃ := Q̃M ×M Q̃E ;

this is a Spin(p)×Spin(q)-principal bundle. We define the associated bundle

6 := Q̃×ρ Cln
and its restriction

(2) U6 := Q̃×ρ Spin(n)⊂6

where ρ is the representation (1) given by left multiplication. We remark that if we
used the adjoint representation instead, we would just get the Clifford algebra bundle.
Again we point out that our spinor bundle 6 is a real vector bundle with fiber the
entire Clifford algebra and not, as usual, an irreducible complex Clifford module.
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The vector bundle 6 is equipped with the covariant derivative ∇ naturally
associated to the spinorial connections on Q̃M and Q̃E .

Remark. The bundle 6 is a spinor bundle on TM twisted by a spinor bundle on
E : indeed, let us consider the representations

ρ1 : Spin(p)→ GL(Clp) and ρ2 : Spin(q)→ GL(Clq)

given by left multiplication, and the associated bundles

61 := Q̃M ×ρ1 Clp and 62 := Q̃E ×ρ2 Clq

equipped with their natural connections ∇1 and ∇2; then

61⊗62 '6 and ∇
1
⊗ id62 ⊕ id61 ⊗∇

2
'∇.

This is a consequence of the fact that the natural isomorphism

i : Clp⊗Clq −→∼ Cln, ξ1⊗ ξ2 7→ ξ1ξ2

is an equivalence of representations of Spin(p)× Spin(q), i.e., for g1 ∈ Spin(p)
and g2 ∈ Spin(q),

i ◦ ρ1(g1)⊗ ρ2(g2)= ρ(g1, g2) ◦ i;

indeed, if ξ1 ∈ Clp and ξ2 ∈ Clq ,

i(ρ1(g1)⊗ ρ2(g2)(ξ1⊗ ξ2))= i(g1ξ1⊗ g2ξ2)= g1ξ1g2ξ2

= g1g2ξ1ξ2 = ρ(g1,g2)(i(ξ1⊗ ξ2)),

where the products in the third and fourth terms are products in Cln (note that ξ1

and g2 commute since ξ1 belongs to Clp and g2 is a product of an even number of
vectors belonging to Rq ).

As in the usual construction in spin geometry, the spin bundle 6 is endowed with
a natural action of the Clifford bundle Cl(TM ⊕ E): indeed, the Clifford product

Cl(Rp
⊕Rq)×Cln→ Cln, (η, ξ) 7→ η · ξ

is Spin(p)×Spin(q) equivariant, if the action of Spin(p)×Spin(q) on Cl(Rp
⊕Rq)

is the adjoint action, and the action on Cln is the left multiplication: we obviously
have, for (g1, g2) ∈ Spin(p)×Spin(q) and g = g1g2 ∈ Spin(n),

(gξg−1) · (gη)= g · (ξη) for ξ, η ∈ Cln .
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A Cln-valued bilinear map on 6. Let us denote by τ :Cln→Cln the antiautomor-
phism of Cln such that

τ(x1 · x2 · · · xk)= xk · · · x2 · x1 for all x1, x2, . . . , xk ∈ Rn,

where ‘·’ denotes as usual the Clifford multiplication, and set

(3) 〈〈 · , · 〉〉 : Cln ×Cln→ Cln, (ξ, ξ ′) 7→ τ(ξ ′)ξ.

This map is Spin(n)-invariant: for all ξ, ξ ′ ∈ Cln and g ∈ Spin(n) we have

〈〈gξ, gξ ′〉〉 = τ(gξ ′)gξ = τ(ξ ′)τ (g)gξ = τ(ξ ′)ξ = 〈〈ξ, ξ ′〉〉,

since Spin(n)⊂ {g ∈ Cl0n : τ(g)g = 1}; this map thus induces a Cln-valued map

(4) 〈〈 · , · 〉〉 :6×6→ Cln, (ϕ, ϕ′) 7→ 〈〈[ϕ], [ϕ′]〉〉

where [ϕ] and [ϕ′] ∈ Cln represent ϕ and ϕ′ in some spinorial frame s̃ ∈ Q̃.

Lemma 2.1. The map 〈〈 · , · 〉〉: 6×6→Cln satisfies the following properties: for
all ϕ,ψ ∈ 0(6) and X ∈ 0(TM),

(5) 〈〈ϕ,ψ〉〉 = τ 〈〈ψ, ϕ〉〉

and

(6) 〈〈X ·ϕ,ψ〉〉 = 〈〈ϕ, X ·ψ〉〉.

Proof. We have

〈〈ϕ,ψ〉〉 = τ [ψ][ϕ] = τ(τ [ϕ][ψ])= τ 〈〈ψ, ϕ〉〉

and
〈〈X ·ϕ,ψ〉〉 = τ [ψ][X ][ϕ] = τ([X ][ψ])[ϕ] = 〈〈ϕ, X ·ψ〉〉,

where [ϕ], [ψ] and [X ] ∈ Cln represent ϕ, ψ and X in some given frame s̃ ∈ Q̃. �

Lemma 2.2. The connection ∇ is compatible with the product 〈〈 · , · 〉〉:

∂X 〈〈ϕ, ϕ
′
〉〉 = 〈〈∇Xϕ, ϕ

′
〉〉+ 〈〈ϕ,∇Xϕ

′
〉〉

for all ϕ, ϕ′ ∈ 0(6) and X ∈ 0(TM).

Proof. If ϕ = [s̃, [ϕ]] is a section of 6 = Q̃×ρ Cln , we have

∇Xϕ = [s̃, ∂X [ϕ] + ρ∗(s̃∗α(X))([ϕ])] for all X ∈ TM,

where ρ is the representation (1) and α is the connection form on Q̃; the term
ρ∗(s̃∗α(X)) is an endomorphism of Cln given by the multiplication on the left by an
element belonging to 32Rn

⊂ Cln , still denoted by ρ∗(s̃∗α(X)). Such an element
satisfies

τ(ρ∗(s̃∗α(X)))=−ρ∗(s̃∗α(X)),
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and we have

〈〈∇Xϕ,ϕ
′
〉〉+ 〈〈ϕ,∇Xϕ

′
〉〉 = τ {[ϕ′]}(∂X [ϕ] + ρ∗(s̃∗α(X))[ϕ])

+ τ {∂X [ϕ
′
] + ρ∗(s̃∗α(X))[ϕ′]}[ϕ]

= τ {[ϕ′]}∂X [ϕ] + τ {∂X [ϕ
′
]}[ϕ]

= ∂X 〈〈ϕ,ϕ
′
〉〉. �

3. The spin geometry of a submanifold in Rn

We keep the notation of the previous section, assuming moreover here that M
is a submanifold of Rn and that E → M is its normal bundle. Let as before
Q̃M

2:1
−→ QM be a spin structure of M. Our goal is to construct Q̃ such that we

obtain an identification

6 = Q̃×ρ Cln ' M ×Cln .

Although this type of result is used in several places in the literature, we could not
find a complete statement or proof. Therefore we will give a detailed proof, which
we believe may be useful in its own right.

Let (e1, . . . , ep) resp. (ep+1, . . . , ep+q) be orthonormal frames of TM resp. E
and QRn the bundle of positively oriented orthonormal frames of Rn. We can
consider the map

ι : QM ×M QE → QRn

((e1, . . . , ep), (ep+1, . . . , ep+q)) 7→ (e1, e2, . . . , ep+q)

given by the concatenation of frames.
The map

Q̃M ×M QE → QM ×M QE

is obviously a two-to-one covering of QM ×M QE .
Let now Q̃Rn

2:1
−→ QRn be the (unique) spin structure of Rn. Then the bundle

Q̃ := (Q̃M ×M QE)×QRn Q̃Rn

is a Spin(p) × Spin(q)-principal bundle over M and a four-to-one covering of
QM ×M QE . Observe that Q̃ = Q̃M ×M Q̃E , where Q̃E := Q̃/Spin(p) (and the
projection Q̃/Spin(q)→ Q̃M is a map of principal Spin(p)-bundles, hence an
isomorphism). Moreover, Q̃E is a spin structure on E , canonically associated to
the spin structures on M and Rn.

Claim. Consider the bundle

Q̃×c Spin(p+ q) := (Q̃×Spin(p+ q))/(Spin(p)×Spin(q)),
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where
c : Spin(p)×Spin(q)→ Spin(p+ q)

is the map corresponding to the isomorphism of Clifford algebras Clp ⊗̂Clq∼=Clp+q .
Then there is a canonical isomorphism of Spin(n)-principal bundles,

Q̃×c Spin(p+ q)∼= Q̃Rn |M .

Proof. Consider the projection π : Q̃→ Q̃Rn to the last factor. Then the map

π̃ : Q̃×Spin(p+ q)→ Q̃Rn , (q̃, s) 7→ sπ(q̃)

satisfies π̃(s0q̃, ss−1
0 )= π̃(q̃, s) for any s0 ∈ Spin(p)×Spin(q), so π̃ descends to

a map Q̃ ×c Spin(p+ q)→ Q̃Rn . The source is clearly a Spin(p+ q)-principal
bundle on M, as is the target, and the map is Spin(p+q)-equivariant and the identity
over M. Hence it is an isomorphism of principal bundles. �

Corollary 1. If now ρ : Spin(p)× Spin(q)→ GL(Cln) is the map given by ρ̃ ◦ c,
where ρ̃ : Spin(n)→ GL(Cln) is the representation induced by left multiplication,
we get

Q̃×ρ Cln ∼= Q̃Rn |M ×ρ̃ Cln ∼= M ×Cln .

Proof. The first isomorphism is immediate from the claim, and the second follows
since Q̃Rn is trivial. �

Two connections are thus defined on 6, the connection ∇ introduced in the
previous section and the trivial connection ∂; they satisfy the following Gauss
formula:

(7) ∂Xϕ =∇Xϕ+
1
2

p∑
j=1

ej · B(X, ej ) ·ϕ

for all ϕ ∈ 0(6) and all X ∈ 0(TM), where B : TM × TM → E is the second
fundamental form of M into Rn. We refer to [Bär 1998] for the proof (in a slightly
different context).

4. Spinorial representation of submanifolds in Rn

We state the main result of the paper. Let M be a p-dimensional Riemannian
manifold and E → M a bundle of rank q, with a fiber metric and a compatible
connection; we assume that E and TM are oriented and spin, with given spin
structures. We keep the notation of Section 2.

Theorem 2. We moreover assume that M is simply connected, and suppose that
B : TM × TM → E is bilinear and symmetric. The following statements are
equivalent:
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(1) There exists a section ϕ ∈ 0(U6) such that

(8) ∇Xϕ =−
1
2

p∑
j=1

ej · B(X, ej ) ·ϕ for all X ∈ TM.

(2) There exists an isometric immersion F : M→ Rn with normal bundle E and
second fundamental form B. Moreover, F =

∫
ξ where ξ is the Rn-valued

1-form defined by

(9) ξ(X) := 〈〈X ·ϕ, ϕ〉〉 for all X ∈ TM.

The representation formula (9) generalizes the classical Weierstrass representation
formula and most of the spinor representation formulae in the literature. Special
cases will be studied in Sections 7 and 8.

Remark. Formula (9) also presents the advantage of unifying previously known
formulae, and therefore explaining apparent discrepancies in these results. In par-
ticular, it is known that the number of spinor fields needed to represent immersions,
and also the normalization of these spinor fields, vary depending on the geometric
context; for instance, a single spinor field is needed to represent surfaces in R3 but
two spinor fields are necessary to represent general hypersurfaces in dimension 4
[Lawn and Roth 2010], and the required normalization to represent surfaces in R1,2,
R1,3 or R2,2 differ to that in R3 or R4 [Bayard 2013; Bayard et al. 2013; Bayard and
Patty 2015; Friedrich 1998; Lawn 2008]. This is now easily explained by the fact
that the usual spinor representation has in general to be replaced by a representation
on the Clifford algebra (which is a sum of usual real spinorial representations), and
that the convenient normalization is in fact determined by the bundle U6 (whose
fiber is the spin group).

Remark. Taking the trace of (8) we get

Dϕ = 1
2 p EH ·ϕ,

where Dϕ =
∑p

j=1 ej · ∇ejϕ, and EH = (1/p)
∑p

j=1 B(ej , ej ) is the mean curvature
vector of M in Rn. This Dirac equation is known to be equivalent to (8) only for
p = 2 or 3 (see, e.g., [Friedrich 1998; Lawn and Roth 2010; 2011; Bayard et al.
2013).

Proof. (2)⇒ (1) is a direct consequence of the Gauss formula (7) for a submanifold
of Rn: the restriction of parallel spinor fields of the ambient space Rn to the
submanifold M are obviously solutions of equation (8) (recall that in the paper the
spinors are constructed with the whole Clifford algebra). The immersion takes the
form F =

∫
ξ where ξ is given by (9) for the special choice ϕ = 1Cln |M , since, in
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that case, for all X ∈ TM,

ξ(X)= τ [ϕ][X ][ϕ] = [X ] ' X,

where [ϕ] = ±1Cln and [X ] ∈ Rn represent ϕ and X in one of the two spinorial
frames of Rn above the canonical basis.
(1)⇒ (2): We will prove that the 1-form ξ defined in (9) indeed gives us an

immersion preserving the metric, the second fundamental form and the normal
connection. This follows directly from Propositions 4.1 and 4.2 below. �

Proposition 4.1. Assume that ϕ ∈ 0(U6) is a solution of (8) and define ξ by (9).
Then

(1) ξ takes its values in Rn
⊂ Cln;

(2) ξ is a closed 1-form: dξ = 0.

Proof. (1) By the very definition of ξ , we have

ξ(X)= τ [ϕ][X ][ϕ] for all X ∈ TM,

where [X ] and [ϕ] represent X and ϕ in a given frame s̃ of Q̃. Since [X ] belongs
to Rn

⊂ Cln and [ϕ] is an element of Spin(n), ξ(X) belongs to Rn.
(2) We compute, for X, Y ∈ 0(TM) such that ∇X =∇Y = 0 at some point x0,

∂Xξ(Y )= 〈〈Y · ∇Xϕ, ϕ〉〉+ 〈〈Y ·ϕ,∇Xϕ〉〉

= (id+τ)〈〈Y ·ϕ,∇Xϕ〉〉

= (id+τ)
〈〈
ϕ,−

1
2

p∑
j=1

Y · ej · B(X, ej ) ·ϕ

〉〉
.

Hence
dξ(X, Y )= ∂Xξ(Y )− ∂Y ξ(X)= (id+τ)〈〈ϕ, C ·ϕ〉〉

with

C := −
1
2

p∑
j=1

{Y · ej · B(X, ej )− X · ej · B(Y, ej )}.

Now, for X =
∑

1≤k≤p xkek and Y =
∑

1≤k≤p ykek ,

p∑
j=1

X · ej · B(Y, ej )=−B(Y, X)+
p∑

j=1

∑
k 6= j

xkek · ej · B(Y, ej )

and
p∑

j=1

Y · ej · B(X, ej )=−B(X, Y )+
p∑

j=1

∑
k 6= j

ykek · ej · B(X, ej ),
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which yields the formula

C =−
1
2

p∑
j=1

∑
k 6= j

ek · ej · (yk B(X, ej )− xk B(Y, ej )).

This shows that τ [C] = −[C], which implies that

τ 〈〈ϕ, C ·ϕ〉〉 = τ(τ [ϕ]τ [C][ϕ])=−τ [ϕ]τ [C][ϕ] = −〈〈ϕ, C ·ϕ〉〉.
Thus

dξ(X, Y )= (id+τ)〈〈ϕ, C ·ϕ〉〉 = 0. �

We keep the notation of Proposition 4.1, and moreover assume that M is simply
connected; since ξ is closed by Proposition 4.1 we can consider

F : M→ Rn

such that dF = ξ . The next proposition follows from the properties of the Clifford
product:

Proposition 4.2. (1) The map F : M→ Rn is an isometry.

(2) The map

8E : E→ M ×Rn, X ∈ Em 7→ (F(m), ξ(X))

is an isometry between E and the normal bundle of F(M) into Rn, preserving
connections and second fundamental forms. Here, for X ∈ E , ξ(X) still stands
for the quantity 〈〈X ·ϕ, ϕ〉〉.

Proof. For X, Y ∈ 0(TM ⊕ E), we have

〈ξ(X), ξ(Y )〉 = − 1
2(ξ(X)ξ(Y )+ ξ(Y )ξ(X))

=−
1
2(τ [ϕ][X ][ϕ]τ [ϕ][Y ][ϕ] + τ [ϕ][Y ][ϕ]τ [ϕ][X ][ϕ])

=−
1
2τ [ϕ]([X ][Y ] + [Y ][X ])[ϕ]

= 〈X, Y 〉,

since [X ][Y ] + [Y ][X ] = −2〈[X ], [Y ]〉 = −2〈X, Y 〉. This implies that F is an
isometry, and that 8E is a bundle map between E and the normal bundle of F(M)
into Rn which preserves the metrics of the fibers. Let us denote by BF and ∇ ′F the
second fundamental form and the normal connection of the immersion F ; we want
to show that

(10) ξ(B(X, Y ))= BF (ξ(X), ξ(Y )) and ξ(∇ ′X N )=∇ ′Fξ(X)ξ(N )

for X, Y ∈ 0(TM) and N ∈ 0(E). First,

BF (ξ(X), ξ(Y ))= {∂Xξ(Y )}N,
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where the superscript N means that we consider the component of the vector which
is normal to the immersion. We showed in the proof of Proposition 4.1 that fixing a
point x0 ∈ M, and assuming that ∇Y = 0 at x0 we have

∂Xξ(Y )=−
1
2
(id+τ)

〈〈
ϕ, Y ·

p∑
j=1

ej · B(X, ej ) ·ϕ

〉〉
,

and that moreover

Y ·
p∑

j=1

ej · B(X, ej )=−B(X, Y )+D,

where D is a term which satisfies τD =−D. This implies that

BF (ξ(X), ξ(Y ))=
{1

2(id+τ)〈〈ϕ, B(X, Y ) ·ϕ〉〉
}N
= ξ(B(X, Y )),

where the last equality holds since τ [B(X, Y )] = [B(X, Y )] and ξ(B(X, Y )) is
normal to the immersion. We finally show the second identity in (10): we have

∇
′F
ξ(X)ξ(N )= (∂Xξ(N ))N

= 〈〈∇
′

X N ·ϕ, ϕ〉〉N +〈〈N ·∇Xϕ, ϕ〉〉
N
+〈〈N ·ϕ,∇Xϕ〉〉

N.

The first term in the right-hand side is ξ(∇ ′X N ), and we only need to show that

(11) 〈〈N · ∇Xϕ, ϕ〉〉
N
+〈〈N ·ϕ,∇Xϕ〉〉

N
= 0.

We have

〈〈N · ∇Xϕ, ϕ〉〉+ 〈〈N ·ϕ,∇Xϕ〉〉 = (id+τ)〈〈N · ∇Xϕ, ϕ〉〉

=
1
2
(id+τ)

〈〈 p∑
j=1

ej · N · B(X, ej ) ·ϕ, ϕ

〉〉
,

and the identity (11) will thus be proved if we show that this vector is tangent to
the immersion. We have

p∑
j=1

ej · N · B(X, ej )=−

p∑
j=1

ej · B(X, ej ) · N − 2
p∑

j=1

〈B(X, ej ), N 〉ej

=−

p∑
j=1

B(X, ej ) · N · ej − 2B∗(X, N )

=−τ

( p∑
j=1

ej · N · B(X, ej )

)
− 2B∗(X, N ),
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where we have set B∗(X, N )=
∑p

j=1〈B(X, ej ), N 〉ej ; thus

1
2
(id+τ)

〈〈 p∑
j=1

ej · N · B(X, ej ) ·ϕ, ϕ

〉〉
=−〈〈B∗(X, N ) ·ϕ, ϕ〉〉,

which is a vector tangent to the immersion since B∗(X, N ) belongs to TM ; (11)
follows, which finishes the proof. �

Remark. The group Spin(n) naturally acts on U6 by multiplication on the right,
and if ϕ ∈ 0(U6) is a solution of (8) and g0 belongs to Spin(n), then ϕ · g0 is also
a solution of (8); in fact, ϕ · g0 defines an immersion which is congruent to the
immersion defined by ϕ: indeed, for all X ∈ 0(TM),

ξϕ·g0(X)= τ [ϕ · g0][X ][ϕ · g0] = τ(g0)τ [ϕ][X ][ϕ]g0 = τ(g0)ξϕ(X)g0,

i.e.,
ξϕ.g0 = Ad(g0

−1) ◦ ξϕ;

the linear part of the rigid motion between the immersions defined by ϕ and ϕ · g0

is thus Ad(g0
−1) ∈ SO(n).

5. An application: the fundamental theorem of submanifold theory

We first recall the equations of Gauss, Ricci and Codazzi for the symmetric bilinear
form B. Let RT and RN stand respectively for the curvature tensors of the connec-
tions on TM and on E . Further, let B∗ : TM × E→ TM be the bilinear map such
that for all X, Y ∈ 0(TM) and N ∈ 0(E)

〈B(X, Y ), N 〉 = 〈Y, B∗(X, N )〉.

Then we have, for all X, Y, Z ∈ 0(TM) and N ∈ 0(E),

(1) the Gauss equation

RT (X, Y )Z = B∗(X, B(Y, Z))− B∗(Y, B(X, Z)),

(2) the Ricci equation

RN (X, Y )N = B(X, B∗(Y, N ))− B(Y, B∗(X, N )),

(3) the Codazzi equation

∇̃X B(Y, Z)= ∇̃Y B(X, Z);

in the last equation, ∇̃ denotes the natural connection on T ∗M ⊗ T ∗M ⊗ E .

Proposition 5.1. The equations of Gauss, Ricci and Codazzi on B are the integra-
bility conditions of (8).
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Proof. We assume that ϕ ∈ 0(U6) is a solution of (8) and compute the curvature

R(X, Y )ϕ =∇X∇Yϕ−∇Y∇Xϕ−∇[X,Y ]ϕ.

We fix a point x0 ∈ M, and assume that ∇X =∇Y = 0 at x0. We have

∇X∇Yϕ =−
1
2

p∑
j=1

ej · (∇̃X B(Y, ej ) ·ϕ+ B(Y, ej ) · ∇Xϕ)

=−
1
2

p∑
j=1

ej · ∇̃X B(Y, ej ) ·ϕ−
1
4

p∑
j,k=1

ej · ek · B(Y, ej ) · B(X, ek).

Thus

(12) R(X, Y )ϕ =−
1
2

p∑
j=1

ej · (∇̃X B(Y, ej )−∇̃Y B(X, ej )) ·ϕ

+
1
4

∑
j 6=k

ej · ek · (B(X, ej ) · B(Y, ek)− B(Y, ej ) · B(X, ek)) ·ϕ

−
1
4

p∑
j=1

(B(X, ej ) · B(Y, ej )− B(Y, ej ) · B(X, ej )) ·ϕ.

We compute the last two terms in the following lemma:

Lemma 5.2. Let us set

A :=
1
4

∑
j 6=k

ej · ek · (B(X, ej ) · B(Y, ek)− B(Y, ej ) · B(X, ek))

and

B := −
1
4

p∑
j=1

(B(X, ej ) · B(Y, ej )− B(Y, ej ) · B(X, ej )).

We have

A=
1
2

∑
j<k

{〈B∗(X, B(Y, ej )), ek〉− 〈B∗(Y, B(X, ej )), ek〉}ej · ek

and

B =
1
2

∑
k<l

〈B(X, B∗(Y, nk))− B(Y, B∗(X, nk)), nl〉nk · nl .

Here, e1,...,ep and n1,...,nq are orthonormal basis of Txo M and Exo , respectively.
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Proof. For the computation of A, we notice that

∑
j 6=k

ej · ek · B(Y, ej ) · B(X, ek)=−
∑
j 6=k

ej · ek · B(Y, ek) · B(X, ej ),

and get

A=
1
4

∑
j 6=k

ej · ek · (B(X, ej ) · B(Y, ek)+ B(Y, ek) · B(X, ej ))

=−
1
2

∑
j 6=k

〈B(X, ej ), B(Y, ek)〉ej · ek

=−
1
2

∑
j<k

{〈B(X, ej ), B(Y, ek)〉− 〈B(Y, ej ), B(X, ek)〉}ej · ek

=−
1
2

∑
j<k

{〈B∗(Y, B(X, ej )), ek〉− 〈B∗(X, B(Y, ej )), ek〉}ej · ek .

For the computation of B, we write

B(Y, ej )=
∑

k

〈B(Y, ej ), nk〉nk and B(X, ej )=
∑

l

〈B(X, ej ), nl〉nl

and get

∑
j

B(Y, ej ) · B(X, ej )=
∑

kl

∑
j

〈B(Y, ej ), nk〉〈B(X, ej ), nl〉nk · nl

=

∑
kl

∑
j

〈ej , B∗(Y, nk)〉〈ej , B∗(X, nl)〉nk · nl

=

∑
kl

〈B∗(Y, nk), B∗(X, nl)〉nk · nl

=

∑
kl

〈B(X, B∗(Y, nk)), nl〉nk · nl;

thus

B = 1
4

∑
kl

〈B(X, B∗(Y, nk))− B(Y, B∗(X, nk)), nl〉nk · nl

=
1
2

∑
k<l

〈B(X, B∗(Y, nk))− B(Y, B∗(X, nk)), nl〉nk · nl . �
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On the other hand, the curvature of the spinorial connection is given by

(13) R(X, Y )ϕ =
1
2

( ∑
1≤ j<k≤p

〈RT (X, Y )(ej ), ek〉ej · ek

+

∑
1≤k<l≤q

〈RN (X, Y )(nk), nl〉nk · nl

)
·ϕ.

We now compare the expressions (12) and (13) using the calculations in Lemma 5.2:
since in a given frame s̃ belonging to Q̃, ϕ is represented by an element which is
invertible in Cln (it is in fact represented by an element belonging to Spin(n)), we
may identify the coefficients and get

〈RT (X, Y )(ej), ek〉 = 〈B∗(X, B(Y, ej )), ek〉− 〈B∗(Y, B(X, ej )), ek〉,

〈RN (X, Y )(nk), nl〉 = 〈B(X, B∗(Y, nk)), nl〉− 〈B(Y, B∗(X, nk)), nl〉

and
∇̃X B(Y, ej )−∇̃Y B(X, ej )= 0

for all the indices. These equations are the equations of Gauss, Ricci and Codazzi.
We finally show that the equations of Gauss, Codazzi and Ricci are also sufficient

to get a solution of (8): by the computation above, the connection on 6 defined by

(14) ∇
′

Xϕ := ∇Xϕ+
1
2

p∑
j=1

ej · B(X, ej ) ·ϕ

for all ϕ∈0(6) and X ∈0(TM) is then a flat connection. Moreover, this connection
may be regarded as a connection on the principal bundle U6 (with the group Spin(n)
acting from the right): indeed, ∇ defines such a connection (since it comes from a
connection on Q̃ and by (2)), and the right-hand side term in (14) defines a linear map

TM→ χ inv
V (U6), X 7→ ϕ 7→

1
2

p∑
j=1

ej · B(X, ej ) ·ϕ

from TM to the vector fields χ inv
V (U6) on U6 which are vertical and invariant

under the action of the group (these vector fields are indeed of the form ϕ 7→ η ·ϕ,
η ∈32(TM ⊕ E)⊂ Cl(TM ⊕ E)). Since a flat connection on a principal bundle
admits a local parallel section, there exists a local section ϕ ∈ 0(U6) such that
∇
′ϕ = 0, and thus a solution of (8). �

As a consequence of Theorem 2 and Proposition 5.1 we therefore get immediately

Corollary 3 (fundamental theorem of submanifold theory). We keep the hypotheses
and notation of Section 2, and moreover assume that M is simply connected and
that B : TM×TM→ E is bilinear, symmetric and satisfies the equations of Gauss,
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Codazzi and Ricci. Then there exists an isometric immersion of M into Rn with
normal bundle E and second fundamental form B. The immersion is unique up to a
rigid motion in Rn.

Proof. As proved in Proposition 5.1, the equations of Gauss, Codazzi and Ricci
are exactly the integrability conditions of (8). By Theorem 2, with a solution
ϕ ∈ 0(U6) of equation (8) at hand, F =

∫
ξ , where ξ is the 1-form defined in (9),

is the immersion. Finally, a solution of (8) is unique up to the multiplication on
the right by an element of Spin(n) (since this is a parallel section of the Spin(n)
principal bundle U6, see the proof of Proposition 5.1); the multiplication on the
right of ϕ by an element of Spin(n) and the adding of a constant vector in Rn in
the last integration give an immersion which is congruent to the immersion defined
by ϕ (see the remark on page 63). �

6. Relation to the Gauss map

We show here that the spinor field representing the immersion is an horizontal lift of
the Gauss map. Let us consider the Grassmannian Grp,n ⊂3

p(Rn) of the oriented
p-dimensional linear spaces in Rn. Using the natural isomorphism of vector spaces
between the exterior algebra over Rn and Cln , Grp,n identifies with the set

Qo = {e1 · e2 · · · ep ∈ Cln, ei ∈ Rn, |ei | = 1, ei ⊥ ej , i, j = 1, . . . , p, i 6= j}.

We recall that for an oriented p-dimensional submanifold F : M→ Rn the Gauss
map is defined as the map which assigns each point x ∈ M to the oriented tangent
space dF(Tx M) considered as a vector subspace of Rn. It can hence be seen as the
map into the Grassmannian

G : M→Qo, x 7→ dF(e1) · dF(e2) · · · dF(ep),

where e1, e2, . . . , ep is a positively oriented orthonormal basis of Tx M.
We assume that the immersion F of M into Rn is given by a spinor field ϕ, as in

Theorem 2.

Proposition 6.1. The spinor field ϕ, which is a section of U6, is a lift of the Gauss
map: the diagram

U6

χ

��
M

ϕ
66

G
// M ×Qo

commutes, where G(x)= (x,G(x)) and the projection U6→ M×Qo is given by

(15) χ : ϕ ∈U6x 7→ (x, 〈〈ω ·ϕ, ϕ〉〉),
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where ω is the volume form in Cl(Tx M) (the product of the elements of a positively
oriented orthonormal basis of Tx M).

It is moreover parallel with respect to the connection

∇
′

Xϕ := ∇Xϕ+
1
2

p∑
j=1

ej · B(X, ej ) ·ϕ

on U6.

Proof. We first explain why the map χ as defined indeed has target M × Qo.
Consider the map

4 :6×M Cl(TM)→ M ×Cln, (ψ, c) 7→ 〈〈c ·ψ,ψ〉〉 =:4ψ(c).

Suppose ψ ∈ U6 and c = e1 · · · ek for k orthonormal vectors e1, . . . , ek ∈ Tx M.
Then, we can rewrite 4ψ(c)= 〈〈c ·ψ,ψ〉〉 in any spinorial frame at x as

(16) τ [ψ][e1] · · · [ek][ψ] = (τ [ψ][e1][ψ])(τ [ψ][e2][ψ]) · · · (τ [ψ][ek][ψ]).

The k vectors on the right-hand side are still orthonormal, so 4ψ(c) lies in the
corresponding Grassmannian Grk,n . Consequently χ(ψ)=4ψ(ω) lies in M ×Qo.

We next verify the formula for the Gauss map. Recall that the immersion is given
by F =

∫
ξ , where ξ is the 1-form defined by ξ(X)= 〈〈X ·ϕ, ϕ〉〉 for all X ∈ TM.

Thus, dF = ξ . We fix a positively oriented and orthonormal frame (e1, . . . , ep) of
TM, and a spinorial frame s̃ ∈ Q̃ which is above (e1, . . . , ep). Then, ω = e1 · · · ep.
In any spinorial frame, τ [ϕ][v][ϕ]= ξ(v) for all v ∈ Tx M. Therefore (16) yields that
χ(ϕ)= ξ(e1)ξ(e2) · · · ξ(ep)= G(x). This proves the first part of the proposition.

Finally, ϕ is horizontal with respect to ∇ ′ since it is a solution of (8). �

7. Special cases: minimal surfaces, hypersurfaces, and surfaces in R4

Minimal surfaces in Rn. If J denotes the natural complex structure on M, the
1-form

ξ̃ (X) := ξ(X)− iξ(JX), X ∈ TM,

is C-linear, with values in the complexified Clifford algebra C̃ln = Cln ⊕i Cln; in
general

F =
∫
<e ξ̃ =

∫
<e( f̃ (z) dz),

where z is a complex parameter of M and f̃ is a smooth function. Note that ξ̃ and
f̃ in fact take their values in Cn

:= Rn
⊕ iRn

⊂ C̃ln .
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Proposition 7.1. The form ξ̃ is closed (and thus holomorphic) if and only if EH = 0.
In that case, we have

F =<e
∫

f̃ (z) dz,

where f̃ is a holomorphic function.

Proof. We assume that (e1, e2) is a local orthonormal frame on M, positively
oriented, such that ∇e1 =∇e2 = 0 at a point x0. We thus have

d ξ̃ (e1, e2)= ∂e1(ξ(e2)+ iξ(e1))− ∂e2(ξ(e1)− iξ(e2)).

Noticing that, for j, k ∈ {1, 2},

∂ej (ξ(ek))=∂ej 〈〈ek ·ϕ,ϕ〉〉=〈〈ek ·∇ejϕ,ϕ〉〉+〈〈ek ·ϕ,∇ejϕ〉〉= (id+τ)〈〈ek ·∇ejϕ,ϕ〉〉,

we obtain

d ξ̃ (e1, e2)= i(id+τ)〈〈e1 ·∇e1ϕ+e2 ·∇e2ϕ, ϕ〉〉+(id+τ)〈〈e2 ·∇e1ϕ−e1 ·∇e2ϕ, ϕ〉〉.

The first term on the right-hand side is

i(id+τ)〈〈e1 · ∇e1ϕ+ e2 · ∇e2ϕ, ϕ〉〉 = i(id+τ)〈〈 EH ·ϕ, ϕ〉〉 = 2i〈〈 EH ·ϕ, ϕ〉〉,

since, by (8),
Dϕ := e1 · ∇e1ϕ+ e2 · ∇e2ϕ =

EH ·ϕ,

and τ [ EH ] = [ EH ]. The second term is

(id+τ)〈〈e2 · ∇e1ϕ− e1 · ∇e2ϕ, ϕ〉〉 = −(id+τ)〈〈e1 · ∇e1ϕ+ e2 · ∇e2ϕ, e1 · e2 ·ϕ〉〉

= −(id+τ)〈〈 EH ·ϕ, e1 · e2 ·ϕ〉〉

= 0,

using again that Dϕ = EH · ϕ and since τ([ EH ][e1][e2]) = −[ EH ][e1][e2]. We thus
obtain the formula

d ξ̃ (e1, e2)= 2i〈〈 EH ·ϕ, ϕ〉〉,

which may be written in the form

(17) d ξ̃ =−µ2
〈〈 EH ·ϕ, ϕ〉〉dz ∧ dz,

where µ is such that the metric is µ2 dz dz. This gives the first part of the lemma.
Assuming that EH = 0, the 1-form ξ̃ is closed, and the Cn-valued function f̃ such
that ξ̃ = f̃ dz is holomorphic; the result follows. �

The aim now is to obtain explicit formulas in terms of holomorphic functions
involving the components of the spinor field. We first note the following expression
of f̃ in terms of the spinor field ϕ:
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Lemma 7.2. We have

f̃ = µ{τ [ϕ]eo
1[ϕ] − iτ [ϕ]eo

2[ϕ]},

where the real function µ is such that the metric is

µ2(dx2
+ dy2) in z = x + iy,

[ϕ] represents the spinor field ϕ in a spinorial frame above ((1/µ)∂x , (1/µ)∂y),
and eo

1, eo
2 are the first two vectors of the canonical basis of Rn

⊂ Cln .

Proof. We have

f̃ = ξ̃ (∂x)= τ [ϕ][∂x ][ϕ] − iτ [ϕ][∂y][ϕ],

and the result follows since [(1/µ)∂x ] = eo
1 and [(1/µ)∂y] = eo

2 in such a spinorial
frame. �

Minimal surfaces in R3. Assuming that n = 3 and H = 0, we easily get by a
computation using Lemma 7.2 that

F =
∫
<e( f̃ (z) dz)=<e

(∫
f̃ (z) dz

)
,

where f̃ =
( 1

2 i f (1+ g2), 1
2 f (1− g2), f g

)
, with

f = 2µz2
1, g =−i

z2

z1
;

the complex functions z1, z2 are the components of ϕ in a spinorial frame above
((1/µ)∂x , (1/µ)∂y), and the functions f and g are holomorphic, since so are

√
µz1

and
√
µz2 (this is a consequence of the Dirac equation Dϕ = 0, in z = x + iy).

This is the classical Weierstrass representation of minimal surfaces in R3.

Minimal surfaces in R4. In the case of a surface in R4, we may also recover the
explicit formulas of Konopelchenko and Landolfi [1999] expressing a general
immersion in terms of 4 complex functions, which are solutions of first order PDEs;
the functions are holomorphic if EH = 0. We do not include the calculations, since
the general representation in Theorem 2 easily reduces to the spinor representation
given in [Bayard et al. 2013] if p = 2 and n = 4 (see page 74), and the equivalence
of this representation with the Konopelchenko–Landolfi representation is proved in
[Romon and Roth 2013].

Remark. For surfaces in Rn, n ≥ 5, it is still possible to obtain an explicit represen-
tation in terms of the components of the spinor field which represents the surface,
with holomorphic data if EH = 0, if the bundle E is assumed to be flat. We do not
know if such a representation is possible without this additional assumption.



SPINORIAL REPRESENTATION OF SUBMANIFOLDS IN RIEMANNIAN SPACE FORMS 71

Hypersurfaces in Rn. We set p = n− 1, and assume that M is a p-dimensional
Riemannian manifold and E is the trivial line bundle on M, oriented by a unit
section ν ∈ 0(E). We moreover suppose that M is simply connected and that
h : TM×TM→R is a given symmetric bilinear form. According to Theorem 2, an
isometric immersion of M into Rp+1 with normal bundle E and second fundamental
form B = hν is equivalent to a section ϕ of 0(U6) solution of the Killing equation
(8). Note that QE ' M and the double covering

Q̃E → QE

is trivial, since M is assumed to be simply connected. Fixing a section s̃E of Q̃E

we get an injective map

Q̃M → Q̃M ×M Q̃E =: Q̃, s̃M 7→ (s̃M , s̃E).

Using
Clp ' Cl0p+1 ⊂ Clp+1

(induced by the Clifford map Rp
→ Clp+1, X 7→ X · ep+1), we deduce a bundle

isomorphism

(18) Q̃M ×ρ Clp→ Q̃×ρ Cl0p+1 ⊂6, ψ 7→ ψ∗.

It satisfies the following properties: for all X ∈ TM and ψ ∈ Q̃M ×ρ Clp,

(X ·M ψ)∗ = X · ν ·ψ∗ and ∇X (ψ
∗)= (∇Xψ)

∗.

The section ϕ ∈ 0(U6) solution of (8) thus identifies to a section ψ of Q̃M ×ρ Clp

solution of

∇Xψ =−
1
2

p∑
j=1

h(X, ej )ej ·M ψ =−
1
2

T (X) ·M ψ

for all X ∈ TM, where T : TM→ TM is the symmetric operator associated to h.
We deduce the following result:

Theorem 4. Let T : TM → TM be a symmetric operator. The following two
statements are equivalent:

(1) there exists an isometric immersion of M into Rp+1 with shape operator T ;

(2) there exists a normalized spinor field ψ ∈ 0(Q̃M ×ρ Clp) solution of

(19) ∇Xψ =−
1
2 T (X) ·M ψ for all X ∈ TM.

Here, a spinor field ψ ∈ 0(Q̃M ×ρ Clp) is said to be normalized if it is represented
in some frame s̃ ∈ Q̃M by an element [ψ] ∈ Clp ' Cl0p+1 belonging to Spin(p+ 1).

We will see below explicit representation formulas in the cases of dimension 3
and 4.
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Surfaces in R3. Since Cl2 '62 we have

Q̃M ×ρ Cl2 '6M,

and ϕ is equivalent to a normalized spinor field ψ ∈ 0(6M) solution of

∇Xψ =−
1
2 T (X) ·M ψ

for all X ∈ TM ; this equation is also equivalent to the equation Dψ = Hψ . This is
the result obtained by Friedrich [1998].

We now write the representation formula (9) using a special model for Cl3, and
indicate how to recover Friedrich’s representation formula. We first consider the
Clifford map

(x1, x2, x3) ∈ R3
7→

(
x 0
0 −x

)
∈ H(2),

where x =−i x3+ j (x1+ i x2), which identifies Cl3 to the set{(
x 0
0 y

)
, x, y ∈ H

}
and R3

⊂ Cl3 to the set of the imaginary quaternions; we also consider the ideal
of Cl3

(20) 63 =

{(
y 0
0 0

)
, y ∈ H

}
⊂ Cl3,

which is a model of the spin representation. Now ϕ, section of U6= Q̃×ρ Spin(3),
is equivalent to a unit spinor field ϕ′ ∈ 0(Q̃×ρ 63) (obtained by projection) and a
direct computation yields

(21) 〈〈X ·ϕ, ϕ〉〉 = i =m〈X ·ϕ′, ϕ′〉+ j〈X ·ϕ′, α(ϕ′)〉

for all X ∈ TM, where the brackets 〈 · , · 〉 stand for the natural hermitian product
on 63 and α : 63→ 63 is the natural quaternionic structure. The representation
formula given by the right-hand side term of (21) appears in [Friedrich 1998].
Finally, the identification (18) for the dimension p = 2

Q̃M ×ρ Cl2→ Q̃×ρ Cl03 ⊂6, ψ 7→ ψ∗

identifies ϕ ∈ 0(U6) to a unit spinor field ψ ∈ 0(6M), and it may be proved by a
computation that

〈〈X ·ϕ, ϕ〉〉 = i2<e〈X ·ψ+, ψ−〉+ j (〈X ·ψ+, α(ψ+)〉− 〈X ·ψ−, α(ψ−)〉),

where the brackets 〈 · , · 〉 stand here for the natural hermitian product on 62 and
α :62→62 is the natural quaternionic structure; this is the explicit formula of the
immersion in terms of ψ given in [Friedrich 1998].
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Hypersurfaces in R4. Since Cl3'63⊕6
′

3 where63 and6′3 are the two (nonequiv-
alent) irreducible representations of Cl3, we get two unit spinor fields ψ1 ∈0(6M),
ψ2 ∈ 0(6

′M) solutions of (19). Noting finally that there is a natural identification

i :6′M→6M

satisfying
i(X ·ψ)=−X · i(ψ)

for all X ∈ TM and ψ ∈6′M, the spinor fields ψ1 and i(ψ2) ∈ 0(6M) satisfy

(22) ∇Xψ1 =−
1
2 T (X) ·M ψ1 and ∇X i(ψ2)=

1
2 T (X) ·M i(ψ2).

We thus recover a result of [Lawn and Roth 2010]: the immersion is equivalent to
two spinor fields on the hypersurface which are solutions of (22). We may also
obtain a new explicit representation formula. On one hand, we note that

(23) 〈〈X ·ϕ, ϕ〉〉 =
(

0 ξ1xξ2

ξ2xξ1 0

)
in Cl04, where ϕ ∈ 0(U6) and X ∈ TM are respectively represented in Cl04 by(

ξ1 0
0 ξ2

)
and

(
0 x
x 0

)
,

with ξ1, ξ2 ∈ H and x ∈ =m H. On the other hand, 63 naturally identifies to H (see
(20)) and the bilinear map

63×63→ H, (ξ, ξ ′) 7→ ξ ′ξ

induces a pairing
〈〈 · , · 〉〉6M :6M ×6M→ H

on 6M = Q̃M ×ρ 63. If

ψ = ψ1+ψ2, ψ1 ∈6M, ψ2 ∈6
′M

is such that ϕ = ψ∗ (by (18), with p = 3), the spinor fields ψ1 and i(ψ2) ∈ 6M
are respectively represented by ξ1 and ξ2, and we readily get

(24) 〈〈X ·M i(ψ2), ψ1〉〉6M = ξ1xξ2.

The identities (23) and (24) identify

〈〈X ·ϕ, ϕ〉〉 ' 〈〈X ·M i(ψ2), ψ1〉〉6M ;

this gives an explicit representation of the immersion into R4 in terms of the two
spinor fields ψ1 and i(ψ2) of 6M introduced in [Lawn and Roth 2010].
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Surfaces in R4. For a surface in R4, Theorem 2 with p = 2 and n = 4 reduces to
the result obtained in [Bayard et al. 2013], since the bundle 6 naturally identifies
to the bundle 6M ⊗6E in that case (see the remark on page 55, observing that
the representation of Spin(2) on Cl2 by left multiplication is also the usual complex
spin representation 62). Note that we may similarly recover the main results in
[Bayard 2013; Bayard and Patty 2015] concerning immersions in R3,1 and R2,2, if
we consider in our constructions the Clifford algebras Cl3,1 and Cl2,2 instead of Cl4.

For completeness, we also want to mention that in [Romon and Roth 2013], the
authors give the explicit correspondence between the spinors used in [Bayard et al.
2013] for surfaces of R4 and a quaternionic representation which is a quaternionic
reformulation of the representation obtained by Konopelchenko [2000] (see [Helein
2001] for this reformulation). The reader can refer to [Kamberov et al. 2002] for a
detailed presentation of quaternionic-type representations of surfaces.

8. Spinorial representation of submanifolds in Sn and Hn

We extend here Theorem 2 to the other space forms.

Submanifolds of Sn. Let M be a Riemannian manifold of dimension p, and E be
a bundle on M of rank q = n− p, with a fiber metric and a compatible connection;
we assume that TM and E are spin, and consider

6 := Q̃×ρ Cln+1,

where Q̃ = Q̃M ×M Q̃E is the Spin(p)× Spin(q) principal bundle given by the
two spin structures and ρ : Spin(p)×Spin(q)→ Aut(Cln+1) is the representation
obtained by the composition of the maps

(25) Spin(p)×Spin(q)→ Spin(n)⊂ Spin(n+ 1)

and

(26) Spin(n+ 1)→ Aut(Cln+1).

The maps in (25) correspond to the decompositions

Rp
⊕Rq

=: Rn
⊂ Rn

⊕Ren+1 =: R
n+1,

and in (26) the action of Spin(n+ 1) on Cln+1 is the multiplication on the left. We
also define

U6 = Q̃×ρ Spin(n+ 1)⊂6.

Let us denote by ν the element of the Clifford bundle Q̃ ×Ad Cln+1 such that its
component in an arbitrary frame s̃ ∈ Q̃ is the constant vector en+1 (note that for all
g ∈ Spin(p)×Spin(q)⊂ Spin(n)⊂ Spin(n+ 1), Ad(g)(en+1)= en+1).
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Theorem 5. Let B : TM × TM → E be a symmetric and bilinear map. The
following two statements are equivalent:

(1) There exists an isometric immersion F of M into Sn with normal bundle E
and second fundamental form B.

(2) There exists a spinor field ϕ ∈ 0(U6) satisfying

(27) ∇Xϕ =−
1
2

p∑
j=1

ej · B(X, ej ) ·ϕ+
1
2

X · ν ·ϕ for all X ∈ TM.

Moreover we have the representation formula

(28) F = 〈〈ν ·ϕ, ϕ〉〉 ∈ Sn
⊂ Rn+1,

where the brackets 〈〈 · , · 〉〉 are defined as in (3)–(4).

Proof. We only prove that (2) implies (1), using the explicit formula (28). Setting
F = 〈〈ν ·ϕ, ϕ〉〉, we have

F = [ϕ]−1en+1[ϕ] = Ad([ϕ]−1)(en+1),

where [ϕ] ∈ Spin(n+1) represents ϕ in some frame s̃ ∈ Q̃ and Ad : Spin(n+1)→
SO(n+ 1) is the natural double covering; thus F belongs to Sn. We will need the
following:

Lemma 8.1. If ϕ ∈ 0(U6) is a solution of (27) then F = 〈〈ν ·ϕ, ϕ〉〉 is such that,
for all X ∈ TM,

(29) dF(X)= 〈〈X ·ϕ, ϕ〉〉.

Proof. We first observe that ∇ν = 0: if α is the connection form on Q̃ and s̃ ∈0(Q̃)
is a local frame, then ν = [s̃, en+1] and

∇Xν = [s̃, ∂X en+1+Ad∗(α(s̃∗(X)))(en+1)] = 0 for all X ∈ TM,

since en+1 is constant and α takes values in 32Rn
⊂ Cln . Thus, for all X ∈ TM,

dF(X)= 〈〈ν · ∇Xϕ, ϕ〉〉+ 〈〈ν ·ϕ,∇Xϕ〉〉

= (id+τ)〈〈ν · ∇Xϕ, ϕ〉〉

= −
1
2
(id+τ)

p∑
j=1

〈〈ν · ej · B(X, ej ) ·ϕ, ϕ〉〉+
1
2
(id+τ)〈〈X ·ϕ, ϕ〉〉.

But
τ 〈〈ν · ej · B(X, ej ) ·ϕ, ϕ〉〉 = 〈〈ϕ, ν · ej · B(X, ej ) ·ϕ〉〉

= 〈〈B(X, ej ) · ej · ν ·ϕ, ϕ〉〉

= −〈〈ν · ej · B(X, ej ) ·ϕ, ϕ〉〉
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since the three vectors B(X, ej ), ej and ν are mutually orthogonal, and

τ 〈〈X ·ϕ, ϕ〉〉 = 〈〈ϕ, X ·ϕ〉〉 = 〈〈X ·ϕ, ϕ〉〉.

Thus (29) follows. �

By the lemma and the properties of the Clifford product, F is an isometric
immersion, and the map

E→ T Sn, X ∈ Em 7→ (F(m), 〈〈X ·ϕ, ϕ〉〉)

identifies E with the normal bundle of F(M) into Sn; it moreover identifies the
connection on E with the normal connection of F(M) in Sn and B with the second
fundamental form. We omit the proof since it is very similar to the proof of
Proposition 4.2. �

Remark. Taking the trace of (27) we get

(30) Dϕ = 1
2 p( EH − ν) ·ϕ,

where EH = (1/p)
∑p

j=1 B(ej , ej ) is the mean curvature vector of M in Sn.

Remark. We may also obtain a proof using spinors of the fundamental theorem of
submanifold theory in Sn, showing, as in Section 5, that the equations of Gauss,
Codazzi and Ricci in a space of constant sectional curvature 1 are exactly the
integrability conditions of (27).

We finally show how to recover the spinorial characterization of a surface in S3

given by Morel in [2005] and Taı̆manov in [2004]. In the model Cl4'H(2) we have

ϕ =

(
[ϕ+] 0

0 [ϕ−]

)
, F =

(
0 [ϕ+][ν][ϕ−]

−[ϕ−][ν][ϕ+] 0

)
and

ξ(X)=
(

0 [ϕ+][X ][ϕ−]
−[ϕ−][X ][ϕ+] 0

)
,

where [ϕ+], [ϕ−], [ν] and [X ] ∈H represent ϕ+, ϕ−, ν and X in some spinor frame
adapted to the immersion in S3; thus Lemma 8.1 gives

F ' [ϕ+][ν][ϕ−] and dF(X)' [ϕ+][X ][ϕ−].

If [ϕ+] is given, this system has a solution [ϕ−], unique up to the multiplica-
tion by S3 on the right. The spinor field ϕ is thus essentially determined by its
component ϕ+, which may be identified with a spinor field ψ ∈ 0(6M) solution of

Dψ = Hψ − iψ, |ψ | = 1;

details are given in [Bayard et al. 2013]. This is the spinor characterization of an
immersion in S3 given in [Morel 2005; Taı̆manov 2004].
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Submanifolds of Hn. We now consider the n-dimensional hyperbolic space Hn as
a hypersurface of the Minkowski space Rn,1. Since the constructions of the paper
may also be carried out in a linear space with a semi-Riemannian metric, we obtain
a spinor representation of a submanifold in Hn exactly as we did for a submanifold
in Sn. We thus only state the results here, and refer to the previous section for the
proofs. Let M be a Riemannian manifold of dimension p, and E be a bundle on M
of rank q = n− p, with a Riemannian fiber metric and a compatible connection;
we assume that TM and E are spin, and consider

6 := Q̃×ρ Cln,1,

where Q̃ = Q̃M ×M Q̃E is the Spin(p)× Spin(q) principal bundle given by the
two spin structures and ρ : Spin(p)×Spin(q)→ Aut(Cln,1) is the representation
obtained by the composition of the maps

(31) Spin(p)×Spin(q)→ Spin(n)⊂ Spin(n, 1)

and

(32) Spin(n, 1)→ Aut(Cln,1).

The maps in (31) correspond to the decompositions

Rp
⊕Rq

=: Rn
⊂ Rn

⊕Ren+1 =: R
n,1,

and in (32) the action of Spin(n, 1) on Cln,1 is the multiplication on the left; here
en+1 is a vector with negative norm −1. We also define

U6 = Q̃×ρ Spin(n, 1)⊂6.

Let us denote by ν the element of the Clifford bundle Q̃ ×Ad Cln,1 such that its
component in an arbitrary frame s̃ ∈ Q̃ is the constant vector en+1.

Theorem 6. Let B : TM × TM → E be a symmetric and bilinear map. The
following two statements are equivalent:

(1) There exists an isometric immersion F of M into Hn with normal bundle E
and second fundamental form B.

(2) There exists a spinor field ϕ ∈ 0(U6) satisfying

(33) ∇Xϕ =−
1
2

p∑
j=1

ej · B(X, ej ) ·ϕ−
1
2

X · ν ·ϕ for all X ∈ TM.

Moreover we have the representation formula

(34) F = 〈〈ν ·ϕ, ϕ〉〉 ∈ Hn
⊂ Rn,1,

where the brackets 〈〈 · , · 〉〉 are defined as in (3)-(4).
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We may also recover the spinor characterization of an immersion of a surface in
H3 given by Morel [2005]: if M is a surface and (e1, e2) is an orthonormal basis of
TM, setting EHH3 :=

1
2(B(e1, e1)+ B(e2, e2)) we see that (33) is equivalent to

Dϕ = ( EHH3 + ν) ·ϕ,

where ϕ is a spinor field which is represented in a frame s̃ ∈ Q̃ by [ϕ] belonging
to Spin(3, 1). This is exactly the spinor representation of an immersion in H3

as described in [Bayard 2013] Section 5, where it is moreover proved that it is
equivalent to the spinor characterization given in [Morel 2005].

Remark. The Weierstrass-type representation of the flat surfaces in H3 by J.A.
Gálvez, A. Martínez and F. Milán [Gálvez et al. 2000] may be recovered from
Theorem 6, following the lines of Section 6.4 in [Bayard 2013]: the explicit
representation is (34), whereas equation (33) gives rise to holomorphic data, when
written in conformal coordinates induced by the Gauss map; we refer to these
papers for details.
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