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REGULARITY OF THE ANALYTIC TORSION FORM
ON FAMILIES OF NORMAL COVERINGS

BING KWAN SO AND GUANGXIANG SU

We prove the smoothness of the L2-analytic torsion form for fiber bundles
with positive Novikov–Shubin invariant. We do so by generalizing the ar-
guments of Azzali, Goette and Schick to an appropriate Sobolev space, and
proving that the Novikov–Shubin invariant is also positive in the Sobolev
setting, using an argument of Alvarez Lopez and Kordyukov.

1. Introduction

Let M be a closed Riemannian manifold and F be a flat vector bundle on M. Ray and
Singer [1971] introduced the analytic torsion, which is the analytic analogue of the
combinatorial torsion (see [Milnor 1966]). Let Z→ M π

→ B be a fiber bundle with
connected closed fibers Zx = π

−1(x) and F be a flat complex vector bundle on M
with a flat connection∇F and a Hermitian metric hF. Let T HM be a horizontal distri-
bution for the fiber bundle and gTZ be a vertical Riemannian metric. Bismut and Lott
[1995, (3.118)] introduced the torsion form T(T HM, gTZ , hF ) ∈�(B) defined by

(1) T(T HM, gTZ , hF )=−

∫
+∞

0

[
f ∧
(
C ′t , hW )

−
1
2χ
′(Z; F) f ′(0)

−
( 1

4 dim(Z) rk(F)χ(Z)− 1
2χ
′(Z; F)

)
f ′
( 1

2 i
√

t
)] dt

t
.

See [Bismut and Lott 1995] for the meaning of the terms in the integrand. To show
the integral in the above formula is well defined, one must calculate the asymptotic
of f ∧(C ′t , hW ) as t → 0 and the asymptotic as t →∞. For the asymptotic as
t→ 0, they used the local index technique. For the asymptotic as t→∞, the key
fact is that the fiber Z is closed, so the fiberwise operators involved have uniform
positive lower bound for positive eigenvalues. They also proved a C∞-analogue of
the Riemann–Roch–Grothendieck theorem and proved that the torsion form is the
transgression of the Riemann–Roch–Grothendieck theorem (see [Bismut and Lott
1995, Theorem 3.23]) and showed the zero degree part of T(T HM, gTZ , hF )∈�(B)
is the Ray–Singer analytic torsion (see their Theorem 3.29).
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On the other hand, the L2-analytic torsion was defined and studied by several
authors; see [Carey and Mathai 1992], [Lott 1992], [Mathai 1992], etc. So it is
natural to extend the L2-analytic torsion to the family case, that is, to define and study
the Bismut–Lott torsion form when the fiber Z is noncompact. From the above we
see that one must study the asymptotic of the L2 analogue of f ∧

(
Ct , hW

)
as t→ 0

and t→∞. Since in the L2 case f ∧
(
C ′t , hW

)
has the same asymptotic as t→ 0,

this part is easy. But in general the integral at∞ does not converge, since in the
L2 case the positive eigenvalues of the fiberwise operator involved in f ∧

(
C ′t , hW

)
may not have a positive lower bound. To overcome this difficulty, one considers the
special case where the Novikov–Shubin invariant is (sufficiently) positive. Gong
and Rothenberg [1996] defined the L2-analytic torsion form and proved that the
torsion form is smooth, under the condition that the Novikov–Shubin invariant is
at least half of the dimension of the base manifold. Heitsch and Lazarov [2002]
generalized essentially the same arguments to foliations. In [Azzali et al. 2015],
Azzali, Goette and Schick proved that the integrand defining the L2-analytic torsion
form, as well as several other invariants related to the signature operator, converges,
provided the Novikov–Shubin invariant is positive (or of determinant class and
L2-acyclic). However, they did not prove the smoothness of the L2-analytic torsion
form. To consider the transgression formula, they had to use weak derivatives.

The aim of this paper is to establish the regularity of the L2-analytic torsion
form in the case when the Novikov–Shubin invariant is positive. Our motivation
comes from the study of analytic torsion on some “noncommutative” spaces (along
the lines of [Gorokhovsky and Lott 2006], etc., for local index). In this case one
considers universal differential forms (as in the same paper), and Duhamel’s formula
for the heat operator having infinitely many terms. Instead, one makes essential
use of the results of [Azzali et al. 2015] to ensure that (1) is well defined in the
noncommutative case. We achieve this result by generalizing Azzali, Goette and
Schick’s arguments to some Sobolev spaces.

The rest of the paper is organized as follows. In Section 2, we define Sobolev
norms on the spaces of kernels on the fibered product groupoid. Unlike [Azzali
et al. 2015], we consider Hilbert–Schmidt type norms on the space of smoothing
operators. Given a kernel, the Hilbert–Schmidt norm can be explicitly written
down. As a result, we are able to take into account derivatives in both the fiberwise
and transverse directions, with the help of a splitting similar to [Heitsch 1995].
In Section 3, we turn to proving that having positive Novikov–Shubin invariant
implies positivity of the Novikov–Shubin invariant in the Sobolev settings. We
adapt an argument of Alvarez Lopez and Kordyukov [2001]. In Section 4, we apply
the arguments in [Azzali et al. 2015] and conclude that the integral in equation (1)
converges in all Sobolev norms, and hence obtain the regularity of the L2-analytic
torsion form.
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2. Preliminaries

In this section, we will define Sobolev norms on the space of kernels on the fibered
product groupoid.

2A. The geometric setting. Let Z → M π
→ B be a fiber bundle with connected

fibers Zx = π
−1(x), x ∈ B. Let E

℘
−→ M be a vector bundle. We assume B is

compact. Let V := Ker(dπ)⊂ TM .
We suppose that there is a finitely generated discrete group G acting on M from

the right freely and properly discontinuously. We also assume that the group G
acts on B such that the actions commute with π and M0 := M/G is a compact
manifold. Since the submersion π is G-invariant, M0 is also foliated and we denote
its foliation V0. Fix a distribution H0 ⊂ TM0 complementary to V0. Fix a metric
on V0 and take a G-invariant metric on B, then these induce a Riemannian metric
on M0 by gV0 ⊕π∗gTB on TM0 = V0⊕ H0.

Since the projection from M to M0 is a local diffeomorphism, one gets a G-
invariant splitting TM = V⊕H . Denote by PV and P H respectively the projections
to V and H . Moreover, one gets a G-invariant metric on V and a Riemannian
metric on M by gTM

= gV
⊕π∗gTB on TM = V ⊕ H .

Given any vector field X ∈ 0∞(TB), denote the horizontal lift of X by X H
∈

0∞(H)⊂ 0∞(TM). By our construction, |X H
|gM (p)= |X |gB (π(p)).

Denote by µx and µB respectively the Riemannian measures on Zx and B.

Definition 2.1. Let E
℘
−→ M be a complex vector bundle. We say that E is a

contravariant G-bundle if G also acts on E from the right, such that for any v ∈ E ,
g∈G, ℘(vg)=℘(v)g∈M , and moreover G acts as a linear map between the fibers.

The group G then acts on sections of E from the left by

s 7→ g∗s, (g∗s)(p) := s(pg)g−1
∈ ℘−1(p), for all p ∈ M.

We assume that E is endowed with a G-invariant metric gE , and a G-invariant con-
nection ∇E (which is obviously possible if E is the pullback of some bundle on M0).
In particular, for any G-invariant section s of E , |s| is a G-invariant function on M.

In the following, for any vector bundle F we denote its dual bundle by F ′.
Recall that the “infinite dimensional bundle” over B in the sense of Bismut is

a vector bundle with typical fiber 0∞c (E |Zx ) (or other function spaces) over each
x ∈ B. We denote by E[ such a Bismut bundle. The space of smooth sections on
E[ is, as a vector space, 0∞c (E). Each element s ∈ 0∞c (E) is regarded as a map

x 7→ s|Zx ∈ 0
∞

c
(
E |Zx

)
for all x ∈ B.
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In other words, one defines a section on E[ to be smooth if the images of all x ∈ B
fit together to form an element in 0∞c (E). In particular, 0∞c ((M ×C)[)= C∞c (M),
and one identifies 0∞c (TB⊗ (M ×C)[) with 0∞c (H) by X ⊗ f 7→ f X H.

2B. Covariant derivatives and Sobolev spaces. Let ∇E be a G-invariant connec-
tion on E . Denote by ∇TM , ∇TB the Levi-Civita connections (with respect to the
metrics defined in the last section). Note that [X H , Y ] ∈ 0∞(V ) for any vertical
vector field Y ∈ 0∞(V ). One naturally defines the connections

∇
V[
X Y := [X H , Y ] for all Y ∈ 0∞(V[)∼= 0∞(V ),

∇
E[

X s := ∇E
X H s for all s ∈ 0∞(E[)∼= 0∞c (E).

Definition 2.2. The covariant derivative on E[ is the map

∇̇
E[ : 0∞

(
⊗
•T∗B

⊗
⊗
•V ′[

⊗
E[
)
→ 0∞

(
⊗
•+1T∗B

⊗
⊗
•V ′[

⊗
E[
)
,

defined by

(2)
(
∇̇

E[s
)
(X0,X1,...,Xk;Y1,...,Yl)

:= ∇
E[
X0

s(X1,...,Xk;Y1,...,Yl)−

l∑
j=1

s
(
X1,...,Xk;Y1,...,∇

V[
X0

Y j ,...,Yl
)

−

k∑
i=1

s
(
X1,...,∇

TB
X0

X i ,...,Xk;Y1,...Yl
)
,

for any k, l ∈ N, X0, . . . , Xk ∈ 0
∞(TB), Y1, . . . , Yl ∈ 0

∞(V ).

Clearly, taking the covariant derivative can be iterated, which we denote by
(∇̇E[)m, m = 1, 2, . . . . Note that (∇̇E[)m is a differential operator of order m.

Also, we define

∂̇V
: 0∞

(
⊗
•T∗B

⊗
⊗
•V ′[

⊗
E[
)
→ 0∞

(
⊗
•T∗B

⊗
⊗
•+1V ′[

⊗
E[
)

by

(3)
(
∂̇V s

)
(X1,...,Xk;Y0,Y1,...,Yl)

:= ∇
E
Y0

s(X1,...,Xk;Y1,...,Yl)−

l∑
j=1

s(X1,...,Xk;Y1,...,PV(∇TM
Y0

Y j ),...,Yl).

In the following definition, we regard (∇̇E[)i (∂̇V ) j s ∈0∞(⊗i H ′
⊗
⊗

j V ′
⊗

E[).

Definition 2.3. For s ∈ 0∞c (E), we define its m-th Sobolev norm by

(4) ‖s‖2m :=
∑

i+ j≤m

∫
x∈B

∫
y∈Zx

∣∣(∇̇E[)i (∂̇V ) j s
∣∣2(x, y)µx(y)µB(x).
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Denote by Wm(E) the Sobolev completion of 0∞c (E) with respect to ‖ · ‖m .

Recall that an operator A is called C∞-bounded if in normal coordinates the
coefficients and their derivatives are C∞-bounded.

Since M is locally isometric to a compact space M0, it is a manifold with bounded
geometry (see [Shubin 1992, Appendix 1] for an introduction). Moreover, ∇E is a
C∞-bounded differential operator, because by G-invariance the Christoffel symbols
of ∇E and all their derivatives are uniformly bounded. Using normal coordinate
charts and parallel transport with respect to ∇E as the trivialization, one sees that
E is a bundle with bounded geometry.

Since the operators ∇̇E[ and ∂̇V are just respectively the (0, 1) and (1, 0) parts of
the usual covariant derivative operator, our Definition 2.3 is equivalent to the standard
Sobolev norm [Shubin 1992, Appendix 1 (1.3)] (with p = 2 and s nonnegative
integers).

One has elliptic regularity for these Sobolev spaces:

Lemma 2.4 [Shubin 1992, Lemma 1.4]. Let A be any C∞-bounded, uniformly
elliptic differential operator of order m. For any i, j ≥ 0, there exists a constant C
such that for any s ∈ 0∞c (E)

‖s‖i+m ≤ C(‖As‖i +‖s‖ j ).

Remark 2.5. Throughout this paper, by an “elliptic operator” on a manifold, we
mean elliptic in all directions, without taking any foliation structure into considera-
tion. We use the term “fiberwise elliptic operators” to refer to differential operators
that are fiberwise and elliptic restricted to fibers.

2C. The fibered product.

Definition 2.6. The fibered product of the manifold M is

M×B M := {(p, q) ∈ M ×M : π(p)= π(q)},

and with the maps from M×B M to M defined by

s(p, q) := q and t(p, q) := p.

The manifold M ×B M is a fiber bundle over B, with typical fiber Z × Z . One
naturally has the splitting [Heitsch 1995, Section 2]

T (M×B M)= Ĥ ⊕ Vt ⊕ Vs,

where Vs := Ker(d t) and Vt := Ker(ds).

Note that Vs ∼= s∗V and Vt ∼= t∗V . As in Section 2A, we endow M×B M with
a metric by lifting the metrics on H0 and V0. Then M×B M is a manifold with
bounded geometry.
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Notation 2.7. With some abuse in notation, we shall often write elements in M×B M
as a triple (x, y, z) and s(x, y, z) = (x, z), t(x, y, z) = (x, y) ∈ M , where x ∈ B
and y, z ∈ Zx .

Let G act on M×B M by the diagonal action (p, q)g := (pg, qg). Let E→ M
be a contravariant G-vector bundle and E ′ be its dual. We shall consider

Ê→ M×B M := t∗E ⊗ s∗E ′.

Given a G-invariant connection ∇E on E , let

∇
Ê
:= t∗∇E

⊗ ids∗E ′ + idt∗E ⊗s∗∇E ′

be the tensor product of the pullback connections. Fix any local base {e1, . . . er }

of E ′ on some U ⊂ M . Any section can be written as

s =
r∑

i=1

ui ⊗ s∗ei

on s−1(U ), where ui ∈0
∞(t∗E). Then by definition we have for any vector X on M,

(5) ∇
Ê

X

( r∑
i=1

ui ⊗ s∗ei

)
=

r∑
i=1

(∇ t∗E
X ui )⊗ s∗ei + ui ⊗ s∗(∇E ′

ds(X)ei ).

Similarly to Definition 2.2, we define the covariant derivative operators on
0∞(⊗•T∗B

⊗
⊗
•(V ′t )[

⊗
⊗
•(V ′s )[

⊗
Ê[).

Definition 2.8. Define(
∇̇

Ê[ψ
)
(X0,X1,...,Xk;Y1,...,Yl,Z1,...,Zl ′)

:= ∇
Ê[
X0
ψ(X1,...,Xk;Y1,...,Yl,Z1,...,Zl ′)

−

∑
1≤ j≤l

ψ(X1,...,Xk;Y1,...,∇
V[
X0

Y j ,...,Yl,Z1,...,Zl ′)

−

∑
1≤ j≤l ′

ψ(X1,...,Xk;Y1,...,Yl,Z1,...,∇
V[
X0

Z j ,...,Zl ′)

−

∑
1≤i≤k

ψ(X1,...,∇
TB
X0

X i ,...,Xk;Y1,...Yl,Z1,...,Zl ′),
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and(
∂̇ sψ

)
(X1,...,Xk;Y0,Y1,...,Yl,Z1,...,Zl ′)

:= ∇
Ê
Y0
ψ(X1,...,Xk;Y1,...,Yl,Z1,...,Zl ′)

−

∑
1≤ j≤l

ψ(X1,...,Xk;Y1,...,PV s
(∇TM

Y0
Y j ),...,Yl,Z1,...,Zl ′)

−

∑
1≤ j≤l ′

ψ(X1,...,Xk;Y1,...,Yl,Z1,...,PV t
[Y0,Z j ],...,Zl ′),

and(
∂̇ tψ

)
(X1,...,Xk;Y1,...,Yl,Z0,Z1,...,Zl ′)

:= ∇
Ê
Y0
ψ(X1,...,Xk;Y1,...,Yl,Z0,Z1,...,Zl ′)

−

∑
1≤ j≤l

ψ(X1,...,Xk;Y1,...,PV s
[Z0,Y j ],...,Yl,Z1,...,Zl ′)

−

∑
1≤ j≤l ′

ψ(X1,...,Xk;Y1,...,Yl,Z1,...,PV t
(∇TM

Z0
Z j ),...,Zl ′).

Given any vector fields Y, Z ∈ V, let Y s, Z t be respectively the lifts of Y and Z to
Vs and Vt . Then [Y s, Z t

] = 0. It follows that as differential operators, [∂̇ s, ∂̇ t
] = 0.

Also, it is straightforward to verify that [∇̇ Ê[, ∂̇ s
] and [∇̇ Ê[, ∂̇ t

] are both zeroth
order differential operators (i.e., smooth bundle maps).

Fix a local trivialization

xα : π−1(Bα)→ Bα × Z, p 7→ (π(p), ϕα(p)),

where B=
⋃
α Bα is a finite open cover (since B is compact), and ϕα|π−1(x) : Zx→ Z

is a diffeomorphism. Such a trivialization induces a local trivialization of the fiber
bundle M×B M t

→M by M =
⋃

Mα,Mα := π
−1(Bα),

x̂α : t−1(Mα)→ Mα × Z, (p, q) 7→ (p, ϕα(q)).

On Mα × Z the source and target maps are explicitly given by

(6) s ◦ (x̂α)−1(p, z)= (xα)−1(π(p), z) and t ◦ (x̂α)−1(p, z)= p.

For such a trivialization, one has the natural splitting

T (Mα × Z)= Hα
⊕ V α

⊕ TZ,

where Hα and V α are respectively H and V restricted to Mα×{z}, z ∈ Z . It follows
from (6) that

V α
= d x̂α(Vs) and TZ = d x̂α(Vt).
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Given any vector field X on B, let X H, X Ĥ be respectively the lifts of X to H
and Ĥ. Since d t(X Ĥ )= ds(X Ĥ )= X H, it follows that

d x̂α(X Ĥ )= X Hα

+ dϕα(X H ).

Note that dϕα(X H ) ∈ TZ ⊆ T (Mα × Z).
Corresponding to the splitting T (Mα × Z) = Hα

⊕ V α
⊕ TZ , one can define

the covariant derivative operators. Let ∇TMα be the Levi-Civita connection on
Mα and ∇TZ be the Levi-Civita connection on Z . Define for any smooth section
φ ∈ 0∞(⊗•T∗B

⊗
⊗
•(V α)′[

⊗
⊗
•T ∗Z[

⊗
(x̂−1
α )∗ Ê[),(

∇̇
αφ
)
(X0,X1,...,Xk;Y1,...,Yl,Z1,...,Zl ′)

:= (x∗α∇
Ê[)X Hα

0
φ(X1,...,Xk;Y1,...,Yl,Z1,...,Zl ′)

−

∑
1≤ j≤l

φ(X1,...,Xk;Y1,...,[X Hα

0 ,Y j ],...,Yl,,Z1,...,Zl ′)

−

∑
1≤ j≤l ′

φ(X1,...,Xk;Y1,...,Yl,Z1,...,[X Hα

0 Z j ],...,Zl ′)

−

∑
1≤i≤k

φ(X1,...,∇
TB
X0

X i ,...,Xk;Y1,...,Yl,Z1,...,Zl ′),

and(
∂̇αφ

)
(X1, . . . , Xk; Y0, Y1, . . . , Yl, Z1, . . . , Zl ′)

:= (x∗α∇
Ê[)Y0φ(X1, . . . , Xk; Y1, . . . , Yl, Z1, . . . , Zl ′)

−

∑
1≤ j≤l

φ(X1, . . . , Xk; Y1, . . . , PV α

(∇
TMα

Y0
Yj ), . . . , Yl, Z1, . . . , Zl ′)

−

∑
1≤ j≤l ′

φ(X1, . . . , Xk; Y1, . . . , Yl, Z1, . . . , PTZ
[Y0, Z j ], . . . , Zl ′),

and(
∂̇ Zφ

)
(X1, . . . , Xk; Y1, . . . , Yl, Z0, Z1, . . . , Zl ′)

:= (x∗α∇
Ê[)Z0φ(X1, . . . , Xk; Y1, . . . , Yl, Z0, Z1, . . . , Zl ′)

−

∑
1≤ j≤l

φ(X1, . . . , Xk; Y1, . . . , PV α

[Z0, Yj ], . . . , Yl, Z1, . . . , Zl ′)

−

∑
1≤ j≤l ′

φ(X1, . . . , Xk; Y1, . . . , Yl, Z1, . . . ,∇
TZ
Z0

Z j , . . . , Zl ′).

Consider the special case when φ= u⊗ s∗e, where u∈0∞(⊗•T∗B
⊗
⊗
•(Vα)′[⊗ t∗E)

and e∈ 0∞(⊗•T ∗Z[⊗E ′).
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Lemma 2.9. For (x, y, z) ∈ Mα × Z , one has

∇̇
α(u⊗ s∗e)(x, y, z)=

(
∇̇

E[u|Mα×{z}(x, y)
)
⊗ s∗(e(x, z))+ u⊗ s∗

(
∇

E ′[e(x, z)
)

and ∂̇α(u⊗ s∗e)(x, y, z)= (∂̇V u|Mα×{z}(x, y))⊗ s∗(e(x, z)).

Proof. It suffices to consider the case when Yj , Z j ′ are respectively vector fields
on Mα and Z lifted to Mα × Z . From this assumption it follows that [Yj , Z j ′] =

[X Hα

0 , Z j ′] = 0. The lemma follows by a simple computation. �

We express the (pullback of) covariant derivatives ∇̇ Ê[ψ, ∂̇ sψ and ∂̇ tψ in terms
of ∇̇αψα, ∂̇αψα and ∂̇ Zψα, where ψα := (x−1

α )∗ψ . One directly verifies

(7)
(
∇̇

E[ψ
)
(X0,X1,...,Xk;Y1,...,Yl,Z1,...,Zl ′)

= (x−1
α )∗

(
∇
α

(X Hα
0 +dϕα(X H

0 ))
ψα
(
X1,...,Xk;dxα(Y1,...,Yl,Z1,...,Zl ′)

)
−

∑
1≤ j≤l

ψα
(
X1,...,Xk;dxαY1,...,[X Hα

0 ,dxαY j],...,dxαYl,dxα(Z1,...,Zl ′)
)

−

∑
1≤ j≤l ′

ψα
(
X1,...,Xk;dxα(Y1,...,Yl),dxαZ1,...,[X Hα

0 + dϕα(X H
0 ),dxαZ j],...,dxαZl ′

)
−

∑
1≤i≤k

ψα
(
X1,...,∇

TB
X0

X i ,...,Xk;Y1,...,Yl,Z1,...,Zl ′
))

= (x−1
α )∗

(
∇̇
αψα(X0,X1,...,Xk;Y1,...,Yl,Z1,...,Zl ′

)
+ ∂̇ Zψα(X1,...,Xk;Y1,...,Yl,dϕα(X H

0 ),Z1,...,Zl ′)

+

∑
1≤ j≤l ′

ψα
(
X1,...,Xk;dxα(Y1,...,Yl),dxαZ1,...,(∇

TZdϕα(X H
0 ))(dxαZ j ),...,dxαZl ′)

)
.

By similar computations for ∂̇ s and ∂̇ t , one gets:

(8)
(
∂̇ sψ

)
(X1,...,Xk;Y0,Y1,...Yl,Z1,...Zl ′)

= (x−1
α )∗

(
∂̇αψα(X1,...,Xk;dxα(Y0,Y1,...,Yl,Z1,...,Zl ′)

)
,

and

(9)
(
∂̇ tψ

)
(X1,...,Xk;Y1,...,Yl,Z0,Z1,...,Zl ′)

= (x−1
α )∗

(
∂̇ Zψα(X1,...,Xk;dxα(Y1,...,Yl,Z0,...,Zl ′))

)
+

∑
1≤ j≤l ′

ψα
(
X1,...,Xk;dxα(Y1,...,Yl),dxαZ1,

...,
(
∇

TZ
dxαZ0

dxαZ j − dxα(PVt∇
TM
Z0

Z j ),...,dxαZl ′
))
.
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2D. Smoothing operators. For any (x, y, z) ∈ M×B M, let d(x, y, z) be the Rie-
mannian distance between y, z ∈ Zx . We regard d as a continuous, nonnegative
function on M×B M.

Definition 2.10. (See [Nistor et al. 1999]). As a vector space,

9−∞
∞

(M×BM,E) :=


For any m∈ N, ε > 0, there exists Cm > 0

ψ ∈ 0∞(Ê) : such that for all i + j + k ≤ m,
|(∇̇ Ê[)i (∂̇Vs) j (∂̇Vt )kψ | ≤ Cme−εd .

.
The convolution product structure on 9−∞

∞
(M×B M, E) is defined by

ψ1 ?ψ2(x, y, z) :=
∫

Zx

ψ1(x, y, w)ψ2(x, w, z)µx(w).

We introduce a Sobolev type generalization of the Hilbert–Schmidt norm on
9−∞
∞

(M×B M, E)G, the space of G-invariant kernels. Since G is a finitely generated
discrete group and acts on M freely and properly discontinuously, then there exists
a smooth compactly supported function χ ∈ C∞c (M), such that∑

g∈G

g∗χ = 1.

In particular, one may construct χ as follows. Denote by πG the projection
M → M0 = M/G. There exists some r > 0 and a finite collection of geodesic
balls B(pα, r) of radius r such that B(pα, r) is diffeomorphic to its image in M0

under πG , and moreover
{

B
(

pα, 1
3r
)}

covers M0 (since M0 is compact). Since G
acts on M by isometry, πG(B(pαg, r)) = πG(B(pα, r)) for all g ∈ G. Thus one
may without loss of generality assume that B(pα, r) are mutually disjoint.

Define the functions f ∈ C∞(R), Fα, F ∈ C∞c (M) by

f (t) :=e−1/t2
if t > 0, 0 if t ≤ 0,

Fα(p) := f
(
1− 2

r
d(p, pα)

)(
f
( 3

r
d(p, pα)− 1

)
+ f

(
1−

2
r

d(p, pα)
))−1

, p ∈M,

F :=
∑
α

Fα.

Note that F is well defined because Fα is supported on B(pα, r), which is locally
finite. Since by construction {⋃

α

B
(

pαg, r
3

)}
g∈G
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is a locally finite cover of M ,
∑

g g∗F is also well defined. Define

χ := F
(∑

g

g∗F
)−1

.

Then clearly χ is the required partition of unity. Moreover, observe that χ1/2 is
a smooth function because f 1/2 is smooth and all denominators are uniformly
bounded away from 0.

For any G-invariantψ ∈9−∞
∞

(M×B M, E)G, recall that the standard trace ofψ is

tr9(ψ)(x) :=
∫

z∈Zx

χ(x, z) tr(ψ(x, z, z))µx(z) ∈ C∞(B).

The definition does not depend on the choice of χ . The corresponding Hilbert–
Schmidt norm is

(10)
∫

B

(
tr9(ψψ∗)(x)

)2
µB(x)

=

∫
B

∫
Zx

χ(x, z)
∫

Zx

tr(ψ(x, z, y)ψ∗(x, y, z))µx(y)µx(z)µB(x).

Note that equation (10) coincides with the L2-norm of ψ . Generalizing (10) to
taking into account derivatives, we define:

Definition 2.11. The m-th Hilbert–Schmidt norm on9−∞
∞

(M×B M, E)G is defined
to be

‖ψ‖2HSm :=
∑

i+ j+k≤m

∫
B

∫
Zx

χ(x, z)
∫

Zx

∣∣(∇̇ Ê[)i(∂̇ s) j(∂̇ t)kψ
∣∣2(x, y, z)µx(y)µx(z)µB(x),

for any G-invariant element ψ . Let 9−∞m (M ×B M, E)G be the completion of
9−∞
∞

(M×B M, E)G with respect to ‖ · ‖HSm .

Similar to Lemma 2.4, one has elliptic regularity for the Hilbert–Schmidt norm:

Lemma 2.12. Let A be a G-invariant, first order elliptic differential operator, then
for any m = 0, 1, . . . , there exists a constant C > 0 such that

‖ψ‖HSm+1 ≤ C(‖Aψ‖HSm +‖ψ‖m),

for all ψ ∈9−∞
∞

(M×B M, E)G.

Proof. Define
S := {g ∈ G : χ(g∗χ) 6= 0}.

Then S is finite because {g∗χ} is a locally finite partition of unity.
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Consider (χ(x, z))1/2ψ . By the Leibniz rule, one has

(∇̇ Ê[)i (∂̇ s) j (∂̇ t)kχ1/2ψ = χ1/2(∇̇ Ê[)i (∂̇ s) j (∂̇ t)kψ

modulo terms involving lower derivatives in ψ . Since (χ(x, z))1/2 is smooth with
bounded derivatives, there exists some C1 > 0 such that for any (x, y, z)∈M×B M,

(11)
∣∣∣∣ ∑

i+ j+k≤m

∣∣(∇̇ Ê[)i (∂̇ s) j (∂̇ t)kχ1/2ψ
∣∣2−χ ∑

i+ j+k≤m

∣∣(∇̇ Ê[)i (∂̇ s) j (∂̇ t)kψ
∣∣2∣∣∣∣(x, y, z)

≤

∑
g∈S

g∗χ
(

C1
∑

i+ j+k≤m−1

∣∣(∇̇ Ê[)i (∂̇ s) j (∂̇ t)kψ
∣∣2)(x, y, z).

Similarly, since Aχ1/2
−χ1/2 A is a C∞-bounded tensor, one has

(12)
∣∣∣∣ ∑
i+ j+k≤m

∣∣ (∇̇ Ê[)i (∂̇ s) j (∂̇ t)k(Aχ1/2ψ)
∣∣2−χ ∑

i+ j+k≤m

∣∣(∇̇ Ê[)i (∂̇ s) j (∂̇ t)k Aψ
∣∣2∣∣∣∣

≤

∑
g∈S

g∗χ
(

C2
∑

i+ j+k≤m

∣∣(∇̇ Ê[)i (∂̇ s) j (∂̇ t)kψ
∣∣2).

Since the integrand is G-invariant, for any g ∈ G∫
M×B M

g∗χ
∑

i+ j+k≤m−1

∣∣(∇̇ Ê[)i (∂̇ s) j (∂̇ t)kψ
∣∣2µx(y)µx(z)µB(x)= ‖ψ‖2HSm−1.

Observe that A being G-invariant implies A is uniformly elliptic and C∞-bounded.
Therefore applying Lemma 2.4 for (χ(x, z))1/2ψ , there exists a constant C3 > 0
such that∫

M×B M

∑
i+ j+k≤m+1

∣∣(∇̇ Ê[)i (∂̇ s) j (∂̇ t)k(χ1/2ψ)
∣∣2µx(y)µx(z)µB(x)

≤ C3

(∫
M×B M

∑
i+ j+k≤m

∣∣(∇̇ Ê[)i (∂̇ s) j (∂̇ t)k(Aχ1/2ψ)
∣∣2µx(y)µx(z)µB(x)

+

∫
M×B M

∑
i+ j+k≤m

∣∣(∇̇ Ê[)i (∂̇ s) j (∂̇ t)k(χ1/2ψ)
∣∣2µx(y)µx(z)µB(x)

)
.

Then by equations (11) and (12), we get the lemma. �

2E. Fiberwise operators. We turn to considering another class of operators and a
different norm.
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Definition 2.13. A fiberwise operator is a linear operator A : 0∞c (E[)→W0(E)
such that for all x ∈ B, and any sections s1, s2 ∈ 0

∞
c (E[),

(As1)(x)= (As2)(x),

whenever s1(x)= s2(x).
We say that A is smooth if A(0∞c (E))⊆0

∞(E). A smooth fiberwise operator A
is said to be bounded of order m if A extends to a bounded map from Wm(E) to
itself.

Denote by ‖A‖opm the operator norm of A :Wm(E)→Wm(E).

Example 2.14. Examples of smooth fiberwise operators are 9−∞
∞

(M×B M, E),
acting on Wm(E) by vector representation, i.e.,

(Ψ s)(x, y) :=
∫

Zx

ψ(x, y, z)s(x, z)µx(z).

Notation 2.15. For the fiberwise operator A : 0∞c (E[)→W0(E) which is of the
form given by Example 2.14, we denote its kernel by A(x, y, z). We shall write

‖A‖HSm := ‖A(x, y, z)‖HSm,

provided A(x, y, z) ∈9−∞m (M×B M, E).

The following lemma enables one to construct more fiberwise operators:

Lemma 2.16. Let A be any first order, C∞-bounded differential operator on M
and Ψ ∈ 9−∞

∞
(M ×B M, E) be as in Example 2.14. Then [A, Ψ ] is a fiberwise

operator in 9−∞
∞

(M×B M, E).

Proof. Since multiplication by a tensor or differentiation along V is fiberwise, all
that remains is to consider operators of the form ∇E

X H , for some vector field X on B.
Let L∇

E

X H = d∇
E
iX H + iX H d∇

E
, where d∇

E
is the twisted de Rham operator. In the

remainder of this paper, the Lie derivatives are all defined in this way.
Let s ∈ 0∞c (E) be arbitrary. We first suppose that Z is orientable and µx is a

volume form. By the decay condition in Definition 2.10, one can differentiate under
the integral sign to get

AΨ s(x, z)=
∫

Zx

L∇
Ê

X Ĥ (ψ(x, y, z)s(x, y)µx(y))

=

∫
Zx

(
L∇

Ê

X Ĥ ψ(x, y, z)
)
s(x, y)µx(y)+

∫
Zx

ψ(x, y, z)
(
L∇

E

X H s(x, y)
)
µx(y)

+

∫
Zx

ψ(x, y, z)s(x, y)
(
L∇

E

X H µx(y)
)
.

The second term in the last line is just Ψ As. Hence the result.
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For the general case, one can take a suitable partition of unity and integrate over
local volume forms. Then one obtains a similar equation. �

Let A be a smooth fiberwise operator on 0∞c (E[). Then A induces a fiberwise
operator Â on 0∞c (Ê[) by

(13) Â(u⊗ s∗e) := A(u|Mα×{z})⊗ (s
∗e)

on t−1(Mα) ∼= Mα × Z , for any sections e ∈ 0∞(E ′) and u ∈ 0∞(t∗E), and
ψ = u⊗ s∗e ∈ 0∞c (Ê).

Note that Â is independent of trivialization since A is fiberwise, and for any α, β
and z ∈ Z , the transition function xβ ◦ (xα)−1 maps the submanifold Zx × {z} to
Zx ×{ϕ

β
x ◦ (ϕ

α
x )
−1(z)} as the identity diffeomorphism. If Ψ is a kernel and A is a

fiberwise smooth operator, AΨ is also a kernel and is given by ÂΨ .

2F. The main theorem. Suppose that A is smooth and bounded of order m for all
m ∈ N. Consider the covariant derivatives of Âψ .

Theorem 2.17. For any smooth bounded G-invariant operator A, there exist con-
stants C ′1,1, C ′0,0 > 0 such that for any ψ ∈ 9−∞

∞
(M ×B M)G one has Âψ ∈

9−∞
∞

(M×B M)G and

‖ Âψ‖HS 1 ≤ (C ′1,1‖A‖op 1+C ′1,0‖A‖op 0)‖ψ‖HS 1.

Proof. Fix a partition of unity {θα} ∈ C∞c (B) subordinate to {Bα}. We still denote
by {θα} its pullback to M and M ×B M. Fix any Riemannian metric on Z and
denote the corresponding Riemannian measure by µZ . Then one writes

(x̂α)?(µxµB)= JαµBµZ ,

for some smooth positive function Jα. Moreover, over any compact subset of
Bα × Z , 1/Jα is bounded.

Given any ψ ∈9−∞
∞

(M×B M)G, let ψα := x̂∗α(ψ). The theorem clearly follows
from the inequalities∫

Bα

∫
Zx

χ(x, z)
∫

Zx

|∇̇
α Â(θαψα)|2µx(y)µx(z)µB(x)(14)

≤(C1‖A‖2op 1+C2‖A‖2op 0)‖ψ‖
2
HS 1,∫

Bα

∫
Zx

χ(x, z)
∫

Zx

|∂̇α Â(θαψα)|2µx(y)µx(z)µB(x)(15)

≤(C1‖A‖2op 1+C2‖A‖2op 0)‖ψ‖
2
HS 1,∫

B

∫
Zx

χ(x, z)
∫

y∈Zx

|∂̇ Z Â(θαψα)|2µx(y)µx(z)µB(x)≤ ‖A‖2op 0‖ψ‖
2
HS 1.(16)
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Let Z =
⋃
λ Zλ be a locally finite cover. Then the support of χθα lies in some

finite subcover. Let χα be the characteristic function

χα(x, z)=
{

1 if (χθα)(x, z) > 0,
0 otherwise.

Without loss of generality we may assume E ′|Zλ are all trivial. For each λ fix
an orthonormal basis {eλr } of E ′|Bα×Zλ , and write ψα :=

∑
r uλr ⊗ s∗eλr . Using

Lemma 2.9, one estimates the integrand of the left-hand side of equation (14). Then
there exits a constant C3 > 0 such that∣∣∇̇α( Âθαψα)∣∣2(x, y, z)

=

∣∣∣∣∑
r

(∇̇E[ Aθα(uλr |Mα×{z})(x, y))⊗ s∗eλr + (Aθαuλr )⊗ s∗(∇E eλr )
∣∣∣∣2

≤ C3
∑

r

(∣∣∇̇E[ Aθα(uλr |Mα×{z})(x, y)
∣∣2+ ∣∣(Aθαuλr )⊗ s∗(∇E eλr )

∣∣2).
By integrating, one gets for some constants Cq , q = 4, . . . , 10, that∫

Bα

∫
Zx

χ(x, z)
∫

Zx

|∇̇
α Â(θαψα)|2µx(y)µx(z)µB(x)

≤ C4
∑
λ

∫
Zλ

∫
Bα

∫
Zx

∑
r

(∣∣∇̇E[ Aθα(uλr |Mα×{z})(x, y)
∣∣2

+
∣∣(Aθαuλr )⊗ s∗(∇E eλr )

∣∣2 )µx(y)µB(x)µZ (z)

≤

∑
λ

∫
Zλ

∫
Bα

∫
Zx

∑
r

(
C5‖A‖2op 1

(∣∣∇̇E[θα(uλr |Mα×{z})(x, y)
∣∣2

∣∣∂̇V θα(uλr |Mα×{z})(x, y)
∣∣2+ ∣∣θα(uλr |Mα×{z})(x, y)

∣∣2)
+C6‖A‖op 0

∣∣θαuλr
∣∣2)µx(y)µB(x)µZ (z)

≤

∑
λ

∫
Zλ

∫
Bα

∫
Zx

Jα(C7‖A‖2op 1+C8‖A‖op 0)
(∣∣∇̇αθαψα∣∣2

+
∣∣∂̇αθαψα∣∣2+ ∣∣∂̇ Zθαψα

∣∣2+ ∣∣θαψα∣∣2)µx(y)µB(x)µZ (z)

≤

∫
B

∫
Zx

χα

∫
Zx

(
C9‖A‖2op 1+C10‖A‖op 0

)(∣∣∇̇ Ê[x∗α(θαψ)
∣∣2

+
∣∣∂̇ s x∗α(θαψ)

∣∣2+ ∣∣∂̇ t x∗α(θαψ)
∣∣2+ ∣∣x∗α(θαψ)∣∣2)µx(y)µx(z)µB(x).
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Now we use an argument similar to the proof of Lemma 2.12. Namely, write the
integrand as a sum

χα
(∣∣∇̇ Ê[x∗α(θαψ)

∣∣2+ ∣∣∂̇ s x∗α(θαψ)
∣∣2+ ∣∣∂̇ t x∗α(θαψ)

∣∣2+ ∣∣x∗α(θαψ)∣∣2)
=

∑
g∈S

χαg∗χ
(∣∣∇̇ Ê[x∗α(θαψ)

∣∣2+∣∣∂̇ s x∗α(θαψ)
∣∣2+∣∣∂̇ t x∗α(θαψ)

∣∣2+∣∣x∗α(θαψ)∣∣2).
Then since for all g∫

g∗χ
(∣∣∇̇ Ê[x∗α(θαψ)

∣∣2+∣∣∂̇ s x∗α(θαψ)
∣∣2+∣∣∂̇ t x∗α(θαψ)

∣∣2+∣∣x∗α(θαψ)∣∣2)=‖ψ‖HS 1,

equation (14) follows.
Using the same arguments with ∂̇α in place of ∇̇α, one gets (15).
As for the last inequality, since t∗E |Mα×{z} and the connection (x−1

α )∗∇ s∗E ′ are
trivial along exp tZ0, one can write

∇
α
Z0
( Âu⊗ s∗e)= d

dt
∣∣
t=0 Au

∣∣
Mα×{exp tZ}⊗ s∗e+ u⊗∇ s∗E ′

Z0
s∗e

=A
(

d
dt
∣∣
t=0u

∣∣
Mα×{exp tZ}

)
⊗ s∗e+ u⊗∇ s∗E ′

Z0
s∗e = Â

(
∇
α
Z0
(u⊗ s∗e)

)
.

It follows that

∂̇ Z Âψα = Â(∂̇ Zψα),

from which (16) follows. �

Clearly, the arguments leading to Theorem 2.17 can be repeated and we obtain:

Corollary 2.18. For any smooth bounded operator A and m= 0, 1, . . ., there exists
C ′m,l > 0 such that for any ψ ∈9−∞

∞
(M×B M)G one has

‖ Âψ‖HSm ≤

( ∑
0≤l≤m

Cm,l‖A‖op l

)
‖ψ‖HSm .

Notation 2.19. In view of Corollary 2.18, we shall denote

‖A‖op′m :=

( ∑
0≤l≤m

Cm,l‖A‖op l

)
.

We may assume without loss of generality that Cm,l ≥ 2. Then one still has

(17) ‖A1 A2‖op′m ≤ ‖A1‖op′m‖A2‖op′m .
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3. Large time behavior of the heat operator

In this section we will prove that under the condition of the positivity of the Novikov–
Shubin invariant, the heat operator also convergences to the projection operator
under the norm ‖ · ‖HS m .

3A. The Novikov–Shubin invariant. Let M→ B be a fiber bundle with a G action,
and TM = H⊕V be the G-invariant splitting, as defined in Section 2A. Recall that
we assumed the metric on H ∼= π∗TB is given by pulling back some Riemannian
metric on B. In other words, V is a Riemannian foliation.

Let E→ M be a flat, contravariant G-vector bundle, and ∇ be an invariant flat
connection on E. Denote E • := ∧•V ′⊗ E.

Since the vertical distribution V is integrable, the de Rham differential d∇
E

V
along V is well defined. Write ð0 := d∇

E

V +
(
d∇

E

V

)∗, ∆ := ð2
0, and denote by e−t∆

the heat operator and Π0 the orthogonal projection onto Ker(∆).
The following result is classical: See, for example, [Bismut 1986, Proposition

2.8] and [Heitsch 1995, Proposition 3.5].

Lemma 3.1. The heat operator e−t∆ is given by a smooth kernel. Moreover, for
any first order differential operator A, one has the Duhamel type formula

(18) [A, e−t∆
] = −

∫ t

0
e−(t−t ′)∆

[A,∆]e−t ′∆ dt ′.

From Lemma 3.1, it follows that:

Corollary 3.2 [Heitsch 1995, Corollary 3.11]. For any i , j , k, there exist C , M > 0
such that ∣∣(∇̇E[)i (∂̇ s) j (∂̇ t)ke−tð2

0
∣∣(x, y, z)≤ Ce−Md(y,z)2 .

Hence e−tð2
0 ∈9−∞

∞
(M×B M, E •)G.

As for Π0, one has

Lemma 3.3. The kernel of Π0 lies in 9−∞0 (M×B M, E •)G.

Proof. By [Gong and Rothenberg 1996, Theorem 2.2] Π0 is also represented by
a smooth kernel Π0(x, y, z). Moreover by the same theorem and the fact that
Π0 =Π

2
0 , one has

sup
x∈B

{∫
Zx

χ(x, z)
∫

Zx

|Π0(x, y, z)|2µx(y)µx(z)
}
= ‖Π0‖τ <∞,

where ‖ · ‖τ is the τ -trace norm defined in [Gong and Rothenberg 1996] (see also
[Azzali et al. 2015]).

Hence we are left to consider χn(x, y, z)Π0(x, y, z), where χn ∈C∞(M×B M)G

is a sequence of smooth functions such that
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(1) 0≤ χn ≤ 1;

(2) χn is increasing and converges pointwise to 1;

(3) χn(x, y, z)= 0 whenever d(y, z) > nr for some r > 0.

To construct χn , let r > 0 to be the infimum of the injective radius of the fibers Zx ,
and φ1 be a nonnegative smooth function such that φ1(t)= 1 if t < 1

2r , φ1(t)= 0
if t > r . Then χ1 := φ1 ◦ d(y, z) is G-invariant. Define

χ̃n := χ1 ? · · · ? χ1 (convolution by n times).

Note that χ̃n(x, y, z) > 0 whenever d(y, z) < 1
2 nr . Moreover, χ̃n is G-invariant

and χ̃n(x, y, z)= 0 whenever d(y, z) > nr . Since χ̃n+1 is bounded away from 0 on
the support of χ̃n , clearly one can find smooth functions φn such that χn := φn ◦ χ̃n

satisfies conditions (1)–(3). �

Because of Corollary 3.2 and Lemma 3.3, it makes sense to define:

Definition 3.4. We say that ∆ has positive Novikov–Shubin invariant if there exist
γ > 0 and C0 > 0 such that for sufficiently large t ,

sup
x∈B

{∫
Zx

χ(x, z)
∫

Zx

∣∣(e−t∆
−Π0)(x, y, z)

∣∣2µx(y)µx(z)
}
≤ C0t−γ .

Remark 3.5. The positivity of the Novikov–Shubin invariant is independent of the
metrics defining the operator ∆.

Remark 3.6. Since e−(t/2)∆−Π0 is nonnegative, self adjoint and (e−(t/2)∆−Π0)
2
=

e−t∆
−Π0, one has

sup
x∈B

{∫
Zx

χ(x, z)
∫

Zx

∣∣(e− t
2∆−Π0)(x, y, z)

∣∣2µx(y)µx(z)
}
= ‖e−t∆

−Π0‖τ .

Hence our definition of having positive Novikov–Shubin invariant is equivalent to
that of [Azzali et al. 2015]. Our argument here is similar to the proof of [Bismut
et al. 2017, Theorem 7.7].

In this paper, we shall always assume ∆ has positive Novikov–Shubin invariant.
From this assumption, it follows by integration over B that there exist constants
γ > 0 and C > 0 such that for t large enough

(19) ‖e−t∆
−Π0‖HS 0 < Ct−γ .

3B. Example: The Bismut superconnection.

Definition 3.7. A standard flat Bismut superconnection is an operator of the form

d∇
E
:= d∇

E

V +∇
E•[ + ι2,
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where 2 is the V -valued horizontal 2-form defined by

2(X H
1 , X H

2 ) := −PV
[X H

1 , X H
2 ] for all X1, X2 ∈ 0

∞(TB),

and ι2 is the contraction with 2. Note that PV is not canonical and it depends on
the splitting TM = V ⊕ H .

Observe that the adjoint of the Bismut superconnection,(
d∇

E )′
=
(
d∇

E

V
)∗
+
(
∇

E•[
)′
−32∗,

is also flat. It follows that(
∇

E•[
)′(d∇E

V
)∗
+
(
d∇

E

V
)∗(
∇

E•[
)′
= 0.

Define
� := 1

2

((
∇

E•[
)′
−∇

E•[
)
.

Observe that � is a tensor (see [Álvarez López and Kordyukov 2001] for an explicit
formula for �). Moreover one has

∇
E•[
(
d∇

E

V
)∗
+
(
d∇

E

V
)∗
∇

E•[ = 2�
(
d∇

E

V
)∗
+ 2

(
d∇

E

V
)∗
�.

Also, observe that
(
d∇

E

V

)
+
(
d∇

E

V

)∗
+∇

E•[ +
((
∇

E•[
)′)∗ is an elliptic operator.

3C. The regularity result of Alvarez Lopez and Kordyukov. We first recall that an
operator A is called C∞-bounded if in normal coordinates the coefficients and their
derivatives are uniformly bounded. As in [Álvarez López and Kordyukov 2001],
we make the more general assumption that there exists C∞-bounded first order
differential operator Q, and zero degree operators R1, R2, R3, R4, all G-invariant,
such that d∇

E

V +
(
d∇

E

V

)∗
+ Q is elliptic, and

(20) Q d∇
E

V + d∇
E

V Q = R1 d∇
E

V + d∇
E

V R2,

Q
(
d∇

E

V
)∗
+
(
d∇

E

V
)∗Q = R3

(
d∇

E

V
)∗
+
(
d∇

E

V
)∗R4.

Clearly, in our example, ∇E•[ +
((
∇

E•[
)′)∗ satisfies Equation (20).

Write ð0 := d∇
E

V + (d
∇

E

V )∗, ∆ := ð2
0, and denote by ΠdV and Πd∗V respectively

the orthogonal projections onto the range of d∇
E

V and
(
d∇

E

V

)∗, which we shall denote
by Rg(dV ) and Rg(d∗V ).

In this section, we shall consider the operators

B1 := R1ΠdV + R3Πd∗V , B2 :=Πd∗V R2+ΠdV R4, B := B2Π0+ B1(id−Π0).

We recall some elementary formulas regarding these operators from [Álvarez López
and Kordyukov 2001]:
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Lemma 3.8 [Álvarez López and Kordyukov 2001, Lemma 2.2]. One has

Q d∇
E

V + d∇
E

V Q =B1d∇
E

V + d∇
E

V B2,

Q
(
d∇

E

V
)∗
+
(
d∇

E

V
)∗Q =B1

(
d∇

E

V
)∗
+
(
d∇

E

V
)∗B2,

[Q,∆] =B1∆−∆B2− ð0(B1− B2)ð0.

One can furthermore estimate the derivatives of Π0. First, recall that

Lemma 3.9. One has (see [Álvarez López and Kordyukov 2001, Corollary 2.8])

[Q+ B,Π0] = 0.

Proof. Here we give a different proof. From definition we have

B = (Πd∗V R2+Πd R4)Π0+ R1ΠdV + R3Πd∗V ,

where we used ΠdVΠ0 =Πd∗VΠ0 = 0. Hence

BΠ0−Π0 B = (Πd∗V R2+ΠdV R4)Π0−Π0 R1ΠdV −Π0 R3Πd∗V .

For any s one has
ΠdV s = lim

n→∞
ds̃n,

for some sequence s̃n (in some suitable function spaces). It follows that

Π0 R1ΠdV s = lim
n→∞

Π0 R1ds̃1 = lim
n→∞

Π0
(
Qd∇

E

V +d∇
E

V Q−d∇
E

V R2
)
s̃1 =Π0 QΠdV s.

Similarly, one has Π0 R3Πd∗V =Π0 QΠd∗V and by considering the adjoint,

Πd∗V R2Π0 =Πd∗V QΠ0 and Πd∗V R4Π0 =Πd∗V QΠ0.

It follows that

[Q+ B,Π0] = (id−ΠdV −Πd∗V )QΠ0−Π0 Q(id−ΠdV −Πd∗V )= 0. �

In other words, regarding [Q,Π0] and [B,Π0] as kernels, one has

‖[Q,Π0]‖HSm = ‖[B,Π0]‖HSm,

provided the right-hand side is finite. Hence, using elliptic regularity and the same
arguments as Lemma 3.3, one can prove inductively that

Π0(x, y, z) ∈9−∞m (M×B M, E •) for all m.

Next, we recall the main result of [Álvarez López and Kordyukov 2001]

Lemma 3.10. For any m = 0, 1, . . . ,
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(1) The heat operator e−t∆, and the operators ð0 e−t∆, ∆e−t∆ map Wm(E) to
itself as bounded operators. Moreover, there exist constants C0

m,C1
m,C2

m > 0
such that

‖e−t∆
‖opm ≤ C0

m, ‖ð0 e−t∆
‖opm ≤ t−

1
2 C1

m, ‖∆e−t∆
‖opm ≤ t−1C2

m,

for all t > 0.

(2) As t →∞, e−t∆ strongly converges as an operator on Wm(E). Moreover,
(t, s) 7→ e−t∆s is a continuous map from [0,∞]×Wm(E) to Wm(E).

(3) One has the Hodge decomposition

Wm(E)= Ker(∆)+Rg(∆)= Ker(ð0)+Rg(ð0),

where the kernel, image and closure are in Wm(E).

Note that our case is slightly different from that of [Álvarez López and Kordyukov
2001], where M is assumed to be compact (but with possibly noncompact fibers).
However, the same arguments clearly apply because our M is of bounded geometry.

We recall more results in [Álvarez López and Kordyukov 2001, Section 2].

Lemma 3.11 [Álvarez López and Kordyukov 2001, Lemma 2.4]. For any m ≥ 0,
there exists a constant C3

m > 0 such that

‖[Q, e−t∆
]‖opm ≤ C3

m .

Proof. Using the third equation of Lemma 3.8, equation (18) becomes

[Q, e−t∆
]=

∫ t

0
e−(t−t ′)∆ð0(B1−B2)ð0e−t ′∆ dt ′−

∫ t

0
e−(t−t ′)∆(B1∆−∆B2)e−t ′∆ dt ′.

Using Lemma 3.10, we estimate the first integral∥∥∥∥∫ t

0
e−(t−t ′)∆ð0(B1− B2)ð0e−t ′∆ dt ′

∥∥∥∥
opm
≤‖B1− B2‖opm(C1

m)
2
∫ t

0

dt ′
√
(t−t ′)t ′

=‖B1− B2‖opm(C1
m)

2π.

As for the second integral, we split the domain of integration into
[
0, 1

2 t
]

and
[ 1

2 t, t
]
,

and then integrate by part to get∫ t

0
e−(t−t ′)∆(B1∆−∆B2)e−t ′∆ dt ′

=

∫ t/2

0
e−(t−t ′)∆∆(−B1− B2)e−t ′∆ dt ′−

∫ t

t/2
e−(t−t ′)∆(B1− B2)∆e−t ′∆ dt ′

+e−(t−t ′)∆B1e−t ′∆
∣∣∣t/2
t ′=0
− e−(t−t ′)∆B2e−t ′∆

∣∣∣t
t ′=t/2

.
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Again using Lemma 3.10, its ‖ · ‖opm-norm is bounded by

C0
mC1

m(‖B1‖opm +‖B2‖opm)

(∫ t/2

0

dt ′

t−t ′
+

∫ t

t/2

dt ′

t ′

)
+C0

m(C
0
m + 1)(‖B1‖opm +‖B2‖opm),

which is uniformly bounded because
∫ t/2

0 1/(t − t ′) dt ′ =
∫ t

t/2 1/t ′ dt ′ = log 2. �

Lemma 3.9 suggests that [Q + B, e−t∆
] converges to zero as t →∞. Indeed,

we shall prove a stronger result, namely, [Q+ B, e−t∆
] decays polynomially in the

‖ · ‖HSm-norm for all m.

Lemma 3.12. Suppose there exist Cm , γ > 0 such that ‖e−t∆
−Π0‖HSm ≤ Cm t−γ ,

then there exist C ′m , γm > 0 such that

‖[Q+ B, e−t∆
]‖HSm = ‖[Q+ B, e−t∆

−Π0]‖HSm ≤ C ′m t−γm .

Proof. We follow the proof of [Álvarez López and Kordyukov 2001, Lemma 2.6].
By Lemma 3.8, we get

[Q+ B,∆] = (∆(B1+ B2)+ð0(B1− B2)ð0)(id−Π0).

It follows that Π0[Q+ B, e−(t/2)∆] = [Q+ B, e−(t/2)∆]Π0 = 0. Write

[Q+ B, e−t∆
] = [Q+ B, e−

1
2 t∆
]e−

1
2 t∆
+ e−

1
2 t∆
[Q+ B, e−

1
2 t∆
]

= [Q+ B, e−
1
2 t∆
](e−

1
2 t∆
−Π0)+ (e−

1
2 t∆
−Π0)[Q+ B, e−

1
2 t∆
].

Taking ‖ · ‖HSm and using Corollary 2.18 and Lemma 3.11, the claim follows. �

Theorem 3.13. Suppose ‖e−t∆
−Π0‖HS 0 ≤ C0t−γ for some γ > 0, C0 > 0. Then

for any m, there exists C ′′m > 0 such that

‖e−t∆
−Π0‖HSm ≤ C ′′m t−γ for all t > 1.

Proof. We prove the theorem by induction. The case m = 0 is given. Suppose that
for some m, ‖e−t∆

−Π0‖HSm ≤ Cm t−γ. Consider ‖e−t∆
−Π0‖HSm+1.

Since Q is a first order differential operator, for any kernel ψ ∈ 9−∞
∞

(M×B

M, E •)G, [Q, ψ] is also a kernel lying in 9−∞
∞

(M×B M, E •)G, that is in particular,
given by a composition of the covariant derivatives ∇̇ Ê[, ∂̇ s, ∂̇ t and some tensors
acting on ψ . Since ‖ψ‖HSm is by definition the ‖·‖HS 0 norm of the m-th derivatives
of ψ , elliptic regularity (Lemma 2.12) implies

‖ψ‖HSm+1 ≤ C̃m(‖ψ‖HSm +‖ð0ψ‖HSm +‖ψð0‖HSm +‖[Q, ψ]‖HSm),
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for some constant C̃m > 0. Put ψ = e−t∆
−Π0. The theorem then follows from the

estimates

‖ð0(e−t∆
−Π0)‖HSm =‖(e−t∆

−Π0)ð0‖HSm

≤

( ∑
0≤l≤m

C ′m,l‖ð0(e−(t/2)∆−Π0)‖op l

)
‖e−(t/2)∆−Π0‖HSm

≤

( ∑
0≤l≤m

C ′m,lC
1
l
( 1

2 t
)−1/2

)
Cm
( 1

2 t
)−γ
,

‖[Q, e−t∆
−Π0]‖HSm ≤‖[Q+ B, e−t∆

−Π0]‖HSm +‖[B, e−t∆
−Π0]‖HSm

≤C ′m t−γ + 2
( ∑

0≤l≤m

C ′m,l‖B‖op l

)
Cm t−γ.

Note that we used Lemma 3.12 for the last inequality. �

4. Sobolev convergence

In this section we will use the method of [Azzali et al. 2015] to prove that under
the condition of positivity of the Novikov–Shubin invariant the L2-analytic torsion
form is a smooth form.

Let ∇E be a flat connection on E. Define the number operators on ∧•H ′⊗∧•V ′⊗
E by

N�|∧q H ′⊗∧q′V ′⊗E := q and N |
∧q H ′⊗∧q′V ′⊗E := q ′.

In this section, we consider the rescaled Bismut superconnection [Berline et al.
1992, Chapter 9.1]

ð(t) := 1
2 t1/2t−N�/2(d + d∗)t N�/2

=
1
2

(
t1/2(dV + d∗V )+

(
∇

E[ + (∇E[)′
)
+ t−1/2(−32∗ + ι2)

)
.

Denote

D0 := −
1
2(dV − d∗V ), �t := −

1
2

(
∇

E[ − (∇E[)′
)
−

1
2 t−1/2(−32∗ − ι2),

D(t) := t1/2 D0+�t .

The curvature of ð(t) can be expanded in the form:

ð(t)2 =−D(t)2 = t∆+ t1/2�t D0+ t1/2 D0�t +�
2
t .
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Hence as a consequence of Duhamel’s expansion (see [Berline et al. 1992]), we
have

e−ð(t)
2
= eD(t)2

= e−t∆
+

dim B∑
n=1

∫
(r0,...,rk)∈6n

e−r0t∆(t1/2�t D0+ t1/2D0�t +�
2
t )e
−r1t∆

· · · (t1/2�t D0+ t1/2D0�t +�
2
t )e
−rn t∆ d6n,

where 6n
:= {(r0, r1, . . . , rn) ∈ [0, 1]n+1

: r0+ · · ·+ rn = 1}.

4A. The large time estimate of the rescaled heat operator. In this section, we
follow [Azzali et al. 2015, Section 4] to estimate the Hilbert–Schmidt norms of
e−ð(t)

2
(see Theorem 4.4 below).

Let γ ′ := 1 − (1 + 2γ /(dim B + 2 + 2γ ))−1, r(t) := t−γ
′

. Fix t such that
r(t) < (dim B + 1)−1. One has the following counterparts of [Azzali et al. 2015,
Lemma 4.2]:

Lemma 4.1. For c = 0, 1, 2, there exists a constant Cm such that∥∥(√tð0)
c/2er t (D0)

2∥∥
op′ m ≤ Cmr−c/2 for any t > t , 0< r < 1 (by Lemma 3.10);

and for any t > t, r(t) < r < 1,∥∥er t (D0)
2∥∥

HSm ≤Cm(r t)−γ (by Theorem 3.13),∥∥(√tð0)
c/2er t (D0)

2∥∥
HSm ≤Cmr−c/2(r t)−γ if c = 1, 2(by Corollary 2.18).

We furthermore observe that the arguments leading to the main result [Azzali
et al. 2015, Theorem 4.1] still hold if one replaces the operator and ‖ · ‖τ norm
respectively by ‖ · ‖op′m and ‖ · ‖HSm for any m.

The arguments in [Azzali et al. 2015, Section 4] are elementary, so we shall only
recall some key steps.

First, one splits the domain of integration 6n
=
⋃

I 6={0,...,n}6
n
r(t),I , where

6n
r(t),I := {(r0, . . . , rn) : ri ≤ r(t), for all i ∈ I, r j ≥ r(t), for all j /∈ I }.

Define

(21) K (t, n, I, c0, . . . , cn; a1, . . . an)

:=

∫
6n

r(t),I

(t1/2 D0)
c0e−r0t∆

n∏
i=1

(
2

ai
t (t

1/2 D0)
ci e−ri t∆

)
d6n,

for ci = 0, 1, 2, a j = 1, 2. Then one has

e−ð(t)
2
= eD(t)2

=

∑
K (t, n, I, c0, . . . , cn; a1, . . . , an),

by grouping terms involving D0 together.
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We shall consider the kernels K (t, n, I, c0, . . . , cn; a1, · · · , an)(x, y, z) of the
terms in the summation above. Consider the special case when ci = 0, 1. One has
the analogue of [Azzali et al. 2015, Proposition 4.6]:

Lemma 4.2. There exists ε > 0 such that as t→∞,

K (t, n, I, c0, . . . , cn,a1, . . . , an)(x, y, z)

=

{(Π0�
a1Π0···Π0

n!

)
(x, y, z)+ O(t−ε) if I =∅, all ci = 0

O(t−ε) otherwise

in the ‖ · ‖HSm-norm.

Proof. We first consider the case I =∅. Suppose furthermore cq = 1 for some q.
By Corollary 2.18, The ‖ · ‖HSm-norm of the integrand on the right-hand side of
(21) is bounded by∥∥(t1/2 D0)

c0e−r0t1
∥∥

op′m ···
∥∥�aq

t
∥∥

op′m

∥∥(t1/2 D0)e−rq t1
∥∥

HSm ···
∥∥(t1/2 D0)

cn e−rn t1
∥∥

op′m

≤ C ′mr−c0/2
0 ···r−cq/2

q (rq t)−γ ···r−cn/2
n

≤ C ′mr(t)−n/2−γ t−γ.

Integrating, we have the estimate

‖K (t, n, c0, . . . , cn; a1, . . . , an)(x, y, z)‖HSm ≤ C ′m t−γ+γ
′(n/2+γ )

∫
d6n,

which is O(t−ε) with ε = γ (1− (dim B+ 2γ )/(dim B+ 2+ 2γ )).
Next, suppose I = ∅ and ci = 0 for all i . Write e−r0t1−50 +50 and split the

integrand

(e−r0t1�
a1
t e−r1t1

· · · e−rn t1)(x, y, z)

into 2n+1 terms. If any term contains a e−ri t1−50 factor, similar arguments as
above shows that it is O(t−γ ). Hence the only term that does not converge to 0 is

(Π0�
a1Π0 · · ·Π0)(x, y, z).

Since the volume of 6n
r(t),I converges to 1

n! as t→∞, the claim follows.
We are left to consider the case when I is nonempty. Write I = {i1, . . . , is},
{0, . . . , n}\ I =: {k1, . . . , ks′} 6=∅. For t sufficiently large I 6= {0, . . . , n}. Suppose
cq = 1 for some q /∈ I. Then we take ‖ · ‖HSm-norm for (t1/2 D0)e−rq t1 term, and
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estimate

‖K (t,n,c0,...,cn;a1,...,an)(x,y,z)‖HSm

≤

∫ r(t)

0
···

∫ r(t)

0

(∫
{(rk1 ,...,rk′s

):(r0,...,rn)∈6
n
r(t),I }

C ′mr−c0/2
0 ···r−cq/2

q (rq t)−γ ···r−cn/2
n

d(rk1 ···rks′
)

)
dri1 ···dris .

As in the I = ∅ case, the integral over {(rk1), . . . , rks′
: (r0, . . . , rn) ∈ 6

n
r(t),I } is

O(t−ε), while
∫ r(t)

0 r ci/2
i dri = O(t−γ

′(1−ci/2)). Again the claim is verified.
Finally if ci = 0 for all i ∈ I , then

‖K (t,n,c0,...,cn;a1,...,an)(x,y,z)‖HSm

≤

∫ r(t)

0
···

∫ r(t)

0

(∫
{(rk1,...,rk′s

):(r0,...,rn)∈6
n
r(t),I}

C ′′mr
−ci1/2
0 ···r−cis /2

n d(rk1···rks′
)

)
dri1···dris

= O(t−γ
′(1−ci/2)).

�

One then turns to the case for some i , ci = 2. If I and J are disjoint subsets
of {0, . . . , n} with I = {i1, . . . , ir }, and {0, . . . , n} \ (I ∪ J ) =: {k0, . . . , kq} 6= ∅,
denote

6n
r(t),I,J := {(r0, . . . , rn) ∈6

n
r(t),I : r j = r(t), whenever j ∈ J },

and define

K(t,n, I, J,c0,...,cn;a1,...,an) :=

∫ r(t)

0
···

∫ r(t)

0

∫
{(rk0 ,...rkq ):(r0,...,rn)∈6

n
r(t),I}

(t1/2D0)
c0e−r0t∆

n∏
i=1

(
2

ai
t (t

1/2 D0)
ci e−ri t∆

)∣∣
6n

r(t),I,J
dq(rk0,...,rkq)dr1 ···drr .

Using integration by parts, one gets [Azzali et al. 2015, Equation (4.17)],

(22) K (t,n,I ∪{ip},J ;...,2,...,ck0,...;...,aip ,ai p+1,...)

=



K (t,n,I,J ∪{ip};...,0,...,ck0,...;...,aip ,ai p+1,...)

−K (t,n− 1,I,J ;...,...,ck0,...;...,ai0 + ai p+1,...) q > 0,
+K (t,n,I ∪{ip},J ∪{k0};...,0,...,ck0,...;...,aip ,ai p+1,...)

+K (t,n,I ∪{ip},J ;...,0,...,ck0 + 2,...;...,aip ,ai p+1,...)

K (t,n,I,J ∪{ip};...,0,...,ck0,...;...,aip ,ai p+1,...)

−K (t,n− 1,I,J ;...,...,ck0,...;...,ai0 + ai p+1,...) q = 0.
+K (t,n,I ∪{ip},J ;...,0,...,ck0 + 2,...;...,aip ,ai p+1,...)
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We remark that the proof of [Azzali et al. 2015, Equation (4.17)] does not involve
any norm, and therefore we omit the details here.

Using equation (22) repeatedly, one eliminates all terms with ci = 2.
On the other hand one has the following straightforward generalization of

Lemma 4.2 (compare with [Azzali et al. 2015, Proposition 4.7]):

Lemma 4.3. Suppose ci = 0, 1. As t→∞,

K (t,n, I, J,c0,...cn;a1,...,an)(x,y,z)

=

{( 1
(n−|J |)!Π0�

a1Π0 ···Π0
)
(x,y,z)+ O(t−γ

′

) if I =∅,c0,...,cn = 0
O(t−γ

′

) otherwise,

for some γ ′ > 0, in the ‖ · ‖HSm-norm.

Thus the term K (t, n, I, c0, . . . cn; a1, . . . an) converges to 0 unless

ci = 0 whenever i ∈ I, ci = 2 whenever i 6∈ I.

Then one follows exactly as [Azzali et al. 2015, Section 4.5] to compute the limit,
and concludes with the following analogue of their Theorem 4.1:

Theorem 4.4. For k = 0, 1, 2 and any m ∈ N,

lim
t→∞

D(t)ke−ð(t)
2
(x, y, z)=Π0(�Π0)

ke(�Π0)
2
(x, y, z)

in the ‖ · ‖HSm-norm, where � := −1
2(∇

E[ − (∇E[)∗). Moreover, there exits ε′ > 0
such that as t→∞,∥∥(D(t)ke−ð(t)

2
−Π0(�Π0)

ke(�Π0)
2)
(x, y, z)

∥∥
HSm = O(t−ε

′

).

4B. Application: the L2-analytic torsion form. Our main application of this the-
orem is in establishing the smoothness and transgression formula of the L2-analytic
torsion form. Here, we briefly recall the definitions.

On ∧•T ∗M ⊗ E ∼= ∧•H ′⊗∧•V ′⊗ E, define N�, N to be the number operators
of ∧•H ′ ∼= π−1(∧•T∗B) and ∧•V ′ respectively.

Define

F∧(t) := (2π
√
−1)−N�/2 str9(2−1N (1+ 2D(t)2)e−ð(t)

2
).

Then under the positivity of the Novikov–Shubin invariant, we have the following
well-defined L2-analytic torsion form:

Definition 4.5 [Azzali et al. 2015].

τ :=

∫
∞

0

{
−F∧(t)+ 1

2 str9(NΠ0)

+

(
1
4 dim(Z) rk(E) str9(Π0)−

1
2 str9(NΠ0)

)
(1− 2t)e−t} dt

t
.
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In [Azzali et al. 2015], it is only shown that the form τ is continuous. Next we
will show that indeed the form τ is smooth.

Theorem 4.6. The form τ is smooth, i.e., τ ∈ 0∞(∧•T∗B).

Proof. Using [Berline et al. 1992, Proposition 9.24], the derivatives of the t-integrand
are bounded as t→ 0. It follows that its integral over [0, 1] is smooth.

We turn to studying the large time behavior. Consider str(2−1N (e−ð(t)
2
−Π0)).

Using the semigroup property, we can write e−ð(t)
2
= 2−N�/2e−ð(t/2)

2
e−ð(t/2)

2
2N�/2.

Also, since str(NΠ0(�Π0)
2 j )= str([NΠ0(�Π0),Π0(�Π0)

2 j−1
])= 0 for any j ≥ 1

one has

str(NΠ0)= str(NΠ0e(�Π0)
2
)= 2−N�/2 str(NΠ0e(�Π0)

2
Π0e(�Π0)

2
).

Therefore

str
(
2−1N

(
e−ð(t)

2
−Π0

))
=2−N�/2str

(
2−1N

(
e−ð(t/2)

2
e−ð(t/2)

2
−Π0e(�Π0)

2
Π0e(�Π0)

2))
=2−N�/2str

(
2−1Ne−ð(t/2)

2(
e−ð(t/2)

2
−Π0e(�Π0)

2))
+ 2−N�/2str

(
2−1N

(
e−ð(t/2)

2
−Π0e(�Π0)

2)
Π0e(�Π0)

2)
.

Now consider the L2(B)-norm of str9
(
2−1Ne−ð(t/2)

2(
e−ð(t/2)

2
−Π0e(�Π0)

2))
.

To shorten notations, denote G := 2−1Ne−ð(t/2)
2(

e−ð(t/2)
2
−Π0e(�Π0)

2)
. Writing G

as a convolution product, then there exists a constant C0 > 0 such that∫
B

∣∣∣∣∫
Zx

χ(x, z) str(G(x, z, z))µx(z)
∣∣∣∣2µB(x)

=

∫
B

∣∣∣∣∫
Zx

χ str
(

N
2

∫
y∈Zx

e−ð(t/2)
2
(x, z,y)

(
e−ð(t/2)

2
−Π0e(�Π0)

2)
(x, y, z)µx(y)

)
µx(z)

∣∣∣∣2µB(x)

≤C0

∫
B

(∫
Zx

χ

∫
y∈Zx

∣∣e−ð(t/2)2∣∣(x, z,y)∣∣e−ð(t/2)2−Π0e(�Π0)
2∣∣(x, y, z)µx(y)µx(z)

)2

µB(x)

≤ C0
∥∥e−ð(t/2)

2∥∥2
HS 0

∥∥e−ð(t/2)
2
−Π0e(�Π0)

2∥∥2
HS 0,

where we used the Cauchy–Schwarz inequality three times. Since ‖e−ð(t/2)
2
‖HS 0 is

bounded for t large (by the triangle inequality), the expression above is O(t−γ
′

).
We turn to estimating its derivatives. For any vector field X on B,

∇
TB
X str9(G)=

∫
(LX Hχ(x, z)) str(G(x, z, z))µx(z)

+

∫
χ(x, z)

(
L∇

π−1TB

X H str(G(x, z, z))
)
µx(z)

+

∫
χ(x, z) str(G(x, z, z))(LX Hµx(z)).
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Differentiating under the integral sign is valid because we knew a priori that the inte-
grands are all L1. Since LX Hµx(z) equals µx(z) multiplied by some bounded func-
tions, it follows that the last term

∫
χ(x, z) str(G(x, z, z))(LX Hµx(z)) is O(t−γ

′

).
For the first term, we write LX Hχ(x, z)=

∑
g∈G(g

∗χ)(x, z)(LX Hχ)(x, z). The
sum is finite because LX Hχ is compactly supported. By G-invariance,∫

(g∗χ)(x, z) str(G(x, z, z))µx(z)=
∫
χ(x, z) str(G(x, z, z))µx(z).

Since (LX Hχ)(x, z) is bounded, it follows that
∫
(LX Hχ)(x, z) str(G(x, z, z))µx(z)

is also O(t−γ
′

).
As for the second term, we differentiate under the integral sign, then use the

Leibniz rule to get that there exists a constant C1 > 0 such that

∣∣L∇π−1TB

X H str(G(x, z, z))
∣∣

≤ C1

(∫
Zx

∣∣L∇∧•H ′⊗∧•V ′⊗Ê

X H e−ð(t/2)
2
(x, z, y)

∣∣∣∣e−ð(t/2)2−Π0e(�Π0)
2
(x, y, z)

∣∣µx(y)

+

∫
Zx

∣∣e−ð(t/2)2(x, z, y)
∣∣∣∣L∇∧•H ′⊗∧•V ′⊗Ê

X H (e−ð(t/2)
2
−Π0e(�Π0)

2
)(x, y, z)

∣∣µx(y)

+

∫
Zx

∣∣e−ð(t/2)2(x, z, y)
∣∣∣∣e−ð(t/2)2−Π0e(�Π0)

2
(x, y, z)

∣∣ sup |LX Hµ|µx(y)
)
,

and

∫
B

∣∣∣∣∫
Zx

χ(x, z)
(
L∇

π−1TB

X H str(G(x, z, z))
)
µx(z)

∣∣∣∣2µB(x)

≤ C1
(
‖e−ð(t/2)

2
‖

2
HS 1‖e

−ð(t/2)2
−Π0e(�Π0)

2
‖

2
HS 0+‖e

−ð(t/2)2
‖

2
HS 0‖e

−ð(t/2)2

−Π0e(�Π0)
2
‖

2
HS 1+ sup |LX Hµ|‖e−ð(t/2)

2
‖

2
HS 1‖e

−ð(t/2)2
−Π0e(�Π0)

2
‖

2
HS 0

)
= O(t−γ

′

).

Clearly the above arguments can be repeated and one concludes that all Sobolev
norms of str9(G) are O(t−γ

′

).
By exactly the same arguments, we have as t→∞,

str9
(
2−1N (e−ð(t/2)

2
−Π0e(�Π0)

2
)Π0e(�Π0)

2)
= O(t−γ

′

),

in all Sobolev norms.
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As for str9(2−1N (D(t)2e−ð(t)
2
)), one has D(t)2= 2(2−N�/2 D

( t
2

)22N�/2). Thus

str9
( 1

2 N
(
D(t)2e−ð(t)

2))
= 2−N�/2 str9

(
N
(
D
( 1

2 t
)2e−ð(t/2)

2
e−ð(t/2)

2
−Π0(�Π0)

2e(�Π0)
2
e(�Π0)

2))
= 2−N�/2 str9

(
N
(
D
( 1

2 t
)2e−ð(t/2)

2
−Π0(�Π0)

2e(�Π0)
2)

e−ð(t/2)
2)

− 2−N�/2 str9
(
NΠ0(�Π0)

2e(�Π0)
2
(e−ð(t/2)

2
− e(�Π0)

2
)
)
,

which is also O(t−γ
′

) as t→∞ by similar arguments.
By the Sobolev embedding theorem (for the compact manifold B), it follows that

−F∧(t)+ 1
2 str9(NΠ0)+

(1
4 dim(Z) rk(E) str9(Π0)−

1
2 str9(NΠ0)

)
(1− 2t)e−t

and all its derivatives are O(t−γ
′

) uniformly.
Finally, since all derivatives of the t-integrand in Definition 4.5 are L1, derivatives

of τ exist and equal differentiations under the t-integration sign. Hence we conclude
that the torsion τ is smooth. �

Remark 4.7. If Z is L2-acyclic and of determinant class (see [Azzali et al. 2015,
Def. 6.3]), the analogue of Remark 3.6 reads∫

∞

0
‖e−t∆

‖
2
HS 0

dt
t
=

∫
∞

0
‖e−t∆

‖τ
dt
t
<∞

(note that Π0= 0 by hypothesis). Unlike having positive Novikov–Shubin invariant,
the heat operator is not of determinant class in ‖ · ‖HS 0.

Take a power series f (x)=
∑

a j x j. For clarity, let h be the metric on ∧•V ⊗ E
and denote

f
(
∇
∧
•V ′⊗E,h

)
:= str

(∑
j

a j
( 1

2

(
∇
∧
•V ′⊗E

−(∇∧
•V ′⊗E)∗

)) j
)
∈0∞(∧•T ∗M),

f
(
∇
∧
•V ′⊗E,h

)
H•(Z,E) := str9

(∑
j

a j
( 1

2Π0
(
∇
∧
•V ′[⊗E[−(∇∧

•V ′[⊗E[)∗
)
Π0
) j
)
∈0∞(∧•T∗B).

Note that the summations are only up to dim M.
Let TZ be the vertical tangent bundle of the fiber bundle M → B and recall

that we have chosen a splitting of TM and defined a Riemannian metric on TM.
Let PTZ denote the projection from TM to TZ. Let ∇TM be the corresponding
Levi-Civita connection on TM and define ∇TZ

= PTZ
∇

TM PTZ, a connection on
TZ. The restriction of ∇TZ to a fiber coincides with the Levi-Civita connection of
the fiber. Let RTZ be the curvature of ∇TZ.
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For N even, let Pf : so(N )→ R denote the Pfaffian and put

(23) e
(
TZ,∇TZ )

:=

{
Pf
[ RTZ

2π

]
if dim(Z) is even,

0 if dim(Z) is odd.

A classical argument [Bismut and Lott 1995; Ma and Zhang 2008; Azzali et al.
2015] then gives:

Corollary 4.8. If dim Z = 2n is even one has the transgression formula

dτ(x)=
∫

Zx

χ(x, z)e(TZ,∇TZ ) f
(
∇
∧
•V ′⊗E)

− f
(
∇
∧
•V ′⊗E)

H•(Z,E),

with f (x)= xex2
.

Now let hl be a family of G-invariant metrics on ∧•V ⊗ E , l ∈ [0, 1]. Define

f̃
(
∇
∧
•V ′⊗E , hl

)
:=

∫ 1

0
(2π
√
−1)N�/2 str

(
(hl)
−1 dhl

dl
f ′
(
∇
∧
•V ′⊗E , hl

))
dl,

and similarly for f̃
(
∇
∧
•V ′⊗E, hl

)
H•(Z,E). Note that f ′

(
∇
∧
•V ′⊗E, hl

)
uses the adjoint

connection with respect to hl .
Let ê

(
TZ,∇TZ,0,∇TZ,1

)
∈ QM/QM,0 (see [Bismut and Lott 1995]) be the sec-

ondary class associated to the Euler class. Its representatives are forms of degree
dim(Z)− 1 such that

(24) dê
(
TZ,∇TZ,0,∇TZ,1)

= e
(
TZ,∇TZ,1)

− e
(
TZ,∇TZ,0).

If dim(Z) is odd, we take ê
(
TZ,∇TZ,0,∇TZ,1

)
to be zero.

One has an anomaly formula [Bismut and Lott 1995, Theorem 3.24].

Lemma 4.9. Modulo exact forms

(25) τ1− τ0 =

∫
Zx

χ(x, z)ê(TZ,∇TZ,0,∇TZ,1) f
(
∇
∧
•V ′⊗E, h0

)
+

∫
Zx

χ(x, z)e(TZ,∇TZ,1) f̃
(
∇
∧
•V ′⊗E, hl

)
− f̃

(
∇
∧
•V ′[⊗E[, hl

)
H•(Z,E).

In particular, the degree 0 part of equation (25) is the anomaly formula for the L2-
Ray–Singer analytic torsion, which is a special case of [Zhang 2005, Theorem 3.4].

Remark 4.10. Let Z0→ M0→ B be a fiber bundle with compact fiber Z0, Z→
M→ B be the normal covering of the fiber bundle Z0→ M0→ B. Then one can
define the Bismut–Lott and L2-analytic torsion form τM0→B , τM0→B ∈0

∞(∧•T∗B),
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and one has the respective transgression formulas

dτM0→B =

∫
π−1

0 (x)
e(TZ0,∇

TZ0) f
(
∇
∧
•V ′0⊗E0

)
− f

(
∇
∧
•V ′0⊗E0

)
H•(Z0,E0)

,

dτM→B =

∫
Zx

χ(x, z)e(TZ,∇TZ ) f
(
∇
∧
•V ′⊗E)

− f
(
∇
∧
•V ′⊗E)

H•(Z,E).

Suppose further that the de Rham cohomologies are trivial:

H •(Z0, E |Z0)= H •

L2(Z, E |Z )= {0}.

Then d(τM→B − τM0→B) = 0. Hence τM→B − τM0→B defines some class in the
de Rham cohomology of B. We also remark that this form was also mentioned in
[Azzali et al. 2015, Remark 7.5], as a weakly closed form.
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