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THICK SUBCATEGORIES OVER ISOLATED SINGULARITIES

RYO TAKAHASHI

We study classifying thick subcategories of the category of finitely generated
modules and its bounded derived category for a local ring with an isolated
singularity.

1. Introduction

Let R be a commutative noetherian local ring. We denote by mod R the category
of finitely generated R-modules, and by Db(R) the bounded derived category of
mod R.

First, we consider classifying thick subcategories of the abelian category mod R.
In general, thick subcategories are much more than Serre subcategories; even when
R is a hypersurface, the cardinality of thick subcategories of mod R containing R
is equal to that of specialization-closed subsets of the singular locus [Takahashi
2010; 2013b], while the only Serre subcategory of mod R containing R is the whole
category mod R.

We prove the following structure theorem of thick closures:

Theorem 1.1. Let R be a local ring with residue field k, and suppose that R has an
isolated singularity. For each nonzero finitely generated R-module M one has

thickmod R{k,M} = thickmod R{R/p | p ∈ Supp M}

of thick closures, provided that one of the following three conditions is satisfied.

(i) M is locally free on the punctured spectrum of R.

(ii) R has (Krull) dimension at most two.

(iii) R has prime characteristic and M is (not necessarily maximal) Cohen–
Macaulay.

As a byproduct of the above theorem and its proof, we obtain the following result.
Denote by Nesc(R) the set of nonempty specialization-closed subsets of Spec R.
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Theorem 1.2. (1) Let R be a local ring with residue field k. Suppose that R has
an isolated singularity and dimension at most two. Then taking the supports
gives a one-to-one correspondence between the set of thick subcategories of
mod R containing k and Nesc(R). In particular, all the thick subcategories of
mod R containing k are Serre.

(2) Let R be a regular local ring of positive characteristic. Then the thick closure
in mod R of each nonzero R-module of finite length consists of all R-modules
of finite length.

Next, we consider classifying thick subcategories of the triangulated category
Db(R). Stevenson [2014] completely classified the thick subcategories of Db(R) in
the case where R is a complete intersection. Thus, our next goal is to classify the
thick subcategories of Db(R) for a non-complete-intersection local ring R. However,
this problem itself turns out to be quite hard, and it would be a reasonable approach
to consider classifying the thick subcategories satisfying a certain condition which
all the thick subcategories satisfy over complete intersections. The standard and
costandard conditions are such ones; a thick subcategory of Db(R) is called standard
(resp. costandard) if it contains a nonzero object of finite projective (resp. injective)
dimension. Dwyer, Greenlees and Iyengar [Dwyer et al. 2006] showed that if R is
a complete intersection, then every nonzero thick subcategory of Db(R) is standard
and costandard. We show the following classification theorem of standard and
costandard thick subcategories:

Theorem 1.3. Let R be a singular Cohen–Macaulay local ring with an isolated
singularity. Assume that R is complete and has infinite residue field.

(1) If R is a hypersurface, then there is a one-to-one correspondence between
the set of nonzero thick subcategories of Db(R) and the disjoint union of two
copies of Nesc(R).

(2) If R has minimal multiplicity, then there is a one-to-one correspondence
between the set of standard thick subcategories of Db(R) and the disjoint
union of two copies of Nesc(R).

(3) If either R is non-Gorenstein and almost Gorenstein or R is of finite CM-
representation type, then taking the supports gives a one-to-one correspon-
dence between the set of standard and costandard thick subcategories of Db(R)
and Nesc(R).

In fact, the bijections in the first and second assertions are also explicitly described.
The first assertion can also be deduced from [Stevenson 2014].

This paper is organized as follows. Section 2 is for preliminaries. The proof of
Theorem 1.1 is divided into Sections 3, 4 and 5. In Section 6 we classify the thick
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subcategories of Db(R) containing k. Applications of this, including Theorem 1.3,
are given in Sections 7, 8 and 9.

2. Fundamental definitions

Throughout this paper, let R be a commutative noetherian ring. We assume that all
modules are finitely generated, and that all subcategories are nonempty, full and
closed under isomorphism. Denote by mod R the category of (finitely generated)
R-modules, by Cb(R) the category of bounded complexes of (finitely generated)
R-modules and by Db(R) the bounded derived category of mod R. Note that mod R
and Cb(R) are abelian, while Db(R) is triangulated.

Definition 2.1. (1) A subcategory X of mod R is called Serre if it is closed under
submodules, quotient modules and extensions.

(2) A subcategory X of mod R (resp. Cb(R), Db(R)) is called thick if it is closed
under direct summands and satisfies the 2-out-of-3 property for short exact
sequences of modules (resp. short exact sequences of complexes and closed
under shifts, exact triangles).

(3) A subset S of Spec R is called specialization-closed if S contains V(p) for all
p ∈ S. Note that this is equivalent to saying that S is a union of closed subsets
of Spec R.

(4) (a) For each M ∈mod R we denote by SuppR M the set of prime ideals p of
R with Mp 6

∼= 0 in mod Rp, and call this the support of M in mod R. This
is a closed subset of Spec R.

(b) The support of a subcategory X of mod R is defined by SuppR X =⋃
X∈X SuppR X. This is a specialization-closed subset of Spec R.

(c) For a subset S of Spec R we denote by Supp−1
mod R S the subcategory of

mod R consisting of all modules whose supports are contained in S. This
is a Serre subcategory of mod R.

(d) The support of an object X ∈ Db(R), denoted by SuppR X, is defined as
the support of its homology H(X). Hence this is a closed subset.

(e) The support of a subcategory X of Db(R) is defined by SuppR X =⋃
X∈X SuppR X. This is a specialization-closed subset of Spec R.

(f) For a subset S of Spec R we denote by Supp−1
Db(R) S the subcategory of

Db(R) consisting of objects whose supports are contained in S. This is a
thick subcategory of Db(R).

(5) A perfect complex is by definition (a complex quasi-isomorphic to) a bounded
complex of finitely generated projective modules. We denote by Dperf(R)
the subcategory of Db(R) consisting of perfect complexes. This is a thick



186 RYO TAKAHASHI

subcategory of Db(R), and hence a triangulated category. For each subset S of
Spec R we set Supp−1

Dperf (R) S = (Supp−1
Db(R) S)∩Dperf(R).

(6) Let (R,m) be a local ring, and let M be an R-module. Choose a minimal free
resolution F = (· · ·→ Fn

∂n
−→ Fn−1→· · ·→ F1

∂1
−→ F0→ 0) of M. We define

the n-th syzygy �n
R M and the transpose TrR M of M by �n

R M = Im(∂n) and
TrR M = Cok(∂∗1 ), where we set (−)∗ = HomR(−, R). One has �n

R M ⊆
mFn−1 and M∗ ∼=�2

R TrR M ⊕ R⊕t for some t ≥ 0.

Since Cb(R) is abelian, we can define a complex over Cb(R). More precisely,
a complex of objects of Cb(R) is a sequence X = (· · ·

di+1
−−→ X i

di
−→ X i−1

di−1
−−→ · · · )

of morphisms di : X i → X i−1 in Cb(R) with di di+1 = 0. We introduce a Koszul
complex on a complex of R-modules.

Definition 2.2. Let X be an object of Cb(R). Let x = x1,...,xn be a sequence of
elements of R, and let K =K(x,R)= (0→Kn

∂n
−→Kn−1→···→K1

∂1
−→K0→0) be

the Koszul complex of x on R. We define the Koszul complex K(x, X) of x on X by

K(x,X)=(0→Kn⊗R X
∂n⊗R X
−−−−→Kn−1⊗R X→···→K1⊗R X

∂1⊗R X
−−−−→K0⊗R X→0),

where each ∂i⊗R X is a usual chain map, that is, a morphism in Cb(R). The Koszul
complex K(x, X) is a complex of objects of Cb(R).

Let C be one of the categories mod R, Cb(R) and Db(R). For a subcategory M
of C, the thick closure of M in C, denoted by thickC M, is by definition the smallest
thick subcategory of C containing M. The proof of the following lemma is standard
and omitted.

Lemma 2.3. (1) Let C be one of the categories mod R, Cb(R) and Db(R). Let X
be a thick subcategory of C. Let 0= M0 ⊆ M1 ⊆ ··· ⊆ Mn = M be a filtration
in mod R. If Mi/Mi−1 is in X for each 1 ≤ i ≤ n, then so is M. In particular,
M is in thickC{R/p | p ∈ SuppR M}.

(2) Let X be a thick subcategory of mod R, and X=(0→ Xn→···→ X1→ X0→0)
be a complex of R-modules in X . If Hi (X) ∈ X for all 1 ≤ i ≤ n, then
H0(X) ∈ X .

(3) Let X be a thick subcategory of Db(R). Let C ∈ Db(R). If H(C) is in X , then
so is C.

(4) Let X = (0→ X s
→ X s+1

→···→ X t
→ 0) be a complex of R-modules. Then

X belongs to thickCb(R){X s,X s+1,...,X t
}.

(5) Let X be a thick subcategory of Cb(R). Let X = (0→ Xn→ ··· → X0→ 0)
be a complex of objects of Cb(R) with X0,...,Xn ∈ X . If Hi (X) ∈ X for all
1≤ i ≤ n, then H0(X) ∈ X .
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3. Modules locally free on the punctured spectrum

Let R be a local ring with residue field k. In this section, we study the structure
of the thick closure of k and M in mod R when M is locally free on the punctured
spectrum of R.

Lemma 3.1. Let p be a prime ideal of R.

(1) Suppose that Rp is a regular local ring of dimension n. Then for each 0≤ i ≤ n
there is an ideal J = (x1, . . . , xi ) ⊆ p with ht J = i such that Rp/JRp is
a regular local ring of dimension n − i . In particular, there is an ideal
I = (x1, . . . , xn) of height n with IRp = pRp.

(2) Let I be an ideal of R with IRp = pRp. Then there exists an exact sequence
0 → R/I → R/p ⊕ R/q → R/J → 0 of R-modules such that J strictly
contains p.

Proof. (1) We use induction on n. First of all, note that the assertion evidently holds
for i = 0. When n = 0, we have i = 0, and we are done. Let n ≥ 1. We may assume
1 ≤ i ≤ n, so 0 ≤ i − 1 ≤ n − 1. The induction hypothesis implies that there is
an ideal K = (x1, . . . , xi−1)⊆ p with ht K = i − 1 such that Rp/KRp is a regular
local ring of dimension n− i + 1. Set R = R/K and p= p/K. The local ring Rp

is regular and ht p= dim Rp = n− i + 1> 0. Nakayama’s lemma shows that the
symbolic power p(2) = p2 Rp∩ Rp is strictly contained in p. By prime avoidance we
find an element xi ∈ p that is not contained in the union of ideals in Min R ∪ {p(2)}.
It is easy to see that the ideal J := K + (xi ) has height i and Rp/JRp = Rp/xi Rp

is a regular local ring of dimension n− i .
(2) Since p is a minimal prime of I and p= IRp∩ R, we see that p is a p-primary

component of I. Hence we can write I = p∩ q for some ideal q of R that is not
contained in p (when I is itself p-primary, we can take q= R). There is an exact se-
quence 0→ R/I→ R/p⊕R/q→ R/J→0, where J :=p+q strictly contains p. �

The following result plays a key role in the proof of the main result of this
section:

Lemma 3.2. Suppose that R is locally Cohen–Macaulay on the punctured spectrum.
Let x = x1, . . . , xn be a sequence of elements of R generating an ideal of height n.
Let M be an R-module locally free on the punctured spectrum of R. Then for each
i > 0 the i-th Koszul homology Hi (x,M) has finite length as an R-module.

Proof. Pick any nonmaximal prime ideal p of R. We want to show that Hi (x,M)p
vanishes for all i > 0. This Rp-module is isomorphic to Hi (x,Mp), and Mp is a free
Rp-module. Hence it suffices to show that Hi (x, Rp)= 0 for all i > 0. This holds
true if p does not contain x, since x Hi (x, Rp) = 0 for all i ∈ Z. Let us consider
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the case where p contains x. We then have

n ≥ ht(x Rp)= inf{ht Q | Q ∈ V(x Rp)} = inf{ht q | q ∈ V(x R), q⊆ p}

≥ inf{ht q | q ∈ V(x R)} = ht(x R)= n,

where the first inequality follows from Krull’s height theorem. Hence the ideal x Rp

generated by n elements has height n. Since Rp is a Cohen–Macaulay local ring by
assumption, x is an Rp-sequence. Therefore Hi (x, Rp)= 0 for all i > 0. �

Recall that a local ring R is said to have an isolated singularity if for every
nonmaximal prime ideal p of R the local ring Rp is regular. The following is the
main result of this section.

Theorem 3.3. Let (R,m, k) be a local ring with an isolated singularity. Let M be
a nonzero R-module which is locally free on the punctured spectrum of R. Then

thickmod R{k,M} = thickmod R{R/p | p ∈ SuppR M}.

Proof. As M is nonzero, the maximal ideal m is in the support of M. Lemma 2.3(1)
implies that the inclusion (⊆) holds. We show the opposite inclusion (⊇). Set
X = thick{k,M}. The proof will be completed once we prove that R/I ∈ X for all
ideals I of R with V(I ) ⊆ Supp M. Suppose that this does not hold; we will be
done if we derive a contradiction. The set of ideals

{I ⊆ R | R/I /∈ X , V(I )⊆ Supp M}

is nonempty, and this has a maximal element P with respect to the inclusion relation,
as R is noetherian. We establish a claim.

Claim. One has m 6= P ∈ Supp M. Every R-module L with Supp L ⊆V(P)−{P}
is in X .

Proof of Claim. Since P is in the above set of ideals, the module R/P is not in X and
V(P) is contained in Supp M. As k is in X , we have P 6=m. It remains to show that
P is a prime ideal. Take a filtration 0= N0 ( N1 ( · · ·( Nn = R/P such that each
Ni/Ni−1 is isomorphic to R/pi for some prime ideal pi in SuppR(R/P)= V(P).
Assume that P is not a prime ideal. Then each pi strictly contains P, and the
maximality of P implies R/pi ∈ X for all 1 ≤ i ≤ n. By Lemma 2.3(1) we have
R/P ∈ X . This contradiction shows that P is a prime ideal of R.

Take a filtration 0 = L0 ( L1 ( · · · ( L` = L such that for each i one has
L i/L i−1∼= R/pi with pi ∈ Supp L ⊆V(P)−{P}. The pi strictly contain P, and the
maximality of P implies R/pi ∈X , which forces L to be in X by Lemma 2.3(1). �

Since P is a nonmaximal prime ideal by the Claim and R is an isolated singularity,
the localization RP is a regular local ring. By Lemma 3.1 there is an exact sequence

0→ R/(x)→ R/P ⊕ R/Q→ R/J → 0,
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where x = x1, . . . , xn is a sequence of elements of R with ht(x)= n, and J strictly
contains P. Applying the functor −⊗R M to this gives rise to an exact sequence

TorR
1 (R/J,M)

f
−→ M/xM→ M/P M ⊕M/QM→ M/JM→ 0.

The supports of M/JM and TorR
1 (R/J,M) are contained in V(J ), and so is the

image C of the map f . As V(J ) is contained in V(P)− {P}, the Claim implies
that M/JM and C are in X .

Now, assume that M is locally free on the punctured spectrum. Then by
Lemma 3.2 for each i > 0 the i-th Koszul homology Hi (x,M) has finite length,
and it is in X . Each component of the Koszul complex K(x,M) is a direct sum of
copies of M, which is in X . Lemma 2.3(2) implies M/xM = H0(x,M) ∈ X . The
induced exact sequence

0→ C→ M/xM→ M/P M ⊕M/QM→ M/JM→ 0

shows that M/P M is also in X . As M/P M is a module over the domain R/P, it
has a rank, say r . There is an exact sequence

0→ (R/P)⊕r
→ M/P M→ E→ 0

of R/P-modules with dim E < dim R/P. Since P is in the support of M by the
Claim, Nakayama’s lemma implies that it is also in the support of M/P M, and
hence r > 0. It is easy to see that SuppR E is contained in V(P)− {P}, and the
Claim implies E ∈ X . As M/P M ∈ X and r > 0, the module R/P is in X . This
contradiction completes the proof of the theorem. �

Remark 3.4. We should remark that the equality in Theorem 3.3 is no longer true
if we remove k from the left-hand side. The equality

thickmod R M = thickmod R{R/p | p ∈ SuppR M}

holds for M = R if and only if R is regular. This is one of the reasons why we
consider thick subcategories containing k. See also Remark 6.4 stated later.

Applying Theorem 3.3 to M = R and using Lemma 2.3(1), we obtain the
following. This is a special case of [Schoutens 2003, Theorem VI.8] and [Krause
and Stevenson 2013, Proposition 9], and includes [Takahashi 2010, Corollary 2.7].

Corollary 3.5. If (R,m, k) is an isolated singularity, then

thickmod R{k, R} =mod R.

4. Rings of dimension at most two

In this section, we deal with the same problem as in the previous section for local
rings with dimension at most 2.
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Lemma 4.1. Let (R,m) be local. Let M, N be R-modules, and p a prime ideal.
Assume Mp

∼= Np and Mq = 0= Nq for all q ∈ Spec R−{p,m}. Then

thickmod R{k,M} = thickmod R{k, N }.

Proof. Since Mp is isomorphic to Np, there is an exact sequence

0→ K → M→ N → C→ 0

such that Kp = 0= Cp. We have Kq = 0= Cq for all q ∈ Spec R−{p,m}, so K ,C
have finite length. Hence they are in both thickmod R{k,M} and thickmod R{k, N },
and it is seen that N ∈ thickmod R{k,M} and M ∈ thickmod R{k, N }. Thus the
assertion follows. �

The next lemma is well known and also easy to prove, so we omit the proof.

Lemma 4.2. (1) Let x ∈ R be a nonzerodivisor, and let n > 0 be an integer. Then
there exists a short exact sequence

0→ R/(xn)→ R/(xn+1)⊕ R/(xn−1)→ R/(xn)→ 0,

where x0
:= 1

(2) Let S be a multiplicatively closed subset of R. Let σ : 0→MS→ X→ NS→ 0
be an exact sequence of RS-modules. Then there exists an exact sequence
τ : 0→ M→ Y → N → 0 of R-modules such that X ∼= YS .

For a module M over a local ring R we denote by Assh M the set of prime ideals
p in the support of M with dim R/p= dim M. The following is a similar type of
result to Theorem 3.3.

Theorem 4.3. Let (R,m, k) be a local ring with an isolated singularity. Suppose
that R has Krull dimension at most 2. Then for any nonzero R-module M one has
the equality

thickmod R{k,M} = thickmod R{R/p | p ∈ SuppR M}.

Proof. The inclusion (⊆) follows from Lemma 2.3(1) and the fact that m supports M,
so we prove the opposite inclusion (⊇). We may assume that R,M have positive
(Krull) dimension.

(1) If dim R = 1, then the assumption that R has an isolated singularity forces M
to be locally free on the punctured spectrum, and Theorem 3.3 shows the assertion.

(2) If dim R = 2, then M has dimension either 1 or 2. Taking the m-torsion
submodule of M, we see that there is an exact sequence 0→ L→ M→ N → 0
such that L has finite length and N is a nonzero module of positive depth. We have
Supp M = Supp N and thick{k,M} = thick{k, N }. Replacing M with N, we may
assume that M has positive depth.
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(a) Suppose dim M = 1. Then M is a 1-dimensional Cohen–Macaulay module,
and it follows from [Bruns and Herzog 1998, Theorem 2.1.2(a)] that one has
Ass M =Min M = Assh M = {p1, . . . , pn}, where each prime ideal pi is such that
dim R/pi = 1.

Let 0 = M1 ∩ · · · ∩ Mn be an irredundant primary decomposition of the zero
submodule 0 of M such that Mi is pi -primary for 1 ≤ i ≤ n. There are exact
sequences

0→ M/Ni−1→ M/Mi ⊕M/Ni → M/Mi + Ni → 0 (1≤ i ≤ n− 1),

where Ni := Mi+1 ∩ · · · ∩ Mn . Each M/Mi + Ni has finite length, and we
get thick{k,M} = thick{k,M/M1, . . . ,M/Mn}. For each 1 ≤ i ≤ n we have
Ass M/Mi = {pi }, which especially says that M/Mi is a 1-dimensional Cohen–
Macaulay R-module whose support contains pi .

Fix a prime ideal p in the support of M. We want to show that R/p is in
thick{k,M}. For this, we may assume p 6= m, and then we have p = p` for some
1≤ `≤n. Replacing M with M/M`, we may assume Ass M ={p} and dim R/p= 1.
Then Mp is a nonzero Rp-module of finite length and Supp M = {p,m}. As Rp is
either a field or a discrete valuation ring, the structure theorem of finitely generated
modules over principal ideal domains implies that

Mp
∼= (Rp/p

a1 Rp)
⊕b1 ⊕ · · ·⊕ (Rp/p

at Rp)
⊕bt

for some t > 0, a1 > ···> at > 0 and b1,...,bt > 0. Setting

E = (R/pa1)⊕b1 ⊕ · · ·⊕ (R/pat )⊕bt,

we have Mp
∼=Ep and SuppE={p,m}. Lemma 4.1 implies thick{k,M}= thick{k,E}.

We claim R/pn
∈ thickmod R{k, R/pn+1

} for all n > 0. In fact, there is an exact
sequence of Rp-modules

0→ Rp/p
n+1 Rp→ (Rp/p

n Rp)⊕ (Rp/p
n+2 Rp)→ Rp/p

n+1 Rp→ 0;

this is trivial when Rp is a field, and follows from Lemma 4.2(1) when Rp is a
discrete valuation ring. Put V = R/pn

⊕ R/pn+2. Lemma 4.2(2) yields an exact
sequence 0→ R/pn+1

→ W → R/pn+1
→ 0 such that Vp

∼= Wp. As Supp V =
Supp W ={p,m}, Lemma 4.1 implies thick{k, V }= thick{k,W }. The claim follows.

Using the claim repeatedly, we observe that R/p belongs to thick{k, R/pn
} for

all n > 0. Hence R/p is in thick{k, E}, and therefore it is in thick{k,M}, as desired.

(b) Suppose dim M = 2. Set (−)∗ = HomR(−, R), and let λ : M → M∗∗ be the
natural homomorphism. Extend this to the exact sequence

0→ K → M
λ
−→ M∗∗→ C→ 0.
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The module M∗∗ is a second syzygy, and we have K ∼= Ext1R(Tr M, R) and
C ∼= Ext2R(Tr M, R) by [Auslander and Bridger 1969, Proposition (2.6)]. As R is
a 2-dimensional isolated singularity, M∗∗ is locally free on the punctured spectrum,
K has dimension at most 1 and C has finite length. The image E of λ is nonzero
and locally free on the punctured spectrum. Applying Theorem 3.3 to E yields

(4.3.1) thick{k, E} = thick{R/p | p ∈ Supp E}.

The above exact sequence induces a short exact sequence σ : 0→ K→M→ E→ 0.
Hence

(4.3.2) Supp M = Supp K ∪Supp E .

Since M has positive depth, K is a Cohen–Macaulay R-module of dimension 1.
By part (a) on the previous page we get

(4.3.3) thick{k, K } = thick{R/p | p ∈ Supp K }.

As E is locally free on the punctured spectrum, the R-module Ext1R(E, K ) has
finite length, and hence the annihilator a= AnnR Ext1R(E, K ) is m-primary. Thus
one can choose a K -regular element x in a. The choice of x implies that the exact
sequence xσ splits, and we observe that there is an exact sequence

0→ M→ K ⊕ E→ K/x K → 0.

As K/x K has finite length, K and E belong to thick{k,M}. The exact sequence
σ implies that M is in thick{K , E}, and hence

(4.3.4) thick{k,M} = thick{k, K , E}.

Combining (4.3.1)–(4.3.4) implies thick{k,M} = thick{R/p | p ∈ Supp M}. �

Corollary 4.4. Let (R,m, k) be a local ring with dim R ≤ 2 and having an isolated
singularity.

(1) If X is a thick subcategory of mod R containing k, then

SuppR X = {p ∈ Spec R | R/p ∈ X }.

(2) If ∅ 6= S ⊆ Spec R is specialization-closed, then

Supp−1
mod R S = thickmod R{R/p | p ∈ S}.

Proof. (1) Let p be a prime ideal. If X is a module in X whose support contains p,
then R/p is in the thick closure of k and X by Theorem 4.3, and hence R/p is in
X . Conversely, if R/p is in X , then the support of X contains that of R/p, which
contains p. Now the assertion follows.
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(2) Let X be a module whose support is contained in S. Then the thick closure
of {R/p | p ∈ S} contains that of {k, R/p | p ∈ Supp X}, which contains X by
Theorem 4.3. The set S contains V(p) = SuppR(R/p) for each p ∈ S. Thus the
assertion is shown. �

The following is the main result of this section, whose essential part is included
in Theorem 4.3. Compare it with the similar results [Takahashi 2013a, Theorems
5.6 and 6.11] and [Takahashi 2013b, Theorem 5.1(2)].

Theorem 4.5. Let (R,m, k) be a local ring with dim R ≤ 2 and having an isolated
singularity.

(1) Every thick subcategory of mod R containing k is Serre.

(2) There is a one-to-one correspondence{
Thick subcategories of mod R

containing k

} f

1−1
//
{

Specialization-closed subsets of Spec R
containing m

}
g
oo ,

where f and g are defined by f (X )= SuppR X and g(S)= Supp−1
mod R S.

Proof. (1) Let X be a thick subcategory of mod R containing k. It suffices to show
that X = Supp−1(SuppX ), because this equality especially says that X is a Serre
subcategory. It is obvious that X is contained in Supp−1(SuppX ). Let M be an
R-module whose support is contained in that of X . Take any prime ideal p in the
support of M. Then there exists an R-module X ∈ X whose support contains p.
Theorem 4.3 implies that R/p is in the thick closure of k and X, which is contained
in X . By Lemma 2.3(1) we see that M is in X . Thus X contains Supp−1(SuppX ),
and the above equality follows.

(2) The assertion follows from (1) and Gabriel’s classification [1962] of Serre
subcategories. �

The assertion of Theorem 4.5 is no longer true for thick subcategories that do
not contain k:

Example 4.6. Let R be a nonregular local ring with residue field k. Let X be the
subcategory of mod R consisting of modules of finite projective dimension. Then
X is a thick subcategory which does not contain k. There is an exact sequence
R→ k → 0, and we have R ∈ X and k /∈ X . This means that X is not a Serre
subcategory of mod R.

5. Rings of prime characteristic and Cohen–Macaulay modules

In this section, as in the prior two sections, we study the structure of thickmod R{k,M};
we restrict ourselves to the case where R has prime characteristic and M is Cohen–
Macaulay.
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Let R be a ring of prime characteristic p, and let q = pe be a power of p. For
a sequence x = x1, . . . , xn of elements of R we set xq

= xq
1 , . . . , xq

n . For an ideal
I of R we denote by I [q] the ideal of R generated by the elements of the form aq

with a ∈ I. Note that if I is generated by a sequence x of elements of R, then I [q]

is generated by the sequence xq . Note also that for each multiplicatively closed
subset S of R one has (IRS)

[q]
= I [q]RS .

Lemma 5.1. Let (R,m, k) be a regular local ring of characteristic p > 0. Let
x = x1, . . . , xd be a regular system of parameters of R. Let q = pe be a power of p.
Let M be a nonzero R-module such that xq M = 0. Then there exists a nonzero free
R/(xq)-module N possessing a filtration 0= N0 ( N1 ( · · ·( Nt = N in mod R
with Ni/Ni−1 ∼= M for 1≤ i ≤ t .

Proof. We regard M as an R/(xq)-module. Cohen’s structure theorem implies that
the completion R̂ of R is isomorphic to k[[x1, . . . , xd ]]. As R/(xq) is artinian, it
is complete. There are isomorphisms of k-algebras

R/(xq)∼= R̂/(xq)∼= R̂/xq R̂
∼= k[[x1, . . . , xd ]]/(x

q
1 , . . . , xq

d )= k[x1, . . . , xd ]/(x
q
1 , . . . , xq

d )
∼= kG,

where kG denotes the group algebra of the finite abelian p-group G = (Z/qZ)⊕d ;
see [Iyengar 2004, (1.4)]. Hence one can identify R/(xq) with kG. The tensor
product N := M ⊗k kG is a kG-module via the diagonal action, and is projective;
see Theorem (3.2) of the same work. Since kG is a (commutative) local ring, N
is a nonzero finitely generated free kG-module. Tensoring over k the composition
series of kG with M, we have a filtration of N as in the assertion. �

Denote by fl R the subcategory of mod R consisting of R-modules of finite length.
Using the above lemma, we get a result on the structure of the thick closure of a
finite length module.

Theorem 5.2. Let R be a regular local ring of positive characteristic. Let M be a
nonzero R-module of finite length. One then has thickmod R M = fl R.

Proof. It is evident that the thick closure of M is contained in fl R. As for the
opposite inclusion relation, it is enough to show that the residue field k of R belongs
to thickmod R M. Let x = x1, . . . , xd be a regular system of parameters of R. Let
p be the characteristic of R, and let q = pe be a power of p such that xq M = 0.
Lemma 5.1 shows that there exists a nonzero free R/(xq)-module N having a
filtration 0= N0 ( N1 ( · · ·( Nt = N in mod R with Ni/Ni−1 ∼= M for 1≤ i ≤ t .
Note then that N is in the thick closure of M. We have only to show that k is in
thickmod R R/(xq).

Let us do this by induction on d = dim R. When d = 0, we have R= k= R/(xq),
and the statement trivially holds. Let d > 0, and put R = R/(xq

1 , . . . , xq
d−1). There
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are exact sequences

0→ R/xq
d R→ R/xq−1

d R⊕ R/xq+1
d R→ R/xq

d R→ 0,

0→ R/xq−1
d R→ R/xq−2

d R⊕ R/xq
d R→ R/xq−1

d R→ 0,
...

0→ R/x2
d R→ R/xd R⊕ R/x3

d R→ R/x2
d R→ 0.

by Lemma 4.2(1). It can be seen from these exact sequences that R/xd R is in
thickmod R R/xq

d R. Note R/xq
d R= R/(xq) and R/xd R= R̃/(xq

1 ,...,x
q
d−1)R̃, where

R̃ := R/(xd). The induction hypothesis implies k ∈ thickmod R̃ R̃/(xq
1 ,...,x

q
d−1)R̃,

and hence k is in thickmod R R̃/(xq
1 ,...,x

q
d−1)R̃. Consequently, we obtain k ∈

thickmod R R/(xq). �

Question 5.3. Does the assertion of Theorem 5.2 hold for any regular local ring R?

Remark 5.4. Using the Hopkins–Neeman theorem, one deduces that the derived
category version of Theorem 5.2 holds: Let R be a regular ring. (We do not need to
assume R is local or has prime characteristic.) Let Dfl(R) stand for the subcategory
of Db(R) consisting of complexes having finite length homology. Let M be a
nonzero object of Dfl(R). Then Db(R)=Dperf(R) and Supp M=Supp Dfl(R)={m},
whence by [Neeman 1992, Theorem 1.5] we have thickDb(R) M = Dfl(R).

Let R be a local ring with residue field k. Recall that an R-module M is called
Cohen–Macaulay if ExtiR(k,M)= 0 for all i < dim M (i.e., depth M = dim M or
M = 0). Taking advantage of Lemma 5.1, we have the following similar theorem
to Theorems 3.3 and 4.3:

Theorem 5.5. Let (R,m, k) be a local ring of prime characteristic p with an
isolated singularity. Let M 6= 0 be a Cohen–Macaulay R-module. Then one has the
equality

thickmod R{k,M} = thickmod R{R/p | p ∈ SuppR M}.

Proof. Lemma 2.3(1) and the fact m ∈ Supp M guarantee that the right-hand side
contains the left-hand side. Let us show the opposite inclusion relation by induction
on dim M. When dim M = 0, the module M has finite length, and we are done.
Let dim M ≥ 1. We will be done if we prove that R/I is in X := thickmod R{k,M}
for all ideals I with V(I ) ⊆ Supp M. Suppose that this does not hold, and let P
be a maximal element (with respect to the inclusion relation) among the ideals I
with V(I ) ⊆ Supp M and R/I /∈ X . Similarly to the proof of Theorem 3.3, the
ideal P is a nonmaximal prime ideal belonging to the support of M, the module
R/P is not in X , and every R-module whose support is contained in V(P)−{P}
belongs to X . Since M is Cohen–Macaulay, we have Ass M =Min M = Assh M
by [Bruns and Herzog 1998, Theorem 2.1.2(a)]. Suppose that P is not an associated
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prime of M. Then we find an M-regular element x in P. The exact sequence
0→ M

x
−→ M→ M/x M→ 0 shows that X contains thickmod R{k,M/x M}. Note

that M/x M is also a Cohen–Macaulay R-module whose support contains P. The
induction hypothesis implies that R/P is in thickmod R{k,M/x M}, and hence X
contains R/P, which is a contradiction. Therefore P is an associated prime of M.

Let N be a P-primary component of the zero submodule 0 of M. Then 0= N∩L
for some submodule L of M, which induces an exact sequence of R-modules
0→ M → M/N ⊕ M/L → M/N + L → 0. Observe that each prime ideal in
the support of M/N + L strictly contains P. Hence X contains M/N + L , and
therefore X also contains M/N.

Since RP is a regular local ring, by Lemma 3.1(1) one can choose a sequence
x = x1, . . . , xn of elements in P with ht P = n = ht(x) and P RP = x RP. Note
the equality Ass M/N = {P} implies the RP -module (M/N )P has finite length.
Applying Lemma 5.1, we see that for large enough q= pe there is a free RP/P [q]RP -
module Z of rank r > 0 possessing a filtration 0 = Z0 ( Z1 ( · · · ( Z t = Z
in mod RP with Zi/Zi−1 ∼= (M/N )P for 1 ≤ i ≤ t . Using Lemma 4.2(2), one
can inductively choose R-modules W0, . . . ,Wt such that there exists a filtration
0=W0 ( W1 ( · · ·( Wt =W in mod R with Wi/Wi−1 ∼= M/N for 1≤ i ≤ t and
WP ∼= Z ∼= (RP/P [q]RP)

⊕r . Then W is in the thick closure of M/N, and hence
in X . There is an exact sequence 0→ K → W → (R/P [q])⊕r

→ C → 0 with
K P = 0=CP. Note that Supp W = Supp M/N =V(P)= Supp(R/P [q])⊕r . Hence
the supports of K ,C are contained in V(P)− {P}, which implies X contains K
and C. Therefore the module R/P [q] is in X .

There is an exact sequence

0→ RP/xq RP → (RP/a1 RP)⊕ (RP/a2 RP)→ RP/xq RP → 0

by Lemma 4.2(1), where a1= (x
q
1 ,...,x

q
n−1,x

q−1
n )R and a2= (x

q
1 ,...,x

q
n−1,x

q+1
n )R.

Put bi = ai RP ∩ R for i = 1, 2. Since P is a minimal prime of ai , the ideal bi is the
P-primary component of ai . Note that ai RP = bi RP, and V(bi )=V(

√
bi )=V(P)

for i = 1, 2. Setting E = R/b1⊕ R/b2, we see from Lemma 4.2(2) that there is
an exact sequence 0→ R/P [q] → U → R/P [q] → 0 such that UP ∼= EP . We
have Supp E = V(b1) ∪V(b2) = V(P) = Supp U. Choosing an exact sequence
0→ K ′→U → E→ C ′→ 0 with K ′P = 0= C ′P , we see that the supports of K ′

and C ′ are contained in V(P)−{P}, whence they are in X . As U is in X , so is E ,
and so is R/b1.

Since (R/b1)P = RP/(x
q
1 , . . . , xq

n−1, xq−1
n )RP , the same argument as above

shows that R/c belongs to X with c = (xq
1 , . . . , xq

n−1, xq−2
n )RP ∩ R if q > 2.

Iterating this procedure yields that R/(x1, . . . , xn)RP ∩ R belongs to X . (Here we
use the fact that any permutation of a regular sequence on a local ring is again
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regular.) Since (x1, . . . , xn)RP ∩ R = P RP ∩ R = P, this means that R/P is in X ,
which is a contradiction. This completes the proof of the theorem. �

6. Thick subcategories of derived categories containing the residue field

From this section to the end of this paper, we deal with thick subcategories of derived
categories. In this section, we prove a classification theorem of thick subcategories
containing the residue field over an isolated singularity.

We begin with a well-known statement. In view of this, it is reasonable to think of
classifying, for a general local ring R, the thick subcategories of Db(R) containing
the residue field.

Remark 6.1. Let R be a local ring with residue field k. The following are equiva-
lent.

(1) The ring R is regular.

(2) Every nonzero thick subcategory of Db(R) contains k.

(3) For each nonzero object X of Db(R), the thick closure of X contains k.

The following lemma helps us make the derived category version of Theorem 3.3:

Lemma 6.2. Let R be an isolated singularity. Let X be a bounded complex of
R-modules. Then X is quasi-isomorphic to a complex

Y = (0→ Y s
→ Y s+1

→ ··· → Y t
→ 0)

with s ≤ t such that Y i is free for all s + 1 ≤ i ≤ t and Y s is locally free on the
punctured spectrum of R.

Proof. Take a free resolution F = (···
δt−2

−−→ F t−1 δt−1

−−→ F t
→ 0) of X. Choose an inte-

ger u such that Hi (F)=0 for all i<u, and put d=dim R. Then C :=Cok δu−d−1 is a
d-th syzygy of Cok δu−1, which is locally free on the punctured spectrum. The com-
plex X is quasi-isomorphic to the complex (0→C→ Fu−d+1

→···→ F t
→ 0). �

Now we can prove the following theorem analogous to Theorems 3.3, 4.3 and
5.5.

Theorem 6.3. Let (R,m, k) be a local ring with an isolated singularity. Let X be
a nonacyclic bounded complex of R-modules. Then one has

thickDb(R){k, X} = thickDb(R){R/p | p ∈ SuppR X}.

Proof. The inclusion (⊆) follows from Lemma 2.3(1)(3) and the fact m ∈ Supp X.
Let us show the opposite inclusion (⊇). By Lemma 6.2 we may assume that X
has the form X = (0→ X s

→ X s+1
→ ···→ X t

→ 0) such that the R-module X i

is free for all s + 1 ≤ i ≤ t and X s is locally free on the punctured spectrum
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of R. Set X = thickDb(R){k, X}. It suffices to prove R/I ∈ X for all ideals I of
R with V(I ) ⊆ Supp X. Similarly to the proof of Theorem 3.3, we show this by
contradiction. Assume that this does not hold, and choose a maximal element P of
the set of ideals I with R/I /∈ X and V(I )⊆ Supp X. We then have:

Claim. (1) One has m 6= P ∈ Supp X and R/P /∈ X .

(2) Let C be an object of Db(R). If SuppR C is contained in V(P)−{P}, then C
is in X .

Proof of Claim. (1) This is similarly shown to the Claim in the proof of Theorem 3.3.
(2) Take any p ∈ SuppR H(C) = SuppR C. Then p strictly contains P, and the

maximality of P implies R/p ∈X . By Lemma 2.3(1), H(C) is in X . Lemma 2.3(3)
shows C ∈ X . �

Since R is an isolated singularity, RP is regular. By Lemma 3.1, there exists an
exact sequence

(6.3.1) 0→ R/(x)→ R/P ⊕ R/Q→ R/I → 0,

where x = x1, . . . , xn is a sequence in R generating an ideal of height n, and I is
an ideal strictly containing P. Let

K = K(x,X)= (0→ X⊕(
n
n)→ X⊕(

n
n−1)→ ··· → X⊕(

n
1)→ X⊕(

n
0)→ 0)

be the Koszul complex of x on X, which is a complex of objects of the abelian
category Cb(R). Put Y = thickCb(R){k, X}. For each integer i the i-th homology
Hi (K ) of K is the complex (0→Hi (x,X s)→Hi (x,X s+1)→···→Hi (x,X t)→0)
of R-modules, where Hi (x, X j ) stands for the (usual) i-th Koszul homology of x
on the R-module X j. Lemma 3.2 implies that Hi (x, X j ) has finite length for each
i > 0 and s ≤ j ≤ t . By Lemma 2.3(4) we observe that Hi (K ) belongs to Y for
every i > 0, and by Lemma 2.3(5) the complex H0(K )= R/(x)⊗R X also belongs
to Y. Consequently, the complex R/(x)⊗R X, as an object of Db(R), is in X .

The short exact sequence (6.3.1) induces an exact sequence

TorR
1 (R/I, X)

f
−→ R/(x)⊗R X→ (R/P⊗R X)⊕ (R/Q⊗R X)→ R/I ⊗R X→ 0

in the abelian category Cb(R), where TorR
1 (R/I, X) stands for the induced complex

(0→ TorR
1 (R/I, X s)→ TorR

1 (R/I, X s+1)→ · · · → TorR
1 (R/I, X t)→ 0) of R-

modules. Let Z be the image of the morphism f . Note that each component
Z i of the complex Z is a homomorphic image of the R-module TorR

1 (R/I, X i ).
Hence one has Supp Z i

⊆ V(I )⊆ V(P)−{P} for each i , and therefore Supp Z =⋃
i∈Z Supp Hi (Z)⊆

⋃
i∈Z Supp Z i

⊆V(P)−{P}. It follows from the Claim that Z ,
as an object of Db(R), belongs to X . Similarly, it is seen that R/I ⊗R X ∈ X . The
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induced exact sequence

0→ Z→ R/(x)⊗R X→ (R/P ⊗R X)⊕ (R/Q⊗R X)→ R/I ⊗R X→ 0

shows that the subcategory X of Db(R) contains the complex

R/P ⊗R X = (0→ X s/P X s
→ X s+1/P X s+1

→ · · · → X t/P X t
→ 0).

Since X s/P X s is a finitely generated module over the integral domain R/P, it
has a rank, say r . There is an exact sequence 0→ (R/P)⊕r

→ X s/P X s
→C→ 0

of R/P-modules such that dim C < dim R/P. We obtain a short exact sequence
0→W → R/P ⊗R X→ C[−s] → 0 in Cb(R), where

W = (0→ (R/P)⊕r
→ X s+1/P X s+1

→ · · · → X t/P X t
→ 0).

As PC = 0= CP , the set SuppR(C[−s])= SuppR C is contained in V(P)−{P}.
The Claim yields that C[−s] is in X , and the above short exact sequence shows
that W is in X .

Note that W is a perfect complex of R/P-modules, and hence as an object of
Db(R/P) it belongs to Dperf(R/P). Since C[−s]P = 0, we have isomorphisms
WP = (R/P⊗R X)P ∼=κ(P)⊗RP X P ∼=κ(P)⊗L

RP
X P in Db(RP), where the last iso-

morphism follows from the fact that X P is a perfect complex of RP -modules. As P
is in SuppR X, the complex WP is not acyclic. This means that SuppR/P W contains
the zero ideal of R/P, and we obtain SuppR/P W = Spec R/P = SuppR/P(R/P).
By [Neeman 1992, Theorem 1.5], R/P is in thickDperf (R/P) W = thickDb(R/P) W,
and therefore it belongs to X . This contradiction completes the proof. �

Remark 6.4. Similarly to Remark 3.4, the equality in Theorem 6.3 is no longer
true if we remove k from the left-hand side; the equality

thickDb(R) X = thickDb(R){R/p | p ∈ SuppR X}

holds for X = R if and only if Dperf(R)= Db(R), if and only if R is regular. This
is one of the reasons why we consider thick subcategories containing k.

Using Theorem 6.3, we get a derived category version of Corollary 4.4:

Corollary 6.5. Let (R,m, k) be a local ring with an isolated singularity.

(1) If X is a thick subcategory of Db(R) containing k, then

SuppR X = {p ∈ Spec R | R/p ∈ X }.

(2) If S 6=∅ is a specialization-closed subset of Spec R, then

Supp−1
Db(R) S = thick{R/p | p ∈ S}.

The following is the main theorem of this section:
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Theorem 6.6. Let (R,m, k) be a local ring with an isolated singularity. The
assignments f : X 7→ SuppR X and g : S 7→ Supp−1

Db(R) S make mutually inverse
bijections

{
Thick subcategories of Db(R)

containing k

} f

1−1
// {Specialization-closed subsets of Spec R

containing m

}
g
oo

.

Proof. Let X be a thick subcategory of Db(R) containing k, and let S be a
specialization-closed subset of Spec R containing m.

(1) The set SuppX is specialization-closed. Since the residue field k is in X , the
maximal ideal m is in the support of X . Hence f is a well-defined map.

(2) The subcategory Supp−1 S is thick. The support of k is contained in {m}, which
is contained in S. Hence k is in Supp−1 S, and g is a well-defined map.

(3) It is obvious that Supp Supp−1 S is contained in S. Let p be a prime ideal
in S. We have SuppR R/p= V(p), which is contained in S as S is specialization-
closed. Hence p is in SuppR R/p and R/p is in Supp−1 S. Thus we obtain
S = Supp Supp−1 S.

(4) Clearly, the subcategory Supp−1 SuppX contains X . Let C be an object of
Db(R) whose support is contained in that of X . Take a prime ideal p ∈ Supp C.
Then p is in the support of X for some X ∈ X . Theorem 6.3 implies that R/p
belongs to the thick closure of k and X, which is contained in X . Thus R/p is in X
for all prime ideals p in the support of C. Using Theorem 6.3 again, we observe
that C belongs to X . Consequently, we obtain X = Supp−1 SuppX .

Getting the above (1)–(4) together completes the proof of the theorem. �

Remark 6.7. An anonymous referee has pointed out that Theorem 6.6 can also
be shown as follows: Let U = Spec R \ {m} be the punctured spectrum of R. The
assumption that R has an isolated singularity implies that U is a regular scheme.
On one hand, by [Thomason 1997, Theorem 3.15] the thick subcategories of
Db(coh U ) correspond to the specialization-closed subsets of U, which are the same
as the specialization-closed subsets of Spec R containing m. On the other hand,
since Db(coh U ) is equivalent to Db(R)/ thick k by [Orlov 2011, Lemma 2.2], the
thick subcategories of Db(coh U ) correspond to the thick subcategories of Db(R)
containing k.

This is a simpler proof, using techniques in algebraic geometry. Our methods
are purely ring-theoretic, and also essentially the same as those in the proof of
Theorem 3.3, for which the approach the referee mentions does not seem to work.
It is thus worth giving our methods.

Unless R has an isolated singularity, Theorem 6.6 does not necessarily hold:
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Remark 6.8. Let (R,m, k) be a local ring, and suppose that R does not have an
isolated singularity. Set X = thickDb(R){k, R}. Then X is a thick subcategory of
Db(R) containing k, but X 6= Supp−1

Db(R) S for all subsets S of Spec R.

One has a classification theorem of thick subcategories without using prime
ideals:

Corollary 6.9. If R is a local ring with an isolated singularity, one has a 1-1
correspondence

{
Thick subcategories of Db(R)

containing k

} φ

1−1
//
{

Nonzero thick subcategories
of Dperf(R)

}
,

ψ
oo

where φ,ψ are defined by φ(X )= X ∩Dperf(R) and ψ(Y)= thickDb(R)(Y ∪ {k})
for subcategories X of Db(R) and Y of Dperf(R).

Proof. Let S be a specialization-closed subset of Spec R containing m. Take a
system of generators x of m. Then Supp−1

Dperf (R) S contains the Koszul complex
K(x, R), and hence it is a nonzero thick subcategory of Db(R). Conversely, for any
nonzero thick subcategory Y of Dperf(R), the support SuppR Y contains m. Thus,
[Neeman 1992, Theorem 1.5] implies that SuppR and Supp−1

Dperf (R) make mutually
inverse bijections between the nonzero thick subcategories of Dperf(R) and the
specialization-closed subsets of Spec R containing m.

Let X be a thick subcategory of Db(R) containing k, and let Y be a nonzero thick
subcategory of Dperf(R). Combining our Theorem 6.6 with the above one-to-one
correspondence, one has only to verify the equalities

(1) Supp−1
Dperf (R) SuppX = X ∩Dperf(R),

(2) Supp−1
Db(R) SuppY = thickDb(R)(Y ∪ {k}).

We have X ∩Dperf(R)⊆ Supp−1
Dperf (R)(SuppX )⊆ Supp−1

Db(R)(SuppX )= X , where
the last equality follows from Theorem 6.6. This shows (1). On the other hand, it
holds that SuppY = Supp(Y ∪{k})= Supp(thickDb(R)(Y ∪{k})), where the second
equality follows from the fact that Y is nonzero. Applying Supp−1

Db(R) and using
Theorem 6.6, we obtain (2). �

7. Hypersurfaces and Cohen–Macaulay rings with minimal multiplicity

In this section, using the classification obtained in the previous section, we explore
thick subcategories over hypersurfaces and Cohen–Macaulay rings with minimal
multiplicity.
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Definition 7.1. (1) A local ring R is called a hypersurface if the completion of R
is isomorphic to a quotient of a regular local ring by a nonzero element.

(2) Let R be a Cohen–Macaulay local ring. Then R satisfies the inequality

(7.1.1) e(R)≥ edim R− dim R+ 1,

where e(R) and edim R denote the multiplicity of R and the embedding dimen-
sion of R, respectively. We say that R has minimal multiplicity (or maximal
embedding dimension) if the equality of (7.1.1) holds.

(3) Let A1, A2 be sets whose intersection is possibly nonempty. The disjoint union
of A1 and A2 is defined as

A1 t A2 = (A1×{1})∪ (A2×{2})= {(x, 1), (y, 2) | x ∈ A1, y ∈ A2}.

In the case where A1∩ A2 is empty, the set A1t A2 is identified with the union
A1 ∪ A2, namely, it is the usual disjoint union.

Below is the main result of this section. See Section 1 for the definition of
standardness.

Theorem 7.2. Let R be a nonregular local ring with an isolated singularity, which
is either

(1) a hypersurface, or

(2) a Cohen–Macaulay ring with minimal multiplicity and infinite residue field.

Then there is a one-to-one correspondence
Standard thick
subcategories

of Db(R)

 3

1−1
//


Nonempty

specialization-closed
subsets of Spec R

t


Nonempty
specialization-closed

subsets of Spec R

 .
0
oo

Here, the maps 3 and 0 are defined by:

3(X )=
{
(SuppX , 1) if X ⊆ Dperf(R),
(SuppX , 2) if X * Dperf(R),

0((S, i))=
{
(Supp−1 S)∩Dperf(R) if i = 1,
Supp−1 S if i = 2.

We shall give a proof of this theorem at the end of this section, after preparing
several necessary tools. Here are some examples of a ring satisfying the assumption
of Theorem 7.2(2).

Example 7.3. Let k be an infinite field, and let x, y be indeterminates over k. Then it
is easy to observe that k[[x, y]]/(x2, xy, y2), k[[x, y, z]]/(x2

−yz, y2
−zx, z2

−xy)
and k[[x3, x2 y, xy2, y3

]] are non-Gorenstein rings satisfying the condition (2)
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in Theorem 7.2. In general, normal local rings of dimension two with rational
singularities satisfy Theorem 7.2(2); see [Huneke and Watanabe 2015, Theorem 3.1].

Remark 7.4. (1) Theorem 7.2(1) can also be deduced from [Stevenson 2014,
Theorem 4.9].

(2) Theorem 7.2(2) especially says the following.

Let (R,m, k) be a Cohen–Macaulay local ring with an isolated singularity,
and assume k is infinite and R has minimal multiplicity. Let X be a
standard thick subcategory of Db(R) which is not contained in Dperf(R).
Then X contains k.

This statement is no longer true without the assumption that R has minimal mul-
tiplicity. Indeed, let R = k[x, y]/(x2, y2) with k a field, and let X be the thick
closure of R and R/(x) in Db(R). Then R is an artinian complete intersection
local ring, and X is a thick subcategory of Db(R). As R ∈ X , it is standard. Since
R/(x) has infinite projective dimension as an R-module, X is not contained in
Dperf(R). Both R and R/(x) have complexity at most 1, and the subcategory of
Db(R) consisting of objects having complexity at most 1 is thick. Hence any object
in X has complexity at most 1. The fact that k has complexity 2 shows k /∈ X .

Thus, the assumption in Theorem 7.2(2) that R has minimal multiplicity is
indispensable.

We state a general lemma on triangulated categories, whose proof is standard
and omitted.

Lemma 7.5. Let T be an essentially small triangulated category.

(1) Let U be a thick subcategory of T . Let π : T → T /U be the canonical functor.
Let T be an object of T and X a subcategory of T . Then T is in thickT (U ∪X )
if and only if πT is in thickT /U (πX ).

(2) Let C be a subcategory of T . For each object T ∈ thickT C there exist a finite
number of objects C1, . . . ,Cn ∈ C such that T ∈ thickT {C1, . . . ,Cn}.

The stable derived category Dsg(R) of R, which is also called the singularity
category of R, is defined as the Verdier quotient of Db(R) by Dperf(R). The follow-
ing proposition says that a standard thick subcategory generating the singularity
category contains the residue field.

Proposition 7.6. Let R be a local ring with residue field k. Let X be a standard
thick subcategory of Db(R). Suppose that the equality thickDsg(R)(πX )= Dsg(R)
holds, where π : Db(R) → Dsg(R) stands for the canonical functor. Then X
contains k.
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Proof. Lemma 7.5(1) implies thickDb(R)({R} ∪ X ) = Db(R). By Lemma 7.5(2)
there is an object X ∈ X such that k belongs to the thick closure of R and X. Since
X is standard, it contains a nonacyclic perfect complex P. Tensoring P shows that
P⊗L

R k belongs to the thick closure of P and P⊗L
R X, which is contained in X . As

P is not acyclic, the maximal ideal is in the support of P in Db(R), which means
P ⊗L

R k 6= 0 in Db(R). Thus P ⊗L
R k contains k[n] as a direct summand for some

n ∈ Z, and it follows that k is in X . �

For every triangulated category T , the zero subcategory 0 and the whole category
T are thick subcategories of T . We call these two thick subcategories trivial, and
the other thick subcategories nontrivial. The assumption of Theorem 7.2 comes
from the fact that the following proposition holds under it.

Proposition 7.7. Let R be a local ring with an isolated singularity. Suppose that R
is either

(1) a hypersurface, or

(2) a Cohen–Macaulay ring with minimal multiplicity and infinite residue field.

Then Dsg(R) has no nontrivial thick subcategory.

Proof. (1) By virtue of [Takahashi 2010, Main Theorem], the thick subcategories of
Dsg(R) bijectively correspond to the specialization-closed subsets of the singular
locus Sing R of R, i.e., the set of prime ideals p of R such that the local ring Rp is
not regular. Since R has an isolated singularity, Sing R is trivial. Thus there exist
only trivial thick subcategories of Dsg(R).

(2) Let X be a nonzero thick subcategory of Dsg(R). Then there exists a
bounded R-complex C of infinite projective dimension such that πC is in X ,
where π : Db(R)→ Dsg(R) is the canonical functor. One finds an exact triangle
P → C → M[n] in Db(R) with P ∈ Dperf(R) and n ∈ Z such that M is the
(d + 1)-st syzygy of an R-module, where d = dim R. As C has infinite projective
dimension, M is a nonzero module. The object πC is isomorphic to πM[n] in
Dsg(R), whence πM belongs to X .

There is a maximal Cohen–Macaulay R-module N such that M∼=�R N. Since R
has minimal multiplicity and the residue field of R is infinite, we find a parameter
ideal Q= (x1, . . . , xd) of R such that m2

= Qm; see [Bruns and Herzog 1998, Exer-
cise 4.6.14]. Note that x := x1, . . . , xd is a regular sequence on R, and hence on N.
We see that M/QM is isomorphic to �R/Q(N/QN ), which is contained in mL for
some free R/Q-module L . Since m2 is contained in Q, the module �R/Q(N/QN )
is annihilated by m, which implies that M/QM is a nonzero k-vector space.

In the derived category Db(R) the module M/QM is isomorphic to the Koszul
complex K := K(x,M). Since K is a bounded complex of direct sums of copies
of M, the object πK belongs to the thick closure of πM (see Lemma 2.3(4)), and
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hence πK belongs to X . Consequently, the object πk is in X . As R has an isolated
singularity, Dsg(R) coincides with the thick closure of πk by Corollary 3.5. This
implies X = Dsg(R), which is what we want. �

We give a lemma on elementary set theory, whose proof is also elementary and
omitted.

Lemma 7.8. Let A1, A2, B1, B2 be sets. Let fi : Ai → Bi be a bijection for each
i = 1, 2. Define the map g : A1 t A2→ B1 t B2 by g((a, i))= ( fi (a), i) for a ∈ Ai

and i = 1, 2. Then g is a bijection.

Now we can prove Theorem 7.2:

Proof of Theorem 7.2. Let A1 be the set of nonzero thick subcategories of Dperf(R).
Let A2 be the set of standard thick subcategories of Db(R) not contained in Dperf(R).
Then A1 ∩ A2 is empty, and A1 t A2 coincides with the set of standard thick
subcategories of Db(R). Let B be the set of nonempty specialization-closed subsets
of Spec R. By [Neeman 1992, Theorem 1.5] there is a one-to-one correspondence
f : A1� B : g defined by f (X )= SuppX and g(S)= (Supp−1 S)∩Dperf(R). In
view of Lemma 7.8, it suffices to show that there is a one-to-one correspondence
p : A2� B : q defined by p(X )= SuppX and q(S)= Supp−1 S. By Theorem 6.6,
we have only to show that a thick subcategory X of Db(R) contains the residue field
k if and only if X is a standard thick subcategory of Db(R) not contained in Dperf(R).

To show the “only if” part, suppose that X contains k. As R is not regular, k
does not belong to Dperf(R), whence X is not contained in Dperf(R). The thick
closure thickDb(R) k contains the Koszul complex K(x, R), where x is a system of
generators of the maximal ideal of R. Hence X contains the nonacyclic perfect
complex K(x, R), which implies that X is standard.

To show the “if” part, assume that X is standard and not contained in Dperf(R).
Then the image of X in Dsg(R) is nonzero, and hence its thick closure coincides
with Dsg(R) by Proposition 7.7. Therefore X contains k by Proposition 7.6.

Thus, the proof of the theorem is completed. �

Remark 7.9. Theorem 7.2(2), Proposition 7.7(2) and the statement (written in
italic) in Remark 7.4 are valid if one replaces the assumption that R has minimal
multiplicity and k is infinite with the assumption that there exists a parameter ideal
Q of R with m2

= Qm. In fact, the same proofs work under this assumption.

8. Almost Gorenstein rings and Cohen–Macaulay rings of finite
CM-representation type

In this section, as another application of Theorem 6.6, we study classifying standard
and costandard thick subcategories over an almost Gorenstein ring and a Cohen–
Macaulay ring of finite CM-representation type. We start by recalling the definitions:
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Definition 8.1. Let R be a Cohen–Macaulay local ring.

(1) We say that R is almost Gorenstein if there exists an exact sequence

0→ R→ ω→ C→ 0

of R-modules such that ω is a canonical module of R and C is an Ulrich
module, that is, C is a Cohen–Macaulay R-module whose multiplicity is equal
to the minimal number of generators. For the details of almost Gorenstein
local rings, we refer the reader to [Goto et al. 2015].

(2) We say R is of finite CM-representation type if there exist only finitely many iso-
morphism classes of indecomposable maximal Cohen–Macaulay R-modules.

The main result of this section is the following theorem. (The definitions of
standard and costandard thick subcategories are given in Section 1.)

Theorem 8.2. Let R be a non-Gorenstein local ring. Suppose that R is either

(1) an almost Gorenstein ring with an isolated singularity, or

(2) an excellent Cohen–Macaulay ring with canonical module and finite CM-
representation type.

Then there is a one-to-one correspondence{
Standard and costandard

thick subcategories of Db(R)

} Supp

1−1
//
{

Nonempty specialization-closed
subsets of Spec R

}
.

Supp−1
oo

We state examples, remarks and propositions related to this theorem, and prove
the theorem.

Example 8.3. Let k be an algebraically closed field of characteristic zero. Let
t, x, y be indeterminates over k.

(1) Both the numerical semigroup ring k[[t3, t4, t5
]] and the Veronese subring

k[[x3, x2 y, xy2, y3
]] satisfy all the conditions (2) in Theorem 7.2 and (1), (2)

in Theorem 8.2.

(2) Consider the numerical semigroup rings k[[t4, t5, t7
]], k[[t4, t7, t9

]] and the
residue ring k[[x, y, z, s]]/I, where I is the ideal generated by the 2-minors
of the matrix

(
x2

y
y2
−s10

z
z
x

)
. (All of these rings are the completions of positively

graded k-algebras.) These rings satisfy Theorem 8.2(1), but do not satisfy
Theorem 8.2(2) or Theorem 7.2(2).

For the proofs, see [Goto et al. 2015, Examples 3.16, 7.5, Corollary 11.4 and
Theorem 12.1] and [Yoshino 1990, Theorems (9.2) and (10.14)].

In view of this example, it seems that there exist a lot of examples of rings
satisfying Theorem 8.2(1). Here is a remark on Theorem 8.2(2).



THICK SUBCATEGORIES OVER ISOLATED SINGULARITIES 207

Remark 8.4. According to [Schreyer 1987, (7.1)], all known examples of a nonhy-
persurface Cohen–Macaulay complete local C-algebra of finite CM-representation
type have minimal multiplicity. Hence, at least for these examples, the one-to-one
correspondence in Theorem 8.2 is obtained by restricting that in Theorem 7.2.

The following two propositions play a crucial role in the proof of Theorem 8.2.

Proposition 8.5. Let R be a local ring with residue field k and dualizing complex
D. Assume that k belongs to thickDb(R){R, D}. Let P (resp. I ) be a nonacyclic
R-complex of finite projective (resp. injective) dimension. Then k belongs to
thickDb(R){P, I }.

Proof. The Foxby equivalence theorem [Avramov and Foxby 1997, Theorem (3.2)]
implies that the complex Q :=RHomR(D, I ) has finite projective dimension and I
is isomorphic to D⊗L

R Q in Db(R). As k is in the thick closure of R and D, applying
the functor−⊗L

R Q⊗L
R P shows that k⊗L

R Q⊗L
R P is in the thick closure of Q⊗L

R P
and I ⊗L

R P. Note that Q⊗L
R P and I ⊗L

R P belong to the thick closures of P and I,
respectively. Hence k⊗L

R Q⊗L
R P belongs to the thick closure of P and I. Since P

and I are not acyclic, k⊗L
R Q⊗L

R P is nonzero in Db(R), whence it contains k[n]
as a direct summand for some integer n. Thus the assertion follows. �

A local ring R is called G-regular if the totally reflexive modules over R are
the free modules. For the details of G-regular local rings, we refer the reader to
[Takahashi 2008].

Proposition 8.6. Let R be a non-Gorenstein local ring with canonical module ω,
being either

(1) an almost Gorenstein ring with an isolated singularity, or

(2) an excellent Cohen–Macaulay ring with canonical module and finite CM-
representation type.

Then thickmod R{R, ω} =mod R. In particular, R is a G-regular local ring.

Proof. Let k be the residue field of R. We first prove thickmod R{R, ω} =mod R.
(1) Since R is an isolated singularity, we have thickmod R{R, k} = mod R by

Corollary 3.5. According to [Goto et al. 2015, Corollary 4.5], there is an exact
sequence 0→ Xn→· · ·→ X1→ X0→ kr−1

→ 0, where r is the Cohen–Macaulay
type of R and each X i is a finite direct sum of copies of R and ω. We have r ≥ 2
since R is not Gorenstein, and it is seen that k belongs to the thick closure of R
and ω. Thus the equality follows.

(2) It follows from [Huneke and Leuschke 2002, Corollary 2] that R has an
isolated singularity, and so does the completion of R since R is excellent (see
[Takahashi 2010, Proposition 3.4]). Using [Takahashi 2013a, Corollary 6.9], one
sees that the thick closure of R and ω must be the whole category mod R.
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Now let us show the last assertion. Let G be a totally reflexive R-module. Let M
be the subcategory of mod R consisting of modules M such that Ext�0

R (G,M)= 0.
By definition we have Ext>0

R (G, R)= 0, and moreover Ext>0
R (G, ω)= 0 since G is

maximal Cohen–Macaulay. Therefore R and ω belong to M. It is easy to see that
M is a thick subcategory of mod R, whence it contains thickmod R{R, ω}, which
coincides with mod R. Thus k is in M, which implies that G has finite projective
dimension, so that G is free. �

Remark 8.7. In Proposition 8.6(2), the excellence can be replaced with the condi-
tion that the completion of R is an isolated singularity.

Now we can give a proof of the main result of this section:

Proof of Theorem 8.2. Let X be a standard and costandard thick subcategory of
Db(R). Then by Propositions 8.6 and 8.5, X contains the residue field k of R.

Conversely, let X be a thick subcategory of Db(R) containing k. Then X contains
the Koszul complex K(x, R) with x a system of generators of the maximal ideal
of R, whence X is standard. By assumption, R admits a canonical module ω. Let y
be a system of parameters of R. Then y is a regular sequence on R, and hence on ω.
The module ω/ yω has finite injective dimension as an R-module, and belongs to
X because it is in thickDb(R) k. Therefore X is costandard.

The assertion follows from the above argument and Theorem 6.6. �

9. Gorenstein rings with almost minimal multiplicity

This section is devoted to exploring thick subcategories over a Gorenstein local
ring having relatively small multiplicity. Let (R,m, k) be a Cohen–Macaulay local
ring. We say that R has almost minimal multiplicity if the following equality holds:

e(R)= edim R− dim R+ 2.

Assume that k is infinite. Then there is a minimal reduction Q of m. Note that Q is
a parameter ideal of R satisfying m2/Qm∼= k, and hence m3

⊆ Q. Only assuming
this inclusion, we have the following classification of thick subcategories, which is
the main result of this section:

Theorem 9.1. Let (R,m, k) be a Gorenstein nonregular local ring with an isolated
singularity. Let Q be a parameter ideal of R containing m3. Then there is a
one-to-one correspondence

Thick subcategories
of Db(R) containing

a nonacyclic perfect R-complex


Supp

1−1
//
{

Nonempty specialization-closed
subsets of Spec R

}
,

Supp−1
oo

where R = R/(Q :m).
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We first prepare lemmas to show this theorem.

Lemma 9.2. Let (R,m, k) be an artinian Gorenstein local ring which is not a field.
Then thickmod R(R/Soc R)=mod R.

Proof. Denote by (−)∗ the R-dual functor HomR(−, R). Since R is artinian and
Gorenstein, R is an injective R-module and k∗ ∼= k. Applying (−)∗ to the natural
exact sequence 0→m→ R→ k→ 0, we have an exact sequence

(9.2.1) 0→ k→ R→ R/Soc R→ 0

and see that m∗ is isomorphic to R/Soc R.
Let x1, x2, . . . , xn be a minimal system of generators of m. As R is not a field, the

integer n is positive. Let I = (x2
1 , x2, . . . , xn) be an ideal. Then m/I is isomorphic

to k, and there exists an exact sequence 0→ k→ R/I → k→ 0. Taking the first
syzygies, we obtain an exact sequence 0→m→ R⊕ I →m→ 0. Applying (−)∗

gives rise to an exact sequence 0→m∗→ R⊕ I ∗→m∗→ 0.
Thus, there is an exact sequence

(9.2.2) 0→ R/Soc R→ R⊕ I ∗→ R/Soc R→ 0.

It follows from (9.2.2) that thickmod R(R/Soc R) contains R, and from (9.2.1) that
it contains k. Since R is artinian, thickmod R(R/Soc R) coincides with the whole
module category mod R. �

We need one more lemma, whose proof is straightforward.

Lemma 9.3. Let T ,U be triangulated categories, and let F : T → U be a triangle
functor. Let X be a thick subcategory of U . Denote by F−1(X ) the subcategory of T
consisting of objects T ∈ T with F(T ) ∈ X . Then F−1(X ) is a thick subcategory
of T .

Now we can prove our Theorem 9.1:

Proof of Theorem 9.1. By Theorem 6.6, it suffices to show that a thick subcategory
X of Db(R) contains a nonacyclic perfect R-complex if and only if X contains the
residue field k = R/m.

The “if” part: If k is in X , then all R-modules of finite length are in X , whence
R ∈ X .

The “only if” part: Assume that X contains a nonacyclic perfect R-complex L .
Let F : Db(R)→ Db(R) be the natural triangle functor. Lemma 9.3 implies that
F−1(X ) is a thick subcategory of Db(R), and it is standard since it contains L . As
m3 is contained in Q, the square of the maximal ideal of R is zero. Using Remarks
7.4 and 7.9, we observe that F−1(X ) either contains k or is contained in Dperf(R).
As to the former case, k belongs to X .
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Let us consider the latter case. Note that F−1(X ) is a thick subcategory of
Dperf(R), and that Spec R consists of the maximal ideal. By [Neeman 1992,
Theorem 1.5], F−1(X ) coincides with either the zero category 0 or the whole
category Dperf(R). Because the nonacyclic complex L is in F−1(X ), we have
F−1(X ) = Dperf(R). In particular, X contains R. Note that R/Q is an artinian
Gorenstein ring that is not a field. Applying Lemma 9.2 to the ring R/Q, we have
thickmod R/Q(R)=mod R/Q. Hence k is in thickDb(R/Q)(R). Sending this contain-
ment by the natural triangle functor Db(R/Q)→ Db(R) shows k ∈ thickDb(R)(R).
Thus k belongs to X . �
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