Vol. 291, No. 2, 2017

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Transfinite diameter on complex algebraic varieties

David A. Cox and Sione Ma‘u

Vol. 291 (2017), No. 2, 279–317
Abstract

We use methods from computational algebraic geometry to study Chebyshev constants and the transfinite diameter of a pure m-dimensional affine algebraic variety in n (m n). The main result is a generalization of Zaharyuta’s integral formula for the Fekete–Leja transfinite diameter.

Keywords
Chebyshev constant, transfinite diameter, Vandermonde determinant, affine variety, Noether normalization, monomial order
Mathematical Subject Classification 2010
Primary: 32U20
Secondary: 14Q15
Milestones
Received: 16 March 2016
Revised: 11 February 2017
Accepted: 2 May 2017
Published: 14 September 2017
Authors
David A. Cox
Department of Mathematics
Amherst College
Amherst, MA 01002
United States
Sione Ma‘u
Department of Mathematics
University of Auckland
Auckland 1142
New Zealand