Vol. 291, No. 2, 2017

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Moduli spaces of rank 2 instanton sheaves on the projective space

Marcos Jardim, Mario Maican and Alexander S. Tikhomirov

Vol. 291 (2017), No. 2, 399–424
Abstract

We study the irreducible components of the moduli space of instanton sheaves on 3 , that is, μ-semistable rank 2 torsion-free sheaves E with c1(E) = c3(E) = 0 satisfying h1(E(2)) = h2(E(2)) = 0. In particular, we classify all instanton sheaves with c2(E) 4, describing all the irreducible components of their moduli space. A key ingredient for our argument is the study of the moduli space T (d) of stable sheaves on 3 with Hilbert polynomial P(t) = d t, which contains, as an open subset, the moduli space of rank 0 instanton sheaves of multiplicity d; we describe all the irreducible components of T (d) for d 4.

Keywords
Moduli spaces, semistable sheaves, instanton sheaves, sheaves on projective space
Mathematical Subject Classification 2010
Primary: 14D20, 14J60
Milestones
Received: 23 February 2017
Revised: 10 May 2017
Accepted: 26 May 2017
Published: 14 September 2017
Authors
Marcos Jardim
Instituto de Matemática, Estatística e Computação Científica
University of Campinas
Rua Ségio Buarque de Holanda, 651
Cidade Universitária
13083-859 Campinas-
Brazil
Mario Maican
Institute of Mathematics of the Romanian Academy
Calea Grivitei 21
010702 Bucharest
Romania
Alexander S. Tikhomirov
Department of Mathematics
National Research University Higher School of Economics
6 Usacheva Street
Moscow
119048
Russia