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TORSION PAIRS IN SILTING THEORY

LIDIA ANGELERI HÜGEL, FREDERIK MARKS AND JORGE VITÓRIA

In the setting of compactly generated triangulated categories, we show that
the heart of a (co)silting t-structure is a Grothendieck category if and only if
the (co)silting object satisfies a purity assumption. Moreover, in the cosilting
case the previous conditions are related to the coaisle of the t-structure being
a definable subcategory. If we further assume our triangulated category
to be algebraic, it follows that the heart of any nondegenerate compactly
generated t-structure is a Grothendieck category.

1. Introduction

Silting and cosilting objects in triangulated categories are useful generalisations of
tilting and cotilting objects. While (co)tilting objects have been a source of many
interactions with torsion and localisation theory, it is in the setting of (co)silting
objects that classification results occur more naturally. This paper strengthens
this claim by showing that, in the setting of compactly generated triangulated
categories, relevant torsion-theoretic structures are parametrised by suitable classes
of (co)silting objects.

The concept of a silting object, first introduced in [Keller and Vossieck 1988] in
the context of derived module categories over finite dimensional hereditary algebras,
has recently been extended to the setting of abstract triangulated categories [Aihara
and Iyama 2012; Mendoza Hernández et al. 2013; Nicolás et al. 2015; Psaroudakis
and Vitória 2015]. In this paper, our focus is on t-structures and co-t-structures
arising from (co)silting objects. For this purpose, we use the vast theory of purity
in compactly generated triangulated categories, where a central role is played by
the category of contravariant functors on the compact objects. We show that a
fundamental property of the t-structure associated to a cosilting object C — namely,
its heart being a Grothendieck abelian category — is related to the pure-injectivity
of C . An analogous result holds true for silting objects. Moreover, it turns out that
in the cosilting case the pure-injectivity of C is further related to the definability
(in terms of coherent functors) of the coaisle of the associated t-structure. We can
summarise our results as follows.

MSC2010: 18E15, 18E30, 18E40.
Keywords: torsion pair, silting, cosilting, t-structure, Grothendieck category.
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Theorem [Theorems 3.6 and 4.9, Corollary 4.10]. Let (U,V,W) be a triple in a
compactly generated triangulated category T such that (U,V) is a nondegenerate
t-structure and (V,W) is a co-t-structure. Then the following are equivalent:

(1) V is definable in T ;

(2) V = ⊥>0C for a pure-injective cosilting object C in T ;

(3) H := U[−1] ∩V is a Grothendieck category.

In particular, if we further assume T to be algebraic, it follows that any nondegen-
erate compactly generated t-structure in T has a Grothendieck heart.

For partial results in this direction we refer to [Nicolás et al. 2015, Proposition 4.2;
Bravo and Parra 2016, Corollary 2.5]. In a forthcoming paper ([Marks and Vitória
2017]), it will be proved that cosilting complexes in derived module categories are
always pure-injective and give rise to definable subcategories as above. We do not
know, however, if the same holds true for arbitrary cosilting objects in compactly
generated triangulated categories. Moreover, it will be shown in [Marks and Vitória
2017] that there are cosilting complexes (in fact, cosilting modules) inducing triples
(U,V,W) as above such that the t-structure has a Grothendieck heart, although it
is not compactly generated. This will answer [Bravo and Parra 2016, Question 3.5].

The structure of the paper is as follows. In Section 2, we present our setup
and provide the reader with some preliminaries on torsion pairs and (co)silting
objects. In Section 3, we briefly recall the key concepts of pure-projectivity and
pure-injectivity and we establish the connection between (co)silting objects having
such properties and t-structures with Grothendieck hearts. Finally, in Section 4, we
discuss definable subcategories and we prove the above mentioned relation between
pure-injective cosilting objects and certain definable subcategories of the underlying
triangulated category.

2. Preliminaries

Setup and notation. Throughout, we denote by T a compactly generated triangu-
lated category, i.e., a triangulated category with coproducts for which the subcategory
of compact objects, denoted by T c, has only a set of isomorphism classes and such
that for any Y in T with HomT (X, Y ) = 0 for all X in T c, we have Y = 0.
Since T admits arbitrary set-indexed coproducts, it is idempotent complete (see
[Neeman 2001, Proposition 1.6.8]). It is also well known (see [Neeman 2001,
Proposition 8.4.6 and Theorem 8.3.3]) that such triangulated categories admit
products. In some places, we will further assume T to be algebraic, i.e., T can be
constructed as the stable category of a Frobenius exact category (see [Happel 1988]).
Note that algebraic and compactly generated triangulated categories are essentially
derived categories of small differential graded categories [Keller 1994].
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All subcategories considered are strict and full. For a set of integers I (which is
often expressed by symbols such as > n, < n, ≥ n, ≤ n, 6= n, or just n, with the
obvious associated meaning) we define the following orthogonal classes:

⊥I X :=
{
Y ∈ T : HomT (Y, X [i])= 0, for all i ∈ I }

X⊥I := {Y ∈ T : HomT (X, Y [i])= 0, for all i ∈ I
}
.

If C is a subcategory of T , then we denote by Add(C ) (respectively, Prod(C )) the
smallest subcategory of T containing C and closed under coproducts (respectively,
products) and summands. If C consists of a single object M , we write Add(M)
and Prod(M) for the respective subcategories. For a ring A, we denote by Mod(A)
the category of right A-modules and by D(A) the unbounded derived category of
Mod(A). The subcategories of injective and of projective A-modules are denoted,
respectively, by Inj(A) and Proj(A), and their bounded homotopy categories by
Kb(Inj(A)) and Kb(Proj(A)), respectively.

Torsion pairs. We consider the notion of a torsion pair in a triangulated category
(see, for example, [Iyama and Yoshino 2008]), which gives rise to the notions of a
t-structure [Beı̆linson et al. 1982] and a co-t-structure [Bondarko 2010; Pauksztello
2008].

Definition 2.1. A pair of subcategories (U,V) in T is said to be a torsion pair if

(1) U and V are closed under summands;

(2) HomT (U,V)= 0;

(3) For every object X of T , there are U in U , V in V and a triangle

U → X→ V →U [1].

In a torsion pair (U,V), the class U is called the aisle, the class V the coaisle, and
(U,V) is said to be

• nondegenerate if
⋂

n∈Z U[n] = 0=
⋂

n∈Z V[n];
• a t-structure if U[1] ⊆ U , in which case we say that U[−1] ∩V is the heart of
(U,V);

• a co-t-structure if U[−1] ⊆ U , in which case we say that U ∩ V[−1] is the
coheart of (U,V).

It follows from [Beı̆linson et al. 1982] that the heart HT of a t-structure T := (U,V)
in T is an abelian category with the exact structure induced by the triangles of
T lying in HT. Furthermore, the triangle in Definition 2.1(3) can be expressed
functorially as

u(X)
f
// X

g
// v(X) // u(X)[1],
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where u : T → U is the right adjoint of the inclusion of U in T and v : T → V is
the left adjoint of the inclusion of V in T . The existence of one of these adjoints,
usually called truncation functors, is in fact equivalent to the fact that (U,V) is a
t-structure ([Keller and Vossieck 1988, Proposition 1.1]). Observe that the maps
f and g in the triangle are, respectively, the counit and unit map of the relevant
adjunction. In particular, it follows that if f = 0 (respectively, g= 0), then u(X)= 0
(respectively, v(X)= 0). Furthermore, u and v give rise to a cohomological functor
defined by

H 0
T : T →HT, X 7→ H 0

T(X) := v(u(X [1])[−1])= u(v(X)[1])[−1].

Recall that an additive covariant functor from T to an abelian category A is said to
be cohomological if it sends triangles in T to long exact sequences in A.

We will also be interested in the properties of torsion pairs generated or cogener-
ated by certain subcategories of T , which are defined as follows.

Definition 2.2. Let (U,V) be a torsion pair in T and A a subcategory of T . We say
that (U,V) is

• generated by A if (U,V)= (⊥0(A⊥0),A⊥0);

• cogenerated by A if (U,V)= (⊥0A, (⊥0A)⊥0);

• compactly generated if (U,V) is generated by a set of compact objects.

Moreover, we say that A generates T if the subcategory
⋃

n∈Z A[n] generates
the torsion pair (T , 0). Dually, we say that A cogenerates T if the subcategory⋃

n∈Z A[n] cogenerates the torsion pair (0, T ).

Recall that a subcategory U of T is said to be suspended (respectively, cosus-
pended) if it is closed under extensions and positive (respectively, negative) shifts.
For example, a torsion pair (U,V) is a t-structure if and only if U is suspended (or,
equivalently, V is cosuspended). In particular, a t-structure generated (respectively,
cogenerated) by a subcategory A is also generated (respectively, cogenerated) by the
smallest suspended (respectively, cosuspended) subcategory containing A. A dual
statement holds for co-t-structures.

Definition 2.3. Two torsion pairs of the form (U,V) and (V,W) are said to be
adjacent. More precisely, we say that (U,V) is left adjacent to (V,W) and that
(V,W) is right adjacent to (U,V). Such V is then called a TTF (torsion-torsion-
free) class and the triple (U,V,W) is said to be a TTF triple. Moreover, a TTF triple
(U,V,W) is said to be suspended (respectively, cosuspended) if the corresponding
TTF class is a suspended (respectively, cosuspended) subcategory of T .

Note that, in a TTF triple, one of the torsion pairs is a t-structure if and only if
the adjacent one is a co-t-structure.
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Example 2.4. (1) Let A be a ring and consider its derived category D(A). De-
note by D≤−1 (respectively, D≥0) the subcategory of D(A) formed by the
complexes whose usual complex cohomology vanishes in all nonnegative
degrees (respectively, in all negative degrees). The pair (D≤−1, D≥0) is a
nondegenerate t-structure in D(A), called the standard t-structure. We note
that the standard t-structure admits both a left and a right adjacent co-t-structure.
We refer to [Angeleri Hügel et al. 2016, Example 2.9 (2)] for details on the
left adjacent co-t-structure. Analogously, the right adjacent co-t-structure is
the pair (D≥0, K≤−1) where K≤−1 stands for the subcategory of objects in
D(A) which are isomorphic to a complex X• of injective A-modules such that
X i
= 0 for all i ≥ 0. The triple (D≤−1, D≥0, K≤−1) is then a cosuspended

TTF triple. Clearly, the heart of (D≤−1, D≥0) is Mod(A) and the coheart of
(D≥0, K≤−1) coincides with Inj(A).

(2) It follows from [Aihara and Iyama 2012, Theorem 4.3] that if A is a set of
compact objects, then the pair (⊥0(A⊥0),A⊥0) is a torsion pair. If T is moreover
an algebraic triangulated category, then such a pair admits a right adjacent
torsion pair, as shown in [Št́ovíček and Pospíšil 2016, Theorem 3.11]. In this
case, if A is a suspended (respectively, cosuspended) subcategory of T c, then
the triple (⊥0(A⊥0),A⊥0, (A⊥0)⊥0) is a cosuspended (respectively, suspended)
TTF triple. We investigate some properties of the heart of compactly generated
cosuspended TTF triples in Section 4.

(3) Following the arguments in [Neeman 2010, Proposition 1.4], we have that if V
is a cosuspended and preenveloping (respectively, suspended and precovering)
subcategory of T , then the inclusion of V in T has a left (respectively, right)
adjoint. In particular, there is a t-structure (U,V) (respectively, a t-structure
(V,W)) in T . In our context, this shows that a co-t-structure (V,W) has a
left (respectively, right) adjacent t-structure if and only if V is preenveloping
(respectively, W is precovering).

(Co)silting. Recall the definition of silting and cosilting objects in a triangulated
category (see [Psaroudakis and Vitória 2015]):

Definition 2.5. An object M in T is called

• silting if (M⊥>0,M⊥≤0) is a t-structure in T and M ∈ M⊥>0 ;

• cosilting if (⊥≤0 M,⊥>0 M) is a t-structure in T and M ∈ ⊥>0 M .

We say that two silting (respectively, cosilting) objects are equivalent, if they give
rise to the same t-structure in T and we call such a t-structure silting (respectively,
cosilting). The heart of the t-structure associated to a silting or cosilting object M
is denoted by HM and the cohomological functor T →HM by H 0

M .
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It follows from the definition that silting and cosilting t-structures are nonde-
generate and that a silting (respectively, cosilting) object generates (respectively,
cogenerates) the triangulated category T (see [Psaroudakis and Vitória 2015]).

Example 2.6. Let A be a ring and D(A) its derived category.

(1) Let E be an injective cogenerator of Mod(A). Regarded as an object in D(A),
E is a cosilting object and the associated cosilting t-structure is the standard one.
As discussed in Example 2.4 (1), there is also a right adjacent co-t-structure
with coheart Prod(E)= Inj(A).

(2) It follows from [Angeleri Hügel et al. 2016, Theorem 4.6] that a silting object
T of D(A) lying in Kb(Proj(A)) gives rise to a suspended TTF triple, that is,
the silting t-structure (T⊥>0, T⊥≤0) admits a left adjacent co-t-structure with
coheart Add(T ) (see also [Wei 2013]). Dually, a cosilting object C of D(A)
lying in Kb(Inj(A)) gives rise to a cosuspended TTF triple, that is, the cosilting
t-structure (⊥≤0C,⊥>0C) admits a right adjacent co-t-structure with coheart
Prod(C). For this dual statement, we refer to forthcoming work in [Marks and
Vitória 2017].

Silting and cosilting objects produce hearts with particularly interesting homolog-
ical properties. First, recall from [Parra and Saorín 2015] that hearts of t-structures
in a triangulated category with products and coproducts also have products and
coproducts. Indeed, the (co)product of a family of objects in the heart is obtained by
applying the functor H 0

T to the corresponding (co)product of the same family in T .
Of course, this (co)product in the heart may differ from the (co)product formed
in T .

Lemma 2.7 [Psaroudakis and Vitória 2015, Proposition 4.3]. Let M be a silting
(respectively, cosilting) object in T . Then the heart HM is an abelian category with
a projective generator (respectively, an injective cogenerator) given by H 0

M(M).

The following lemma establishes a particularly nice behaviour of the cohomo-
logical functors arising from (co)silting t-structures with respect to products and
coproducts.

Lemma 2.8. If T is a silting object in T , then the functor H 0
T induces an equivalence

between AddT (T ) and AddHT (H
0
T (T )) = Proj(HT ). Dually, if C is a cosilting

object in T , then the functor H 0
C induces an equivalence between ProdT (C) and

ProdHC (H
0
C(C))= Inj(HC).

Proof. We prove the statement for a cosilting object C in T (the silting case is
shown dually). Let the truncation functors of the associated cosilting t-structure
(⊥≤0C,⊥>0C) be denoted by u : T → ⊥≤0C and v : T → ⊥>0C . Recall that
ProdT (C)= ⊥>0C∩(⊥>0C[−1])⊥0 [Psaroudakis and Vitória 2015, Lemma 4.5(iii)].
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We first show that H 0
C is fully faithful on ProdT (C) (compare with [Keller and

Vossieck 1988, Lemma 5.1(d); Assem et al. 2008, Lemma 1.3; Nicolás et al. 2015,
Lemma 3.2]). Let X1 and X2 be objects in ProdT (C). Suppose that f : X1→ X2

is a map in T such that H 0
C( f ) = 0. Since, by assumption, X i (i = 1, 2) lies in

⊥>0C , there is a truncation triangle of the form

v(X i [1])[−2]
κi
// H 0

C(X i )
µi
// X i // v(X i [1])[−1].

Now f induces a morphism of triangles and, in particular, we have that 0 =
µ2 H 0

C( f )= f µ1. Thus, f factors through v(X1[1])[−1]. However, since X2 lies
in (⊥>0C[−1])⊥0 , we have that HomT (v(X1[1])[−1], X2)= 0 and, therefore, f = 0.
Now let us show that H 0

C is also full on ProdT (C). Suppose that g is a map in
HomT (H 0

C(X1), H 0
C(X2)). Since X2 lies in (⊥>0C[−1])⊥0 , the composition µ2gκ1

vanishes and, therefore, there is a map g̃ : X1→ X2 such that g̃µ1=µ2g. Therefore,
g extends to a morphism of triangles and, as a consequence, g = H 0

C(g̃).
It remains to show that the essential image of H 0

C restricted to ProdT (C) coincides
with ProdHC (H

0
C(C)). Observe first that H 0

C

(∏
i∈I X i

)
=
∏

i∈I H 0
C(X i ) for every

family (X i )i∈I of objects in ProdT (C), where the product of the family (H 0
C(X i ))i∈I

is taken in HC . The proof is dual to the argument for silting objects in [Nicolás
et al. 2015, Lemma 3.2.2(a)]. Take an object M in ProdHC (H

0
C(C)) and let N be

an object in HC such that M ⊕ N = H 0
C(C)

I for some set I . Then there is an
idempotent element eM in EndHC (H

0
C(C)

I ) = EndHC (H
0
C(C

I )) whose image is
the summand M . Since H 0

C is fully faithful on ProdT (C), it follows that there
is an idempotent element e in EndT (C I ) such that H 0

C(e)= eM . Given that T is
idempotent complete, the map e factors as C I f

→ X g
→C I such that f g = idX , and

it then follows that H 0
C(X)= M . �

We finish this section with a general observation on abelian categories that will
be useful later.

Lemma 2.9. Let A and B be abelian categories with enough injective (respectively,
projective) objects and let F : A→ B be a left (respectively, right) exact functor
yielding an equivalence Inj(A)→ Inj(B) (respectively, Proj(A)→ Proj(B)). Then
F is an equivalence of abelian categories.

Proof. Suppose that A and B have enough injective objects. Then both categories
can be recovered as factor categories of the corresponding categories Mor(Inj(A))
and Mor(Inj(B)) of morphisms between injectives. Indeed, the kernel functors
induce equivalences KerA :Mor(Inj(A))/RA→A and KerB :Mor(Inj(A))/RB→B,
where the relations RA and RB are the obvious ones (compare with [Auslander
et al. 1995, Proposition IV.1.2] for the case of projectives). Since F induces
an equivalence between Inj(A) and Inj(B), it clearly also induces an equivalence
between the corresponding morphism categories and, moreover, since F is left
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exact, it indeed defines an equivalence F̃ : Mor(Inj(A))/RA→ Mor(Inj(B))/RB
such that KerB ◦F̃ = F ◦KerA. Hence, F is an equivalence. The dual statement
follows analogously. �

3. Grothendieck hearts in compactly generated triangulated categories

Recall that a Grothendieck category is an abelian category with coproducts, exact
direct limits and a generator. It is well known that Grothendieck categories have
enough injective objects and every object admits an injective envelope. This section
is dedicated to the question of determining when hearts of silting and cosilting
t-structures are Grothendieck categories. We answer this question using a suitable
category of functors and a corresponding theory of purity. We begin this section
with a quick reminder of the relevant concepts.

Functors and purity. We consider the category Mod-T c of contravariant additive
functors from T c to Mod(Z), which is known to be a locally coherent Grothendieck
category (see [Krause 1997; 2000, Subsection 1.2]).

Consider the restricted Yoneda functor

y : T →Mod-T c, yX = HomT (−, X)|T c , for all X ∈ T .

It is well known that y is not, in general, fully faithful. A triangle

1 : X
f
// Y

g
// Z // X [1]

in T is said to be a pure triangle if y1 is a short exact sequence. In other words,
the triangle 1 is pure, if for any compact object K in T , the sequence

0 // HomT (K , X)
HomT (K , f )

// HomT (K , Y )
HomT (K ,g)

// HomT (K , Z) // 0

is exact. We say that a morphism f : X → Y in T is a pure monomorphism
(respectively, a pure epimorphism) if y f is a monomorphism (respectively, an
epimorphism) in Mod-T c. An object E of T is said to be pure-injective if any
pure monomorphism f : E→ Y in T splits. Similarly, an object P is said to be
pure-projective in T if any pure epimorphism g : X→ P splits.

The following theorem collects useful properties of pure-injective and pure-
projective objects.

Theorem 3.1 [Krause 2000, Theorem 1.8, Corollary 1.9; Beligiannis 2000, §11].
The following statements are equivalent for an object E in T :

(1) E is pure-injective.

(2) yE is an injective object in Mod-T c.

(3) The map HomT (X, E)→ HomMod-T c( yX, yE), φ 7→ yφ is an isomorphism
for any object X in T .
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(4) For every set I , the summation map E (I )→ E factors through the canonical
map E (I )→ E I .

Dually, the following are equivalent for an object P in T :

(1) P is pure-projective.

(2) yP is a projective object in Mod-T c.

(3) The map HomT (P, Y )→ HomMod-T c( yP, yY ), φ 7→ yφ is an isomorphism
for any object Y in T .

(4) P lies in Add(T c).

Moreover, any projective (respectively, injective) object in Mod-T c is of the form
yP (respectively, yE), for a pure-projective object P (respectively, a pure-injective
object E), uniquely determined up to isomorphism.

It follows from above that T has enough pure-injective objects and that every
object X in T admits a pure-injective envelope. The following theorem collects
two results that will become essential later on.

Theorem 3.2. Let H : T → A be a cohomological functor from T to an abelian
category A.

(1) [Beligiannis 2000, Theorem 3.4] If H sends pure triangles in T to short exact
sequences in A, then there is a unique exact functor H :Mod-T c

→ A such
that H ◦ y = H.

(2) [Krause 2000, Corollary 2.5] If A has exact direct limits and H preserves
coproducts, then H sends pure triangles in T to short exact sequences in A.

We recall from [Beligiannis 2000] how to construct H . Given F in Mod-T c,
consider an injective copresentation

0 // F // yE0
yα
// yE1,

where E0 and E1 are pure-injective in T and α is a map in HomT (E0, E1). Then
we define H(F) := Ker H(α), and it can be checked that H is indeed well defined
(that is, it does not depend on the choice of the injective copresentation of F). This
functor can also be obtained in a dual way by taking a projective presentation of F .

Grothendieck hearts and purity. Note that, in general, the cohomological functor
associated to a t-structure does not commute with products and coproducts in T . The
following lemma provides necessary and sufficient conditions for this to happen.

Lemma 3.3. Let T= (U,V) be a nondegenerate t-structure in T with heart HT and
associated cohomological functor H 0

T : T →HT. Then the functor H 0
T preserves

T -coproducts (respectively, T -products) if and only if V is closed under coproducts
(respectively, U is closed under products).

If these conditions are satisfied, we say T is smashing (respectively, cosmashing).



266 LIDIA ANGELERI HÜGEL, FREDERIK MARKS AND JORGE VITÓRIA

Proof. We prove the statement for coproducts; the statement for products follows
dually. Notice that aisles are always closed under coproducts. If also the coaisle V
is closed under coproducts, then both truncation functors u : T → U and v : T → V
commute with T -coproducts and, hence, so does H 0

T . In particular, coproducts in
HT coincide with coproducts in T . For the converse, it is easy to check that nonde-
generate t-structures can be cohomologically described, i.e., V can be described
as the subcategory formed by objects X such that H 0

T(X [k]) = 0 for all k < 0.
Consequently, since H 0

T commutes with T -coproducts, this description shows that
V is closed under coproducts. �

Example 3.4. (1) By definition, every silting t-structure is cosmashing and every
cosilting t-structure is smashing.

(2) If a silting object T is pure-projective, then the associated t-structure is smash-
ing. Indeed, let (X i )i∈I be a family of objects in T⊥<0 and let X be their
coproduct in T . Since T is pure-projective,

HomT (T, X [n])∼= HomMod-T c( yT, yX [n])

for all n in Z. The statement then follows from the fact that y commutes with
coproducts and Ker HomMod-T c( yT,−) is coproduct-closed.

(3) If a cosilting object C is pure-injective, in general, it does not follow that
the associated t-structure is cosmashing. Indeed, let A be the Kronecker
algebra and let C be the Reiten–Ringel cotilting module from [Reiten and
Ringel 2006, Proposition 10.1] with associated torsion pair (Q ,Cogen(C))
in Mod(A), where Q is the class of all modules generated by preinjective
A-modules. The object C is cosilting in D(A) (see [Št́ovíček 2014, Theorem
4.5]). Note that, since C is pure-injective in Mod(A) by [Bazzoni 2003], it
follows from Theorem 3.1 that C is also pure-injective when viewed as an
object in D(A). It turns out that the aisle of the associated cosilting t-structure
consists precisely of those complexes whose zeroth cohomology belongs to
Q and for which all positive cohomologies vanish (compare with [Happel
et al. 1996]). In particular, the cosilting t-structure is cosmashing if and only
if Q is closed under products in Mod(A). But the latter cannot be true due to
[Angeleri Hügel 2003, Theorem 5.2 and Example 5.4].

For a compactly generated triangulated category T , (co)silting t-structures can
be obtained in a rather abstract way. First, recall that T satisfies a Brown repre-
sentability theorem (i.e., every cohomological functor H : T op

→Mod(Z) which
sends coproducts to products is representable) and a dual Brown representability
theorem (i.e., every cohomological functor H : T →Mod(Z) which sends products
to products is representable); see [Krause 2002a] for details. We can now state the
following result:
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Theorem 3.5 [Nicolás et al. 2015, §4]. There is a bijection between

• cosmashing nondegenerate t-structures whose heart has a projective generator;

• equivalence classes of silting objects.

Dually, there is a bijection between

• smashing nondegenerate t-structures whose heart has an injective cogenerator;

• equivalence classes of cosilting objects.

The first statement is proven in [Nicolás et al. 2015]. For the reader’s convenience,
we briefly sketch an argument for the second bijection. First recall that cosilting
t-structures are smashing, nondegenerate and their hearts have injective cogenerators
(see Lemma 2.7). Hence, there is an injective assignment from equivalence classes
of cosilting objects to the t-structures with the assigned properties. To see that the
assignment is surjective, we use the fact that T satisfies Brown representability.
Indeed, given a smashing nondegenerate t-structure T whose heart has injective
cogenerator E , the corresponding cosilting object C can be obtained as the (unique)
representative of the cohomological functor HomT (H 0

T(−), E) ∼= HomT (−,C).
Note that HomT (H 0

T(−), E) sends coproducts to products by the smashing assump-
tion. The dual arguments were used in [Nicolás et al. 2015] to show the silting case.

We can now prove the main result of this section by building on Theorem 3.5
and identifying which (co)silting t-structures have Grothendieck hearts. A similar
result was obtained independently in [Nicolás et al. 2015, Proposition 4.2] with the
additional assumption that all t-structures considered are cosmashing.

Theorem 3.6. Let T = (U,V) be a smashing nondegenerate t-structure in T with
heart HT. Denote by H 0

T : T → HT the associated cohomological functor. The
following statements are equivalent.

(1) HT is a Grothendieck category;

(2) There is a pure-injective cosilting object C in T such that T = (⊥≤0C,⊥>0C).

If the above conditions are satisfied, there is a (unique) exact functor H 0
T :Mod-T c

→

HT with a right adjoint j∗ such that H 0
T ◦ y = H 0

T and j∗H 0
T(C)∼= yC. Moreover,

there is a localisation sequence of the form

Ker H 0
T =

⊥0 yC
i∗

// Mod-T c
H0

T
//

i !
gg

HT
j∗

ee

Proof. Suppose that HT is a Grothendieck category. By Theorem 3.5, T is a cosilting
t-structure for a cosilting object C , such that HomT (H 0

T(−), E) ∼= HomT (−,C)
for some injective cogenerator E in HT. It remains to show that C is pure-injective.
Since, by Lemma 3.3, H 0

T commutes with T -coproducts, Theorem 3.2(2) shows that
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H 0
T sends pure triangles to short exact sequences. In particular, HomT (−,C) sends

pure triangles to short exact sequences, showing that C is indeed pure-injective.
Conversely, let C be a pure-injective cosilting object in T with associated t-

structure T = (⊥≤0C,⊥>0C). It follows that the functor HomT (−,C) is naturally
equivalent to HomT (H 0

T(−), H 0
T(C)) and, therefore, also the functor H 0

T sends pure
triangles to short exact sequences. Consequently, by Theorem 3.2(1), there is a
(unique) exact functor H 0

T :Mod-T c
→HT such that H 0

T ◦ y= H 0
T . The following

argument is inspired by the proof of [Št́ovíček 2014, Theorem 6.2]. Consider the
hereditary torsion pair in Mod-T c cogenerated by the injective object yC , i.e.,
the pair (⊥0 yC,Cogen( yC)). The quotient category GC := Mod-T c/⊥0 yC is a
Grothendieck category (see [Gabriel 1962, Proposition III.9]) and the quotient
functor π : Mod-T c

→ GC admits a fully faithful right adjoint functor ρ : GC →

Mod-T c, with essential image

Cogen( yC)∩Ker Ext1Mod-T c(
⊥0 yC,−)

(see [Gabriel 1962, Corollary of Proposition III.3; Prest 2009, §11.1.1]). In particu-
lar, as in the proof of [Št́ovíček 2014, Theorem 6.2], it follows that an object X of
GC is injective if and only if ρ(X) lies in Prod( yC), i.e., the full subcategory of
injective objects in GC is equivalent to Prod( yC) which, by Theorem 3.1, is further
equivalent to Prod(C). Thus, using Lemma 2.8, we get the following commutative
diagram of equivalences:

Inj(GC)
ρ
// Prod( yC)

H0
T
��

Prod(C)

H0
Txx

y
oo

Prod(H 0
T(C))

Hence, the functor H 0
T ◦ ρ yields an equivalence between the category of injective

objects in GC and the category of injective objects in HT. Since the functor H 0
T ◦ ρ

is clearly left exact, by Lemma 2.9, it extends to an equivalence of categories
GC ∼=HT showing, in particular, that HT is a Grothendieck category.

Assume now that T satisfies (1) and (2). We first show that Ker H 0
T =

⊥0 yC .
Indeed, if F is an object in ⊥0 yC , then HomMod-T c( yα, yC) is an epimorphism for
any map yα : yE0→ yE1 between injective objects in Mod-T c with Ker( yα)= F .
Using the pure-injectivity of C , we get that HomT (α,C) is an epimorphism and,
thus, so is HomHT

(H 0
T(α), H 0

T(C)). Since H 0
T(C) is an injective cogenerator of HT,

it follows that H 0
T(α) is a monomorphism and, thus, H 0

T(F)= 0, by the construction
of H 0

T. Finally, since this argument is reversible the desired equality holds.
Now, in order to show the existence of the localisation sequence above, it is

enough to prove that the functor H 0
T admits a right adjoint. To this end, since H 0

T◦ρ

is an equivalence and π has a right adjoint, it suffices to check that H 0
T
∼= H 0

T ◦ ρ ◦π .
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By using the unit of the adjunction (π, ρ), we get a natural transformation of functors
H 0

T→H 0
T◦ρ◦π . We need to see that it induces an isomorphism on objects. But this

follows from the fact that the kernel and cokernel of the natural map X→ ρπ(X),
for X in Mod-T c, are torsion, that is, they belong to ⊥0 yC = Ker H 0

T. Finally, by
using the adjunction (H 0

T, j∗), we get j∗H 0
T(C)∼= j∗H 0

T( yC)∼= yC . �

One can state a somewhat dual result for silting objects.

Theorem 3.7. Let T = (T≤0,T≥0) be a smashing and cosmashing nondegenerate
t-structure in T with heart HT. Denote by H 0

T : T → HT the associated cohomo-
logical functor. The following are equivalent.

(1) HT is a Grothendieck category with a projective generator;

(2) There is a pure-projective silting object T in T such that T = (T⊥>0, T⊥≤0).

If the above conditions are satisfied, there is a (unique) exact functor H 0
T :Mod-T c

→

HT with a left adjoint j! such that H 0
T ◦ y = H 0

T and j!H 0
T(T )∼= yT . Moreover,

there is a recollement of the form

Ker H 0
T

i∗
// Mod-T c

H0
T

//

i∗

vv

i !gg
HT.

j!

xx

j∗
ee

Proof. The arguments are dual to those in the proof of Theorem 3.6. Note that the
additional assumption of the t-structure being smashing comes into play through
the use of Theorem 3.2(2), which is needed in an essential way to prove the
pure-projectivity of the associated silting object. On the other hand, we have
seen in Example 3.4(2) that the t-structure is smashing whenever T is a pure-
projective silting object. Finally, observe that we get a recollement rather than just
a localisation sequence like in Theorem 3.6, since, in the given context, Ker H 0

T is
closed under products and coproducts in Mod-T c (see also [Psaroudakis and Vitória
2014, Corollary 4.4]). �

As an immediate consequence of these results, we can identify the t-structures
with Grothendieck hearts within the bijections of Theorem 3.5.

Corollary 3.8. There is a bijection between

• smashing nondegenerate t-structures of T whose heart is a Grothendieck
category;

• equivalence classes of pure-injective cosilting objects.

Dually, there is a bijection between

• smashing and cosmashing nondegenerate t-structures in T whose heart is a
Grothendieck category with a projective generator;

• equivalence classes of pure-projective silting objects.



270 LIDIA ANGELERI HÜGEL, FREDERIK MARKS AND JORGE VITÓRIA

4. Cosuspended TTF classes

In this section, we focus on cosuspended TTF classes in a compactly generated
triangulated category T . We relate the properties of the previous section (namely,
Grothendieck hearts and the pure-injectivity of the associated cosilting objects) with
the definability of the cosuspended TTF class. As a consequence, if T is algebraic,
nondegenerate compactly generated t-structures have Grothendieck hearts.

Coherent functors and definability. We begin with a short reminder on coherent
functors and definable subcategories of T , and we obtain an easy (but useful)
criterion to check whether a certain subcategory of T is definable or not. We also
prove that a definable subcategory V of T is preenveloping, i.e., for any object X
in T there is a map φ : X → V with V in V such that HomT (φ, V ′) is surjective
for all V ′ in V .

Recall from [Krause 2002b, Proposition 5.1] that a covariant additive functor
F : T →Mod(Z) is said to be coherent if the following equivalent conditions are
satisfied:

(1) There are compact objects K and L and a presentation

HomT (K ,−)→ HomT (L ,−)→ F→ 0.

(2) F preserves products and coproducts and sends pure triangles to short exact
sequences.

The category of coherent functors is denoted by Coh-T . For a locally coherent
Grothendieck category G or, more generally, a locally finitely presented additive
category with products, coherent functors are defined analogously, replacing in
(1) the compactness of K and L by the property of being finitely presented. The
analogue of (2) then states that coherent functors are precisely the functors G→
Mod(Z) preserving products and direct limits [Krause 2003, Proposition 3.2].

Definition 4.1. A subcategory V of T is said to be definable if there is a set of
coherent functors (Fi )i∈I from T to Mod(Z) such that X lies in V if and only if
Fi (X)= 0 for all i in I .

Definable subcategories of a locally finitely presented additive category G with
products are defined as above: they are zero-sets of families of coherent functors.
Recall that a subcategory of G is definable if and only if it is closed under products,
direct limits and pure subobjects [Krause 2003, Theorem 2]. Moreover, definable
subcategories of G are closed under pure-injective envelopes (see [Prest 2009,
§16.1.2]). Note that, by definition, definable subcategories of T are also closed
under products, coproducts, pure subobjects and pure quotients, but we do not
know whether they are characterised by such closure conditions (unless stronger
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assumptions are imposed, see [Krause 2002b, Theorem 7.5]). A useful criterion for
definability in T will be provided in Corollary 4.4 below.

For a subcategory V of a compactly generated triangulated (respectively, a locally
coherent Grothendieck) category, we denote by Def(V) the smallest definable
subcategory containing V .

Example 4.2. A notion of flatness in Mod-T c is developed in [Krause 2000, §2.3]
and [Beligiannis 2000, §8.1]. The subcategory Flat-T c of flat objects in Mod-T c is
locally finitely presented and contains precisely the functors F that send triangles
to exact sequences or, equivalently, that satisfy Ext1(G, F) = 0 for all finitely
presented functors G in Mod-T c. Moreover, Flat-T c is a definable subcategory of
Mod-T c by [Prest 2009, Theorem 16.1.12]. Note that all objects of the form yX,
for X in T , are flat.

The definable closure Def(V) in Mod-T c of a set V of objects contained in Flat-
T c consists of pure subobjects of direct limits in Mod-T c of directed systems whose
terms are products of objects in V . To prove this, one uses the notion of a reduced
product from [Krause 1998, p. 465]. Since Flat-T c is a definable subcategory of
Mod-T c, it suffices to show that the pure subobjects of reduced products of objects
in V form a definable subcategory of Flat-T c. But the latter statement follows from
[Krause 1998, Corollary 4.10] combined with [Krause 1998, Proposition 2.2].

We have this the following useful fact (compare with [Arnesen et al. 2016,
Theorem 1.9]):

Proposition 4.3. Let fun(Flat-T c) denote the category of coherent functors from
the locally finitely presented category Flat-T c to Mod(Z). Then the assignment
fun(Flat-T c)→ Coh-T that sends a functor F to F ◦ y is an equivalence of
categories.

Proof. First, we observe that the assignment is well defined. It is clear that given F
in fun(Flat-T c), the composition F ◦ y preserves products and coproducts. Now,
given a pure triangle1 in T , we have that y(1) is a short exact sequence in Flat-T c.
Since short exact sequences in Flat-T c are pure or, equivalently, direct limits of
split exact sequences (see [Prest 2009, Theorem 16.1.15]), we see that F( y(1)) is
a short exact sequence of abelian groups. It then follows that F ◦ y is coherent by
the description (2) of coherent functors above.

In order to see that this assignment yields an equivalence of categories we show
that it admits a quasi-inverse. By [Krause 2002b, Proposition 4.1], each functor
G in Coh-T gives rise to a unique functor G in fun(Flat-T c) such that G ◦ y = G.
The uniqueness guarantees the functoriality of this assignment and it is clear that
the assignments are inverse to each other. �

As a corollary of the proposition above, we deduce the following statement.
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Corollary 4.4. Let V be a class of objects in T . The smallest definable subcategory
of T containing V is

Def(V)= {X ∈ T : yX ∈ Def( yV)}.

As a consequence, any definable subcategory of T is closed under pure-injective
envelopes.

Recall from [Crivei et al. 2010, Theorem 4.1] that any definable subcategory of
a locally finitely presented additive category G with products is preenveloping. The
following proposition establishes a triangulated analogue. Its proof is inspired by
the proof of [Aihara and Iyama 2012, Theorem 4.3].

Proposition 4.5. Let V be a definable subcategory of T . Then V is preenveloping.
In particular, if V is cosuspended, then (⊥0V,V) is a t-structure.

Proof. Since V is definable, by definition, there is a set of maps {φi : X i→Yi | i ∈ I }
in T c such that an object V in T lies in V if and only if HomT (φi , V ) is surjective
for all i in I. We need to build a V-preenvelope for a given object Z = Z0 in T .
First, setting Ki,0 := HomT (X i , Z0), we define the map

X0 :=
⊕

i∈I X (Ki,0)

i

φ0:=
⊕

i∈I φ
(Ki,0)
i

// Y 0 :=
⊕

i∈I Y (Ki,0)

i

and consider the canonical universal map a0 : X0→ Z0. Let z0 : Z0→ Z1 denote
the corresponding component of the cone of the map (φ0,−a0)

T
: X0→ Y 0⊕ Z0,

and proceed inductively to define objects Zn and maps zn : Zn → Zn+1. We
prove that the Milnor colimit VZ of the inductive system (Zn, zn)n∈N0 yields a
V-approximation of Z . Let us first observe that VZ indeed lies in V . Since both X i

and Yi are compact for any i in I , it follows that

HomT (φi , VZ )∼= lim
−−→

n∈N0

HomT (φi , Zn) : lim
−−→

n∈N0

HomT (Yi , Zn)→ lim
−−→

n∈N0

HomT (X i , Zn).

In order to see that this map is surjective, it suffices to show that any element
in lim
−−→n∈N0

HomT (X i , Zn) which is represented by a map g in HomT (X i , Zm) for
some m in N0 lies in the image of HomT (φi , VZ ). By construction of the inductive
system, there clearly is a map h in HomT (Yi , Zm+1) such that hφi = zm g. As a
consequence, the element in lim

−−→n∈N0
HomT (Yi , Zn) represented by the map h is a

preimage via lim
−−→n∈N0

HomT (φi , Zn) of the element in lim
−−→n∈N0

HomT (X i , Zn) that
we started with. This proves that HomT (φi , VZ ) is surjective for all i in I and, thus,
VZ lies in V .

We proceed to prove that the induced map v : Z→ VZ is a left V-approximation.
Given a morphism f : Z→ V with V in V , the composition f a0 factors through φ0.
Let f : Y 0 → V be such that f φ0 = f a0. By construction of Z1 as the cone
of (φ0,−a0)

T, it follows that there is a map f1 : Z1 → V such that f = f1z0.
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Inductively, one can then see that the map f indeed factors successively through
any Zn and, therefore, through the Milnor colimit VZ , as wanted.

The final statement follows from Example 2.4(3). �

Cosuspended TTF triples. Before we discuss how definability arises in the context
of cosuspended TTF triples, we first prove some auxiliary statements.

Lemma 4.6. Let (U,V,W) be a cosuspended TTF triple in T . Then (U,V) is a
nondegenerate t-structure if and only if the coheart C := V ∩W[−1] cogenerates T .
In this case, we have V = ⊥>0C .

Proof. Let (U,V,W) be a cosuspended TTF triple in T . Suppose that (U,V) is a
nondegenerate t-structure and let X be an object of T such that HomT (X,C [k])= 0,
for all k in Z. Given an integer k in Z, let us denote by uk

: T → U[k] and vk
: T →

V[k] the truncation functors corresponding to the t-structure (U[k],V[k]). Consider
a truncation triangle of the object vk(X) for the co-t-structure (V[k−1],W[k−1]),
yielding a diagram of the form

uk(X) // X
f k
// vk(X) // uk(X)[1]

Vk−1
g
// vk(X) h

// Wk−1 // Vk−1[1]

with Vk−1 in V[k − 1] and Wk−1 in W[k − 1]. We can easily deduce that Wk−1
lies in C [k] and, thus, h f k

= 0 by assumption on X. Then there is a morphism
α : X → Vk−1 such that gα = f k. Now, since Vk−1 lies in V[k − 1] ⊆ V[k], it
follows that α factors through the truncation f k−1

: X→ vk−1(X). This then yields
a map vk−1(X)→ vk(X). Considering the two compositions of this map with the
canonical morphism vk(X)→ vk−1(X) and using the minimality of the maps f k

and f k−1, we conclude that both maps are isomorphisms. Since this holds for
arbitrary k, the nondegeneracy of (U,V) implies that vk(X) = 0 for all k in Z.
Thus, X must lie in ∩n∈Z U[n] and, again by the nondegeneracy of (U,V) it must,
therefore, be zero.

Conversely, suppose that C cogenerates T and let X lie in ∩n∈Z U[n]. Consider
a morphism f : X→ C[k] for k in Z and C in C . Now, since C[k] lies in V[k] and
X lies in U[k], it follows that f = 0 and, thus, by assumption, also X = 0. Similarly,
if X is in ∩n∈ZV[n], since C[k] lies in W[k− 1], it must follow that X = 0.

Finally, assuming that C cogenerates T , we show that V = ⊥>0C . It is always
the case that V ⊆ ⊥>0C . For the reverse inclusion, let X be an object in ⊥>0C and
consider the truncation triangle

v(X)[−1] → u(X)→ X→ v(X).
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Given C in C and applying the functor HomT (−,C[k]) to the triangle, we see that
HomT (v(X),C[k + 1]) = HomT (X,C[k]) = 0 for all k > 0 and, thus, we have
HomT (u(X),C[k])= 0 for all k > 0. Moreover, since C [k] ⊂ V for all k ≤ 0, we
see that HomT (u(X),C[k])= 0 for all k ≤ 0. Since C cogenerates T , we have that
u(X)= 0 and X belongs to V , as wanted. �

Lemma 4.7. Let C be subcategory of T . Suppose that C is closed under products
and summands, and that all objects in C are pure-injective. Then there is an object
C in C such that C = Prod(C).

Proof. Consider the hereditary torsion pair (⊥0( yC ),F := Cogen( yC )) in Mod-T c.
It is well known that there is an injective object yC in Mod-T c such that F =
Cogen( yC) (see [Stenström 1975, VI, Proposition 3.7]). It follows that Prod( yC )=

Prod( yC). Since y commutes with products and is fully faithful on pure-injectives,
we get C = Prod(C )= Prod(C). �

Lemma 4.8. Let C be an additive subcategory of T and V = ⊥>0C . Then the
following statements are equivalent:

(1) V is product-closed and every object in C is pure-injective.

(2) V is definable.

Moreover, if the above conditions are satisfied, then there is a t-structure (U,V).

Proof. Suppose that (1) holds. We have to show that every object X in Def(V)
lies in V = ⊥>0C . By Corollary 4.4, the object yX lies in the definable closure
Def( yV) in Mod-T c of all objects of the form yV with V in V . By the description
of the definable closure given in Example 4.2, yX is a pure subobject of a direct
limit in Mod-T c of a directed system whose objects are products of the form∏

i∈I yX i , with X i in V . Note that, since y commutes with products, we have∏
i∈I yX i = yX I , where X I =

∏
i∈I X i . Now, since V is closed under products,

X I lies in V . Applying the functor HomMod-T c(−, yC[k]), with k > 0 and C in
C to the embedding yX→ lim

−−→I yX I , and using the pure-injectivity of C (and its
shifts), we get an epimorphism

lim
←−−

I
HomT (X I ,C[k])∼= HomMod-T c(lim

−−→
I

yX I , yC[k])� HomMod-T c( yX, yC[k])

∼= HomT (X,C[k]).

Since X I lies in V , the domain of this map vanishes and, hence, so does the
codomain, as wanted.

Conversely, suppose that V is definable. First, the subcategory V is closed under
products. Let X be an object in C and f : X→ I (X) its pure-injective envelope
in T . Since definable subcategories are closed under pure-injective envelopes and
pure quotients (see Corollary 4.4), it follows that both I (X) and Z := cone( f ) lie
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in V . Since HomT (V,C [1])= 0 it follows that HomT (Z , X [1])= 0, the triangle
induced by f splits and X is a summand of I (X), i.e., X is pure-injective.

The last statement of the lemma follows from Proposition 4.5, since V is clearly
cosuspended. �

Finally, we can now use the rather technical statements above to prove the main
theorem of this section.

Theorem 4.9. Let (U,V,W) be a cosuspended TTF triple in T such that the
t-structure (U,V) is nondegenerate. Then the following are equivalent:

(1) V is definable in T ;

(2) V = ⊥>0C for a pure-injective cosilting object C in T .

Proof. First observe that by Lemma 4.6, the coheart C = V∩W[−1] cogenerates T
and V = ⊥>0C . Since V is a TTF class, it is closed under products and, therefore, by
Lemma 4.8, V is definable if and only if every object in C is pure-injective. In that
case, since both V and W (and, thus, C ) are closed under products and summands,
by Lemma 4.7, there is C in T such that C = Prod(C).

(1)⇒ (2): Suppose now that V is definable and let C be as above. As observed,
we have that V = ⊥>0C and we only need to show that U = ⊥≤0C . Since C[k] lies
in V for all k ≤ 0, it is clear that U ⊆ ⊥≤0C . Now let X lie in ⊥≤0C and consider a
truncation triangle

u(X)→ X→ v(X)→ u(X)[1]

with u(X) in U and v(X) in V . Since both X and u(X)[1] lie in ⊥≤0C , so does v(X).
However, v(X) also lies in ⊥>0C , showing that v(X)= 0, since C is a cogenerator
of T . Hence, we have that U = ⊥≤0C .

(2)⇒ (1): In order to show that V is definable, it is enough to show that the
coheart C coincides with Prod(C) (thus proving that every object in C is pure-
injective). The argument is dual to the one used in [Angeleri Hügel et al. 2016,
Lemma 4.5]. Indeed, let X be an object in C , let I denote the set HomT (X,C)
and consider the induced universal map φ : X→ C I. If Z denotes the cone of the
map φ, then it is easy to check that Z lies in ⊥>0C and, thus, the map Z → X [1]
of the induced triangle is zero, by the assumption on X. Hence, the triangle splits
and X lies in Prod(C). This shows that C ⊆ Prod(C) and the reverse inclusion
is clear. �

Corollary 4.10. Let T be an algebraic, compactly generated triangulated category.
Every nondegenerate compactly generated t-structure has a Grothendieck heart.

Proof. From Example 2.4(2), every compactly generated t-structure (U,V) in T
admits a right adjacent co-t-structure (V,W). It is clear that V is definable as it is
the subcategory obtained as the intersection of the kernels of the coherent functors
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HomT (X,−) with X in U ∩ T c. Now, Theorem 4.9 combined with Theorem 3.6
finishes the proof. �

The corollary above extends [Bravo and Parra 2016, Corollary 2.5], which treats
the special case when T is a derived module category and the compactly generated
t-structure arises as an HRS-tilt of a torsion pair in the underlying module category.
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TRANSFINITE DIAMETER
ON COMPLEX ALGEBRAIC VARIETIES

DAVID A. COX AND SIONE MA‘U

We use methods from computational algebraic geometry to study Chebyshev
constants and the transfinite diameter of a pure m-dimensional affine alge-
braic variety in Cn (m≤n). The main result is a generalization of Zaharyuta’s
integral formula for the Fekete–Leja transfinite diameter.

1. Introduction

This paper studies a notion of transfinite diameter on a pure m-dimensional algebraic
subvariety of Cn, 1 ≤ m ≤ n. This is a natural generalization of the Fekete–Leja
transfinite diameter in Cn, which is an important quantity in pluripotential theory
and polynomial approximation. In the study of the Fekete–Leja transfinite diameter
in Cn (n > 1), an important paper is that of Zaharyuta [1975]. Given a compact set
K ⊆ Cn, Zaharyuta showed that its Fekete–Leja transfinite diameter, denoted d(K ),
was given by a well-defined limiting process analogous to the one-dimensional
case. The main result of that paper is an integral formula that realizes d(K ) as
a “geometric average” of so-called directional Chebyshev constants associated
to K ; these constants measure (in an asymptotic sense) the minimum size on K of
polynomials with prescribed leading terms.

Further developments and generalizations make use of the essential techniques in
that paper. In [Jędrzejowski 1991] the notion of homogeneous transfinite diameter
was studied and a Zaharyuta-type formula proved. In [Rumely and Lau 1994],
and later in [Rumely et al. 2000], Lau, Rumely and Varley developed Zaharyuta’s
techniques in the setting of arithmetic geometry to study the notion of sectional
capacity. More recently, Bloom and Levenberg [2003; 2010] studied a notion of
weighted transfinite diameter in Cn.

In [Baleikorocau and Ma‘u 2015] a notion of transfinite diameter was defined
and studied on an algebraic curve V ⊆Cn. It was shown that Zaharyuta’s arguments,
which exploit standard algebraic properties of polynomials, may be adapted to
handle algebraic computations in the coordinate ring of V. Well-developed methods

MSC2010: primary 32U20; secondary 14Q15.
Keywords: Chebyshev constant, transfinite diameter, Vandermonde determinant, affine variety,

Noether normalization, monomial order.
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exist to carry out such computations, using Gröbner bases. In this paper we will
apply these methods to higher dimensional algebraic varieties.

We should mention here that the notion of transfinite diameter on algebraic
varieties may be studied as a by-product of Berman and Boucksom’s [2010] general
theory of Monge–Ampère energy on compact complex manifolds. A generalization
of Zaharyuta’s result to this setting has been proved in [Witt Nyström 2014].
The Berman–Boucksom methods are quite different to those of this paper. The
connection between their setting and ours is explored in [Ma‘u 2017].

Before we describe the contents of the paper more specifically, we briefly recall
the definition of the Fekete–Leja transfinite diameter.

Let {zαj }
∞

j=1 be the monomials in n variables listed according to a graded order
(i.e., |αj | ≤ |αk | whenever j < k). Here we are using standard multi-index notation:
if αj = (αj1, . . . , αjn)⊆ Zn

≥0, then zαj = zαj1
1 zαj2

2 · · · z
αjn
n and |αj | = αj1+· · ·+αjn

denotes the total degree. Write ej = zαj ; so for a = (a1, . . . , an) ∈ Cn we have
ej (a)= aαj1

1 · · · a
αjn
n . Given a positive integer M and points {ζ1, . . . , ζM} ⊆ Cn, the

M ×M determinant

(1-1) Van(ζ1, . . . , ζM)= det
(
ej (ζi )

)M
i, j=1 = det


1 1 · · · 1

e2(ζ1) e2(ζ2) · · · e2(ζM)
...

...
. . .

...

eM(ζ1) eM(ζ2) · · · eM(ζM)


is called a Vandermonde determinant of order M. (Note that e1 = 1.)

Let K ⊆ Cn be compact and s a positive integer. Let ms be the number of
monomials of degree at most s in n variables, and let ls =

∑ms
j=1 |αj | be the sum of

the degrees. Define the s-th order diameter of K by

(1-2) ds(K ) := sup{|Van(ζ1, . . . , ζms )|
1/ls : {ζ1, . . . , ζms } ⊆ K }.

The Fekete–Leja transfinite diameter of K is defined as d(K ) := lim sups→∞ ds(K ).
In this paper, we construct a basis C of polynomials for the coordinate ring C[V ]

of a pure m-dimensional algebraic variety V ⊆ Cn (1 ≤ m ≤ n) of degree d, as
long as the ring satisfies certain algebraic conditions (see (3-1)). Write C = {ej }

∞

j=1
for this basis which we assume is listed in a graded ordering: deg(ej ) ≤ deg(ek)

if j < k. We define VanC(ζ1, . . . , ζM) to be the Vandermonde determinant with
respect to C using the formula (1-1).

Define ms = ms(V ) to be the number of elements of C of degree at most s, and
let ls = ls(V )=

∑ms
j=1 deg(ej ) be the sum of the degrees. The s-th order diameter

of a compact set K ⊆ V is defined as in (1-2) with VanC(·) replacing Van(·) on the
right-hand side. Our main theorem (Theorem 6.2) says the following.
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Theorem. The limit d(K ) := lims→∞ ds(K ) exists and

d(K )=
( d∏

j=1

T (K , λj )

)1/d

.

Following Zaharyuta’s terminology, the quantities T (K , λj ) on the right-hand
side are called principal Chebyshev constants and are defined in Section 5 as integral
averages of so-called directional Chebyshev constants. Here d is the degree of V
and the λj are the d points of intersection of the projective closure of V in Pn with a
certain subspace of the hyperplane at infinity. When V is a curve the above result is in
[Baleikorocau and Ma‘u 2015].∗ When deg(V )= 1 then there is only one principal
Chebyshev constant, and one recovers Zaharyuta’s formula, up to a normalization.

In Section 2 we give some of the background needed for subsequent sections,
including Noether normalization, the grevlex monomial ordering, normal forms
and Hilbert functions.

In Section 3 we construct a basis (denoted by C) of polynomials on the variety. The
basis C consists of d groups of polynomials associated to the Noether normalization
(elements of the form (∗∗), see Proposition 3.9), together with a “smaller” collection
of monomials (elements of the form (∗)). When V is a hypersurface, the basis C
can be computed rather explicitly.

Section 4 is a general study of weakly submultiplicative functions. In [Bloom and
Levenberg 2003] it was observed that Zaharyuta’s computations with polynomials
can be reformulated abstractly as properties of submultiplicative functions. We
verify here that the relevant calculations go through with small modifications under
slightly weaker conditions.

In Section 5, directional and principal Chebyshev constants are defined and
studied. The main point is to construct weakly submultiplicative functions using
computational properties of the basis C (Corollary 5.4). The results of Sections 3
and 4 can then be applied to this setting.

In Section 6 we prove the main theorem relating transfinite diameter to Chebyshev
constants. The standard argument, based on estimating ratios of Vandermonde
determinants with directional Chebyshev constants, goes through in its entirety.

In Section 7, we show in Theorem 7.2 that the transfinite diameter may be com-
puted using the standard basis of monomials on the variety (i.e., those monomials
that give normal forms). This uses the fact that, up to a geometric factor in some
finite set—the collection of the vi in Proposition 3.9—each polynomial in the basis
C is a monomial.

∗The principal Chebyshev constants in this paper are called directional Chebyshev constants
in [Baleikorocau and Ma‘u 2015]; for a one-dimensional curve, the λj may be interpreted as the
directions of its linear asymptotes.
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In the Appendix we compare our method to that of Rumely, Lau and Varley
[Rumely et al. 2000], whose so-called monic basis is constructed by generating basis
elements multiplicatively from a finite collection of polynomials with prescribed
behavior. We compare both methods concretely in the case of the complexified
sphere in C3.

2. Background material

We begin with Noether normalization. Consider an ideal I ⊆ C[z1, . . . , zn] with
the following properties:

(1) C[z1, . . . , zm] ∩ I = {0};

(2) For each i = m+ 1, . . . , n there is a gi ∈ I which can be written in the form

(2-1) gi = zdi
i +

di−1∑
j=0

hi j (z1, . . . , zi−1)z
j
i , with deg(hi j )+ j ≤ di for all i.

Property (1) is equivalent to saying that the map C[z1, . . . , zm] → C[z1, . . . , zn]/I,
induced by the inclusion into C[z1, . . . , zn], is injective, and property (2) implies
that the quotient is finite over C[z1, . . . , zm]. The Noether normalization theorem
says that one can always make a change of variables so that the above properties
hold. We state a specialized version of this theorem (cf., [Greuel and Pfister 2002,
Theorem 3.4.1]).

Theorem 2.1 (Noether Normalization). Let J ⊆ C[x1, . . . , xn] be an ideal. Then
there is a positive integer m ≤ n and a complex linear change of coordinates
z=T (x), zi =

∑n
j=1 Ti j x j , such that the following properties hold (write I =T (J )):

(1) The map C[z1, . . . , zm] → C[z1, . . . , zn]/I induced by inclusion is injective,
and exhibits C[z1, . . . , zn]/I as a finite C-algebra over C[z1, . . . , zm].

(2) For i = m+ 1, . . . , n, we can find polynomials gi ∈ I that satisfy (2-1).

When property (1) of the theorem holds, we write C[z1,...,zm] ⊆C[z1,...,zn]/I.
This inclusion is called a Noether normalization. All Noether normalizations used
in this paper will be assumed to satisfy the additional condition (2) of the theorem
since the degree condition in (2-1) will be important.

The grevlex ordering, which we will denote here by <gr , is the ordering defined
on Zn

≥0 by α <gr β if:

(1) |α|< |β|, or,

(2) |α|= |β|, and for some i ∈{1, . . . , n}we have αi <βi and αj =βj , for all j < i .

Define grevlex on monomials by putting zα <gr zβ if α <gr β. More precisely,
this gives the grevlex ordering with z1 <gr z2 <gr · · ·<gr zn . Note that |α|< |β|
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implies zα <gr zβ. A monomial ordering that satisfies this property is called a
graded ordering.

Denote by LT(p) the leading term of a polynomial with respect to grevlex, and
for an ideal I put LT(I ) := {LT(p) : p ∈ I }. It is well known that for each element
of C[z1, . . . , zn]/I there is a unique polynomial representative, the normal form
(with respect to grevlex), which contains no monomials in the ideal 〈LT(I )〉. If an
element of C[z1, . . . , zn]/I contains the polynomial p, then the normal form r may
be computed in practice as the remainder on dividing p by a Gröbner basis of I ;
see [Cox et al. 1997, §5.3].

Write C[z]I = C[z1, . . . , zn]I for the collection of normal forms of elements of
C[z]/I = C[z1, . . . , zn]/I. As a vector space, C[z]I has a basis consisting of all
monomials zγ /∈ 〈LT(I )〉. We can give C[z]I the structure of an algebra over C with
multiplication operation given by

(r1, r2) 7→ “the normal form of r1r2”.

We will usually denote this by r1r2, though we will write r1∗r2 when we want to
emphasize that this is the normal form of the ordinary product. Note that C[z]I and
C[z]/I are isomorphic as C-algebras, where the isomorphism is given by identifying
normal forms with their polynomial classes.

Hilbert functions play an important role in some of our proofs. We begin with
C[z]≤s = C[z1,...,zn]≤s , which consists of polynomials of degree ≤ s. Recall that

(2-2) dimC[z1,...,zn]≤s =

(
s+ n

n

)
=
(s+ n)···(s+ 1)

n!
=

1
n!

sn
+ O(sn−1).

Then (C[z]/I )≤s consists of all classes represented by a polynomial of degree ≤ s.
The dimension dim(C[z]/I )≤s gives the Hilbert function of I. We also define
C[z]I≤s to consist of all normal forms of degree ≤ s. Since <gr is a graded order,
the isomorphism C[z]I ' C[z]/I induces an isomorphism

C[z]I≤s ' (C[z]/I )≤s;

see [Cox et al. 1997, §9.3]. This has two useful consequences:

• The Hilbert function dim(C[z]/I )≤s is given by the number of monomials
zγ /∈ 〈LT(I )〉 of degree ≤ s.

• If r1 ∈ C[z]I≤s and r2 ∈ C[z]I≤t , then r1∗r2 ∈ C[z]I≤s+t .

A Noether normalization C[z1, . . . , zm] ⊆ C[z]/I has the following properties.

Proposition 2.2. Every element of C[z1, . . . , zm] is a normal form, so that

C[z1, . . . , zm] ⊆ C[z]I .

Furthermore, for i = m+ 1, . . . , n, we have zdi
i ∈ 〈LT(I )〉, where di is as in (2-1).
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Proof. For the second assertion of the proposition, suppose i ∈ {m+ 1, . . . , n} and
gi ∈ I is as in (2-1). Then the definition of grevlex and the degree condition in (2-1)
makes it easy to see that LT(gi )= zdi

i , which implies zdi
i ∈ 〈LT(I )〉.

Since normal forms are known to form a subspace, it suffices to show that every
monomial in C[z1, . . . , zm] is a normal form. Let α = (α1, α2, . . . , αm, 0, . . . , 0),
so that zα = zα1

1 zα2
2 · · · z

αm
m . We want to show that zα 6∈ 〈LT(I )〉.

Suppose not, i.e., zα ∈ 〈LT(I )〉. We will obtain a contradiction by studying the
Hilbert function. Take zγ /∈ 〈LT(I )〉, where γ = (γ1, . . . , γn). If i ≥ m + 1, then
zdi

i ∈ 〈LT(I )〉, so zdi
i cannot divide zγ. Hence

(2-3) γi < di , for all i = m+ 1, . . . , n.

Furthermore, zα ∈ 〈LT(I )〉, so zα cannot divide zγ. Then

(2-4) γi < αi , for some i = 1, . . . ,m.

Now let

L(s) := {γ : zγ /∈ 〈LT(I )〉, |γ | ≤ s},

so that |L(s)| = dim(C[z]/I )≤s is the Hilbert function. Also, for i = 1, . . . ,m, let

L i (s)= {γ ∈ L(s) : γi < αi and γm+1 < dm+1, . . . , γn < dn}.

Then (2-3) and (2-4) imply that

(2-5) L(s)⊆ L1(s)∪ · · · ∪ Lm(s).

Observe that

|L i (s)| ≤ αi · dm+1 · · · dn · dim C[z1, . . . , ẑi , . . . , zm]≤s .

Combining this with (2-2) and (2-5), we obtain |L(s)| = O(sm−1). It follows that

(2-6) dim(C[z]/I )≤s = O(sm−1).

On the other hand, the inclusion C[z1, . . . , zm] ⊆ C[z]/I gives an inclusion

C[z1, . . . , zm]≤s ⊆ (C[z]/I )≤s,

and then (2-2) implies dim(C[z]/I )≤s ≥ (1/m!)sm
+ O(sm−1). This contradicts

(2-6) and completes the proof. �

3. Constructing an ordered basis

In what follows we will use the following standard notation.
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Notation 3.1. Given a set of polynomials I ⊆ C[z1, . . . , zn] = C[z], write

V (I ) := {(a1, . . . , an) ∈ Cn
: p(a1, . . . , an)= 0 for all p ∈ I },

and given a set V ⊆ Cn, write

I(V ) := {p ∈ C[z] : p(a1, . . . , an)= 0 for all (a1, . . . , an) ∈ V }.

Let V ⊆ Cn be an affine algebraic variety of pure dimension m (m ≤ n). Here,
“pure” means that all irreducible components of V have dimension m. If we set
I := I(V )⊆ C[z1, . . . , zn], then the coordinate ring C[V ] of polynomial functions
on V satisfies

C[V ] ' C[z]/I ' C[z]I .

In what follows, we will use these isomorphisms to identify C[V ] with C[z]I and
write C[V ] = C[z]I.

We will construct a special basis of C[V ] by doing interpolation at infinity.
Identify (a1,...,an)∈Cn with [1 : a1 : ··· : an] ∈Pn; the hyperplane at infinity is then

H∞ := {[a0 : a1 : · · · : an] ∈ Pn
: a0 = 0}

and we write Cn
∪ H∞ = Pn. Denote by V ⊆ Pn the projective closure of V, which

may be computed as follows. If I = I(V )⊆ C[z] = C[z1, . . . , zn], let

I h
:= {ph

∈ C[z0, . . . , zn] : p ∈ I },

where p(z)=
∑
|α|≤d cαzα ∈ C[z] of degree d homogenizes to

ph(z0, z) :=
∑
|α|≤d

cαzd−|α|
0 zα ∈ C[z0, z] = C[z0, z1, . . . , zn].

Then the projective closure V ⊆ Pn is given by

V = V (I h)= {[a0 : · · · : an] ∈ Pn
: p(a0, . . . , an)= 0 for all p ∈ I h

}.

Note that I h is a homogeneous ideal (i.e., it is generated by homogeneous
polynomials). For a homogeneous ideal J ⊆ C[z0, . . . , zn] we will write

Jt = {p ∈ J : p is homogeneous, deg p = t},

and

(C[z0, . . . , zn]/J )t = C[z0, . . . , zn]t/Jt .
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We will assume that V has the following properties:

(3-1)

(0) V is pure of dimension m and has degree d .

(1) R := C[z1, . . . , zm] ⊆ C[V ] is a Noether normalization as above.

(2) V ∩ P consists of d distinct points, where V is the projective

closure of V in Pn and P = V (z0, . . . , zm−1)⊆ Pn.

(3) If V ∩ P = {p1, . . . , pd}, with pi = [0 : · · · : 0 : pim : · · · : pin],

then for each i , pim 6= 0.

Note that V ⊆ Pn is pure of dimension m and has degree d, while P ⊆ Pn is a
linear space of dimension n−m and has degree 1. Since V ∩ P is finite by property
(3), Bézout’s theorem implies that V ∩ P consists of d · 1= d points counted with
multiplicity. Property (3) then implies that the multiplicities of the pi are all one.
In algebraic geometry, we express this by saying that

V (I h
+〈z0, . . . , zm−1〉)= {p1, . . . , pd}

as subschemes of Pn. In other words, the variety of an ideal equals a finite collection
of points as a subscheme exactly when all of the points have multiplicity one.

It follows that the homogeneous ideals I h
+〈z0, . . . , zm−1〉 and I({p1, . . . , pd})

define the same subscheme of Pn. Hence there is an integer t0 ≥ 0 such that

(I h
+〈z0, . . . , zm−1〉)t = (I({p1, . . . , pd}))t

= { f ∈ C[z0, . . . , zn]t : f (pi )= 0, for all i = 1, . . . , d}

when t ≥ t0; see [Hartshorne 1977, II.5].
A polynomial f ∈ C[z0, . . . , zn]t gives a function on

(3-2) Um = {z = [z0 : z1 : · · · : zn] ∈ Pn
: zm 6= 0},

via [a0 : · · · : an] 7→ a−t
m f (a0, . . . , an). It is easy to see that the computation is

independent of homogeneous coordinates. For convenience this local evaluation
will be denoted f (a).

Lemma 3.2. The map C[z0, . . . , zn]t → Cd given by f 7→ ( f (p1), . . . , f (pd)) is
onto for t � 0.

Proof. By property (3) of (3-1), the points p1,..., pd are in the affine chart Um

given by (3-2). For each i = 1,...,d and pi = [0 : ··· : 0 : 1 : ui(m+1) : ··· : uin],
put qi := (0,...,0,ui(m+1),...,uin) ∈ Cn

m , where Cn
m denotes affine space with

coordinates (z0,...,zm−1,zm+1,...,zn). It is standard that one can find interpolating
polynomials w1,...,wd in C[z0,...,zm−1,zm+1,...,zn] such that wi (q j )= δi j .
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Pick any t ≥max(degw1, . . . , degwd) and set

(3-3) vi := zt
mwi (z0/zm, . . . , zm−1/zm, zm+1/zm, . . . , zn/zm).

This is a homogeneous polynomial of degree t in z0, . . . , zn and its evaluation on
Um satisfies vi (pj )= δi j . For each i , the polynomial vi ∈ C[z0, . . . , zn] evaluates
to the standard basis vector (0, . . . , 0, 1, 0, . . . , 0) = ei ∈ Cd (the 1 is in the i-th
slot), so the map is onto. �

Corollary 3.3. For t � 0, we have an exact sequence

0→ (I h
+〈z0, . . . , zm−1〉)t → C[z0, . . . , zn]t → Cd

→ 0.

Thus there are polynomials v1, . . . , vd ∈ C[z0, . . . , zn]t , unique up to elements of
(I h
+〈z0, . . . , zm−1〉)t , such that vi (pj )= δi j .

Now fix such a t and let S :=C[z0, . . . , zn]/(I h
+〈z0, . . . , zm−1〉). If we regard

the polynomials v1, . . . , vd in the above corollary as elements of St , then they have
the following properties:

(3-4) v2
i = zt

mvi for all i = 1, . . . , d; and viv j = 0 whenever i 6= j.

Lemma 3.4. For any τ ≥ t , the polynomials {zτ−t
m vi }

d
i=1 form a basis of Sτ .

Proof. The construction (3-3) applied to τ (in place of t) gives the additional powers
of zm . �

When we consider the vi as polynomials in C[z0, . . . , zn]/(I h
+〈z0〉), we have

v2
i = zt

mvi +

m−1∑
k=1

zk Hk(z1, . . . , zn),(3-5)

viv j =

m−1∑
k=1

zk Qk(z1, . . . , zn),(3-6)

where for each k, Hk(z1, . . . , zn) and Qk(z1, . . . , zn) are homogeneous polynomials
of degree 2t − 1.

The next step is to translate the vi into polynomials vi in C[V ], paying careful
attention to their degrees and the analogs of (3-5) and (3-6). Let C[V ]≤t = C[z]I≤t

be the collection of normal forms of degree ≤ t , and let C[V ]=t be those that are
homogeneous of degree t .

Lemma 3.5. We have C[V ]=t 'C[V ]≤t/C[V ]≤t−1' (C[z0, . . . , zn]/(I h
+〈z0〉))t .

Proof. Writing a normal form as a sum of homogeneous components gives the
direct sum decomposition C[V ]≤t =C[V ]=t⊕C[V ]≤t−1, and the first isomorphism
follows immediately.
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For the second, the map p 7→ zt
0 p(z1/z0, . . . , zn/z0) induces an isomorphism

C[V ]≤t ' (C[z]/I )≤t ' (C[z0, z]/I h)t ;

see [Cox et al. 1997, §9.3]. This isomorphism sends C[V ]≤t−1 ⊆ C[V ]≤t to
z0(C[z0, z]/I h)t−1, so that we get an isomorphism

C[V ]≤t/C[V ]≤t−1 ' (C[z0, z]/I h)t/z0(C[z0, z]/I h)t−1

' (C[z0, z]/(I h
+〈z0〉))t . �

Remark 3.6. Note that multiplication in C[z0, . . . , zn]/(I h
+〈z0〉) corresponds to

linear maps ∗̂ : C[V ]=t × C[V ]=s → C[V ]=s+t , where to get p∗̂q, we compute
p∗q (the normal form of pq) and then take the homogeneous part of degree s+ t .

Lemma 3.7. For each i = 1, . . . , d , there is a polynomial vi ∈C[V ]=t that satisfies
the following equations in C[V ]:

(1) vi∗vi = zt
m∗vi+

∑m−1
k=1 zk∗hk+h0 with deg(hk)≤2t−1 for each k=0,...,m−1.

(2) vi∗vj =
∑m−1

k=1 zk∗qk + q0 if i 6= j with deg(qk) < 2t − 1 for each k.

Remark 3.8. Since C[V ] is identified with the space C[z]I of normal forms, the
products involving ∗ in Lemma 3.7 represent multiplication of polynomials followed
by reduction to normal form.

Proof. Given vi ∈ (C[z0, . . . , zn]/(I h
+〈z0〉))t , let vi be the element of C[V ]=t given

by the isomorphism in Lemma 3.5. For each k = 1, . . . ,m− 1, let hk ∈ C[V ]=2t−1

be the element corresponding to Hk ∈ (C[z0, . . . , zn]/(I h
+ 〈z0〉))2t−1 in (3-5).

Then by (3-5), the polynomial

vi ∗̂vi − zt
m ∗̂vi −

m−1∑
k=1

zk ∗̂hk ∈ C[V ]=2t

corresponds to the zero polynomial in (C[z0, . . . , zn]/(I h
+ 〈z0〉))2t , so it must

be zero in C[V ]=2t . (Here, ∗̂ is as in Remark 3.6.) Thus the polynomial h0 :=

vi∗vi − zt
m∗vi −

∑m−1
k=1 zk∗hk is in C[V ]≤2t−1. This proves (1).

A similar argument applied to (3-6) proves (2). �

In what follows, we use the notation

zα = za1
1 · · · z

am−1
m−1, zβ = zbm+1

m+1 · · · z
bn
n .

Define the finite set of monomials

(3-7) B := {zl
mzβ /∈ 〈LT(I )〉, l + |β| ≤ t − 1} ⊆ C[V ].
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Proposition 3.9. C[V ] is spanned over C by the homogeneous polynomials

zαzl
m∗z

β
: α ∈ Zm−1

≥0 , zl
mzβ ∈ B,(∗)

zαzl
m∗vi : α ∈ Zm−1

≥0 , l ≥ 0, i = 1, . . . , d.(∗∗)

Remark 3.10. Note that zαzl
m is a normal form by Proposition 2.2, while the

products zαzl
mzβ and zαzl

mvi may fail to be normal forms. This explains why the
proposition uses zαzl

m∗z
β and zαzl

m∗vi .

Proof. To simplify the proof, we will omit the ∗ when multiplying normal forms. It
suffices to show that any monomial zαzl

mzβ /∈ 〈LT(I )〉 can be expressed as a linear
combination of elements of (∗) and (∗∗).

We will prove this by induction on s = |α| + l+ |β|. Suppose zαzl
mzβ /∈ 〈LT(I )〉

with s ≤ t − 1. Then |α| + l + |β| ≤ t − 1, so that zl
mzβ ∈ B. Hence the monomial

is in (∗), which proves the base case.
Next, assume s≥ t and that C[V ]≤s−1 is spanned by the polynomials (∗) and (∗∗)

of degree ≤ s− 1. Take zαzl
mzβ /∈ 〈LT(I )〉 of degree s. No factor of this monomial

is in the ideal either; in particular, zl
mzβ /∈ 〈LT(I )〉. If l+|β| ≤ t−1, then zl

mzβ ∈ B
and therefore zαzl

mzβ is an element of the form (∗).
Otherwise, τ := l + |β| ≥ t . By Lemma 3.4, we have an equation

zl
mzβ =

d∑
i=1

ai zτ−t
m vi +

m−1∑
j=0

z j H j (z0, z)+ H(z0, z),

in C[z0, z], where ai ∈ C, deg H j = τ − 1 and H ∈ I h. If we dehomogenize by
setting z0 = 1, we obtain

zl
mzβ =

d∑
i=1

ai zτ−t
m vi +

m−1∑
j=1

z j h j (z)+ h0(z)

in C[z]/I, where ai ∈ C and deg h j ≤ τ − 1. We can multiply by zα to obtain

zαzl
mzβ =

d∑
i=1

ai zαzτ−t
m vi +

m−1∑
j=1

z j (zαh j (z))+ zαh0(z)

in C[z]/I. Using the isomorphism C[V ] = C[z]I ' C[z]/I, this becomes

zαzl
mzβ =

d∑
i=1

ai zαzτ−t
m vi +

m−1∑
j=1

z j (zαh j (z))+ zαh0(z).

in C[V ]. The first sum is a linear combination of elements of the form (∗∗). For
the second sum, note that deg(zαh j ) ≤ s − 1 for each j = 1, . . . ,m − 1. By the
inductive hypothesis, this means that zαh j is a linear combination of terms in (∗)
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and (∗∗), and therefore z j zαh j is too, by definition. Finally, deg(zαh0) ≤ s − 1,
and again by induction, zαh0 is a linear combination of terms in (∗) and (∗∗). �

The following is an immediate corollary of the above proof:

Corollary 3.11. C[V ]≤s is spanned over C by the polynomials in (∗) and (∗∗) of
degree ≤ s.

Now that we have a spanning set, the next step in constructing the desired
basis for C[V ] is to show that the elements of the form (∗∗) are linearly in-
dependent over C. These elements are monomials in z1, . . . , zm multiplied by
one of v1, . . . , vd . Since the inclusion C[z1, . . . , zm] ⊆ C[V ] makes C[V ] into a
module over R =C[z1, . . . , zm], we can verify linear independence by showing the
following:

Theorem 3.12. The polynomials v1, . . . , vd generate a free R-submodule of C[V ].

Proof. We first observe that since V has dimension m and degree d , we have

(3-8) dim C[V ]≤s =
d
m!

sm
+ O(sm−1);

see, e.g., [Cox et al. 1997, §9.3]. Now let

M :=
d∑

i=1

Rvi and N :=
∑
B

C[z1, . . . , zm−1]zl
mzβ,

and for s ≥ t define

M≤s :=

d∑
i=1

R≤s−tvi , N≤s :=
∑
B

C[z1, . . . , zm−1]≤s−l−|β|zl
mzβ .

The corollary implies C[V ]≤s = M≤s + N≤s . Using (2-2), one easily obtains

dim N≤s ≤
|B|

(m−1)!
sm−1
+ O(sm−2).

Combining this with (3-8) and C[V ]≤s = M≤s + N≤s yields

dim M≤s =
d
m!

sm
+ O(sm−1).

Suppose there is a nontrivial relation

(3-9) f1v1+ · · ·+ fdvd = 0, fi ∈ R, not all fi = 0.

Let D =max{deg f1, . . . , deg fd} and take a large integer s ≥ t + D. There is an
exact sequence

0→ Ks→ Rd
≤s−t

ϕs
→ M≤s→ 0,
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where ϕs : Rd
≤s−t → M≤s−t is given by ϕ(g1, . . . , gd)=

∑
i givi and Ks := kerϕs .

We have Rs−t−D · ( f1, . . . , fd)⊆ Rd
≤s−t , so by (3-9),

Rs−t−D( f1, . . . , fd)⊆ Ks .

Since ( f1,..., fd) 6= (0,...,0), we have Ks 6= 0 and so dim Ks ≥ dim Rs−t−D . Thus

dim Rd
≤s−t = dim M≤s + dim Ks ≥ dim M≤s + dim Rs−t−D.

A Hilbert function calculation then gives the inequality

d
m!

sm
+ O(sm−1)≥

( d
m!

sm
+ O(sm−1)

)
+

( 1
m!
(s− t − D)m + O(sm−1)

)
,

so that (1/m!)sm
≤ O(sm−1), a contradiction. This says that no equation of the

form (3-9) can hold, and so v1, . . . , vd are free over R. �

We now construct the sought-after ordered basis for C[V ].

Definition 3.13. By Proposition 3.9, the polynomials given by (∗) and (∗∗) span
C[V ] and by Theorem 3.12, those from (∗∗) are linearly independent. We first
create a basis of C[V ] by adjoining a sufficient number of elements of the form (∗)
to those of the form (∗∗). List those of the form (∗) in grevlex order and discard
any monomial that is linearly dependent with respect to elements of the form (∗∗)
together with previous elements of (∗); otherwise keep it. This yields the basis C of
C[V ]. We define an ordering ≺ on C as follows. First, order the elements by total
degree; then for a fixed degree s,

• let elements of (∗) precede elements of (∗∗);

• let zαzl
m∗vi ≺ zα̂z l̂

m∗vj if zαzl
m precedes zα̂z l̂

m according to grevlex;

• let zαzl
m∗vi ≺ zαzl

m∗vj if i < j ; and

• let elements of the form (∗) be ordered according to grevlex.

It is easy to see that the elements of C of degree ≤ s form a basis of C[V ]≤s .
The Chebyshev constants defined in Section 5 will use the ordered basis of C[V ]
given in Definition 3.13.

We conclude this section by computing some examples of C and ≺.

Example 3.14. Let V ={z= (z1, . . . , zn)∈Cn
: zm+1= zm+2= · · · = zn = 0}. The

Noether normalization is the identity, C[z1, . . . , zm] = C[V ], and in the notation of
(3-1), V ∩ P = {[0 : · · · : 0 : 1 : 0 : · · · : 0]}, where the 1 is in the m-th slot. We take
v1 = v1 = 1 (so t = 0). The basis C consists of the monomials in C[z1, . . . , zm],
which are elements of the form (∗∗), ordered by grevlex. There are no elements of
the form (∗) in this case.
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Example 3.15. Let V be the complexified sphere in C3, i.e., the algebraic surface
given by the equation z2

1+ z2
2+ z2

3 = 1. A basis of C[V ] is given by all monomials
not in 〈z2

3〉, i.e.,

1, z1, z2, z3, z2
1, z1z2, z1z3, z2

2, z2z3, z3
1, . . . .

The Noether normalization is C[z1, z2] ⊆ C[V ].
In P3, V is given by all points [z0 : z1 : z2 : z3] satisfying z2

1 + z2
2 + z2

3 = z2
0,

and P = {z0 = z1 = 0}. The points of V ∩ P are then p1 = [0 : 0 : 1 : −i] and
p2 = [0 : 0 : 1 : i]. Thus (3-1) is satisfied.

Interpolating polynomials are v1 =
1
2(z2+ i z3) and v2 =

1
2(z2− i z3). In this case

t = 1 so that v1 = v1 and v2 = v2. The first few elements of the basis C, ordered
by ≺, are

1, z1, v1, v2, z2
1, z1v1, z1v2, z2v1, z2v2, z3

1, . . . .

Basis elements of the form (∗) are zk
1 while those of the form (∗∗) are zα1

1 zα2
2 vi .

(Note that since l < t = 1, no factors of the form zl
2 appear in (∗)).

Example 3.16. When V =V ( f )⊆Cn is a hypersurface given by f ∈C[z1, . . . , zn],
we can generalize Example 3.15 by computing the basis C rather explicitly. We
assume that f is a product of distinct irreducible polynomials, so that I = I(V )=
〈 f 〉. We also assume that LT( f ) = zd

n where d = deg( f ). This ensures that
C[z1, . . . , zn−1] ⊆ C[V ] is a Noether normalization.

Let F := f h
∈C[z0, . . . , zn] be the homogenization of f ; then in Pn, V = V (F)

and I h
= 〈F〉. If the properties (3-1) hold, then V (F, z0, . . . , zn−2)⊆ Pn consists

of d distinct points, all with zn−1 6= 0, given by [0 : · · · : 1 : βi ] for i = 1, . . . , d.
Separating the terms of F containing only the variables zn−1, zn from the others,

(3-10) F(z)= G(zn−1, zn)+

n−2∑
l=0

zl Hl(z0, . . . , zn),

where deg(G)= d and deg Hl = d−1 for each l = 0, . . . , n−2. Thus G(1, βi )= 0
for i = 1, . . . , d.

In the notation of earlier in the section, we have

S = C[z0, . . . , zn]/(I h
+〈z0, . . . , zn−2〉)= C[z0, . . . , zn]/〈F(z), z0, . . . , zn−2〉

= C[z0, . . . , zn]/〈G(zn−1, zn), z0, . . . , zn−2〉

' C[zn−1, zn]/〈G(zn−1, zn)〉,

where the second line uses (3-10) and the third uses the map

p(z0, z1, . . . , zn) 7→ p(0, . . . , 0, zn−1, zn).
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We factor G(zn−1, zn)=
∏d

i=1(zn−βi zn−1)=
∏d

i=1 li (zn−1, zn). Note that βi 6= βj

if i 6= j. For each i = 1, . . . , d, define

(3-11) vi (zn−1, zn)=
∏
j 6=i

lj (zn−1, zn)

lj (1, βi )
.

Then deg(vi )= d − 1 for each i , and clearly

(3-12) vi (1, βj )=

{
0 if j 6= i,
1 if j = i.

Note that when f = z2
1 + z2

2 + z2
3 − 1 as in Example 3.15, we have the points

[0 : 0 : 1 : −i] and [0 : 0 : 1 : i]. Then G = z2
2+ z2

3 = (z3+ i z2)(z3− i z2)= l1l2 and
the formula for v1 reduces to

v1 =
l2(z2, z3)

l2(1,−i)
=

z3− i z2

−2i
=

1
2
(z2+ i z3),

in agreement with Example 3.15. The formula for v2 works similarly.
By (3-12), v1, . . . , vd satisfy Lemma 3.4 with t = d−1. Since the vi only involve

zn−1, zn and are normal forms with respect to grevlex (having degree ≤ d−1 in zn),
we can take vi = vi in Lemma 3.7. Thus v1, . . . , vd are defined by (3-11) and have
degree d − 1.

The next step is to identify the set B from (3-7). Since m = n−1, the monomials
zα and zβ from Proposition 3.9 are

zα = za1
1 · · · z

an−2
n−2 , zβ = zb

n.

In this notation, a monomial in z1, . . . , zn is written zαzl
n−1zb

n . Since the vi have
degree t = d − 1 and 〈LT(I )〉 = 〈LT( f )〉 = 〈zd

n〉, it follows that (3-7) becomes

B = {zl
n−1zb

n /∈ 〈z
d
n〉 : l + b ≤ d − 2} = {zl

n−1zb
n : l + b ≤ d − 2}.

Hence the collections (∗) and (∗∗) from Proposition 3.9 are

(3-13)
(∗) zαzl

n−1zb
n : α ∈ Zn−2

≥0 , l + b ≤ d − 2,

(∗∗) zαzl
n−1vi : α ∈ Zn−2

≥0 , l ≥ 0, i = 1, . . . , d.

These products are all normal forms, so no ∗ is needed in the multiplications.
The nicest feature of the hypersurface case is that the basis C consists precisely

of the polynomials in (3-13). They span by Proposition 3.9, so we only need to
prove linear independence. The polynomials in (∗∗) are linearly independent by
Theorem 3.12, and those in (∗) are linearly independent since they are normal-form
monomials. Hence it remains to study an equation of the form

linear combination of zαzl
n−1zb

n = linear combination of zαzl
n−1vi .
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The left-hand side has degree ≤ d−2 in zn−1, zn and the right-hand side has degree
≥ d − 1. This forces the linear combinations to be trivial, and linear independence
follows.

To summarize: when V = V ( f ) is a hypersurface of degree d, the vi are
polynomials of degree d − 1 that we can compute explicitly in terms of f , and the
elements of (∗) consist of all monomials zα1

1 · · · z
αn−1
n−1 zαn

n with αn−1+αn ≤ d − 2.

4. Weakly submultiplicative functions

Bloom and Levenberg [2003] observed that the main properties of Zaharyuta’s
directional Chebyshev constants followed from the submultiplicative property of
sup norms of Chebyshev polynomials, and could be recast rather abstractly as
properties of submultiplicative functions on integer tuples. We verify here that these
properties still hold under slightly weaker conditions. The arguments are those
of Zaharyuta’s [1975] paper with minor adjustments. We will apply these results
concretely in the next section.

Definition 4.1. Let m be a positive integer. A nonnegative function Y :Zm
≥0→R≥0

is said to be weakly submultiplicative if there is a finite subset F of Zm
≥0 such that:

For all α, β ∈ Zm
≥0 there exists γ ∈ F such that Y (α+β + γ )≤ Y (α)Y (β).

Y has subexponential growth if for some C, r > 1 we have Y (α)≤ Cr |α| for all α.

Remark 4.2 (cf., [Bloom and Levenberg 2003]). When Y (α + β) ≤ Y (α)Y (β),
i.e., F = {(0, . . . , 0)}, Y is called submultiplicative. A submultiplicative function
automatically has subexponential growth: if α = (α1, . . . , αm) then

Y (α)= Y
( m∑

k=1

αkek

)
≤

m∏
k=1

Y (ek)
αk ≤ r |α|,

where ek is the k-th coordinate vector and r = maxk Y (ek). It seems that weak
submultiplicativity should also imply subexponential growth, but the above argument
runs into some technical difficulties.

Let

6m :=
{
θ = (θ1, . . . , θm) ∈ Rm

: θi ≥ 0 for all i,
∑

iθi = 1
}

denote the simplex in Rm, and let 6◦m := {θ ∈6m : θi > 0 for all i} be its interior.

Lemma 4.3. Let Y : Zm
≥0→ R≥0 be weakly submultiplicative with subexponential

growth. For all θ ∈6◦m , the limit T (θ) := lim
|α|→∞
α/|α|→θ

Y (α)1/|α| exists.
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Proof. Let {α( j)} and {α̃( j)} be sequences in Zm
≥0 such that α( j)/|α( j)|,α̃( j)/|α̃( j)|→θ

as j→∞ and

lim
j→∞

Y (α( j))
1/|α( j)| = lim inf

|α|→∞,α/|α|→θ
Y (α)1/|α| := L1,

lim
j→∞

Y (α̃( j))
1/|α̃( j)| = lim sup

|α|→∞,α/|α|→θ

Y (α)1/|α| := L2.

To prove the lemma it is sufficient to show that L2≤ L1. By passing to subsequences
we may assume that |α̃( j)|/|α( j)| →∞ as j→∞.

Let q j denote the largest nonnegative integer for which all the components of
r( j) := α̃( j)− q jα( j) are nonnegative. We claim that

(4-1)
q j |α( j)|

|α̃( j)|
→ 1,

|r( j)|

|α̃( j)|
→ 0 as j→∞.

Write α( j) = |α( j)|(θ + ε( j)) and α̃( j) = |α̃( j)|(θ + ε̃( j)) where ε( j), ε̃( j) → 0 as
j→∞. A calculation in components shows that

(4-2) α̃( j)ν =
|α̃( j)|

|α( j)|

(
1+
|α( j)|

α( j)ν
(ε̃( j)ν − ε( j)ν)

)
α( j)ν for each ν = 1, . . . ,m,

where we write α( j) = (α( j)1, . . . , α( j)m), etc. For any ν, we have

|α( j)|

α( j)ν
(ε̃( j)ν − ε( j)ν)→

1
θν
(0− 0)= 0 as j→∞.

(Here we use the fact that θ ∈ 6◦m , so θν 6= 0.) This says that given ε > 0, the
quantity in parentheses on the right-hand side of (4-2) exceeds 1− ε for all ν when
j is sufficiently large. The definition of q j then implies that

q j ≥
|α̃( j)|

|α( j)|
(1− ε)− 1,

and hence q j |α( j)|/|α̃( j)| ≥ 1− ε− |α( j)|/|α̃( j)| → 1− ε as j→∞. On the other
hand, q j |α( j)|/|α̃( j)| ≤ 1 for all j. Since ε is arbitrary, (4-1) follows.

Let c := max{γν : ν ∈ {1, . . . ,m}, (γ1, . . . , γm) ∈ F}, and let sj be the largest
nonnegative integer such that

sj (α( j)ν + c)≤ q jα( j)ν for all ν = 1, . . . ,m.

Using this, there exists r̃( j) ∈ Zm
≥0 such that

Y (α̃( j))=Y (q jα( j)+ r( j))= Y (sjα( j)+ sjγ( j)+ r̃( j)),



296 DAVID A. COX AND SIONE MA‘U

where γ( j)∈F satisfies Y (2α( j)+γ( j))≤Y (α( j))
2. It is easy to see that |q j |/|sj |→1,

and hence (4-1) holds with q j , r( j) replaced by sj , r̃( j). Finally,

Y (α̃( j))
1/|α̃( j)| = Y (sjα( j)+ sjγ( j)+ r̃( j))

1/|α̃( j)|

≤ (Y (α( j))
sj Y (r̃( j)))

1/|α̃( j)|

≤ (Y (α( j))
1/|α( j)|)sj |α( j)|/|α̃( j)|C1/|α̃( j)|r |r̃( j)|/|α̃( j)|,

where C, r are as in Definition 4.1. Taking the limit as j→∞ of the first and last
expressions yields L2 ≤ L1. This completes the proof. �

Recall that a positive real-valued function f on a convex set C ⊆ Rn is said
to be logarithmically convex if f ((1− t)a+ tb)≤ f (a)1−t f (b)t for all a, b ∈ C ;
equivalently, log( f ) is convex.

Lemma 4.4. The function θ 7→ T (θ), defined as in the previous lemma, is uniformly
bounded and logarithmically convex on 6◦m (and hence continuous).

Proof. Boundedness follows easily from subexponential growth: if Y (α)≤ Cr |α|

for all α ∈ Zm
≥0 then T (θ)≤ r for all θ ∈6◦m .

To prove logarithmic convexity, fix θ, θ̃ ∈6◦m and t ∈ (0, 1). Let α( j), α( j) satisfy
α( j)/|α( j)|→ θ, α̃( j)/|α̃( j)|→ θ̃ as j→∞ and |α( j)| = |α̃( j)| =: aj for each j. Let
q j , q̃ j be positive integers such that q j/(q j + q̃ j )→ t as j→∞.

For each j there exist β( j), γ( j), γ̃( j) ∈ F such that

Y
(
q jα( j)+ q̃ j α̃( j)+β( j)+ (q j − 1)γ( j)+ (q̃ j − 1)γ̃( j)

)
≤ Y

(
q jα( j)+ (q j − 1)γ( j)

)
Y
(
q̃ j α̃( j)+ (q̃ j − 1)γ̃( j)

)
≤ Y (α( j))

q j Y (α̃( j))
q̃ j .

Let ζ( j) := q jα( j)+ q̃ j α̃( j)+β( j)+ (q j −1)γ( j)+ (q̃ j −1)γ̃( j). Since F is bounded,
it is easy to see that |ζ( j)|/|q jα( j)+ q̃ j α̃( j)| → 1 as j→∞ and

lim
j→∞

ζ( j)

|ζ( j)|
= lim

j→∞

q jα( j)+ q̃ j α̃( j)

|q jα( j)+ q̃ j α̃( j)|

= lim
j→∞

q jα( j)

(q j + q̃ j )aj
+

q̃ j α̃( j)

(q j + q̃ j )aj
= tθ + (1− t)θ̃ .

Hence

T (tθ + (1− t)θ̃)= lim
j→∞

Y (ζ( j))
1/|ζ( j)|

= lim
j→∞

Y (ζ( j))
1/|q jα( j)+q̃ j α̃( j)|

≤ lim
j→∞

(Y (α( j))
1/|α( j)|)q j/q j+q̃ j (Y (α̃( j))

1/|α̃( j)|)q̃ j/q j+q̃ j

= T (θ)t T (θ̃)1−t ,

which concludes the proof. �
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Given b ∈ ∂6m =6m \6
◦
m , define

(4-3) T−(b) := lim inf
|α|→∞,α/|α|→b

Y (α)1/|α|.

Lemma 4.5. Let b ∈ ∂6m . Then

T−(b)= lim inf
θ→b, θ∈6◦m

T (θ).

Proof. Let {θ( j)} j≥1 be a sequence of points in 60
m with θ( j)→ b as j→∞, and

for each j choose α( j) such that∣∣∣ α( j)

|α( j)|
− θ( j)

∣∣∣< 1
j
, |Y (α( j))

1
|α( j)| − T (θ( j))|<

1
j
.

Then α( j)/|α( j)| → b as j→∞, so

T−(b)≤ lim inf
j→∞

Y (α( j))
1/|α( j)| ≤ lim inf

j→∞

(
T (θ( j))+

1
j

)
= lim inf

j→∞
T (θ( j)).

Hence T−(b)≤ lim infθ→b, θ∈6◦m T (θ) since the sequence θ( j) was arbitrary.
It remains to prove the reverse inequality. Let σ = (σ1, . . . , σm) satisfy σν > 0

for each ν; then (b+ σ)/(1+ |σ |) ∈6◦m . We will show that

(4-4) T
( b+σ

1+|σ |

)
≤ r

|σ |
1+|σ | T−(b)

1
1+|σ | .

(Here r is as in Definition 4.1.)
Choose sequences α( j), `( j) in Zm

≥0 such that |α( j)| →∞ and

α( j)

|α( j)|
→ b with Y (α( j))

1
|α( j)| → T−(b), and

`( j)

|α( j)|
→ σ.

Since Y is weakly submultiplicative with subexponential growth,

(4-5) Y (`( j)+α( j)+ γ( j))≤ Y (`( j))Y (α( j))≤ Cr |`( j)|Y (α( j))

for appropriate γ( j) ∈ F.
We compute `( j)/|α( j)+ `( j)|→σ/(1+|σ |) and α( j)/|α( j)+ `( j)|→b/(1+|σ |)

as j→∞. Since F is bounded we also have γ( j)/|`( j)+α( j)+ γ( j)|→ (0, . . . , 0)
and |`( j)+α( j)|/|`( j)+α( j)+ γ( j)| → 1. The inequality (4-5) then yields (4-4) by
a similar limiting process as detailed in the previous lemmas. Finally, using (4-4),

lim inf
θ→b, θ∈6◦m

T (θ)≤ lim inf
|σ |→0

σi>0 for all i

T
( b+σ

1+|σ |

)
≤ lim
|σ |→0

r
|σ |

1+|σ | T−(b)
1

1+|σ | = T−(b),

which is the desired inequality. �

An immediate consequence of Lemma 4.4 and equation (4-4) is the following.
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Corollary 4.6. Suppose T (φ) 6= 0 for some φ ∈6◦m . Then T (θ) 6= 0 for all θ ∈6◦m
and T−(b) 6= 0 for all b ∈ ∂6m . The same conclusion holds if T−(c) 6= 0 for some
c ∈ ∂6m .

Lemma 4.7. Let Q be a compact subset of 6◦m . Then

lim sup
|α|→∞

{
|Y (α)1/|α|− T (θ(α))| : α

|α|
=: θ(α) ∈ Q

}
= 0.

If T is as in the previous corollary, then also

lim sup
|α|→∞

{
| log Y (α)1/|α|− log T (θ(α))| : α

|α|
=: θ(α) ∈ Q

}
= 0.

Proof. Let L denote the first lim sup, and let {α( j)} be a sequence for which

lim
j→∞
|Y (α( j))

1/|α( j)|− T (θ( j))| = L ,

where θ( j) = α( j)/|α( j)|. We may assume that θ( j)→ θ ∈ Q by passing perhaps to
a subsequence. Then

|Y (α( j))
1/|α( j)|− T (θ( j))| ≤ |Y (α( j))

1/|α( j)|− T (θ)| + |T (θ)− T (θ( j))|

and as j→∞, the first expression on the right-hand side goes to zero by Lemma 4.3
and the second by continuity of T (Lemma 4.4). So L = 0 as required.

If T is as in the previous corollary, then all quantities inside the second lim sup
are finite. To prove this second statement, one does a similar argument as above,
writing log Y (α( j))

1/|α( j)|, log T (θ( j)), etc. in place of Y (α( j))
1/|α( j)|, T (θ( j)). �

For a positive integer s, let hm(s) denote the number of elements in the set
{α ∈ Zm

≥0 : |α| = s}; we have hm(s)=
(s+m−1

s

)
=

(s+m−1)!
s!(m−1)! .

Lemma 4.8. We have

(4-6)
1

hm(s)

∑
|α|=s

log Y (α)1/|α|→
1

vol(6m)

∫
6◦m

log T (θ) dθ as s→∞,

where on the right-hand side we integrate over θ with respect to the usual m-
dimensional volume on Rm, with vol(6m)=

∫
6m

dθ .

Proof. By Corollary 4.6 we have two cases: either T is never zero on 6◦m or T ≡ 0.
We consider the first case. For convenience write θ(α)= α/|α|. The set 6(s) :=
{θ(α) : |α| = s} is a uniformly distributed grid of points on 6m such that the discrete
probability measure (1/hm(s))

∑
|α|=s δθ(α) supported on 6(s) converges weak∗ to

(1/ vol(6m))dθ as s→∞. Since θ→ T (θ) is a bounded continuous function on
6◦m and vol(∂6)= 0,

1
hm(s)

∑
|α|=s

log T (θ(α))→
1

vol(6m)

∫
6◦m

log T (θ) dθ as s→∞.
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(To see this, note that the formula holds by weak∗ convergence when log T (θ) is
replaced by (1−χ) log T (θ) with χ an arbitrary smooth cutoff function supported
in a neighborhood of ∂6; now shrink the support of χ .)

Hence to prove (4-6), it is sufficient to show that

(4-7)
( 1

hm(s)

∑
|α|=s

|log Y (α)1/|α|− log T (θ(α))|
)
→ 0 as s→∞.

Fix δ>0 and define the compact set Qδ := {θ = (θ1, . . . , θm)∈6
◦
m : θν ≥ δ for all ν}.

For a positive integer s, let

L1(s) :=
{
α = (α1, . . . , αm) ∈ Zm

≥0 : |α| = s, α

|α|
∈ Qδ

}
and let L2(s) :=

{
α = (α1, . . . , αm) ∈ Zm

≥0 : |α| = s, α

|α|
6∈ Qδ

}
; write

L2(s)=
m⋃
ν=1

{
α ∈ L2(s) :

αν
s
< δ

}
=:

m⋃
ν=1

L2,ν(s).

Using αν < δs and
∑

η 6=ν αη ≤ s, we can estimate the size of L2,ν(s) for each ν as
|L2,ν(s)| ≤ δs

(s+m−2
s

)
. A calculation then gives

|L2(s)|
hm(s)

=

m∑
ν=1

|L2,ν(s)|
hm(s)

≤ m ·
δs
(s+m−2

s

)(s+m−1
s

) ≤ δm2.

Hence

1
hm(s)

∑
|α|=s

| log Y (α)1/|α|− log T (θ(α))|

=
1

hm(s)

∑
α∈L1(s)

| log Y (α)1/|α|− log T (θ(α))|

+
1

hm(s)

∑
α∈L2(s)

| log Y (α)1/|α|− log T (θ(α))|

≤
|L1(s)|
hm(s)

sup{|log Y (α)1/|α|− log T (θ(α))| : |α| = s, θ(α) ∈ Qδ}

+
|L2(s)|
hm(s)

(log(C
1
s r)+ log r)

≤ sup{|log Y (α)1/|α|− log T (θ(α))| : |α| = s, θ(α) ∈ Qδ}

+ δm2(log(C1/sr)+ log r),
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with C, r as in Definition 4.1. By Lemma 4.7 the sup in the above line goes to zero
as s→∞, so

lim sup
s→∞

(
1

hm(s)

∑
|α|=s

|log Y (α)1/|α|− log T (θ(α))|
)
≤ δm2(log(C1/sr)+ log r).

Since δ > 0 was arbitrary, (4-7) follows.
For the case T ≡ 0, we need to show that the left-hand side of (4-6) goes to −∞

as s→∞. Fix a compact set Q ⊆6◦m . The first part of the previous lemma yields

lim sup{Y (α)1/|α| : |α| →∞, α/|α| ∈ Q} = 0.

Hence given ε > 0,

sup{Y (α)1/|α| : |α|> N , α/|α| ∈ Q}< ε

for sufficiently large N. Using the notation L1(s), L2(s) from the proof of the first
case (with Q in place of Qδ), we have

1
hm(s)

∑
|α|=s
α/|α|∈Q

log Y (α)1/|α| ≤ 1/hm(s)
∑
|α|=s
α/|α|∈Q

log ε =
|L1(s)|
hm(s)

log ε ≤ log ε

for s > N. Finally, note that Y (α)1/|α| is uniformly bounded above for all α (say by
some constant M) since Y has subexponential growth. For all s,

1
hm(s)

∑
|α|=s
α/|α|6∈Q

log Y (α)1/|α| =
|L2(s)|
hm(s)

M ≤ M.

Altogether, (1/hm(s))
∑
|α|=s log Y (α)1/|α| ≤ M + log ε when s > N. Since ε is

arbitrary, the left-hand side of (4-6) goes to −∞ as required. �

5. Chebyshev constants

In this section we construct Chebyshev constants on an algebraic variety V ⊆ Cn.
Suppose that V satisfies the properties (3-1). As before, R :=C[z1, . . . , zm]⊆C[V ]
is a Noether normalization, and v1, . . . , vd are the polynomials of Section 2. We
will write λ1, . . . , λd for the interpolating points denoted by p1, . . . , pd earlier,
so that we can use the letter “p” to denote polynomials. We also introduce some
additional notation.

Notation 5.1. Recall that the basis C of C[V ] was constructed in Definition 3.13,
ordered by ≺. Denote by {ej }

∞

j=1 the enumeration of C according to ≺. For
f =

∑
j aj ej ∈C[V ] we write LT≺( f )= ak ek for the leading term, i.e., ak 6= 0 and

aj = 0 for all j > k. For f, g ∈ C[V ], write f ≺ g if LT≺( f )≺ LT≺(g).
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In what follows, α will always denote a multi-index in Zm
≥0, and we write

α = (α′, αm) where α′ ∈ Zm−1
≥0 and αm ∈ Z≥0. For convenience, we will also

identify α and α′ with (α1, . . . , αm, 0, . . . , 0) and (α1, . . . , αm−1, 0, . . . , 0) in Zn
≥0

when using multi-index notation (i.e., in expressions such as zα).

Definition 5.2. Let α ∈Zm
≥0 be a multi-index. Define for i = 1, . . . , d the collection

of polynomials

Mi (α) := {p(z) ∈ C[V ] : p(z)= zαvi + g(z), g(z)≺ zαvi }.

Fix a compact set K ⊆ V. We define the function Yi : Z
m
≥0→ R≥0 by

Yi (α) := inf{‖p‖K : p ∈Mi (α)}.

For a fixed i ∈ {1, . . . , d}, we will write `i (zα) to denote an arbitrary g ∈ C[V ]
with g ≺ zαvi . An immediate consequence of Lemma 3.7 is the following.

Lemma 5.3. We have v2
i = zt

mvi + `i (zt
m) and vivj = `i (zt

m). Hence if p ∈Mi (α),
q ∈Mi (α̃), then pq ∈Mi (α+ α̃+ γm), where γm = (0, . . . , 0, t, 0, . . . , 0), where
the t is in the m-th slot.

In the above lemma, t is as in (3-4). As a consequence, we obtain a weakly
submultiplicative function on Zm

≥0, where the set F in Definition 4.1 may be taken
to be the singleton {γm}.

Corollary 5.4. The function Yi is weakly submultiplicative with subexponential
growth. In particular,

Yi (α+ α̃+ γm)≤ Yi (α)Yi (α̃), α, α̃ ∈ Zm
≥0.

Proof. Fix indices α, α̃ ∈ Zm
≥0. Choose p ∈Mi (α) such that ‖p‖K = Yi (α) and

q ∈Mi (α̃) such that ‖q‖K = Yi (α̃). By the previous lemma, pq ∈Mi (α+ α̃+γm),
so that Yi (α+ α̃+ γm)≤ ‖pq‖K ≤ ‖p‖K‖q‖K = Yi (α)Yi (α̃).

Choose r > 1 such that K ⊆ B(0, r)={z ∈Cn
: |z| ≤ r}. Then Yi (α)≤ r |α|‖vi‖K ,

so Yi has subexponential growth (choose C >max{1, ‖vi‖K }). �

As a consequence of the results in the previous section, we have the following:

Proposition 5.5. The limit

T (K , λi , θ) := lim
|α|→∞
α/|α|→θ

Yi (α)
1/|α|

exists for each θ ∈6◦m , and θ 7→ T (K , λi , θ) defines a logarithmically homogeneous
function on 6◦m . Moreover, we have the convergence

1
hm(s)

∑
|α|=s

log Yi (α)
1/|α|
→

1
vol(6m)

∫
6◦m

log T (K , λi , θ) dθ as s→∞.
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Definition 5.6. We call T (K , λi , θ) the directional Chebyshev constant of K asso-
ciated to λi and θ .

We call

T (K , λi ) := exp
(

1
vol(6m)

∫
6◦m

log T (K , λi , θ) dθ
)

the principal Chebyshev constant of K associated to λi .
As in (4-3), we also define T−(K , λi , b) := lim inf

|α|→∞, α/|α|→b
Yi (α)

1/|α| for b∈ ∂6m .

In the proof of the main theorem on transfinite diameter, we will need to account
for polynomials whose leading terms in C are of the form (∗). For α′ ∈ Zm−1

≥0 define

M̃(α′) := {p ∈ C[V ] : LT≺(p)= zα
′

zl
mzβ with zl

mzβ ∈ B}.

Recall that this means that l + |β| < t . Set Ỹ (α′) := inf
{
‖p‖K : p ∈ M̃(α′)

}
. If

K ⊆ B(0, r) it is easy to see that

(5-1) Ỹ (α′)≤ r |α
′
|.

Also, set

(5-2) T̃ (α′) := inf{‖p‖1/deg p
K : p ∈ M̃(α′)}

and define the function

T̃−(K , θ ′) := lim inf
|α′|→∞
α′/|α′|→θ ′

T̃ (α′)

on 6m−1 := {θ
′
= (θ1, . . . , θm−1) ∈ Rm−1

:
∑

k θk = 1}. We want to get a lower
estimate for this quantity. First we make the following observation. Since the
monomial zt−|β|

m zβ is not in B it must be expressed in C[V ] with respect to the basis
C as

(5-3) zt−|β|
m zβ =

d∑
i=1

Cβivi + q(z),

where deg q ≤ t , LT≺(q)≺ v1, and not all Cβi are zero.

Lemma 5.7. Suppose Cβi 6= 0 for some i ∈ {1, . . . , d}. Then for each θ ′ ∈6m−1,

(5-4) T−(K , λi , θ)≤ T̃−(K , θ ′),

where θ = (θ ′, 0)= (θ1, . . . , θm−1, 0) ∈ ∂6m .

Proof. Fix θ ′ ∈ 6m−1 and let ε > 0. Let {α′( j)} be a sequence in Zm−1
≥0 with

|α′( j)| →∞, α′( j)/|α
′

( j)| → θ ′, and T̃ (α′( j))→ T̃−(K , θ ′) as j→∞.
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Next, choose a sequence of polynomials {pj } ⊆ C[V ] such that pj ∈ M̃(α′( j))

and ‖p‖1/deg pj
K ≤ T̃ (α′( j))+ε. Since B is finite, we can assume, by passing perhaps

to a subsequence, that LT≺(pj )= zα
′

( j)zl
mzβ , where l and β are the same for all j.

Let Q := C−1
βi zt−l−|β|

m vi and define {Pj } ⊆ C[V ] by Pj := Qpj for each j. Then
a calculation using equation (5-3) and Lemma 5.3 shows that Pj ∈Mi (α( j)) where
α( j)= (α

′

( j), t−|β|). Clearly α( j)/|α( j)|→ θ as j→∞ since l and |β| are bounded
from above by t . Now

Yi (α( j))
1/|α( j)| ≤ ‖Q‖1/|α( j)|

K ‖pj‖
1/|α( j)|

K ≤ ‖Q‖1/|α( j)|

K (T̃ (α′( j))+ ε)
deg pj/|α( j)|.

We take the lim inf as j → ∞. We have T−(K , λi , θ) ≤ T̃−(K , θ ′) + ε since
deg pj/|α( j)| → 1, and (5-4) follows since ε was arbitrary. �

Corollary 5.8. We have

lim inf
|α′|→∞

Ỹ (α′)1/|α
′
|
= lim inf
|α′|→∞

T̃ (α)≥min
{
T−(K , λi , θ) : i ∈ {1, . . . , d}, θ ∈ ∂6m

}
.

6. The transfinite diameter

Recall that {ej }
∞

j=1 denotes the enumeration of the basis C according to the ordering
≺. For a finite set {ζ1, . . . , ζs} ⊆ V, define

(6-1) VanC(ζ1, . . . , ζs) := det


1 1 · · · 1

e2(ζ1) e2(ζ2) · · · e2(ζs)
...

...
. . .

...

es(ζ1) es(ζ2) · · · es(ζs)

 .

As in the previous section, fix a compact set K ⊆ V. We have K ⊆ B(0, r) =
{|z|< r} for some r > 0.

Notation 6.1. For a positive integer s,

Vs := sup{|VanC(ζ1, . . . , ζs)| : {ζ1, . . . , ζs} ⊆ K }.

Also, given any positive integer s, let hs denote the dimension of C[V ]=s , let
ms :=

∑s
ν=0 hν denote the dimension of C[V ]≤s , and let ls :=

∑s
ν=0 νhν denote

the sum of the degrees of the basis elements C ∩C[V ]≤s .

We now state our main theorem:

Theorem 6.2. The limit d(K )= lim
s→∞

V 1/ ls
ms

exists and we have the formula

d(K )=
( d∏

i=1

T (K , λi )

)1/d

.
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To prove the theorem we will need some lemmas. Recall that B is the collection
of monomials given by (3-7).

Lemma 6.3. Let s be a positive integer. If es = zαvi for some i ∈ {1, . . . , d}, then

(6-2) Yi (α)≤
Vs

Vs−1
≤ sYi (α).

If es = zα
′

zl
mzβ with zl

mzβ ∈ B∩ C, then

(6-3) Ỹ (α′)≤
Vs

Vs−1
≤ sỸi (α

′).

Proof. Choose points ζ1, . . . , ζs−1 in K such that VanC(ζ1, . . . , ζs−1)= Vi−1. It is
easy to see that the polynomial P(z) := VanC(ζ1, . . . , ζs−1, z)/VanC(ζ1, . . . , ζs−1)

is in M(α) by expanding the determinant, and hence

Yi (α)≤ ‖P‖K ≤
Vs

Vs−1
,

which gives the first inequality of (6-2).
Now choose points ζ1, . . . , ζs in K such that VanC(ζ1, . . . , ζs) = Vi and let

t (z)= es +
∑

ν<s cνeν be a polynomial in M(α) such that ‖t‖K = Yi (α). Then by
properties of determinants,

Vi =

∣∣∣∣∣∣∣∣∣∣∣
det


1 1 · · · 1

e2(ζ1) e2(ζ2) · · · e2(ζs)
...

...
. . .

...

es−1(ζ1) es−1(ζ2) · · · es−1(ζs)

t (ζ1) t (ζ2) · · · t (ζs)



∣∣∣∣∣∣∣∣∣∣∣
≤

s∑
ν=1

|t (ζν)||V (ζ1, . . . , ζ̂ν, . . . , ζs)| ≤

s∑
ν=1

Yi (α)Vs−1 = sYi (α)Vs−1,

where we expand along the bottom row. This gives the second inequality of (6-2).
The proof of (6-3) is similar, so we omit it. �

We need to keep track of exponents. Let t be as in Section 3 (see the paragraph
following Corollary 3.3). Fix an integer s > t . For an element zαvi there are d
choices for i and hm(s−t)=

(s−t+m−1
m−1

)
=

(s−t+m−1)!
(s−t)!(m−1)! choices for α when |α|= s−t .

Hence the number of basis elements of degree s of the form (∗∗) is dhm(s− t).
Let as := hs − dhm(s − t) be the number of remaining basis elements, of the

form (∗), i.e., zα
′

azl
mzβ with α′ ∈ Zm−1

≥0 and zl
mzβ ∈ B. We then have the estimate

as ≤ |B|
(s+m−2

m−2

)
, where |B| denotes the size of the set B. Hence

(6-4)
as

hs
≤
|B|
(s+m−2

m−2

)
d
(s−t+m−1

m−1

) → 0 as s→∞, and so
dhm(s− t)

hs
→ 1.
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Let T̃s := inf{T̃ (α′) : s−t≤|α′|≤ s}, where T̃ (α′) is as in (5-2). A straightforward
corollary of the previous lemma is the following:

Corollary 6.4. For a positive integer s > t , we have

(6-5) T̃ sas
s

( ∏
|α|=s−t

d∏
i=1

Yi (α)

)
≤

Vms

Vms−1

≤

( ms !

ms−1!

)2
r sas

∏
|α|=s−t

d∏
i=1

Yi (α).

Proof. We apply Lemma 6.3 to the product

Vms

Vms−1

=
Vms

Vms−1

Vms−1

Vms−2
· · ·

Vms−1+1

Vms−1

.

For the upper estimate, we have

Vms

Vms−1

=
Vms

Vms−1

Vms−1

Vms−2
· · ·

Vms−1+1

Vms−1

=

( Vms

Vms−1
· · ·

Vms−1+as+1

Vms−1+as

)( Vms−1+as

Vms−1+as−1
· · ·

Vms−1+1

Vms−1

)
≤

(
msms−1 · · · (ms−1+ as + 1)

∏
|α|=s−t

d∏
i=1

Yi (α)
)

×

(
(ms−1+ as) · · · (ms−1+ 1)

ms−1+as∏
ν=ms−1+1

Ỹ (α′(eν))
)
,

where in the last two lines the first large parentheses apply (6-2) to those fractions
Vk/Vk−1 for which eν is of the form (∗∗)† while the second large parentheses apply
(6-3) to those fractions for which eν is of the form (∗). We have also written α′(eν)
to denote the multi-index α′ ∈ Zm−1

≥0 for which eν = zα
′

zl
mzβ. We have(

msms−1 · · · (ms−1+ as + 1)
∏
|α|=s−t

d∏
i=1

Yi (α)

)
×

(
(ms−1+ as) · · · (ms−1+ 1)

ms−1+as∏
ν=ms−1+1

Ỹ (α′(eν))
)

≤

(
ms !

ms−1!

∏
|α|=s−t

d∏
i=1

Yi (α)

)(
ms !

ms−1!

ms−1+as∏
ν=ms−1+1

r s
)

where we use (5-1) in the last line. This last expression is the upper estimate in
(6-5). The lower estimate follows similarly, using the fact that s− t ≤ |α′(eν)| ≤ s
for all ν = ms−1+ 1, . . . ,ms−1+ as , so that Ỹ (α′(eν))≥ T̃ s

s for all ν. �

†Recall that deg(zαvi )= s when |α| = s− t
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Similar reasoning as in the paragraphs before the above corollary give

ms ≤ d
(

s− t +m
m

)
+ |B|

(
s− t +m− 1

m− 1

)
,

and when s > t ,

ls =

s∑
ν=1

νhν ≥
s∑
ν=t

νhν ≥
s−t∑
ν=1

νhν+t ≥

s−t∑
ν=1

ν · d
(
ν+m− 1

m− 1

)
= dm

(
s− t +m

m+ 1

)
.

Then
ms

ls
≤

m+ 1
m(s− t)

+
|B|(m+ 1)

d(s− t)(s− t +m)
,

in particular ms/ls→ 0, and

(6-6) 1≤ (ms !)
1/ls ≤ mms/ls

s → 1 as s→∞.

Set Ts(λi ) :=
(∏
|α|=s−t Yi (α)

)1/shs
; then (6-5) becomes

(6-7) T̃ sas
s

d∏
i=1

Ts(λi )
shs ≤

Vms

Vms−1

≤ r sas
( ms !

ms−1!

)2 d∏
i=1

Ts(λi )
shs .

Write Vms = (Vms/Vms−1) · · · (Vmt+1/Vmt )Vmt . Then the above calculation yields
the following:

Corollary 6.5.

s∏
ν=t+1

(
T̃ νaν
ν

d∏
i=1

Tν(λi )
νhν

)
Vmt ≤ Vms ≤ (ms !)

2
s∏

ν=t+1

(
rνaν

d∏
i=1

Tν(λi )
νhν

)
Vmt .

To prove Theorem 6.2 we take ls-th roots in the above inequality and show that
the upper and lower estimates have the desired limit as s→∞.

Lemma 6.6. As s→∞, we have

(6-8) (ms !)
2/ls → 1,

∑s
ν=t+1 νaν

ls
→ 0, and

shs

(s− t)hm(s− t)
→ d.

Proof. The first limit follows immediately from (6-6). Writing the left-hand side
of the second limit as

∑s
ν=t+1 νaν/

∑s
ν=1 νhν , convergence of this limit to zero

follows easily from as/hs→ 0 (the first limit in (6-4)). The third limit (to d) follows
easily from the second limit in (6-4). �

Proof of Theorem 6.2. We first verify that

(6-9) Ts(λi )→ T (K , λi )
1/d as s→∞.
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By Proposition 5.5,( ∏
|α|=s−t

Yi (α)

) 1
(s−t)hm(s−t)

= exp
(

1
hm(s− t)

∑
|α|=s−t

log Yi (α)
1
|α|

)
→ T (K , λi ).

Together with the third limit of (6-8) and the definition of Ts(λi ), we get (6-9). In
turn, writing l̃s =

∑s
ν=t+1 νhν , this gives the convergence( s∏

ν=t+1

Tν(λi )
νhν

)1/l̃s

→ T (K , λi )
1/d as s→∞

of weighted geometric means. Note that l̃s/ ls→ 1 as s→∞, so we may replace
l̃s-th roots with ls-th roots in what follows. We have

(ms !)
2/ls

s∏
ν=t+1

(
rνaν

d∏
i=1

Tν(λi )
νhν

)1/ls

V 1/ls
mt

= (ms !)
2/ls r

∑
νaν/ls

d∏
i=1

( s∏
ν=t+1

Tν(λi )
νhν

)1/ ls

V 1/ls
mt
→

( d∏
i=1

T (K , λi )

)1/d

as s→∞, which shows that lim sups→∞ V 1/ ls
ms ≤

(∏d
i=1 T (K , λi )

)1/d
.

If T (K , λi )= 0 for some i then the theorem is proved, with d(K )= 0. Otherwise,
T (K , λi ) > 0 for all i ; using Corollary 4.6 it is easy to see that T−(K , λi , b) > 0
for all i = 1, . . . , d and b ∈ ∂6m ; and since ∂6m is compact, there exists c > 0
such that T−(K , λi , b)≥ c for all i and b. By Lemma 5.7,

lim inf
s→∞

T̃s ≥ lim inf
|α′|→∞

T̃ (α′)≥ min
θ ′∈6m−1

T̃−(θ ′)≥min
i,b

T−(K , λi , b)≥ c,

so there is some uniform constant ε ∈ (0, c) such that Ts > ε for all s > t , which
gives

s∏
ν=t+1

(
ενaν

d∏
i=1

Tν(λi )
νhν

)
Vmt ≤ Vms .

Now the ls-th root of the left-hand side of the above goes to
(∏d

i=1 T (K , λi )
)1/d

as s→∞ by a similar argument as before. This concludes the proof. �

7. Transfinite diameter using the standard basis

In this section we verify that the transfinite diameter of the previous section may be
computed in terms of the standard (grevlex) basis of monomials in C[V ]. Recall
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that the basis for normal forms C[z]I (where I = I(V )) is given by the collection
of monomials

{zγ : γ ∈ Z≥0, zγ 6∈ 〈LT(I )〉}.

Writing {ẽj }
∞

j=1 for the enumeration of these monomials according to grevlex, define
Van(ζ1, . . . , ζM) as in the right-hand side of (6-1) for a finite set {ζ1, . . . , ζM} ⊆ V,
replacing the ej with the ẽj . Put

Wms := sup{|Van(ζ1, . . . , ζms )| : {ζ1, . . . , ζms } ⊆ K }.

Later in this section we will need to consider Vandermonde determinants formed
from other graded polynomial bases. The Vandermonde determinant associated to
a basis F will be denoted VanF ( · ).

Lemma 7.1. Let F1 = {f̃ j }
∞

j=1 and F2 = {f j }
∞

j=1 be bases of polynomials for C[V ],
enumerated according to a graded ordering, and suppose that for some positive
integer M, f̃τ = fτ whenever τ > M. Then there exists a uniform constant κ 6= 0
such that for any integer τ ≥ M and finite set {ζ1, . . . , ζτ },

VanF1(ζ1, . . . , ζτ )= κVanF2(ζ1, . . . , ζτ ).

Proof. Fix the set {ζ1, . . . , ζτ } where τ ≥ M. Let El = [f̃ j (ζk)]
l
j,k=1 and Fl =

[f j (ζk)]
l
j,k=1 denote the Vandermonde matrices at the l-th stage for l = 1, . . . , τ .

With this notation, we have EM = PM FM , where PM is the change of basis
matrix from {f̃ j }

M
j=1 to {f j }

M
j=1 over the linear space spanned by these polyno-

mials. In particular, det PM 6= 0. Taking determinants, VanF1(ζ1, . . . , ζM) =

det(PM)VanF2(ζ1, . . . , ζM).
Similarly, write Eτ = Pτ Fτ ; then Eτ and Fτ are of the form

Eτ =
[

EM | ∗

E ′

]
, Fτ =

[
FM | ∗

E ′

]
,

the last rows (denoted by E ′) being the same since el = fl when l > M. It follows
that Pτ must be of the form

Pτ =
[

PM ∗

0 I

]
where I denotes the identity matrix, so that det Pτ = det PM .

Taking κ := det PM , the lemma follows immediately. �
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Recall that the basis C of Definition 3.13 is made up of the normal forms of two
types of polynomials:‡

(∗) zαzl
mzβ : α ∈ Zm−1

≥0 , l + |β| ≤ t − 1

(∗∗) zαzl
mvi : α ∈ Zm−1

≥0 , l ≥ 0, i = 1, . . . , d.

When these polynomials are already normal forms, as in the examples of Section 3,
we have the following theorem:

Theorem 7.2. Suppose the polynomials (∗) and (∗∗) are already in normal form.
Then lims→∞W 1/ ls

ms = d(K ). (Here ls,ms are as in Notation 6.1.)

The idea is to show that (V 1/ ls
ms /W 1/ ls

ms ) → 1 as s → ∞, where Vms is as in
the notation of the previous section. To this end, we analyze the Vandermonde
determinants that give these quantities in more detail.

Write
vj (z)=

∑
β∈D

A jβzβ, j = 1, . . . , d

where D is the collection of all basis monomials that appear in the polynomials vj for
all j = 1 . . . , d . Choose constants c,C > 0 such that for any positive integer k ≤ d ,

(7-1) c ≤ | det A| ≤ C

whenever A is a k× k nonsingular square matrix obtained by deleting sufficiently
many rows and columns of the d × |D| matrix [A jβ] j,β .§ There are finitely many
possible values for |det A|, so we may take the maximum and minimum of these as
our constants.

We are interested in |Van(ζ1, . . . , ζmτ
)| for a finite set {ζ1, . . . , ζmτ

}. The value
is the same for any graded ordering of the monomials of C[V ]≤τ , so let us construct
yet another graded ordering that will be convenient for calculation.

Fix the usual grevlex ordering on monomials of degree < t . For τ ≥ t , and
supposing that monomials of degree < τ have already been ordered, we order the
monomials of degree τ as follows. First, list the monomials of the form (∗) according
to the ordering on C. We set up some convenient notation before continuing.

Notation 7.3. Let W0 be the set consisting of the monomial basis of C[V ]≤τ−1

together with the monomials of the form (∗) of degree τ . Let W0 denote this same
set with our ordering imposed. (With this notation, the matrices given below are
uniquely determined.) Also, Wk will have the same meaning when Wk , k= 1, 2, . . .
is defined later in the section.

‡cf., Remark 3.10.
§Since only the absolute value of the determinant appears, the order of the columns (indexed by β)

is not important.
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Having listed the monomials in W0, we will use the elements of (∗∗) to order
the remaining monomials in C[V ]≤τ . Before we do this, observe that for α ∈ Zm

≥0,

zαvj =
∑
β∈D

A jβzα+β,

and since zαvj is a normal form, each of the monomials in the sum on the right-hand
side is a basis monomial.

Returning to the construction of our ordering, let us enumerate the multi-indices
α ∈ Zm

≥0 of total degree τ − t as α(1), α(2), . . . , according to their order of appear-
ance in the elements of the form (∗∗) in C.

The polynomials {zα(1)vj }
d
j=1 are linearly independent by Theorem 3.12. This

allows us to choose, for each j = 1, . . . , d , a term zα(1)+β( j) of zα(1)vj that is not a
term of zα(1)vi whenever i < j. We can also arrange that none of these terms be
in W0 either, since by the construction of C in Section 2, none of the polynomials
zα(1)vj are in the span of W0. The set of monomials defined by

W1 := {zγ : zγ ∈W0 or zγ = zα(1)+β( j)
}

is therefore a linearly independent subset of basis monomials in C[V ]≤τ .

Remark 7.4. When k > 1, note that zα(k)vj is not in the span of W1. If it were,
then all its monomials would be in W1, and, irrespective of how one orders the
remaining monomials that are not in W1, the change of basis matrix on C[V ]≤τ
from C to the monomial basis would not have full rank. This contradicts the fact
that a change of basis matrix must be invertible.

Now, write

W0

zα(1)v1
...

zα(1)vd

rest of C
(deg≤ τ)


=



W0∑
β A1βzα(1)+β

...∑
β Adβzα(1)+β

rest of C
(deg≤ τ)


=

 I 0 0
∗ A(1) ∗
0 0 I




W0

zα(1)+β(1)
...

zα(1)+β(d)

rest of C
(deg≤ τ)


,

where the ( j, k)-th entry in the block A(1) is given by A jβ with β = β(k). (The
“∗” in the blocks adjacent to A(1) also consist of entries of the form A jβ but do not
enter into subsequent calculations.) Clearly c ≤ det A(1) ≤ C as in (7-1).

Let us write this more compactly as W0

rest
of C

=
 I 0 0
∗ A(1) ∗
0 0 I

 W1

rest
of C

 .
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The ordering of the remaining monomials is done by repeating the same pro-
cess as above with the polynomials zα(2), zα(3), . . . , in turn, to form W2,W3, . . . ,
etc. Assuming that Wν−1 has already been constructed, consider the polynomi-
als {zα(ν)vj }

d
j=1. They are linearly independent, and by similar reasoning as in

Remark 7.4, none of them are in the span of Wν−1. Hence they yield d additional
basis monomials which, adjoined to Wν−1, form the set Wν . We also have an
equation of the form

(7-2)

 Wν−1

rest
of C

=
 I 0 0
∗ A(ν) ∗
0 0 I

 Wν

rest
of C

 ,
with c ≤ |det A(ν)| ≤ C as in (7-1). This is the main formula needed for the
proposition below.

Example 7.5. For the complexified sphere V (z2
1+ z2

2+ z2
3− 1) in C3, the elements

of degree τ in the basis C are

zτ1, zτ−1
1 v1, zτ−1

1 v2, zτ−2
1 z2v1, zτ−2

1 z2v2, . . . ,

where v1 =
1
2(z2+ i z3) and v2 =

1
2(z2− i z3). Then

W0 = {...,zτ1}, W1 = {...,zτ1,z
τ−1
1 z2,zτ−1

1 z3}, W2 =W1 ∪ {zτ−2
1 z2

2,z
τ−2
1 z2z3}.

Recall that for a positive integer τ ≥ t , hm(τ − t) coincides with the number
of multi-indices α for which zαvj is an element in the basis C of degree τ , where
j ∈ {1, . . . , d}. Introduce the notation

bτ :=
τ∑

s=t

hm(s− t).

A straightforward calculation shows that

(7-3) bτ/ lτ → 0 as τ →∞.

Proposition 7.6. For any collection of points {ζ1, . . . , ζmτ
}, with τ ≥ t , we have

cbτ |Van(ζ1, . . . , ζmτ
)| ≤ |VanC(ζ1, . . . , ζmτ

)| ≤ Cbτ |Van(ζ1, . . . , ζmτ
)|,

where c,C are as in (7-1).

Proof. The proof is by induction on τ . We concentrate on the upper inequality
involving C, and note that the same proof works for the lower inequality. When
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τ = t , we have
monomials in (∗)

of deg≤ t
v1...
vd

=


W0∑
β A1βzβ
...∑

β Adβzβ

= [ I | 0
A

] [
W1
]
,

and note that in this case, [W1] uses all monomials of degree ≤ t . Forming
Vandermonde determinants, we have

|VanC(ζ1, . . . , ζmt )| =

∣∣∣∣det
[

I | 0
A

]
Van(ζ1, . . . , ζmt )

∣∣∣∣≤ C |Van(ζ1, . . . , ζmt )|,

where we apply (7-1) and the fact that the determinant in the middle term is the
determinant of a d × d minor of A. This proves the base case.

Suppose the inequality holds when τ is replaced by τ − 1. For j = 0, . . . , bτ ,
let us introduce the convenient notation Van j (ζ1, . . . , ζmτ

) for the “intermediate”
Vandermonde determinants:

Van j (ζ1, . . . , ζmτ
)= det


Wj (ζ1) · · · Wj (ζmτ

)

zα( j+1)v1(ζ1) · · · zα( j+1)v1(ζmτ
)

...
. . .

...

zα(bτ )v1(ζ1) · · · zα(bτ )vd(ζmτ
)

 .
In particular, |Vanhm(τ−t)(ζ1, . . . , ζmτ

)| = |Van(ζ1, . . . , ζmτ
)|.

Using equation (7-2),

|Vanν−1(ζ1, . . . , ζmτ
)| = |det(A(ν))| · |Vanν(ζ1, . . . , ζmτ

)| ≤ C |Vanν(ζ1, . . . , ζmτ
)|

for all ν = 1, . . . , bτ , and hence by repeated application of the above,

|Van0(ζ1, . . . , ζmτ
)| ≤ Chm(τ−t)

|Van(ζ1, . . . , ζmτ
)|.

If we define κ by the equation VanC(ζ1, . . . , ζmτ−1)= κVan(ζ1, . . . , ζmτ−1), then
by Lemma 7.1,

VanC(ζ1, . . . , ζmτ
)= κVan0(ζ1, . . . , ζmτ

),

as both determinants use the same elements {emτ−1+1, . . . , emτ
} of degree τ . Also,

note that by the inductive hypothesis, we have |κ| ≤ Cbτ−1.
Putting everything together,

|VanC(ζ1, . . . , ζmτ
)| ≤ Cbτ−1 |Van0(ζ1, . . . , ζmτ

)|

≤ Cbτ−1+hm(τ−t)
|Van(ζ1, . . . , ζmτ

)| = Cbτ |Van(ζ1, . . . , ζmτ
)|,

and the induction is complete. �

Theorem 7.2 is now an easy corollary.
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Proof of Theorem 7.2. Let K ⊂V be compact. If Wmτ
=0 for some τ , then by a simi-

lar argument as in Lemma 7.1, Wms = Vms = 0 for all s ≥ τ , and the theorem follows.
Otherwise, suppose Wmτ

> 0 for all τ . It follows from the above proposition that

(7-4) cbτ Wmτ
≤ Vmτ

≤ Cbτ Wmτ
.

Using (7-3), we have cbτ / lτ ,Cbτ / lτ → 1 as τ →∞. Hence dividing by Wmτ
and

taking lτ -th roots in (7-4), we have (Vmτ
)1/ lτ /(Wmτ

)1/ lτ → 1 as τ → ∞. The
theorem is proved. �

We close the section by sketching an argument that shows how to get rid of the
assumption that the products zαzl

mzβ and zαzl
mvj used in Theorem 7.2 are normal

forms. In general, the methods of this section can be used to construct a basis W of
linearly independent (but not necessarily normal form) monomials on the variety V,
made up of the terms in these products. The same proofs also show that transfinite
diameter defined in terms of VanW( · ) gives the same value as that defined in terms
of VanC( · ).

Now all monomials in W are of the form

zαzβ = zα1
1 · · · z

αm
m zβm+1

m+1 · · · z
βn
n

with |β| ≤ t , since deg vi = t for all i . Given zαzβ as above, consider a monomial
zαzβ̃ with |β̃| ≤ s for some s ≥ t . Then for any compact set K ⊂ V that avoids the
coordinate axes in Cn,¶ one can find constants m and M such that, upon evaluating
these monomials at any point ζ ∈ K,

(7-5) ms
≤
|zαzβ̃(ζ )|
|zαzβ(ζ )|

≤ M s .

For example, choose an M > 1 such that

M ≥
max{|z| : z ∈ K }

min{|zi | : z = (z1, . . . , zn) ∈ K })
.

All elements of the (grevlex) monomial basis for C[V ] have their total degree in
the variables zm+1, . . . , zn uniformly bounded above (say by s≥ t), as a consequence
of our hypotheses in Section 3 on Noether normalization. We can therefore compare
these basis monomials to those in W using (7-5).

For an integer τ ≥ t and collection of points {ζ1, . . . , ζmτ
}⊂ K, it follows that one

can estimate the ratio |VanW(ζ1, . . . , ζmτ
)|/|Van(ζ1, . . . , ζmτ

)| with powers of m
and M, by repeatedly applying (7-5) to compare rows of the associated Vandermonde
matrices. One can verify that the growth of these powers is strictly smaller, as a
function of τ , than the growth of lτ . Finally, a similar argument as carried out in the
above proof (forming an equation similar to (7-4), taking lτ -th roots, etc.) shows

¶Further analysis can be carried out at the end to remove this condition on the axes.
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that transfinite diameter defined in terms of Van( · ) gives the same value as that
defined in terms of VanW( · ).

Appendix: The monic basis

In [Rumely et al. 2000], Rumely, Lau and Varley construct the sectional capacity
of an algebraic variety. As in our case above, Zaharyuta’s method plays an essential
role. A so-called monic basis is constructed on the variety with good multiplicative
properties, similar to those of the basis C from Definition 3.13. Using the monic
basis, Chebyshev constants are then defined in terms of normalized polynomial
classes, and products of Chebyshev constants give the sectional capacity.

The monic basis of [Rumely et al. 2000, §4] is defined in a very general, abstract
setting. For simplicity, let X ⊆ Pn be an irreducible variety of dimension m
and degree d over C. As before, homogeneous coordinates in Pn are denoted by
z = [z0 : z1 : · · · : zn]. Then X gives the graded ring C[X ] = C[z]/I(X). The
monic basis is a vector space basis of C[X ] consisting of homogeneous elements
ηγ ∈ C[X ]s . Here is a brief sketch of how the monic basis is constructed:

(1) Write X = X (0)
⊇ X (1)

⊇ X (2)
⊇ · · · ⊇ X (m−1), where for `= 1, . . . ,m−1 we

have X (`)
= {z ∈ X (`−1)

: z` = 0}. We assume X (`) to be an irreducible variety
of dimension m − `, and that the curve X (m−1) intersects z0 = 0 in distinct
smooth points of points of X (m−1); say on the set D = {q1, . . . , qd}.

(2) Fix a sufficiently large positive integer j0, so that for j ≥ j0,
(a) For each i = 1, . . . , d there exists a rational function on X (m−1) with a

pole of order j at qi and no other poles.
(b) The collection of rational functions on X (m−1) with poles of order at most

j on D is isomorphic to the collection of homogeneous polynomials on
X (m−1) of degree j.

(3) For each i, j as above, choose a rational function ηi, j (normalized appropri-
ately) that satisfies part (a) of the previous step. Choose these functions so that
the collection {ηi, j } is multiplicatively finitely generated.‖

(4) Use these rational functions to construct, for each j, a basis for the homoge-
neous polynomials of degree j on X (m−1). (Note that these are polynomials in
the variables z0, zm, zm+1, . . . , zn only.)

(5) Construct a basis for homogeneous polynomials on the spaces X (m−2),...,X (1),
X in turn by inductively adjoining monomials in the remaining variables.

The properties of the monic basis and a justification of the above steps is given
in [Rumely et al. 2000, §§4 and 5]. See especially their Theorem 4.1.

‖This will ensure that the monic basis has good multiplicative properties, as can be seen in
Example A.1 below.
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Note in particular that the monic basis gives a basis of C[X ]s for every s. This
differs from our setting, where V ⊆ Cn is an affine variety with coordinate ring
C[V ] = C[z1, . . . , zn]/I (V ). The basis C we construct in Definition 3.13 consists
of polynomials that restrict to a basis of C[V ]≤s for every s. Thus our basis is
compatible with a filtration, while the monic basis in [Rumely et al. 2000] is
compatible with a grading.

We illustrate how the two bases are related by examining the monic basis for the
complexified sphere considered in Example 3.15.

Example A.1. Let

X = {[z0 : z1 : z2 : z3] ∈ P3
: z2

1+ z2
2+ z2

3 = z2
0} ⊆ P3,

and C[X ] = C[z]/〈z2
1 + z2

2 + z2
3 − z2

0〉. Then X (1) is the quadratic curve given by
z1 = z2

2+ z2
3− z2

0 = 0 that intersects z0 = 0 in [0 : 0 : 1 : ±i].
For each j = 1, 2, . . . , it is easy to see that

η1, j (z0, z2, z3) :=
( z2+ i z3

2z0

) j
=

(v1

z0

) j

defines a rational function on X (1) with a pole of order j at [0 : 0 : 1 : −i] and no
other poles. The function defined by

η2, j (z0, z2, z3) :=
( z2− i z3

2z0

) j
=

(v2

z0

) j

has the same property in relation to [0 : 0 : 1 : i]. The rational functions with at
most poles of order j at [0 : 0 : 1 : ±i] are then spanned by

{1, η1,1, η2,1, η1,2, η2,2, . . . , η1, j , η2, j }.

A multiplicative generating set is {1, η1,1, η2,1}.
Clearing denominators (i.e., multiplying by z j

0) gives the corresponding basis
of homogeneous polynomials of degree j on X (1). For example, when j = 2 we
obtain the polynomials

z2
0, z0v1, z0v2, v

2
1, v

2
2 .

To get the basis for the variety X, we adjoin powers of z1 to basis elements for
X (1) using the decomposition C[X ] j = z1C[X ] j−1⊕C[X (1)

] j . When j = 2, for
example, we compute that

(A-1) C[X ]2 = z1C[X ]1⊕C[X (1)
]2

= z1(z1C[X ]0⊕C[X (1)
]1)⊕C[X (1)

]2

= z2
1C[X ]0⊕ z1C[X (1)

]1⊕C[X (1)
]2

= z2
1 span{1}⊕ z1 span{z0, v1, v2}⊕ span{z2

0, z0v1, z0v2, v
2
1, v

2
2}

= span{z2
0, z0z1, z2

1, z0v1, z1v1, v
2
1, z0v2, z1v2, v

2
2}.
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The last line gives the monic basis for j = 2, where the basis elements are listed
according to the ordering used in [Rumely et al. 2000].

For arbitrary j, monic basis elements C[X ] j are either monomials in z0 and
z1 of degree j, or are homogeneous polynomials of the form zα0

0 zα1
1 v

α2
i with

α0 + α1 + α2 = j. Monomials in z0, z1 are listed first in lexicographic order
(with z0 preceding z1), followed by elements of the form zα0

0 zα1
1 v

α2
i . The latter are

listed in increasing order on i , then lexicographically by α = (α0, α1, α2) ∈ Z3
≥0.

This completes the construction of the monic basis for X.

The monic basis constructed in Example A.1 involves arbitrarily large powers
of v1 and v2. This is related to the multiplicative properties of the monic basis
described in [Rumely et al. 2000, Theorem 4.1].

It is interesting to compare the monic basis of Example A.1 to the basis con-
structed in Example 3.15. There, we worked with

V = V(z2
1+ z2

2+ z2
3− 1)⊆ C3.

Since the Zariski closure of V is V = X =V(z2
1+z2

2+z2
3−z2

0)⊆P3, homogenization
with respect to z0 induces an isomorphism

C[V ]≤ j ' C[X ] j

for all j. It follows that the basis of Example 3.15, when restricted to elements of
degree ≤ j, gives a basis of C[X ] j . However, this basis differs from the monic basis
in degree j. For example, when j = 2, homogenizing the basis of Example 3.15 in
degree ≤ 2 gives the homogeneous polynomials

z2
0, z0z1, z0v1, z0v2, z2

1, z1v1, z1v2, z2v1, z2v2.

Comparing this to the last line of (A-1), we see that in degree 2, the monic basis
uses v2

1 and v2
2 , while our basis uses z1v1 and z1v2. These are related by

v2
1 = z1v1+

1
4 z2

1−
1
4 z2

0, v2
2 = z1v2+

1
4 z2

1−
1
4 z2

0.

At the conceptual level, the basis C constructed in Definition 3.13 focuses on
the module properties of the basis, as highlighted in Theorem 3.12. In contrast,
the monic basis constructed in [Rumely et al. 2000] focuses on the multiplicative
properties of the basis. In our treatment, the multiplicative properties of C follow
from Lemma 3.7. Our construction is more direct (we avoid the inductive approach
needed in that work) but less general.
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DRINFELD TWISTS AND THEIR POSITIVITY

CHIARA ESPOSITO, JONAS SCHNITZER AND STEFAN WALDMANN

We provide an explicit construction of star products on U(g)-module alge-
bras by using the Fedosov approach. This allows us to give a constructive
proof to Drinfeld’s theorem and to obtain a concrete formula for Drinfeld
twists. We prove that the equivalence classes of twists are in one-to-one
correspondence with the second Chevalley–Eilenberg cohomology of the Lie
algebra g. Finally, we show that for Lie algebras with Kähler structure we
obtain a strongly positive universal deformation of ∗-algebras by using a
Wick-type deformation. This results in a positive Drinfeld twist.
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1. Introduction

The concept of deformation quantization was defined by Bayen, Flato, Fronsdal,
Lichnerowicz and Sternheimer in [Bayen et al. 1978a; 1978b] based on Gersten-
haber’s theory [1964] of associative deformations of algebra. A formal star product
on a symplectic (or Poisson) manifold M is defined as a formal associative deforma-
tion ? of the algebra of smooth functions C∞(M) on M. The existence as well as
the classification of star products has been studied in many different settings, e.g., in
[De Wilde and Lecomte 1983; Fedosov 1986; 1994; 1996; Kontsevich 2003; Nest
and Tsygan 1995; Bertelson et al. 1997]; see also the textbooks [Esposito 2015;
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Waldmann 2007] for more details in deformation quantization. Quite parallel to
this, Drinfeld introduced the notion of quantum groups and started the deformation
of Hopf algebra; see, e.g., the textbooks [Kassel 1995; Chari and Pressley 1994;
Etingof and Schiffmann 1998] for a detailed discussion.

It turned out that under certain circumstances one can give simple and fairly
explicit formulas for associative deformations of algebras: whenever a Lie algebra
g acts on an associative algebra A by derivations, the choice of a formal Drinfeld
twist F ∈ (U (g)⊗ U (g))[[t]] allows one to deform A by means of a universal
deformation formula

(1-1) a ?F b = µA (F F (a⊗ b))

for a, b ∈ A [[t]]. Here
µA : A ⊗A → A

is the algebra multiplication and F is the action of g extended to the universal
enveloping algebra U (g) and then to U (g)⊗U (g) acting on A ⊗A . Finally, all
operations are extended R[[t]]-multilinearly to formal power series. Recall that a
formal Drinfeld twist [Drinfeld 1983; 1986] is an invertible element

F ∈ (U (g)⊗U (g))[[t]]

satisfying

(1⊗ id)(F)(F ⊗ 1)= (id⊗1)(F)(1⊗ F),(1-2)

(ε⊗ 1)F = 1= (1⊗ ε)F,(1-3)

F = 1⊗ 1+O(t).(1-4)

The properties of a twist are now easily seen to guarantee that (1-1) is indeed an
associative deformation.

Yielding the explicit formula for the deformation universally in the algebra A ,
Drinfeld twists are considered to be of great importance in deformation theory
in general, and in fact, are used at many different places. We just mention a few
recent developments, certainly not exhaustive: Giaquinto and Zhang studied the
relevance of universal deformation formulas like (1-1) in great detail in the seminal
paper [Giaquinto and Zhang 1998]. Bieliavsky and Gayral [2015] used universal
deformation formulas also in a nonformal setting by replacing the notion of a
Drinfeld twist with a certain integral kernel. This sophisticated construction leads
to a wealth of new strict deformations having the above formal deformations as
asymptotic expansions. But also beyond pure mathematics the universal deformation
formulas found applications, e.g., in the construction of quantum field theories on
noncommutative spacetimes; see, e.g., [Aschieri and Schenkel 2014].

In characteristic zero, there is one fundamental example of a Drinfeld twist in
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the case of an abelian Lie algebra g. Here one chooses any bivector π ∈ g⊗ g and
considers the formal exponential

(1-5) FWeyl–Moyal = exp(tπ),

viewed as element in (U (g)⊗ U (g))[[t]]. An easy verification shows that this
is indeed a twist. The corresponding universal deformation formula goes back
at least till [Gerstenhaber 1968, Theorem 8] under the name of deformation by
commuting derivations. In deformation quantization the corresponding star product
is the famous Weyl–Moyal star product if one takes π to be antisymmetric.

While this is an important example, it is not at all easy to find explicit formulas
for twists in the general nonabelian case. A starting point is the observation that the
antisymmetric part of the first order of a twist, F1−T(F1), where T is the usual flip
isomorphism, is first an element in 32g instead of 32U (g), and second a classical
r-matrix. This raises the question whether one can go the opposite direction of
a quantization: does every classical r-matrix r ∈32g on a Lie algebra g arise as
the first order term of a formal Drinfeld twist? It is now a celebrated theorem of
Drinfeld [1983, Theorem 6] that this is true.

But even more can be said: given a twist F one can construct a new twist by
conjugating with an invertible element S ∈U (g)[[t]] starting with S = 1+O(t) and
satisfying ε(S)= 1. More precisely,

(1-6) F ′ =1(S)−1F(S⊗ S)

turns out to be again a twist. In fact, this defines an equivalence relation on the set
of twists, preserving the semiclassical limit, i.e., the induced r -matrix. In the spirit
of Kontsevich’s formality theorem, and in fact building on its techniques, Halbout
[2006] showed that the equivalence classes of twists quantizing a given classical
r-matrix are in bijection with the equivalence classes of formal deformations of
the r -matrix in the sense of r-matrices. In fact, this follows from Halbout’s more
profound result on formality for general Lie bialgebras; the quantization of r-
matrices into twists is just a special case thereof. His theorem holds in a purely
algebraic setting (in characteristic zero) but relies heavily on the fairly inexplicit
formality theorems of Kontsevich [2003] and Tamarkin [1998] which in turn require
a rational Drinfeld associator.

On the other hand, there is a simpler approach to the existence of twists in the
case of real Lie algebras: in seminal work of Drinfeld [1983] he showed that a twist
is essentially the same as a left G-invariant star product on a Lie group G with Lie
algebra g, by identifying the G-invariant bidifferential operators on G with elements
in U (g)⊗U (g). The associativity of the star product gives then immediately the
properties necessary for a twist and vice versa. Moreover, an r -matrix is nothing else
as a left G-invariant Poisson structure; see his Theorem 1. In that paper, Drinfeld
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also gives an existence proof of such G-invariant star products and therefore of
twists; see Theorem 6. His argument uses the canonical star product on the dual of a
central extension of the Lie algebra by the cocycle defined by the (inverse of the) r -
matrix, suitably pulled back to the Lie group; see also Remark 5.8 for further details.

The equivalence of twists translates into the usual G-invariant equivalence of star
products as discussed in [Bertelson et al. 1998]. Hence one can use the existence
(and classification) theorems for invariant star products to yield the corresponding
theorems for twists, a fact we learned from personal communication with Beliavsky.
This is also the point of view taken by Dolgushev et al. in [Dolgushev et al. 2002],
where the star product is constructed in a way inspired by Fedosov’s construction
of star products on symplectic manifolds.

A significant simplification concerning the existence comes from the observation
that for every r -matrix r ∈32g there is a Lie subalgebra of g, namely

(1-7) gr = {(α⊗ id)(r) | α ∈ g∗},

such that r ∈32gr and r becomes nondegenerate as an r -matrix on this Lie subal-
gebra [Etingof and Schiffmann 1998, Propositions 3.2–3.3]. Thus it will always
be sufficient to consider nondegenerate classical r-matrices when interested in
the existence of twists. For the classification this is of course not true since a
possibly degenerate r -matrix might be deformed into a nondegenerate one only in
higher orders: here one needs Halbout’s results for possibly degenerate r -matrices.
However, starting with a nondegenerate r-matrix, one will have a much simpler
classification scheme as well.

The aim of this paper is now twofold: On the one hand, we want to give a direct
construction to obtain the universal deformation formulas for algebras acted upon
by a Lie algebra with nondegenerate r-matrix. This will be obtained in a purely
algebraic fashion for sufficiently nice Lie algebras and algebras over a commutative
ring R containing the rationals. Our approach is based on a certain adaptation of
the Fedosov construction of symplectic star products, which is in some sense closer
to the original Fedosov construction compared to the approach of [Dolgushev et al.
2002] but yet completely algebraic. More precisely, the construction will not involve
a twist at all but just the classical r -matrix. Moreover, it will be important to note
that we can allow for a nontrivial symmetric part of the r -matrix, provided a certain
technical condition on it is satisfied. This will produce deformations with more
specific features: as in usual deformation quantization one is not only interested
in the Weyl–Moyal like star products, but certain geometric circumstances require
more particular star products like Wick-type star products on Kähler manifolds
[Karabegov 1996; 2013; Bordemann and Waldmann 1997] or standard-ordered star
products on cotangent bundles [Bordemann et al. 1998; 2003].

On the other hand, we give an alternative construction of Drinfeld twists, again in
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the purely algebraic setting, based on the above correspondence to star products but
avoiding the techniques from differential geometry completely in order to be able
to work over a general field of characteristic zero. We also obtain a classification
of the above restricted situation where the r -matrix is nondegenerate.

In fact, both questions turn out to be intimately linked since applying our universal
deformation formula to the tensor algebra of U (g) will yield a deformation of the
tensor product which easily allows one to construct the twist. This is remarkable
insofar as the tensor algebra is of course rigid, the deformation is equivalent to the
undeformed tensor product, but the deformation is not the identity, allowing one
therefore to consider nontrivial products of elements in T•(U (g)).

We show that the universal deformation formula we construct in fact coincides
with (1-1) for the twist we construct. However, it is important to note the detour via
the twist is not needed to obtain the universal deformation of an associative algebra.

Finally, we add the notion of positivity: this seems to be new in the whole
discussion of Drinfeld twists and universal deformation formulas so far. To this
end we consider now an ordered ring R containing Q and its complex version
C= R(i) with i2 =−1, and ∗-algebras over C with a ∗-action of the Lie algebra g,
which is assumed to be a Lie algebra over R admitting a Kähler structure. Together
with the nondegenerate r -matrix we can define a Wick-type universal deformation
which we show to be strongly positive: every undeformed positive linear functional
stays positive also for the deformation. Applied to the twist we conclude that the
Wick-type twist is a convex series of positive elements.

The paper is organized as follows. In Section 2 we explain the elements of
the (much more general) Fedosov construction which we will need. Section 3
contains the construction of the universal deformation formula. Here not only the
deformation formula will be universal for all algebras A but also the construction
itself will be universal for all Lie algebras g. In Section 4 we construct the Drinfeld
twist while Section 5 contains the classification in the nondegenerate case. Finally,
Section 6 discusses the positivity of the Wick-type universal deformation formula.
In two Appendices we collect some more technical arguments and proofs. The
results of this paper are partially based on the master thesis [Schnitzer 2016].

For symplectic manifolds with suitable polarizations one can define various types
of star products with separation of variables [Karabegov 1996; 2013; Bordemann
and Waldmann 1997; Donin 2003; Bordemann et al. 1998; 1999; 2003] which have
specific properties adapted to the polarization. The general way to construct (and
classify) them is to modify the Fedosov construction by adding suitable symmetric
terms to the fiberwise symplectic Poisson tensor. We have outlined that this can
be done for twists as well in the Kähler case, but there remain many interesting
situations. In particular a more cotangent bundle-like polarization might be useful.
We plan to come back to these questions in a future project.
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2. The Fedosov Setup

In the following we present the Fedosov approach in the particular case of a Lie
algebra g with a nondegenerate r-matrix r . We follow the presentation of the
Fedosov approach given in [Waldmann 2007] but replace differential geometric
concepts by algebraic versions in order to be able to treat not only the real case. The
setting for this work will be to assume that g is a Lie algebra over a commutative
ring R containing the rationals Q⊆R such that g is a finite-dimensional free module.

We denote by {e1, . . . , en} a basis of g and by {e1, . . . , en
} its dual basis of g∗.

We also assume the r -matrix r ∈32g to be nondegenerate in the strong sense from
the beginning, since, at least in the case of R being a field, we can replace g by gr

from (1-7) if necessary. Hence r induces the musical isomorphism

(2-1) ] : g∗→ g

by pairing with r , the inverse of which we denote by [ as usual. Then the defining
property of an r -matrix is Jr, rK= 0, where J · , · K is the unique extension of the Lie
bracket to 3•g turning the Grassmann algebra into a Gerstenhaber algebra. Since
we assume r to be (strongly) nondegenerate we have the inverse ω ∈ 32g∗ of r
and Jr, rK = 0 becomes equivalent to the linear condition δCEω = 0, where δCE is
the usual Chevalley–Eilenberg differential. Moreover, the musical isomorphisms
intertwine δCE on 3•g∗ with the differential Jr, · K on 3•g. We refer to ω as the
induced symplectic form.

Remark 2.1. For the Lie algebra g there seems to be little gain in allowing a ring R

instead of a field K of characteristic zero, as we have to require g to be a free module
and (2-1) to be an isomorphism. However, for the algebras which we would like
to deform there will be no such restrictions later on. Hence allowing for algebras
over rings in the beginning seems to be the cleaner way to do it, since after the
deformation we will arrive at an algebra over a ring, namely R[[t]] anyway.

Definition 2.2 (Formal Weyl algebra). The algebra
(∏
∞

k=0 Skg∗⊗3•g∗
)
[[t]] is called

the formal Weyl algebra where the product µ is defined by

(2-2) ( f ⊗ α) · (g⊗ β)= µ( f ⊗ α, g⊗ β)= f ∨ g⊗ α∧β.

for any factorizing tensors f ⊗ α, g⊗ β ∈W ⊗3• and extended R[[t]]-bilinearly.
We write W =

∏
∞

k=0 Skg∗[[t]] and 3• =3•g∗[[t]].

Since g is assumed to be finite-dimensional we have

(2-3) W ⊗3• =
( ∞∏

k=0

Skg∗⊗3•g∗
)
[[t]].
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Since we will deform this product µ we shall refer to µ also as the undeformed
product of W ⊗3•. It is clear that µ is associative and graded commutative with
respect to the antisymmetric degree. In order to handle this and various other
degrees, it is useful to introduce the degree maps

(2-4) degs, dega, degt :W ⊗3
•
→W ⊗3•,

defined by the conditions

(2-5) degs( f ⊗ α)= k f ⊗ α and dega( f ⊗ α)= ` f ⊗ α

for f ∈ Skg∗ and α ∈ 3`g∗. We extend these maps to formal power series by
R[[t]]-linearity. Then we can define the degree map degt by

(2-6) degt = t
∂

∂t
,

which is, however, not R[[t]]-linear. Finally, the total degree is defined by

(2-7) Deg= degs+2 degt .

It will be important that all these maps are derivations of the undeformed product
µ of W ⊗3•. We denote by

(2-8) Wk ⊗3
•
=

⋃
r≥k

{a ∈W ⊗3• | Deg a = ra}

the subspace of elements which have total degree bigger or equal to +k. This
endows W ⊗3• with a complete filtration, a fact which we shall frequently use
in the sequel. Moreover, the filtration is compatible with the undeformed product
(2-2) in the sense that

(2-9) ab ∈Wk+`⊗3
• for a ∈Wk ⊗3

• and b ∈W`⊗3
•.

Following the construction of Fedosov, we define the operators δ and δ∗ by

(2-10) δ = ei
∧ is(ei ) and δ∗ = ei

∨ ia(ei ),

where is and ia are the symmetric and antisymmetric insertion derivations. Both
maps are graded derivations of µ with respect to the antisymmetric degree: δ lowers
the symmetric degree by one and raises the antisymmetric degree by one; for δ∗ it
is the other way round. For homogeneous elements a ∈ Skg∗⊗3`g∗ we define

(2-11) δ−1(a)=
{

0 if k+ `= 0,
1/(k+ `)δ∗(a) else,

and extend this R[[t]]-linearly. Notice that this map is not the inverse of δ; instead
we have the following properties:
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Lemma 2.3. For δ, δ∗ and δ−1 defined above, δ2
= (δ∗)2 = (δ−1)2 = 0 and

(2-12) δδ−1
+ δ−1δ+ σ = id,

where σ is the projection on the symmetric and antisymmetric degree zero.

In fact, this can be seen as the polynomial version of the Poincaré lemma: δ
corresponds to the exterior derivative and δ−1 is the standard homotopy.

The next step consists of deforming the product µ into a noncommutative one:
we define the star product ◦π for a, b ∈W ⊗3• by

(2-13) a ◦π b = µ ◦ e(t/2)P(a⊗ b), where P = π i j is(ei )⊗ is(ej ),

for π i j
=r i j
+si j, where r i j are the coefficients of the r -matrix and si j

= s(ei , e j )∈R

are the coefficients of a symmetric bivector s ∈ S2g. When taking s = 0 we denote
◦π simply by ◦Weyl.

Proposition 2.4. The star product ◦π is an associative R[[t]]-bilinear product on
W ⊗3• deforming µ in zeroth order of t . Moreover, the maps δ, dega, and Deg are
graded derivations of ◦π of antisymmetric degree +1 for δ and 0 for dega and Deg,
respectively.

Proof. The associativity follows from the fact that the insertion derivations are
commuting; see [Gerstenhaber 1968, Theorem 8]. The statement about δ, dega and
Deg are immediate verifications. �

Next, we will need the graded commutator with respect to the antisymmetric
degree, denoted by

(2-14) ad(a)(b)= [a, b] = a ◦π b− (−1)k`b ◦π a

for any a ∈W⊗3k and b ∈W⊗3` and extended K[[t]]-bilinearly as usual. Since
◦π deforms the graded commutative product µ, all graded commutators [a, b]
will vanish in the zeroth order of t . This allows one to define graded derivations
(1/t) ad(a) of ◦π .

Lemma 2.5. An element a ∈W ⊗ 3• is central, that is ad(a) = 0, if and only if
degs(a)= 0.

By definition, a covariant derivative is an arbitrary bilinear map

(2-15) ∇ : g× g 3 (X, Y ) 7→ ∇X Y ∈ g.

The idea is that in the geometric interpretation the covariant derivative is uniquely
determined by its values on the left invariant vector fields: we want an invariant
covariant derivative and hence it should take values again in g. An arbitrary covariant
derivative is called torsion-free if

(2-16) ∇X Y −∇Y X − [X, Y ] = 0
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for all X, Y ∈ g. Having a covariant derivative, we can extend it to the tensor algebra
over g by requiring the maps

(2-17) ∇X : T•g→ T•g

to be derivations for all X ∈ g. We also extend ∇X to elements in the dual by

(2-18) (∇Xα)(Y )=−α(∇X Y )

for all X, Y ∈ g and α ∈ g∗. Finally, we can extend ∇X to T•g∗ as a derivation, too.
Acting on symmetric or antisymmetric tensors, ∇X will preserve the symmetry type
and yields a derivation of the ∨- and ∧-products, respectively. The fact that we
extended ∇ as a derivation in a way which is compatible with natural pairings will
lead to relations like

(2-19) [∇X , is(Y )] = is(∇X Y )

for all X, Y ∈ g, as one can easily check on generators.
Sometimes it will be advantageous to use the basis of g for computations. With

respect to the basis we define the Christoffel symbols

(2-20) 0k
i j = ek(∇ei ej )

of a covariant derivative, where i, j, k= 1, . . . , n. Clearly, ∇ is uniquely determined
by its Christoffel symbols. Moreover, ∇ is torsion-free if and only if

(2-21) 0k
i j −0

k
ji = Ck

i j ,

with the usual structure constants Ck
i j = ek([ei , ej ]) ∈ R of the Lie algebra g.

As in symplectic geometry, the Hess trick [1981] shows the existence of a
symplectic torsion-free covariant derivative:

Proposition 2.6 (Hess trick). Let (g, r) be a Lie algebra with nondegenerate r-
matrix r and inverse ω. Then there exists a torsion-free covariant derivative ∇ such
that for all X ∈ g we have

(2-22) ∇Xω = 0 and ∇Xr = 0.

Proof. The idea is to start with the half-commutator connection as in the geometric
case and make it symplectic by means of the Hess trick. The covariant derivative

∇̃ : g× g 3 (X, Y ) 7→ 1
2 [X, Y ] ∈ g

is clearly torsion-free. Since ω is nondegenerate, we can determine a map ∇X

uniquely by

(2-23) ω(∇X Y, Z)= ω(∇̃X Y, Z)+ 1
3(∇̃Xω)(Y, Z)+ 1

3(∇̃Yω)(X, Z).
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It is then an immediate computation using the closedness δCEω = 0 of ω, that this
map satisfies all requirements. �

The curvature R̃ corresponding to ∇ is defined by

(2-24) R̃ : g×g×g3 (X, Y, Z) 7→ R̃(X, Y )Z =∇X∇Y Z−∇Y∇X Z−∇[X,Y ]Z ∈ g.

For a symplectic covariant derivative, we contract R̃ with the symplectic form ω

and get

(2-25) R : g× g× g× g 3 (Z ,U, X, Y ) 7→ ω(Z , R̃(X, Y )U ) ∈ R,

which is symmetric in the first two components and antisymmetric in the last ones:
this follows at once from ∇ being torsion-free and symplectic. In other words,
R ∈ S2(g∗)⊗32g∗ becomes an element of the formal Weyl algebra satisfying

(2-26) degs R = 2R = Deg R, dega R = 2R, and degt R = 0.

In the following, we will fix a symplectic torsion-free covariant derivative, the
existence of which is granted by Proposition 2.6. Since ∇X acts on all types of
tensors already, we can use ∇ to define the following derivation D on the formal
Weyl algebra

(2-27) D :W ⊗3• 3 ( f ⊗ α) 7→ ∇ei f ⊗ ei
∧α+ f ⊗ ei

∧∇eiα ∈W ⊗3
•+1.

Notice that we do not use the explicit expression of ∇ given in (2-23). In fact, any
other symplectic torsion-free covariant derivative will do the job as well.

For every torsion-free covariant derivative ∇ it is easy to check that

(2-28) ei
∧∇eiα = δCEα

holds for all α ∈3•g∗: indeed, both sides define graded derivations of antisymmetric
degree +1 and coincide on generators in g∗ ⊆3•g∗. Therefore, we can rewrite D as

(2-29) D( f ⊗ α)=∇ei f ⊗ ei
∧α+ f ⊗ δCEα.

From now on, unless clearly stated, we refer to [ · , · ] as the supercommutator with
respect to the antisymmetric degree.

Proposition 2.7. Let ∇ be a symplectic torsion-free covariant derivative. If in
addition s is covariantly constant, i.e., if ∇X s = 0 for all X ∈ g, the map D :
W ⊗3•→W ⊗3•+1 is a graded derivation of antisymmetric degree +1 of the
star product ◦π , i.e.,

(2-30) D(a ◦π b)= D(a) ◦π b+ (−1)ka ◦π D(b)

for a ∈W ⊗3k and b ∈W ⊗3•. In addition, we have

(2-31) δR=0, DR=0, [δ, D]= δD+Dδ=0, D2
=

1
2
[D, D]= 1

t
ad(R).
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Proof. For the operator P from (2-13) we have

(id⊗∇ek +∇ek ⊗ id)P(a⊗ b)

= π i j is(ei )a⊗∇ek is(ej )b+π i j
∇ek is(ei )a⊗ is(ej )b

(a)
= (π`j0i

k`+π
i`0

j
k`) is(ei )a⊗ is(ej )b+P(id⊗∇ek +∇ek ⊗ id)(a⊗ b)

= P(id⊗∇ek +∇ek ⊗ id)(a⊗ b)

for a, b∈W⊗3•. Here we used the relation [∇X , is(Y )]= is(∇X Y ) as well as the def-
inition of the Christoffel symbols in (a). In the last step we used π`j0i

k`+π
i`0

j
k`=0

which follows from ∇(r + s)= 0. Therefore we have

∇ei ◦µ ◦ e
1
2 tP
= µ ◦ (id⊗∇ei +∇ei ⊗ id) ◦ e

1
2 tP
= µ ◦ e

1
2 tP
◦ (id⊗∇ei +∇ei ⊗ id).

By ∧-multiplying by the corresponding ei it follows that D is a graded derivation
of antisymmetric degree +1. Let f ⊗ α ∈W ⊗3•. Just using the definition of δ,
(2-29) and the fact that ∇ is torsion-free we get

δD( f ⊗ α)= δ(∇ek f ⊗ ek
∧α+ f ⊗ δCEα)

=−Dδ( f ⊗ α)+ 1
2(0

`
ik −0

`
ki −C`

ik) is(e`) f ⊗ ei
∧ ek
∧α

=−Dδ( f ⊗ α).

Using a similar computation in coordinates, we get D2
=

1
2 [D, D] = (1/t) ad(R).

Finally, from the Jacobi identity of the graded commutator we get (1/2t) ad(δR)=
[δ, [D, D]] = 0. Hence δR is central. Since δR has symmetric degree +1, this can
only happen if δR = 0. With the same argument, 0= [D, [D, D]] yields that DR
is central, which again gives DR = 0 by counting degrees. �

Remark 2.8. In principle, we will mainly be interested in the case s = 0 in the
following. However, if the Lie algebra allows for a covariantly constant s it might
be interesting to incorporate this into the universal construction: already in the
abelian case this leads to the freedom of choosing a different ordering than the
Weyl ordering (total symmetrization). Here in particular the Wick ordering is of
significance due to the better positivity properties; see [Bursztyn and Waldmann
2000] for a universal deformation formula in this context.

The core of Fedosov’s construction is now to turn −δ+D into a differential: due
to the curvature R the derivation −δ+ D is not a differential directly. Nevertheless,
from the above discussion we know that it is an inner derivation. Hence the idea is
to compensate the defect of being a differential by inner derivations, leading to the
following statement:
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Proposition 2.9. Let � ∈ t32g∗[[t]] be a series of δCE-closed two-forms. Then there
is a unique % ∈W2⊗3

1, such that

(2-32) δ% = R+ D%+ 1
t % ◦π %+�

and

(2-33) δ−1% = 0.

Moreover, the derivation DF =−δ+ D+ (1/t) ad(%) satisfies D2
F = 0.

Proof. Let us first assume that (2-32) is satisfied and apply δ−1 to (2-33). This
yields

δ−1δ% = δ−1
(

R+ Dx + 1
t
% ◦π %+�

)
.

From the Poincaré Lemma as in Lemma 2.3 we have

(2-34) % = δ−1
(

R+ D%+ 1
t
% ◦π %+�

)
.

Let us define the operator B :W ⊗31
→W ⊗31 by

B(a)= δ−1
(

R+ Da+ 1
t

a ◦π a+�
)
.

Thus the solutions of (2-33) coincide with the fixed points of the operator B.
Now we want to show that B has indeed a unique fixed point. By a careful but
straightforward counting of degrees we see that B maps W2 ⊗ 3

1 into W2 ⊗ 3
1.

Second, we note that B is a contraction with respect to the total degree. Indeed, for
a, a′ ∈W2⊗3

1 with a− a′ ∈Wk ⊗3
1 we have

B(a)− B(a′)= δ−1 D(a− a′)+ 1
t
(a ◦π a− a′ ◦π a′)

= δ−1 D(a− a′)+ 1
t
δ−1((a− a′) ◦π a′+ a ◦π (a− a′)).

The first term δ−1 D(a−a′) is an element of Wk+1⊗3
1, because D does not change

the total degree and δ−1 increases it by+1. Since Deg is a ◦π -derivation and since a,
a′ have total degree at least 2 and their difference has total degree at least k, the sec-
ond term has total degree at least k+1, as 1/t has total degree −2 but δ−1 raises the
total degree by +1. This allows one to apply the Banach fixed-point theorem for the
complete filtration by the total degree: we have a unique fixed-point B(%)= % with
%∈W2⊗3

1, i.e., % satisfies (2-34). Finally, we show that this % fulfills (2-33). Define

A = δ%− R− D%− 1
t
% ◦π %−�.
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Applying δ to A and using Proposition 2.7, we obtain

δA =−δD%− 1
t
(δ% ◦π %− % ◦π δ%)

= Dδ%+ 1
t

ad(%)δ%

= D
(

A+ R+ D%+ 1
t
% ◦π %+�

)
+

1
t

ad(%)
(

A+ R+ D%+ 1
t
% ◦π %+�

)
(a)
= D A+ 1

t
ad(%)(A).

In (a) we used that (−δ+D+ (1/t) ad(%))(R+D%+ (1/t)%◦π %+�)= 0, which
can be seen as a version of the second Bianchi identity for −δ+ D+ (1/t) ad(%).
This follows by an explicit computation for arbitrary %. On the other hand

δ−1 A = δ−1
(
δ%− R− D%− 1

t
% ◦π %−�

)
= δ−1δ%− % = δδ−1% = 0

for % being the fixed-point of the operator B. In other words,

A = δ−1δA = δ−1
(

D A+ 1
t

ad(%)(A)
)

is a fixed-point of the operator K :W ⊗3•→W ⊗3• defined by

K a = δ−1
(

Da+ 1
t

ad(%)(a)
)
.

Using an analogous argument to the one above, this operator is a contraction with
respect to the total degree, and has a unique fixed-point. Finally, since K is linear
the fixed-point has to be zero, which means that A = 0. �

Remark 2.10. It is important to note that the above construction of the element %,
which will be the crucial ingredient in the universal deformation formula below, is
a fairly explicit recursion formula. Writing % =

∑
∞

r=3 %
(r) with components %(r) of

homogeneous total degree Deg %(r) = r%(r) we see that %(3) = δ−1(R+ t�1) and

(2-35) %(r+3)
= δ−1

(
D%(r+2)

+
1
t

r−1∑
`=1

%(`+2)
◦π %

(r+2−`)
+�(r+2)

)
,

where �(2k)
= tk�k for k ∈ N and �(2k+1)

= 0. Moreover, if we find a flat ∇, i.e.,
if R = 0, then for trivial �= 0 we have % = 0 as solution.

3. Universal deformation formula

Let us consider a triangular Lie algebra (g, r) acting on a generic associative algebra
(A , µA ) via derivations. We denote by F the corresponding Hopf algebra action
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U (g)→ End(A ). In the following we refer to

A ⊗W ⊗3• =
∞∏

k=0

(A ⊗ Skg∗⊗3•g∗)[[t]]

as the enlarged Fedosov algebra. The operators defined in the previous section are
extended to A ⊗W ⊗3• by acting trivially on the A -factor and as before on the
W ⊗3•-factor.

The deformed product ◦π on W ⊗3• together with the product µA of A yields
a new (deformed) R[[t]]-bilinear product mA

π for the extended Fedosov algebra.
Explicitly, on factorizing tensors we have

(3-1) mA
π (ξ1⊗ f1⊗ α1, ξ2⊗ f2⊗ α2)= (ξ1 · ξ2)⊗ ( f1⊗ α1) ◦π ( f2⊗ α2),

where ξ1, ξ2 ∈ A , f1, f2 ∈ S•g∗ and α1, α2 ∈3
•g∗. We simply write ξ1 · ξ2 for the

(undeformed) product µA of A . Clearly, this new product mA
π is again associative.

As new ingredient we use the action F to define the operator LA :A ⊗W⊗3•→
A ⊗W ⊗3• by

(3-2) LA (ξ ⊗ f ⊗ α)= ei F ξ ⊗ f ⊗ ei
∧α

on factorizing elements and extend it R[[t]]-linearly as usual. Since the action of Lie
algebra elements is by derivations, we see that LA is a derivation of A ⊗W ⊗3•

of antisymmetric degree +1. The sum

(3-3) DA = LA +DF

is thus still a derivation of antisymmetric degree +1 which we call the extended
Fedosov derivation. It turns out to be a differential, too:

Lemma 3.1. The map DA = LA +DF squares to zero.

Proof. First, we observe that D2
A = L2

A +[DF, LA ], because D2
F = 0. Next, since F

is a Lie algebra action, we immediately obtain

L2
A (ξ ⊗ f ⊗ α)= 1

2Ck
i j ek F ξ ⊗ f ⊗ ei

∧ e j
∧α

on factorizing elements. We clearly have [δ, LA ] = 0 = [ad(%), LA ] since the
maps act on different tensor factors. It remains to compute the only nontrivial term
in [DF, LA ] = [D, LA ]. Using δCEek

=−
1
2Ck

i j e
i
∧ e j , this results immediately in

[D, LA ] = −L2
A . �

The cohomology of this differential turns out to be almost trivial: we only have
a nontrivial contribution in antisymmetric degree 0, the kernel of DA . In higher
antisymmetric degrees, the following homotopy formula shows that the cohomology
is trivial:
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Proposition 3.2. The operator

(3-4) D−1
A = δ

−1 1

id−
[
δ−1, D+ LA +

1
t

ad(%)
]

is a well-defined R[[t]]-linear endomorphism of A ⊗W ⊗3• and we have

(3-5) a = DA D−1
A a+D−1

A DA a+
1

id−
[
δ−1, D+ LA +

1
t

ad(%)
]σ(a).

for all a ∈ A ⊗W ⊗3•.

Proof. Let us denote by A the operator [δ−1, D + LA + (1/t) ad(%)]. Since it
increases the total degree by +1, the geometric series (id− A)−1 is well defined as a
formal series in the total degree. We start with the Poincaré equation (2-12) and get

(3-6) −DA δ
−1a− δ−1DA a+ σ(a)= (id− A)a,

since DA deforms the differential −δ by higher order terms in the total degree. The
usual homological perturbation argument then gives (3-4) by a standard computation;
see, e.g., [Waldmann 2007, Proposition 6.4.17] for this computation. �

Corollary 3.3. Let a ∈ A ⊗W ⊗30. Then DA a = 0 if and only if

(3-7) a =
1

id−
[
δ−1, D+ LA +

1
t

ad(%)
]σ(a).

Since the element a∈A⊗W⊗30 is completely determined in the symmetric and
antisymmetric degree 0, we can use it to define the extended Fedosov Taylor series.

Definition 3.4 (Extended Fedosov Taylor series). Given the extended Fedosov
derivation DA =−δ+ D+ LA + (1/t) ad(%), the extended Fedosov Taylor series
of ξ ∈ A [[t]] is defined by

(3-8) τA (ξ)=
1

id−
[
δ−1, D+ LA +

1
t

ad(%)
]ξ.

Lemma 3.5. For ξ ∈ A [[t]] we have

(3-9) σ(τA (ξ))= ξ.

Moreover, the map τA : A [[t]] → ker DA ∩ ker dega is a R[[t]]-linear isomorphism
starting with

(3-10) τA (ξ)=
∞∑

k=0

[
δ−1, D+LA +

1
t

ad(%)
]k
(ξ)= ξ⊗1⊗1+ei Fξ⊗ei

⊗1+· · ·
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in zeroth and first order of the total degree.

Proof. The isomorphism property follows directly from Corollary 3.3. The commu-
tator [δ−1, D+ LA + (1/t) ad(%)] raises the total degree at least by one, thus the
zeroth and first order terms in the total degree come from the terms with k = 0 and
k = 1 in the geometric series in (3-10). Here it is easy to see that the only nontrivial
contribution is [

δ−1, D+ LA +
1
t

ad(%)
]
ξ = LA ξ,

proving the claim in (3-10). Note that already for k = 2 we also get contributions
of S and ad(%). �

Given the R[[t]]-linear isomorphism τA :A [[t]]→ ker DA ∩ker dega we can turn
A [[t]] into an algebra by pulling back the deformed product: note that the kernel of
a derivation is always a subalgebra and hence the intersection ker DA ∩ ker dega is
also a subalgebra. This allows us to obtain a universal deformation formula for any
U (g)-module algebra A :

Theorem 3.6 (Universal deformation formula). Let g be a Lie algebra with non-
degenerate r-matrix. Moreover, let s ∈ S2g be such that there exists a symplectic
torsion-free covariant derivative ∇ with s being covariantly constant. Consider
then π = r+s. Finally, let�∈ t32g∗[[t]] be a formal series of δCE-closed two-forms.
Then for every associative algebra A with action of g by derivations one obtains an
associative deformation mA

? : A [[t]]×A [[t]] → A [[t]] by

(3-11) mA
? (ξ, η)= σ(m

A
π (τA (ξ), τA (η))).

Writing simply ?= ?�,∇,s for this new product, one has

(3-12) ξ ? η = ξ · η+
t
2
π i j (ei F ξ) · (ej F η)+O(t2) for ξ, η ∈ A .

Proof. The product mA
? is associative, because mA

π is associative and τA is an
isomorphism onto a subalgebra with inverse σ . The second part is a direct conse-
quence of Lemma 3.5. �

Remark 3.7. The above theorem can be further generalized by observing that given
a Poisson structure on A induced by a generic bivector on g, we can reduce to the
quotient g/ ker F and obtain an r -matrix on the quotient, inducing the same Poisson
structure.

4. Universal construction for Drinfeld twists

Let us consider the particular case in which A is the tensor algebra (T•(U (g)),⊗).
In this case, we denote by L the operator LT•(U (g)) : T•(U (g)) ⊗ W ⊗ 3• →
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T•(U (g))⊗W ⊗3•, which is given by

(4-1) LT•(U (g))(ξ ⊗ f ⊗ α)= Lei ξ ⊗ f ⊗ ei
∧α.

Here Lei is the left multiplication in U (g) of the element ei extended as a derivation
of the tensor product. Note that it is independent of the choice of the basis in g.

Applying the results discussed in the last section, we obtain a star product for
the tensor algebra over U (g) as a particular case of Theorem 3.6:

Corollary 4.1. The map m? :T•(U (g))[[t]]×T•(U (g))[[t]]→T•(U (g))[[t]] given by

(4-2) m?(ξ, η)= ξ ? η = σ(mπ (τ (ξ), τ (η)))

is an associative product and

(4-3) ξ ? η = ξ ⊗ η+ 1
2 tπ i j Lei ξ ⊗ Lejη+O(t2) for ξ, η ∈ T•(U (g)).

In the following we prove that the star product m? defined above allows one to
construct a formal Drinfeld twist. Let us define, for any linear map

(4-4) 8 : U (g)⊗k
→ U (g)⊗`,

the lifted map

(4-5) 8Lift
:U (g)⊗k

⊗W⊗3• 3 ξ⊗ f ⊗α 7→8(ξ)⊗ f ⊗α ∈U (g)⊗`⊗W⊗3•,

obeying the following simple properties:

Lemma 4.2. Let 8 : U (g)⊗k
→ U (g)⊗` and 9 : U (g)⊗m

→ U (g)⊗n be linear
maps.

(i) The lifted map 8Lift commutes with δ, δ−1, D, and ad(x) for all x ∈W ⊗3•.

(ii) We have

(4-6) 8 ◦ σ |U (g)⊗k⊗W⊗3• = σ |U (g)⊗`⊗W⊗3• ◦8
Lift.

(iii) We have

(4-7) (8⊗9)Liftmπ (a1, a2)= mπ (8
Lift(a1),9

Lift(a2)),

for any a1 ∈ U (g)⊗k
⊗W ⊗3• and a2 ∈ U (g)⊗m

⊗W ⊗3•.

Let η ∈ U (g)⊗k
[[t]] be given. Then we can consider the right multiplication by

η using the algebra structure of U (g)⊗k
[[t]] coming from the universal enveloping

algebra as a map

(4-8) ·η : U (g)⊗k
3 ξ 7→ ξ · η ∈ U (g)⊗k .
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To this map we can apply the above lifting process and extend it this way to a
R[[t]]-linear map such that on factorizing elements

(4-9) ·η : U (g)⊗k
⊗W ⊗3• 3 ξ ⊗ f ⊗ α 7→ (ξ · η)⊗ f ⊗ α ∈ U (g)⊗k,

where we simply write ·η instead of (·η)Lift. Note that a · η is only defined if the
tensor degrees k of η ∈ Tk(U (g)) and a coincide since we use the algebra structure
inherited from the universal enveloping algebra.

In the following we denote by D the derivation DT•(U (g)) as obtained in (3-3). We
collect some properties how the lifted right multiplications match with the extended
Fedosov derivation:

Lemma 4.3. (i) For any a ∈ Tk(U (g))⊗W⊗3• and ξ ∈ Tk(U (g))[[t]], we have
D(a · ξ)= D(a) · ξ

(ii) The extended Fedosov-Taylor series τ preserves the tensor degree of elements
in T•(U (g)).

(iii) For any ξ, η ∈ Tk(U (g))[[t]], we have τ(ξ · η)= τ(ξ) · η.

(iv) For any a1 ∈ Tk(U (g))⊗W ⊗3• and a2 ∈ T`(U (g))⊗W ⊗3• as well as
η1 ∈ Tk(U (g))[[t]] and η2 ∈ T`(U (g))[[t]], we have mπ (a1 · η1, a2 ·l η2) =

mπ (a1, a2) · (η1⊗ η2).

Proof. Let ξ ⊗ a ∈ Tk(U (g))⊗W ⊗3• and η ∈ Tk(U (g)). Then we have

D((ξ ⊗ a) · η)= D((ξ · η)⊗ a)

= Lei (ξ · η)⊗ ei
∧ a+ (ξ · η)⊗DF(a)

= (Lei (ξ)⊗ ei
∧ a) · η+ (ξ ⊗DF(a)) · η = D(a) · η.

This proves the first claim. The second claim follows immediately from the fact
that all operators defining τ do not change the tensor degree. In order to prove the
claim (iii), let us consider ξ, η ∈ Tk(U (g))[[t]]. Then we have

D(τ (ξ) · η)= D(τ (ξ)) · η = 0,

according to (i). Thus, τ(ξ) · η ∈ ker D ∩ ker dega and therefore

τ(ξ) · η = τ(σ (τ (ξ) · η))= τ(σ (τ (ξ)) · η)= τ(ξ · η).

Finally, to prove the last claim we choose ξ1 ⊗ f1 ∈ Tk(U (g))⊗W ⊗ 3• and
ξ2⊗ f2 ∈ T`(U (g))⊗W⊗3• as well as η1 ∈ Tk(U (g))[[t]] and η2 ∈ T`(U (g))[[t]].
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We obtain

mπ ((ξ1⊗ f1) · η1, (ξ2⊗ f2) · η2)= mπ ((ξ1 · η1)⊗ f1, (ξ2 · η2)⊗ f2)

= ((ξ1 · η1)⊗ (ξ2 · η2))⊗ ( f1 ◦π f2)

= ((ξ1⊗ ξ2) · (η1⊗ η2))⊗ ( f1 ◦π f2)

= ((ξ1⊗ ξ2)⊗ ( f1 ◦π f2)) · (η1⊗ η2).

This concludes the proof. �

From the above lemma, we observe that the isomorphism τ can be computed for
any element ξ ∈ Tk(U (g))[[t]] via

(4-10) τ(ξ)= τ(1⊗k
· ξ)= τ(1⊗k) · ξ,

where 1 ∈ U (g) is the unit element of the universal enveloping algebra. Moreover,
from Lemma 4.2, we have

(4-11) ξ ? η = σ(mπ (τ (ξ)⊗ τ(η)))= (1⊗k ? 1⊗`) · (ξ ⊗ η)

for ξ ∈ Tk(U (g))[[t]] and η ∈ T`(U (g))[[t]]. Thus ? is entirely determined by the
values on tensor powers of the unit element of the universal enveloping algebra.
Note that the unit of ? is the unit element in R⊆ T•(U (g)) of the tensor algebra
but not 1 ∈ U (g).

Lemma 4.4. Let 1 : U (g)[[t]] → U (g)⊗2
[[t]] be the coproduct of U (g)[[t]] and

ε : U (g)→ R[[t]] the counit.

(i) We have

(4-12) L|U (g)⊗2⊗W⊗3• ◦1
Lift
=1Lift

◦ L|U (g)⊗W⊗3• .

(ii) For the Fedosov-Taylor series one has

(4-13) 1Lift
◦ τ = τ ◦1.

(iii) We have

(4-14) εLift
◦ L|U (g)⊗W⊗3• = 0.

(iv) For the Fedosov-Taylor series one has

(4-15) εLift
◦ τ = ε.
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Proof. Let ξ ⊗ f ⊗ α ∈ U (g)⊗W ⊗3•. Then we get

1Lift L(ξ ⊗ f ⊗ α)=1Lift(Lei (ξ)⊗ f ⊗ ei
∧α)

=1Lift(eiξ ⊗ f ⊗ ei
∧α)

=1(eiξ)⊗ f ⊗ ei
∧α

=1(ei ) ·1(ξ)⊗ f ⊗ ei
∧α

= (ei ⊗ 1+ 1⊗ ei ) ·1(ξ)⊗ f ⊗ ei
∧α

= Lei (1(ξ))⊗ f ⊗ ei
∧α

= L1Lift(ξ ⊗ f ⊗ α),

since we extended the left multiplication by ei as a derivation of the tensor product
to higher tensor powers. Hence all the operators appearing in τ commute with 1Lift

and therefore we get the second part. Similarly, we get

εLift(L(ξ ⊗ f ⊗ α)= εLift(eiξ ⊗ f ⊗ ei
∧α)

= ε(eiξ)⊗ f ⊗ ei
∧α = ε(ei )ε(ξ)⊗ f ⊗ ei

∧α = 0,

where we used that ε vanishes on primitive elements of U (g). Since εLift commutes
with all other operators δ−1, D and ad(%) according to Lemma 4.2, we first get

εLift
◦

[
δ−1, D+ L + 1

t
ad(%)

]
=

[
δ−1, D+ 1

t
ad(%)

]
◦ εLift.

Hence for ξ ∈ U (g)[[t]] we have

εLiftτ(ξ)= εLift

( ∞∑
k=0

[
δ−1, D+ L + 1

t
ad(%)

]k
ξ

)

=

∞∑
k=0

[
δ−1, D+ 1

t
ad(%)

]k
εLift(ξ)

= ε(ξ),

since εLift(ξ)= ε(ξ) is just a constant and hence unaffected by all the operators in
the series. Thus only the zeroth term remains. �

This is now the last ingredient to show that the element 1 ? 1 is the twist we are
looking for:

Theorem 4.5. The element 1 ? 1 ∈ U (g)⊗2
[[t]] is a twist such that

(4-16) 1 ? 1= 1⊗ 1+ t
2
π +O(t2).
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Proof. First we see that

(1⊗ id)(1 ? 1)= (1⊗ id)σ (mπ (τ (1), τ (1)))

= σ((1⊗ id)Lift(mπ (τ (1), τ (1))))

= σ(mπ (1
Liftτ(1), τ (1)))

= σ(mπ (τ (1(1)), τ (1)))

= σ(mπ (τ (1⊗ 1), τ (1)))

= (1⊗ 1) ? 1.

Similarly, we get (id⊗1)(1 ? 1)= 1 ? (1⊗ 1). Thus, using the associativity of ?
we obtain the first condition (1-2) for a twist as follows,

(1⊗ id)(1 ? 1) · ((1 ? 1)⊗ 1)= ((1⊗ 1) ? 1) · ((1 ? 1)⊗ 1)

= (1 ? 1) ? 1

= 1 ? (1 ? 1)

= (id⊗1)(1 ? 1) · (1⊗ (1 ? 1)).

To check the normalization condition (1-3) we use Lemma 4.2 and Lemma 4.4
again to get

(ε⊗ id)(1 ? 1)= (ε⊗ id)σ (mπ (τ (1), τ (1)))

= σ((ε⊗ id)Lift(mπ (τ (1), τ (1))))

= σ((mπ (ε
Liftτ(1), τ (1))))

= σ((mπ (ε(1), τ (1))))

= ε(1)σ (τ (1))

= 1,

since ε(1) is the unit element of R and thus the unit element of T•(U (g)), which
serves as unit element for mπ as well. Similarly we obtain (id⊗ ε)(1 ? 1) = 1.
Finally, the facts that the first term in t of 1 ?1 is given by π and that zero term in t
is 1⊗ 1 follow from Corollary 4.1. �

Remark 4.6. From now on we refer to 1 ? 1 as the Fedosov twist

(4-17) F�,∇,s = 1 ? 1,

corresponding to the choice of the δCE-closed form �, the choice of the torsion-free
symplectic covariant derivative and the choice of the covariantly constant s. In
the following we will be mainly interested in the dependence of F�,∇,s on the
two-forms� and hence we shall write F� for simplicity. We also note that for s= 0
and�= 0 we have a preferred choice for ∇, namely the one obtained from the Hess



340 CHIARA ESPOSITO, JONAS SCHNITZER AND STEFAN WALDMANN

trick out of the half-commutator covariant derivative as described in Proposition 2.6.
This gives a canonical twist F0 quantizing r .

The results discussed above allow us to give an alternative proof of the Drinfeld
theorem [1983], stating the existence of twists for every r -matrix:

Corollary 4.7 (Drinfeld). Let (g, r) be a Lie algebra with r-matrix over a field K

with characteristic 0. Then there exists a formal twist F ∈ (U (g)⊗U (g))[[t]] such
that

F = 1⊗ 1+ t
2

r +O(t2).

To conclude this section we consider the question whether the two approaches
of universal deformation formulas actually coincide: on the one hand we know that
every twist gives a universal deformation formula by (1-1). On the other hand, we
have constructed directly a universal deformation formula (3-11) in Theorem 3.6
based on the Fedosov construction. Since we also get a twist from the Fedosov
construction, we are interested in the consistence of the two constructions. In order
to answer this question, we need some preparation. Hence let A be an algebra with
action of g by derivations as before. Then we define the map

(4-18) • :U (g)⊗W⊗3•×A 3 (ξ⊗α, a) 7→ (ξ⊗α)•a= ξ Fa⊗α ∈A ⊗W⊗3•

for any a ∈A and α ∈W⊗3•. Then the following algebraic properties are obtained
by a straightforward computation:

Lemma 4.8. For any ξ ∈ U (g), α ∈W ⊗3• and a ∈ A we have

(i) σ((ξ ⊗ α)•a)= σ(ξ ⊗ α) F a,

(ii) LA (ξ F a⊗ α)= L(ξ ⊗ α)•a,

(iii) τA (a)= τ(1)•a,

(iv) mA
π (ξ1⊗a1⊗α1, ξ2⊗a2⊗α2)= (µA⊗ id⊗ id)(mπ (ξ1⊗α1, ξ2⊗α2)•(a1⊗a2)).

For matching parameters �, ∇, and s of the Fedosov construction, the two
approaches coincide:

Proposition 4.9. For fixed choices of �, ∇, and s and for any a, b ∈ A we have

(4-19) a ?�,∇,s b = a ?F�,∇,s b.
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Proof. This is now just a matter of computation. We have

a ? b = σ(mA
π (τA (a)⊗ τA (b)))

(a)
= σ(mπ ((τ (1)⊗ τ(1))•(a⊗ b)))
(b)
= µA (σ (mπ (τ (1)⊗ τ(1))) F (a⊗ b))

= µA ((1 ? 1) F (a⊗ b))

= a ?F b,

where in (a) we use the third claim of the above lemma and in (b) the first and the
fourth. �

5. Classification of Drinfeld twists

In this section we discuss the classification of twists on universal enveloping algebras
for a given Lie algebra g with nondegenerate r-matrix. Recall that two twists F
and F ′ are said to be equivalent and denoted by F ∼ F ′ if there exists an element
S ∈ U (g)[[t]], with S = 1+O(t) and ε(S)= 1 such that

(5-1) 1(S)F ′ = F(S⊗ S).

In the following we prove that the set of equivalence classes of twists Twist(U (g), r)
with fixed r-matrix r is in bijection to the formal series in the second Chevalley–
Eilenberg cohomology H2

CE(g)[[t]].
We will fix the choice of ∇ and the symmetric part s in the Fedosov construction.

Then the cohomological equivalence of the two-forms in the construction yields
equivalent twists. In fact, an equivalence can even be computed recursively:

Lemma 5.1. Let % and %′ be the two elements in W2 ⊗ 3
1 uniquely determined

from Proposition 2.9, corresponding to two closed two-forms �,�′ ∈ t32g∗[[t]],
respectively, and let �−�′ = δCEC for a fixed C ∈ tg∗[[t]]. Then there is a unique
solution h ∈W3⊗3

0 of

(5-2) h=C⊗1+δ−1

(
Dh−1

t
ad(%)h−

1
t

ad(h)

exp
(1

t
ad(h)

)
− id

(%′−%)

)
, σ (h)=0.

For this h we have
D ′F =AhDFA−h,

with Ah = exp((1/t) ad(h)) being an automorphism of ◦π .

Proof. In the context of the Fedosov construction it is well known that cohomologous
two-forms yield equivalent star products. The above approach with the explicit
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formula for h follows the arguments of [Reichert and Waldmann 2016, Lemma 3.5]
which is based on [Neumaier 2001, §3.5.1.1]. �

Lemma 5.2. Let �,�′ ∈ t32g∗[[t]] be δCE-cohomologous. Then the corresponding
Fedosov twists are equivalent.

Proof. By assumption, we can find an element C ∈ tg∗[[t]], such that �−�′= δCEC .
From Lemma 5.1 we get an element h ∈W3⊗3

0 such that D ′F =AhDFA−h . An
easy computation shows that Ah commutes with L , therefore

D ′ =AhDA−h .

Thus, Ah is an automorphism of mπ with Ah : ker D → ker D ′ being a bijection
between the two kernels. Let us consider the map

Sh : T•(U (g))[[t]] 3 ξ 7→ (σ ◦Ah ◦ τ)(ξ) ∈ T•(U (g))[[t]],

which defines an equivalence of star products, i.e.,

(5-3) Sh(ξ ? η)= Sh(ξ) ?
′ Sh(η)

for any ξ, η ∈ T•(U (g))[[t]]. Let ξ, η ∈ U (g). Then using Lemma 4.3,

Sh(ξ ⊗ η)= (σ ◦Ah ◦ τ)(ξ ⊗ η)

= (σ ◦Ah)(τ (1⊗ 1) · (ξ ⊗ η))

= σ((Ah(τ (1⊗ 1))) · (ξ ⊗ η))

= σ(Ah(τ (1⊗ 1))) · (ξ ⊗ η)

= σ(Ah(1
Liftτ(1))) · (ξ ⊗ η)

=1(σ(Ah(τ (1)))) · (ξ ⊗ η)

=1(Sh(1)) · (ξ ⊗ η).

From the linearity of Sh we immediately get Sh(ξ ? η) = 1(Sh(1))(ξ ? η). Now,
putting ξ = η = 1 in (5-3) and using (4-11) we obtain

1(Sh(1)) · (1 ? 1)= Sh(1 ? 1)= Sh(1) ?′ Sh(1)= (1 ?′ 1) · (Sh(1)⊗ Sh(1)).

Thus, the twists F� = 1 ? 1 and F�′ = 1 ?′ 1 are equivalent since

ε(Sh(1))= 1. �

Lemma 5.3. Let � ∈ t32g∗ with δCE� = 0, x the element in W2 ⊗ 3
1 uniquely

determined from Proposition 2.9 and F� the corresponding Fedosov twist.

(i) The lowest total degree of %, where �k appears, is 2k+ 1, and

(5-4) %(2k+1)
= tkδ−1�k + terms not containing �k .
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(ii) For ξ ∈ T•(U (g)) the lowest total degree of τ(ξ) where �k appears is 2k +
1, and

(5-5) τ(ξ)(2k+1)
=

1
2 tk(ei ⊗ ia((ei )])�k)+ terms not containing �k .

(iii) The lowest t-degree of F� where �k appears is k+ 1, and

(F�)k+1 =−
1
2(�k)

]
+ terms not containing �k .

(iv) The map � 7→ F� is injective.

Proof. The proof uses the recursion formula for % as well as the explicit formulas
for τ and ? and consists of a careful counting of degrees. It follows along lines of
[Waldmann 2007, Theorem 6.4.29]. �

Lemma 5.4. Let F� and F�′ be two equivalent Fedosov twists corresponding to
the closed two-forms �,�′ ∈ t32g∗. Then there exists an element C ∈ tg∗[[t]], such
that δCEC =�−�′.

Proof. We can assume that � and �′ coincide up to order k − 1 for k ∈ N, since
they coincide at order 0. Due to Lemma 5.3,

(F�)i = (F�′)i for any i ∈ {0, . . . , k}

and
(F�)k+1− (F�′)k+1 =

1
2(−�

]
k +�

′]
k).

From Lemma B.4, we know that we can find an element ξ ∈ g∗, such that

([(F�)k+1− (F�′)k+1])
[
=−�

]
k +�

′]
k = δCEξ,

where [(F�)k+1−(F�′)k+1] denotes the skew-symmetrization of (F�)k+1−(F�′)k+1.
Let us define �̂=�− tkδCEξ . From Lemma 5.3 we see that

(F�̂)k+1− (F�′)k+1 = 0.

Therefore the two twists F�̂ and F�′ coincide up to order k + 1. Finally, since
F�̂ and F� are equivalent (from Lemma 5.2) and F� and F�′ are equivalent by
assumption, the two twists F�̂ and F�′ are also equivalent. By induction, we find
an element C ∈ tg∗[[t]] such that

F�+δCEC = F�′,

and therefore, from Lemma 5.3, �+ δCEC =�′. �

Lemma 5.5. Let F ∈ (U (g)⊗U (g))[[t]] be a formal twist with r-matrix r . Then
there exists a Fedosov twist F� such that F ∼ F�.
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Proof. Let F ∈ (U (g)⊗U (g))[[t]] be a given twist. We can assume that there is
a Fedosov twist F�, which is equivalent to F up to order k. Therefore we find
a F̂ such that F̂ is equivalent to F and coincides with F� up to order k. Due to
Lemma B.4, we can find an element ξ ∈ g∗ such that

[(F�)k+1− F̂k+1)] = (δCEξ)
].

From Lemma 5.2, the twist F�′ corresponding to �′ = �− tkδCEξ is equivalent
to F�. Moreover, F�′ coincides with F̂ up to order k, since F�′ coincides with F�
and

(F�′)k+1 = (F�)k+1+
1
2δCEξ.

Therefore the skew-symmetric part of (F�′)k+1− F̂k+1 is vanishing and this differ-
ence is exact with respect to the differential defined in (A-1). Applying Lemma B.2,
we can see that F�′ is equivalent to F̂ up to order k + 1. The claim follows by
induction. �

Summing up all the above lemmas we obtain the following characterization of
the equivalence classes of twists:

Theorem 5.6 (Classification of twists). Let g be a Lie algebra over R such that g
is free and finite-dimensional and let r ∈32g be a classical r-matrix such that ] is
bijective. Then the set of equivalence classes of twists Twist(U (g), r) with r-matrix
r is in bijection to H2

CE(g)[[t]] via � 7→ F�.

It is important to remark that even for an abelian Lie algebra g the second
Chevalley–Eilenberg cohomology H2

CE(g)[[t]] is different from zero. Thus, not all
twists are equivalent. An example of a Lie algebra with trivial H2

CE(g)[[t]] is the
two-dimensional nonabelian Lie algebra:

Example 5.7 (ax + b). Let us consider the two-dimensional Lie algebra given by
the R-span of the elements X, Y ∈ g fulfilling

(5-6) [X, Y ] = Y,

with r-matrix r = X ∧ Y. We denote the dual basis of g∗ by {X∗, Y ∗}. Since g is
two-dimensional, all elements of 32g∗ are a multiple of X∗ ∧ Y ∗, which is closed
for dimensional reasons. For Y ∗ we have

(5-7) (δCEY ∗)(X, Y )=−Y ∗([X, Y ])=−Y ∗(Y )=−1.

Therefore δCEY ∗=−X∗∧Y ∗ and H2
CE(g)={0}. From Theorem 5.6 we can therefore

conclude that all twists with r -matrix r of g are equivalent.

Remark 5.8 (Original construction of Drinfeld). Let us briefly recall the original
construction of Drinfeld [1983, Theorem 6]: as a first step he uses the inverse
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B ∈ 32g∗ of r as a 2-cocycle to extend g to g̃ = g⊕ R by considering the new
bracket

(5-8) [(X, λ), (X ′, λ′)]g̃ = ([X, X ′]g, B(X, X ′)),

where X, X ′ ∈ g and λ, λ′ ∈R. On g̃∗ one has the canonical star product quantizing
the linear Poisson structure ?DG according to Drinfeld and Gutt [Gutt 1983]. Inside
g̃∗ one has an affine subspace defined by H = g∗ + `0 where `0 is the linear
functional `0 : g̃ 3 (X, λ) 7→ λ. Since the extension is central, ?DG turns out to
be tangential to H , therefore it restricts to an associative star product on H . In
a final step, Drinfeld then uses a local diffeomorphism G→ H by mapping g to
Ad∗g−1 `0 to pull back the star product to G, which turns out to be left-invariant. By
[Drinfeld 1983, Theorem 1] this gives a twist. Without major modification it should
be possible to include also closed higher order terms � ∈ t32g∗[[t]] by considering
B+� instead. We conjecture that

(i) this gives all possible classes of Drinfeld twists by modifying his construction
including �,

(ii) the resulting classification matches the classification by our Fedosov construc-
tion.

Note that a direct comparison of the two approaches will be nontrivial due to the
presence of the combinatorics in the BCH formula inside ?DG in the Drinfeld
construction on the one hand and the recursion in our Fedosov approach on the
other hand. We will come back to this in a future project.

6. Hermitian and completely positive deformations

In this section we bring aspects of positivity into the picture. In addition, let R be
now an ordered ring and set C = R(i) where i2 = −1. In C we have a complex
conjugation as usual, denoted by z 7→ z. The Lie algebra g will now be a Lie algebra
over R, still being free as a R-module with finite dimension.

The formal power series R[[t]] are then again an ordered ring in the usual way and
we have C[[t]] = (R[[t]])(i). Moreover, we consider a ∗-algebra A over C which we
would like to deform. Here we are interested in Hermitian deformations ?, where
we require

(6-1) (a ? b)∗ = b∗ ? a∗ for all a, b ∈ A [[t]].

Instead of the universal enveloping algebra directly, we consider now the complex-
ified universal enveloping algebra UC(g)=U (g)⊗RC=U (gC), where gC= g⊗RC

is the complexified Lie algebra. Then this is a ∗-Hopf algebra, where the ∗-involution
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is determined by the requirement

(6-2) X∗ =−X

for X ∈ g, i.e., the elements of g are anti-Hermitian. The needed compatibility of
the action of g on A with the ∗-involution is then

(6-3) (ξ F a)∗ = S(ξ)∗ F a∗

for all ξ ∈UC(g) and a ∈A . This is equivalent to (X Fa)∗ = X Fa∗ for X ∈ g. We
also set the elements of g∗ ⊆ g∗C to be anti-Hermitian.

In a first step we extend the complex conjugation to tensor powers of g∗C and
hence to the complexified Fedosov algebra

(6-4) WC⊗3
•

C =

( ∞∏
k=0

Skg∗C⊗3
•g∗C

)
[[t]]

and obtain a (graded) ∗-involution, i.e.,

(6-5) (( f ⊗ α) · (g⊗ β))∗ = (−1)ab(g⊗ β)∗ · ( f ⊗ α)∗,

where a and b are the antisymmetric degrees of α and β, respectively.
Let π ∈ gC ⊗ gC have antisymmetric and symmetric parts π− ∈ 32gC and

π+ ∈3
2gC, respectively. Then for the corresponding operator Pπ as in (2-13),

(6-6) T ◦Pπ (a⊗ b)= Pπ̃ ◦T(a⊗ b),

where π̃ =π+−π−. In particular, we have π̃ =π if and only if π+ is Hermitian and
π− is anti-Hermitian. We set t = it for the formal parameter as in the previous sec-
tions, i.e., we want to treat t as imaginary. Then we arrive at the following statement:

Lemma 6.1. Let π = π++π− ∈ gC⊗ gC. Then the fiberwise product

(6-7) a ◦π b = µ ◦ e
1
2 itPπ (a⊗ b)

satisfies (a ◦π b)∗ = (−1)abb∗ ◦ a∗ if and only if π+ is anti-Hermitian and π− is
Hermitian.

This lemma is now the motivation to take a real classical r -matrix r ∈32g⊆32gC.
Moreover, writing the symmetric part of π as π+= is, then s= s ∈ S2g is Hermitian
as well. In the following we shall assume that these reality conditions are satisfied.

It is now not very surprising that with such a Poisson tensor π on g we can
achieve a Hermitian deformation of a ∗-algebra A by the Fedosov construction.
We summarize the relevant properties in the following proposition:

Proposition 6.2. Let π = r+is with a real strongly nondegenerate r-matrix r ∈32g

and a real symmetric s ∈ S2g such that there exists a symplectic torsion-free
covariant derivative ∇ for g with ∇s = 0.
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(i) The operators δ, δ−1, and σ are real.

(ii) The operator D is real and D2
= (1/it) ad(R) with a Hermitian curvature

R = R∗.

(iii) Suppose that � = �∗ ∈ 32g∗C[[t]] is a formal series of Hermitian δCE-closed
two-forms. Then the unique % ∈W2⊗3

1 with

(6-8) δ% = R+ D%+ 1
it
% ◦π %+�

and δ−1% = 0 is Hermitian, too. In this case, the Fedosov derivative DF =

−δ+ D+ 1/(it) ad(%) is real.

Suppose now in addition that A is a ∗-algebra over C with a ∗-action of g, i.e.,
(6-3).

(iv) The operator LA as well as the extended Fedosov derivation DA are real.

(v) The Fedosov–Taylor series τA is real.

(vi) The formal deformation ? from Theorem 3.6 is a Hermitian deformation.

When we apply this to the twist itself we first have to clarify which ∗-involution
we take on the tensor algebra T•(UC(g)): by the universal property of the tensor
algebra, there is a unique way to extend the ∗-involution of UC(g) as a ∗-involution.
With respect to this ∗-involution we have r∗ = −r since r is not only real as an
element of gC⊗ gC but also antisymmetric, causing an additional sign with respect
to the ∗-involution of T•(UC(g)). Analogously, we have s∗ = s for the real and
symmetric part of π .

Corollary 6.3. The Fedosov twist F is Hermitian.

Proof. Indeed, 1 ∈ UC(g) is Hermitian and hence (1 ? 1)∗ = 1∗ ? 1∗ = 1 ? 1. �

Up to now we have not yet used the fact that R is ordered but only that we have a ∗-
involution. The ordering of R allows one to transfer concepts of positivity from R to
every ∗-algebra over C. Recall that a linear functional ω :A →C is called positive if

(6-9) ω(a∗a)≥ 0

for all a ∈ A . This allows one to define an algebra element a ∈ A to be positive if
ω(a)≥ 0 for all positive ω. Note that the positive elements denoted by A +, form a
convex cone in A and a∈A + implies b∗ab∈A + for all b∈A . Moreover, elements
of the form a = b∗b are clearly positive: their convex combinations are denoted
by A ++ and are called algebraically positive. More details on these notions of
positivity can be found in [Bursztyn and Waldmann 2001; 2005a; Waldmann 2005].

Since with R also R[[t]] is ordered, one can compare the positive elements of A

and the ones of (A [[t]], ?), where ? is a Hermitian deformation. The first trivial
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observation is that for a positive linear functional ω=ω0+tω1+· · · of the deformed
algebra, i.e., ω(a∗ ? a)≥ 0 for all a ∈A [[t]] the classical limit ω0 of ω is a positive
functional of the undeformed algebra. The converse need not be true: one has
examples where a positive ω0 is not directly positive for the deformed algebras,
i.e., one needs higher order corrections, and one has examples where one simply
can not find such higher order corrections at all; see [Bursztyn and Waldmann
2000; 2005b]. One calls the deformation ? a positive deformation if every positive
linear functional ω0 of the undeformed algebra A can be deformed into a positive
functional ω = ω0 + tω1 + · · · of the deformed algebra (A [[t]], ?). Moreover,
since also Mn(A ) is a ∗-algebra in a natural way we call ? a completely positive
deformation if for all n the canonical extension of ? to Mn(A )[[t]] is a positive
deformation of Mn(A ); see [Bursztyn and Waldmann 2005b]. Finally, if no higher
order corrections are needed, then ? is called a strongly positive deformation; see
[Bursztyn and Waldmann 2000, Definition 4.1]

In a next step we want to use a Kähler structure for g. In general, this will not
exist so we have to require it explicitly. In detail, we want to be able to find a basis
e1, . . . , en, f1, . . . , fn ∈ g with the property that the r -matrix decomposes into

(6-10) (ek
⊗ f `)(r)= Ak`

=−( f `⊗ek)(r), (ek
⊗e`)(r)= Bk`

=−( f k
⊗ f `)(r)

with a symmetric matrix A= AT
∈Mn(R) and an antisymmetric matrix B =−BT

∈

Mn(R). We set

(6-11) s = Ak`(ek ⊗ e`+ fk ⊗ f`)+ Bk`ek ⊗ f`+ Bk` f`⊗ ek .

The requirement of being Kähler is now that first we find a symplectic covariant
derivative ∇ with ∇s = 0. Second, we require the symmetric two-tensor s to be
positive in the sense that for all x ∈ g∗ we have (x ⊗ x)(s) ≥ 0. In this case we
call s (and the compatible ∇) a Kähler structure for r . We have chosen this more
coordinate-based formulation over the invariant one since in the case of an ordered
ring R instead of the reals R it is more convenient to start directly with the nice
basis we need later on.

As usual we consider now gC with the vectors

(6-12) Zk =
1
2(ek − i fk) and Z ` = 1

2(e`+ i f`),

which together constitute a basis of the complexified Lie algebra. Finally, we have
the complex matrix

(6-13) g = A+ iB ∈Mn(C),

which now satisfies the positivity requirement

(6-14) zk gk`z` ≥ 0 for all z1, . . . , zn ∈ C.
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If our ring R has sufficiently many inverses and square roots, one can even find a
basis e1, . . . , en, f1, . . . , fn such that g becomes the unit matrix. However, since
we want to stay with an arbitrary ordered ring R we do not assume this.

We now use π = r + is to obtain a fiberwise Hermitian product ◦Wick, called
the fiberwise Wick product. Important now is the following explicit form of ◦Wick,
which is a routine verification:

Lemma 6.4. For the fiberwise Wick product ◦Wick built out of π = r + is with a
Kähler structure s one has

(6-15) a ◦Wick b = µ ◦ e2tgk` is(Zk)⊗is(Z`)(a⊗ b),

where g is the matrix from (6-13).

The first important observation is that the scalar matrix g can be viewed as an
element of Mn(A ) for any unital ∗-algebra. Then we have the following positivity
property:

Lemma 6.5. Let A be a unital ∗-algebra over C. Then for all m ∈ N and for all
ak1···km ∈ A with k1, . . . , km = 1, . . . , n

(6-16)
n∑

k1,`1,...,km ,`m=1

gk1`1 · · · gkm`m a∗k1···km
a`1···`m ∈ A +.

Proof. First we note that g⊗m
= g⊗ · · · ⊗ g ∈Mn(C)⊗ · · · ⊗Mn(C) =Mnm (C)

still satisfies the positivity property

n∑
k1,`1,...,km ,`m=1

gk1`1 · · · gkm`m z(1)k1
· · · z(m)km

z(1)`1
· · · z(m)`m

≥0 for all z(1), . . . , z(m)∈Cn

as the left-hand side clearly factorizes into m copies of the left hand side of (6-14).
Hence g⊗m

∈Mnm (C) is a positive element. For a given positive linear functional
ω : A → C and b1, . . . , bN ∈ A we consider the matrix (ω(b∗i bj )) ∈MN (C). We
claim that this matrix is positive, too. Indeed, with the criterion from [Bursztyn and
Waldmann 2001, App. A], for all z1, . . . , zN ∈ C,

N∑
i, j=1

ziω(b∗i bj )z j = ω

(( N∑
i=1

zi bi

)∗( N∑
j=1

z j bj

))
≥ 0,



350 CHIARA ESPOSITO, JONAS SCHNITZER AND STEFAN WALDMANN

hence (ω(b∗i bj )) is positive. Putting these statements together we see, for every pos-
itive linear functional ω :A → C, for the matrix �= (ω(a∗k1···km

a`1···`m )) ∈Mnm (C),

ω

( n∑
k1,`1,...,km ,`m=1

gk1`1 · · · gkm`m a∗k1···km
a`1···`m

)

=

n∑
k1,`1,...,km ,`m=1

gk1`1 · · · gkm`mω(a∗k1···km
a`1···`m )

= tr(g⊗m�)≥ 0,

since the trace of the product of two positive matrices is positive by [Bursztyn and
Waldmann 2001, Appendix A]. Note that for a ring R one has to use this slightly
more complicated argumentation: for a field one could use the diagonalization of g
instead. By definition of A +, this shows the positivity of (6-16). �

Remark 6.6. Suppose that in addition g = diag(λ1, . . . , λn) is diagonal with pos-
itive λ1, . . . , λn > 0. In this case one can directly see that the left-hand side of
(6-16) is a convex combination of squares and hence in A ++. This situation can
often be achieved, e.g., for R= R.

We come now to the main theorem of this section: unlike the Weyl-type deforma-
tion, using the fiberwise Wick product yields a positive deformation in a universal
way:

Theorem 6.7. Let A be a unital ∗-algebra over C = R(i) with a ∗-action of g
and let � = �∗ ∈ 32g∗C be a formal series of Hermitian δCE-closed two-forms.
Moreover, let s be a Kähler structure for the nondegenerate r-matrix r ∈ g and
consider the fiberwise Wick product ◦Wick yielding the Hermitian deformation ?Wick

as in Proposition 6.2.

(i) For all a ∈ A ,

(6-17) a∗ ?Wick a =
∞∑

m=0

(2t)m

m!

n∑
k1,...,km ,`1,...,`m=1

gk1`1 · · · gkm`m a∗k1···km
a`1···`m ,

where ak1···km = σ(is(Z k1) · · · is(Z km )τWick(a)).

(ii) The deformation ?Wick is strongly positive.

Proof. From Lemma 6.4 we immediately get (6-17). Now let ω :A →C be positive.
Then also the C[[t]]-linear extension ω : A [[t]] → C[[t]] is positive with respect to
the undeformed product: this is a simple consequence of the Cauchy–Schwarz
inequality for ω. Then we apply Lemma 6.5 to conclude that ω(a∗ ? a)≥ 0. �

Corollary 6.8. The Wick-type twist FWick in the Kähler situation is a convex series
of positive elements.
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Remark 6.9 (Positive twist). Note that already for a Hermitian deformation, the
twist F = 1 ? 1= 1∗ ? 1 constructed as above is a positive element of the deformed
algebra T•(UC(g))[[t]]. However, this seems to be not yet very significant: it is
the statement of Corollary 6.8 and Theorem 6.7 which gives the additional and
important feature of the corresponding universal deformation formula.

Appendix A: Hochschild-Kostant-Rosenberg theorem

Let us define the map

(A-1) ∂ : U (g) 3 ξ 7→ ξ ⊗ 1+ 1⊗ ξ −1(ξ) ∈ U (g)⊗2,

and extend it as a graded derivation of degree +1 of the tensor product to T•(U (g)).
We recall that the map ∂ : T•(U (g))→ T•(U (g)) is a differential. Its cohomology
is described as follows:

Theorem A.1 (Hochschild–Kostant–Rosenberg). Let C ∈ Tp(U (g)) such that
∂C = 0. Then there is a X ∈3kg and a S ∈ Tp−1(U (g)) with

(A-2) C = X + ∂S

with X = Alt(C).

We do not prove the above theorem in full generality, since we need only the
case p = 2. In this case the proof consists of the following two lemmas:

Lemma A.2. Let C ∈ T2(U (g)) with ∂C = 0. Then

(i) ∂T(C)= 0.

(ii) The antisymmetric part satisfies C − T(C) ∈ g∧ g⊆ T2(U (g)).

Proof. We have

∂C = 0⇐⇒ C ⊗ 1+ (1⊗ id)(C)= 1⊗ C + (id⊗1)(C).

Thus,
T(C)⊗ 1= (T⊗ id)(C ⊗ 1)

= (T⊗ id)(1⊗ C + (id⊗1)(C)− (1⊗ id)(C))

= C13+ (T⊗ id)(id⊗1)(C)− (1⊗ id)(C).

Now we apply the cyclic permutation to this equation and get

1⊗ T(C)= T(C)⊗ 1+ (1⊗ id)(T(C))− (id⊗1)(T(C)),

which is equivalent to ∂T(C)= 0. Since ∂ is linear, we get ∂(T − T(C))= 0 and
denote A = T − T(C), which is now skew-symmetric. We define

Q = (1⊗ id)A− A23− A13
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and get that Q = −Alt(Q) with the fact that A is ∂-closed. Therefore we have
Q = Alt3 Q = (−1)3 Q = −Q and we can conclude Q = 0. Thus, A has to
be primitive in the first argument and with the skew-symmetry we get the same
statement for the second argument. �

Lemma A.3. Let C ∈ T2(U (g)) with ∂C = 0. Then there exists a S ∈ U (g) and a
X ∈ g∧ g, such that

(A-3) C = X + ∂S,

where X = 1
2(C − T(C)).

Proof. It is clear from Lemma A.2, that X is well defined and we have to prove
that symmetric C are ∂-exact. So we assume that C ∈ T2(U (g)) is ∂-closed and
symmetric. Let k be the highest order appearing in C and assume the claim is true
for all r < k (in the sense of the filtration of U (g)=

⋃
n∈N0

U (g)n). Then we can
write for a given basis {ei }i∈{1,...,n}

C =
∑
|i |=k

ei ⊗ D i
+ l.o.t..

We mean lower order terms with respect to the filtration in the first tensor degree
and the i are multi-indices such that ei = ei1 · · · eik . We can assume that Di is
symmetric in the multi-index, because we can compensate for asymmetry by lower
order terms. Since ∂(U (g)m)⊆U (g)m−1⊗U (g)m−1, we see that ∂C = 0 implies
that ∂D i

= 0, which is equivalent to D i
∈ g. Therefore, we can write

C =
∑
|i |=k

D i, j ei ⊗ ej + H,

where H ∈U (g)k−1⊗U (g) is now of order strictly less then k in the first argument.
Now we expand H =

∑
|i1|,|i2|≤k−1 Hi1,i2ei1 ⊗ ei2 and see, by using

0= ∂C =
∑
|i |=k

D i, j∂(ei )⊗ ej + ∂H

=−Di1,...,ik , j
∑

r

ei1 · · · êir · · · eik ⊗ eir ⊗ ej + ∂H + l.o.t.,

that H has to be of the form

H =
∑

|i1|=k−1,|i2|=2

Hi1,i2ei1 ⊗ ei2 + l.o.t.,

and hence
∂H =

∑
|i1|=k−1, j1, j2

Hi1, j1, j2ei1 ⊗ e j1 ⊗ e j2 + l.o.t..
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This implies that Di1,...,ik , j is symmetric in all indices, since ∂C = 0 and Hi1, j1, j2 =

Hi1, j2, j1 . Thus for

G =
1

k+ 1
Di1,...,ik+1ei1 · · · eik+1,

we have

∂G =−
∑
|i |=k

D i, j (ei ⊗ ej + ej ⊗ ei )+ l.o.t..

Note that here the lower order terms are meant in both tensor arguments. Using the
symmetry of C , we obtain

C =
∑
|i |=k

D i, j (ei ⊗ ej + ej ⊗ ei )+ l.o.t.,

again the lower order terms are in both tensor factors. Thus,

C + ∂G ∈ U (g)k−1⊗U (g)k−1.

This implies the lemma, because for k = 0 the statement is trivial. �

Corollary A.4. Let C ∈ T2(U (g)) with ∂C = 0 and (ε ⊗ id)C = (id⊗ ε)C = 0.
Then we can find S ∈ U (g) and X ∈32g such that C = X + ∂S with ε(S)= 0.

Proof. The statement is clear from the construction of Lemma A.2. �

Appendix B: Technical Lemmas

In this section we prove several technical results necessary for the proofs is Section 5.

Lemma B.1. Let F,F ′ ∈ (U (g)⊗U (g))[[t]] be two twists coinciding up to order k.
Then

(B-1) ∂(Fk+1− F ′k+1)= 0.



354 CHIARA ESPOSITO, JONAS SCHNITZER AND STEFAN WALDMANN

Proof. We have

∂(Fk+1)= 1⊗ Fk+1− Fk+1⊗ 1+ (id⊗1)(Fk+1)− (1⊗ id)(Fk+1)

=

k+1∑
i=0

(1⊗ Fi )(id⊗1)(Fk+1−i )−

k∑
i=1

(1⊗ Fi )(id⊗1)(Fk+1−i )

+

k∑
i=1

(Fi ⊗ 1)(1⊗ id)(Fk+1−i )−

k+1∑
i=0

(Fi ⊗ 1)(1⊗ id)(Fk+1−i )

=−

k∑
i=1

(1⊗ Fi )(id⊗1)(Fk+1−i )+

k∑
i=1

(Fi ⊗ 1)(1⊗ id)(Fk+1−i )

=−

k∑
i=1

(1⊗ F ′i )(id⊗1)(F
′

k+1−i )+

k∑
i=1

(F ′i ⊗ 1)(1⊗ id)(F ′k+1−i )

= ∂(F ′k+1). �

Lemma B.2. Let F,F ′ ∈ (U (g)⊗U (g))[[t]] be two twists coinciding up to order k
such that

(B-2) Fk+1− F ′k+1 = ∂Tk+1.

Then they are equivalent up to order k+ 1.

Proof. Consider exp(tk+1Tk+1)= 1+ tk+1Tk+1+O(tk+2). Then we have

(1(exp(tk+1Tk+1))F)i = (F ′(exp(tk+1Tk+1)⊗ exp(tk+1Tk+1)))i

for any i ≤ k+ 1. Note that, because

(ε⊗ id)(Fk+1− F ′k+1)= (id⊗ ε)(Fk+1− F ′k+1)= 0,

we can choose Tk+1 such that ε(Tk+1)= 0 and therefore ε(exp(tk+1Tk+1))= 1. �

Lemma B.3. Let F,F ′ ∈ (U (g)⊗U (g))[[t]] be two equivalent twists coinciding
up to order k. Then there exists a T = 1+ tk Tk +O(tk+1) ∈ U (g)[[t]] such that

(B-3) 1(T )F ′ = F(T ⊗ T ).

Proof. Since the twists F and F ′ are equivalent, there is a T̃ = 1+ t`T̃`+O(t`+1)

such that
1(T̃ )F ′ = F(T̃ ⊗ T̃ ).

Let us consider `≤ k. The above equation at order ` reads

1(T̃`)+ F ′` = F`+ T̃`⊗ 1+ 1⊗ T̃`.
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Therefore, since F and F ′ coincide up to order k,

1(T̃`)= T̃`⊗ 1+ 1⊗ T̃`,

and T̃` ∈ g⊆ U (g). For ` < k we get at order `+ 1

1(T̃`+1)+1(T̃`)F ′1+ F ′`+1 = F`+1+ F1(T̃`⊗ 1+ 1⊗ T̃`)+ T̃`+1⊗ 1+ 1⊗ T̃`+1.

The skew-symmetrization of the above equation gives

(T̃`⊗ 1+ 1⊗ T̃`)r = r(T̃`⊗ 1+ 1⊗ T̃`).

An easy computation shows that this property is equivalent to δCET̃ [
` = 0. Thus, we

can define the map S : U (g)→ U (g) by defining it on primitive elements via

g 3 ξ 7→ T̃ [
` (ξ) · 1 ∈ U (g)

and extend it as a derivation of the product of U (g). This map allows us to define
an element

A = 1
t
(ε ◦ S⊗ id)[F] = −T̃`+O(t),

which fulfills 1(A)F = F(A⊗ 1+ 1⊗ A) and ε(A)= 0. Thus we get

exp(t`A)F = F(exp(t`A)⊗ exp(t`A)) as well as ε(exp(t`A))= 1.

We define T = exp(t`A)T̃ and obtain 1(T )F ′ = F(T ⊗ T ) and

T = 1+ t`+1T`+1+O(t`+2).

Repeating this method k− ` times, we get an equivalence starting at order k. �

Lemma B.4. Let F,F ′ ∈ (U (g)⊗U (g))[[t]] be two equivalent twists coinciding
up to order k. Then there exists an element ξ ∈ g∗ such that

(B-4) ([Fk+1− F ′k+1])
[
= δCEξ.

Proof. First, [Fk+1 − F ′k+1] ∈ 3
2g, because of Theorem A.1 and since, as in

Lemma B.1, ∂(Fk+1− F ′k+1)= 0. From Lemma B.3 we know that we can find an
element T = 1+ tk Tk+O(tk+1) in U (g) such that 1(T )F ′ =F(T ⊗ T ). At order
k this reads

1(Tk)+ F ′k = Fk + Tk ⊗ 1+ 1⊗ Tk,

which is equivalent to Tk ∈ g, because F ′k = Fk . At order k+ 1, we can see that

1(Tk+1)+1(Tk)F ′1+ F ′k+1 = Fk+1+ F1(Tk⊗ 1+1⊗ Tk)+ Tk+1⊗ 1+1⊗ Tk+1.

For the skew-symmetric part we have

[Fk+1− F ′k+1] = (Tk ⊗ 1+ 1⊗ Tk)r − r(Tk ⊗ 1+ 1⊗ Tk)= [Tk ⊗ 1+ 1⊗ Tk, r ],
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which is equivalent to ([Fk+1− F ′k+1])
[
=−δCET [

k . �

Acknowledgements

We would like to thank Pierre Bieliavsky, Kenny De Commer, Alexander Karabegov,
and Thorsten Reichert for the discussions and useful suggestions. Moreover, we
would like to thank the referee for many useful comments and remarks.

References

[Aschieri and Schenkel 2014] P. Aschieri and A. Schenkel, “Noncommutative connections on bi-
modules and Drinfeld twist deformation”, Adv. Theor. Math. Phys. 18:3 (2014), 513–612. MR
Zbl

[Bayen et al. 1978a] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, “De-
formation theory and quantization, I: Deformations of symplectic structures”, Ann. Physics 111:1
(1978), 61–110. MR Zbl

[Bayen et al. 1978b] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, “De-
formation theory and quantization, II: Physical applications”, Ann. Physics 111:1 (1978), 111–151.
MR Zbl

[Bertelson et al. 1997] M. Bertelson, M. Cahen, and S. Gutt, “Equivalence of star products”, Classical
Quantum Gravity 14:1A (1997), A93–A107. MR Zbl

[Bertelson et al. 1998] M. Bertelson, P. Bieliavsky, and S. Gutt, “Parametrizing equivalence classes
of invariant star products”, Lett. Math. Phys. 46:4 (1998), 339–345. MR Zbl

[Bieliavsky and Gayral 2015] P. Bieliavsky and V. Gayral, Deformation quantization for actions of
Kählerian Lie groups, Mem. Amer. Math. Soc. 1115, American Mathematical Society, Providence,
RI, 2015. MR Zbl

[Bordemann and Waldmann 1997] M. Bordemann and S. Waldmann, “A Fedosov star product of the
Wick type for Kähler manifolds”, Lett. Math. Phys. 41:3 (1997), 243–253. MR Zbl

[Bordemann et al. 1998] M. Bordemann, N. Neumaier, and S. Waldmann, “Homogeneous Fedosov
star products on cotangent bundles, I: Weyl and standard ordering with differential operator repre-
sentation”, Comm. Math. Phys. 198:2 (1998), 363–396. MR Zbl

[Bordemann et al. 1999] M. Bordemann, N. Neumaier, and S. Waldmann, “Homogeneous Fedosov
star products on cotangent bundles, II: GNS representations, the WKB expansion, traces, and
applications”, J. Geom. Phys. 29:3 (1999), 199–234. MR Zbl

[Bordemann et al. 2003] M. Bordemann, N. Neumaier, M. J. Pflaum, and S. Waldmann, “On
representations of star product algebras over cotangent spaces on Hermitian line bundles”, J. Funct.
Anal. 199:1 (2003), 1–47. MR Zbl

[Bursztyn and Waldmann 2000] H. Bursztyn and S. Waldmann, “On positive deformations of ∗-
algebras”, pp. 69–80 in Conférence Moshé Flato, II (Dijon, 1999), edited by G. Dito and D.
Sternheimer, Math. Phys. Stud. 22, Kluwer, Dordrecht, 2000. MR Zbl

[Bursztyn and Waldmann 2001] H. Bursztyn and S. Waldmann, “Algebraic Rieffel induction, formal
Morita equivalence, and applications to deformation quantization”, J. Geom. Phys. 37:4 (2001),
307–364. MR Zbl

[Bursztyn and Waldmann 2005a] H. Bursztyn and S. Waldmann, “Completely positive inner products
and strong Morita equivalence”, Pacific J. Math. 222:2 (2005), 201–236. MR Zbl

http://dx.doi.org/10.4310/ATMP.2014.v18.n3.a1
http://dx.doi.org/10.4310/ATMP.2014.v18.n3.a1
http://msp.org/idx/mr/3274789
http://msp.org/idx/zbl/1317.14008
http://dx.doi.org/10.1016/0003-4916(78)90224-5
http://dx.doi.org/10.1016/0003-4916(78)90224-5
http://msp.org/idx/mr/0496157
http://msp.org/idx/zbl/0377.53024
http://dx.doi.org/10.1016/0003-4916(78)90225-7
http://dx.doi.org/10.1016/0003-4916(78)90225-7
http://msp.org/idx/mr/0496158
http://msp.org/idx/zbl/0377.53025
http://dx.doi.org/10.1088/0264-9381/14/1A/008
http://msp.org/idx/mr/1691889
http://msp.org/idx/zbl/0881.58021
http://dx.doi.org/10.1023/A:1007598606137
http://dx.doi.org/10.1023/A:1007598606137
http://msp.org/idx/mr/1668581
http://msp.org/idx/zbl/0943.53051
http://dx.doi.org/10.1090/memo/1115
http://dx.doi.org/10.1090/memo/1115
http://msp.org/idx/mr/3379676
http://msp.org/idx/zbl/1323.22005
http://dx.doi.org/10.1023/A:1007355511401
http://dx.doi.org/10.1023/A:1007355511401
http://msp.org/idx/mr/1463874
http://msp.org/idx/zbl/0892.53028
http://dx.doi.org/10.1007/s002200050481
http://dx.doi.org/10.1007/s002200050481
http://dx.doi.org/10.1007/s002200050481
http://msp.org/idx/mr/1668901
http://msp.org/idx/zbl/0968.53056
http://dx.doi.org/10.1016/S0393-0440(98)00041-2
http://dx.doi.org/10.1016/S0393-0440(98)00041-2
http://dx.doi.org/10.1016/S0393-0440(98)00041-2
http://msp.org/idx/mr/1670009
http://msp.org/idx/zbl/0989.53060
http://dx.doi.org/10.1016/S0022-1236(02)00110-6
http://dx.doi.org/10.1016/S0022-1236(02)00110-6
http://msp.org/idx/mr/1966822
http://msp.org/idx/zbl/1038.53087
http://link.springer.com/content/pdf/10.1007%2F978-94-015-1276-3_5.pdf
http://link.springer.com/content/pdf/10.1007%2F978-94-015-1276-3_5.pdf
http://msp.org/idx/mr/1805905
http://msp.org/idx/zbl/0979.53098
http://dx.doi.org/10.1016/S0393-0440(00)00035-8
http://dx.doi.org/10.1016/S0393-0440(00)00035-8
http://msp.org/idx/mr/1811148
http://msp.org/idx/zbl/1039.46052
http://dx.doi.org/10.2140/pjm.2005.222.201
http://dx.doi.org/10.2140/pjm.2005.222.201
http://msp.org/idx/mr/2225070
http://msp.org/idx/zbl/1111.53071


A UNIVERSAL CONSTRUCTION OF UNIVERSAL DEFORMATION FORMULAS 357

[Bursztyn and Waldmann 2005b] H. Bursztyn and S. Waldmann, “Hermitian star products are
completely positive deformations”, Lett. Math. Phys. 72:2 (2005), 143–152. MR Zbl

[Chari and Pressley 1994] V. Chari and A. Pressley, A guide to quantum groups, Cambridge Univ.
Press, 1994. MR Zbl

[De Wilde and Lecomte 1983] M. De Wilde and P. B. A. Lecomte, “Existence of star-products and of
formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds”, Lett. Math. Phys.
7:6 (1983), 487–496. MR Zbl

[Dolgushev et al. 2002] V. A. Dolgushev, A. P. Isaev, S. L. Lyakhovich, and A. A. Sharapov, “On the
Fedosov deformation quantization beyond the regular Poisson manifolds”, Nuclear Phys. B 645:3
(2002), 457–476. MR Zbl

[Donin 2003] J. Donin, “Classification of polarized deformation quantizations”, J. Geom. Phys. 48:4
(2003), 546–579. MR Zbl

[Drinfeld 1983] V. G. Drinfeld, “Constant quasiclassical solutions of the Yang–Baxter quantum
equation”, Dokl. Akad. Nauk SSSR 273:3 (1983), 531–535. In Russian; translated in Soviet Math.
Dokl. 28:3 (1983), 667–671. MR Zbl

[Drinfeld 1986] V. G. Drinfeld, “Quantum groups”, Zap. Nauchn. Sem. LOMI 155 (1986), 18–49. In
Russian; translated in J. Soviet Math. 41:2 (1988), 898–915. MR Zbl

[Esposito 2015] C. Esposito, Formality theory: from Poisson structures to deformation quantization,
SpringerBriefs in Mathematical Physics 2, Springer, Cham, Switzerland, 2015. MR Zbl

[Etingof and Schiffmann 1998] P. Etingof and O. Schiffmann, Lectures on quantum groups, Interna-
tional Press, Boston, 1998. MR Zbl

[Fedosov 1986] B. V. Fedosov, “Quantization and the index”, Dokl. Akad. Nauk SSSR 291:1 (1986),
82–86. In Russian; translated in Soviet Phys. Dokl. 31:11 (1986), 877–878. MR Zbl

[Fedosov 1994] B. V. Fedosov, “A simple geometrical construction of deformation quantization”, J.
Differential Geom. 40:2 (1994), 213–238. MR Zbl

[Fedosov 1996] B. Fedosov, Deformation quantization and index theory, Mathematical Topics 9,
Akademie Verlag, Berlin, 1996. MR Zbl

[Gerstenhaber 1964] M. Gerstenhaber, “On the deformation of rings and algebras”, Ann. of Math. (2)
79 (1964), 59–103. MR Zbl

[Gerstenhaber 1968] M. Gerstenhaber, “On the deformation of rings and algebras, III”, Ann. of Math.
(2) 88 (1968), 1–34. MR Zbl

[Giaquinto and Zhang 1998] A. Giaquinto and J. J. Zhang, “Bialgebra actions, twists, and universal
deformation formulas”, J. Pure Appl. Algebra 128:2 (1998), 133–151. MR Zbl

[Gutt 1983] S. Gutt, “An explicit ∗-product on the cotangent bundle of a Lie group”, Lett. Math. Phys.
7:3 (1983), 249–258. MR Zbl

[Halbout 2006] G. Halbout, “Formality theorem for Lie bialgebras and quantization of twists and
coboundary r -matrices”, Adv. Math. 207:2 (2006), 617–633. MR Zbl

[Hess 1981] H. Hess, Symplectic connections in geometric quantization and factor orderings, Ph.D.
thesis, Freie Universität Berlin, 1981.

[Karabegov 1996] A. V. Karabegov, “Deformation quantizations with separation of variables on a
Kähler manifold”, Comm. Math. Phys. 180:3 (1996), 745–755. MR Zbl

[Karabegov 2013] A. Karabegov, “On Gammelgaard’s formula for a star product with separation of
variables”, Comm. Math. Phys. 322:1 (2013), 229–253. MR Zbl

[Kassel 1995] C. Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer, New York,
1995. MR Zbl

http://dx.doi.org/10.1007/s11005-005-4844-3
http://dx.doi.org/10.1007/s11005-005-4844-3
http://msp.org/idx/mr/2154860
http://msp.org/idx/zbl/1081.53078
http://msp.org/idx/mr/1300632
http://msp.org/idx/zbl/0839.17009
http://dx.doi.org/10.1007/BF00402248
http://dx.doi.org/10.1007/BF00402248
http://msp.org/idx/mr/728644
http://msp.org/idx/zbl/0526.58023
http://dx.doi.org/10.1016/S0550-3213(02)00763-0
http://dx.doi.org/10.1016/S0550-3213(02)00763-0
http://msp.org/idx/mr/1938318
http://msp.org/idx/zbl/0999.53056
http://dx.doi.org/10.1016/S0393-0440(03)00055-X
http://msp.org/idx/mr/2076061
http://msp.org/idx/zbl/1071.53054
http://msp.org/idx/mr/725930
http://msp.org/idx/zbl/0553.58038
http://mi.mathnet.ru/znsl5159
https://link.springer.com/article/10.1007%2FBF01247086
http://msp.org/idx/mr/869575
http://msp.org/idx/zbl/0617.16004
http://dx.doi.org/10.1007/978-3-319-09290-4
http://msp.org/idx/mr/3308436
http://msp.org/idx/zbl/1301.81003
http://msp.org/idx/mr/1698405
http://msp.org/idx/zbl/1105.17300
http://msp.org/idx/mr/867143
http://msp.org/idx/zbl/0635.58019
http://dx.doi.org/10.4310/jdg/1214455536
http://msp.org/idx/mr/1293654
http://msp.org/idx/zbl/0812.53034
http://msp.org/idx/mr/1376365
http://msp.org/idx/zbl/0867.58061
http://dx.doi.org/10.2307/1970484
http://msp.org/idx/mr/0171807
http://msp.org/idx/zbl/0123.03101
http://dx.doi.org/10.2307/1970553
http://msp.org/idx/mr/0240167
http://msp.org/idx/zbl/0182.05902
http://dx.doi.org/10.1016/S0022-4049(97)00041-8
http://dx.doi.org/10.1016/S0022-4049(97)00041-8
http://msp.org/idx/mr/1624744
http://msp.org/idx/zbl/0938.17015
http://dx.doi.org/10.1007/BF00400441
http://msp.org/idx/mr/706215
http://msp.org/idx/zbl/0522.58019
http://dx.doi.org/10.1016/j.aim.2005.12.006
http://dx.doi.org/10.1016/j.aim.2005.12.006
http://msp.org/idx/mr/2271019
http://msp.org/idx/zbl/1163.17303
http://dx.doi.org/10.1007/BF02099631
http://dx.doi.org/10.1007/BF02099631
http://msp.org/idx/mr/1408526
http://msp.org/idx/zbl/0866.58037
http://dx.doi.org/10.1007/s00220-012-1657-y
http://dx.doi.org/10.1007/s00220-012-1657-y
http://msp.org/idx/mr/3073164
http://msp.org/idx/zbl/1271.53081
http://dx.doi.org/10.1007/978-1-4612-0783-2
http://msp.org/idx/mr/1321145
http://msp.org/idx/zbl/0808.17003


358 CHIARA ESPOSITO, JONAS SCHNITZER AND STEFAN WALDMANN

[Kontsevich 2003] M. Kontsevich, “Deformation quantization of Poisson manifolds”, Lett. Math.
Phys. 66:3 (2003), 157–216. MR Zbl

[Nest and Tsygan 1995] R. Nest and B. Tsygan, “Algebraic index theorem”, Comm. Math. Phys.
172:2 (1995), 223–262. MR Zbl

[Neumaier 2001] N. Neumaier, Klassifikationsergebnisse in der Deformationsquantisierung, Ph.D.
thesis, Albert-Ludwigs-Universität Freiburg, 2001, available at http://tinyurl.com/neumaier.

[Reichert and Waldmann 2016] T. Reichert and S. Waldmann, “Classification of equivariant star
products on symplectic manifolds”, Lett. Math. Phys. 106:5 (2016), 675–692. MR Zbl

[Schnitzer 2016] J. Schnitzer, A simple algebraic construction of Drinfeld twists, master’s thesis,
University of Würzburg, 2016.

[Tamarkin 1998] D. E. Tamarkin, “Another proof of M. Kontsevich formality theorem”, preprint,
1998. arXiv

[Waldmann 2005] S. Waldmann, “States and representations in deformation quantization”, Rev. Math.
Phys. 17:1 (2005), 15–75. MR Zbl

[Waldmann 2007] S. Waldmann, Poisson-Geometrie und Deformationsquantisierung: eine Ein-
führung, Springer, Berlin, 2007. Zbl

Received August 11, 2016. Revised April 25, 2017.

CHIARA ESPOSITO

INSTITUT FÜR MATHEMATIK, LEHRSTUHL FÜR MATHEMATIK X
UNIVERSITÄT WÜRZBURG

D-97074 WÜRZBURG

GERMANY

chiara.esposito@mathematik.uni-wuerzburg.de

JONAS SCHNITZER

DIPARTIMENTO DI MATEMATICA

UNIVERSITÀ DEGLI STUDI DI SALERNO

I-84084 FISCIANO (SA)
ITALY

jschnitzer@unisa.it

STEFAN WALDMANN

INSTITUT FÜR MATHEMATIK, LEHRSTUHL FÜR MATHEMATIK X
UNIVERSITÄT WÜRZBURG

D-97074 WÜRZBURG

GERMANY

stefan.waldmann@mathematik.uni-wuerzburg.de

http://dx.doi.org/10.1023/B:MATH.0000027508.00421.bf
http://msp.org/idx/mr/2062626
http://msp.org/idx/zbl/1058.53065
http://dx.doi.org/10.1007/BF02099427
http://msp.org/idx/mr/1350407
http://msp.org/idx/zbl/0887.58050
http://tinyurl.com/neumaier
http://dx.doi.org/10.1007/s11005-016-0834-x
http://dx.doi.org/10.1007/s11005-016-0834-x
http://msp.org/idx/mr/3490952
http://msp.org/idx/zbl/1341.53123
http://msp.org/idx/arx/math/9803025
http://dx.doi.org/10.1142/S0129055X05002297
http://msp.org/idx/mr/2130623
http://msp.org/idx/zbl/1138.53316
http://dx.doi.org/10.1007/978-3-540-72518-3
http://dx.doi.org/10.1007/978-3-540-72518-3
http://msp.org/idx/zbl/1139.53001
mailto:chiara.esposito@mathematik.uni-wuerzburg.de
mailto:jschnitzer@unisa.it
mailto:stefan.waldmann@mathematik.uni-wuerzburg.de


PACIFIC JOURNAL OF MATHEMATICS
Vol. 291, No. 2, 2017

dx.doi.org/10.2140/pjm.2017.291.359

UNIFORM STABLE RADIUS, LÊ NUMBERS AND
TOPOLOGICAL TRIVIALITY FOR LINE SINGULARITIES

CHRISTOPHE EYRAL

Let { ft} be a family of complex polynomial functions with line singularities.
We show that if { ft} has a uniform stable radius (for the corresponding Mil-
nor fibrations), then the Lê numbers of the functions ft are independent of t
for all small t . A similar assertion was proved by M. Oka and D. B. O’Shea
in the case of isolated singularities — a case for which the only nonzero Lê
number coincides with the Milnor number.

By combining our result with a theorem of J. Fernández de Bobadilla,
we conclude that a family of line singularities in Cn, n ≥ 5, is topologically
trivial if it has a uniform stable radius.

As an important example, we show that families of weighted homoge-
neous line singularities have a uniform stable radius if the nearby fibres
f −1

t (η), η 6= 0, are “uniformly” nonsingular with respect to the deformation
parameter t .

1. Introduction

Let (t, z) := (t, z1, . . . , zn) be linear coordinates for C×Cn (n ≥ 2), and let

(1-1) f : (C×Cn,C×{0})→ (C, 0), (t, z) 7→ f (t, z),

be a polynomial function. As usual, we write ft(z) := f (t, z), and for any η ∈ C

we denote by V ( ft − η) the hypersurface in Cn defined by the equation ft(z)= η.
(Note that (1-1) implies ft(0)= f (t, 0)= 0, so that the origin 0 ∈ Cn belongs to
the hypersurface V ( ft)= f −1

t (0) for all t ∈ C.)
The purpose of this paper is to show that if the polynomial function f defines a

family { ft } of hypersurfaces with line singularities and with a uniform stable radius
(for the corresponding Milnor fibrations), then the Lê numbers

λ0
ft ,z(0), . . . , λ

n−1
ft ,z (0)

of the polynomial functions ft at 0 with respect to the coordinates z — which do
exist in this case — are independent of t for all small t (see Theorem 4.1). In the
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case of hypersurfaces with isolated singularities — a case for which the constancy
of the Lê numbers means the constancy of the Milnor number — a similar assertion
was proved by M. Oka [1973] and D.B. O’Shea [1983a].

By combining Theorem 4.1 with a theorem of J. Fernández de Bobadilla [2013],
to the effect that a family of hypersurfaces with line singularities in Cn , n ≥ 5,
is topologically trivial if it has constant Lê numbers, it follows that a family of
hypersurfaces with line singularities in Cn , n ≥ 5, is topologically trivial if it has a
uniform stable radius (see Corollary 4.2).

Oka [1973] and O’Shea [1983a] also proved that, if { ft } is a family of isolated
hypersurface singularities such that each ft is weighted homogeneous with respect
to a given system of weights, then { ft } has a uniform stable radius. In Theorem 5.1,
we show this still holds true for weighted homogeneous hypersurfaces with line
singularities provided that the nearby fibres V ( ft − η), η 6= 0, are “uniformly”
nonsingular with respect to the deformation parameter t — that is, nonsingular in
a small ball the radius of which does not depends on t . (Note that this condition
always holds true for isolated singularities.) In particular, by Theorem 4.1 and
Corollary 4.2, such families have constant Lê numbers, and for n ≥ 5, they are
topologically trivial.

Finally, let us observe that by combining Corollary 4.2 with a theorem of Oka
[1982] — which says that a family { ft } of nondegenerate functions with constant
Newton boundary has a uniform stable radius — we get a new proof of a theorem of
J. Damon [1983] which says that if { ft } is a family of nondegenerate line singularities
in Cn , n ≥ 5, with constant Newton boundary, then { ft } is topologically trivial.

Notation 1.1. In this paper, we are only interested in the behaviour of functions
(or hypersurfaces) near the origin 0 ∈ Cn . We denote by Bε the closed ball centred
at 0 ∈ Cn with radius ε > 0, and we write B̊ε and Sε for its interior and boundary,
respectively. As usual, in C, we write Dε and D̊ε rather than Bε and B̊ε.

2. Uniform stable radius

By [Hamm and Lê 1973, lemme (2.1.4)], we know that for each t there exists a
positive number rt >0 such that for any pair (εt , ε

′
t)with 0<ε′t ≤ εt ≤rt , there exists

δ(εt , ε
′
t) > 0 such that for any nonzero complex number η with 0< |η| ≤ δ(εt , ε

′
t),

the hypersurface V ( ft − η) is nonsingular in B̊rt and transversely intersects with
the sphere Sε′′ for any ε′′ with ε′t ≤ ε

′′
≤ εt . Any such a number rt is called a stable

radius for the Milnor fibration of ft at 0 [Oka 1982, §2].

Definition 2.1 [Oka 1982, §3]. We say that the family { ft } has a uniform stable
radius (we also say that { ft } is uniformly stable) if there exist τ > 0 and r > 0 such
that for any pair (ε, ε′) with 0< ε′ ≤ ε ≤ r , there exists δ(ε, ε′) > 0 such that for
any nonzero complex number η with 0< |η| ≤ δ(ε, ε′), the hypersurface V ( ft −η)
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is nonsingular in B̊r and transversely intersects with the sphere Sε′′ for any ε′′ with
ε′ ≤ ε′′ ≤ ε and for any t with 0≤ |t | ≤ τ . Any such a number r is called a uniform
stable radius for { ft }.

In the special case where the polynomial function f defines a family { ft } of
isolated hypersurface singularities (i.e., ft has an isolated singularity at 0 for all
small t), then, by [Milnor 1968], we also know that for each t there exists Rt >0 such
that the hypersurface V ( ft) is nonsingular in B̊Rt \ {0} and transversely intersects
the sphere Sρ for any ρ with 0< ρ ≤ Rt .

Definition 2.2 [Oka 1973, §2]. Suppose that f defines a family { ft } of isolated
hypersurface singularities. We say that { ft } satisfies condition (A) if there exist ν >0
and R > 0 such that V ( ft) is nonsingular in B̊R \ {0} and transversely intersects
the sphere Sρ for any ρ with 0< ρ ≤ R and for any t with 0≤ |t | ≤ ν.

It is easy to see that a family { ft } of isolated hypersurface singularities satisfies
condition (A) if and only if it has no vanishing fold and no nontrivial critical arc in
the sense of [O’Shea 1983a]. Also, it is worthwhile to observe that if { ft } satisfies
condition (A), then it has a uniform stable radius [Oka 1973; O’Shea 1983a].

3. The Oka–O’Shea theorem for isolated singularities

Throughout this section we assume that the polynomial function f defines a family
{ ft } of isolated hypersurface singularities.

Theorem 3.1 [Oka 1973; O’Shea 1983a]. Suppose that f defines a family { ft } of
isolated hypersurface singularities. If furthermore { ft } satisfies condition (A) or has
a uniform stable radius, then it is µ-constant — that is, the Milnor number µ ft (0) of
ft at 0 is independent of t for all small t .

Actually Oka showed that if { ft } satisfies condition (A) or if it has a uniform
stable radius, then the Milnor fibrations at 0 of f0 and ft are isomorphic.

Lê Dũng Tráng and C. P. Ramanujam [Lê and Ramanujam 1976] showed that for
n 6= 3 any family of isolated hypersurface singularities with constant Milnor number
is topologically V -equisingular. With the same assumption, J. G. Timourian [1977]
showed that the family is actually topologically trivial. We recall that a family { ft }

is topologically V -equisingular (respectively, topologically trivial) if there exist
open neighbourhoods D ⊆ C and U ⊆ Cn of the origins in C and Cn , together
with a continuous map ϕ : (D×U, D×{0})→ (Cn, 0) such that for all sufficiently
small t , there is an open neighbourhood Ut ⊆U of 0 ∈ Cn such that the map

ϕt : (Ut , 0)→ (ϕ({t}×Ut), 0), z 7→ ϕt(z) := ϕ(t, z),

is a homeomorphism satisfying the relation

ϕt(V ( f0)∩Ut)= V ( ft)∩ϕt(Ut)
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(respectively, the relation f0 = ft ◦ϕt on Ut ).
Note that, in general, “µ-constant” does not imply condition (A) [Oka 1989;

Briançon].
Finally, observe that the Briançon–Speder famous family shows that condition (A)

does not imply the Whitney conditions along the t-axis [Briançon and Speder 1975].

4. Uniformly stable families of line singularities

Setup and statement of the main result. From now on we suppose that the poly-
nomial function f defines a family { ft } of hypersurfaces with line singularities.
As in [Massey 1988, §4], by such a family we mean a family { ft } such that for
each t small enough, the singular locus 6 ft of ft near the origin 0 ∈ Cn is given
by the z1-axis, and the restriction of ft to the hyperplane V (z1) defined by z1 = 0
has an isolated singularity at the origin. Then, by [Massey 1995, Remark 1.29], the
partition of V ( ft) given by

St :=
{

V ( ft) \6 ft , 6 ft \ {0}, {0}
}

is a good stratification for ft at 0, and the hyperplane V (z1) is a prepolar slice
for ft at 0 with respect to St for all t small enough. In particular, combined with
[Massey 1995, Proposition 1.23], this implies that the Lê numbers

λ0
ft ,z(0) and λ1

ft ,z(0)

of ft at 0 with respect to the coordinates z do exist. (For the definitions of good
stratifications, prepolarity and Lê numbers, we refer the reader to [Massey 1995].)
Note that for line singularities, the only possible nonzero Lê numbers are precisely
λ0

ft ,z(0) and λ1
ft ,z(0). All the other Lê numbers λk

ft ,z(0) for 2≤ k ≤ n−1 are defined
and equal to zero; see [Massey 1995].

Here is our main observation.

Theorem 4.1. Suppose that f defines a family { ft } of hypersurfaces with line
singularities. If furthermore { ft } has a uniform stable radius, then it is λz-constant —
that is, the Lê numbers λ0

ft ,z(0) and λ1
ft ,z(0) are independent of t for all small t .

Theorem 4.1 extends to line singularities Oka and O’Shea’s Theorem 3.1 concern-
ing isolated singularities. Indeed, for isolated singularities, the only possible nonzero
Lê number is λ0

ft ,z(0) and the latter coincides with the Milnor number µ ft (0).
Note that if { ft } is a λz-constant family of line singularities in Cn with n ≥ 5,

then, by a theorem of D. B. Massey [1988, Theorem (5.2)], the diffeomorphism
type of the Milnor fibration of ft at 0 is independent of t for all small t . Under the
same assumption, Fernández de Bobadilla [2013, Theorem 42] showed that { ft } is
actually topologically trivial. Combining this result with our Theorem 4.1 gives the
following corollary.



UNIFORM STABLE RADIUS, LÊ NUMBERS AND TOPOLOGICAL TRIVIALITY 363

Corollary 4.2. Suppose that f defines a family { ft } of hypersurfaces with line
singularities in Cn with n ≥ 5. If furthermore { ft } has a uniform stable radius, then
it is topologically trivial.

Application to families of nondegenerate line singularities with constant Newton
boundary. Oka [1982, Corollary 1] showed that if { ft } is a family of hypersur-
face singularities — not necessary line singularities — such that for all small t the
polynomial function ft is nondegenerate and the Newton boundary of ft at 0 with
respect to the coordinates z is independent of t , then { ft } has a uniform stable radius.
(For the definitions of nondegeneracy and Newton boundary, see [Kouchnirenko
1976; Oka 1979].) Combined with Oka’s result, Corollary 4.2 provides a new proof
of the following result, which is a particular case of a more general theorem of
Damon.

Theorem 4.3 [Damon 1983]. Suppose that f defines a family { ft } of hypersurfaces
with line singularities in Cn with n ≥ 5. If furthermore for any sufficiently small
t the polynomial function ft is nondegenerate and the Newton boundary of ft

at 0 with respect to the coordinates z is independent of t , then the family { ft } is
topologically trivial.

Proof of Theorem 4.1. Consider the map 8 : C×Cn
→ C2 defined by

(t, z) 7→8(t, z) := ( f (t, z), t),

and pick positive numbers τ and r which satisfy the condition of Definition 2.1.
Then, in particular, the following property holds:

(P) For any ε with 0 < ε < r , there exists δ(ε) > 0 such that for any t with
0 ≤ |t | ≤ τ and for any η with 0< |η| ≤ δ(ε), the hypersurface V ( ft − η) is
nonsingular in B̊r and transversely intersects the sphere Sε.

This property implies that the critical set 68 of 8 does not intersect the set

U (B̊r ) := (D̊τ × B̊r )∩8
−1((D̊δ(ε) \ {0})× D̊τ ).

Indeed, suppose there is a point (t0, z0) ∈68∩U (B̊r ). Then z0 ∈6( ft0− ft0(z0)).
But this is not possible, since by (P) the hypersurface V ( ft0 − ft0(z0)) is smooth.
(We recall that a complex variety can never be a smooth manifold throughout a
neighbourhood of a critical point; see [Milnor 1968, §2].)

It also follows from property (P) that the map

8|U (Sε) : U (Sε)→ (D̊δ(ε) \ {0})× D̊τ

(restriction of 8 to U (Sε) := (D̊τ × Sε)∩8−1((D̊δ(ε) \{0})× D̊τ )) is a submersion.
Indeed, as 68∩U (B̊r )=∅ and U (B̊r ) is an open subset of C×Cn , the map

8|U (B̊r )
: U (B̊r )→ (D̊δ(ε) \ {0})× D̊τ
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is a submersion. Thus, to show that8|U (Sε) is a submersion, it suffices to observe that
the inclusion U (Sε) ↪→U (B̊r ) is transverse to the submanifold 8|−1

U (B̊r )
( f (t, z), t)

for any point (t, z) ∈U (Sε)— or equivalently that the submanifolds

8|−1
U (B̊r )

( f (t, z), t) and ({t}× Sε)∩U (B̊r )

are transverse to each other. This is exactly the content of (P).
Now, as 8|U (Sε) is also a proper map, a result of Massey and D. Siersma [1992,

Proposition 1.10] shows that the Milnor number of a generic hyperplane slice of
ft at a point on 6 ft sufficiently close to the origin (which coincides with the Lê
number λ1

ft ,z(0) for line singularities; see [Lê 1980; Massey 1988]) is independent
of t for all small t .

Finally, since the family { ft } has a uniform stable radius — the full strength
of this assumption is used here — it follows from [Oka 1982, Lemma 2] that the
diffeomorphism type of the Milnor fibration of ft at the origin is independent of t
for all small t . In particular, the reduced Euler characteristic χ̃(Fft ,0) of the Milnor
fibre Fft ,0 of ft at 0, which by [Massey 1995, Theorem 3.3] equals

(−1)n−1λ0
ft ,z(0)+ (−1)n−2λ1

ft ,z(0),

is independent of t for all small t . The constancy of λ0
ft ,z(0) now follows from that

of λ1
ft ,z(0).

5. Uniform stable radius and weighted homogeneous line singularities

By a result of Oka [1973] and O’Shea [1983a], we know that if { ft } is a family of
isolated hypersurface singularities such that each ft is weighted homogeneous with
respect to a given system of weights, then { ft } satisfies condition (A), and hence,
is uniformly stable. Our next observation says this still holds true for weighted
homogeneous line singularities provided that the nearby fibres V ( ft − η), η 6= 0,
of the functions ft are “uniformly” nonsingular with respect to the deformation
parameter t — that is, nonsingular in a small ball the radius of which does not
depends on t . (We recall that by [Hamm and Lê 1973] the nearby fibres are
“individually” nonsingular — that is, nonsingular in a small ball the radius of which
depends on t .)

Theorem 5.1. Suppose that f defines a family { ft } of hypersurfaces with line sin-
gularities such that each ft is weighted homogeneous with respect to a given system
of weights w = (w1, . . . , wn) on the variables (z1, . . . , zn), with wi ∈ N \ {0}.
Also, assume that the nearby fibres V ( ft − η), η 6= 0, of the functions ft are
uniformly nonsingular with respect to the deformation parameter t — that is, there
exist positive numbers τ , r , δ such that for any 0 < |η| ≤ δ and 0 ≤ |t | ≤ τ , the
hypersurface V ( ft − η) is nonsingular in B̊r . Under these assumptions, the family
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{ ft } has a uniform stable radius. (In particular, { ft } is λz-constant, and for n ≥ 5,
it is topologically trivial.)

Proof. The argument is similar to those used in [Oka 1973; O’Shea 1983a]. Suppose
that the family { ft } does not have a uniform stable radius. Then, as the nearby
fibres of the functions ft are uniformly nonsingular with respect to the deformation
parameter t , for all τ > 0 and all r > 0 small enough, there exist 0<ε′ ≤ ε≤ r such
that for all sufficiently small δ>0 there exist ηδ , εδ and tδ , with 0< |ηδ|≤δ, ε′≤εδ≤
ε and |tδ| ≤ τ , such that V ( ftδ − ηδ) is nonsingular in B̊r and does not transversely
intersect the sphere Sεδ . It follows that there is a point zδ ∈ V ( ftδ −ηδ)∩ Sεδ which
is a critical point of the restriction to V ( ftδ − ηδ) ∩ Br of the squared distance
function:

z ∈ V ( ftδ − ηδ)∩ Br 7→ ‖z‖2 =
∑

1≤i≤n

|zi |
2.

In other words, the point (tδ, zδ) lies in the intersection of Dτ × (Bε \ B̊ε′) with the
real algebraic set C consisting of the points (t, z) such that

(5-1)
(
∂ ft

∂z1
(z), . . . ,

∂ ft

∂zn
(z)
)
= λz

for some λ ∈C\{0}, where z := (z1, . . . , zn) and zi denotes the complex conjugate
of zi (see e.g., [O’Shea 1983b, Lemma 1]). Let Cτ,r := C ∩ (Dτ × (Bε \ B̊ε′)).
Take δ := δ(m) := 1/m (where m ∈ N \ {0} is sufficiently large), and consider
the corresponding sequence of points (tδ(m), zδ(m)) in Cτ,r . As Cτ,r is compact,
taking a subsequence if necessary, we may assume that (tδ(m), zδ(m)) converges to a
point (tτ,r , zτ,r ) ∈ Cτ,r , and hence ηδ(m) := f (tδ(m), zδ(m)) tends to f (tτ,r , zτ,r ) as
m→∞. Since 0< |ηδ(m)|≤ δ(m)= 1/m→ 0 as m→∞, we have f (tτ,r , zτ,r )= 0.
Thus (tτ,r , zτ,r ) ∈ V ( f )∩Cτ,r .

Now, since ftτ,r is weighted homogeneous with respect to the weights w =
(w1, . . . , wn), the Euler identity implies the following contradiction:

dw · ftτ,r (zτ,r )︸ ︷︷ ︸
=0

Euler
=

∑
1≤i≤n

wi (zτ,r )i
∂ ftτ,r

∂zi
(zτ,r )

(5-1)
= λ

∑
1≤i≤n

wi |(zτ,r )i |2 6= 0,

where dw is the weighted degree of ftτ,r with respect to the weights w and (zτ,r )i is
the i-th component of zτ,r . �

Remark 5.2. Actually, the proof shows that if f defines a family { ft } of hyper-
surfaces — not necessarily with line singularities — such that each ft is weighted
homogeneous with respect to a given system of weights w, and if furthermore, the
nearby fibres V ( ft−η), η 6= 0, of the functions ft are uniformly nonsingular with re-
spect to the deformation parameter t , then the family { ft } has a uniform stable radius.
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ROST INVARIANT OF THE CENTER, REVISITED

SKIP GARIBALDI AND ALEXANDER S. MERKURJEV

The Rost invariant of the Galois cohomology of a simple simply connected
algebraic group over a field F is defined regardless of the characteristic of F,
but certain formulas for it have only been known under a hypothesis on the
characteristic. We improve on those formulas by removing the hypothesis
on the characteristic and removing an ad hoc pairing that appeared in those
formulas. As a preliminary step of independent interest, we also extend the
classification of invariants of quasitrivial tori to all fields.

1. Introduction

Cohomological invariants provide an important tool to distinguish elements of
Galois cohomology groups such as H 1(F,G) where G is a semisimple algebraic
group. In the case where G is simple and simply connected there are no nonconstant
invariants with values in H d(∗,Q/Z(d−1)) for d < 3. For d = 3, modulo constants
the group of invariants H 1(∗,G)→ H 3(∗,Q/Z(2)) is finite cyclic with a canonical
generator known as the Rost invariant and denoted by rG ; this was shown by Markus
Rost in the 1990s and full details can be found in [Garibaldi et al. 2003]. Rost’s
theorem raised the questions: How do we calculate the Rost invariant of a class in
H 1(F,G)? What is a formula for it?

At least for G of inner type An there is an obvious candidate for rG , which is
certainly equal to mrG for some m relatively prime to n+1. The papers [Merkurjev
et al. 2002; Garibaldi and Quéguiner-Mathieu 2007] studied the composition

(1.1) H 1(F,C)→ H 1(F,G)
rG
−→ H 3(F,Q/Z(2))

for C the center of G, and under some assumptions on char(F), computed the
composition in terms of the value of m for type A. Eventually the value of m was
determined in [Gille and Quéguiner-Mathieu 2011]. The main result of this paper is
Theorem 1.2, which gives a formula for (1.1) that does not depend on the type of G
nor on char(F). This improves on the results of [Merkurjev et al. 2002; Garibaldi
and Quéguiner-Mathieu 2007] by removing the hypothesis on the characteristic

Merkurjev has been supported by the NSF grant DMS #1160206.
MSC2010: primary 20G15; secondary 11E72.
Keywords: Rost invariant, cohomological invariant, cup product, Tits class.
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and avoiding the ad hoc type-by-type arguments used in those papers. We do rely
on [Gille and Quéguiner-Mathieu 2011] for the computation of m for type A, but
nothing more.

The strategy is to (1) extend the determination of invariants of quasitrivial tori
from [Merkurjev et al. 2002] to all fields (see Theorem 3.7), (2) to follow the general
outline of [Garibaldi and Quéguiner-Mathieu 2007] to reduce to the case of type A,
and (3) to avoid the ad hoc formulas used in previous work by giving a formula
independent of the Killing–Cartan type of G.

Specifically, there is a canonically defined element t◦G ∈ H 2(F,C◦), where C◦

denotes the dual multiplicative group scheme of C in a sense defined below, and a
natural cup product H 1(F,C)⊗ H 2(F,C◦)→ H 3(F,Q/Z(2)). We prove:

Theorem 1.2. Let G be a semisimple and simply connected algebraic group over
a field F, and C ⊂ G be the center of G. Let t◦G be the image of the Tits class tG

under ρ̂∗ : H 2(F,C)→ H 2(F,C◦). Then the diagram

H 1(F,C)

−t◦G∪ ''

i∗
// H 1(F,G)

rG
��

H 3(F,Q/Z(2))

commutes, where the cup product map is the one defined in (2.9).

The map ρ̂∗ is deduced from a natural map ρ defined in terms of the root system,
see Section 5C.

Theorem 1.2 gives a general statement, which we state precisely in Theorem 6.4,
for all invariants H 1(∗,G)→ H 3(∗,Q/Z(2)).

2. Cohomology of groups of multiplicative type

Let F be a field and M a group scheme of multiplicative type over F. Then M is
uniquely determined by the Galois module M∗ of characters over Fsep. In particular,
we have

M(Fsep)= Hom(M∗, F×sep).

If M is a torus T, then T ∗ is a Galois lattice and we set T∗ =Hom(T ∗,Z). We have

(2.1) T (Fsep)= T∗⊗ F×sep.

If M is a finite group scheme C of multiplicative type, set C∗ :=Hom(C∗,Q/Z),
so we have a perfect pairing of Galois modules

(2.2) C∗⊗C∗→Q/Z.

Write C◦ for the group of multiplicative type over F with the character module C∗.
We call C◦ the group dual to C .
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Example 2.3. We write µn for the sub-group-scheme of Gm of n-th roots of unity.
The restriction of the natural generator of G∗m (the identity Gm→ Gm) generates
µ∗n and thereby identifies µ∗n with Z/nZ. Thus µ∗n = Z/nZ via the pairing (2.2),
hence µ◦n = µn .

The change-of-sites map α : Spec(F)fppf→ Spec(F)ét yields a functor

α∗ : Shfppf(F)→ Shét(F)

between the categories of sheaves over F and an exact functor

Rα∗ : D+ Shfppf(F)→ D+ Shét(F)

between derived categories.
Every group M of multiplicative type can be viewed as a sheaf of abelian groups

either in the étale or fppf topology. We have α∗(M) = M for every group M of
multiplicative type. If M is smooth, we have Riα∗(M) = 0 for i > 0 by [Milne
1980, proof of Theorem 3.9]. It follows that Rα∗(M)= M, hence

(2.4) H i
ét(F,M)= H i

ét(F, Rα∗(M))= H i
fppf(F,M), for M smooth.

If
1→ C→ T → S→ 1

is an exact sequence of algebraic groups with C a finite group of multiplicative
type and T and S tori, this sequence is exact in the fppf-topology but not in the
étale topology (unless C is smooth). Applying Rα∗ to the exact triangle

C→ T → S→ C[1]

in D+ Shfppf(F), we get an exact triangle,

Rα∗(C)→ T (Fsep)→ S(Fsep)→ Rα∗(C)[1],

in D+ Shét(F) since Rα∗(T )= T (Fsep) and Rα∗(S)= S(Fsep). In other words,

(2.5) Rα∗(C)= cone(T (Fsep)→ S(Fsep))[−1].

Recall that Z(1) is the complex in D+ Shét(F) with only one nonzero term F×sep
placed in degree 1, i.e., Z(1)= F×sep[−1]. Set

C∗(1) := C∗
L
⊗Z(1), C∗(1) := C∗

L
⊗Z(1),

where the derived tensor product is taken in the derived category D+ Shét(F). If T
is an algebraic torus, we write

T∗(1) := T∗
L
⊗Z(1)= T∗⊗Z(1)= T (Fsep)[−1].
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Tensoring the exact sequence

0→ T∗→ S∗→ C∗→ 0

with Z(1) and using (2.1), we get an exact triangle

C∗(1)→ T (Fsep)→ S(Fsep)→ C∗(1)[1].

It follows from (2.5) that
C∗(1)= Rα∗(C)

and therefore,

H i
fppf(F,C)= H i

ét(F, Rα∗(C))= H i
ét(F,C∗(1)).

Recall that we also have

H i
fppf(F, T )= H i

ét(F, T )= H i+1
ét (F, T∗(1)).

Remark 2.6. There is a canonical isomorphism (see [Merkurjev 2016, §4c])

C∗(1)' C(Fsep)⊕ (C∗⊗ F×sep)[−1].

The second term in the direct sum vanishes if char(F) does not divide the order of
C∗ or if F is perfect.

Notation 2.7. To simplify notation we will write H i (F,C) for H i
ét(F,C∗(1)) =

H i
fppf(F,C) and H i (F,C◦) for H i

ét(F,C∗(1))= H i
fppf(F,C◦).

Every C-torsor E over F has a class c(E) ∈ H 1(F,C).

Example 2.8. Taking colimits of the connecting homomorphism arising from the
sequences 1→Gm→GLd→PGLd→1 or 1→µd→SLd→PGLd→1 — which
are exact in the fppf topology — gives isomorphisms H 2(K ,Gm) ' Br(K ) and
H 2(K , µn)' nBr(K ) as in [Gille and Szamuely 2006, 4.4.5]1, which we use.

In view of (2.4) and Notation 2.7, we work in the derived category of étale sheaves
as in, for example, [Freitag and Kiehl 1988, Appendix A.II]. We use the motivic
complex Z(2) of étale sheaves over F defined in [Lichtenbaum 1987; 1990]. Set

Q/Z(2) :=Q/Z
L
⊗Z(2).

The complex Q/Z(2) is the direct sum of two complexes. The first complex is
given by the locally constant étale sheaf (placed in degree 0) the colimit over n
prime to char(F) of the Galois modules µ⊗2

n := µn ⊗µn . The second complex is
nontrivial only in the case p = char(F) > 0 and it is defined as

colim
n

Wn�
2
log[−2]

1This reference assumes char(F) does not divide n, since it uses H1 to denote Galois cohomology.
With our notation, their arguments go through with no change.
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with Wn�
2
log the sheaf of logarithmic de Rham–Witt differentials (see [Kahn 1996]).

Note that
H i (F,Q/Z(2))' H i+1(F,Z(2))

for i ≥ 3.
Tensoring (2.2) with Z(2), we get the pairings

(2.9)
C∗(1)

L
⊗ C∗(1)→Q/Z(2) and

H i (F,C)⊗ H j (F,C◦)→ H i+ j (F,Q/Z(2)).

If S is a torus over F, we have S∗(1)= S∗⊗Gm[−1] = S[−1] and the pairings

(2.10)
S∗⊗ S∗→ Z, S∗(1)

L
⊗S∗(1)→ Z(2) and

H i (F, S)⊗ H j (F, S◦)→ H i+ j+2(F,Z(2))= H i+ j+1(F,Q/Z(2))

if i + j ≥ 2.
Let

1→ C→ T → S→ 1

be an exact sequence with T and S tori and C finite. Dualizing we get an exact
sequence of dual groups

(2.11) 1→ C◦→ S◦→ T ◦→ 1.

We have the homomorphisms

ϕ : S(F)→ H 1(F,C), ψ : H 2(F,C◦)→ H 2(F, S◦).

Proposition 2.12. For every a ∈ S(F) and b ∈ H 2(F,C◦), we have ϕ(a) ∪ b =
a ∪ψ(b) in H 3(F,Q/Z(2)). Here the cup products are taken with respect to the
pairings (2.9) and (2.10) respectively.

Proof. The pairing S∗⊗ S∗→ Z extends uniquely to a pairing S∗⊗ T ∗→Q. We
have then a morphism of exact triangles

S∗(1)
L
⊗S∗(1)

��

// S∗(1)
L
⊗T ∗(1)

��

// S∗(1)
L
⊗C∗(1)

s
��

// S∗(1)
L
⊗S∗(1)[1]

��

Z(2) // Q(2) // Q/Z(2) // Z(2)[1]

and a commutative diagram

H 1(F, S∗(1))⊗ H 2(F,C∗(1))

��

// H 1(F, S∗(1))⊗ H 2(F, S∗(1)[1])

��

H 3(F,Q/Z(2)) // H 3(F,Z(2)[1])
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and therefore, a commutative diagram:

H 0(F, S)⊗ H 2(F,C◦)

��

// H 0(F, S)⊗ H 2(F, S◦)

��

H 3(F,Q/Z(2)) H 3(F,Q/Z(2))

On the other hand, the composition S∗(1)
L
⊗C∗(1)→ C∗(1)

L
⊗C∗(1)→ Q/Z(2)

coincides with s. Therefore, we have a commutative diagram

H 1(F, S∗(1))⊗ H 2(F,C∗(1))

��

// H 1(F,C∗(1))⊗ H 2(F,C∗(1))

��

H 3(F,Q/Z(2)) H 3(F,Q/Z(2))

and therefore, a diagram:

H 0(F, S)⊗ H 2(F,C◦)

��

// H 1(F,C)⊗ H 2(F,C◦)

��

H 3(F,Q/Z(2)) H 3(F,Q/Z(2))

The result follows. �

Remark 2.13. We have used that the diagram

H i (A[a])⊗ H j (B[b]) // H i+ j (A[a]⊗ B[b])

H i+a(A)⊗ H j+b(B) // H i+ j+a+b(A⊗ B)

is (−1)ib-commutative for all complexes A and B.

Let A be an étale algebra over F and C a finite group scheme of multiplicative
type over A. Then C ′ := RA/F (C) is a finite group of multiplicative type over F.
Moreover, C ′◦ ' RA/F (C◦) and there are canonical isomorphisms

ι : H i (A,C)−→∼ H i (F,C ′) and ι◦ : H i (A,C◦)−→∼ H i (F,C ′◦).

Lemma 2.14. We have ι(x)∪ ι◦(y)= NA/F (x ∪ y) in H i+ j (F,Q/Z(2)) for every
x ∈ H i (A,C) and y ∈ H j (A,C◦).

Proof. The group scheme C ′A is naturally isomorphic to the product C1×C2×· · ·×Cs

of group schemes over A with C1 = C . Let π : C ′A→ C be the natural projection.



ROST INVARIANT OF THE CENTER, REVISITED 375

Similarly, C ′◦'C◦1×C◦2×· · ·×C◦s . Write ε :C◦→C ′A
◦ for the natural embedding.

Then the inverse of ι coincides with the composition

H i (F,C ′) res
−→ H i (A,C ′A)

π∗
−→ H i (A,C)

and ι◦ coincides with the composition

H i (A,C◦) ε∗
−→ H i (A,C ′◦A)

NA/F
−−→ H i (F,C ′◦).

Since π∗(ι(x))= x , we have res(ι(x))= (x, x2, . . . , xs) for some xi . On the other
hand, ε∗(y)= (y, 0, . . . , 0), hence

(2.15) res(ι(x))∪ ε∗(y)= x ∪ y.

Finally,

ι(x)∪ ι◦(y)= ι(x)∪ NA/F (ε
∗(y))

= NA/F (res(ι(x))∪ ε∗(y)) by the projection formula

= NA/F (x ∪ y) by (2.15). �

Lemma 2.16 (projection formula). Let f : C→ C ′ be a homomorphism of finite
group schemes of multiplicative type. For a ∈ H m(F,C), the diagram

H k(F,C ′◦)

f ∗

��

∪ f∗(a)
// H k+m(F,Q/Z(2))

H k(F,C◦) ∪a
// H k+m(F,Q/Z(2))

commutes.

Proof. The pairings used in the diagram are induced by the pairings C∗⊗C∗→Q/Z

and C ′∗⊗C ′
∗
→Q/Z. The (obvious) projection formula for these pairings reads

〈 f ∗(x), y〉 = 〈x, f∗(y)〉 for x ∈ C ′∗ and y ∈ C∗. �

3. Invariants of quasitrivial tori

3A. Cohomological invariants. For a field F write H j (F) for the cohomology
group H j (F,Q/Z( j − 1)), where j ≥ 1 (see [Garibaldi et al. 2003]). In particular,
H 1(F) is the character group of continuous homomorphisms 0F → Q/Z and
H 2(F) is the Brauer group Br(F).

The assignment K 7→ H j (K ) is functorial with respect to arbitrary field exten-
sions. If K ′/K is a finite separable field extension, we have a well-defined norm
map NK ′/K : H j (K ′)→ H j (K ).

The graded group H∗(F) is a (left) module over the Milnor ring K∗(F).
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Definition 3.1. Let A be a functor from the category of field extensions of F to
pointed sets. A degree d cohomological invariant of A is a collection of maps of
pointed sets

ιK :A(K )→ H d(K )

for all field extensions K/F , functorial in K. The degree d cohomological invariants
of G form an abelian group denoted by Inv d(A). If L/F is a field extension, we
have a restriction homomorphism

Inv d(A)→ Inv d(AL),

where GL is the restriction of G to the category of field extensions of L .
If the functor A factors through the category of groups, we further consider

the subgroup Inv d
h (A) of Inv d(A) consisting of those invariants ι such that ιK is a

group homomorphism for every K.

Example 3.2. If G is an algebraic group over F, we can view G as a functor taking
a field extension K to the group G(K ) of K -points of G; in this case we consider
Inv d

h (G). We have also another functor H 1(G) : K → H 1(K ,G) and we consider
Inv d(H 1(G)). If G is commutative, then H 1(K ,G) is a group for every K, and
we also consider Inv d

h (H
1(G)).

3B. Residues. Our goal is to prove Theorem 3.7 concerning the group Inv d
h (T )

for T a quasisplit torus. Such invariants of order not divisible by char(F) were
determined in [Merkurjev et al. 2002]. We modify the method from [Merkurjev
et al. 2002] so that it works in general. The difficulty is that the groups H j (K ) do
not form a cycle module, because the residue homomorphisms need not exist.

If K is a field with discrete valuation v and residue field κ(v), write H j (F)nr,v for
the subgroup of all elements of H j (F) that are split by finite separable extensions
K/F such that v admits an unramified extension to K. Note that every element in
H j (F)nr,v of order not divisible by char(F) belongs to H j (F)nr,v.

There are residue homomorphisms (see [Garibaldi et al. 2003] or [Kato 1982])

∂v : H j (K )nr,v→ H j−1(κ(v)).

Example 3.3. Let K = F(t) and let v be the discrete valuation associated with t .
Then κ(v)= F and ∂v(t · hK )= h for all h ∈ H j−1(F).

Lemma 3.4. Let K ′/K be a field extension and let v′ be a discrete valuation on K ′

unramified over its restriction v on K. Then the diagram

H j (K )nr,v

��

∂v
// H j−1(κ(v))

��

H j (K ′)nr,v′
∂v′
// H j−1(κ(v′))

commutes.
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3C. Invariants of tori. Let A be an étale F-algebra and T A the corresponding
quasisplit torus, i.e.,

T A(K )= (A⊗F K )×

for every field extension K/F . If B is another étale F-algebra, then

T A×B
= T A

× T B

and
Inv d

h (T
A×B)' Inv d

h (T
A)⊕ Inv d

h (T
B).

Write A as a product of fields: A = L1× L2× · · ·× Ls . Set

H i (A) := H i (L1)⊕ H i (L2)⊕ · · ·⊕ H i (Ls).

For d ≥ 2 define a homomorphism

αA
: H d−1(A)→ Inv d

h (T
A)

as follows. If h ∈ H d−1(A), then the invariant αA(h) is defined by

αA(h)(t)= NA⊗K/K (t · h A⊗K ) ∈ H d(K )

for a field extension K/F and t ∈ T A(K )= (A⊗F K )×.

Remark 3.5. In the notation of the previous section, (T A)◦ ' T A, and we have

H d−1(F, (T A)◦)= H d−1(F, T A)= H d−1(A,Gm)= H d−1(A).

The pairing (2.10) for the torus T A, i = 0, and j = 2,

A×⊗ H 2(A)= T A(F)⊗ H 2(F, (T A)◦)→ H 3(F),

takes t⊗h to NA/F (t ∪h A)= α
A(h)(t). In other words, the map αA coincides with

the map
H 2(F, (T A)◦)→ Inv3

h(T
A)

given by the cup product.

Note that every element h ∈ H d−1(A) is split by an étale extension of A, hence
the invariant αA(h) vanishes when restricted to Fsep.

Question 3.6. Do all invariants in Inv d
h (T

A) vanish when restricted to Fsep?

The answer is “yes” when char(F)= 0. For any prime p 6= char(F) and for F
separably closed, the zero map is the only invariant T A(∗)→ H d(∗,Qp/Zp(d−1))
that is a homomorphism of groups [Merkurjev 1999, Proposition 2.5].

The main result of this section is:
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Theorem 3.7. The sequence

0→ H d−1(A) αA
−→ Inv d

h (T
A)

res
−→ Inv d

h (T
A

sep)

is exact.

That is, defining Ĩnvd
h(T

A) := ker res, we claim that αA
: H d−1(A)−→∼ Ĩnvd

h(T
A).

The torus T A is embedded into the affine space A(A) as an open set. Let Z A

be the closed complement A(A) \ T A and let S A be the smooth locus of Z A (see
[Merkurjev et al. 2002]). Then S A is a smooth scheme over A. In fact, S A is a
quasisplit torus over A of the A-algebra A′ such that A× A′ ' A⊗F A. We have
A= L1× L2×· · ·× Ls , where the L i are finite separable field extensions of F, and
the connected components of S A (as well as the irreducible components of Z A) are
in one-to-one correspondence with the factors L i . Let vi for i = 1, 2, . . . , s be the
discrete valuation of the function field F(T A) corresponding to the i-th connected
component Si of S A, or equivalently, to the i-th irreducible component Zi of Z A.
The residue field of vi is equal to the function field F(Zi )= F(Si ). We then have
the residue homomorphisms

∂i : H d(F(T A))nr,vi → H d−1(F(Zi ))= H d−1(F(Si )).

Write H̃ d(F(T A)) for the kernel of the natural homomorphism H d(F(T A))→

H d(Fsep(T A)). Since every extension of the valuation vi to Fsep(T A) is unramified,
we have H̃ d(F(T A))⊂ H d(F(T A))nr,vi for all i . Write F(S A) for the product of
F(Si ) over all i . The sum of the restrictions of the maps ∂i on H̃ d(F(T A)) yields
a homomorphism

∂ A
: H̃ d(F(T A))→ H d−1(F(S A)).

Applying u ∈ Ĩnvd
h(T

A) to the generic element ggen of T A over the function field
F(T A), we get a cohomology class u(ggen) ∈ H d(F(T A)). By assumption on u,
we have u(ggen) ∈ H̃ d(F(T A)). Applying ∂ A, we get a homomorphism

β A
: Ĩnvd

h(T
A)→ H d−1(F(S A)), u 7→ ∂ A(u(ggen)).

If B is another étale F-algebra, we have (see [Merkurjev et al. 2002])

S A×B
= S A

× T B
+ T A

× SB.

In particular, F(S A)⊂ F(S A×B)⊃ F(SB). Lemma 3.4 then gives:

Lemma 3.8. The diagram

Ĩnvd
h(T

A)⊕ Ĩnvd
h(T

B)
β A
⊕βB
// H d−1(F(S A))⊕ H d−1(F(SB))

��

Ĩnvd
h(T

A×B)
β A×B

// H d−1(F(S A×B))

commutes.
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Recall that S A is a smooth scheme over A with an A-point. It follows that
A ⊂ F(S A) and the natural homomorphism

H j (A)→ H j (F(S A))

is injective by [Garibaldi et al. 2003, Proposition A.10]. We shall view H j (A) as a
subgroup of H j (F(S A)).

Let A = L1× L2× · · ·× Ls be the decomposition of an étale F-algebra A into
a product of fields. The height of A is the maximum of the degrees [L i : F]. The
height of A is 1 if and only if A is split. The following proposition will be proved
by induction on the height of A.

Proposition 3.9. The image of the homomorphism β A is contained in H d−1(A).

Proof. By Lemma 3.8 we may assume that A = L is a field. If L = F, we have
S A
= Spec F, so A = F(S A) and the statement is clear.

Suppose L 6= F. The algebra L is a canonical direct factor of L⊗F L . It follows
that the homomorphism βL is a direct summand of βL⊗L. Since the height of
the L-algebra L ⊗F L is less than the height of A, by the induction hypothesis,
Im(βL⊗L)⊂ H d−1(L ⊗ L). It follows that Im(βL)⊂ H d−1(L). �

It follows from Proposition 3.9 that we can view β A as a homomorphism

β A
: Ĩnvd

h(T
A)→ H d−1(A).

We will show that αA and β A are isomorphisms inverse to each other. First
consider the simplest case.

Lemma 3.10. The maps αA and β A are isomorphisms inverse to each other in the
case A = F.

Proof. If A = F, then we have T A
= Gm . The generic element ggen is equal to

t ∈ F(t)× = F(Gm). Let h ∈ H d−1(A) = H d−1(F). Then the invariant αF (h)
takes t to t · h ∈ H̃ d(F(t)). By Example 3.3, βF (αF (h)) = ∂v(t · h) = h, i.e.,
the composition βF

◦αF is the identity. It suffices to show that αF is surjective.
Take u ∈ Ĩnvd

h(Gm). We consider t as an element of the complete field L := F((t))
and let x = uL(t) ∈ H d(L). By assumption, x is split by the maximal unramified
extension L ′ := Fsep((t)) of L . By a theorem of Kato [1982],

x ∈ Ker
(
H d(L)→ H d(L ′)

)
= H d(F)⊕ t · H d−1(F),

i.e., x = h′L + t · hL for some h′ ∈ H d(F) and h ∈ H d−1(F).
Let K/F be a field extension. We want to compute uK (a) ∈ H d(K ) for an

element a ∈ K×. Consider the field homomorphism ϕ : L→ M := K ((t)) taking a
power series f (t) to f (at). By functoriality,

uM(at)= uM(ϕ(t))= ϕ∗(uL(t))= ϕ∗(x)= ϕ∗(h′L + t · hL)= h′M + (at) · hM ,
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therefore,

uM(a)= uM(at)− uM(t)= (h′M + (at) · hM)− (h′M + t · hM)= a · hM .

It follows that u(a)=a ·hK since the homomorphism H d(K )→ H d(M) is injective
by [Garibaldi et al. 2003, Proposition A.9]. We have proved that u = αA(h), i.e.,
αA is surjective. �

Lemma 3.11. The homomorphism β A is injective.

Proof. The proof is similar to the proof of Proposition 3.9. We induct on the
height of A. The right vertical homomorphism in Lemma 3.8 is isomorphic to
the direct sum of the two homomorphisms H d−1(F(S A))→ H d−1(F(S A

× T B))

and H d−1(F(SB))→ H d−1(F(T A
× SB)). Both homomorphisms are injective by

[Garibaldi et al. 2003, Proposition A.10]. It follows from Lemma 3.8 that we may
assume that A = L is a field.

The case L = F follows from Lemma 3.10, so we may assume that L 6= F. The
homomorphism βL is a direct summand of βL⊗L. The latter is injective by the
induction hypothesis, hence so is βL. �

Lemma 3.12. The composition β A
◦αA is the identity.

Proof. We again induct by the height of A. By Lemma 3.8 that we may assume
that A = L is a field.

The case L = F follows from Lemma 3.10, so we may assume that L 6= F. The
homomorphisms αL and βL are direct summands of αL⊗L and βL⊗L, respectively.
The composition βL⊗L

◦αL⊗L is the identity by the induction hypothesis, hence
β A
◦αA is also the identity. �

It follows from Lemma 3.11 and Lemma 3.12 that αA and β A are isomorphisms
inverse to each other. This completes the proof of Theorem 3.7.

4. Invariants of groups of multiplicative type

In this section, C denotes a group of multiplicative type over F such that there
exists an exact sequence

1→ C→ T → S→ 1

such that S and T are quasitrivial tori. For example, this holds if C is the center
of a simply connected semisimple group G over F, such as µn . In that case, C
is isomorphic to the center of the quasisplit inner form Gq of G, and we take T
to be any quasitrivial maximal torus in Gq . Then T ∗ is the weight lattice 3w and
S∗ '3r , where the Galois action permutes the fundamental weights and simple
roots, respectively.
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Proposition 4.1. Every invariant in Ĩnv3
h(H

1(C)) is given by the cup product via
the pairing (2.9) with a unique element in H 2(F,C◦).

Proof. Since H 1(K , T )= 1 for every K, the connecting homomorphism S(K )→
H 1(K ,C) is surjective for every K and therefore the natural homomorphism

Inv3
h(H

1(C))→ Inv3
h(S)

is injective.
Consider the diagram

H 2(F,C◦)

��

� � // H 2(F, S◦)

o

��

// H 2(F, T ◦)

o

��

Ĩnv3
h(H

1(C)) �
�

// Ĩnv3
h(S) // Ĩnv3

h(T )

where the vertical homomorphisms are given by cup products and the top row
comes from the exact sequence (2.11); it is exact since H 1(K , T ◦)= 1 for every
field extension K/F . The bottom row comes from applying Ĩnv3

h to the sequence
T (K )→ S(K )→ H 1(K ,C); it is a complex. The vertical arrows are cup products,
and the middle and right ones are isomorphisms by Theorem 3.7 and Remark 3.5.
The diagram commutes by Proposition 2.12. By diagram chase, the left vertical
map is an isomorphism. �

Note that the group H 2(F, T ) is a direct sum of the Brauer groups of finite
extensions of F. Therefore, we have the following, a coarser version of [Garibaldi
2012, Proposition 7]:

Lemma 4.2. The homomorphism H 2(F,C)→
∐

Br(K ), where the direct sum is
taken over all field extensions K/F and all characters of C over K, is injective.

Remark 4.3. The group G becomes quasisplit over the function field F(X) of the
variety X of Borel subgroups of G, so F(X) kills tG . But the kernel of H 2(F,C)→
H 2(F(X),C) need not be generated by tG , as can be seen by taking G of inner
type Dn for n divisible by 4.

5. Root system preliminaries

5A. Notation. Let V be a real vector space and R ⊂ V a root system (which we
assume is reduced). Write 3r ⊂3w for the root and weight lattices, respectively.
For every root α ∈ R, the reflection sα with respect to α is given by the formula

(5.1) sα(x)= x −α∨(x) ·α,

for every x ∈ V, where α∨ ∈ V ∗ := HomR(V,R) is the coroot dual to α. Write
R∨ ⊂ V ∗ for the dual root system and 3∨r ⊂ 3

∨
w for the corresponding lattices.
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We have
3∨r = (3w)

∗
:= Hom(3w,Z) and 3∨w = (3r )

∗.

The Weyl group W of R is a normal subgroup of the automorphism group
Aut(R) of the root system R. The factor group Aut(R)/W is isomorphic to the
automorphism group Aut(Dyn(R)) of the Dynkin diagram of R. There is a unique
Aut(R)-invariant scalar product ( , ) on V normalized so that square-length dα∨ :=
(α, α) of short roots in every irreducible component of R is equal to 1. The formula
(5.1) yields an equality

α∨(x)=
2(α, x)
(α, α)

for all x ∈ V and α ∈ R.
We may repeat this construction with the dual root system R∨, defining ( , )∨ on

V ∗ so that the square-length dα := (α∨, α∨)∨ is 1 for short coroots α∨ (equivalently,
long roots α).

5B. The map ϕ.

Proposition 5.2. There is a unique R-linear map ϕ : V ∗→ V such that ϕ(α∨)= α
for all short α∨. Furthermore, ϕ is Aut(R)-invariant, ϕ(α∨)= dαα for all α∨ ∈ R∨,
ϕ(3∨w)⊆3w, and ϕ(3∨r )⊆3r . Analogous statements hold for ϕ∨ : V → V ∗. If R
is irreducible, then ϕϕ∨ : V ∗→ V ∗ and ϕ∨ϕ : V → V are multiplication by dα for
α a short root.

Proof. Define ϕ∨ by 〈ϕ∨(x), y〉 = 2(x, y) for x, y ∈ V and ϕ by 〈x ′, ϕ(y′)〉 =
2(x ′, y′)∨ for x ′, y′ ∈ V ∗. We have

〈ϕ∨(α), x〉 = 2(α, x)= (α, α) ·α∨(x)= dα∨ ·α∨(x),

hence ϕ∨(α)= dα∨ ·α∨, and similarly for ϕ. For uniqueness of ϕ and ϕ∨, it suffices
to note that the short roots generate V ∗, which is obvious because they generate a
subspace that is invariant under the Weyl group.

Let x ∈3w. By definition,

Z 3 α∨(x)=
2(x, α)
(α, α)

for all α ∈ R. It follows that 〈ϕ∨(x), α〉 = 2(x, α) ∈ Z since (α, α) ∈ Z. Therefore,

ϕ(x) ∈3∨w.

For each root β ∈ R, ϕ∨ϕ(β∨) = dβdβ∨β∨ and similarly for ϕϕ∨. As R is
irreducible, either all roots have the same length (in which case dβdβ∨ = 1) or there
are two lengths and β and β∨ have different lengths (in which case dβdβ∨ is the
square-length of a long root); in either case the product equals dα as claimed. �
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Remark 5.3. If the root system R is simply laced, then ϕ gives isomorphisms from
V ∗, 3∨w, and 3∨r to V, 3w, and 3r , respectively, that agree with the canonical
bijection R∨→ R defined by α∨↔ α.

Example 5.4. For α∨ a simple coroot, we write f ∨α for the corresponding fun-
damental dominant weight of R∨. Consider an element x ′ =

∑
xββ∨ where

β ranges over the simple roots. As ( f ∨α , β
∨)∨ = 1

2〈 f
∨
α , β〉(β

∨, β∨)∨, we have
( f ∨α , x ′)∨ = xα( f ∨α , α

∨)∨ = 1
2 dαxα. That is, 〈ϕ( f ∨α ), x ′〉 = dαxα = 〈dα fα, x ′〉 for

all x ′, and we conclude that ϕ( f ∨α )= dα fα.

Remark 5.5. Let q ∈ S2(3w)
W be the only quadratic form on 3∨r that is equal to 1

on every short coroot in every component of R∨. It is shown in [Merkurjev 2016,
Lemma 2.1] that the polar form p of q in 3w ⊗3w in fact belongs to 3r ⊗3w.
Then the restriction of ϕ on 3∨w coincides with the composition

3∨w
id⊗p
−−→3∨w⊗ (3r ⊗3w)= (3

∨

w⊗3r )⊗3w→3w.

5C. The map ρ. Write 1 :=3w/3r and 1∨ :=3∨w/3
∨
r . Note that 1 and 1∨ are

dual to each other with respect to the pairing

1⊗1∨→Q/Z.

The group W acts trivially on 1 and 1∨, hence 1 and 1∨ are Aut(Dyn(R))-
modules. The homomorphism ϕ yields an Aut(R)-equivariant homomorphism

ρ :1∨→1.

The map ρ is an isomorphism if R is simply laced (because ϕ is an isomorphism) or
if3w =3r . Similarly, ρ = 0 if and only if ϕ(3∨w)⊆3r , if and only if p ∈3r⊗3r .

Example 5.6. Suppose R has type Cn for some n ≥ 3. Consulting the tables in
[Bourbaki 2002], f ∨n , the fundamental weight of R∨ dual to the unique long simple
root αn , is the only fundamental weight of R∨ not in the root lattice. As αn is long,
dαn = 1, so ϕ( f ∨n )= fn , which belongs to 3r if and only if n is even. That is, ρ = 0
if and only if n is even; for n odd, ρ is an isomorphism.

Example 5.7. Suppose R has type Bn for some n ≥ 2. For the unique short simple
root αn , dαn = 2, and ϕ( f ∨n )= 2 fn is in 3r . For 1≤ i < n, ϕ( f ∨i )= fi ∈3r . We
find that ρ = 0 regardless of n.

Thus we have determined ker ρ for every irreducible root system.

Example 5.8. Suppose R is irreducible and char(F) = dα for some short root α.
Then for G, G∨ simple simply connected with root system R, R∨ respectively,
there is a “very special” isogeny π : G→ G∨. The restriction of π to a maximal
torus in G induces a Z-linear map on the cocharacter lattices π∗ :3∨r →3r , which,
by [Conrad et al. 2015, Proposition 7.1.5] or [Steinberg 1963, 10.1], equals ϕ.
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In the case R = Bn , π is the composition of the natural map G = Spin2n+1→

SO2n+1 with the natural (characteristic 2 only) map SO2n+1→ Sp2n . As π vanishes
on the center of G, it follows that ρ= 0 as in Example 5.7. Similarly, in case R=Cn ,
one can recover Example 5.6 by noting that the composition π :G=Sp2n→Spin2n+1
with the spin representation Spin2n+1 ↪→ GL2n is the irreducible representation of
G with highest weight fn by [Steinberg 1963, §11].

Example 5.9. For R = An−1, define τ :1−→∼ Z/nZ via τ( f1)= 1/n ∈Q/Z. As
〈 f1, f ∨1 〉 = (n−1)/n ∈Q, defining τ∨ :1∨ −→∼ Z/nZ via τ∨( f ∨1 )=−1/n ∈Q/Z

gives a commutative diagram

1⊗1∨
〈 , 〉

//

τ⊗τ∨ o

��

Q/Z

Z/nZ⊗Z/nZ

natural

88

i.e., τ∨ is the isomorphism induced by τ and the natural pairings. Furthermore,
although ρ is induced by the canonical isomorphism R∨' R, the previous discussion
shows that the diagram

(5.10)

1∨
ρ

//

τ∨ o

��

1

τ o

��

Z/nZ
−1
// Z/nZ

commutes, where the bottom arrow is multiplication by −1.
(The action of Aut(R) on1 interchanges f1 and fn−1. Defining instead τ(− f1)=

τ( fn−1) = 1/n also gives the same commutative diagram (5.10). That is, the
commutativity of (5.10) is invariant under Aut(R). )

6. Statement of the main result

6A. The map ρ. Let G be a simply connected semisimple group with root system R.
Let C be the center of G. Then C∗ =3w/3r =1 and C∗ =3∨w/3

∨
r =1

∨, and
we get from Section 5C a homomorphism

ρ = ρG : C∗→ C∗

of Galois modules. Therefore, we have a group homomorphism

ρ̂ = ρ̂G : C→ C◦.

Note that ρ̂ is an isomorphism if R is simply laced.

6B. The Tits class. Let G be a simply connected group over F with center C .
Write tG for the Tits class tG ∈ H 2(F,C). By definition, tG =−∂(ξG), where

∂ : H 1(F,G/C)→ H 2(F,C)
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is the connecting map for the exact sequence 1→ C → G → G/C → 1 and
ξG ∈ H 1(F,G/C) is the unique class such that the twisted group ξG is quasisplit.

6C. Rost invariant for an absolutely simple group. Let G be a simply connected
group over F. Recall (see [Garibaldi et al. 2003]) that, for G absolutely simple,
Rost defined an invariant rG ∈ Inv3(H 1(G)) called the Rost invariant, i.e., a map

rG : H 1(F,G)→ H 3(F,Q/Z(2))

that is functorial in F.

Lemma 6.1. If G is an absolutely simple and simply connected algebraic group,
then o(rG) · tG = 0.

Proof. The order o(rG) of rG is calculated in [Garibaldi et al. 2003], and in each
case it is a multiple of the order of tG . �

As mentioned in [Gille 2000, §2.3], there are several definitions of the Rost
invariant that may differ by a sign. Gille and Quéguiner [2011] proved that for
the definition of the Rost invariant rG they chose, in the case G = SL1(A) for
a central simple algebra A of degree n over F, the value of rG on the image of
the class aF×n

∈ F×/F×n
= H 1(F, µn) in H 1(F,G) is equal to (a)∪ [A] if n is

not divisible by char(F) and to −(a) ∪ [A] if n is a power of p = char(F) > 0.
Therefore, we normalize the Rost invariant by multiplying the p-primary component
of the Rost invariant (of all groups) by −1 in the case p = char(F) > 0.

6D. The main theorem. For G semisimple and simply connected over F, there is
an isomorphism

(6.2) ψ : G −→∼
n∏

i=1

RFi/F (Gi ),

where the Fi are finite separable extensions of F , and Gi is an absolutely simple
and simply connected Fi -group. The product of the corestrictions of the rGi (in the
sense of [Garibaldi et al. 2003, page 34]) is then an invariant of H 1(G), which we
also denote by rG and call the Rost invariant of G. The map ψ identifies the center
C of G with

∏
i RFi/F (Ci ) for Ci the center of Gi , and the Tits class tG ∈ H 2(F,C)

with
∑

tGi ∈
∑

H 2(Fi ,Ci ).
The composition rG ◦ i∗ is a group homomorphism by [Merkurjev et al. 2002,

Corollary 1.8] or [Garibaldi 2001, Lemma 7.1]. That is, the composition rG ◦ i∗

in Theorem 1.2 taken over all field extensions of F can be viewed not only as an
invariant of H 1(C), but as an element of Inv3

h(H
1(C) as in Definition 3.1. Over a

separable closure of F, the inclusion of C into G factors through a maximal split
torus and hence this invariant is trivial by Hilbert’s Theorem 90. By Proposition 4.1
the composition is given by the cup product with a unique element in H 2(F,C◦).
We will prove Theorem 1.2, which says that this element is equal to −t◦G .
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6E. Alternative formulation. Alternatively, we could formulate the main theorem
as follows. The group of invariants Inv3(H 1(G)) is a sum of n cyclic groups with
generators (the corestrictions of) the rGi , and in view of Lemma 6.1 we may define
a homomorphism

(6.3) Inv3(H 1(G))→ H 2(F,C) via
∑

nirGi 7→

∑
−ni tGi .

Theorem 6.4. For every invariant s : H 1(∗,G)→ H 3(∗,Q/Z(2)), the composition

H 1(∗,C)→ H 1(∗,G)→ H 3(∗,Q/Z(2))

equals the cup product with the image of s under the composition

Inv3(H 1(G))→ H 2(F,C)→ H 2(F,C◦).

This will follow immediately from the main theorem, which we will prove over
the course of the next few sections.

7. Rost invariant of transfers

The following statement is straightforward.

Lemma 7.1. Let A be an étale F-algebra and G a simply connected semisimple
group scheme over A, with C the center of G. Then C ′ := RA/F (C) is the center of
G ′ := RA/F (G) and C ′◦ ' RA/F (C◦), and the diagram

H i (A,C)

o

��

ρ̂∗G
// H i (A,C◦)

o

��

H i (F,C ′)
ρ̂∗G′
// H i (F,C ′◦)

commutes.

Lemma 7.2. Set C ′ := RA/F (C) and G ′ := RA/F (G). Then the image of tG under
the isomorphism H 2(A,C)−→∼ H 2(F,C ′) is equal to tG ′ .

Proof. The corestriction of a quasisplit group is quasisplit. �

Lemma 7.3. Let G be a simply connected semisimple algebraic group scheme over
an étale F-algebra A. If Theorem 1.2 holds for G, then it also holds for RA/F (G).

Proof. Let C be the center of G and G ′ := RA/F (G). The group C ′ := RA/F (C) is
the center of G ′. Let x ∈ H 1(A,C) and let x ′ ∈ H 1(F,C ′) be the image of x under
the isomorphism ν : H 1(A,C)−→∼ H 1(F,C ′). We have

rG ′(i ′
∗
(x ′))= rG ′(ν(i∗(x)))

= NA/F (rG(i∗(x)) by [Garibaldi et al. 2003, Proposition 9.8]

= NA/F (−t◦G ∪ x) by Theorem 1.2 for x

=−t◦G ′ ∪ x ′ by Lemmas 2.14, 7.1 and 7.2. �
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If Theorem 1.2 holds for semisimple groups G1 and G2, then it also holds for the
group G1×G2. Combining this with Lemma 7.3 reduces the proof of Theorem 1.2
to the case where G is absolutely almost simple.

8. Rost invariant for groups of type A

In this section, we will prove Theorem 1.2 for G absolutely simple of type An−1

for each n ≥ 2.

8A. Inner type. Suppose G has inner type. Then there is an isomorphism ψ :

SL1(A)−→∼ G, where A is a central simple algebra of degree n over F. The map
ψ restricts to an isomorphism µn −→

∼ C , identifying C∗ with Z/nZ, and induces
ψ◦ : C◦ −→∼ µn . We find a commutative diagram

(8.1)

H 2(F,C◦)⊗ H 1(F,C) −−−→ H 3(F,Q/Z(2))

ψ◦⊗ψ−1

y ∥∥∥
H 2(F, µn)⊗ H 1(F, µn) −−−→ H 3(F,Q/Z(2))

where the top and bottom arrows are the cup product from (2.9).
The connecting homomorphism arising from the Kummer sequence

1→ µn→ Gm→ Gm→ 1

gives an isomorphism H 1(K , µn)' K×/K×n for every extension K/F . For each
field extension K/F , the isomorphismψ identifies the map H 1(K ,C)→H 1(K ,G)
with the obvious map K×/K×n

= H 1(K , µn)→ H 1(K ,SL1(A))= K×/Nrd(A×K ).
Further, ψ−1(tG) ∈ H 2(K , µn) is the Brauer class [A] of A as in [Knus et al. 1998,
pages 378 and 426]. By Example 5.9, the composition

H 1(F, µn)
ψ
−→ H 1(F,C) ρ̂∗

−→ H 1(F,C◦) ψ◦
−→ H 1(F, µn)

is multiplication by −1 and in particular [A] 7→ tG 7→ t◦G 7→ −[A]. That is,
Theorem 1.2 claims that the diagram

(8.2)

H 1(K , µn)

[A]⊗
��

ψ−1
// H 1(K ,C) // H 1(K ,G)

rG
��

H 2(K , µn)⊗ H 1(K , µn) // H 3(K ,Q/Z(2))

commutes, where the bottom arrow is the same as in (8.1).
Let p be a prime integer and write m for the largest power of p dividing n.

Both maps H 1(K , µn)→ H 3(K ,Q/Z(2)) in (8.2) are group homomorphisms, so
it suffices to verify Theorem 1.2 on each p-primary component rG(x)p of the Rost
invariant with values in Qp/Zp(2). In the case where p does not divide char(F), the
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commutativity of (8.2) is part of [Gille and Quéguiner-Mathieu 2011, Theorem 1.1].
(Note that the definition of cup product used in [Gille and Quéguiner-Mathieu 2011],
the one from [Gille and Szamuely 2006, §3.4], is the same as (8.1), cf. [Freitag and
Kiehl 1988, pages 302–303].)

Now let p = char(F) > 0. Consider the sheaf νm( j) in the étale topology
over F defined by νm( j)(L)= K j (L)/pm K j (L). The natural morphisms Z( j)→
νm( j)[− j] for j ≤ 2 are consistent with the products, hence we have a commutative
diagram:

(Z/mZ)(1)
L
⊗(Z/mZ)(1)

o

��

// (Z/mZ)(2)

o

��

νm(1)[−1]⊗ νm(1)[−1] // νm(2)[−2]

Therefore, we have a commutative diagram

H 2(F, µm)⊗ H 1(F, µm)

o

��

// H 3(F,Z/pmZ(2))

o

��

H 1(F, νm(1))⊗ H 0(F, νm(1)) // H 1(F, νm(2))

(see Remark 2.13 after Proposition 2.12). The bottom arrow is given by the cup
product map

mBr(F)⊗ (F×/F×m)→ H 3(F,Q/Z(2))

(see [Gille and Quéguiner-Mathieu 2011, 4D]). It is shown in [Gille and Quéguiner-
Mathieu 2011, Theorem 1.1] that the p-component of the Rost invariant of G is
given by the formula

rG(x)p = [A]p ∪ (x) ∈ H 3(K ,Qp/Zp(2))

for every x ∈ K×. (The formula in [Gille and Quéguiner-Mathieu 2011] contains
an additional minus sign, but it does not appear here due to the adjustment in the
definition of rG in Section 6C.) This completes the proof of Theorem 1.2 for groups
of inner type A.

8B. Outer type. Now suppose that G has outer type An−1. There is an isomorphism
ψ :G−→∼ SU(B, τ ), where B is a central simple algebra of degree n over a separable
quadratic field extension K/F with an involution τ of the second kind (τ restricts
to a nontrivial automorphism of K/F). The map ψ identifies C with µn,[K ], and
C = C◦.

Suppose first that n is odd. Since G K ' SL1(B), the theorem holds over K. As
K has degree 2 over F and C has odd exponent, the natural map H 1(F,C)→
H 1(K ,C) is injective, hence the theorem holds over F by the following general
lemma.
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Lemma 8.3. Let L1, L2, . . . , Ls be field extensions of F such that the natural
homomorphism H 2(F,C)→

∏
i H 2(L i ,C) is injective. If Theorem 1.2 holds for

G over all fields L i , then it also holds over F.

Proof. The left vertical map in Theorem 1.2 is multiplication by some element
h ∈ H 2(F,C◦). We need to show that h = −t◦G . This equality holds over all
fields L i , hence it holds over F by the injectivity assumption. �

So we may assume that n is even. Then H 1(F,C) is isomorphic to a factor group
of the group of pairs (a, z) ∈ F×× K× such that NK/F (z)= an and H 2(F,C) is
isomorphic to a subgroup of Br(F)⊕Br(K ) of all pairs (v, u) such that vK = mu
and NK/F (u)= 0, see [Merkurjev et al. 2002, pages 795–796].

Suppose that B is split; we follow the argument in [Knus et al. 1998, 31.44]. Then
SU(B, τ )= SU(h), where h is a hermitian form of trivial discriminant on a vector
K -space of dimension n for the quadratic extension K/F . Let q(v) := h(v, v)
be the associated quadratic form on V viewed as a 2n-dimensional F-space. The
quadratic form q is nondegenerate, and we can view SU(h) as a subgroup of
H := Spin(V, q). The Dynkin index of G in H is 1, hence the composition
H 1(K ,G)→ H 1(K , H) rH

−→ H 3(K ) equals the Rost invariant of G. Then rH is
given by the Arason invariant, which has order 2. A computation shows that the
image of the pair (a, z) representing an element x ∈H 1(F,C) under the composition

H 1(F,C)→ H 1(F,G) rG
−→ H 3(F)

coincides with [D] ∪ x , where D is the class of the discriminant algebra of h. On
the other hand, [D] ∪ x coincides with the cup product of x with the Tits class
tG =−t◦G represented by the pair ([D], 0) in H 2(F,C◦), proving Theorem 1.2 in
this case.

Now drop the assumption that B is split. As for the n odd case, the theorem
holds over K. Note that there is an injective map H 2(F,C)→Br(F)⊕Br(K ). Let
X = RK/F (SB(B)). By [Merkurjev and Tignol 1995, 2.4.6], the map Br(F)→
Br(F(X)) is injective, hence the natural homomorphism

H 2(F,C)→ H 2(F,CF(X))⊕ H 2(F,CK )

is injective. The theorem holds over K and by the preceding paragraph the theorem
holds over F(X). Therefore, by Lemma 8.3, the theorem holds over F.

9. Conclusion of the proof of Theorem 1.2

Choose a system of simple roots 5 of G. Write 5r for the subset of 5 consisting
of all simple roots whose fundamental weight belongs to 3r and let 5′ :=5 \5r .
Inspection of the Dynkin diagram shows that all connected components of 5′ have
type A.
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Every element of 5r is fixed by every automorphism of the Dynkin diagram,
hence is fixed by the ∗-action of the absolute Galois group of F on 5. It follows
that the variety X of parabolic subgroups of Gsep of type 5′ is defined over F. By
[Merkurjev and Tignol 1995], the kernel of the restriction map Br(K )→Br(K (X))
for every field extension K/F is generated by the Tits algebras associated with
the classes in C∗ of the fundamental weights fα corresponding to the simple roots
α∈5r . But fα ∈3r , so these Tits algebras are split [Tits 1971], hence the restriction
map Br(K )→Br(K (X)) is injective and, by Lemma 4.2, the natural homomorphism
H 2(F,C)→ H 2(F(X),C) is injective. In view of Lemma 8.3, it suffices to prove
Theorem 1.2 over the field F(X), i.e., we may assume that G has a parabolic
subgroup of type 5′. The Levi subgroup G ′ of that parabolic is simply connected
with Dynkin diagram 5′, and its center C ′ contains C [Garibaldi and Quéguiner-
Mathieu 2007, Proposition 5.5]. Write j for the embedding homomorphism C→C ′

and j◦ for the dual C ′◦→ C◦.
Let G ′ =

∏
i G ′i with Gi simply connected simple groups, C =

∏
Ci , where Ci

is the center of Gi , and 5′i ⊂5 is the system of simple roots of Gi . Write j◦i for
the composition C ′◦i → C ′◦→ C◦.

Lemma 9.1. The map j∗i : H
2(F,C)→ H 2(F,C ′i ) takes the Tits class tG to tG ′i .

Proof #1. It suffices to check that j∗(tG)= tG ′ , for the projection

H 2(F,C ′)→ H 2(F,C ′i )

sends tG ′ 7→ tG ′i .
There is a rank |5r | split torus S in G whose centralizer is S ·G ′. Arguing as in

Tits’ Witt-type theorem [Tits 1966, 2.7.1, 2.7.2(d)], one sees that the quasisplit inner
form of G is obtained by twisting G by a 1-cocycle γ with values in CG(S)/C ,
equivalently, in G ′/C . Clearly, twisting G ′ by γ gives the quasisplit inner form of G ′.
The Tits class tG is defined to be−∂G(γ )where ∂G is the connecting homomorphism
H 1(F,G/C)→H 2(F,C) induced by the exact sequence 1→C→G→G/C→1
and similarly for G ′ and C ′. The diagram

H 1(F,G ′/C) //

��

H 1(F,G/C)
∂G

// H 2(F,C)

j∗

��

H 1(F,G ′/C ′)
∂G′

// H 2(F,C ′)

commutes trivially, so j∗(tG)= j∗(−∂G(γ ))=−∂G ′(γ )= tG ′ as claimed. �

Proof #2. For each χ ∈T ∗, define F(χ) to be the subfield of Fsep of elements fixed by
the stabilizer of χ under the Galois action. Note that because G is absolutely almost
simple, the ∗-action fixes 5r elementwise, and F(χ) equals the field extension
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F(χ |T ′) defined analogously for χ ∈ (T ′)∗. The diagram

H 2(F,C)
j∗
//

χ |C

''

H 2(F,C ′)

χ |C ′

��

H 2(F(χ),Gm)

commutes. Now χ |C ′(tG ′ − j∗(tG)) = χ |C ′(tG ′)− χ |C(tG), which is zero for all
χ ∈ T ∗ by [Tits 1971, §5.5]. As

∏
χ∈(T ′)∗ χ |C ′ is injective by [Garibaldi 2012,

Proposition 7], tG ′ = j∗(tG) as claimed. �

The diagram 5′i is simply laced. Write di for the square-length of α∨ ∈ R∨ for
α ∈5′i .

Lemma 9.2. The homomorphism ρ̂G : C→ C◦ coincides with the composition

C j
−→C ′ ρ̂G′

−−→C ′◦ =
∏

i

C ′◦i
∏

i ( ji ◦)di
−−−−→C◦,

where ji is the composition C→ C ′→ C ′i .

Proof. For every simple root α ∈5 write fα for the corresponding fundamental
weight. Write 3′r and 3′w for the root and weight lattices, respectively, of the root
system R′ of G ′. Let

8 := { fα | α ∈5r }.

Then 8 is a Z-basis for the kernel of the natural surjection 3w→3′w. If α ∈5′,
we write α′ for the image of α and f ′α for the image of fα under this surjection.
All α′ (respectively, f ′α) form the system of simple roots (respectively, fundamental
weights) of R′. If α ∈5′, the image α′∨ of α∨ under the inclusion 3′r

∨
↪→3r

∨ is
a simple coroot of R′.

If V is the real vector space of R, then R′ ⊂ V ′ := V/ span(8) and R′∨ ⊂
V ′∗ ⊂ V ∗. Let x ∈ 3∨w, i.e., 〈x, α〉 ∈ Z for all α ∈ 5. Since 8 ⊂ 3r , we have
aα := 〈x, fα〉 ∈ Z for all α ∈ 5r . Then the linear form x ′ := x −

∑
α∈5r

aαα∨

vanishes on the subspace of V spanned by 8, hence x ′ ∈ 3′w
∨. We then have a

well-defined homomorphism

(9.3) s :3∨w→3′w
∨
, x 7→ x ′.

If α ∈ 5′, then 〈x ′, α〉 = 〈x ′, α′〉. It follows that if x ′ =
∑

α∈5 bα f ∨α in 3∨w for
bα = 〈x ′, α〉 ∈ Z, then x ′ =

∑
α∈5′ bα f ′α

∨ in 3′w
∨.

Since 8⊂3r , we have a surjective homomorphism

C ′∗ =3′w/3
′

r =3w/ span(8,5′)→3w/3r = C∗

dual to the inclusion of C into C ′. The dual homomorphism

C∗ =3∨w/3
∨

r →3′w
∨
/3′r

∨
= C ′

∗
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is induced by s.
Consider the diagram

3∨w

s
��

ϕ
// 3w

3′w
∨ ϕ′

// 3′w

t

OO

where the map t is defined by t ( f ′α)= dα fα for all α ∈5′ and the maps ϕ and ϕ′

are defined in Proposition 5.2.
It suffices to prove that Im(t ◦ϕ′ ◦ s−ϕ)⊂3r .
Consider the other diagram

3∨w
ρ
// 3w

3′w
∨

t∨

OO

ρ′
// 3′w

t

OO

where t∨( f ′α
∨
)= f ∨α for all α ∈5′. This diagram is commutative. Indeed,

(ρ ◦ t∨)( f ′α
∨
)= ρ( f ∨α )= dα fα = t ( f ′α)= (t ◦ ρ

′)( f ′α
∨
),

where the second equality is by Example 5.4. (Recall that the root system R′ of G ′

is simply laced, hence ρ ′( f ′α
∨
)= f ′α.)

We claim that
(t∨ ◦ s)(x)− x ∈ span(8∨)+3∨r

for every x ∈ 3∨w, where 8∨ := { f ∨α | α ∈ 5r }. Indeed, in the notation of (9.3)
we have

(t∨ ◦ s)(x)− x = t∨(x ′)− x = t∨(x ′)− x ′−
∑
α∈5r

aαα∨

= t∨
(∑
α∈5′

bα f ′α
∨
)
−

∑
α∈5

bα f ∨α −
∑
α∈5r

aαα∨

=−

∑
α∈5r

bα f ∨α −
∑
α∈5r

aαα∨ ∈ span(8∨)+3∨r .

It follows from the claim that

(t◦ρ ′◦s)(x)−ρ(x)= (ρ◦t∨◦s)(x)−ρ(x)=ρ((t∨◦s)(x)−x)∈ρ(span(8∨)+3∨r ).

As ρ( f ∨α )= dα fα ∈3r for all fα ∈8, this is contained in3r , proving the claim. �

Lemmas 9.1 and 9.2 yield:

Corollary 9.4. The element t◦G is equal to
∑

i di · j◦∗i (t
◦

G ′i
).
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Lemma 9.5. The diagram

H 1(F,G ′)

��

∏
i H 1(F,G ′i )∑

di ·rG′i
��

H 1(F,G)
rG
// H 3(F,Q/Z(2))

commutes.

Proof. The composition

H 1(F,G ′i )→ H 1(F,G) rG
−→ H 3(F,Q/Z(2))

coincides with the k-th multiple of the Rost invariant rG ′i , where k is the order of
the cokernel of the map Q(G)→ Q(G ′i ) of infinite cyclic groups generated by
positive definite quadratic forms qG and qG ′i on the lattices of coroots normalized
so that the forms have value 1 on the short coroots (see [Garibaldi et al. 2003]).
Recall that all coroots of G ′i have the same length, hence qG ′i has value 1 on all
coroots of G ′i . Therefore, k coincides with di , the square-length of all coroots of
G ′i viewed as coroots of G. �

Write each G ′i = RL i/F (Hi ) for L i a separable field extension of F and Hi a
simply connected absolutely simple algebraic group of type A over L i . Theorem 1.2
is proved for such groups in Section 8. By Lemma 7.3, Theorem 1.2 holds for the
group G ′i and hence for G ′.

Let x ∈ H 1(F,C) and let y ∈ H 1(F,G),
∏

x ′i ∈ H 1(F,C ′) =
∏

H 1(F,C ′i )
and

∏
y′i ∈

∏
H 1(F,G ′i ) denote its images under the natural maps. We find

rG(y)=
∑

i

di · rG ′i (yi ) by Lemma 9.5

=

∑
i

di · (−t◦G ′i ∪ x ′i ) by the main theorem for all G ′i

=

∑
i

di · j◦∗i (−t◦G ′i )∪ x by Lemma 2.16

=−t◦G ∪ x by Corollary 9.4.

This completes the proof of Theorem 1.2.

10. Concrete formulas

The explicit formulas for the restriction of the Rost invariant to the center given
in [Merkurjev et al. 2002; Garibaldi and Quéguiner-Mathieu 2007] (for F of good
characteristic) relied on an ad hoc formula for a pairing C⊗C→Q/Z(2) depending
on the type of G. In this section, we deduce those formulas from Theorem 1.2; as a
consequence we find that those formulas hold regardless of char(F).
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10A. The pairing induced by ρ. The map ρ defines a bilinear pairing1∨⊗1∨→
Q/Z via

(10.1) 1∨⊗1∨
id⊗ρ
−−→1∨⊗1→Q/Z.

We now determine this pairing for each simple root system R.
For R with different root lengths, ρ is zero and hence (10.1) is zero unless R=Cn

for odd n ≥ 3. In that case (and also for R = E 7), 1 ' Z/2 ' 1∨ and ρ is the
unique isomorphism, so (10.1) amounts to the product map x⊗ y 7→ xy. Therefore
we may assume that R has only one root length.

If 1∨ is cyclic, we pick a fundamental dominant weight f ∨i that generates 1∨

and the pairing (10.1) is determined by the image of f ∨i ⊗ f ∨i . The image of this
under id⊗ρ is f ∨i ⊗ fi as in Example 5.4, so the image in Q/Z is the same as that
of the coefficient of the simple root αi appearing in the expression for fi in terms
of simple roots, for which we refer to [Bourbaki 2002].

For R=An , we have1∨'Z/(n+1) generated by f ∨1 and f ∨1 ⊗ f ∨1 7→n/(n+1),
cf. Example 5.9.

For R = Dn for odd n > 4, 1∨ ' Z/4 generated by f ∨n and f ∨n ⊗ f ∨n 7→ n/4.
For R = E6, we have 1∨ ' Z/3 generated by f ∨1 and f ∨1 ⊗ f ∨1 7→ 1/3.
For R = Dn for even n ≥ 4, 1∨ is isomorphic to Z/2 ⊕ Z/2 generated by

f ∨n−1, f ∨n . The tables show that f ∨n−1 ⊗ f ∨n−1 and f ∨n ⊗ f ∨n map to n/4 whereas
f ∨n ⊗ f ∨n−1 and f ∨n−1⊗ f ∨n map to (n− 2)/4. That is, viewing (10.1) as a bilinear
form on F2⊕F2, for n ≡ 0 mod 4 it is the wedge product (which is hyperbolic) and
for n ≡ 2 mod 4 it is the unique (up to isomorphism) metabolic form that is not
hyperbolic.

10B. The cup product on C. Let G be a simple simply connected algebraic group
over F with center C . The pairing (10.1) reads as follows:

C∗⊗C∗
id⊗ρ
−−→C∗⊗C∗→Q/Z.

Twisting (tensoring with Z(1)
L
⊗Z(1)) we get a composition

C∗(1)
L
⊗ C∗(1)→ C∗(1)

L
⊗ C∗(1)→Q/Z(2),

where the second map was already defined in (2.9). Therefore, we have a pairing

(10.2) H 1(F,C)⊗ H 2(F,C)→ H 1(F,C)⊗ H 2(F,C◦)→ H 3(F,Q/Z(2)),

which we denote by • . In this language, Theorem 1.2 says that

(10.3) rG i∗(x)=−x • tG for x ∈ H 1(F,C).

Combining this observation with the computation of (10.1) recovers the formulas
given in [Merkurjev et al. 2002; Garibaldi and Quéguiner-Mathieu 2007], with no
restriction on char(F).
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Example 10.4. Suppose G has inner type Dn for some n≥ 4. Then G is isomorphic
to Spin(A, σ, f ) for some central simple algebra A with quadratic pair (σ, f ) such
that the (even) Clifford algebra of (A, σ, f ) is a product C+×C−, see [Knus et al.
1998, 26.15]. Put µ2 for the kernel of the map Spin(A, σ, f ) → SO(A, σ, f )
and write i2 for the inclusion µ2 ↪→ G. (The highest weights of the representa-
tions Spin(A, σ, f )→GL1(Cε) for ε =± both restrict to the nonzero character
on i2(µ2).)

We claim that, for z ∈ H 1(F, µ2), the equalities

(10.5) rG i∗2 (z)=
{

z ∪ [A] if n even,
z ∪ [C+] if n odd,

hold in H 3(F,Z/2Z(2)). This can be seen by combining (10.3) with the calculations
in Section 10A. Alternatively, arguing as in the beginning of Section 9, it suffices
to verify (10.5) in case the variety X has an F-point, where we may check the
equality via Lemma 9.5 on the subgroup G ′. Then Equation 12.2 of [Garibaldi and
Quéguiner-Mathieu 2007] settles the n even case, and an analogous computation
handles n odd. Note that for n odd, one could also write z ∪ [C−] in (10.5), as
[C−] = 3[C+] and 2z = 0.

Example 10.6. The exact sequence 1→ C i
−→G→ G/C→ 1 gives a connect-

ing homomorphism ∂ : (G/C)(F)→ H 1(F,C). It follows from (10.3) that, for
y ∈ (G/C)(F), ∂(y) • tG = rG i∗∂(y)= 0, i.e.,

(10.7) (im ∂) • tG = 0 in H 3(F,Q/Z(2)).

For G of inner type An−1, G is isomorphic to SL1(A) for a central simple algebra
A and we may identify im ∂ with Nrd(A×)⊆ H 1(F, µn). In this case, (10.7) says:
If x ∈ Nrd(A×), then (x)∪ [A] = 0.

For G of type Cn , G is isomorphic to Sp(A, σ ) for a central simple algebra A
with symplectic involution σ and we may identify im ∂ with the group G(A, σ ) of
multipliers of similitudes of (A, σ ). If n is even, (10.7) is an empty claim because •
is identically zero. If n is odd, (10.7) says that G(A, σ )∪ [A] = 0, i.e., since A is
Brauer-equivalent to a quaternion algebra, G(A, σ )⊆ Nrd(A×); this is proved in
[Knus et al. 1998, 12.22].
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MODULI SPACES OF RANK 2 INSTANTON SHEAVES
ON THE PROJECTIVE SPACE

MARCOS JARDIM, MARIO MAICAN AND ALEXANDER S. TIKHOMIROV

We study the irreducible components of the moduli space of instanton
sheaves on P3, that is, µ-semistable rank 2 torsion-free sheaves E with
c1(E)= c3(E)= 0 satisfying h1(E(−2))= h2(E(−2))= 0. In particular, we
classify all instanton sheaves with c2(E)≤ 4, describing all the irreducible
components of their moduli space. A key ingredient for our argument is
the study of the moduli space T (d) of stable sheaves on P3 with Hilbert
polynomial P(t) = d · t , which contains, as an open subset, the moduli
space of rank 0 instanton sheaves of multiplicity d; we describe all the
irreducible components of T (d) for d ≤ 4.

1. Introduction

Instanton bundles on CP3 were introduced by Atiyah, Drinfeld, Hitchin and Manin
in the late 1970s as the holomorphic counterparts, via twistor theory, to anti-self-
dual connections with finite energy (instantons) on the four-dimensional round
sphere S4. To be more precise, an instanton bundle of charge n is a µ-stable rank
2 bundle E on P3 with c1(E) = 0 and c2(E) = n satisfying the cohomological
condition h1(E(−2))= 0; equivalently, an instanton bundle of charge n is a locally
free sheaf which arises as cohomology of a linear monad of the form

(1) 0→ n ·OP3(−1)→ (2+ 2n) ·OP3 → n ·OP3(1)→ 0.

The moduli space I(n) of such objects has been thoroughly studied in the
past thirty-five years by various authors and it is now known to be an irreducible
[Tikhomirov 2012; 2013], nonsingular [Jardim and Verbitsky 2014] affine [Costa
and Ottaviani 2003] variety of dimension 8n− 3.

The closure of I(n) within the moduli space M(n) of semistable rank 2 sheaves
with Chern classes c1= 0, c2= n and c3= 0 contains nonlocally free sheaves which
also arise as cohomology of monads of the form (1). Such instanton sheaves can

MSC2010: 14D20, 14J60.
Keywords: Moduli spaces, semistable sheaves, instanton sheaves, sheaves on projective space.
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alternatively be defined as rank 2 torsion-free sheaves satisfying the cohomological
conditions

h0(E(−1))= h1(E(−2))= h2(E(−2))= h3(E(−3))= 0.

We prove that such sheaves are always stable (see Theorem 4 below), so they
admit a moduli space L(n) regarded as an open subset of M(n) which, of course,
contains I(n).

The spaces L(1) and L(2) were essentially known to be irreducible, see details
in the first few paragraphs of Section 3 below. However, L(3) was observed to have
at least two irreducible components [Jardim et al. 2015, Remark 8.6], while several
new components of L(n) were constructed in [Jardim et al. 2017].

The main goal of this paper is to characterize the irreducible components of L(3)
and L(4). We prove:

Main Theorem 1. (i) L(3) is a connected quasiprojective variety consisting of
exactly two irreducible components each of dimension 21;

(ii) L(4) is a connected quasiprojective variety consisting of exactly four irre-
ducible components, three of dimension 29 and one of dimension 32.

For every instanton sheaf E , the quotient E∨∨/E is a semistable sheaf with
Hilbert polynomial d ·(t+2), see Section 2 below. Therefore, an essential ingredient
for the proof of Main Theorem 1 is the study of the moduli space T (d) of semistable
sheaves on P3 with Hilbert polynomial P(t) = d · t . Since these spaces are also
interesting in their own right, we prove:

Main Theorem 2. (i) T (1) is an irreducible projective variety of dimension 5;

(ii) T (2) is a connected projective variety consisting of exactly two irreducible
components of dimension 8;

(iii) T (3) is a projective variety consisting of exactly four irreducible components,
two of dimension 12 and two of dimension 13;

(iv) T (4) is a projective variety consisting of exactly eight irreducible components,
four of dimension 16, two of dimension 17, one of dimension 18 and one of
dimension 20.

We also give a precise description of a generic point in each of the irreducible
components mentioned in the statement of the theorem, see Section 4.

2. Stability of instanton sheaves

Recall from [Jardim 2006] that a torsion-free sheaf E on P3 is called an instanton
sheaf if c1(E)= 0 and the following cohomological conditions hold:

h0(E(−1))= h1(E(−2))= h2(E(−2))= h3(E(−3))= 0.
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The integer n := −χ(E(−1)) is called the charge of E ; it is easy to check that
n = h1(E(−1)) = c2(E), and that c3(E) = 0. The trivial sheaf r ·OP3 of rank r
is considered as an instanton sheaf of charge zero. In this paper, we will only be
interested in rank 2 instanton sheaves.

Recall that the singular locus Sing(G) of a coherent sheaf G on a nonsingular
projective variety X is given by

Sing(G) := {x ∈ X | Gx is not free over OX,x},

where Gx denotes the stalk of G at a point x and OX,x is its local ring. The following
result, proved in [Gargate and Jardim 2016, Main Theorem], provides a key piece
of information regarding the singular loci of rank 2 instanton sheaves.

Theorem 1. If E is a nonlocally free instanton sheaf of rank 2 on P3, then

(i) its singular locus has pure dimension 1;

(ii) E∨∨ is a ( possibly trivial ) locally free instanton sheaf.

Remark 2. In fact, the quotient sheaf QE := E∨∨/E is a rank 0 instanton sheaf, in
the sense of [Hauzer and Langer 2011, Section 6.1]; see also [Gargate and Jardim
2016, Section 3.2]. More precisely, a rank 0 instanton sheaf is a coherent sheaf
Q on P3 such that h0(Q(−2)) = h1(Q(−2)) = 0; the integer d := h0(Q(−1)) is
called the multiplicity of Q.

The Hilbert polynomial of a rank 2 instanton sheaf E (in fact, of any coherent
sheaf on P3 of rank 2 with c1 = 0, c2 = n and c3 = 0) is given by

(2) PE(t)= 1
3(t + 3) · (t + 2) · (t + 1)− n · (t + 2)= 2 ·χ(OP3(t))− n · (t + 2).

Let n′ := c2(E∨∨)≥ 0, then it follows from the standard sequence

(3) 0→ E→ E∨∨→ QE → 0

that
PQE (t)= d · (t + 2) where d := n− n′.

Note that d = n− n′ is precisely the multiplicity of QE as a rank 0 instanton sheaf.

Rank 0 instanton sheaves can be characterized in the following way.

Proposition 3. Every rank 0 instanton sheaf Q admits a resolution of the form

(4) 0→ d ·OP3(−1)→ 2d ·OP3 → d ·OP3(1)→ Q→ 0.

Proof. Consider the Beilinson spectral sequence from [Choi et al. 2016, Section 6],
applied to the sheaf Q′ := Q(−2). We have H0(Q′) = 0, and therefore also
H0(Q′⊗�1

P3(1))= 0 and H0(Q′(−1))= 0. We adopt the notations of [Choi et al.
2016, Section 6]. Since Ker(ϕ5)/Im(ϕ4)= 0, we deduce that H0(Q′⊗�2

P3(2))= 0.
Thus, the bottom row of the E1-term of the spectral sequence vanishes. Since ϕ7 is
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an isomorphism, we deduce that ϕ1 is injective. Since ϕ8 is injective, we deduce
that Ker(ϕ2)= Im(ϕ1). The top row of the E1-term of the spectral sequence yields
the resolution

0→ H1(Q′(−1))⊗OP3(−3) ϕ1
−→H1(Q′⊗�2

P3(2))⊗OP3(−2)
ϕ2
−→H1(Q′⊗�1

P3(1))⊗OP3(−1)→ Q′→ 0.

We have

χ(Q′⊗�1
P3(1))=−d, χ(Q′⊗�2

P3(2))=−2d, χ(Q′(−1))=−d,

hence

h1(Q′⊗�1
P3(1))= d, h1(Q′⊗�2

P3(2))= 2d, h1(Q′(−1))= d.

The above exact sequence yields (4). �

Let now examine the stability properties of instanton sheaves.

Theorem 4. Every nontrivial rank 2 instanton sheaf E is stable. In addition,
a nontrivial instanton sheaf E is µ-stable if and only if its double dual E∨∨ is
nontrivial.

Proof. Since rank 2 instanton sheaves have no global sections [Jardim 2006,
Proposition 11], every nontrivial locally free rank 2 instanton sheaf is µ-stable;
therefore, if E∨∨ is nontrivial, then E is also µ-stable. Conversely, if E is µ-stable,
then so is E∨∨, hence it must be nontrivial.

Therefore, in order to prove the first claim of the Theorem, it is enough to consider
quasitrivial instanton sheaves, i.e., rank 2 instanton sheaves E with E∨∨ ' 2 ·OP3 ;
note that the multiplicity of QE is exactly n = c2(E).

Since E has no global sections, it can only be destabilized by the ideal sheaf IC

of a subscheme C ⊂ P3. Moreover, we can assume that the quotient sheaf E/IC is
torsion-free, thus it is also the ideal sheaf ID of another subscheme D ⊂ P3. We
obtain two exact sequences

0

��

IC

��

0 // E

��

// 2 ·OP3 // QE // 0

ID

��

0
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Taking the double dual of the top vertical morphisms we obtain, also using the
Snake Lemma, the following commutative diagram:

(5) 0

��

0

��

0

��

0 // IC

��

// OP3

��

// OC

��

// 0

0 // E

��

// 2 ·OP3

��

// QE

��

// 0

0 // ID

��

// OP3

��

// OD

��

// 0

0 0 0

Since h0(QE(−2)) = 0, then h0(OC(−2)) = 0 also, hence C must have pure
dimension 1. Moreover, note also that h1(QE(−2))= 0 implies h1(OD(−2))= 0.

We show that dim D = 0. Indeed, assume that D has dimension 1. Let U be the
maximal zero-dimensional subsheaf of OD , and set OD′ :=OD/U ; clearly, D′ has
pure dimension 1. Next, let D′′ := D′red be the underlying reduced scheme. We end
up with two exact sequences

0→U →OD→OD′→ 0 and 0→ T →OD′→OD′′→ 0,

so that the vanishing of h1(OD(−2)) forces h1(OD′′(−2))= 0.
Still, D′′ may be reducible, so let D′′ := D′′1 ∪· · ·∪D′′p be its decomposition into

irreducible components. For each index j = 1, . . . , p we obtain a sequence,

0→ S j →OD′′→OD′′j → 0,

thus also h1(OD′′j (−2))= 0. Let d j and p j denote the degree and arithmetic genus
of D′′j , respectively. It follows that

0≤ h0(OD′′j (−2))= χ(OD′′j (−2))=−2d j + 1− p j ,

thus p j ≤−2d j + 1≤−1, which is impossible for a reduced and irreducible curve.
Now let δ = h0(OD) be the length of D. Since deg(C)= n, we have

PIC (t)= χ(OP3(t))−χ(OC(t))= χ(OP3(t))− nt + (δ− 2n).

Comparing with equation (2), we have

(6) PE(t)
2
− PIC (t)=

n
2

t + n− δ,

which is positive for t sufficiently large, and therefore E contains no destabilizing
subsheaves. �

As a consequence of the proof above, we obtain the following interesting fact.
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Corollary 5. Every rank 2 quasitrivial instanton sheaf of charge n on P3 is an
extension of the ideal of a zero-dimensional scheme D by the ideal of a pure
one-dimensional scheme C of degree n containing D. In addition,

χ(OC)= 2n− h0(OD).

On the other hand, it is easy to check that every rank 0 instanton sheaf is
semistable.

Lemma 6. Every rank 0 instanton sheaf is semistable.

Proof. Let Z be a rank 0 instanton sheaf, and let T be a subsheaf of Z with Hilbert
polynomial PT (t)= a · t +χ(T ). Since h0(Z(−2))= 0, then h0(T (−2))= 0 and
−2a+χ(T )=−h1(T (−2))≤ 0. It follows that

χ(T )
a
≤ 2= χ(Z)

d
. �

Clearly, not every rank 0 instanton sheaf is stable: if Q1 and Q2 are rank 0
instanton sheaves, then so is any extension of Q1 by Q2, and this cannot possibly
be stable.

Conversely, there are semistable sheaves with Hilbert polynomial dt + 2d which
are not rank 0 instanton sheaves: just consider Q := O6(2) for an elliptic curve
6 ↪→ P3, so that h0(Q(−2)) 6= 0.

3. Moduli space of instanton sheaves

Let L(n) denote the open subscheme of the Maruyama moduli space M(n) of
semistable rank 2 torsion-free sheaves with Chern classes c1= 0, c2= n and c3= 0
consisting of instanton sheaves of charge n. Let I(n) denote the open subscheme
of M(n) consisting of locally free instanton sheaves. Finally, let L(n) and I(n)
denote the closures within M(n) of L(n) and I(n), respectively. We also consider
the set I0(n) := I(n)∩L(n), which consists of those instanton sheaves which either
are locally free, or can be deformed into locally free ones.

It was shown in [Tikhomirov 2012; 2013] that I(n) is irreducible for every n> 0;
its closure I(n) is called the instanton component of M(n). However, the same is
not true for L(n) as soon as n ≥ 3. Indeed, it is well known that

I(1)= L(1)=M(1)' P5,

see for instance [Jardim et al. 2017, Section 6].
The case n = 2 has also been understood.

Proposition 7. L(2)= I(2).

In particular, L(2) possesses a single irreducible component of dimension 13.
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Proof. Le Potier [1993b] showed that M(2) has exactly 3 irreducible components;
according to the description of these components provided in [Jardim et al. 2017,
Section 6], only the instanton component I(2) contains instanton sheaves. �

Let us now describe the irreducible components of L(n) for n ≥ 3 introduced in
[Jardim et al. 2017, Section 3].

Let 6 be an irreducible, nonsingular, complete intersection curve in P3, given
as the intersection of a surface of degree d1 with a surface of degree d2, with
1≤ d1 ≤ d2; denote by ι :6 ↪→P3 the inclusion morphism. Choose L ∈ Picg−1(6)

such that h0(6, L)= h1(6, L)= 0. Given a (possibly trivial) locally free instanton
sheaf F of charge c≥0 and an epimorphism ϕ : F � (ι∗L)(2), the kernel E :=Kerϕ
is an instanton sheaf of charge c+ d1d2. Thus we may consider the set

(7) C(d1, d2, c) :=
{
[E] ∈M(c+ d1d2) | E∨∨ ∈ I(c), E∨∨/E ' (ι∗L)(2)

}
as a subvariety of M(c+ d1d2). The following result is proved in [Jardim et al.
2017], see Theorems 15, 17 and 23 of that paper.

Theorem 8. For each c ≥ 0 and 1 ≤ d1 ≤ d2 such that (d1, d2) 6= (1, 1), (1, 2),
C(d1, d2, c) is an irreducible component of M(c+ d1d2) of dimension

(8) dim C(d1, d2, c)= 8c− 3+ 1
2 d1d2(d1+ d2+ 4)+ h,

where

h =

2
(d1+3

3

)
− 4 if d1 = d2,(d1+3

3

)
+
(d2+3

3

)
−
(d2−d1+3

3

)
− 2 if d1 < d2.

In addition, C(d1, d2, c)∩ I0(c+ d1d2) 6=∅.

We do not know whether the families C(d1, d2, c) exhaust all components of L(n),
but we prove that this holds for n = 3 and 4 in Sections 5 and 6 below, respectively.

However, we remark that the previous result allows for a partial count of the
number of components of L(n). Indeed, let τ(n) denote the number of irreducible
components of the union

I(n)
⋃( ⋃

d1d2+c=n

C(d1, d2, c)
)
.

To estimate τ(n), we must count the different ways in which an integer n ≥ 3
can be written as n = d1d2 + c with c ≥ 0, and 1 ≤ d1 ≤ d2 excluding the pairs
(d1, d2)= (1, 1), (1, 2). Consider the function

δ(p)=

{
1
2(d(p)+ 1) if p is a perfect square,
1
2 d(p) otherwise,

where d(p) is the divisor function, i.e., the number of divisors of a positive integer p,
including p itself. Note that δ(p) is the number of different ways in which we
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can write p as a product d1d2 with 1≤ d1 ≤ d2. Adding the instanton component,
we have

(9) τ(n)= 1+
n∑

p=3

δ(p)= 1
2

( n∑
p=3

d(p)+b
√

nc+ 1
)
,

since b
√

nc− 1 accounts for the number of perfect squares between 3 and n.

Lemma 9. Let l(n) be the number of irreducible components of the moduli space
of instanton sheaves of charge n. Then, for n sufficiently large, l(n) > 1

2 n · log(n).

Proof. Determining the asymptotic behavior of the sum of divisors function is a
relevant problem in number theory called the Dirichlet divisor problem; indeed, it
is known that n∑

p=1

d(p)= n · log(n)+ (2γ − 1)n+ O(nθ ),

where γ denotes the Euler–Mascheroni constant, and 1/4 ≤ θ ≤ 131/416, see
[Huxley 2003]. Comparing with equation (9), we obtain the desired estimate. �

Also relevant for us is a class of instanton sheaves studied in [Jardim et al. 2015];
more precisely, for n > 0 and each m = 1, . . . , n, consider the subset D(m, n)
of M(n) consisting of the isomorphism classes [E] of the sheaves E obtained in
this way:

D(m, n) :=
{
[E] ∈M(n) | [E∨∨] ∈ I(n−m), 0 = supp(E∨∨/E) ∈R∗0(m)E∨∨,

and E∨∨/E 'O0((2m− 1)pt)
}
,

where the space R∗0(m)E∨∨ is described as follows: first, let R∗0(m) denote the space
of nonsingular rational curves 0 ↪→ P3 of degree m whose normal bundle N0/P3 is
given by 2 ·O0((2m− 1)pt); then, for any instanton sheaf F we set

R∗0(m)F := {0 ∈R∗0(m) | F |0 ' 2 ·O0}.

One can show that for every rank 2 instanton sheaf F, the space R∗0(m)F is a
nonempty open subset of R∗0(m), see [Jardim et al. 2015, Lemma 6.2].

Let D(m, n) denote the closure of D(m, n) within M(n). Note that since E∨∨ is
a locally free instanton sheaf of charge n−m, and O0(2m−1) is a rank 0 instanton
sheaf of degree m, then E is an instanton sheaf of charge n, so that D(m, n)⊂L(n).
In fact, it is shown in [Jardim et al. 2017, Theorem 7.8] that D(m, n)⊂ I 0(n). In
addition, we prove:

Proposition 10. Let 01, . . . , 0r be disjoint, smooth irreducible rational curves in
P3 of degrees m1, . . . ,mr , respectively; set Q :=

⊕r
j=1 O0 j (−pt). If F is a locally

free instanton sheaf of charge c such that F |0 j ' 2 ·O0 j for each j = 1, . . . , r , and
ϕ : F � Q(2) is an epimorphism, then [kerϕ] ∈ I 0(c+m1+ · · ·+mr ).
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The proof of the previous proposition requires the following technical lemma,
proved in [Jardim et al. 2015, Lemma 7.1].

Lemma 11. Let C be a smooth irreducible curve with a marked point 0, and set
B := C ×P3. Let F and G be OB-sheaves, flat over C and such that F is locally
free along supp(G). Denote

Gt := G|{t}×P3 and Ft = F|{t}×P3 for t ∈ C.

Assume that, for each t ∈ C ,

(10) H i (Hom(Ft , Gt))= 0, i ≥ 1.

If s : F0→ G0 is an epimorphism, then, after possibly shrinking C , s extends to an
epimorphism s : F � G.

Proof of Proposition 10. We argue by induction on r ; the case r = 1 is just the
aforementioned result, namely [Jardim et al. 2017, Theorem 7.8].

Let Q′ :=
⊕r−1

j=1 O0 j (−pt), so that Q = Q′ ⊕O0r (−pt). Let E := kerϕ, and
let E ′ denote the kernel of the composition F ϕ

−� Q(2)� Q′(2). We obtain the
following exact sequence:

0→ E→ E ′ ϕ′
−→O0r ((2mr − 1)pt)→ 0.

By the induction hypothesis, [E ′] is in I 0(c+m1+· · ·+mr−1), thus one can find an
affine open subset 0 ∈U ⊂ A1 and a coherent sheaf E on P3

×U, flat over U, such
that E0 = E ′ and Et is a locally free instanton sheaf of charge c+m1+· · ·+mr−1

satisfying Et |0r ' 2 ·O0r for every t ∈U \ {0}. Setting G := π∗(Q/Q′(2)) where
π : P3

×U → P3 is the projection onto the first factor, note that

H i (Hom(Et , Gt))= H i (2 ·O0r ((2mr − 1)pt))= 0, for i ≥ 1 and t ∈U.

This claim is clear for t 6= 0; when t = 0, simply observe that the sequence
0→ E ′→ F→ Q′(2)→ 0 implies that E ′|0r ' F |0r , since the support of Q′ is
disjoint from 0r .

By Lemma 11, there exists an epimorphism s : E � G extending ϕ′ : E ′→
O0r ((2mr − 1)pt), so that [ker st ] ∈ D(mr , c+m1+ · · ·+mr ), by construction. It
then follows that [E] ∈ D(mr , c+m1+ · · ·+mr ), hence, by [Jardim et al. 2017,
Theorem 7.8], [E] ∈ I 0(c+m1+ · · ·+mr ), as desired. �

Next, we consider the following situation: let 6 be an irreducible, nonsingular,
complete intersection curve in P3, given as the intersection surfaces of degrees d1 and
d2, with 1≤ d1 ≤ d2 and (d1, d2) 6= (1, 1), (1, 2), and let 0 be a smooth irreducible
rational curve in P3 of degree m disjoint from 6. Set Q := L⊕O0(−pt) for some
L ∈ Picg−1(6) such that h0(6, L)= h1(6, L)= 0, where g is the genus of 6.
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Proposition 12. If F is a locally free instanton sheaf of charge c such that F |0 '
2 ·O0, and H 1(F∨|6 ⊗ L(2))= 0. If ϕ : F � Q(2) is an epimorphism, then

[kerϕ] ∈ C(d1, d2, c+m).

Proof. The idea is the same as in the proof of Proposition 10. Let E ′ be the kernel
of the composition F ϕ

−� Q(2)�O0((2m− 1)pt), so that E := kerϕ and E ′ are
related via the following exact sequence:

0→ E→ E ′ ϕ′
−→ L(2)→ 0.

By [Jardim et al. 2017, Theorem 7.8], one can find an affine open subset 0∈U ⊂A1

and a coherent sheaf E on P3
×U, flat over U, such that E0= E ′ and Et is a locally

free instanton sheaf of charge c+m for every t ∈U \ {0}.
Setting G := π∗L(2), we must, in order to apply Lemma 11, check that

H i (Hom(Et ,G t))= 0, for i ≥ 1 and t ∈U.

Indeed, since dim G t = 1, it is enough to show that H 1(Hom(Et ,G t))= 0. Note

Hom(E0,G0)=Hom(E ′, L(2))'Hom(F, L(2))' F∨|6 ⊗ L(2),

where the middle isomorphism follows from applying the functor Hom( · , L(2)) to
the sequence 0→ E ′→ F→O0((2m− 1)pt)→ 0,

also exploring the fact that6 and 0 are disjoint. It follows that H 1(Hom(E0,G0))=

H 1(F∨|6 ⊗ L(2))= 0 by hypothesis. By semicontinuity of h1(Hom(Et ,G t)), we
can shrink U to another affine open subset U ′ ⊂ A1, if necessary, to guarantee that
H 1(Hom(Et ,G t))= 0 for every t ∈U ′.

By Lemma 11, there exists an epimorphism s : F � G extending ϕ′ : E ′→ L(2),
so that [ker st ] ∈ C(d1, d2, c+m), by construction. Since E ' ker s0, it follows that
[E] ∈ C(d1, d2, c+m). �

4. Moduli of sheaves of dimension one and Euler characteristic zero

Given two integers d and χ , d ≥ 1, let T (d, χ) be the moduli space of semistable
coherent sheaves on P3 with Hilbert polynomial P(t)= d · t +χ . In this section,
we focus on the space T (d) := T (d, 0).

Apart from its intrinsic interest, the space T (d) is also relevant for the study of
instanton sheaves, and the description of T (d) for d ≤ 4 provided in this section
will be a key ingredient for the proof of the Main Theorem 1.

In addition, let Z(d) denote the set of rank 0 instanton sheaves of degree d
modulo S-equivalence (which makes sense, since, by Lemma 6, every rank 0
instanton sheaf is semistable). After a twist by OP3(−2), Z(d) can be regarded
as an open subscheme of the moduli space T (d) consisting of those sheaves Q
satisfying h0(Q)= 0.
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The space T (d) has several distinguished subsets, which we now describe.
First, let Pd ⊂ T (d) be the subset of planar sheaves; it is a fiber bundle over

(P3)∗ with fiber being the moduli space of semistable coherent sheaves on P2 with
Hilbert polynomial P = d · t . In view of [Le Potier 1993a, Theorem 1.1], Pd is a
projective irreducible variety of dimension d2

+ 4. In particular, Pd is closed.
Next, consider the subsets Ro

d , E
o
d ⊂ T (d) of sheaves supported on smooth

rational curves of degree d , respectively, on smooth elliptic curves of degree d . Let
Rd and Ed denote their closures.

Given a partition (d1, . . . , ds) of d such that d1 ≥ · · · ≥ ds , we denote by
Td1,...,ds ⊂ T (d)

the locally closed subset of points of the form

(11) [Q1⊕ · · ·⊕ Qs],

where Qi gives a stable point in T (di ); in particular, Td is the open subset of
stable points in T (d). Let T o

d1,...,ds
⊂ Td1,...,ds be the open dense subset given by the

condition that supp(Qi ) be mutually disjoint. Clearly, each irreducible component
of T o

d1,...,ds
is an open dense subset of an irreducible component of T (d). Hence the

irreducible components of the closure of Td1,...,ds within T (d), henceforth denoted
by T d1,...,ds , are also irreducible components of T (d). On the other hand, each
point of T (d) is an S-equivalence class of a polystable (e.g., stable) sheaf of the
form (11). Hence, Lemma 13 follows.

Lemma 13. (i) All irreducible components of T (d) are exhausted by the irre-
ducible components of the union

(12)
⋃

(d1,...,ds)

T d1,...,ds ,

this union being taken over all the partitions (d1, . . . , ds) of d.

(ii) For a given partition (d1, . . . , ds) of d , each irreducible component of T d1,...,ds

is birational to a symmetric product,
(X1× · · ·×Xs)/6,

of irreducible components Xi of Tdi , where 6 is the subgroup of the full
symmetric group 6s of degree s generated by the transpositions (i, j) for
which di = d j and Xi = X j .

Proof. We have only to prove statement (ii). Indeed, let 6′ ⊂6s be the subgroup
generated by the transpositions (i, i + 1) for which di = di+1. We have a bijective
morphism

(Td1 × · · ·× Tds )/6
′
→ Td1,...,ds , ([Q1], . . . , [Qs]) 7−→ [Q1⊕ · · ·⊕ Qs],

which is an isomorphism over T o
d1,...,ds

, because over this set we can construct local
inverse maps. Whence, the statement (ii) follows. �
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Remark 14. Lemma 13 implies that the problem of finding the irreducible compo-
nents of T (d) is reduced to the problem of finding the irreducible components of
T2, . . . , Td .

Remark 15. It also follows from Lemma 13 that the number of irreducible com-
ponents of T (d) is at least as large as the number of partitions of d, usually
denoted p(d). A well-known formula by Hardy and Ramanujan gives the following
asymptotic expression

p(d)∼ 1
4
√

3·d
exp

(
π

√
2d
3

)
.

Therefore, the number of irreducible components of T (d) grows at least exponen-
tially on

√
d. However, as we shall see below in the cases d = 3 and d = 4, p(d)

is just a rough underestimate of the number of irreducible components of T (d).

Given a coherent sheaf Q on P3, we define

QD
:= Extc(Q, ωP3),

where c = codim(Q). We shall later use the following general result regarding
stable sheaves in T (d).

Lemma 16. Assume that F gives a stable point in T (d) and that P ∈ supp(F) is a
closed point. Then there are exact sequences

(13) 0→ E→ F→ CP → 0

and

(14) 0→ F→ G→ CP → 0

for some sheaves E ∈ T (d,−1) and G ∈ T (d,+1).

Proof. Choose a surjective morphism F→ CP and denote its kernel by E . Since F
is stable, E is semistable, so we have sequence (13). According to [Maican 2010,
Theorem 13], the dual sheaf F D gives a stable point in T (d). Thus, we have an
exact sequence

0→ E1→ F D
→ CP → 0

with E1 ∈ T (d,−1). According to [Maican 2010, Remark 4], F is reflexive.
According to [Maican 2010, Theorem 13], the sheaf G= ED

1 gives a point in T (d, 1).
Since F D is pure, we can apply [Huybrechts and Lehn 1997, Proposition 1.1.10] to
deduce that

Ext3(F D, ωP3)= 0.

The long exact sequence of Ext-sheaves associated to the above exact sequence
yields (14). �
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The goal of this section is to describe the irreducible components of T (d) for
d ≤ 4. According to [Drézet and Maican 2011], for F ∈ T (d) we have the following
cohomological conditions

h0(F)= 0 if d = 1 or 2,

h0(F)≤ 1 if d = 3 or 4.

4.1. Moduli of sheaves of degree 1 and 2. The case d = 1 is straightforward:
clearly, T (1)'R1, being isomorphic to the Grassmannian of lines in P3.

Proposition 17. The moduli space T (1) is an irreducible projective variety of
dimension 4.

In addition, it is easy to see that Z(1)= T (1).
Proposition 18. The moduli space T (2) is connected, and has two irreducible
components, each of dimension 8: P2 (which coincides with R2) and T 1,1.

Proof. If F ∈ T2, then we have the exact sequence (14) in which G ∈ T (2, 1). Thus,
G is the structure sheaf of a conic curve, hence G is planar, and hence F is planar.
We conclude that T (2)= P2 ∪ T 1,1. The intersection P2 ∩ T 1,1 consists of those
points of the form [O`1(−1)⊕O`2(−1)] where `1 and `2 are two intersecting (and
possibly coincident) lines. �

Note also that Z(2)= T (2); the fact that Z(2) consists of two irreducible com-
ponents of dimension 8 should be compared with [Hauzer and Langer 2011, Corol-
lary 6.12], where the authors prove that the moduli space of framed rank 0 instanton
sheaves of multiplicity 2 also consists of two irreducible components of dimension 8.

4.2. Moduli of sheaves of degree 3.
Proposition 19. The moduli space T (3) has four irreducible components P3, R3,
T 2,1 and T 1,1,1, of dimension 13, 13, 12, and 12, respectively.

Proof. By Proposition 18 we have T 2 = P2, so that in view of Lemma 13 we
already obtain the irreducible components T 2,1 and T 1,1,1 of T (3). Therefore, by
Remark 14, we only have to find the irreducible components of T3.

Thus, given F ∈ T3, take a point P ∈ supp(F). We then have the exact sequence
(14) for G ∈ T (3, 1). According to [Freiermuth and Trautmann 2004, Theorem 1.1],
T (3, 1) has two irreducible components: the subset P of planar sheaves and the
subset R that is the closure of the set of structure sheaves of twisted cubics. More-
over, all sheaves in R \P are structure sheaves of curves R ⊂ P3 of degree 3 and
arithmetic genus zero. If G is planar, then F is planar. If G=OR , then R= supp(F),
where the scheme-theoretic support supp(F) of the sheaf F is defined by the 0-th
Fitting ideal Fitt0(F) : IR/P3 = Fitt0(F). The morphism

ρ : T3 \P3→R \P, ρ([F])= [Osupp(F)],
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is injective. Indeed, if ρ([F1])= ρ([F2]), then supp(F1)= supp(F2)= R. Choose
a point P ∈ R. We have exact sequences

0→ F1→ G1→ CP → 0, 0→ F2→ G2→ CP → 0,

with G1,G2 ∈ T (3, 1). Clearly, G1 and G2 are both isomorphic to OR , hence F1

and F2 are both isomorphic to the ideal sheaf IP,R of P in R. The image of ρ
is a constructible set of the irreducible variety R \P and contains an open subset
of R\P, namely the subset given by the condition that R be irreducible. Indeed, if R
is irreducible, then it is easy to check that IP,R is stable; we have ρ([IP,R])= [OR].
We deduce that T3\P3 is irreducible. It follows that Ro

3 is dense in T3\P3. Thus, T3

has two irreducible components, hence T (3) has the four irreducible components
announced in the proposition. �

4.3. Moduli of sheaves of degree 4.

Proposition 20. The moduli space T (4) has eight irreducible components: P4, E4,
R4, T 2,2, T 2,1,1, T 1,1,1,1 and two irreducible components of T3,1 that are birational
to P3× T1 and to R3× T1, respectively. Their dimensions are, respectively, 20, 18,
16, 16, 16, 16, 17, 17.

Proof. By Propositions 18 and 19 and Lemma 13 we already have 5 irreducible
components of T (4) which are T 2,2, T 2,1,1, T 1,1,1,1 and two irreducible compo-
nents of T3,1 that are birational to P3× T1 and to R3× T1, respectively. Therefore
by Remark 14 we have only to find the irreducible components of T4. Thus, given
F ∈ T4, take a point P ∈ supp(F). We then have the exact sequence (14) for
G ∈ T (4, 1). According to [Choi et al. 2016, Theorem 4.12], T (4, 1) has three
irreducible components: the subset P of planar sheaves, the subset R that is the
closure of the set of structure sheaves of rational quartic curves, and the set E that is
the closure of the set of sheaves of the form OE(P ′), where E is a smooth elliptic
quartic curve and P ′ ∈ E . If G ∈ P, then F ∈ P4. The sheaves in R \ (P ∪ E)
are structure sheaves of quartic curves of arithmetic genus zero. The sheaves in
E \P are supported on quartic curves of arithmetic genus 1. Let T4,rat ⊂ T4 be the
subset of sheaves whose support is a quartic curve of arithmetic genus zero. As in
Proposition 19, we can construct an injective dominant morphism

ρ : T4,rat→R \ (P ∪ E), ρ([F])= [Osupp(F)].

It follows that T4,rat is irreducible, hence T4,rat ⊂ R4. To finish the proof of the
proposition we need to show that T4 \ (P4 ∪ T4,rat) is contained in E4.

According to [Maican 2017, Section 3], the sheaves G in E \P are of two kinds:

(i) OE(P ′) for a curve E of arithmetic genus 1 given by an ideal of the form
(q1, q2), where q1, q2 are quadratic forms, and P ′ ∈ E . Notice that
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Ext1O
P3
(CP ′,OE) ∼−→C,

so the notation OE(P ′) is justified. Also note that OE is stable.

(ii) Nonplanar extensions of the form

0→OL(−1)→ G→ C→ 0,

where L is a line and C gives a point in TH (3, 1) for a plane H possibly
containing L . (Here and below we use the notation TS(d, χ) for the moduli
space of one-dimensional sheaves on a given surface S in P3 with Hilbert
polynomial P(t)= dt +χ . We also set TS(d) := TS(d, 0).)

Claim 1: Case (ii) is unfeasible.

Assume, firstly, that P ∈ H. Tensoring (14) with OH , we get the exact sequence

F |H → G|H
α
−→CP → 0.

Thus, Ker(α) is a quotient sheaf of F of slope zero. This contradicts the stability
of F. Assume, secondly, that P /∈ H. According to [Maican 2017, Proposition 3.5],
we have an exact sequence

0→ E→ G→OL → 0

for some sheaf E ∈ TH (3). The composite map E→ G→ CP is zero, hence E is a
subsheaf of F. This contradicts the stability of F and proves Claim 1.

It remains to deal with the sheaves from (i). We have one of the following
possibilities:

(a) E is contained in a smooth quadric surface S.

(b) E is contained in an irreducible cone 6 but not in a smooth quadric surface.

(c) span{q1, q2} contains only reducible quadratic forms and q1 and q2 have no
common factor.

Claim 2: In case (a), F belongs to E4.

Notice that F ∈ TS(4). According to [Ballico and Huh 2014, Proposition 7],
TS(4) has five disjoint irreducible components TS(p, q, 4), where (p, q) is the
type of the support of the one-dimensional sheaf with respect to Pic(S). Clearly,
F ∈ TS(2, 2, 4). Thus, F is a limit of sheaves in TS(2, 2, 4) supported on smooth
curves of type (2, 2), hence F ∈ E4.

It remains to deal with cases (b) and (c). Next we reduce further to the case when
P = P ′. Notice that, if P 6= P ′, then F 'OE(P ′)⊗ (OE(P))D, hence the notation
F =OE(P ′− P) is justified.

Claim 3: Assume that F =OE(P ′− P) for an elliptic quartic curve E and distinct
closed points P ′, P ∈ E . Then F belongs to E4.
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Let Z1, . . . , Zm denote the irreducible components of E . Fix i, j ∈ {1, . . . ,m}.
Consider the locally closed subset X ⊂E×E of pairs ([OE ′(P1)], [OE ′(P2)]), where
E ′ is a quartic curve of arithmetic genus 1 whose ideal is generated by two quadratic
polynomials, and P1 and P2 are distinct points on E ′ such that P1 /∈ ∪k 6=i Zk and
P2 /∈ ∪k 6= j Zk . Consider the morphisms

ξ : X → T (4), ([OE ′(P1)], [OE ′(P2)]) 7−→ [OE ′(P1− P2)],

σ : X → HilbP3(4t), ([OE ′(P1)], [OE ′(P2)]) 7−→ E ′,

where HilbP3(4t) is the Hilbert scheme of subschemes of P3 with Hilbert polynomial
P(t)= 4t . According to [Chen and Nollet 2012, Examples 2.8 and 4.8], HilbP3(4t)
consists of two irreducible components, denoted H1 and H2. The generic member of
H1 is a smooth elliptic quartic curve. The generic member of H2 is the disjoint union
of a planar quartic curve and two isolated points. Note that H2 lies in the closed
subset {E ′ | h0(OE ′)≥ 3}. Since E lies in the complement of this subset, we deduce
that E ∈ H1. It follows that there exists an irreducible quasiprojective curve 0 ⊂
HilbP3(4t) containing E , such that 0\{E} consists of smooth elliptic quartic curves
(see the proof of [Maican 2017, Proposition 4.2]). The fibers of the map σ−1(0)→0

are irreducible of dimension 2. By [Shafarevich 1994, Theorem 8, p. 77], we deduce
that σ−1(0) is irreducible. Thus, ξ(σ−1(0)) is irreducible. This set contains
[OE(P ′− P)] for P ′ ∈ Zi \∪k 6=i Zk and P ∈ Z j \∪k 6= j Zk . The generic member of
ξ(σ−1(0)) is a sheaf supported on a smooth elliptic quartic curve. We conclude
that [OE(P ′− P)] ∈ E4. Since i and j are arbitrary, the result is true for all P ′ and
P closed points on E .

Claim 4: In case (c), E is a quadruple line supported on a line L . More precisely,
there are three distinct planes H, H ′, H ′′ containing L , such that

E = (H ∪ H ′)∩ (2H ′′).

The claim will follow if we can show that there are linearly independent one-
forms u, v such that q1, q2 ∈ C[u, v]. Indeed, in this case (q1, q2) has the normal
form (uv, (u+v)2). We argue by contradiction. Assume that q1= XY and q2= Zl.
Consider first the case when l = aX + bY + cZ . We will find λ ∈ C such that
f = XY + λZl is irreducible, which is equivalent to saying that

∂ f
∂X
= Y + aλZ ,

∂ f
∂Y
= X + bλZ ,

∂ f
∂Z
= λ(aX + bY + 2cZ)

have no common zero, or, equivalently,∣∣∣∣∣∣
0 1 aλ
1 0 bλ

aλ bλ 2cλ

∣∣∣∣∣∣ 6= 0.
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We have reduced to the inequality 2abλ2
−2cλ 6= 0. If c 6= 0 we can find a solution.

If c = 0, then ab 6= 0, otherwise q1 and q2 would have a common factor, and we
can choose any λ ∈ C∗. Assume now that l = aX + bY + cZ + dW with d 6= 0.
Note that f = XY + λZl is irreducible if its image in

C[X, Y, Z ,W ]/〈(c− 1)Z + dW 〉 ' C[X, Y, Z ]

is irreducible. The above isomorphism sends f to XY + λZ(aX + bY + Z) which
brings us to the case examined above.

Claim 5: In case (c), F belongs to E4.

We have OE |H ' OC and OE |H ′ ' OC ′ for conic curves C and C ′ supported
on L . The kernel of the map OE→OC has Hilbert polynomial 2t−1 and is stable,
because OE is stable, hence it is isomorphic to OC ′(−1). We have a commutative
diagram

0 // OE //

��

OE(P ′) //

��

CP ′ // 0

0 // OC // OE(P ′)|H // CP ′ // 0

in which the second row is obtained by restricting the first row to H. Applying the
snake lemma, we obtain the first row of the following exact commutative diagram:

0 // OC ′(−1) // OE(P ′) //

��

OE(P ′)|H //

α

��

0

CP CP

Applying the snake lemma to this diagram, we get the exact sequence

0→OC ′(−1)→ F→ Ker(α)→ 0.

Note that Ker(α) has Hilbert polynomial 2t + 1 and is semistable, being a quotient
of the stable sheaf F. It follows that Ker(α)'OC . Thus, F gives a point in the set
P(Ext1(OC ,OC ′(−1)))s of stable nonsplit extensions of OC by OC ′(−1).

Consider the family of planes H ′′t , t ∈ P1
\ {0,∞}, containing L and different

from H and H ′. Denote Et = (H ∪ H ′) ∩ (2H ′′t ). We have a two-dimensional
family of semistable sheaves{

OEt (P
′
− P ′′) | t ∈ P1

\ {0,∞}, P ′′ ∈ L \ {P ′}
}
⊂ P(Ext1(OC ,OC ′(−1))).

This family is dense in the right-hand side because Ext1O
P3
(OC ,OC ′(−1))' C3. To

prove this we use the standard exact sequence obtained from Thomas’ spectral
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sequence

0→ Ext1OH ′
(OC |H ′,OC ′(−1))→ Ext1O

P3
(OC ,OC ′(−1))

→ Hom(Tor
O

P3

1 (OC ,OH ′),OC ′(−1))→ Ext2OH ′
(OC |H ′,OC ′(−1)),

see also [Choi et al. 2016, Lemma 4.2]. Note that OC |H ′ 'OL . Using Serre duality
we obtain the isomorphisms

Ext2OH ′
(OL ,OC ′(−1))' HomOH ′

(OC ′(−1),OL(−3))∗ = 0,

Ext1OH ′
(OL ,OC ′(−1))' Ext1OH ′

(OC ′(−1),OL(−3))∗ ' C2.

The last isomorphism follows from the long exact sequence of extension sheaves

0=Hom
(
OH ′(−1),OL(−3)

)
→Hom

(
OH ′(−3),OL(−3)

)
'H0(OL)'C

→Ext1OH ′

(
OC ′(−1),OL(−3)

)
→Ext1OH ′

(
OH ′(−1),OL(−3)

)
'H1(OL(−2)

)
'C

→Ext1OH ′

(
OH ′(−3),OL(−3)

)
=0

derived from the short exact sequence

0→OH ′(−3)→OH ′(−1)→OC ′(−1)→ 0.

Choose linear forms u and u′ defining H and H ′. Restricting the standard resolution

0→O(−3)

[ −u
(u′)2

]
−−−−→O(−2)⊕O(−1)

[(u′)2 u]
−−−−−→O→OC → 0

to H ′, we see that Tor
O

P3

1 (OC ,OH ′) is isomorphic to the cohomology of the complex

OH ′(−3)

[
−u|H ′

0

]
−−−−→OH ′(−2)⊕OH ′(−1)

[0 u|H ′]
−−−−−→OH ′

that is, to OL(−2). Using the fact that OC ′(−1) and OL(−2) are reflexive, we have
the isomorphisms

Hom
(
OL(−2),OC ′(−1)

)
' Hom

(
OC ′(−1)D,OL(−2)D

)
' Hom(OC ′,OL)' C.

The above discussion shows that [F] is a limit of points in T (4) of the form
[OEt (P

′
− P ′′)], with P ′ 6= P ′′. Claim 5 now follows from Claim 3.

It remains to consider sheaves F given by sequence (14) in which G =OE(P)
and E is as at (b). We reduce further to the case when E has no regular points.

Claim 6: Assume E has a regular point. Then F 'OE , hence F belongs to E4.

The proof of the claim is obvious because P in sequence (14) can be chosen
arbitrarily on E . We choose P ∈ reg(E). The kernel of the map OE(P)→ CP

is OE . Note that E belongs to the irreducible component H1 of HilbP3(4t), hence
it is the limit of smooth elliptic quartic curves.
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Claim 7: Let E ⊂ P3 be a quartic curve of arithmetic genus 1 which is contained
in an irreducible cone 6, but not in a smooth quadric surface. Assume that E has
no regular points. Then we have one of the following two possibilities:

(b1) E = 6 ∩ (H ∪ H ′), where H, H ′ are distinct planes each intersecting 6
along a double line.

(b2) E =6 ∩ (2H), where H is a plane intersecting 6 along a double line.

To fix notations assume that 6 has vertex O and base a conic curve 0 contained
in a plane 5. Assume first that E =6 ∩6′ for 6′ another irreducible cone. If 6
and 6′ have distinct vertices, then E has regular points. Thus, 6′ has vertex O and
base an irreducible conic curve 0′ contained in 5. Since E has no regular points,
0∩0′ is the union of two double points Q1 and Q2. Now E is the cone with vertex
O and base Q1 ∪ Q2, so E is as at (b1).

Assume next that E =6 ∩ (H ∪ H ′) for distinct planes H and H ′. If H or H ′

does not contain O , then E has regular points. If H or H ′ is not tangent to 0, then
E has regular points. We deduce that E is as in (b1).

Assume, finally, that E = 6 ∩ (2H) for a double plane 2H. If O /∈ H, then it
can be shown that E is contained in a smooth quadric surface. Indeed, assume that
6 has equation X2

+Y 2
+ Z2

= 0 and H has equation W = 0. Then E is contained
in the smooth quadric surface with equation

X2
+ Y 2

+ Z2
+W 2

= 0.

Thus, O ∈ H. If 0 ∩ H is the union of two distinct points, then 0 ∩ (2H) is the
union of two double points Q1 and Q2 and E is as in (b1). If 0 ∩ H is a double
point, then E is as in (b2).

Claim 8: In case (b1), F belongs to E4.

We have OE |H 'OC and OE |H ′ 'OC ′ for conic curves C and C ′ supported on
lines L and L ′, respectively. Assume that P ∈ L and choose a point P ′ ∈ L not
necessarily distinct from P. Let F ′ ∈ T4 be given by the exact sequence

0→ F ′→OE(P ′)→ CP → 0.

As in the first paragraph in the proof of Claim 5, we see that F ′ gives a point in the
set P(Ext1(OC ,OC ′(−1)))s. We have dim Ext1O

P3
(OC ,OC ′(−1))≤ 2. Indeed, start

with the exact sequence

0→ Ext1OH ′

(
OC |H ′,OC ′(−1)

)
→ Ext1O

P3

(
OC ,OC ′(−1)

)
→ Hom

(
Tor

O
P3

1 (OC ,OH ′),OC ′(−1)
)
.

The group on the second line vanishes because Tor
O

P3

1 (OC ,OH ′) is supported on
O while OC ′(−1) has no zero-dimensional torsion. It follows that

Ext1O
P3
(OC ,OC ′(−1))' Ext1OH ′

(OC |H ′,OC ′(−1)).
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The sheaf OC |H ′ is the structure sheaf of a double point supported on O , hence we
have the exact sequence

C'Ext1OH ′
(CO ,OC ′(−1))→Ext1OH ′

(OC |H ′,OC ′(−1))→Ext1OH ′
(CO ,OC ′(−1))'C

from which we get our estimate on the dimension of the middle vector space.
The one-dimensional family OE(P ′− P), P ′ ∈ L \ {P}, is therefore dense in

P(Ext1(OC ,OC ′(−1)))s, hence, in view of Claim 3, F is a limit of sheaves in E4.
We conclude that F ∈ E4.

Claim 9: In case (b2), F belongs to E4.

Let L be the reduced support of 6 ∩ H. We have OE |H 'OC for a conic curve
supported on L . Choose a point P ′ ∈ L not necessarily distinct from P and let
F ′ ∈ T4 be given by the exact sequence

0→ F ′→OE(P ′)→ CP → 0.

As in the first paragraph of the proof of Claim 5, we see that F ′ gives a point
in the set P(Ext1(OC ,OC(−1)))s. We have dim Ext1O

P3
(OC ,OC(−1))= 5. This

follows from the exact sequence

0→ Ext1OH
(OC ,OC(−1))→ Ext1O

P3
(OC ,OC(−1))

→ Hom(Tor
O

P3

1 (OC ,OH ),OC(−1))→ Ext2OH
(OC ,OC(−1)).

From Serre duality we get

Ext2OH
(OC ,OC(−1))' HomOH (OC(−1),OC(−3))∗ ' H0(OC(−2))∗ = 0.

We have Tor
O

P3

1 (OC ,OH )'OC(−1) hence Hom(Tor
O

P3

1 (OC ,OH ),OC(−1))'C.
Applying the functor Hom(−,OC(−1)) to the short exact sequence

0→OH (−2)→OH →OC → 0,

we obtain the exact sequence,

0→ Hom(OH (−2),OC(−1))' H0(OC(1))' C3
→ Ext1OH

(OC ,OC(−1))

→ Ext1OH
(OH ,OC(−1))' H1(OC(−1))' C→ 0,

since Hom(OH ,OC(−1)) ' H0(OC(−1)) = 0, and Ext1OH
(OH (−2),OC(−1)) '

H1(OC(1))= 0.
Denote Q = L ∩5. We have a three-dimensional family 0t of irreducible conic

curves in 5 that contain Q and are tangent to H. Let 6t be the cone with vertex
O and base 0t . Put Et = 6t ∩ (2H). The four-dimensional family OEt (P

′
− P),

P ′ ∈ L \ {P} is dense in P(Ext1(OC ,OC(−1)))s, hence, in view of Claim 3, F is
the limit of sheaves in E4. We conclude that F ∈ E4. �

The proof of Main Theorem 2 is finally complete.
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5. Components and connectedness of L(3)

We are now ready to prove that the moduli space of rank 2 instanton sheaves of
charge 3 on P3 is connected and has precisely two irreducible components. Indeed,
two components of L(3) have already been identified above:

(I) I(3), whose generic point corresponds to a locally free instanton sheaf.

(II) C(1, 3, 0), whose generic point corresponds to an instanton sheaf E fitting into
an exact sequence of the form

(15) 0→ E→ 2 ·OP3 → ι∗L(2)→ 0,

where ι : 6 ↪→ P3 is the inclusion of a nonsingular plane cubic 6, and
L ∈ Pic0(6) is such that h0(6, L)= 0.

Both components have dimension 21; this is a classical result for the component
I0(3), while the dimension of C(1, 3, 0) is given by Theorem 8. In addition, this
same result also guarantees that the union I 0(3)∪ C(1, 3, 0) is connected.

Therefore, our task is to prove that L(3) has no other irreducible components,
i.e., that every instanton sheaf of charge 3 can be deformed either into a locally free
instanton sheaf, or into an instanton sheaf given by a sequence of the form (15).

So let E be a nonlocally free instanton sheaf of charge 3, and let QE := E∨∨/E
be the corresponding rank 0 instanton sheaf; let dE denote the degree of QE . There
are three possibilities to consider: dE = 1, dE = 2 and dE = 3.

The first possibility is easy to deal with: if dE = 1, then QE = O`(1), where
` ↪→ P3 is a line in P3. It follows that E fits into an exact sequence of the form

0→ E→ F→O`(1)→ 0,

where F is a locally free instanton sheaf of charge 2. However, [Jardim et al. 2015,
Proposition 7.2] ensures that E can be deformed in a (’t Hooft) locally free instanton
sheaf of charge 3. In other words, if dE = 1, then E lies within I 0(3).

Now, if dE = 2, then, since QE is semistable and by Proposition 18 above, one
can find an affine open subset 0 ∈U ⊂ A1 and a coherent sheaf G on P3

×U such
that G0 = QE and, for u 6= 0, either

(i) Gu =O0(3pt), where 0 is a nonsingular conic in P3; or

(ii) Gu =O`1(1)⊕O`2(1) where `1 and `2 are skew lines in P3.

Since dE = 2, E∨∨ is a locally free instanton sheaf of charge 1 (also known as a
null-correlation bundle), we set N := E∨∨. Take F :=π∗N, where π :P3

×U→P3

is the projection onto the first factor. Let s : N � QE be the epimorphism given by
the standard sequence (3). For every u ∈U, the sheaf Hom(Fu,Gu)' N ⊗Gu is
supported in dimension 1, thus clearly H i (Hom(Fu,Gu))= 0 for i = 2, 3. For u 6= 0
we can, after possibly shrinking U, assume that either N |0 ' 2 ·O0 or N |`1 ' 2 ·O`1
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and N |`2 ' 2 ·O`2 ; in both situations, it is easy to check that H 1(Hom(Fu,Gu))= 0.
Finally, for u = 0, we twist the resolution of QE

0→ 2 ·OP3(−1) α
−→ 4 ·OP3

β
−→ 2 ·OP3(1)→ QE → 0

by N and check that H 1(Hom(F0,G0))= H 1(N ⊗ QE)' H 2(N ⊗ imβ)= 0.
Therefore, it follows from Lemma 11 that there exists an epimorphism s : F � G

on U ×P3 extending s : N � QE . Let E := ker s; clearly, E0 := E|{0}×P3 = E .
For 0 6= u ∈U, Eu fits into the exact sequence

0→ Eu→ N → Gu→ 0.

In the case (i) described above, Eu lies within D(2, 3) for u 6= 0, hence E = E0

lies within D(2, 3), which is contained in I(3) by [Jardim et al. 2015, Theorem 7.8].
In other words, E can be deformed into a locally free instanton sheaf of charge 3,
thus it lies within I 0(3).

In the case (ii), Proposition 10 also implies that [E0] ∈ I 0(3).
An argument similar to the one used in the proof of [Jardim et al. 2015, Propo-

sition 7.2] works to show that E can be deformed into a locally free (’t Hooft)
instanton sheaf.

Summing up, we conclude that if dE = 2, then E lies within I 0(3).
Finally, consider dE = 3, so that E∨∨ = 2 ·OP3 . Since QE is semistable, it

follows from Proposition 19 that one can find an affine open subset 0 ∈ U ⊂ A1

and a coherent sheaf G on P3
×U such that G0 = QE and, for u 6= 0, either

(i) Gu =O1(5pt), where 1 is a nonsingular twisted cubic in P3; or

(ii) Gu =O0(3pt)⊕O`(1), where 0 is a nonsingular conic and ` is a line disjoint
from 0; or

(iii) Gu =O`1(1)⊕O`2(1)⊕O`3(1) where ` j are 3 skew lines in P3; or

(iv) Gu = L(2), where L ∈ Pic0(6), for some nonsingular plane cubic 6 in P3.

Now set F := 2 · π∗OP3 . Note that H i (Hom(Fu,Gu)) = H i (2 ·Gu), and this
vanishes for i = 1, 2, 3 in all of the four cases outlined above for u 6= 0. For u = 0,
H i (G0)= H i (QE) and this vanishes by dimension of QE when i = 2, 3, and by
the vanishing of h1(QE(−2)) when i = 1.

We complete the argument as before; again, it follows from Lemma 11 that there
exists an epimorphism s : F � G extending the epimorphism s : 2 ·OP3 � QE

obtained from the standard sequence (3) for E . Let E := ker s; then clearly,
E0 := E|{0}×P3 = E . For u 6= 0, Eu fits into the exact sequence

0→ Eu→ 2 ·OP3 → Gu→ 0.

In the cases (i) through (iii), we know from [Jardim et al. 2015, Theorem 7.8]
and Proposition 10 above that [E0] ∈ D(3, 3), thus also [E] ∈ I 0(3).
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In the case (iv), Eu lies within C(1, 3, 0) for u 6= 0, by definition. It follows that
[E] ∈ C(1, 3, 0).

This completes the proof of the first part of Main Theorem 1.

6. Components and connectedness of L(4)

In this section we prove the second part of Main Theorem 1, i.e., we enumerate the
irreducible components of L(4), and show that L(4) is connected. Note that, from
Theorem 8, we already know four irreducible components of L(4):

(I) I(4), whose generic point corresponds to a locally free instanton sheaf.

(II) C(1, 3, 1), whose generic point corresponds to an instanton sheaf E fitting
into an exact sequence of the form

(16) 0→ E→ N → ι∗L(2)→ 0,

where N is a null-correlation bundle, ι : 6 ↪→ P3 is the inclusion of a
nonsingular plane cubic 6, and L ∈ Pic0(6) is such that h0(6, L)= 0.

(III) C(2, 2, 0), whose generic point corresponds to an instanton sheaf E fitting
into an exact sequence of the form

(17) 0→ E→ 2 ·OP3 → ι∗L(2)→ 0,

where ι :6 ↪→ P3 is the inclusion of a nonsingular elliptic space quartic 6,
and L ∈ Pic0(6) is such that h0(6, L)= 0.

(IV) C(1, 4, 0), whose generic point corresponds to an instanton sheaf E fitting
into an exact sequence of the form

(18) 0→ E→ 2 ·OP3 → ι∗L(2)→ 0,

where ι : 6 ↪→ P3 is the inclusion of a nonsingular plane quartic 6, and
L ∈ Pic2(6) is such that h0(6, L)= 0.

The first three components have dimension 29, and the last one has dimension
32; this is a classical result for the component I 0(4), while the dimensions of
C(1, 3, 1), C(2, 2, 0) and C(1, 4, 0) are given by Theorem 8 above. Furthermore,
[Jardim et al. 2017, Theorem 23] implies that each of the last three components
intersects I 0(4). Thus the union of these four components is connected.

To finish the proof of the second part of Main Theorem 1, it is again enough
to show that there are no other irreducible components in L(4), except for those
described above. The argument here is the same as before, exploring Theorem 1,
Remark 2 and Proposition 20.

Take any [E] ∈L(4) and consider the triple (3). Then, in view of Theorem 1 and
Remark 2, QE is a rank 0 instanton sheaf of multiplicity 1≤ dE ≤ 4, and E∨∨ is
an instanton bundle of charge 4− dE . Consider the possible cases for dE .
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The case dE = 1. As in the similar case in Section 5, QE = O`(1) where l is a
line in P3. Respectively, [E∨∨] ∈ I(3). Deforming ` in P3 we may assume that
E∨∨|` ' 2 ·O`, so that [E] ∈ D(1, 4). Therefore, [E] ∈ I 0(4).

The case dE = 2. As in the similar case in Section 5, QE can be deformed in a
flat family either into a sheaf O0(3pt), where 0 is a nonsingular conic in P3, or
into a sheaf O`1(1)⊕O`2(1) where `1 and `2 are skew lines in P3. Respectively,
[E∨∨] ∈ I(2). Now the same argument as in Section 5 shows that [E] ∈ I 0(4).

The case dE = 3. Then E∨∨ is a null-correlation bundle and, as in the case dE = 3
of Section 5, the sheaf QE deforms in a flat family to one of the sheaves:

(i) L(2), where L ∈ Pic0(6), for some nonsingular plane cubic 6 in P3.

(ii) O1(5pt), where 1 is a nonsingular twisted cubic in P3.

(iii) O0(3pt)⊕O`(1), where 0 is a nonsingular conic and ` is a line disjoint from 0.

(iv) O`1(1)⊕O`2(1)⊕O`3(1) where ` j are 3 skew lines in P3.

By definition, [E] ∈ C(1, 3, 1) in the case (i). The same argument as in Section 5,
based on [Jardim et al. 2015, Theorem 7.8] and Proposition 10, shows that [E]∈I(4)
in the cases (ii) through (iv).

The case dE= 4. Then E∨∨ ' 2 ·OP3 and, according to Proposition 20, the sheaf
QE deforms in a flat family to one of the sheaves:

(i) L(2), where L ∈ Pic2(6), for some nonsingular plane quartic 6 in P3, and
L satisfies an open condition h1(L)= 0.

(ii) L(2), where 0 6= L ∈ Pic0(1), for some nonsingular space elliptic quartic 1
in P3.

(iii) O1(7pt) for some nonsingular rational space quartic 1 in P3.

(iv) L(2)⊕O`(1), where L ∈ Pic0(6), for some nonsingular plane cubic 6 in
P3 and a line ` disjoint from 6.

(v) O1(5pt)⊕O`(1), where 1 is a nonsingular twisted cubic and ` is a line
disjoint from 1.

(vi) O01(3pt)⊕O02(3pt), where 01 and 02 are nonsingular, disjoint conics.

(vii) O0(3pt)⊕O`1(1)⊕O`2(1), where 0 is a nonsingular conic, and `1 and `2

are two skew lines disjoint from 0.

(viii) O`(1)⊕O`2(1)⊕O`3(1)⊕O`4(1), where `1, `2, `3, `4 are four disjoint
lines in P3.

In the case (i), since, in the notation of Lemma 11, F0 = 2 ·OP3 and G0 = L ,
H i (Hom(F0,G0)) = 0, where i ≥ 1, and therefore the condition (10) is satisfied
by the semicontinuity, so that the deformation argument as above shows that
E ∈ C(1, 4, 0).
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In case (ii), by the same reason, [E] ∈ C(2, 2, 0).
In case (iii), a similar argument shows that [E] ∈ D(4, 4), and thus [E] ∈ I(4).
In case (iv), Proposition 12 guarantees that [E] ∈ C(1, 3, 1).
In the cases remaining, (v) through (viii), as in cases (ii) and (iii) for dE = 3

above, we again obtain [E] ∈ I(4).
Main Theorem 1 is finally proved.

Acknowledgements

Jardim is partially supported by the CNPq grant number 303332/2014-0, and the
FAPESP grants number 2014/14743-8 and 2016/03759-6; this work was completed
during a visit to the University of Edinburgh, and he is grateful for its hospitality.
Jardim also thanks Daniele Faenzi and Simone Marchesi for their help in the
proof of Theorem 4. Tikhomirov was supported by a subsidy to the HSE from
the Government of the Russian Federation for the implementation of the Global
Competitiveness Program. Tikhomirov also acknowledges the support from the
Max Planck Institute for Mathematics in Bonn, where this work was finished during
the winter of 2017.

References

[Ballico and Huh 2014] E. Ballico and S. Huh, “Stable sheaves on a smooth quadratic surface with
linear Hilbert bipolynomials”, Sci. World J. 2014 (2014), art. id. 346126.

[Chen and Nollet 2012] D. Chen and S. Nollet, “Detaching embedded points”, Algebra Number
Theory 6:4 (2012), 731–756. MR Zbl

[Choi et al. 2016] J. Choi, K. Chung, and M. Maican, “Moduli of sheaves supported on quartic space
curves”, Michigan Math. J. 65:3 (2016), 637–671. MR Zbl

[Costa and Ottaviani 2003] L. Costa and G. Ottaviani, “Nondegenerate multidimensional matrices
and instanton bundles”, Trans. Amer. Math. Soc. 355:1 (2003), 49–55. MR Zbl

[Drézet and Maican 2011] J.-M. Drézet and M. Maican, “On the geometry of the moduli spaces of
semi-stable sheaves supported on plane quartics”, Geom. Dedicata 152 (2011), 17–49. MR Zbl

[Freiermuth and Trautmann 2004] H. G. Freiermuth and G. Trautmann, “On the moduli scheme of
stable sheaves supported on cubic space curves”, Amer. J. Math. 126:2 (2004), 363–393. MR

[Gargate and Jardim 2016] M. Gargate and M. Jardim, “Singular loci of instanton sheaves on
projective space”, Internat. J. Math. 27:7 (2016), 1640006, 18. MR Zbl

[Hauzer and Langer 2011] M. Hauzer and A. Langer, “Moduli spaces of framed perverse instantons
on P3”, Glasg. Math. J. 53:1 (2011), 51–96. MR Zbl

[Huxley 2003] M. N. Huxley, “Exponential sums and lattice points, III”, Proc. London Math. Soc.
(3) 87:3 (2003), 591–609. MR Zbl

[Huybrechts and Lehn 1997] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves,
Aspects of Mathematics E31, Friedr. Vieweg Sohn, Braunschweig, 1997. MR Zbl

[Jardim 2006] M. Jardim, “Instanton sheaves on complex projective spaces”, Collect. Math. 57:1
(2006), 69–91. MR Zbl

[Jardim and Verbitsky 2014] M. Jardim and M. Verbitsky, “Trihyperkähler reduction and instanton
bundles on CP3”, Compos. Math. 150:11 (2014), 1836–1868. MR Zbl

http://dx.doi.org/10.1155/2014/346126
http://dx.doi.org/10.1155/2014/346126
http://dx.doi.org/10.2140/ant.2012.6.731
http://msp.org/idx/mr/2966717
http://msp.org/idx/zbl/1250.14004
http://dx.doi.org/10.1307/mmj/1472066152
http://dx.doi.org/10.1307/mmj/1472066152
http://msp.org/idx/mr/3542770
http://msp.org/idx/zbl/1360.14036
http://dx.doi.org/10.1090/S0002-9947-02-03126-4
http://dx.doi.org/10.1090/S0002-9947-02-03126-4
http://msp.org/idx/mr/1927201
http://msp.org/idx/zbl/1031.14004
http://dx.doi.org/10.1007/s10711-010-9544-1
http://dx.doi.org/10.1007/s10711-010-9544-1
http://msp.org/idx/mr/2795234
http://msp.org/idx/zbl/1236.14012
http://dx.doi.org/10.1353/ajm.2004.0013
http://dx.doi.org/10.1353/ajm.2004.0013
http://msp.org/idx/mr/2045505
http://dx.doi.org/10.1142/S0129167X16400061
http://dx.doi.org/10.1142/S0129167X16400061
http://msp.org/idx/mr/3521591
http://msp.org/idx/zbl/1360.14061
http://dx.doi.org/10.1017/S0017089510000558
http://dx.doi.org/10.1017/S0017089510000558
http://msp.org/idx/mr/2747136
http://msp.org/idx/zbl/1238.14010
http://dx.doi.org/10.1112/S0024611503014485
http://msp.org/idx/mr/2005876
http://msp.org/idx/zbl/1065.11079
http://dx.doi.org/10.1007/978-3-663-11624-0
http://msp.org/idx/mr/1450870
http://msp.org/idx/zbl/0872.14002
http://www.ime.unicamp.br/~jardim/publicados/cm06.pdf
http://msp.org/idx/mr/2206181
http://msp.org/idx/zbl/1095.14040
http://dx.doi.org/10.1112/S0010437X14007477
http://dx.doi.org/10.1112/S0010437X14007477
http://msp.org/idx/mr/3279259
http://msp.org/idx/zbl/06382611


424 MARCOS JARDIM, MARIO MAICAN AND ALEXANDER S. TIKHOMIROV

[Jardim et al. 2015] M. Jardim, D. Markushevich, and A. S. Tikhomirov, “New divisors in the
boundary of the instanton moduli space”, preprint, 2015. arXiv

[Jardim et al. 2017] M. Jardim, D. Markushevich, and A. S. Tikhomirov, “Two infinite series of
moduli spaces of rank 2 sheaves on P3”, Ann. Mat. Pura Appl. (2017).

[Le Potier 1993a] J. Le Potier, “Faisceaux semi-stables de dimension 1 sur le plan projectif”, Rev.
Roumaine Math. Pures Appl. 38:7-8 (1993), 635–678. MR Zbl

[Le Potier 1993b] J. Le Potier, Systèmes cohérents et structures de niveau, Astérisque 214, Société
Mathématique de France, Paris, 1993. MR Zbl

[Maican 2010] M. Maican, “A duality result for moduli spaces of semistable sheaves supported on
projective curves”, Rend. Semin. Mat. Univ. Padova 123 (2010), 55–68. MR Zbl

[Maican 2017] M. Maican, “Moduli of space sheaves with Hilbert polynomial 4m+ 1”, Can. Math.
Bull. (online publication April 2017).

[Shafarevich 1994] I. R. Shafarevich, Basic algebraic geometry, I, 2nd ed., Springer, Berlin, 1994.
MR Zbl

[Tikhomirov 2012] A. S. Tikhomirov, “Moduli of mathematical instanton vector bundles with odd c2
on projective space”, Izv. Ross. Akad. Nauk Ser. Mat. 76:5 (2012), 143–224. In Russian; translated in
Izv. Math. 76:5 (2012), 991–1073. MR Zbl

[Tikhomirov 2013] A. S. Tikhomirov, “Moduli of mathematical instanton vector bundles with even
c2 on projective space”, Izv. Ross. Akad. Nauk Ser. Mat. 77:6 (2013), 139–168. In Russian; translated
in 77:6 (2013), 1195–1223. MR Zbl

Received February 23, 2017. Revised May 10, 2017.

MARCOS JARDIM

INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA

UNIVERSITY OF CAMPINAS

RUA SÉGIO BUARQUE DE HOLANDA, 651
CIDADE UNIVERSITÁRIA

13083-859 CAMPINAS-
BRAZIL

jardim@ime.unicamp.br

MARIO MAICAN

INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY

CALEA GRIVITEI 21
010702 BUCHAREST

ROMANIA

maican@imar.ro

ALEXANDER S. TIKHOMIROV

DEPARTMENT OF MATHEMATICS

NATIONAL RESEARCH UNIVERSITY HIGHER SCHOOL OF ECONOMICS

6 USACHEVA STREET

MOSCOW

119048
RUSSIA

astikhomirov@mail.ru

http://msp.org/idx/arx/1501.00736
http://dx.doi.org/10.1007/s10231-016-0630-3
http://dx.doi.org/10.1007/s10231-016-0630-3
http://msp.org/idx/mr/1263210
http://msp.org/idx/zbl/0815.14029
http://msp.org/idx/mr/1244404
http://msp.org/idx/zbl/0881.14008
http://dx.doi.org/10.4171/RSMUP/123-3
http://dx.doi.org/10.4171/RSMUP/123-3
http://msp.org/idx/mr/2683291
http://msp.org/idx/zbl/1202.14036
http://dx.doi.org/10.4153/CMB-2017-030-4
http://msp.org/idx/mr/1328833
http://msp.org/idx/zbl/0797.14002
http://dx.doi.org/10.1070/IM2012v076n05ABEH002613
http://dx.doi.org/10.1070/IM2012v076n05ABEH002613
https://doi.org/10.1070/IM2012v076n05ABEH002613
http://msp.org/idx/mr/3024867
http://msp.org/idx/zbl/1262.14053
https://doi.org/10.1070/IM2013v077n06ABEH002674
http://msp.org/idx/mr/3184110
http://msp.org/idx/zbl/1308.14045
mailto:jardim@ime.unicamp.br
mailto:maican@imar.ro
mailto:astikhomirov@mail.ru


PACIFIC JOURNAL OF MATHEMATICS
Vol. 291, No. 2, 2017

dx.doi.org/10.2140/pjm.2017.291.425

A SYMMETRIC 2-TENSOR
CANONICALLY ASSOCIATED TO Q-CURVATURE

AND ITS APPLICATIONS

YUEH-JU LIN AND WEI YUAN

We define a symmetric 2-tensor, called the J-tensor, canonically associated
to the Q-curvature on any Riemannian manifold with dimension at least
three. The relation between the J-tensor and the Q-curvature is like that
between the Ricci tensor and the scalar curvature. Thus the J-tensor can be
interpreted as a higher-order analogue of the Ricci tensor. This tensor can
be used to understand the Chang–Gursky–Yang theorem on 4-dimensional
Q-singular metrics. We show that an almost-Schur lemma holds for the Q-
curvature, yielding an estimate of the Q-curvature on closed manifolds.

1. Introduction

Let M be a smooth manifold and M be the space of all metrics on M. Consider
scalar curvature as a nonlinear map

R :M→ C∞(M), g 7→ Rg.

It is well known that the linearization of scalar curvature at a given metric g is

(1-1) γgh := DRg · h =−1g trg h+ δ2
gh−Ricg·h,

where h ∈ S2(M) is a symmetric 2-tensor and δg =− divg; see [Besse 1987; Chow
et al. 2006; Fischer and Marsden 1975]. Thus, its L2-formal adjoint is given by

(1-2) γ ∗g f =∇2
g f − g1g f − f Ricg

for any smooth function f ∈ C∞(M).
An interesting observation is that, if we take f to be constantly 1, we get

Ricg =−γ
∗

g 1.

This work was partially supported by NSF (Grant No. DMS-1440140), NSFC (Grant No. 11521101,
No. 11601531), The Fundamental Research Funds for the Central Universities (Grant No.2016-
34000-31610258).
MSC2010: 53C20, 53C25.
Keywords: J -tensor, Q-curvature, Q-singular metric.
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That means we can recover Ricci tensor from γ ∗g . Furthermore, the scalar curvature
is given by

Rg =− trg γ
∗

g 1.

Now let (Mn, g) be an n-dimensional Riemannian manifold (n ≥ 3). We can
define the Q-curvature to be

(1-3) Qg = An1g Rg + Bn|Ricg|
2
g +Cn R2

g,

where

An =−
1

2(n−1)
, Bn =−

2
(n−2)2

, Cn =
n2(n−4)+16(n−1)

8(n−1)2(n−2)2
.

In fact, Q-curvature was introduced originally to generalize the classic Gauss-
Bonnet theorem on surfaces to closed 4-manifolds (M4, g):

(1-4)
∫

M4

(
Qg +

1
4 |Wg|

2
g
)

dvg = 8π2χ(M),

where Wg is the Weyl tensor.
Paneitz and Branson extended Q-curvature to any dimension n≥ 3 (see [Branson

1985; Paneitz 2008]) such that it satisfies certain conformal invariant properties.
For more details, please refer to the appendix of [Lin and Yuan 2016].

Like the scalar curvature, we can also view Q-curvature as a nonlinear map

Q :M→ C∞(M), g 7→ Qg.

Let 0g : S2(M)→ C∞(M) be the linearization of Q-curvature at the metric g
and 0∗g : C

∞(M)→ S2(M) be its L2-formal adjoint.
Now we can define the central notion in this article:

Definition 1.1. Let (Mn, g) be a Riemannian manifold (n ≥ 3). We define the
symmetric 2-tensor

Jg := −
1
20
∗

g 1.

We say (M, g) is J -Einstein if Jg =3g for some smooth function 3 ∈C∞(M). In
particular, it is J -flat if 3= 0.

In [Lin and Yuan 2016], we calculated the explicit expression of 0∗g and showed

(1-5) trg 0
∗

g f = 1
2

(
Pg −

n+4
2

Qg

)
f,

for any f ∈ C∞(M). Here Pg is the Paneitz operator defined by

(1-6) Pg =1
2
g − divg[(an Rgg+ bn Ricg)d] +

n−4
2

Qg,
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where

an =
(n−2)2+4

2(n−1)(n−2)
and bn =−

4
n−2

.

In particular, trg 0
∗
g 1=−2Qg. Thus

(1-7) trg Jg = Qg.

On the other hand, for any smooth vector field X ∈ X(M) on M,∫
M
〈X, δg0

∗

g f 〉 dvg =
1
2

∫
M
〈L X g, 0∗g f 〉 dvg

=
1
2

∫
M

f 0g(L X g) dvg =
1
2

∫
M
〈 f d Qg, X〉 dvg.

Thus
δg0
∗

g f = 1
2 f d Qg

on M. Hence,

(1-8) divg Jg =
1
2δg0

∗

g 1= 1
4 d Qg.

Recall that for Ricci tensor, we have

trg Ricg = Rg and divg Ricg =
1
2 d Rg.

Therefore, if we consider Q-curvature as a higher-order analogue of scalar
curvature, we can interpret Jg as a higher-order analogue of Ricci curvature on
Riemannian manifolds.

A notion closely related to the J -tensor is the Q-singular metric, which refers to
a metric satisfying ker0∗g 6= {0}. Clearly, J -flat metrics are Q-singular, since it is
equivalent to 1 ∈ ker0∗g .

One of the motivations for us to study J -flat manifolds is to understand the
following theorem by Chang, Gursky and Yang:

Theorem 1.2 [Chang et al. 2002]. Let (M4, g) be a Q-singular 4-manifold. Then
1 ∈ ker0∗g if and only if (M4, g) is Bach flat with vanishing Q-curvature.

To achieve our goal, we need to give an explicit expression of the J -tensor:

Theorem 1.3. For n ≥ 3,

(1-9) Jg =
1
n

Qgg− 1
n−2

Bg −
n−4

4(n−1)(n−2)
Tg,

where Bg is the Bach tensor and

Tg := (n− 2)
(
∇

2 trg Sg −
1
n

g1g trg Sg

)
+ 4(n− 1)

(
Sg × Sg −

1
n
|Sg|

2g
)
− n2(trg Sg)S̊g.

Here (S× S)jk = Si
j Sik , Sg is the Schouten tensor and S̊g is its traceless part.
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Remark 1.4. Note that both the Bach tensor and the tensor T are traceless, thus
the traceless part of J is given by

(1-10) J̊g = Jg −
1
n

Qgg =− 1
n−2

(
Bg +

n−4
4(n−1)

Tg

)
.

Thus, an equivalent definition for a metric g being J -Einstein is

(1-11) Bg =−
n−4

4(n−1)
Tg.

In particular, when n = 4, J -Einstein metrics are exactly Bach flat ones. Hence we
can also interpret that J -Einstein metric is a generalization of Bach flat metric on
4-dimensional manifolds.

Remark 1.5. Gursky [1997] introduced a similar tensor for 4-manifolds from the
viewpoint of functional determinants. In the same article, he also remarked this
tensor can be introduced from the perspective of first variations of total Q-curvature
when dimension is at least 5 (see [Case 2012] for a detailed calculation).

With the similar perspective, Gover and Ørsted introduced an abstract tensor
called higher Einstein tensor, which coincides with our J -tensor in one of its special
case. We refer interested readers to their article [Gover and Ørsted 2013].

Note that for any Einstein metric g, its Q-curvature is given by

Qg = Bn|Ricg|
2
+Cn R2

g =

(1
n

Bn +Cn

)
R2

g =
(n+2)(n−2)

8n(n−1)2
R2

g,

which is a nonnegative constant and vanishes if and only if g is Ricci flat.
It is easy to check that Tg = 0 for any Einstein metric g. Combining this with

the well-known fact that any Einstein metric is Bach flat, we can easily deduce that
any nonflat Einstein metrics are also positive J -Einstein and Ricci flat metrics are
J -flat as well.

With the aid of this notion, we can recover and generalize Theorem 1.2 to any
dimension n ≥ 3:

Corollary 1.6. Let (Mn, g) be a Q-singular n-dimensional Riemannian manifold.
Then 1 ∈ ker0∗g if and only if (Mn, g) is J -flat or equivalently (Mn, g) satisfies

Bg =−
n−4

4(n−1)
Tg

with vanishing Q-curvature.

Remark 1.7. In [Chang et al. 2002], Bach flatness in Theorem 1.2 is derived using
the variational property of the Bach tensor for 4-manifolds.

As another application of J -tensor, we can derive the Schur lemma for Q-
curvature as follows:
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Theorem 1.8 (Schur lemma). Let (Mn, g) be an n-dimensional J -Einstein manifold
with n 6= 4 or equivalently,

Bg =−
n−4

4(n−1)
Tg.

Then Qg is a constant on M.

Moreover, the following almost-Schur lemma holds exactly like the case for
Ricci tensor and scalar curvature, cf., [Cheng 2013; De Lellis and Topping 2012;
Ge and Wang 2012].

Theorem 1.9 (almost-Schur lemma). For n 6= 4, let (Mn, g) be an n-dimensional
closed Riemannian manifold with positive Ricci curvature. Then

(1-12)
∫

M
(Qg − Qg)

2 dvg ≤
16n(n−1)
(n−4)2

∫
M
| J̊g|

2 dvg,

where Qg is the average of Qg. Moreover, the equality holds if and only if (M, g)
is J -Einstein.

In order to derive an equivalent form of above inequality, we need to define the
J -Schouten tensor as follows:

(1-13) SJ =
1

n−4

(
Jg −

3
4(n−1)

Qgg
)
.

Immediately, we have

(1-14) trg SJ =
1

4(n−1)
Qg

and

(1-15) divg SJ =
1

4(n−1)
d Qg = d trg SJ .

Remark 1.10. Recall the definition of classic Schouten tensor

(1-16) Sg =
1

n−2

(
Ricg −

1
2(n−1)

Rgg
)
.

We have

(1-17) trg Sg =
1

2(n−1)
Rg

and

(1-18) divg Sg =
1

2(n−1)
d Rg = d trg Sg.

We can see the tensor SJ shares similar properties with the classic Schouten tensor.

Following the observation in [Ge and Wang 2012], we get immediately the
following result by rewriting Theorem 1.9 with J -Schouten tensor:
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Corollary 1.11. For n 6= 4, let (Mn, g) be an n-dimensional closed Riemannian
manifold with positive Ricci curvature. Then

(1-19) (Volg M)−(n−8)/n
∫

M
σ J

2 (g) dvg ≤
n−1
2n

Y 2
Q(g),

where

YQ(g) :=

∫
M σ

J
1 (g) dvg

(Volg M)(n−4)/n

is the Q-Yamabe quotient and σ J
i (g)= σi (SJ (g)), i = 1, 2 are the i-th symmetric

polynomial of SJ (g). Moreover, the equality holds if and only if (M, g) is J -
Einstein.

Remark 1.12. Our almost-Schur lemma can be generalized to a broader setting by
combining it with the work [Gover and Ørsted 2013]. More detailed discussion
together with some related topics will be presented in a subsequent article.

This article is organized as follows: In Section 2, we derive an explicit formula
for the J -tensor and with it we prove Theorem 1.3 and Corollary 1.6. We then prove
Theorem 1.8 (Schur lemma) and Theorem 1.9 (almost-Schur lemma) in Section 3.

2. J-flatness and Q-singular metrics

We begin with some discussion of conformal tensors. Let

(2-1) Sjk =
1

n−2

(
R jk −

1
2(n−1)

Rg jk

)
be the Schouten tensor.

For n ≥ 4, the Bach tensor is defined to be

(2-2) Bjk =
1

n−3
∇

i
∇

l Wi jkl +Wi jkl Sil .

In order to extend the definition to n = 3, we introduce the Cotton tensor

(2-3) Ci jk =∇i Sjk −∇j Sik .

It is related to Weyl tensor by the equation

(2-4) ∇
l Wi jkl = (n− 3)Ci jk .

Therefore, for any n ≥ 3, we can define the Bach tensor as

(2-5) Bjk =∇
i Ci jk +Wi jkl Sil .

The following identity is well known for experts; we include calculations here
for the convenience of readers.
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Proposition 2.1. The Bach tensor can be written as

(2-6) Bg =1g S−∇2 tr S+ 2R̊m · S− (n− 4)S× S− |S|2g− 2(tr S)S,

where (R̊m · S)jk = Ri jkl Sil and (S× S)jk = Si
j Sik . Equivalently,

(2-7) Bg =1L S−∇2 tr S+ n
(

S× S− 1
n
|S|2g

)
,

where 1L is the Lichnerowicz Laplacian.

Proof. By the second contracted Bianchi identity,

∇
i Sik =

1
n−2

(
∇

i Rik −
1

2(n−1)
∇k R

)
=

1
n−2

(1
2
∇k R− 1

2(n−1)
∇k R

)
=

1
2(n−1)

∇k R

=∇k tr S
and

tr S = 1
n−2

(
R− n

2(n−1)
R
)
=

1
2(n−1)

R,

we have
Ric= (n− 2)S+ (tr S)g.

Using these facts,

∇
i Ci jk =∇

i (∇i Sjk −∇j Sik)

=1g Sjk − (∇j∇i Si
k + Ri

i j p S p
k − R p

i jk Si
p)

=1g Sjk −∇j∇k tr S− (Ric×S)jk + (R̊m · S)jk

=1g Sjk −∇j∇k tr S− (((n− 2)S+ (tr S)g)× S)jk + (R̊m · S)jk

=1g Sjk −∇j∇k tr S− (n− 2)(S× S)jk − (tr S)Sjk + (R̊m · S)jk

and
Wi jkl Sil

= (Rm− S ? g)i jkl Sil

= Ri jkl Sil
− (Sil g jk + Sjk gil − Sik g jl − Sjl gik)Sil

= (R̊m · S)jk − |S|2g jk + 2(S× S)jk − (tr S)Sjk,

where ? is the Kulkarni–Nomizu product:

(α?β)i jkl := αilβ jk +α jkβil −αikβ jl −α jlβik

for any symmetric 2-tensor α, β ∈ S2(M).
Combining them, we get

Bjk =1g Sjk −∇j∇k tr S+ 2(R̊m · S)jk − (n− 4)(S× S)jk − |S|2g jk − 2(tr S)Sjk .
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From this,

Bjk =1LSjk+2(Ric×S)jk−∇j∇k tr S−(n−4)(S×S)jk−|S|2g jk−2(tr S)Sjk

=1LSjk+2((Ric−(tr S)g)× S)jk−∇j∇k tr S−(n−4)(S×S)jk−|S|2g jk

=1LS−∇2 tr S+n(S×S)−|S|2g

=1LS−∇2 tr S+n
(

S×S− 1
n
|S|2g

)
. �

The Q-curvature can also be rewritten using Schouten tensor:

Lemma 2.2. Qg =−1g tr S− 2|S|2+ n
2
(tr S)2.

Proof. Using the equalities Ric= (n− 2)S+ (tr S)g and R = 2(n− 1) tr S,

Qg = An1g R+ Bn|Ric|2+Cn R2

= 2(n− 1)An1g tr S+ Bn|(n− 2)S+ (tr S)g|2+ 4(n− 1)2Cn(tr S)2

=−1g tr S− 2|S|2+ ((3n− 4)Bn + 4(n− 1)2Cn)(tr S)2

=−1g tr S− 2|S|2+ n
2
(tr S)2. �

We recall the expression of 0∗g in [Lin and Yuan 2016] as follows:

Lemma 2.3.

(2-8) 0∗g f := An
(
−g12 f +∇21 f −Ric1 f + 1

2 gδ( f d R)+∇( f d R)− f∇2 R
)

− Bn(1( f Ric)+ 2 f R̊m ·Ric+gδ2( f Ric)+ 2∇δ( f Ric))

− 2Cn(g1( f R)−∇2( f R)+ f R Ric).

Now we can calculate an explicit expression of Jg:

Theorem 2.4. For n ≥ 3,

(2-9) Jg =
1
n

Qgg− 1
n−2

Bg −
n−4

4(n−1)(n−2)
Tg,

where

Tg := (n− 2)
(
∇

2 trg Sg −
1
n

g1g trg Sg

)
+ 4(n− 1)

(
Sg × Sg −

1
n
|Sg|

2g
)
− n2(trg Sg)S̊g.

Here S̊g = Sg − (1/n) trg Sgg is the traceless part of Schouten tensor.

Proof. By Lemma 2.3,

0∗g 1=−
( 1

2 An +
1
2 Bn + 2Cn

)
g1R+ (Bn + 2Cn)∇

2 R

− Bn(1Ric+2R̊m ·Ric)− 2Cn R Ric .
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Applying equalities Ric= (n− 2)S+ (tr S)g and R = 2(n− 1) tr S,

0∗g 1=−((n− 1)An + nBn + 4(n− 1)Cn)g1 tr S+ 2(n− 1)(Bn + 2Cn)∇
2 tr S

− (n− 2)Bn(1S+ 2R̊m · S)− 2(n− 2)(Bn + 2(n− 1)Cn)(tr S)S

− 2(Bn + 2(n− 1)Cn)(tr S)2g

=
3

2(n−1)
g1 tr S+ 2

n−2
(1S+ 2R̊m · S)+ n2

−10n+12
2(n−1)(n−2)

∇
2 tr S

−
n2
−2n+4

2(n−1)
(tr S)S− n2

−2n+4
2(n−1)(n−2)

(tr S)2g.

Since tr0∗g 1=−2Qg, by Lemma 2.2,

0∗g 1+ 2
n

Qgg

=

( 3
2(n−1)

−
2
n

)
g1 tr S+ 2

n−2
(1S+ 2R̊m · S)+ n2

−10n+12
2(n−1)(n−2)

∇
2 tr S

−
4
n
|S|2g− n2

−2n+4
2(n−1)

(tr S)S+
(

1− n2
−2n+4

2(n−1)(n−2)

)
(tr S)2g

=−
n−4

2n(n−1)
g1 tr S+ 2

n−2
(1S+ 2R̊m · S)+ n2

−10n+12
2(n−1)(n−2)

∇
2 tr S

−
4
n
|S|2g− n2

−2n+4
2(n−1)

(tr S)S+ n(n−4)
2(n−1)(n−2)

(tr S)2g.

Applying Proposition 2.1,

0∗g 1+ 2
n

Qgg = 2
n−2

Bg −
n−4

2n(n−1)
g1 tr S+

( 2
n−2

+
n2
−10n+12

2(n−1)(n−2)

)
∇

2 tr S

+
2(n−4)

n−2
S× S+

( 2
n−2

−
4
n

)
|S|2g

+

( 4
n−2

−
n2
−2n+4

2(n−1)

)
(tr S)S+ n(n−4)

2(n−1)(n−2)
(tr S)2g.

That is,

0∗g 1+ 2
n

Qgg = 2
n−2

Bg−
n−4

2n(n−1)
g1trS+ n−4

2(n−1)
∇

2 trS+ 2(n−4)
n−2

S× S

−
2(n−4)
n(n−2)

|S|2g− n2(n−4)
2(n−1)(n−2)

(trS)S+ n(n−4)
2(n−1)(n−2)

(trS)2g

=
2

n−2
Bg+

n−4
2(n−1)

(
∇

2 trS− 1
n

g1trS
)
+

2(n−4)
n−2

(
S× S− 1

n
|S|2g

)
−

n2(n−4)
2(n−1)(n−2)

(trS)
(
S− 1

n
(trS)g

)
=

2
n−2

Bg+
n−4

2(n−1)(n−2)
Tg,
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where

Tg := (n− 2)
(
∇

2 trg Sg −
1
n

g1g trg Sg

)
+ 4(n− 1)

(
Sg × Sg −

1
n
|Sg|

2g
)
− n2(trg Sg)S̊g.

Therefore,

Jg =−
1
2
0∗g 1= 1

n
Qgg− 1

n−2
Bg −

n−4
4(n−1)(n−2)

Tg. �

Immediately, we have the following generalization of Theorem 1.2:

Corollary 2.5. Let (Mn, g) be a Q-singular n-dimensional Riemannian manifold.
Then 1 ∈ ker0∗g if and only if (Mn, g) is J -flat or equivalently (Mn, g) satisfies

(2-10) Bg =−
n−4

4(n−1)
Tg

with vanishing Q-curvature.

Remark 2.6. A similar result holds for Ricci curvature: a vacuum static space
admits a constant static potential if and only if it is Ricci flat, cf., [Fischer and
Marsden 1975].

3. An almost-Schur lemma for Q-curvature

Since the tensor Jg can be interpreted as a higher-order analogue of Ricci tensor,
we can also derive the Schur lemma for Jg as follows:

Theorem 3.1 (Schur lemma). Let (Mn, g) be an n-dimensional J -Einstein manifold
with n 6= 4 or equivalently,

Bg =−
n−4

4(n−1)
Tg.

Then Qg is a constant on M.

Proof. By the assumption, Jg =3g for some smooth function 3 on M. Then

3=
1
n

trg Jg =
1
n

Qg and d3= divg Jg =
1
4

d Qg.

Therefore,
n−4
4n

d Qg = 0

on M, which implies that Qg is a constant on M provided n 6= 4. �

Remark 3.2. When n = 4, J -Einstein metrics are exactly Bach flat ones. Due to
the conformal invariance of Bach flatness in dimension 4, we can easily see that
the constancy of Q-curvature can not always be achieved. Thus the above Schur
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Lemma does not hold for 4-dimensional manifolds, which is exactly like the classic
Schur lemma for surfaces.

In fact, a more general result can be derived:

Theorem 3.3 (almost-Schur lemma). For n 6= 4, let (Mn, g) be an n-dimensional
closed Riemannian manifold with positive Ricci curvature. Then

(3-1)
∫

M
(Qg − Qg)

2 dvg ≤
16n(n−1)
(n−4)2

∫
M
| J̊g|

2 dvg,

where Qg is the average of Qg. Moreover, the equality holds if and only if (Mn, g)
is J -Einstein.

The proof is along the same lines as in [De Lellis and Topping 2012]. For
completeness, we include it here. For more details, please refer to that work.

Proof. Let u be the unique solution to{
1gu = Qg − Qg,∫

M u dvg = 0.
Then∫

M
(Qg − Qg)

2 dvg =

∫
M
(Qg − Qg)1gu dvg =−

∫
M
〈∇Qg,∇u〉 dvg

=−
4n

n−4

∫
M
〈divg J̊g,∇u〉,

where for the last step we use the fact

divg J̊g = divg

(
Jg −

1
n

Qgg
)
=

1
4

d Qg −
1
n

d Qg =
n−4
4n

d Qg.

Integrating by parts,

−
4n

n−4

∫
M
〈divg J̊g,∇u〉 dvg =

4n
n−4

∫
M
〈 J̊g,∇

2u〉 dvg

=
4n

n−4

∫
M

〈
J̊g,∇

2u− 1
n

g1gu
〉

dvg

≤
4n

n−4

(∫
M
|J̊g|

2 dvg

)1/2(∫
M

∣∣∣∇2u− 1
n

g1gu
∣∣∣2 dvg

)1/2

=
4n

n−4

(∫
M
|J̊g|

2dvg

)1/2(∫
M
|∇

2u|2− 1
n
(1gu)2 dvg

)1/2

.

From the Bochner formula and the assumption Ricg > 0,∫
M
|∇

2u|2 dvg =

∫
M
(1gu)2 dvg −

∫
M

Ricg(∇u,∇u) dvg ≤

∫
M
(1gu)2 dvg.
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Thus,∫
M
(Qg − Qg)

2 dvg ≤
4n

n−4

(∫
M
| J̊g|

2 dvg

)1/2(n−1
n
(1gu)2 dvg

)1/2

=
4n

n−4

(∫
M
| J̊g|

2 dvg

)1/2(n−1
n
(Qg − Qg)

2 dvg

)1/2
.

That is, ∫
M
(Qg − Qg)

2 dvg ≤
16n(n−1)
(n−4)2

∫
M
| J̊g|

2 dvg.

Now we consider the equality case.
If g is J -Einstein, then Qg is a constant by the Schur lemma (Theorem 1.8).

Thus both sides of inequality (3-1) vanish and equality is achieved.
On the contrary, assume in (3-1) equality is achieved:∫

M
(Qg − Qg)

2 dvg =
16n(n−1)
(n−4)2

∫
M
| J̊g|

2 dvg.

Then in particular we have Ric(∇u,∇u) = 0, which implies that ∇u = 0 and
hence u is a constant on M, since we assume Ricg > 0.

Thus Q ≡ Q on M and∫
M
| J̊g|

2 dvg =
(n−4)2

16n(n−1)

∫
M
(Qg − Qg)

2 dvg = 0.

Therefore, J̊g ≡ 0 on M, i.e., (M, g) is J -Einstein. �

Remark 3.4. By assuming Ric ≥ −(n − 1)K g for some constant K ≥ 0 and
following the proof in [Cheng 2013], the inequality (3-1) can be improved to

(3-2)
∫

M
(Qg − Qg)

2 dvg ≤
16n(n−1)
(n−4)2

(
1+ nK

λ1

)∫
M
| J̊g|

2 dvg,

where λ1 > 0 is the first nonzero eigenvalue of (−1g).

Now we can derive an equivalent form of inequality (3-1):

Corollary 3.5. For n 6= 4, let (Mn, g) be an n-dimensional closed Riemannian
manifold with positive Ricci curvature. Then

(3-3) (Volg M)−(n−8)/n
∫

M
σ J

2 (g) dvg ≤
n−1
2n

Y 2
Q(g).

Moreover, the equality holds if and only if (Mn, g) is J -Einstein.

Proof. Note that

σ J
1 (g)= trg SJ =

1
4(n−1)

Qg
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and

σ J
2 (g)=

1
2
((σ J

1 )
2
− |SJ |

2)=
n−1
2n

(σ J
1 )

2
−

1
2(n−4)2

| J̊g|
2,

where we use the fact

|SJ |
2
=

∣∣∣S̊J +
1
n
(trg SJ )g

∣∣∣2 = ∣∣∣ 1
n−4

J̊g +
1
n
(σ J

1 )g
∣∣∣2 = 1

(n−4)2
| J̊g|

2
+

1
n
(σ J

1 )
2.

By substituting these terms in the inequality (3-1), we get(∫
M
σ J

1 (g) dvg

)2

≥
2n

n−1
Volg(M)

∫
M
σ J

2 (g) dvg.

Therefore,∫
M
σ J

2 (g) dvg ≤
n−1
2n

(Volg M)−1
(∫

M
σ J

1 (g) dvg

)2

=
n−1
2n

(Volg M)(n−8)/n
( ∫

M σ
J

1 (g) dvg

(Volg M)(n−4)/n

)2

=
n−1
2n

(Volg M)(n−8)/nY 2
Q(g). �

Remark 3.6. Note that the Q-Yamabe quotient

YQ(g) :=

∫
M σ

J
1 (g) dvg

(Volg M)(n−4)/n

is scaling invariant and in particular, when n = 8,∫
M
σ J

2 (g) dvg ≤
7
16

Y 2
Q(g),

provided that Ricg > 0, where the equality holds if and only if (M, g) is J -Einstein.
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GAUGE INVARIANTS FROM THE POWERS OF ANTIPODES

CRIS NEGRON AND SIU-HUNG NG

We prove that the trace of the n-th power of the antipode of a Hopf algebra
with the Chevalley property is a gauge invariant, for each integer n. As a
consequence, the order of the antipode, and its square, are invariant under
Drinfeld twists. The invariance of the order of the antipode is closely related
to a question of Shimizu on the pivotal covers of finite tensor categories,
which we affirmatively answer for representation categories of Hopf alge-
bras with the Chevalley property.

1. Introduction

This paper is dedicated to a study of the traces of the powers of the antipode of a
Hopf algebra, and an approach to the Frobenius–Schur indicators of nonsemisimple
Hopf algebras.

The antipode of a Hopf algebra has emerged as an object of importance in the
study of Hopf algebras. It has been proved by Radford [1976] that the order of
the antipode S of any finite-dimensional Hopf algebra H is finite. Moreover, the
trace of S2 is nonzero if, and only if, H is semisimple and cosemisimple [Larson
and Radford 1988a]. If the base field k is of characteristic zero, Tr(S2)= dim H
or 0, which characterizes respectively whether H is semisimple or nonsemisimple
[Larson and Radford 1988b]. This means semisimplicity of H is characterized
by the value of Tr(S2). In particular, Tr(S2) is an invariant of the finite tensor
category H -mod. The invariance of Tr(S2) and Tr(S) can also be obtained in any
characteristic via Frobenius–Schur indicators.

A generalized notion of the n-th Frobenius–Schur (FS-)indicator νKMN
n (H) has

been introduced in [Kashina et al. 2012] for studying finite-dimensional Hopf
algebras H, which are not necessarily semisimple or pivotal. However, νKMN

n (H)
coincides with the n-th FS-indicator of the regular representation of H when H is
semisimple, defined in [Linchenko and Montgomery 2000]. These indicators are
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invariants of the finite tensor categories H -mod. In particular, νKMN
2 (H)= Tr(S)

and νKMN
0 (H)= Tr(S2) (see [Shimizu 2015a]) are invariants of H -mod.

The invariance of Tr(S) and Tr(S2) alludes to the following question to be
investigated in this paper:

Question 1.1. For any finite-dimensional Hopf algebra H with the antipode S, is
the sequence {Tr(Sn)}n∈N an invariant of the finite tensor category H -mod?

For the purposes of this paper, we will always assume k to be an algebraically
closed field of characteristic zero, and all Hopf algebras are finite-dimensional
over k.

Recall that a finite-dimensional Hopf algebra H has the Chevalley property if
its Jacobson radical is a Hopf ideal. Equivalently, H has the Chevalley property
if the full subcategory of sums of irreducible modules in H -mod forms a tensor
subcategory. We provide a positive answer to Question 1.1 for Hopf algebras with
the Chevalley property.

Theorem I (Theorem 4.3). Let H and K be finite-dimensional Hopf algebras over
k with antipodes SH and SK respectively. Suppose H has the Chevalley property
and that H -mod and K -mod are equivalent as tensor categories. Then we have

Tr(Sn
H )= Tr(Sn

K )

for all integers n.

In a categorial language, the theorem tells us that for any finite tensor category C

with the Chevalley property which admits a fiber functor to the category of vector
spaces, the “traces of the powers of the antipode” are well-defined invariants which
are independent of the choice of fiber functor. One naturally asks whether these
scalars can be expressed purely in terms of categorial data of C .

Etingof asked the question whether, for any finite-dimensional H, Tr(S2m)= 0
provided ord(S2) - m [Radford and Schneider 2002, p. 186]. This question is
affirmatively answered for pointed and dual pointed Hopf algebras in [Radford and
Schneider 2002]. However, the odd powers of the antipode may have nonzero traces
in general. We note that the above result covers both the even and odd powers of
the antipode.

Theorem I also implies that the orders of the first two powers of the antipode of
a Hopf algebra with the Chevalley property are also invariants.

Corollary I (Corollary 4.4). Let H and K be finite-dimensional Hopf algebras
over k with antipodes SH and SK respectively. Suppose H has the Chevalley
property and that H -mod and K -mod are equivalent as tensor categories. Then
ord(SH )= ord(SK ) and hence ord(S2

H )= ord(S2
K ).

The order of S2 is related to a known invariant called the quasiexponent qexp(H)
[Etingof and Gelaki 2002]. Namely, for any finite-dimensional Hopf algebra,
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ord(S2) divides qexp(H). However, we still do not know whether or not the order
of S2 is an invariant in general.

The questions under consideration here are closely related to some recent inves-
tigations of Frobenius–Schur indicators for nonsemisimple Hopf algebras. The 2nd
Frobenius–Schur indicator ν2(V ) of an irreducible complex representation of a finite
group was introduced in [Frobenius and Schur 1906]; the notion was then extended
to semisimple Hopf algebras, quasi-Hopf algebras, certain C∗-fusion categories
and conformal field theory (see [Linchenko and Montgomery 2000; Mason and Ng
2005; Fuchs et al. 1999; Bantay 1997]). Higher Frobenius–Schur indicators νn(V )
for semisimple Hopf algebra have been extensively studied in [Kashina et al. 2006].
In the most general context, FS-indicators can be defined for each object V in a
pivotal tensor category C , and they are invariants of these tensor categories [Ng
and Schauenburg 2007b].

The n-th Frobenius–Schur indicators νn(H) of the regular representation of a
semisimple Hopf algebra H, defined in [Linchenko and Montgomery 2000], in
particular is an invariant of the fusion category H -mod (see [Ng and Schauenburg
2007b; 2008, Theorem 2.2]). For this special representation it is obtained in
[Kashina et al. 2006] that

(1-1) νn(H)= Tr(S ◦ Pn−1),

where Pk denotes the k-th convolution power of the identity map idH in Endk(H).
On elements, the map S ◦ Pn−1 is given by h 7→ S(h1 . . . hn−1).

The importance of the FS-indicators is illustrated in their applications to semisim-
ple Hopf algebras and spherical fusion categories (see for examples [Bruillard et al.
2016; Dong et al. 2015; Kashina et al. 2006; Ng and Schauenburg 2007a; 2010;
Ostrik 2015; Tucker 2015]). The arithmetic properties of the values of the FS-
indicators have played an integral role in all these applications, and remains the
main interest of FS-indicators (see for example [Guralnick and Montgomery 2009;
Iovanov et al. 2014; Montgomery et al. 2016; Schauenburg 2016; Shimizu 2015a]).

It would be tempting to extend the notion of FS-indicators for the study of finite
tensor categories or nonsemisimple Hopf algebras. One would expect that such
a generalized indicator for a general Hopf algebra H should coincide with the
existing one when H is semisimple.

The introduction of (what we refer to as) the KMN-indicators νKMN
n (H) in

[Kashina et al. 2012] is an attempt at this endeavor. Note that the right-hand side of
(1-1), Tr(S ◦ Pn−1), is well defined for any finite-dimensional Hopf algebra over
any base field, and we denote it as νKMN

n (H). It has been shown in [Kashina et al.
2012] that the scalar νKMN

n (H) is an invariant of the finite tensor category H -mod
for each positive integer n. However, this definition of indicators for the regular
representation in H -mod cannot be extended to other objects in H -mod.
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Shimizu [2015b] lays out an alternative categorial approach to generalized in-
dicators for a nonsemisimple Hopf algebra H. He first constructs a universal
pivotalization (H -mod)piv of H -mod, i.e., a pivotal tensor category with a fixed
monoidal functor 5 : (H -mod)piv

→ H -mod which is universal among all such
categories. The pivotal category (H -mod)piv has a regular object RH , and the
scalar νKMN

n (H) can be recovered from a new version of the n-th indicator νSh
n (R∗H ).

The universal pivotalization is natural in the sense that for any monoidal functor
F : H -mod→ K -mod, where K is a Hopf algebra, there exists a unique pivotal
functor

F piv
: (H -mod)piv

→ (K -mod)piv

compatible with both 5 and F.
However, the invariance of νKMN

n (H) does not follow immediately from this cat-
egorical framework. Instead, it would be a consequence of a proposed isomorphism
F piv(RH ) ∼= RK associated to any monoidal equivalence F : H -mod→ K -mod.
While the latter condition remains open in general, we show below that the regular
objects are preserved under monoidal equivalence for Hopf algebras with the
Chevalley property.

Theorem II (Theorem 7.4). Let H and K be Hopf algebras with the Chevalley
property and F : H -mod→ K -mod an equivalence of tensor categories. Then
the induced pivotal equivalence F piv

: (H -mod)piv
→ (K -mod)piv on the universal

pivotalizations satisfies F piv(RH )∼= RK .

This gives a positive solution to Question 5.12 of [Shimizu 2015b]. From
Theorem II we recover the gauge invariance result of [Kashina et al. 2012], in the
specific case of Hopf algebras with the Chevalley property.

Corollary II [Kashina et al. 2012, Theorem 2.2]. Suppose H and K are Hopf
algebras with the Chevalley property and have equivalent tensor categories of
representations. Then νKMN

n (H)= νKMN
n (K ).

The paper is organized as follows: Section 2 recalls some basic notions and
results on Hopf algebras and pivotal tensor categories. In Section 3, we prove that a
specific element γF associated to a Drinfeld twist F of a semisimple Hopf algebra
H is fixed by the antipode of H, using the pseudounitary structure of H -mod. We
proceed to prove Theorem I and Corollary I in Section 4. In Section 5, we recall the
construction of the universal pivotalization (H -mod)piv, the corresponding definition
of n-th indicators for an object in (H -mod)piv and their relations to νKMN

n (H). In
Section 6, we introduce finite pivotalizations of H -mod and, in particular, the
exponential pivotalization which contains all the possible pivotal categories defined
on H -mod. In Section 7, we answer a question of Shimizu on the preservation of
regular objects for Hopf algebras with the Chevalley property.
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2. Preliminaries

Throughout this paper, we assume some basic definitions on Hopf algebras and
monoidal categories. We denote the antipode of a Hopf algebra H by SH or, when
no confusion will arise, simply by S. A tensor category in this paper is a k-linear
abelian monoidal category with simple unit object 1. A monoidal functor between
two tensor categories is a pair (F, ξ) in which F is a k-linear functor satisfying
F(1)= 1, and

ξV,W : F(V )⊗F(W )→ F(V ⊗W )

is the coherence isomorphism. If the context is clear, we may simply write F for
the pair (F, ξ). The readers are referred to [Kassel 1995; Montgomery 1993] for
the details.

Gauge equivalence, twists, and the antipode. Let H be a finite-dimensional Hopf
algebra over k with antipode S, comultiplication 1 and counit ε. The category
H -mod of finite-dimensional representations of H is a finite tensor category in the
sense of [Etingof and Ostrik 2004]. For V ∈ H -mod, the dual vector space V ′ of V
admits the natural right H -action ↼ given by

(v∗↼ h)(v)= v∗(hv)

for h ∈ H, v∗ ∈ V ′ and v ∈ V. The left dual V ∗ of V is the vector space V ′ endowed
with the left H -action defined by

hv∗ = v∗↼ S(h)

for h ∈ H and v∗ ∈ V ′, with the usual evaluation ev : V ∗⊗ V → k and the dual
basis map as the coevaluation coev : k→ V ⊗ V ∗. The right dual of V is defined
similarly, with S replaced by S−1.

Suppose K is another finite-dimensional Hopf algebra over k such that K -mod
and H -mod are equivalent tensor categories. It follows from [Ng and Schauenburg
2008, Theorem 2.2] that there is a gauge transformation F =

∑
i fi ⊗ gi ∈ H ⊗ H

(see [Kassel 1995]), which is an invertible element satisfying

(ε⊗ id)(F)= 1= (id⊗ε)(F),

such that the map 1F
: H → H ⊗ H, h 7→ F1(h)F−1 together with the counit ε

and the algebra structure of H form a bialgebra H F and that K
σ
∼=H F as bialgebras.

In particular, H F is a Hopf algebra with the antipode give by

(2-1) SF (h)= βF S(h)β−1
F ,

where βF =
∑

i fi S(gi ). Following the terminology of [Kassel 1995] (see [Kashina
et al. 2012]), we say that K and H are gauge equivalent if the categories of their
finite-dimensional representations are equivalent tensor categories. A quantity f (H)
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obtained from a finite-dimensional Hopf algebra H is called a gauge invariant if
f (H)= f (K ) for any Hopf algebra K gauge equivalent to H. For instance, Tr(S)
and Tr(S2) are gauge invariants of H.

If F−1
=
∑

i di ⊗ ei , then β−1
F =

∑
i S(di )ei . For the purpose of this paper, we

set γF = βF S(β−1
F ) and so, by (2-1), we have

(2-2) S2
F (h)= γF S2(h)γ−1

F

for h ∈ H.
Since the associativities of K and H are given by 1⊗ 1⊗ 1, the gauge transfor-

mation F satisfies the condition

(2-3) (1⊗ F)(id⊗1)(F)= (F ⊗ 1)(1⊗ id)(F).

This is a necessary and sufficient condition for 1F to be coassociative. A gauge
transformation F ∈ H⊗H satisfying (2-3) is often called a Drinfeld twist or simply
a twist.

Suppose F ∈ H ⊗ H is a twist and K
σ
∼=H F as Hopf algebras. Following [Kassel

1995], one can define an equivalence (Fσ , ξ F ) : H -mod → K -mod of tensor
categories. For V ∈ H -mod, Fσ (V ) is the left K -module with the action given
by k · v := σ(k)v for k ∈ K and v ∈ V. The assignment V 7→ Fσ (V ) defines a
k-linear equivalence from H -mod to K -mod with identity action on the morphisms.
Together with the natural isomorphism

ξ F
: Fσ (V )⊗Fσ (W )→ Fσ (V ⊗W )

defined by the action of F−1 on V ⊗W, the pair (Fσ , ξ F ) : H -mod→ K -mod is
an equivalence of tensor categories. If K = H F for some twist F ∈ H ⊗ H, then
(Id, ξ F ) : H -mod→ H F -mod is an equivalence of tensor categories since Fid is
the identity functor Id.

Pivotal categories. For any finite tensor category C with the unit object 1, the
left duality can define a functor (−)∗ : C → C op and the double dual functor
(−)∗∗ : C → C is an equivalence of tensor categories. A pivotal structure of C is
an isomorphism j : Id→ (−)∗∗ of monoidal functors. Associated with a pivotal
structure j are the notions of trace and dimension: For any V ∈ C and f : V → V,
one can define ptr( f ) as the scalar of the composition

ptr( f ) := (1 coev
−−→ V ⊗ V ∗ f⊗V ∗

−−→ V ⊗ V ∗ j⊗V ∗
−−→ V ∗∗⊗ V ∗ ev

−→ 1)

and d(V )= ptr(idV ). A finite tensor category with a specified pivotal structure is
called a pivotal category.

Suppose C and D are pivotal categories with the pivotal structures j and j ′

respectively, and (F, ξ) : C → D is a monoidal functor. Then there exists a unique
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natural isomorphism ξ̃ : F(V ∗)→ F(V )∗ which is determined by either of the
following commutative diagrams (see [Ng and Schauenburg 2007b, p. 67]):

(2-4)

F(V ∗)⊗F(V )

ξ

��

ξ̃⊗F(V )
// F(V )∗⊗F(V )

ev
��

F(V ∗⊗V )
F(ev)

// 1

or

F(V )⊗F(V ∗)
F(V )⊗ξ̃

// F(V )⊗F(V )∗

F(V⊗V ∗)

ξ−1

OO

1
F(coev)

oo

coev

OO

The monoidal functor (F, ξ) is said to be pivotal if it preserves the pivotal
structures, which means the commutative diagram

(2-5)

F(V )

j ′F(V )
��

F( jV )
// F(V ∗∗)

ξ̃

��

F(V )∗∗
ξ̃∗
// F(V ∗)∗

is satisfied for V ∈C . It follows from [Ng and Schauenburg 2007b, Lemma 6.1] that
pivotal monoidal equivalence preserves dimensions. More precisely, if F : C → D

is an equivalence of pivotal categories, then d(V )= d(F(V )) for V ∈ C .

3. Semisimple Hopf algebras and pseudounitary fusion categories

In general, a finite tensor category may not have a pivotal structure. However, all
the known semisimple finite tensor categories, also called fusion categories, over k,
admit a pivotal structure. It remains an open question whether every fusion category
admits a pivotal structure (see [Etingof et al. 2005]). We present an equivalent
definition of pseudounitary fusion categories obtained in [Etingof et al. 2005] or
more generally in [Drinfeld et al. 2010] as in the following proposition.

Proposition 3.1 [Etingof et al. 2005]. Let kc denote the subfield of k generated
by Q and all the roots of unity in k. A fusion category C over k is called
(φ-)pseudounitary if there exist a pivotal structure jC and a field monomorphism
φ : kc→ C such that φ(d(V )) is real and nonnegative for all simple V ∈ C , where
d(V ) is the dimension of V associated with jC. In this case, this pivotal structure
jC is unique and φ(d(V )) is identical to the Frobenius–Perron dimension of V.

The reference of φ becomes irrelevant when the dimensions associated with the
pivotal structure jC of C are nonnegative integers. In this case, C is simply said to
be pseudounitary, and jC is called the canonical pivotal structure of C . In particular,
the fusion category H -mod of a finite-dimensional semisimple quasi-Hopf algebra
H is pseudounitary and the pivotal dimension of an H -module V associated with
the canonical pivotal structure of H -mod is simply the ordinary dimension of V
(see [Etingof et al. 2005]).
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The canonical pivotal structure jVec on the trivial fusion category Vec of finite-
dimensional k-linear space is just the usual vector space isomorphism V → V ∗∗,
which sends an element v ∈ V to the evaluation function v̂ : V ∗→ k, f 7→ f (v).

Let H be a finite-dimensional semisimple Hopf algebra over k. Then the antipode
S of H satisfies S2

= id (see [Larson and Radford 1988b]). Thus, for V ∈ H -mod,
the natural isomorphism jVec

: V → V ∗∗ of vector spaces is an H -module map.
In fact, jVec provides a pivotal structure of H -mod and the associated pivotal
dimension d(V ) of V, given by the composition map

k coev
−−→ V ⊗ V ∗ j⊗V ∗

−−→ V ∗∗⊗ V ∗ ev
−→ k,

is equal to its ordinary dimension dim V, which is a nonnegative integer. Therefore,
jVec is the canonical pivotal structure of H -mod.

By [Ng and Schauenburg 2007b, Corollary 6.2], the canonical pivotal structure
of a pseudounitary fusion category is preserved by any monoidal equivalence of
fusion categories. For the purpose of this article, we restate this statement in the
context of semisimple Hopf algebras.

Corollary 3.2 [Ng and Schauenburg 2007b, Corollary 6.2]. Let H and K be finite-
dimensional semisimple Hopf algebras over k. If

(F, ξ) : H-mod→ K -mod

defines a monoidal equivalence, then (F, ξ) preserves their canonical pivotal
structures, i.e., they satisfy the commutative diagram (2-5). In particular, if K

σ
∼=H F

as Hopf algebras for some twist F ∈ H ⊗ H, then the monoidal equivalence
(Fσ , ξ F ) : H-mod→ K -mod preserves their canonical pivotal structures.

Now, we can prove the following on a twist of a semisimple Hopf algebra:

Theorem 3.3. Let H be a semisimple Hopf algebra over k with antipode S, F =∑
i fi ⊗ gi ∈ H ⊗ H a twist and βF =

∑
i fi S(gi ). Then

S(βF )= βF .

Proof. Let F−1
=
∑

i di ⊗ ei . Then β−1
=
∑

i S(di )ei (see Section 2), where βF is
simply abbreviated as β. For V ∈ H -mod, we denote by V ∗ and V∨ respectively
the left duals of V in H -mod and H F -mod. It follows from (2-4) that the duality
transformation ξ̃ F

: V ∗ → V∨, for V ∈ H -mod, of the monoidal equivalence
(Id, ξ F ) : H -mod→ H F -mod, is given by

(3-1) ξ̃ F (v∗)= v∗↼β−1

for all v∗ ∈ V ∗. Since both H and H F are semisimple, their canonical pivotal
structures are the same as the usual natural isomorphism jVec of finite-dimensional
vector spaces over k. Since (Id, ξ F ) preserves the canonical pivotal structures,
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by (2-5), we have

ξ̃ F ( jVec(v))(v∗)= (̃ξ F )∗( jVec(v))(v∗)

= jVec(v)(̃ξ F (v∗))= (v∗↼β−1)(v)= v∗(β−1v),

for all v ∈ V and v∗ ∈ V ∗. Rewriting the first term of this equation, we find

v∗(S(β−1)v)= v∗(β−1v).

This implies β−1
= S(β−1) by taking V = H and v = 1. �

4. Hopf algebras with the Chevalley property

A finite-dimensional Hopf algebra H over k is said to have the Chevalley property
if the Jacobson radical J (H) of H is a Hopf ideal. In this case, H = H/J (H) is a
semisimple Hopf algebra and the natural surjection π : H → H is a Hopf algebra
map. Let F ∈ H ⊗ H be a twist of H. Then

F := (π ⊗π)(F) ∈ H ⊗ H

is a twist and so
π(βF )= βF = S(βF )= π(S(βF ))

by Theorem 3.3, where S denotes the antipode of H. Therefore, S(βF )∈βF+ J (H),
and this proves the next result:

Lemma 4.1. Let H be a finite-dimensional Hopf algebra over k with the Chevalley
property. For any twist F ∈ H ⊗ H,

S(βF ) ∈ βF + J (H).

We will need the following lemma.

Lemma 4.2. Let A be a finite-dimensional algebra over k and T an algebra endo-
morphism or antiendomorphism of A.

(i) For any x ∈ J (A) and a ∈ A,

l(x)r(a)T and l(a)r(x)T

are nilpotent operators, where l(x) and r(x) respectively denote the left and
the right multiplication by x.

(ii) For any a, a′, b, b′ ∈ A such that a′ ∈ a+ J (A) and b′ ∈ b+ J (A), we have
Tr(l(a)r(b)T )= Tr(l(a′)r(b′)T ).

Proof. (i) Let n be a positive integer such that J (A)n = 0. We first consider the
case when T is an algebra endomorphism of A. Then

(l(a)r(x)T )n = l(a)l(T (a)) · · · l(T n−1(a))r(x) · · · r(T n−1(x))T n

= l(aT (a) · · · T n−1(a))r(T n−1(x) · · · T (x)x)T n.
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Since J (A)n = 0 and x, T (x), . . . , T n−1(x) ∈ J (A),

T n−1(x) · · · T (x)x = 0.

Therefore, (l(a)r(x)T )n = 0. We can show that (l(x)r(a)T )n = 0 by the same
argument. In particular, they are nilpotent operators.

If T is an algebra antiendomorphism of A, then

(l(a)r(x)T )2 = l(aT (x))r(T (a)x)T 2.

Since T 2 is an algebra endomorphism of A and aT (x) ∈ J (A), we have that
(l(a)r(x)T )2n is equal to 0. Similarly, (l(x)r(a)T )2n

= 0.

(ii) Let a′ = a+ x and b′ = b+ y for some x, y ∈ J (A).

l(a′)r(b′)T = l(a)r(b)T + l(x)r(b′)T + l(a)r(y)T .

By (i), l(x)r(b′)T and l(a)r(y)T are nilpotent operators, and the result follows. �

We can now prove that the traces of the powers of the antipode of a Hopf algebra
with the Chevalley property are gauge invariants.

Theorem 4.3. Let H be a Hopf algebra over k with the antipode S. Suppose H
has the Chevalley property. Then for any twist F ∈ H ⊗ H, we have

Tr(Sn
F )= Tr(Sn)

for all integers n, where SF is the antipode of H F. Moreover, if K is another Hopf
algebra over k with antipode S′ which is gauge equivalent to H, then

Tr(Sn)= Tr(S′n)

for all integers n.

Proof. By (2-1), the antipode SF of H F is given by

SF (h)= βF S(h)β−1
F

for h ∈ H. Recall from (2-2) that

S2
F (h)= γF S2(h)γ−1

F

where γF = βF S(β−1
F ). Then, for any nonnegative integer n, we can write Sn

F =

l(un)r(u−1
n )Sn where u0 = 1 and

un =

{
γF S2(γF ) · · · Sn−2(γF ) if n is positive and even,
βF S(u−1

n−1) if n is odd.
Thus, if n is an even positive integer, un ∈ 1+ J (H) by Lemma 4.1. It follows
from Lemma 4.2 that

Tr(Sn
F )= Tr(l(un)r(u−1

n )Sn)= Tr(l(1)r(1)Sn)= Tr(Sn).
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From now, we assume n is odd. Then un ∈ βF + J (H) and so we have

(4-1)
Tr(Sn

F )= Tr(l(un)r(u−1
n )Sn)= Tr(l(βF )r(β−1

F )Sn)

= Tr(l(βF )r(Sn(β−1
F ))Sn).

The last equality of the above equation follows from Lemmas 4.1 and 4.2(ii).
Let 3 be a left integral of H and λ a right integral of H∗ such that λ(3) = 1.

By [Radford 1994, Theorem 2],

Tr(T )= λ(S(32)T (31))

for any k-linear endomorphism T on H, where 1(3)=31⊗32 is the Sweedler
notation with the summation suppressed. Thus, by (4-1), we have

(4-2)
Tr(Sn

F )= λ(S(32)βF Sn(31)Sn(β−1
F ))

= λ(S(32)βF Sn(β−1
F 31)).

Recall from [Radford 1994, p. 591] that

31⊗ a32 = S(a)31⊗32

for all a ∈ H. Using this equality and (4-2), we find

Tr(Sn
F )= λ(S(32)βF Sn(β−1

F 31))= λ(S(S−1(β−1
F )32)βF Sn(31))

= λ(S(32)β
−1
F βF Sn(31))= λ(S(32)Sn(31))= Tr(Sn).

The second part of the theorem then follows immediately from Corollary 3.2. �

Corollary 4.4. If H is a finite-dimensional Hopf algebra over k with the Chevalley
property, then ord(S) is a gauge invariant. In particular, ord(S2) is a gauge
invariant.

Proof. Since k is of characteristic zero, Tr(Sn)= dim H if, and only if, Sn
= id. In

particular, ord(S) is the smallest positive integer n such that Tr(Sn)= dim H. If K
is a Hopf algebra (over k) with the antipode S′ and is gauge equivalent to H, then
dim K = dim H by Corollary 3.2. Hence, by Theorem 4.3, ord(S)= ord(S′). Note
that S has odd order if, and only if, S is the identity. Therefore, the last statement
follows. �

5. Pivotalization and indicators

KMN-indicators. For the regular representation H of a semisimple Hopf algebra
H over k with the antipode S, the formula of the n-th Frobenius–Schur indicator
νn(H) was obtained in [Kashina et al. 2006] and is given by (1-1). Since a monoidal
equivalence between the module categories of two finite-dimensional Hopf algebras
preserves their regular representation [Ng and Schauenburg 2008, Theorem 2.2] and
Frobenius–Schur indicators are invariant under monoidal equivalences (see [Ng and
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Schauenburg 2007b, Corollary 4.4] or [Ng and Schauenburg 2008, Proposition 3.2]),
νn(H) is an invariant of Rep(H) if H is semisimple.

The formula (1-1) is well defined even for a nonsemisimple Hopf algebra H
without any pivotal structure in H -mod. In fact, the gauge invariance of these
scalars has been recently proved in [Kashina et al. 2012] which is stated as the
following theorem.

Theorem 5.1 [Kashina et al. 2012, Theorem 2.2]. For any finite-dimensional Hopf
algebra H over any field k, we define νKMN

n (H) as in (1-1). If H and K are gauge
equivalent finite-dimensional Hopf algebras over k, then we have

νKMN
n (H)= νKMN

n (K ).

In general, these indicators νKMN
n (H) can only be defined for the regular repre-

sentation of H. The proof of Theorem 5.1 relies heavily on Corollary 3.2 and theory
of Hopf algebras. We would like to have a categorial framework for the definition
of νKMN

n (H) in order to extend the definitions of the indicators to other objects in
H -mod and give a categorial proof of gauge invariance of these indicators.

The universal pivotalization. In [Shimizu 2015b] the notion of universal pivotal-
ization C piv of a finite tensor category C is proposed in order to produce indicators
for pairs consisting of an object V in C along with a chosen isomorphism to its
double dual. Under this categorical framework, νKMN

n (H) is the n-th indicator of a
special (or regular) object in (H -mod)piv. We recall some constructions and results
from [Shimizu 2015b] here.

For a finite tensor category C one can construct the universal pivotalization
5C : C

piv
→ C of C , which is referred to as the pivotal cover of C in [Shimizu

2015b].1 The category C piv is the abelian, rigid, monoidal category of pairs
(V, φV ) of an object V and an isomorphism φV : V → V ∗∗ in C . Morphisms
(V, φV )→ (W, φW ) in C piv are maps f :V→W in C which satisfy φW f = f ∗∗φV .
Note that the forgetful functor 5C : C

piv
→ C is faithful.

The category C piv will be monoidal under the obvious tensor product

(V, φV )⊗ (W, φW ) := (V ⊗W, φV ⊗φW )

(where we suppress the natural isomorphism (V ⊗W )∗∗ ∼= V ∗∗⊗W ∗∗), and (left)
rigid under the dual (V, φV )

∗
= (V ∗, (φ−1

V )∗). There is a natural pivotal structure
j : Id C piv → (−)∗∗ on C piv which, on each object (V, φV ), is simply given by
j(V,φV ) := φV .

The construction C piv is universal in the sense that any monoidal functor
F : D → C from a pivotal tensor category D factors uniquely through C piv. By

1We accept the term pivotal cover, but adopt the term pivotalization as it is consistent with the
constructions of [Etingof et al. 2015] and admits adjectives more readily.
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faithfulness of the forgetful functor5C :C
piv
→C , the factorization F̃ :D→C piv,

which is a monoidal functor preserving the pivotal structures, is determined uniquely
by where it sends objects. This factorization is described as follows.

Theorem 5.2 [Shimizu 2015b, Theorem 4.3]. Let j denote the pivotal structure on
D and (F, ξ) : D→ C a monoidal functor. Then the factorization F̃ : D→ C piv

sends each object V in D to the pair (F(V ), (̃ξ∗)−1̃ξF( jV )), where ξ̃ is the duality
transformation as in Section 2.

From the universal property for C piv one can conclude that the construction
(−)piv is functorial, which means a monoidal functor F : D→ C induces a unique
pivotal functor F piv

: Dpiv
→ C piv which satisfies the commutative diagram

Dpiv F piv
//

5D

��

C piv

5C

��

D
F

// C

of monoidal functors.

Indicators via C piv. Following [Ng and Schauenburg 2007b], for any V,W ∈ C ,
we denote by AV,W and DV,W the natural isomorphisms HomC (1, V ⊗ W )→

HomC (V ∗,W ) and HomC (V,W )→ HomC (W ∗, V ∗) respectively. Thus,

TV,W := A−1
W,V ∗∗ ◦ DV ∗,W ◦ AV,W

is a natural isomorphism from HomC (1, V ⊗W )→ HomC (1,W ⊗ V ∗∗). We also
define V⊗0

= 1 and V⊗n
= V ⊗ V⊗(n−1) for any positive integer n inductively.

Similar to the definition provided in [Ng and Schauenburg 2007b, p. 71], for any
V = (V, φV ) ∈ C piv and positive integer n, one can define the map

E (n)V : HomC (1, V⊗n)→ HomC (1, V⊗n)

by
E (n)V ( f ) :=8(n) ◦ (id⊗φ−1

V ) ◦ TV,W ( f ),

where W = V⊗(n−1) and 8(n) : W ⊗ V → V ⊗W is the unique map obtained by
the associativity isomorphisms. Shimizu’s version of the n-th FS-indicator of V is
defined as

νSh
n (V )= Tr(E (n)V ).

This indicator is preserved by monoidal equivalence in the following sense:

Theorem 5.3 [Shimizu 2015b, Theorem 5.3]. If F : C → D is an equivalence of
monoidal categories, for any V ∈ C piv and positive integer n, we have

νSh
n (V )= ν

Sh
n (F

piv(V )).
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Remark 5.4. The definition of the n-th FS-indicator νSh
n (V ) of V is different from

the definition νn(V ) introduced in [Ng and Schauenburg 2007b], in which E (n)V
is defined on the space HomC piv(1, V⊗n) instead. It is natural to ask the question
whether or how these two notions of indicators are related.

In the case of a finite-dimensional Hopf algebra C = H -mod, we take RH =

(H, φH ) to be the object in C piv, in which H is the left regular H -module and
φH : H→ H∗∗ is the composition jVec

◦ S2
: H→FS2(H)∼= H∗∗. We call RH the

regular object in C piv, and we have the following theorem:

Theorem 5.5 [Shimizu 2015b, Theorem 5.7]. Suppose C = H-mod. Then for each
integer n we have νSh

n (R∗H )= ν
KMN
n (H).

The theorem provides a convincing argument to pursue this categorical framework
of FS-indicator for nonsemisimple Hopf algebras. However, this framework does
not yield another proof for the gauge invariance of νKMN

n (H) (see Theorem 5.1).
The gauge invariance of νKMN

n (H) will follow if this question, raised in [Shimizu
2015b], can be positively answered:

Question 5.6 [Shimizu 2015b]. Let H and K be two gauge equivalent Hopf al-
gebras, and let F : H -mod→ K -mod be a monoidal equivalence. Do we have
F piv(RH )∼= RK in (K -mod)piv?

If the question is affirmatively answered for gauge equivalent Hopf algebras H
and K, then we have F piv(RH )∼= RK in (K -mod)piv for any monoidal equivalence
F : H -mod→ K -mod. Thus,

F piv(R∗H )∼= (F
piv(RH ))

∗ ∼= R∗K .

It follows from [Shimizu 2015b, Theorem 5.3] that

νKMN
n (H)= νSh

n (R
∗

H )= ν
Sh
n (F

piv(R∗H ))= ν
Sh
n (R

∗

K )= ν
KMN
n (K ).

An affirmative answer to the question for semisimple H has been provided in
[Shimizu 2015b, Proposition 5.10], and we will give in Theorem 7.4 a positive
answer for H having the Chevalley property. As discussed above, an affirmative
answer to the above question yields a categorial proof of Theorem 5.1.

6. Finite pivotalizations for Hopf algebras

Let C = H -mod. In this section we remark that the universal pivotalization C piv,
which is not a finite tensor category in general, has a finite alternative for module
categories of Hopf algebras.

For any k-linear map τ : V → V ∗∗ we let τ ∈Autk(V ) denote the automorphism
τ := ( jVec)−1

◦ τ .
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Definition 6.1. For a Hopf algebra H we let H piv denote the smash product H oZ,
where the generator x of Z acts on H by S2. Similarly, for any positive integer N
with ord(S2)|N, we take H Npiv

= H o (Z/NZ), where again the generator x of
Z/NZ acts as S2.

The smash products H piv and H Npiv admit a unique Hopf structure so that the
inclusions H → H piv and H → H Npiv are Hopf algebra maps and x is grouplike.

It has been pointed out in [Shimizu 2015b, Remark 4.5] that H piv-mod is iso-
morphic to (H -mod)piv as pivotal tensor categories. To realize the identification
2 : H piv-mod

∼=
−→ C piv one takes an H piv-module V to the H -module V along

with the isomorphism φV := jVec
◦ l(x) : V → FS2(V ) ∼= V ∗∗. On elements,

φV (v) = jVec(x · v). So we see that the inverse functor 2−1
: C piv

→ H piv-mod
takes the pair (V, φV ) to the H -module V along with the action of the grouplike
x ∈ H piv by x · v = φV (v).

From the above description of C piv for Hopf algebras we see that C piv will not
usually be a finite tensor category.

Note that, for any integer N as above, we have the Hopf projection H piv
→ H Npiv

which is the identity on H and sends x (in H piv) to x (in H Npiv). Dually, we get a
fully faithful embedding of tensor categories H Npiv-mod→ H piv-mod.

Definition 6.2. For any positive integer N which is divisible by the order of S2, we
let C Npiv denote the full subcategory of C piv which is the image of

H Npiv-mod⊂ H piv-mod

along the isomorphism 2 : H piv-mod→ C piv.

From this point on if we write H Npiv or C Npiv we are assuming that N is a
positive integer with ord(S2)|N. We see, from the descriptions of the isomorphisms
2 and 2−1 given above, that C Npiv is the full subcategory consisting of all pairs
(V, φV ) so that the associated automorphism φV ∈ Autk(V ) has order dividing N.

Lemma 6.3. The category C Npiv is a pivotal finite tensor subcategory in the pivotal
(nonfinite) tensor category C piv which contains RH .

Proof. Since the map 2 : H piv-mod→ C piv is a tensor equivalence, it follows
that C Npiv, which is defined as the image of H Npiv-mod in C piv, is a full tensor
subcategory in C piv. The category C Npiv is pivotal with its pivotal structure inherited
from C piv. The fact that RH = (H, jVec

◦ S2) is in C Npiv just follows from the fact
the order of S2

= φRH is assumed to divide N. �

Remark 6.4. There is another interesting object AH introduced in [Shimizu 2015b,
Section 6.1 and Theorem 7.1]. This object is the adjoint representation Had of H
along with the isomorphism φAH = jVec

◦ S2. We will have that AH is also in C Npiv

for any N.
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Some choices for N which are of particular interest are N = ord(S2) or N =
qexp(H), where qexp(H) is the quasiexponent of H. Recall that the quasiexponent
qexp(H) of H is defined as the unipotency index of the Drinfeld element u in the
Drinfeld double D(H) of H (see [Etingof and Gelaki 2002]). This number is always
finite and divisible by the order of S2 [Etingof and Gelaki 2002, Proposition 2.5].
More importantly, qexp(H) is a gauge invariant of H.

When we would like to pivotalize with respect to the quasiexponent we take
H Epiv

= H qexp(H)piv and C Epiv
= C qexp(H)piv. We call C Epiv the exponential piv-

otalization of C = H -mod.
If C admits any pivotal structures, one can show that the exponential pivotalization

contains a copy of (C , j) for any choice of pivotal structure j on C as a full pivotal
subcategory. More specifically, for any choice of pivotal structure j on C the
induced map (C , j)→ C piv will necessarily have image in C Epiv. In this way, the
indicators for C calculated with respect to any choice of pivotal structure can be
recovered from the (Shimizu-)indicators on C Epiv.

For some Hopf algebras H, the integer qexp(H) is minimal so that C Npiv has
this property. For example, when we take the generalized Taft algebra

Hn,d(ζ )= k〈g, x〉/(gnd
− 1, xd , gx − ζ xg),

where ζ is a primitive d-th root of unity (see [Taft 1971; Etingof and Walton 2016,
Definition 3.1]). We have ord(S2) = d and nd = qexp(Hn,d(ζ )) by [Etingof and
Gelaki 2002, Theorem 4.6]. The grouplike element g provides a pivotal structure
j on Hn,d(ζ )-mod, and the resulting map into (Hn,d(ζ )-mod)piv has image in
(Hn,d(ζ )-mod)Npiv if, and only if, qexp(Hn,d(ζ ))|N. This relationship can be seen
as a consequence of the general fact that qexp(H)= exp(G(H)) for any pointed
Hopf algebra H [Etingof and Gelaki 2002, Theorem 4.6].

Our functoriality result for the finite pivotalizations is the following.

Proposition 6.5. For any monoidal equivalence F : H-mod→ K -mod, where H
and K are Hopf algebras, the functor F piv restricts to an equivalence

F Epiv
: (H-mod )Epiv

→ (K -mod )Epiv.

Furthermore, when H has the Chevalley property F piv restricts to an equivalence
FNpiv

: (H-mod )Npiv
→ (K -mod )Npiv for each N (in particular N = ord(S2

H ) =

ord(S2
K )).

The proof of the proposition is given in the appendix.

7. Preservation of the regular object

In this section we show that for a monoidal equivalence F : H -mod→ K -mod of
Hopf algebras H and K with the Chevalley property we will have F piv(RH )∼= RK .
From this we recover Theorem 5.1 for Hopf algebras with the Chevalley property.
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Let H be a finite-dimensional Hopf algebra with antipode S, and F ∈ H ⊗ H a
twist of H. We let C = H -mod, CF = H F -mod, and let F = (Fid, ξ

F ) denote the
associated equivalence from C to CF , by abuse of notation.

For this section we will be making copious use of the isomorphism jVec
:V→V ∗∗,

and adopt the shorthand v̂ = jVec(v) ∈ V ∗∗ for v ∈ V. Recall that v̂ is just the
evaluation map V ∗→ k, η 7→ η(v).

Preservation of regular objects. Recall that the antipode SF of H F is given by
SF (h)= βF S(h)β−1

F and that γF = βF S(βF )
−1. For any positive integer k, define

γ
(k)
F = γF S2(γF ) · · · S2k−2(γF ).

Then we have S2k
F (h) = γ

(k)
F S2k(h)(γ (k)F )−1 for all positive integers k and h ∈ H.

The following lemma is well known and it follows immediately from [Aljadeff et al.
2002, Equation (6)].

Lemma 7.1. The element γ (ord(S2))
F is a grouplike element in H F.

Proof. Take N = ord(S2). We have from [Aljadeff et al. 2002, Equation (6)] that

1(γF )= F−1(γF ⊗ γF )(S2
⊗ S2)(F)

(see also [Majid 1995]). Hence

1(γ
(n)
F )= F−1(γ

(n)
F ⊗ γ

(n)
F )(S2n

⊗ S2n)(F)

for each n and therefore

1F (γ
(N )
F )= F1(γ (N )F )F−1

= γ
(N )
F ⊗ γ

(N )
F . �

We have the following concrete description of the (universal) pivotalization of
an equivalence F : C → CF induced by a twist F on H.

Lemma 7.2. The functor F piv
: C piv

→ C
piv

F sends an object (V, φV ) in C piv to
the pair consisting of the object V along with the isomorphism

V → V ∗∗, v 7→ jVec(γFφV (v)).

In particular, Fpiv(RH )= (H F , jVec
◦ l(γF ) ◦ S2).

Proof. Take β = βF , γ = γF and ξ = ξ F. Recall that F(V ∗) = F(V )∗ = V ∗ as
vector spaces for each V in C . It follows from (3-1) that, for any object V in C ,

ξ̃ : F(V ∗)→ F(V )∗

is given by
ξ̃ ( f )= f ↼β−1 for f ∈ V ∗.

This implies

ξ̃ (v̂)( f )= (v̂ ↼ β−1)( f )= v̂(β−1
· f )= f (S(β−1)v)= jVec(S(β−1)v)( f )



456 CRIS NEGRON AND SIU-HUNG NG

for v̂ ∈ F(V ∗∗) and f ∈ F(V ∗). Thus,

(̃ξ∗)−1̃ξ(v̂)( f )=(̃ξ∗)−1 jVec(S(β−1)v)( f )= jVec(S(β−1)v)(̃ξ−1( f ))

= jVec(S(β−1)v)( f ↼β)= f (βS(β−1)v)= f (γ v)= jVec(γ v)( f )

for v̂ ∈ F(V ∗∗) and f ∈ F(V )∗. By Theorem 5.2, F piv(V, φV )= (V, (̃ξ∗)−1̃ξφV )

and
(̃ξ∗)−1̃ξφV (v)= (̃ξ

∗)−1̃ξ jVecφV (v)= jVec(γ φV (v))

for v ∈ V. The last statement follows immediately from the definition of RH =

(H, jVec
◦ S2). This completes the proof. �

In the following proposition we let S2 denote the automorphism of H/J (H)
induced by S2.

Proposition 7.3. Let F ∈H⊗H be a twist. The following statements are equivalent.

(i) F piv(RH )∼= RH F in C
piv

F .

(ii) There is a unit t in H which satisfies the equation

(7-1) S2(t)γ−1
F − t = 0.

(iii) There is a unit t in H/J (H) which satisfies the equation

(7-2) S2(t)γ−1
F − t = 0.

Proof. We take N = ord(S2). By Lemma 7.2, F piv(RH )= (H F , jVec
◦ l(γF ) ◦ S2).

An isomorphism F piv(RH )∼= RH F is determined by a H F -module automorphism
of H F, which is necessarily given by right multiplication by a unit t ∈H F, producing
a diagram

H F

r(t)
��

l(γF )S2
// H F

r(t)
��

jVec
// (H F )∗∗

r(t)∗∗

��

H F
S2

F

// H F jVec
// (H F )∗∗

Equivalently, we are looking for a unit t such that

γF S2(h)t = S2
F (ht)= γF S2(h)S2(t)γ−1

F

for all h ∈ H. This equation is equivalent to

(7-3) S2(t)γ−1
F = t.

Let σ denote the k-linear automorphism r(γ−1
F )◦ S2

= r(γF )
−1
◦ S2 of H F, and

let 6 be the subgroup generated by σ in Autk(H F ). Then we have

σ N
= r(γ (N )F )−1

◦ S2N
= r(γ (N )F )−1.
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Since γ (N )F is grouplike in H F, it has a finite order. Therefore σ N has finite order,
as does σ , and 6 is a finite cyclic group.

Since J (H) is a σ -invariant, the exact sequence

0→ J (H)→ H → H/J (H)→ 0

is in Rep(6). Applying the exact functor (−)6, we get another exact sequence

(7-4) 0→ J (H)6→ H6
→ (H/J (H))6→ 0.

Recall that an element in H is a unit if, and only if, its image in H/J (H) is a unit.
So from the exact sequence (7-4), we conclude that there is a unit in (H/J (H))6

if and only if there is a unit in H6. Rather, there exists a unit t solving the equation
σ · X − X = 0 in H/J (H) if, and only if, there exists a unit t solving the equation
in H. Since σ · t = S2(t)γ−1

F and σ · t = S2(t)γ−1
F , the equation S2(X)γ−1

F − X = 0
has a unit solution in H if, and only if, the equation S2(X)γ−1

F − X = 0 has a unit
solution in H. �

As an immediate consequence of this proposition, we can prove preservation of
regular objects for Hopf algebras with the Chevalley property.

Theorem 7.4. Suppose H and K are gauge equivalent finite-dimensional Hopf
algebras with the Chevalley property, and F : H-mod→ K -mod is a monoidal
equivalence. Then we have F piv(RH )∼= RK in (K -mod)piv.

Proof. In view of [Ng and Schauenburg 2008, Theorem 2.2], it suffices to assume
K = H F for some twist F ∈ H ⊗ H, and that F is the associated equivalence

F : H -mod→ H F -mod.

Let S be the antipode of H. It follows from Lemma 4.1 that γ F = 1 and S2
= id.

Therefore, every unit t ∈ H/J (H) satisfies S2(t)γ−1
F − t = 0. The proof is then

completed by Proposition 7.3. �

As a corollary we recover Theorem 5.1 for Hopf algebras with the Chevalley
property.

Corollary 7.5 [Kashina et al. 2012, Theorem 2.2]. If F : H-mod→ K -mod is a
gauge equivalence and H has the Chevalley property then we have

νKMN
n (H)= νKMN

n (K )

for all n ≥ 0.

Proof. We have F piv(RH ) ∼= RK by Theorem 7.4. Since a gauge equivalence
preserves duals this implies F piv(R∗H )∼= R∗K as well. Hence, using [Shimizu 2015b,
Theorems 5.3 and 5.7], we have

νKMN
n (H)= νSh

n (R
∗

H )= ν
Sh
n (R

∗

K )= ν
KMN
n (K ). �
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Appendix: Functoriality of finite pivotalizations

We adopt the notation introduced at the beginning of Section 6. Recall that the
subcategory C Npiv

⊂ C piv is the full subcategory consisting of all pairs (V, φV )

such that the associated automorphism φV ∈ Autk(V ) satisfies ord(φV )|N.

Lemma A.1. Let F ∈ H ⊗ H be a twist and consider the functor F : C → CF .
Then, for any N divisible by ord(S2), the following statements are equivalent:

(i) F piv restricts to an equivalence F Npiv
: C Npiv

→ C
Npiv
F .

(ii) γ (N )F = 1.

Furthermore, the existence of an isomorphism F piv(RH )∼= RH F implies (i) and (ii)
for all such N.

Proof. Consider any (V, φV ) in C Npiv. We have F piv(V, φV )= (V, jVec
◦ l(γF )◦φV ),

by Lemma 7.2. So φF piv(V,φV ) = l(γF )◦φV . Since φV , considered as an H -module
map, is a map from V to FS2(V ), we find by induction that

(l(γF ) ◦φV )
n
= l
(
γ
(n)
F

)
◦φV

n

for each n. In particular,

(A-1) (l(γF ) ◦φV )
N
= l
(
γ
(N )
F

)
since φV

N
= 1.

From Equation (A-1) we see that F piv(V, φV ) lies in C
Npiv
F if, and only if,

l(γ (N )F )= idV , whence we have the implication (ii)⇒ (i). Applying (A-1) to the
case (V, φV )= RH gives the converse implication (i)⇒ (ii) as well as the implica-
tion F piv(RH )∼= RH F ⇒ (ii), since RH F is in each C

Npiv
F . �

We can now give the following proof:

Proof of Proposition 6.5. In view of [Ng and Schauenburg 2008, Theorem 2.2], it
suffices to assume K = H F for some twist F ∈ H ⊗ H and consider the monoidal
equivalence F : H -mod→ H F -mod.

For Hopf algebras with the Chevalley property: Recall ord(S2) = ord(S2
F ) by

Corollary 4.4. So we can pivotalize both H and H F with respect to any N divisible
by ord(S2). We have already seen that F piv(RH )∼= RH F . It follows, by Lemma A.1,
that F piv restricts to an equivalence F Npiv

: C Npiv
→ C

Npiv
F .

For the general case: From [Etingof and Gelaki 2002, Proposition 3.2] and the
proof of [Etingof and Gelaki 2002, Proposition 3.3], γ (qexp(H))

F = 1. By Lemma A.1
it follows that Fpiv restricts to an equivalence F Epiv

: C Epiv
→ C

Epiv
F . �
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BRANCHING LAWS FOR THE METAPLECTIC COVER OF GL2

SHIV PRAKASH PATEL

Let F be a nonarchimedean local field of characteristic zero and E/F be a
quadratic extension. The aim of this article is to study the multiplicity of an
irreducible admissible representation of GL2(F) occurring in an irreducible
admissible genuine representation of the nontrivial two-fold covering G̃L2(E)

of GL2(E).

1. Introduction

Let F be a nonarchimedean local field of characteristic zero and let E be a quadratic
extension of F. The branching laws for restriction of representations of SOn+1(F)
to SOn(F) were formulated as conjectures by B. Gross and D. Prasad [1992],
and these are widely known as Gross–Prasad conjectures although they have been
completely proved by Mœglin and Waldspurger [2012]. The first case of these
conjectures is for the restriction of representations of GL2(F) to its maximal tori,
which was considered by J. B. Tunnell [1983] and H. Saito [1993]. A metaplectic
analog of this result was recently considered by the author in a joint work with
Prasad, where the restriction of representations of metaplectic GL2(F) to inverse
images of the maximal tori was studied [Patel and Prasad 2017]. The results of
Tunnell and Saito have, in particular, a multiplicity one result which is then refined
in terms of certain ε-factors. The metaplectic case of this restriction loses the
multiplicity one property, but still one has finite multiplicities which are bounded
by some explicit constants. The next case of Gross–Prasad conjectures can be
considered to be the restriction of representations of GL2(E) to GL2(F) which was
studied by Prasad [1992]. These cases played an important role in the formulation of
Gross–Prasad conjectures. Our aim in this paper is to study an analogous restriction
of representations of metaplectic GL2(E) to GL2(F).

The problem of decomposing a representation of GL2(E) restricted to GL2(F)
was considered and solved by Prasad [1992], proving a multiplicity one theorem,
and giving an explicit classification of representations π1 of GL2(E) and π2 of
GL2(F) such that there exists a nonzero GL2(F) invariant linear form:

l : π1⊗π2→ C.

MSC2010: primary 22E35; secondary 22E50.
Keywords: metaplectic group, branching laws.
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This problem is closely related to a similar branching law from GL2(E) to D×F ,
where DF is the unique quaternion division algebra which is central over F, and
D×F ↪→GL2(E). We recall that the embedding D×F ↪→GL2(E) is given by fixing an
isomorphism DF ⊗ E ∼= M2(E), by the Skolem–Noether theorem, which is unique
up to conjugation by elements of GL2(E). Henceforth, we fix one such embedding
of D×F inside GL2(E). The restriction problems for the pair (GL2(E),GL2(F)) and
(GL2(E), D×F ) are related by a certain dichotomy. More precisely, the following
result was proved in [Prasad 1992]:

Theorem 1.1 (Prasad). Let π1 and π2 be irreducible admissible infinite-dimensional
representations of GL2(E) and GL2(F), respectively, such that the central charac-
ter of π1 restricted to the center of GL2(F) is the same as the central character
of π2. Then:

(1) For a principal series representation π2 of GL2(F), we have

dim HomGL2(F)(π1, π2)= 1.

(2) For a discrete series representation π2 of GL2(F), letting π ′2 be the finite-
dimensional representation of D×F associated to π2 by the Jacquet–Langlands
correspondence, we have

dim HomGL2(F)(π1, π2)+ dim HomD×F
(π1, π

′

2)= 1.

In this paper, we study the analogous problem in the metaplectic setting. More
precisely, instead of considering GL2(E) we will consider the group G̃L2(E)C×
which is a topological central extension of GL2(E) by C×, which is obtained from
the two-fold topological central extension G̃L2(E) described below. We recall that
there is unique (up to isomorphism) two-fold cover of SL2(E) called the metaplectic
cover and denoted by S̃L2(E) in this paper, but there are many inequivalent two-fold
coverings of GL2(E) which extend this two-fold covering of SL2(E). We fix a
covering of GL2(E) as follows. Observe that GL2(E) is a semidirect product of
SL2(E) and E×, where E× sits inside GL2(E) by e 7→

( e
0

0
1

)
. The action of E× on

SL2(E) lifts to an action on S̃L2(E). Denote G̃L2(E) to be S̃L2(E)o E× which
we call “the” metaplectic cover of GL2(E). This cover can be described by an
explicit 2-cocycle on GL2(E) with values in {±1}, see [Kubota 1969]. The group
G̃L2(E) is a topological central extension of GL2(E) by µ2 := {±1}, i.e., we have
an exact sequence of topological groups:

1→ µ2→ G̃L2(E)→ GL2(E)→ 1.

The group G̃L2(E)C× := G̃L2(E)×µ2 C× is called the C×-cover of GL2(E) obtained
from the two-fold cover G̃L2(E), and is a topological central extension of GL2(E)
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by C×, i.e., we have an exact sequence of topological groups:

1→ C×→ G̃L2(E)C×→ GL2(E)→ 1.

Now we recall the following result regarding splitting of this cover when restricted
to certain subgroups. This makes it possible to consider an analog of the Prasad’s
restriction problem in the metaplectic case.

Theorem 1.2 [Patel 2016]. Let E be a quadratic extension of a nonarchimedean
local field and G̃L2(E) be the two-fold metaplectic covering of GL2(E). Then:

(1) The two-fold metaplectic covering G̃L2(E) splits over the subgroup GL2(F).

(2) The C×-covering obtained from G̃L2(E) splits over the subgroup D×F .

Note that the splittings over GL2(F) and D×F in Theorem 1.2 are not unique. As
there is more than one splitting in each case, to study the problem of decomposing a
representation of G̃L2(E)C× restricted to GL2(F) and D×F , we must fix one splitting
of each of the subgroups GL2(F) and D×F , which are related to each other. We
make the following working hypothesis, which has been formulated by Prasad.

Working Hypothesis 1.3. Let L be a quadratic extension of F. Write R for the
restriction of scalars torus RL/F Gm . Thus R(F)= L×. Fix embeddings of R into
GL2 and D×F (viewed as algebraic groups over F). The sets of splittings

G̃L2(E)C×

��

G̃L2(E)C×

��

and

GL2(F)
0�

s

AA

// GL2(E) D×F
1�

s′

CC

// GL2(E)

are principal homogeneous spaces over the group Hom(F×,C×). More explicitly,
two splittings s1, s2 of GL2(F) will be related by

s2(g)= χ(det g) · s1(g)

for some character χ ∈ Hom(F×,C×) (for D×F the det should be replaced by Nm
the reduced norm map). A pair (s, s ′) of splittings, where

s : GL2(F)→ G̃L2(E)C× and s ′ : D×F → G̃L2(E)C×,

is called a pair of “compatible splittings” if for any quadratic extension L/F with
the fixed embedding of R into GL2 and D×F the restriction of s and s ′ to L× as in
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the following diagrams

G̃L2(E)C×

��

G̃L2(E)C×

��

and

L×
, �

::

// GL2(F)
1�

s

BB

// GL2(E) L×
. �

<<

// D×F
2�

s′

DD

// GL2(E)

are conjugate in G̃L2(E)C× , i.e., there is an element g ∈ G̃L2(E)C× such that
s(L×)= g · s ′(L×) · g−1. Then we assume that

there exists a pair (s, s ′) of compatible splittings.

If (s, s ′) is a pair of compatible splittings and χ is a character of F× then the
pair of splittings (χ(det(•)s, χ(Nm(•)s ′) is also compatible. Thus, given a single
pair (s, s ′) of compatible splittings, we have a Hom(F×,C×)-equivariant bijection
between the sets of splittings, in such a way that all pairs matched by the bijection
are compatible.

Definition 1.4. A representation of G̃L2(E) (respectively, G̃L2(E)C×) is called
genuine if µ2 acts nontrivially (respectively, C× acts by identity).

In particular, a genuine representation does not factor through GL2(E). In what
follows, we always consider genuine representations of the metaplectic group
G̃L2(E). Let B(E), A(E) and N (E) be the Borel subgroup, maximal torus and
maximal unipotent subgroup of GL2(E) consisting of all upper triangular matri-
ces, diagonal matrices and upper triangular unipotent matrices respectively. Let
B(F), A(F) and N (F) denote the corresponding subgroups of GL2(F). Let Z be
the center of GL2(E) and Z̃ the inverse image of Z in G̃L2(E). Note that Z̃ is an
abelian subgroup of G̃L2(E) but is not the center of G̃L2(E); the center of G̃L2(E)
is Z̃2, the inverse image of Z2

:= {z2
| z ∈ Z}.

Let ψ be a nontrivial additive character of E . Note that the metaplectic covering
splits when restricted to the subgroup N (E) and hence ψ gives a character of N (E).
Let π be an irreducible admissible genuine representation of G̃L2(E) and πN (E),ψ ,
the ψ-twisted Jacquet module which is a Z̃ -module. Let ωπ be the central character
of π . A character of Z̃ appearing in πN (E),ψ agrees with ωπ when restricted to Z̃2.
Let �(ωπ ) be the set of genuine characters of Z̃ whose restriction to Z̃2 agrees
with ωπ . We also realize �(ωπ ) as a Z̃ -module, i.e., as direct sum of characters in
�(ωπ ) with multiplicity one. From [Gelbart et al. 1979, Theorem 4.1], one knows
that the multiplicity of a character µ ∈�(ωπ ) in the Z̃ -module πN (E),ψ is at most
one. Hence πN (E),ψ is a Z̃ -submodule of �(ωπ ). Now we state the main result of
this paper.



BRANCHING LAWS FOR THE METAPLECTIC COVER OF GL2 465

We abuse notation and write G̃L2(E) for G̃L2(E)C× .

Theorem 1.5. Let π1 be an irreducible admissible genuine representation of G̃L2(E)
and let π2 be an infinite-dimensional irreducible admissible representation of
GL2(F). Assume that the central characters ωπ1 of π1 and ωπ2 of π2 agree on
E×2
∩ F×. Fix a nontrivial additive character ψ of E such that ψ |F = 1. Let

Q = (π1)N (E) be the Jacquet module of π1. Assume that Working Hypothesis 1.3
holds.

(A) Let π2= IndGL2(F)
B(F) (χ) be a principal series representation of GL2(F). Assume

HomA(F)(Q, χ · δ1/2)= 0. Then

dim HomGL2(F)(π1, π2)= dim HomZ(F)((π1)N (E),ψ , ωπ2).

(B) Let π1 = IndG̃L2(E)
B̃(E)

(τ̃ ) be a principal series representation of G̃L2(E) and π2 a
discrete series representation of GL2(F). Let π ′2 be the finite-dimensional rep-
resentation of D×F associated to π2 by the Jacquet–Langlands correspondence.
Assume that

HomGL2(F)
(
IndGL2(F)

B(F) (τ̃ .δ1/2), π2
)
= 0.

Then

dim HomGL2(F)(π1, π2)+ dim HomD×F
(π1, π

′

2)=
[
E× : F×E×2].

(C) Let π1 be an irreducible admissible genuine representation of G̃L2(E) and π2 a
supercuspidal representation of GL2(F). Let π ′1 be a genuine representation of
G̃L2(E) which has the same central character as that of π1 and as a Z̃-module
(π1)N (E),ψ ⊕ (π

′

1)N (E),ψ =�(ωπ1). Let π ′2 be the finite-dimensional represen-
tation of D×F associated to π2 by the Jacquet–Langlands correspondence. Then

dim HomGL2(F)(π1⊕π
′

1, π2)+ dim HomD×F
(π1⊕π

′

1, π
′

2)= [E
×
: F×E×2

].

The strategy to prove this theorem is similar to that in [Prasad 1992]. We recall
it briefly. Part (A) of this theorem is proved by looking at the Kirillov model of an
irreducible admissible genuine representation of G̃L2(E) and its Jacquet module
with respect to N (F). Part (B) makes use of Mackey theory. For the third part (C),
we use a trick of Prasad [1992], where we “transfer” the results of a principal series
representation (from part (B)) to those which do not belong to principal series.
Prasad transfers the results from principal series representations to discrete series
representations. This is done by using character theory and an analog of a result of
Casselman and Prasad [Prasad 1992, Theorem 2.7] for G̃L2(E) which we study in
Section 4.

2. Part A of Theorem 1.5

Let π2 = IndGL2(F)
B(F) (χ) be a principal series representation of GL2(F) where χ is

a character of A(F). By Frobenius reciprocity [Bernstein and Zelevinskii 1976,
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Theorem 2.28], we get

HomGL2(F)(π1, π2)= HomGL2(F)(π1, IndGL2(F)
B(F) (χ))

= HomA(F)((π1)N (F), χ. δ
1/2),

where (π1)N (F) is the Jacquet module of π1 with respect to N (F). We can describe
(π1)N (F) by realizing π1 in the Kirillov model. Now depending on whether π1 is a
supercuspidal representation or not, we consider them separately.

2A. Kirillov model and Jacquet module. Now we describe the Kirillov model of
an irreducible admissible genuine representation π of G̃L2(E). Let l :π→πN (E),ψ

be the canonical map. Let C∞(E×, πN (E),ψ) denote the space of smooth functions
on E× with values in πN (E),ψ . Define the Kirillov mapping

K : π→ C∞(E×, πN (E),ψ)

given by v 7→ ξv where ξv(x)= l
(
π
(( x

0
0
1

)
, 1
)
v
)
. More conceptually, πN (E),ψ is a

representation of Z̃ · N (E), and by Frobenius reciprocity, there exists a natural map

π |B̃(E)→ IndB̃(E)
Z̃ ·N (E)

πN (E),ψ .

Since B̃(E)/Z̃ ·N (E) can be identified with E× sitting as
{( e

0
0
1

)
: e∈ E×

}
in B̃(E),

we get a map of B̃(E)-modules:
π |B̃(E)→ C∞(E×, πN (E),ψ).

We summarize some of the properties of the Kirillov mapping in the following
proposition.

Proposition 2.1. (1) If v′ = π
((a

0
b
d

)
, 1
)
v for v ∈ π then

ξv′(x)= (x, d)ψ(bd−1x)π
((

d 0
0 d

)
,1
)
ξv(ad−1x).

(2) For v ∈ π the function ξv is a locally constant function on E× which vanishes
outside a compact subset of E.

(3) The map K is an injective linear map.

(4) The image K(π) of the map K contains the space S(E×, πN (E),ψ) of smooth
functions on E× with compact support with values in πN (E),ψ .

(5) The Jacquet module πN (E) of π is isomorphic to K(π)/S(E×, πN (E),ψ).

(6) The representation π is supercuspidal if and only if K(π)= S(E×, πN (E),ψ).

Proof. Part (1) follows from the definition. The proofs of parts (2) and (3) are
verbatim those of Lemma 2 and Lemma 3 in [Godement 1970]. The proofs of parts
(4), (5) and (6) follow from the proofs of the corresponding statements of [Prasad
and Raghuram 2000, Theorem 3.1]. �
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Since the map K is injective, we can transfer the action of G̃L2(E) on the space
of π to K(π) using the map K. The realization of the representation π on the space
K(π) is called the Kirillov model, on which the action of B̃(E) is explicitly given
by part (1) in Proposition 2.1. It is clear that S(E×, πN (E),ψ) is B̃(E)-stable, which
gives rise to the following short exact sequence of B̃(E)-modules

(1) 0→ S(E×, πN (E),ψ)→ K(π)→ πN (E)→ 0.

2B. The Jacquet module with respect to N(F). In this section, we try to un-
derstand the restriction of an irreducible admissible genuine representation π of
G̃L2(E) to B(F). For this, we describe the Jacquet module πN (F) of π . We
utilize the short exact sequence in equation (1) of B̃(E)-modules arising from the
Kirillov model of π , which is also a short exact sequence of B(F)-modules. By the
exactness of the Jacquet functor with respect to N (F), we get the following short
exact sequence from equation (1),

0→ S(E×, πN (E),ψ)N (F)→ K(π)N (F)→ πN (E)→ 0.

Let us first describe S(E×, πN (E),ψ)N (F), the Jacquet module of S(E×, πN (E),ψ)

with respect to N (F).

Proposition 2.2. There exists an isomorphism

S(E×, πN (E),ψ)N (F) ∼= S(F×, πN (E),ψ)

of F×-modules where F× acts by its natural action on S(F×, πN (E),ψ).

Proposition 2.2 follows from the proposition below. The author thanks Professor
Prasad for suggesting the proof.

Proposition 2.3. Let ψ be a nontrivial additive character of E such that ψ |F = 1.
Let S(E×) be a representation of E where the action of E on S(E×) is given by

(n · f )(x)= ψ(nx) f (x)

for n ∈ E , f ∈ S(E×) and x ∈ E×. Then the restriction map

(2) S(E×)−→ S(F×)

realizes S(E×)F the maximal F-coinvariant quotient of S(E×) as S(F×).

Proof. Note that S(E×) ↪→ S(E). For a fixed Haar measure dw on E , we define
the Fourier transform Fψ : S(E)→ S(E) with respect to the character ψ by

Fψ( f )(z) :=
∫

E
f (w)ψ(zw) dw.

As is well known, Fψ : S(E)→ S(E) is an isomorphism of vector spaces, and the
image of S(E×) can be identified with those functions in S(E) whose integral on
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E is zero. The Fourier transform takes the action of E on S(E×) to the restriction
of the action of E on S(E) given by (n · f )(x) = f (x + n) for n ∈ E , f ∈ S(E)
and x ∈ E . Write E = F(

√
d) for a suitable d ∈ F×. Define φ : E→ F given by

φ(e)= (e− ē)/(2
√

d),

where ē is the nontrivial Galois conjugate of e∈ E , i.e., ē= x−
√

d y for e= x+
√

d y
with x, y ∈ F. Clearly φ(z1)= φ(z2) for z1, z2 ∈ E if and only if z1− z2 ∈ F. We
define the integration along the fibers of the map φ : E → F, to be denoted by
I : S(E)→ S(F), as follows:

I ( f )(y) :=
∫

F
f (x +

√
d y) dx for all y ∈ F.

Clearly I ( f ) belongs to S(F). Note that the maximal quotient of S(E) on which
F acts trivially (F acting by translation on S(E)) can be identified with S(F) by
integration along the fibers of the map φ. Since ψ |F = 1, the restriction of the
character ψ√d (given by x 7→ ψ(

√
dx) for x ∈ E) from E to F is a nontrivial

character of F. The proposition will follow if we prove the commutativity of the
diagram

S(E)
Fψ
//

Res
��

S(E)

I
��

S(F)
Fψ√d

// S(F)

where Fψ is the Fourier transform on S(E) with respect to the character ψ , Fψ√d

is the Fourier transform on S(F) with respect to ψ√d = (ψ
√

d)|F ), Res denotes the
restriction of functions from E to F , and I denotes the integration along the fibers
mentioned above. Recall that Fψ√d

: S(F)→ S(F) is defined by

Fψ√d
(φ)(x) :=

∫
F
φ(y)ψ√d(xy) dy =

∫
F
φ(y)ψ(

√
dxy) dy for all x ∈ F.

We prove that the above diagram is commutative. Let f ∈ S(E). We want to
show that I ◦Fψ( f )(y) = Fψ√d

◦Res( f )(y) for all y ∈ F. We write an element
of E as x +

√
d y with x, y ∈ F. We choose a measure dx on F which is self dual

with respect to ψ√d in the sense that Fψ√d
(Fψ√d

(φ))(x)= φ(−x) for all φ ∈ S(F)
and x ∈ F. We identify E with F × F as a vector space. Consider the product
measure dx dy on E = F × F. Using Fubini’s theorem we have∫

F

∫
F
φ(z2)ψ

√
d(xz2) dz2 dx = Fψ√d

(Fψ√d
(φ))(0)= φ(0)

for φ ∈ S(F). Therefore,
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I ◦Fψ( f )(y)=
∫

F
Fψ( f )

(
x +
√

d y
)

dx

=

∫
F

∫
E=F×F

f
(
z1+
√

dz2
)
ψ
((

x +
√

d y
)(

z1+
√

dz2
))

dz1 dz2 dx

=

∫
F

∫
F

∫
F

f
(
z1+
√

dz2
)
ψ√d(yz1+ xz2) dz1 dz2 dx

=

∫
F

(∫
F

∫
F

f
(
z1+
√

dz2
)
ψ√d(xz2) dz2 dx

)
ψ√d(yz1) dz1

=

∫
F

f (z1)ψ
√

d(yz1) dz1 = Fψ√d
◦Res( f )(y).

This proves the commutativity of the above diagram. �

2C. Completion of the proof of Part (A). First we consider the case when π1 is a
supercuspidal representation of G̃L2(E). Then one knows that the functions in the
Kirillov model for π1 have compact support in E× and one has

π1 ∼= S(E×, (π1)N (E),ψ)

as B̃(E)modules by Proposition 2.1. Now using Proposition 2.2, we get

HomGL2(F)(π1, π2)= HomA(F)
(
(π1)N (F), χ.δ

1/2)
= HomA(F)

(
S(E×, (π1)N (E),ψ)N (F), χ.δ

1/2)
= HomA(F)

(
S(F×, (π1)N (E),ψ), χ.δ

1/2).
Since S(F×, (π1)N ,ψ)∼= indA(F)

Z(F)(π1)N (E),ψ as A(F)-modules, by Frobenius reci-
procity [Bernstein and Zelevinskii 1976, Proposition 2.29], we get

HomGL2(F)(π1, π2)= HomA(F)
(
indA(F)

Z(F)(π1)N (E),ψ , χ.δ
1/2)

= HomZ(F)
(
(π1)N (E),ψ , (χ.δ

1/2)|Z(F)
)

= HomZ(F)((π1)N (E),ψ , ωπ2).

This proves part (A) of Theorem 1.5 for π1 a supercuspidal representation.
Now we consider the case when π1 is not a supercuspidal representation of

G̃L2(E). Then from equation (1) we get the following short exact sequence of
A(F)-modules:

0→ S(F×, (π1)N (E),ψ)→ (π1)N (F)→ Q −→ 0.

Now applying the functor HomA(F)
(
−, χ.δ1/2

)
, we get the long exact sequence

0→ HomA(F)
(
Q, χ.δ1/2)

→ HomA(F)
(
(π1)N (F), χ.δ

1/2)
→ HomA(F)

(
S(F×, (π1)N (E),ψ), χ.δ

1/2)
→ Ext1A(F)

(
Q, χ.δ1/2)

→ · · ·



470 SHIV PRAKASH PATEL

Lemma 2.4. HomA(F)
(
Q, χ.δ1/2

)
= 0 if and only if Ext1A(F)

(
Q, χ.δ1/2

)
= 0.

Proof. The space Q is finite-dimensional and completely reducible. So it is enough
to prove the lemma for the one-dimensional representations, i.e., for characters
of A(F). Moreover one can regard these representations as representations of F×

(after tensoring by a suitable character of A(F) so that it descends to a representation
of A(F)/Z(F)∼= F×). Then our lemma follows from the following lemma due to
Prasad. �

Lemma 2.5. If χ1 and χ2 are two characters of F×, then

dim HomF×(χ1, χ2)= dim Ext1F×(χ1, χ2).

Proof. Let O be the ring of integers of F and $ a uniformizer of F. Since
F× ∼=O××$Z and O× is compact, ExtiF×(χ1, χ2)= H i (Z,HomO×(χ1, χ2)). If
HomO×(χ1, χ2)=0, then the lemma is obvious. Hence suppose HomO×(χ1, χ2) 6=0.
Then HomO×(χ1, χ2) is a certain one dimensional vector space with an action of$Z.
If the action of$Z on HomO×(χ1, χ2) is nontrivial then H i (Z,HomO×(χ1, χ2))=0
for all i ≥ 0. Whereas if the action of $Z on HomO×(χ1, χ2) is trivial, then
H 0(Z,C)∼= H 1(Z,C)∼= C. �

We have made an assumption that HomA(F)(Q, χ.δ1/2) = 0 and hence by the
lemma above, Ext1A(F)(Q, χ.δ

1/2)= 0. So in this case

HomA(F)
(
(π1)N (F), χ.δ

1/2)∼= HomA(F)
(
S(F×, (π1)N (E),ψ), χ.δ

1/2)
= HomZ(F)((π1)N (E),ψ , ωπ2).

Hence
dim HomGL2(F)(π1, π2)= dim HomZ(F)((π1)N (E),ψ , ωπ2).

Remark 2.6. Recall that Q := (π1)N (E) is a finite-dimensional representation of
Ã(E) and we have assumed that HomA(F)(Q, χ.δ1/2)=0. The number of characters
χ of A(F) for which HomA(F)(Q, χ.δ1/2) 6= 0 is at most the dimension of Q. The
maximum possible dimension of Q is 2[E× : E×2

] (the maximum occurs only if π1

is a principal series representation). Therefore for a given π1 we leave out finitely
many ( ≤ 2[E× : E×2

]) representations π2 in our analysis.

3. Part B of Theorem 1.5

In this section, we consider the case when π1 is a principal series representation of
G̃L2(E) and π2 a discrete series representation of GL2(F).

Let π1 = IndG̃L2(E)
B̃(E)

(τ̃ ), where (τ̃ , V ) is a genuine irreducible representation of
Ã = Ã(E). The group Ã sits in the central extension

1→ A2
×{±1} → Ã

p
−→ A/A2

→ 1,
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where A/A2 equals E×/E×2
× E×/E×2, and the commutator of two elements ã1

and ã2 of Ã whose images in A/A2 are a1 = (e1, f1) and a2 = (e2, f2), is

[ã1, ã2] = (e1, f2)(e2, f1) ∈ {±1} ⊂ A2
×{±1},

which is the product of Hilbert symbols (ei , f j ) of E . Since the Hilbert symbol is
a nondegenerate bilinear form on E×/E×2, it follows that

[ã1, ã2] : A/A2
× A/A2

→ {±1}

is also a nondegenerate (skew-symmetric) bilinear form. Thus Ã is closely related
to the “usual Heisenberg” groups, and its representation theory is closely related
to the representation theory of the “usual Heisenberg” groups. In particular, given
a character χ : A2

× {±1} → C× which is nontrivial on {±1}, there exists a
unique irreducible representation of Ã which contains χ . Further, for any subgroup
A0 ⊂ A/A2 for which the commutator map [ã1, ã2], ai ∈ A0, is identically trivial,
and for which A0 is maximal for this property, Ã0 = p−1(A0) is a maximal abelian
subgroup of Ã, and the restriction of an irreducible genuine representation τ̃ of Ã
to Ã0 contains all characters of Ã0 with multiplicity one whose restriction to the
center A2

×{±1} is the central character of τ̃ . Further, τ̃ = Ind Ã
Ã0
χ where χ is any

character of Ã0 appearing in τ̃ . All the assertions here are consequences of the fact
that the inner conjugation action of Ã on Ã0 is transitive on the set of characters
of Ã0 with a given restriction on A2

× {±1}; this itself is a consequence of the
nondegeneracy of the Hilbert symbol.

It follows that the set of equivalence classes of irreducible genuine representations
τ̃ of Ã is parametrized by the set of characters of A2, i.e., a pair of characters of E×2.

Lemma 3.1. The subgroup Z̃ · A2 of Ã is a maximal abelian subgroup. Let τ̃ be
an irreducible genuine representation of Ã. Then τ̃ |Z̃ contains all the genuine
characters of Z̃ which agree with the central character of τ when restricted to Z̃2.

Proof. By explicit description of the commutation relation recalled above it is easy
to see that Z̃ · A2 is a maximal abelian subgroup of Ã. The rest of the statements
follow from preceding discussion. �

Proposition 3.2 [Gelbart and Piatetski-Shapiro 1980, Theorem 2.4]. For some
irreducible genuine representation τ̃ of Ã, let π1 = IndG̃L2(E)

B̃(E)
(τ̃ ). Then

(π1)N ,ψ ∼=�(π1)∼= τ̃ |Z̃ .

Now as in [Prasad 1992], we use Mackey theory to understand its restriction
to GL2(F). We have G̃L2(E)/B̃(E) ∼= P1

E and this has two orbits under the
left action of GL2(F). One of the orbits is closed, and naturally identified with
P1

F
∼=GL2(F)/B(F). The other orbit is open, and can be identified with P1

E−P1
F
∼=

GL2(F)/E×. By Mackey theory, we get this exact sequence of GL2(F)-modules:

(3) 0→ indGL2(F)
E× (τ̃ ′|E×)→ π1→ IndGL2(F)

B(F) (τ̃ |B(F)δ
1/2)→ 0,
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where τ̃ ′|E× is the representation of E× obtained from the embedding E× ↪→ Ã
which comes from conjugating the embedding E× ↪→ GL2(F) ↪→ G̃L2(E). We
now identify E× with its image inside Ã which is given by x 7→

(( x
0

0
x̄

)
, ε(x)

)
where x̄ is the nontrivial Gal(E/F)-conjugate of x and ε(x) ∈ {±1}. Now let π2

be any irreducible admissible representation of GL2(F). By applying the functor
HomGL2(F)(−, π2) to the short exact sequence (3), we get the long exact sequence

(4)

0→ HomGL2(F)
(
IndGL2(F)

B(F)

(
τ̃ |B(F)δ

1/2), π2
)

→ HomGL2(F)(π1, π2)→ HomGL2(F)
(
indGL2(F)

E× (τ̃ ′|E×), π2
)

→ Ext1GL2(F)
(
IndGL2(F)

B(F)

(
τ̃ |B(F)δ

1/2), π2
)
→ · · ·

From [Prasad 1990, Corollary 5.9], we know that

HomGL2(F)
(
IndGL2(F)

B(F)

(
χ.δ1/2), π2

)
= 0 ⇔ Ext1GL2(F)

(
IndGL2(F)

B(F)

(
χ.δ1/2), π2

)
= 0.

Since τ̃ |B(F) factors through T (F), which is direct sum of [E× : E×2
] characters

of T (F), we can use the above result of Prasad with χ replaced by τ̃ |B(F). Then
from the exactness of (4), it follows that

HomGL2(F)(π1, π2)= 0

if and only if
HomGL2(F)

(
IndGL2(F)

B(F)

(
τ̃ |B(F)δ

1/2), π2
)
= 0

and
HomGL2(F)

(
indGL2(F)

E× (τ̃ ′|E×), π2
)
= 0.

Note that the representation IndGL2(F)
B(F)

(
τ̃ |B(F)δ

1/2
)

consists of exactly [E× : E×2
]

principal series representations of GL2(F). Since we have made the assumption
that HomGL2(F)

(
IndGL2(F)

B(F)

(
τ̃ .δ1/2

)
, π2

)
= 0, it follows that

Ext1GL2(F)
(
IndGL2(F)

B(F)

(
τ̃ .δ1/2), π2

)
= 0.

This gives
HomGL2(F)(π1, π2)∼= HomGL2(F)

(
indGL2(F)

E× (τ̃ ′|E×), π2
)

∼= HomE×(τ̃
′
|E×, π2|E×).

The following lemma describes τ̃ ′|E× .

Lemma 3.3. If we identify E× with its image
{(( x

0
0
x̄

)
, ε(x)

)
| x ∈ E×

}
inside Ã as

above then the subgroup E× · Ã2 inside Ã is a maximal abelian subgroup. Moreover,
τ̃ ′|E× contains all the characters of E× which are same as ωτ̃ |E×2 when restricted
to E×2, where ωτ̃ is the central character of τ̃ .
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Proof. From the explicit cocycle description and the nondegeneracy of the quadratic
Hilbert symbol, it is easy to verify that E× · Ã2 is a maximal abelian subgroup of Ã.
The rest follows from the discussion preceding Lemma 3.1. �

As π2 is a discrete series representation, it is not always true (unlike what
happens in case of a principal series representation) that any character of E×,
whose restriction to F× is the same as the central character of π2, appears in π2.
Let π ′2 be the finite dimensional representation of D×F associated to π2 by the
Jacquet–Langlands correspondence. Considering the left action of D×F on

P1
E
∼= G̃L2(E)/B̃(E)

induced by D×F ↪→ G̃L2(E) it is easy to verify that P1
E
∼= D×F /E×. Then by Mackey

theory, when restricted to D×F , the principal series representation π1 becomes
isomorphic to indD×F

E× (τ̃
′
|E×). Therefore,

HomDF×
(π1, π

′

2)
∼= HomDF×

(
indD×F

E× (τ̃
′
|E×), π

′

2
)

∼= HomE×(τ̃
′
|E×, π

′

2|E×).

In order to prove

(5) dim HomGL2(F)(π1, π2)+ dim HomD×F
(π1, π

′

2)= [E
×
: F×E×2

]

we shall prove

(6) dim HomE×(τ̃
′
|E×, π2|E×)+ dim HomE×(τ̃

′
|E×, π

′

2|E×)= [E
×
: F×E×2

].

By Remark 2.9 in [Prasad 1992], a character of E× whose restriction to F× is the
same as the central character of π2 appears either in π2 with multiplicity one or in
π ′2 with multiplicity one, and exactly one of the two possibilities hold. Note that
we are assuming that the two embeddings of E×, one via GL2(F) and the other via
D×F are conjugate in G̃L2(E). Then the left-hand side of equation (6) is the same
as the number of characters of E× appearing in (τ̃ , V ) which upon restriction to
F× coincide with the central character of π2, which equals dim HomF×(τ̃ |F×, ωπ2).
We are reduced to the following lemma.

Lemma 3.4. Let (τ̃ , V ) be an irreducible genuine representation of Ã and let χ be
a character of Z(F)= F× such that χ |E×2∩F× = τ̃ |E×2∩F×. Then

dim HomF×(τ̃ , χ)= [E× : F×E×2
].

Proof. Note that E×2
∩ F× = Z×2

∩ F×. From Proposition 3.2, τ̃ |Z̃ ∼=�(ωπ1). If a
character µ ∈�(ωπ1) is specified on F× then it is specified on F×E×2. Therefore
the number of characters in �(ωπ1) which agree with χ when restricted to F× is
equal to [E× : F×E×2

]. �
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4. A theorem of Casselman and Prasad

As mentioned in the introduction, we use results of part (B) involving principal
series representation and “transfer” these to the other cases, as stated in part (C)
which involves restriction of the two representations. To make such a transfer
possible Prasad used a result which says that if two irreducible representations of
GL2(E) have the same central characters then the difference of their characters
is a smooth function on GL2(E). We will need a similar theorem for G̃L2(E),
which we prove in this section. In order to do this, we recall a variant of a theorem
of Rodier which is true for covering groups in general; this variant is proved in
[Patel 2015]. Let us first recall some facts about germ expansions, restricted only
to S̃L2(E).

For any nonzero nilpotent orbit in sl2(E) there is a lower triangular nilpotent
matrix Ya =

( 0
a

0
0

)
such that Ya belongs to the nilpotent orbit. For a given nonzero

nilpotent orbit, the element a is uniquely determined modulo E×2. We write Na for
the nilpotent orbit which contains Ya . Thus the set of all nonzero nilpotent orbits is
{Na | a ∈ E×/E×2

}.
Let τ be an irreducible admissible genuine representation of S̃L2(E). Recall that

for an irreducible admissible genuine representation τ of S̃L2(E), the character
distribution 2τ is a smooth function on the set of regular semisimple elements. The
Harish-Chandra–Howe character expansion of 2τ in a neighborhood of the identity
is given as follows:

2τ ◦ exp= c0(τ )+
∑

a∈E×/E×2

ca(τ ) · µ̂Na

where c0(τ ), ca(τ ) are constants and µ̂Na is the Fourier transform of a suitably
chosen SL2(E)-invariant (under the adjoint action) measure on Na .

Fix a nontrivial additive character ψ of E . Define a character χ of N by χ
( 1

0
x
1

)
=

ψ(x). For a ∈ E× we write ψa for the character of E given by ψa(x)=ψ(ax). We
write (N , ψ) for the nondegenerate Whittaker datum (N , χ). It can be seen that the
set of conjugacy classes of nondegenerate Whittaker data has a set of representatives
{(N , ψa) | a ∈ E×/E×2

}.
From the proof of the main theorem in [Patel 2015], the bijection between
{Na | a ∈ E×/E×2

} and {(N , ψa) | a ∈ E×/E×2
} given by Na↔ (N , ψa) satisfies

the following property: ca 6= 0 if and only if the representation τ of S̃L2(E) admits
a nonzero (N , ψa)-Whittaker functional.

It follows from [Gelbart et al. 1979, Theorem 4.1] that for any nontrivial additive
character ψ ′ of N, the dimension of the space of (N , ψ ′)-Whittaker functionals for
τ is at most one. Therefore, from the theorem of Rodier, as extended in [Patel 2015],
each ca(τ ) is either 1 or 0 depending on whether τ admits a nonzero Whittaker
functional corresponding to the nondegenerate Whittaker datum (N , ψa) or not.
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Remark 4.1. Let G̃ be a topological central extension of a connected reductive
group G by µr , a cyclic group of order r . For g ∈ G̃ there exists a semisimple
element gs ∈ G̃ such that g belongs to any conjugation invariant neighborhood of
gs ∈ G̃.

Let τ1 and τ2 be two irreducible admissible genuine representations of S̃L2(E).
Note that {±̃1} is the center of S̃L2(E) and these are the only nonregular semisimple
elements of S̃L2(E). It is known that the character distributions 2τ1 and 2τ2 are
given by smooth functions at regular semisimple elements. Therefore 2τ1 −2τ2

is also a smooth function at regular semisimple elements. For i = 1, 2, and any
element z ∈ {±̃1}, the character expansion of τi in a neighborhood of z is given
by the ωτi (z) multiplied by the character expansion of τi in a neighborhood of the
identity. Therefore, if we know that 2τ1 −2τ2 is also smooth in a neighborhood of
the identity and both the representations τ1 and τ2 have the same central characters
then 2τ1 −2τ2 is a smooth function on the whole of S̃L2(E).

For any nontrivial additive character ψ ′ of E , let us assume that τ1 admits a
nonzero Whittaker functional for (N , ψ ′) if and only if τ2 does so too. Under this
assumption ca(τ1)= ca(τ2) for all a ∈ E×/E×2. Then we have the following result.

Theorem 4.2. Let τ1, τ2 be two irreducible admissible genuine representations of
S̃L2(E) with the same central characters. For a nontrivial additive character ψ ′

of E , assume that τ1 admits a nonzero Whittaker functional with respect to (N , ψ ′)
if and only if τ2 admits a nonzero Whittaker functional with respect to (N , ψ ′).
Then 2τ1 −2τ2 is constant in a neighborhood of identity and hence extends to a
smooth function on all of S̃L2(E).

Using Theorem 4.2, we prove an extension of a theorem of Casselman and
Prasad [Prasad 1992, Theorem 2.7]. From [Patel and Prasad 2016], let us recall the
following lemma.

Lemma 4.3. Let π be an irreducible admissible genuine representation of G̃L2(E).
Write G̃L2(E)+ = Z̃ · S̃L2(E). Then there exists an irreducible admissible genuine
representation τ of S̃L2(E) and a genuine character µ of Z̃ with µ|

{±̃1} = ωτ and

π ∼= indG̃L2(E)
G̃L2(E)+

µτ.

Moreover, we have

π |̃GL2(E)+
∼=

⊕
a∈G̃L2(E)/̃GL2(E)+

µaτ a.

Now we prove the theorem of Casselman and Prasad for the G̃L2(E).

Theorem 4.4. Let ψ be a nontrivial character of E. Let π1 and π2 be two ir-
reducible admissible genuine representations of G̃L2(E) with the same central
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characters such that (π1)N ,ψ ∼= (π2)N ,ψ as Z̃-modules. Then 2π1 −2π2 , initially
defined on regular semisimple elements of G̃L2(E), extends to a smooth function on
all of G̃L2(E).

Proof. We know that 2π1 and 2π2 are smooth on the set of regular semisimple
elements, so is2π1−2π2 . To prove the smoothness of2π1−2π2 on all of G̃L2(E),
we need to prove the smoothness at every point in Z̃ . As Z̃ is not the center of
G̃L2(E), the smoothness at the identity is not enough to imply the smoothness
at every point in Z̃ . Note that Z̃ is the center of G̃L2(E)+ := Z̃ · S̃L2(E) and
G̃L2(E)+ is an open and normal subgroup of G̃L2(E) of index [E× : E×2

].
Using Lemma 4.3, choose irreducible admissible genuine representations τ1 and

τ2 of S̃L2(E) and genuine characters µ1, µ2 of Z̃ such that

(7) π1 = indG̃L2(E)
G̃L2(E)+

(µ1τ1) and π2 = indG̃L2(E)
G̃L2(E)+

(µ2τ2).

From Lemma 4.3, we have

(8) π1 |̃GL2(E)+ =
⊕

a∈E×/E×2

(µ1τ1)
a and π2 |̃GL2(E)+ =

⊕
a∈E×/E×2

(µ2τ2)
a.

We also know that all the characters µa
1 for a ∈ E×/E×2 are distinct. From the

identity (8) we find that

(9) (π1)N (E),ψ =
⊕

a∈E×/E×2

µa
1(τ

a
1 )N (E),ψ and (π2)N (E),ψ =

⊕
a∈E×/E×2

µa
2(τ

a
2 )N (E),ψ .

Since (π1)N ,ψ ∼= (π2)N ,ψ as Z̃ -modules, in particular, the parts corresponding to
µa-eigenspaces are isomorphic for all a ∈ E×/E×2. Therefore µ1 = µ

b
2 for some

b ∈ E×/E×2. Since
π2 = indG̃L2(E)

G̃L2(E)+
(µ2τ2)= indG̃L2(E)

G̃L2(E)+
(µb

2τ
b
2 ),

by changing τ2 by τ b
2 , we can assume π1= indG̃L2(E)

G̃L2(E)+
(µτ1), and π2= indG̃L2(E)

G̃L2(E)+
(µτ2).

Now (π1)N (E),ψ∼= (π2)N (E),ψ as Z̃ -modules translates into (τ a
1 )N (E),ψ∼= (τ

a
2 )N (E),ψ

for all a ∈ E×/E×2. Therefore, by Theorem 4.2, 2τ a
1
− 2τ a

2
is constant in a

neighborhood of the identity for all a ∈ E×/E×2.
Let 2ρ,g denote the character expansion of an irreducible admissible representa-

tion ρ in a neighborhood of the point g. Then

2π1,z̃ =
∑

a∈E×/E×2

2(µτ1)a, z̃ =
∑

a∈E×/E×2

µa(z̃)2τ a
1 ,1

and
2π2,z̃ =

∑
a∈E×/E×2

2(µτ2)a, z̃ =
∑

a∈E×/E×2

µa(z̃)2τ a
2 ,1.

This proves that 2π1 −2π2 is a constant function on regular semisimple points
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in some neighborhood of z̃ for all z̃ ∈ Z̃ ⊂ G̃L2(E), and therefore it extends to
a smooth function in that neighborhood of z̃. Thus 2π1 −2π2 , which is initially
defined on regular semisimple elements of G̃L2(E), extends to a smooth function
on all of G̃L2(E). �

Corollary 4.5. Let π1, π2 be two irreducible admissible genuine representations
of G̃L2(E) with the same central character such that (π1)N ,ψ ∼= (π2)N ,ψ as Z̃-
modules. Let H be a subgroup of G̃L2(E) that is compact modulo center. Then
there exist finite-dimensional representations σ1, σ2 of H such that

π1|H ⊕ σ1 ∼= π2|H ⊕ σ2.

In other words, this corollary says that the virtual representation (π1−π2)|H is
finite-dimensional and hence the multiplicity of an irreducible representation of H
in (π1−π2)|H will be finite.

5. Part C of Theorem 1.5

Let π1 be an irreducible admissible genuine representation of G̃L2(E). We take
another admissible genuine representation π ′1 having the same central character as
that of π1 and satisfying (π1)N (E),ψ ⊕ (π

′

1)N (E),ψ ∼=�(ωπ1) as Z̃ -modules. From
Proposition 3.2, if π1 is a principal series representation then we can take π ′1 = 0.
It can be seen that if π1 is not a principal series representation then (π1)N (E),ψ is a
proper Z̃ -submodule of �(ωπ1) forcing π ′1 6= 0. In particular, if π1 is one of the
Jordan–Hölder factors of a reducible principal series representation then one can
take π ′1 to be the other Jordan–Hölder factor of the principal series representation.
It should be noted that for a supercuspidal representation π1 we do not have any
obvious choice for π ′1.

Let π2 be a supercuspidal representation of GL2(F). To prove Theorem 1.5
in this case, we use character theory and deduce the result by using the result of
restriction of a principal series representation of G̃L2(E) which has already been
proved in Section 3. We can assume, if necessary after twisting by a character
of F×, that π2 is a minimal representation. Recall that an irreducible representation
π2 of GL2(F) is called minimal if the conductor of π2 is less than or equal to the
conductor of π2⊗χ for any character χ of F×. By a theorem of Kutzko [1978], a
minimal supercuspidal representation π2 of GL2(F) is of the form indGL2(F)

K (W2),
where W2 is a representation of a maximal compact modulo center subgroup K of
GL2(F). By Frobenius reciprocity,

HomGL2(F)(π1⊕π
′

1, π2)= HomGL2(F)
(
π1⊕π

′

1, indGL2(F)
K (W2)

)
= HomK

(
(π1⊕π

′

1)|K,W2
)
.

To prove Theorem 1.5, it suffices to prove that

dim HomK((π1⊕π
′

1)|K,W2)+ dim HomD×F
(π1⊕π

′

1, π
′

2)= [E
×
: F×E×2

].
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For any (virtual) representation π of G̃L2(E), let m(π,W2)= dim HomK[π |K,W2]

and m(π, π ′2)= dim HomD×F
[π, π ′2]. With these notations we will prove

(10) m(π1⊕π
′

1,W2)+m(π1⊕π
′

1, π
′

2)= [E
×
: F×E×2

].

Let Ps be an irreducible principal series representation of G̃L2(E) whose central
character ωPs is the same as the central character ωπ1 of π1 (it is clear that one
exists). By Proposition 3.2, we know that (Ps)N (E),ψ ∼= �(ωPs) as a Z̃ -module.
On the other hand, the representation π ′1 has been chosen in such a way that
(π1)N (E),ψ ⊕ (π

′

1)N (E),ψ =�(ωπ1) as a Z̃ -module. Then, as a Z̃ -module we have

(π1⊕π
′

1)N (E),ψ = (π1)N (E),ψ ⊕ (π
′

1)N (E),ψ =�(ωπ1)=�(ωPs)= (Ps)N (E),ψ .

We have already proved in Section 3 that

m(Ps,W2)+m(Ps, π ′2)= [E
×
: F×E×2

].

In order to prove equation (10), we prove

(11) m(π1⊕π
′

1− Ps,W2)+m(π1⊕π
′

1− Ps, π ′2)= 0.

The relation in equation (11) follows from the following theorem:

Theorem 5.1. Let 51,52 be two genuine representations of G̃L2(E) of finite
length, having the same central characters, and such that(51)N (E),ψ ∼= (52)N (E),ψ

as Z̃-modules. Let π2 be an irreducible supercuspidal representation of GL2(F)
such that the central characters ω51 of 51 and ωπ2 of π2 agree on F× ∩ E×2.
Let π ′2 be the finite-dimensional representation of D×F associated to π2 by the
Jacquet–Langlands correspondence. Then

m(51−52, π2)+m(51−52, π
′

2)= 0.

We will use character theory to prove this relation, following [Prasad 1992] very
closely. First of all, by Theorem 4.4, 251−52 is given by a smooth function on
G̃L2(E). Now we recall the Weyl integration formula for GL2(F).

5A. Weyl integration formula.

Lemma 5.2 [Jacquet and Langlands 1970, Formula 7.2.2]. For a smooth and
compactly supported function f on GL2(F) we have

(12)
∫

GL2(F)
f (y)dy =

∑
Ei

∫
Ei

4(x)
(

1
2

∫
Ei\GL2(F)

f (ḡ−1x ḡ) dḡ
)

dx,

where the Ei are representatives for the distinct conjugacy classes of maximal tori
in GL2(F) and

4(x)=
∥∥∥(x1− x2)

2

x1x2

∥∥∥
F
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where x1 and x2 are the eigenvalues of x.

We will use this formula to integrate the function f (x)=251−52 ·2W2(x) on K
which is extended to GL2(F) by setting it to be zero outside K. In addition, we also
need the following result of Harish-Chandra, cf. [Prasad 1992, Proposition 4.3.2].

Lemma 5.3 (Harish-Chandra). Let F(g) = (gv, v) be a matrix coefficient of a
supercuspidal representation π of a reductive p-adic group G with center Z. Then
the orbital integrals of F at regular nonelliptic elements vanish. Moreover, the
orbital integral of Fat a regular elliptic element x contained in a torus T is given
by the formula

(13)
∫

T \G
F(ḡ−1x ḡ)dḡ =

(v, v) ·2π (x)
d(π) · vol(T/Z)

,

where d(π) denotes the formal degree of the representation π (which depends on a
choice of Haar measure on T \G).

Since π2 is obtained by induction from W2, a matrix coefficient of W2 (extended
to GL2(F) by setting it to be zero outside K) is also a matrix coefficient of π2. It
follows that

(1) for the choice of Haar measure on GL2(F)/F× giving K/F× measure 1,

dim W2 = d(π2),

(2) for a separable quadratic field extension Ei of F and a regular elliptic element
x of GL2(E) which generates Ei , and for the above Haar measure dḡ,

(14)
∫

E×i \GL2(F)
2W2(ḡ

−1x ḡ)dḡ =
2π2(x)

vol(E×i /F×)
.

Equation (14) can be explained as follows. Let the dimension of W2 be n and let
{e1, . . . , en} be an orthonormal basis of W2. For g ∈ K the map g 7→ Fi (g) :=
< gei , ei > defines a matrix coefficient of W2 for all i = 1, . . . , n. Then 2W2(g)=∑n

i=1 Fi (g). Now consider all these Fi as matrix coefficients of π2. Apply
Lemma 5.3 for F = Fi and sum up over all i = 1, . . . , n then we get equation (14),
since d(π2)= dim W2 = n.

5B. Completion of the proof of Theorem 1.5. We recall the following important
observations from Section 5A and Theorem 4.4:

(1) The virtual representation (51−52)|K is finite-dimensional.

(2) 2W2 is a matrix coefficient of π2 (extended to GL2(F) by zero outside K).

(3) There is Haar measure on GL2(F)/F× giving vol(K/F×)= 1 such that the
(14) is satisfied.

(4) The orbital integral in equation (13) vanishes if T is the maximal split torus.
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Let the Ei ’s be the quadratic extensions of F. Then these observations together
with Lemma 5.3 imply the following

m(51−52,W2)

=
1

vol(K/F×)

∫
K/F×

251−52 ·2W2(x) dx

=
1

vol(K/F×)

∫
GL2(F)/F×

251−52 ·2W2(x) dx

=
1

vol(K/F×)

∑
Ei

∫
E×i /F×

4(x)
[

1
2

∫
E×i \GL2(F)

251−52 ·2W2(ḡ
−1x ḡ) dḡ

]
dx

=

∑
Ei

1
2 vol(E×i /F×)

∫
E×i /F×

(4 ·251−52 ·2π2)(x) dx .

Similarly, we have the equality

m(51−52, π
′

2)=
∑

Ei

1
2 vol(E×i /F×)

∫
E×i /F×

(4 ·251−52 ·2π ′2
)(x)dx .

Note that the Ei ’s correspond to quadratic extensions of F and the embeddings of
GL2(F) and D×F have been fixed so that Working Hypothesis 1.3 (as stated in the
introduction) is satisfied, i.e., the embeddings of the Ei in GL2(F) and in D×F are
conjugate in G̃L2(E). Then the value of 251−52(x) for x ∈ Ei , does not depend on
the inclusion of Ei inside G̃L2(E), i.e., on whether the inclusion is via GL2(F) or
via D×F . Now using the relation 2π2(x)=−2π ′2(x) on regular elliptic elements x
[Jacquet and Langlands 1970, Proposition 15.5], we conclude the following, which
proves equation (11):

m(51−52,W2)+m(51−52, π
′

2)= 0.

6. A remark on higher multiplicity

We have shown that the restriction of an irreducible admissible representation of
G̃L2(E), for example a principal series representation, to the subgroup GL2(F)
has multiplicity more than one. Given the important role multiplicity one theorems
play, it would be desirable to modify the situation so that multiplicity one might
be true. One natural way to do this is to decrease the larger group, and increase
the smaller group. In this section we discuss some natural subgroups of the group
G̃L2(E) which can be used, but unfortunately, it still does not help one to achieve
multiplicity one situation. We discuss this modification in this section in some
detail.
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Let us take the subgroup of G̃L2(E) which is generated by GL2(F) and Z̃ . We
will prove that this subgroup also fails to achieve multiplicity one for the restriction
problem from G̃L2(E) to GL2(F) · Z̃ . Let

H = GL2(F)⊂ H+ = Z ·GL2(F)⊂ GL2(E).

We will show that the restriction of an irreducible admissible representation of
G̃L2(E) to the subgroup H̃+ has higher multiplicity. Note that the subgroups Z̃ and
GL2(F) do not commute but Z̃2 commutes with GL2(F). In fact, the commutator
relation is given by

(15) [ẽ, g̃] = (e, det g)E ∈ {±1} ⊂ G̃L2(E),

where ẽ ∈ Z̃ and g̃ ∈ G̃L2(F) lie over elements e ∈ Z and g ∈GL2(F) respectively,
and (−,−)E denotes the Hilbert symbol for the field E . The lemma below proves
that the center of H̃+ is Z̃2 F×.

Lemma 6.1. For an element e ∈ E×, the map F×→{±1} defined by f 7→ (e, f )E

is trivial if and only if e ∈ F×E×2.

Proof. Let (· , ·)E and (· , ·)F denote the Hilbert symbol of the field E and F
respectively. For e ∈ E× and f ∈ F×, the following is well known [Bender 1973]:

(e, f )E = (NE/F (e), f )F ,

where NE/F is the norm map of the extension E/F . Therefore, if (e, f )E = 1 is
true for all f ∈ F×, then by the nondegeneracy of the Hilbert symbol (· , ·)F one
will have NE/F (e) ∈ F×2. The inverse image of F×2 under the norm map NE/F

is now seen to be E×2 F× since this subgroup surjects onto F×2 under the norm
mapping, and contains the kernel {z/z̄ = z2/zz̄ : z ∈ E×} of NE/F . �

Let σ be an irreducible admissible representation of GL2(F). For any character
χ of F× let us abuse the notation and simply write σ ⊗χ for σ ⊗ (χ ◦det). By the
commutator relation (15), for a ∈ Z and g ∈ GL2(F) we have

a(g, ε)a−1
= (g, χa(det g)ε),

where χa is given by x 7→ (x, a)E for all x ∈ E×. Therefore, the conjugation action
by a ∈ Z takes σ to the quadratic twist σ ⊗ χa . We have the following lemma
which easily follows from Clifford theory.

Lemma 6.2. Let H̃0 = Z̃2
· GL2(F). Let σ be an irreducible admissible rep-

resentation of GL2(F). Assume that σ ⊗ χa � σ for any nontrivial element
a ∈ E×/F×E×2. Fix a genuine character η of Z̃2 such that η|F×∩Z̃2 = ωσ |F×∩Z̃2 .
Then ρ = IndH̃+

H̃0
(ησ ) is an irreducible representation of H̃+. The representation

ρ is the only irreducible representation of H̃+ whose central character restricted
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to Z̃2 is η and also contains σ . Moreover, ρ|H̃0
∼=
⊕

a∈E×/F×E×2 η(σ ⊗ χa). In
particular, from Lemma 6.1, the restriction of ρ to H̃0 is multiplicity free.

Note that if σ is a principal series representation of GL2(F) which is not of
the form Ps(χ1, χ2) with χ1/χ2 a quadratic character, then such principal series
representation of GL2(F) have no nontrivial self twist, i.e., for any character χ
of F× the relation Ps(χ1, χ2)⊗ (χ ◦ det) ∼= Ps(χ1, χ2) implies that χ is trivial.
Let π be an irreducible admissible genuine representation of G̃L2(E) such that
dim HomGL2(F)(π, σ )≥ 2. Let η be the central character of π . Note that the central
character of any irreducible representation of H̃+, which is contained in π, agrees
with η when restricted to Z̃2. As in the previous lemma, we let ρ = IndH̃+

H̃0
(ησ ).

The representation ρ is the only representation of H̃+ which appears in π and
contains σ . So the multiplicity of such a principal series representation σ of GL2(F)
in the restriction of an irreducible admissible genuine representation of G̃L2(E) is
the same as the multiplicity of the corresponding irreducible representation of H̃+,
i.e., dim HomH̃+(π, ρ) = dim HomGL2(F)(π, σ ) ≥ 2. Thus we conclude that the
restriction of representations of G̃L2(E) to H̃+ has higher multiplicity.

On the other hand, let us take the group G = {g ∈ GL2(E) : det g ∈ F×E×2
}.

Note that this subgroup G contains GL2(E)+ = Z ·SL2(E). We will prove that the
pair (G̃,GL2(F)) also fails to achieve multiplicity one for the restriction problem
from G̃ to GL2(F). From the commutation relation (15), it follows that the center
of the group G̃ is F̃×Z2. Recall that the restriction from G̃L2(E) to G̃L2(E)+
is multiplicity free and G̃ ⊃ G̃L2(E)+, thus the restriction from G̃L2(E) to G̃ is
also multiplicity free. Let π be an irreducible admissible genuine representation of
G̃L2(E) and ρ be an irreducible admissible genuine representation of G̃ such that
ρ ↪→ π |G̃ . Then we have

π |G̃ =
⊕

a∈E×/F×E×2

ρa.

For a1 6= a2 in E×/F×E×2, ρa1 � ρa2 . In fact, the central characters of ρa1 and
ρa2 are different when restricted to F×.

Let π be an irreducible admissible genuine representation of G̃L2(E) and σ an
irreducible admissible representation of GL2(F) such that

dim HomGL2(F)(π, σ )≥ 2.

If HomGL2(F)(ρ
a1, σ ) 6= 0 then HomGL2(F)(ρ

a2, σ )= 0 for a2 6= a1 in E×/F×E×2,
since the central character of ρa2 restricted to F× will be different from the
central character of σ . Thus there exists only one a ∈ E×/F×E×2 such that
HomGL2(F)(ρ

a, σ ) 6= 0. We can assume that HomGL2(F)(ρ, σ ) 6= 0. We have

HomGL2(F)(ρ, σ )= HomGL2(F)(π, σ )

and hence dim HomGL2(F)(ρ, σ )≥ 2.
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HESSIAN EQUATIONS ON CLOSED HERMITIAN MANIFOLDS

DEKAI ZHANG

We solve the complex Hessian equation on closed Hermitian manifolds, which
generalizes the Kähler case proven by Hou, Ma and Wu and Dinew and
Kołodziej. Solving the equation can be reduced to the derivation of a priori
second-order estimates. We introduce a new method to prove the C0 esti-
mate. The C2 estimate can be derived if we use the auxiliary function which
is mainly due to Hou, Ma and Wu and Tosatti and Weinkove.

1. Introduction

Let (M, ω) be a closed Hermitian manifold of complex dimension n ≥ 2. In this
paper, we study the Hessian equation

(1-1)


(n

k

)
ωk

u ∧ω
n−k
= e f ωn,

supM u = 0,
ωu = ω+

√
−1∂∂u ∈ 0k(M),

where
(n

k

)
= n!/(k!(n− k)!), 0k(M) is a convex cone (see (2-2) in Section 2) and

1≤ k ≤ n.
The complex Hessian equation is an important class of fully nonlinear elliptic

equations. It arises naturally from many significant geometric problems. When
k= 1, it is the classical Laplacian equation. For k= n, equation (1-1) is the complex
Monge–Ampère equation

(1-2) ωn
u = e f ωn, sup

M
u = 0.

Yau [1978] solved equation (1-2) on compact Kähler manifolds, and his solution is
now known as Calabi–Yau theorem. For general Hermitian manifolds, (1-2) has been
solved by Cherrier [1987] for dimension 2. Guan and Li [2010] and Zhang [2010]
obtained C1 and C2 estimates for dimension n ≥ 2. Finally, Tosatti and Weinkove
[2010] derived the C0 estimate and thus solved (1-2) for arbitrary dimension.

While 1 < k < n, equation (1-1) has more complicated structure and also is
closely related to many important geometric problems. For example, for k = 2, it

MSC2010: 35J60, 53C55.
Keywords: Hessian equations, closed Hermitian manifolds, a priori estimates.
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relates to Fu and Yau’s [2008] generalization of the Strominger system which comes
from superstring theory. Several significant results about the Fu–Yau equation have
been obtained by Phong, Picard and Zhang [Phong et al. 2016a; 2016b; 2017].
When k = n− 1, it has similar features to the Monge–Ampère type equation in the
study of Gauduchon conjecture by Tosatti and Weinkove [2015; 2017] and Tosatti,
Weinkove and Székelyhidi [Székelyhidi et al. 2015].

We now come back to the complex Hessian equation. To solve it, it is crucial to
derive the a priori estimates up to second-order. If (M, ω) is a Kähler manifold,
Hou, Ma and Wu [Hou et al. 2010] proved

(1-3) max |∂∂u|g ≤ C(1+max |∇u|2g),

where C does not depend on the gradient bound of the solution.
They also pointed out that (1-3) may be adapted to the blow up analysis to get

the gradient estimate. Later on, combining (1-3) with a blow up argument, Dinew
and Kołodziej [2017] obtained the gradient estimate. Then equation (1-1) can be
solved on Kähler manifolds.

In this paper, we solve the complex Hessian equation on closed Hermitian
manifolds. More precisely,

Theorem 1.1. Let (M, g) be a closed Hermitian manifold of complex dimension
n ≥ 2 and f be a smooth real function on M. Then there exist a unique real number
b and a unique smooth real function u on M solving

(1-4)
(

n
k

)
ωk

u ∧ω
n−k
= e f+bωn, ωu ∈ 0k(M), sup

M
u = 0.

We use the continuity method to solve problem (1-4). The openness follows
from implicit function theory. The closeness argument can be reduced to a priori
estimates up to the second order by the standard Evans–Krylov theory. Actually,
we can derive the zero-order estimate and the second-order estimate of solutions of
equation (1-1) and thus use the blow up method to obtain the gradient estimate.

For the complex Monge–Ampère equation on closed Hermitian manifolds, Tosatti
and Weinkove [2010] derived C0 estimate by proving a Cherrier-type inequality
which was originally proved in [Cherrier 1987]. For the Hessian equation (1-1), we
can prove a similar Cherrier-type inequality by a new method which combines an
inductive argument with key inequalities for k-th elementary symmetric functions
in [Chou and Wang 2001]. For the C2 estimate, the main difficulty is that there are
new terms of the form T ∗D3u, where T is the torsion of ω. To control these terms,
we use the auxiliary function due to Tosatti and Weinkove [2013]. The auxiliary
function originally comes from Hou, Ma and Wu [Hou et al. 2010]. For the Hessian
equation, the main difference is that for equation (1-1) we need to apply some
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lemmas for the k-th elementary symmetric functions which were proved by Hou,
Ma and Wu [Hou et al. 2010].

The rest of the paper is organized as follows. In Section 2, we give some
preliminaries. In Section 3, a Cherrier-type inequality is derived, and then we obtain
the C0 estimate. In Section 4, we prove the C2 estimate by a similar auxiliary
function used in [Tosatti and Weinkove 2013].

Székelyhidi [2015] has also obtained similar results, but our methods are different.

2. Preliminaries

Let (M, g) be a closed Hermitian manifold and let ∇ denote the Chern connection
of g. In this section we give some preliminaries about the k-th elementary symmetric
function and the commutation formula of covariant derivatives.

Elementary symmetric functions. The k-th elementary symmetric function is de-
fined by

σk(λ)=
∑

1≤i1<···<ik≤n

λi1 · · · λik ,

where λ= (λ1, . . . , λn) ∈ Rn. Let λ(ai j ) denote the eigenvalues of the Hermitian
matrix {ai j }; we define

σk(ai j )= σk(λ{ai j }).

The definition of σk can be naturally extended to a Hermitian manifold. Indeed, let
A1,1(M,R) be the space of smooth real (1, 1)-forms on M ; for χ ∈ A1,1(M,R) we
define

σk(χ)=

(
n
k

)
χ k
∧ωn−k

ωn .

Definition 2.1.

(2-1) 0k := {λ ∈ Rn
: σj (λ) > 0, j = 1, . . . , k}.

Similarly, we define 0k on M as follows

(2-2) 0k(M) := {χ ∈ A1,1(M,R) : σj (χ) > 0, j = 1, . . . , k}.

Furthermore, σr (λ|i1 · · · il), with i1, . . . , il being distinct, denotes the r -th sym-
metric function with λi1 = · · · = λil = 0. For more details about elementary
symmetric functions, one can see the lecture notes [Wang 2009].

To prove the C0 estimate, we need the following lemma for elementary symmetric
functions:
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Lemma 2.2. Suppose that λ ∈ 0k, 3 ≤ k ≤ n and λ1 ≥ λ2 ≥ · · · ≥ λn . Then there
exists a positive constant C depending only on k and n, such that for 1≤ i ≤ k−2,

(2-3) |λ j1λ j2 · · · λ ji | ≤ (n− 3)k−2σi (λ| j), 1≤ j1 < j2 < · · ·< ji ≤ n,

jl 6= j, 1≤ l ≤ i, 1≤ j ≤ n.

Proof. Since
n∑

p=k

λp = σ1(λ|12 · · · k− 1) > 0, and λ1 ≥ λ2 ≥ · · · ≥ λn,

then

(2-4) |λp| ≤ (n− k)λk, k+ 1≤ p ≤ n.

We first prove the lemma for k = 3. In this case, one needs to prove

|λl | ≤ Cσ1(λ| j) for 1≤ j, l ≤ n and l 6= j.

Since σ1(λ| j)= λl + σ1(λ| jl), λl ≤ σ1(λ| j). Now, if λl < 0, then l ≥ 4. By (2-4),

|λl | ≤ (n− 3)λ3 ≤ σ1(λ| j), 4≤ l ≤ n.

Then the lemma follows for k = 3.
Next we prove the lemma for the general k, 3≤ k ≤ n.
If j > i , since i ≤ k− 2, λ| j ∈ 0i+1, applying [Lin and Trudinger 1994, p. 322,

(19)] yields σi (λ| j)≥ λ1 · · · λi . Since 1≤ l ≤ i ≤ k− 2, by (2-4) we have

|λ jl | ≤max{λl, (n− k)λk} ≤ (n− k)λl .

Then

(2-5) |λ j1λ j2 · · · λ ji | ≤ (n− k)iλ1 · · · λi ≤ (n− k)k−2σi (λ| j).

If j ≤ i , applying [Lin and Trudinger 1994, p. 322, (19)] yields

σi (λ| j)≥ λ1 · · · λ j−1λ j+1 · · · λi+1.

Note jl 6= j, so

|λ jl | ≤

{
(n− 3)λl, jl < j,
(n− 3)λl+1, jl > j.

Therefore, we have

(2-6) |λ j1λ j2 · · · λ ji | ≤ (n− k)iλ1 · · · λ j−1λ j+1 · · · λi+1 ≤ (n− k)k−2σi (λ| j).

Combining (2-5) and (2-6), we obtain

|λ j1λ j2 ···λ ji | ≤ (n− 3)k−2σi (λ| j), 1≤ j1 < j2 < ···< ji ≤ n,

jl 6= j, 1≤ l ≤ i, 1≤ j ≤ n. �
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By Lemma 2.2, we immediately obtain the following lemma which is a key
ingredient in proving Lemma 3.2:

Lemma 2.3. There exists a positive constant C depending only on (M, ω) and n
such that

(2-7)
∣∣∣√−1∂u ∧ ∂u ∧ωi−1

u ∧ Ti

ωn

∣∣∣≤ C

√
−1∂u ∧ ∂u ∧ωi

u ∧ω
n−i−1

ωn ,

where Ti is defined as the combinations of ω, ∂ω, ∂∂ω; more precisely,

Ti =
∑

0≤3p+2q≤n−i

ωn−i−3p−2q
∧ (
√
−1)p(∂ω)p

∧ (∂ω)p
∧ (
√
−1)q(∂∂ω)q

for 1≤ i ≤ k− 1.

Proof. For x ∈ M, we choose the coordinates such that

ω(x)=
√
−1

n∑
j=1

dz j
∧ dz j , ωu(x)=

√
−1

n∑
j=1

λ j dz j
∧ dz j ,

and λ1 ≥ λ2 ≥ · · · ≥ λn. Write Ti as follows:

Ti = (
√
−1)n−i (Ti )l1···ln−i ,m1,···mn−i dzl1 ∧ · · · ∧ dzln−i ∧ dzm1 ∧ · · · ∧ dzmn−i .

Then

(2-8)
∣∣∣√−1∂u ∧ ∂u ∧ωi

u ∧ Ti

ωn

∣∣∣≤ C
n∑

j,l=1

∑
1≤ j1<···< ji≤n,6= j,l

|u j ||ul ||λ j1λ j2 ···λ ji |

≤ C
n∑

j=1

∑
1≤ j1<···< ji≤n
jl 6= j,1≤l≤i

|u j |
2
|λ j1λ j2 ···λ ji |

≤ C
n∑

j=1

σi (λ| j)|u j |
2

= C

√
−1∂u ∧ ∂u ∧ωi

u ∧ω
n−i−1

ωn ,

where we have used Lemma 2.2 in the last inequality and C depends on the
bound of the torsion and the curvature of (M, ω). �

Commutation formula of covariant derivatives. We have, in local complex coor-
dinates z1, . . . , zn ,

(2-9) gi j = g
(
∂

∂zi ,
∂

∂z j

)
, {gi j

} = {gi j }
−1

For the Chern connection ∇, we denote the covariant derivatives

(2-10) ui =∇∂/∂zi u, ui j =∇∂/∂z j∇∂/∂zi u, ui jk =∇∂/∂zk∇∂/∂z j∇∂/∂zi u.
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We use commutation formulas for covariant derivatives on Hermitian manifolds
which can be found in [Tosatti and Weinkove 2013]:

ui jl = ul j i − T p
li up j , upi j = up ji + uq Ri j p

q , ui p j = ui j p − T q
jpuiq .(2-11)

ui jlm = ulmi j + up j Rlmi
p
− upm Ri jl

p
− T p

li upm j − T p
mj ul pi − T p

li T q
mj upq .(2-12)

3. Zero-order estimate

In this section we derive the zero-order estimate by proving a Cherrier-type in-
equality and the lemmas in [Tosatti and Weinkove 2010]. Since the constant b in
Theorem 1.1 satisfies

|b| ≤ sup | f | +C,

where C is a positive constant depending only on (M, ω). Thus, we will assume
b = 0 for convenience.

Theorem 3.1. Let u be a solution of Theorem 1.1. Then there exists a constant C
depending only on (M, ω), n, k and supM | f | such that

sup
M
|u| ≤ C.

Due to Tosatti and Weinkove’s results, finding the zero-order estimate can be
reduced to deriving a Cherrier-type inequality which was first proved by Cherrier
[1987]. For the Hessian equation, we use a new method which combines an inductive
argument with the key Lemma 2.3. Even for the Monge–Ampère equation, our
proof is different from that in [Tosatti and Weinkove 2010].

Lemma 3.2. There exist constants p0 and C depending only on (M, ω), n, k and
supM | f | such that for any p ≥ p0∫

M
|∂e−(p/2)u|2gω

n
≤ Cp

∫
M

e−puωn.

Remark 3.3. Recently, applying our key Lemma 2.2, Sun [2017] also proved the
lemma above.

Proof. By the equation, we have

ωk
u ∧ω

n−k
−ωn

=

(
e f(n
k

) − 1
)
ωn
≤ C0ω

n,

where C0 is a constant depending only on sup f, n and k. On the other hand,

(3-1) ωk
u ∧ω

n−k
−ωn

= (ωk
u −ω

k)∧ωn−k
=
√
−1∂∂u ∧α,

where α =
∑k

i=1 ω
i−1
u ∧ωn−i.
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Now multiply both sides in (3-1) by e−pu and integrate by parts:

(3-2) C0

∫
M

e−puωn
≥

∫
M

e−pu
√
−1∂∂u ∧α

=−

∫
M
∂e−pu

√
−1∂u ∧α+

∫
M

e−pu
√
−1∂u ∧ ∂α

= p
∫

M
e−pu
√
−1∂u ∧ ∂u ∧α− 1

p

∫
M

√
−1∂e−pu

∧ ∂α

= p
∫

M
e−pu
√
−1∂u ∧ ∂u ∧α+ 1

p

∫
M

e−pu
√
−1∂∂α

:= A+ B,

where we denote

A = p
∫

M
e−pu
√
−1∂u ∧ ∂u ∧

( k∑
i=1

ωi−1
u ∧ωn−i

)
, B = 1

p

∫
M

e−pu
√
−1∂∂α.

Our goal is to use term A to control term B. Direct calculation gives

∂α = n
k−1∑
i=1

ωi−1
u ∧ωn−i−1

∧ ∂ω+ (n− k)ωk−1
u ∧ωn−k−1

∧ ∂ω,

and

∂∂α = (n−k)(n−k−1)ωk−1
u ∧ωn−k−2

∧∂ω∧∂ω+ (n−k)ωk−1
u ∧ωn−k−1

∧∂∂ω

+ (n− k)(n+ k− 1)ωk−2
u ∧ωn−k−1

∧ ∂ω∧ ∂ω

+ n(n− 1)
k−3∑
i=0

ωi
u ∧ω

n−i−3
∧ ∂ω∧ ∂ω+ n

k−2∑
i=0

ωi
u ∧ω

n−i−2
∧ ∂∂ω.

Then we have

B =
(n− k)(n− k− 1)

p

∫
M

e−puωk−1
u ∧ωn−k−2

∧
√
−1∂ω∧ ∂ω

+
(n− k)

p

∫
M

e−puωk−1
u ∧ωn−k−1

∧
√
−1∂∂ω

+
(n+ k− 1)(n− k)

p

∫
M

e−puωk−2
u ∧ωn−k−1

∧
√
−1∂ω∧ ∂ω

+
n(n− 1)

p

k−3∑
i=0

∫
M

e−puωi
u ∧ω

n−i−3
∧
√
−1∂ω∧ ∂ω

+
n
p

k−2∑
i=0

∫
M

e−puωi
u ∧ω

n−i−2
∧
√
−1∂∂ω.
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When k = 2, term B just becomes

(3-3)

B =
(n− 2)(n− 3)

p

∫
M

e−puωu ∧ω
n−4
∧
√
−1∂ω∧ ∂ω

+
(n− 2)

p

∫
M

e−puωu ∧ω
n−3
∧
√
−1∂∂ω

+
(n+ 1)(n− 2)

p

∫
M

e−puωn−3
∧
√
−1∂ω∧ ∂ω

=
(n− 2)(n− 3)

p

∫
M

e−pu
√
−1∂∂u ∧ωn−4

∧
√
−1∂ω∧ ∂ω

+
(n− 2)

p

∫
M

e−pu
√
−1∂∂u ∧ωn−3

∧
√
−1∂∂ω

+
2(n− 1)(n− 2)

p

∫
M

e−puωn−3
∧
√
−1∂ω∧ ∂ω

+
(n− 2)

p

∫
M

e−puωn−2
∧
√
−1∂∂ω

≥
(n− 2)(n− 3)

p

∫
M

e−pu
√
−1∂∂u ∧ωn−4

∧
√
−1∂ω∧ ∂ω

+
(n− 2)

p

∫
M

e−pu
√
−1∂∂u ∧ωn−3

∧
√
−1∂∂ω−

C1

p

∫
M

e−puωn.

We next use integration by parts to deal with the first term and second term on the
right-hand side of the above equality. Indeed,

(3-4)
∫

M
e−pu
√
−1∂∂u ∧ωn−4

∧
√
−1∂ω∧ ∂ω

= p
∫

M
e−pu
√
−1∂u ∧ ∂u ∧ωn−4

∧
√
−1∂ω∧ ∂ω

+

∫
M

e−pu
√
−1∂u ∧

√
−1∂(ωn−4

∧ ∂ω∧ ∂ω)

= p
∫

M
e−pu
√
−1∂u ∧ ∂u ∧ωn−4

∧
√
−1∂ω∧ ∂ω

+
1
p

∫
M

e−pu
√
−1∂∂(ωn−4

∧
√
−1∂ω∧ ∂ω)

≥−pC1

∫
M

e−pu
√
−1∂u ∧ ∂u ∧ωn−1

−
C1

p

∫
M

e−puωn

≥−C1 A−
C1

p

∫
M

e−puωn.
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A similar calculation gives

(3-5)
∫

M
e−pu
√
−1∂∂u ∧ωn−3

∧
√
−1∂∂ω ≥−C1 A−

C1

p

∫
M

e−puωn.

Inserting (3-4) and (3-5) into (3-3), we have

B ≥−
C1

p
A−

C1

p

∫
M

e−puωn.

By (3-2) and choosing p0 = 2C1+ 1, we obtain for p ≥ p0

A
2
≤

(
1−

C1

p

)
A ≤

(C1

p
+C0

) ∫
M

e−puωn
≤ (C0+ 1)

∫
M

e−puωn.

By (3-7) below, we thus prove the lemma.
For the general k, 3≤ k ≤ n, we claim that there exist constants C1i depending

only on n, k and (M, ω) such that the following holds for 0≤ i ≤ k− 1:

(3-6)
∫

M
e−puωi

u ∧ Ti

≥−pC1i

k−2∑
j=0

∫
M

e−pu
√
−1∂u ∧ ∂u ∧ω j

u ∧ω
n− j−1

−C1i

∫
M

e−puωn,

where Ti is defined as the combinations of ω, ∂ω, ∂∂ω; more precisely

Ti =
∑

0≤3p+2q≤n−i

ωn−i−3p−2q
∧ (
√
−1)p(∂ω)p

∧ (∂ω)p
∧ (
√
−1)q(∂∂ω)q .

We use the claim (3-6) to prove the lemma:

B ≥−C1

k∑
i=2

∫
M

e−pu
√
−1∂u ∧ ∂u ∧ωk−i

u ∧ωn+i−k−1
−

C1

p

∫
M

e−puωn

≥−
C1

p
A−

C1

p

∫
M

e−puωn.

Thus we have (
1−

C1

p

)
A ≤

(C1

p
+C0

)∫
M

e−puωn.

Now we choose p0 = 2C1+ 1, then for any p ≥ p0,

p2
∫

M
e−pu
√
−1∂u ∧ ∂u ∧ωn−1

≤ 2p(C0+ 1)
∫

M
e−puωn.
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Therefore we have

(3-7)
∫

M
|∂e−(p/2)u|2gω

n
=

np2

4

∫
M

e−pu
√
−1∂u ∧ ∂u ∧ωn−1

≤
np(C0+ 1)

2

∫
M

e−puωn

= pC
∫

M
e−puωn.

Now, we prove the claim (3-6) by an inductive argument. When i = 1,∫
M

e−puωu ∧ T1

=

∫
M

e−puω∧ T1+

∫
M

e−pu
√
−1∂∂u ∧ T1

=

∫
M

e−puω∧ T1−

∫
M
∂e−pu

∧
√
−1∂u ∧ T1+

∫
M

e−pu
√
−1∂u ∧ ∂T1

=

∫
M

e−puω∧ T1+ p
∫

M
e−pu
√
−1∂u ∧ ∂u ∧ T1−

1
p

∫
M

√
−1∂e−pu

∧ ∂T1

= p
∫

M
e−pu
√
−1∂u ∧ ∂u ∧ T1+

∫
M

e−puω∧ T1−
1
p

∫
M

e−pu
∧
√
−1∂∂T1

≥−C1 p
∫

M
e−pu
√
−1∂u ∧ ∂u ∧ωn−1

−C1

∫
M

e−puωn.

Suppose that the claim is true for l ≤ i − 1; we will prove that the claim is also
true for l = i . Indeed,∫

M
e−puωi

u ∧ Ti =

∫
M

e−puωi−1
u ∧ω∧ Ti +

∫
M

e−pu
√
−1∂∂u ∧ωi−1

u ∧ Ti

=

∫
M

e−puωi−1
u ∧ω∧ Ti + p

∫
M

e−pu
√
−1∂u ∧ ∂u ∧ωi−1

u ∧ Ti

+

∫
M

e−pu∂u ∧
√
−1∂(ωi−1

u ∧ Ti )

:= Ai,1+ Ai,2+ Ai,3.

By the induction,

Ai,1 =

∫
M

e−puωi−1
u ∧ω∧ Ti

≥−pC1i (n, k, ω)
k−2∑
j=0

∫
M

e−pu
√
−1∂u ∧ ∂u ∧ω j

u ∧ω
n− j−1

−C1i (n, k, ω)
∫

M
e−puωn.



HESSIAN EQUATIONS ON CLOSED HERMITIAN MANIFOLDS 495

By the inequality (2-7) in Lemma 2.3, we have

(3-8) Ai,2 = p
∫

M
e−pu
√
−1∂u ∧ ∂u ∧ωi−1

u ∧ Ti

≥−pC2i

∫
M

e−pu
√
−1∂u ∧ ∂u ∧ωi−1

u ∧ωn−i.

Now we deal with the term Ai,3:

Ai,3 =

∫
M

e−pu∂u∧
√
−1∂(ωi−1

u ∧Ti )

=
1
p

∫
M

e−pu
√
−1∂∂(ωi−1

u ∧Ti )

=
(i−1)(i−2)

p

∫
M

e−pu
√
−1ωi−3

u ∧∂ω∧∂ω∧Ti

+
i−1

p

∫
M

e−puωi−2
u ∧
√
−1∂(∂ω∧Ti )+

i−1
p

∫
M

e−puωi−2
u ∧
√
−1∂ω∧∂Ti

−
1
p

∫
M

e−puωi−1
u ∧
√
−1∂∂Ti

=
(i−1)(i−2)

p

∫
M

e−pu
√
−1ωi−3

u ∧∂ω∧∂ω∧Ti

+
i−1

p

∫
M

e−puωi−2
u ∧[

√
−1∂(∂ω∧Ti )+

√
−1∂ω∧∂Ti ]

−
1
p

∫
M

e−puωi−1
u ∧
√
−1∂∂Ti

≥−pC3i

k−2∑
j=0

∫
M

e−pu
√
−1∂u∧∂u∧ω j

u∧ω
n− j−1

−C3i (n, k, ω)
∫

M
e−puωn.

For the last inequality, we have used the induction. �

4. Second-order estimate

In this section we use the auxiliary function in [Tosatti and Weinkove 2013] which
is modified by the auxiliary function in [Hou et al. 2010] to derive the second-order
estimate of the form (1-3). The difficulty arises from the third-order derivatives.
Locally the equation is

(4-1) σk(ωu)= e f .

Theorem 4.1. There exists a uniform constant C depending only on (M, ω), n, k
and f such that

(4-2) max |∂∂u|g ≤ C(1+max |∇u|2g).
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Proof. Denote wi j = gi j + ui j and let ξ ∈ T 1,0 M, |ξ |2g = 1.
We use the auxiliary function similar to that in [Tosatti and Weinkove 2013]:

H(x, ξ)= log(wklξ
kξ l)+ c0 log(gklwplwkqξ

pξq)+ϕ(|∇u|2g)+ψ(u),

where ϕ,ψ are given by

ϕ(s)=−1
2

log
(

1− s
2K

)
, 0≤ s ≤ K − 1,

ψ(t)=−A log
(

1+ t
2L

)
, −L+1≤ t ≤ 0,

for

K := sup
M
|∇u|2g + 1, L = sup

M
|u| + 1, A := 2L(C0+ 1),

where A0 is a constant to be determined later and c0 is a small positive constant
depending only on n and will be determined later. By [Hou et al. 2010], we have

1
2K
≥ ϕ′ ≥

1
4K

>0, ϕ′′ =2(ϕ′)2 > 0.(4-3)

A
L
≥−ψ ′ ≥

A
2L
=C0+ 1, ψ ′′ ≥

2ε0
1−ε0

(ψ ′)2, for ε0 ≤
1

2A+1
.(4-4)

These inequalities will be used below.
Suppose H(x, ξ) attains its maximum at the point x0 in the direction ξ0. Then

we choose local coordinates {∂/∂z1, . . . , ∂/∂zn
} near x0 such that

gi j (x0)= δi j , ui j = ui i (x0)δi j , λi =wi i (x0)= 1+ui i (x0) with λ1≥ · · ·≥λn.

We want to prove that

H(x0, ξ)≤ H
(

x0,
∂

∂z1

)
for all ξ ∈ T 1,0 M, |ξ |2g = 1,

∑
i, j

wi j (x0)ξ
iξ j > 0

by choosing c0 small enough. In fact, at x0 we have

log(wklξ
kξl)+c0 log(gklwplwkqξ

pξq)= log
( n∑

k=1

wkk|ξ
k
|
2
)
+c0 log

( n∑
k=1

|wkk|
2
|ξ k
|
2
)
.

If wnn ≥ −w11, which is always satisfied when n ≤ 3, then w2
i i
≤ w11. Thus we

have H(x0, ξ)≤ H(x0, ∂/∂z1).
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Now we suppose that wnn <−w11. Thus we have n ≥ 4. Let i0 be the smallest
integer satisfying wi i <−w11. Then i0 ≥ k+ 1. By |wi i |< (n− 2)w11, so

log
n∑

i=1

wi i |ξ
i
|
2
+ c0 log

n∑
i=1

|wi i |
2
|ξ i
|
2

≤ logw11

( i0−1∑
i=1

|ξ i
|
2
−

n∑
i=i0

|ξ i
|
2
)
+ c0 log

(
w2

11

i0−1∑
i=1

|ξ i
|
2
+ (n− 2)2w2

11

i0−1∑
i=1

|ξ i
|
2
)

= logw11(1− 2t)+ c0 logw2
11(1− t + (n− 2)2t) := h(t),

where t =
∑n

i=i0
|ξ i
|
2
∈
(
0, 1

2

)
.

By choosing c0 = 2/((n− 2)2− 1), we have h′(t)≤ 0. Then

h(t)≤ h(0)= log(w11)+ c0 logw2
11.

Consequently, we obtain

H(x0, ξ)≤ H
(

x0,
∂

∂z1

)
for all ξ ∈ T 1,0 M, |ξ |2g = 1,

∑
i, j

ηi j (x0)ξ
iξ j > 0,

by choosing c0 = 2/((n− 2)2− 1) when n ≥ 4 and c0 = 1 when n ≤ 3.
We extend ξ0 near x0 by ξ0 = (g11)

−1/2(∂/∂z1). Consider the function

Q(x)= H(x, ξ0)= log(g−1
11
w11)+ c0 log(g−1

11
gklw1lwk1)+ϕ(|∇u|2g)+ψ(u).

We will calculate F i j Qi j at x0 to get the estimate; all the calculations are taken
at x0. For simplicity, we denote ξ = ξ0 in the following. By 〈ξ, ξ〉g = |ξ |2g = 1,
differentiating both sides, we obtain at x0

(4-5)

0= ∂

∂zi 〈ξ, ξ〉g = 〈∇∂/∂zi ξ, ξ〉g +〈ξ,∇∂/∂zi ξ〉g

=

〈
ξ k
,i
∂

∂zk , ξ
l ∂

∂zl

〉
g
+

〈
ξ k ∂

∂zk , ξ
l
,i
∂

∂zl

〉
g

= gklξ
k
,iξ

l + gklξ
kξ l

,i

= ξ 1
,i + ξ

1
,i .

We also have the basic formula for ξ ∈ T 1,0 M :

(4-6)
ξ k
,i =

∂ξ k

∂zi =
∂ξ k

∂zi
= ξ k

,i , ξ k
,i=

∂ξ k

∂zi
=
∂ξ k

∂zi = ξ
k
,i

ξ k
,i =

∂ξ k

∂zi =
∂ξ k

∂zi
= ξ k

,i , ξ k
,i=

∂ξ k

∂zi
=
∂ξ k

∂zi = ξ
k
,i
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Direct calculations give

Qi =
(wklξ

kξ l)i

wklξ
kξ l
+ c0

(g pqwkqwplξ
kξ l)i

g pqwkqwplξ
kξ l
+ϕi +ψi ,

Qi i =
(wklξ

kξ l)i i

wklξ
kξ l
−
(wklξ

kξ l)i (wklξ
kξ l)i

(wklξ
kξ l)2

+ c0
(g pqwkqwplξ

kξ l)i i

g pqwkqwplξ
kξ l

− c0
(g pqwkqwplξ

kξ l)i (g pqwkqwplξ
kξ l)i

(g pqwkqwplξ
kξ l)2

+ϕi i +ψi i .

Next, we want to simplify Qi and Qi i . By (4-5), we have

(wklξ
kξl)i = wkl,iξ

kξl +wklξ
k
,iξ

l +wklξ
kξl

,i = w11,i +w11(ξ
1
,i + ξ

1
,i )= w11i ,

Thus we have

(g pqwkqwplξ
kξ l)i

= g pqwkqiwplξ
kξ l + g pqwkqwpliξ

kξ l + g pqwkqwplξ
k

iξ
l + g pqwkqwplξ

kξ l
,i

= w11(w11i +w11i )+w11
2(ξ 1

,i + ξ
1
,i )

= 2w11w11i .

Therefore, we obtain the simplified formula for Qi at x0:

(4-7) Qi =
w11i

w11
+ c0

2w11i

w11
+ϕi +ψi = (1+ 2c0)

w11i

w11
+ϕi +ψi = 0

Similar calculations give

(wklξ
kξ l)i i = [wkliξ

kξ l +wkl(ξ
k

iξ
l + ξ kξ l

i )]i

= wkli iξ
kξ l +wkli (ξ

k
iξ

l + ξ kξ l
i )+wkli (ξ

k
iξ

l + ξ kξ l
i )

+wkl(ξ
k

iiξ
l + ξ k

iξ
l
i + ξ

k
iξ

l
i + ξ

kξ l
i i )

= w11i i +wk1iξ
k

i +w1liξ
l
i +wk1iξ

k
i +w1liξ

l
i

+w11(ξ
1

i i + ξ
1

i i )+wkk(ξ
k

iξ
k

i + ξ
k

iξ
k

i )

= w11i i + 2
∑
k 6=1

Re(wk1iξ
k

i +w1kiξ
k

i )+w11(ξ
1

i i + ξ
1

i i )

+wkk(|ξ
k

i |
2
+ |ξ k

i |
2).

The last equality holds because we use (4-2) and (4-5) and the fact

wk1iξ
k

i +w1liξ
l
i = 2 Re(wk1iξ

k
i ), w1liξ

l
i +wk1iξ

k
i = 2 Re(w1kiξ

k
i ).
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We can also calculate

(g pqwkqwplξ
kξ l)i i

= g pq(wkqiwplξ
kξ l +wkqwpliξ

kξ l +wkqwplξ
k

iξ
l +wkqwplξ

kξ l
i )i

= g pq(wkqiiwplξ
kξ l +wkqiwpliξ

kξ l +wkqiwplξ
k

iξ
l +wkqiwplξ

kξ l
i )

+ g pq(wkqiwpliξ
kξ l +wkqwpliiξ

kξ l +wkqwpliξ
k

iξ
l +wkqwpliξ

kξ l
i )

+ g pq(wkqiwplξ
k

iξ
l +wkqwpliξ

k
iξ

l +wkqwplξ
k

iiξ
l +wkqwplξ

k
iξ

l
i )

+ g pq(wkqiwplξ
kξ l

i +wkqwpliξ
kξ l

i +wkqwplξ
k

iξ
l
i +wkqwplξ

kξ l
i i )

= w11i iw11+w1piwp1i +wk1iw11ξ
k

i +w1piwppξ p
i

+w1piwp1i +w11w11i i +wppwp1iξ
p

i +w11w1liξ
l
i

+wk1iw11ξ
k

i +wppwp1iξ
p

i +w11
2ξ 1

i i +wpp
2ξ p

iξ
p

i

+w1piwppξ p
i +w11w1liξ

l
i +wpp

2ξ p
iξ

p
i +w11

2ξ 1
i i

= 2w11w11i i + |w1pi |
2
+ |w1pi |

2
+ 2w11 Re(wp1iξ

p
i +wp1iξ

p
i )

+ 2wpp Re(w1piξ p
i +wp1iξ

p
i )+wpp

2(|ξ p
i |

2
+ |ξ p

i |
2
)+w11

2(ξ 1
i i + ξ

1
i i )

Therefore we simplify Qi i at x0 as follows

Qi i = (1+ 2c0)
w11i i

w11
+

c0

w2
11

∑
p 6=1

(|w1pi |
2
+ |w1pi |

2)

−(1+ 2c0)
|w11i |

2

w11
2 + (∗∗)i i +ϕi i +ψi i ,

where (∗∗)i i is given by

(∗∗)i i =
2
w11

∑
k 6=1

Re(wk1iξ
k

i +w1kiξ
k

i )+ ξ
1

i i + ξ
1

i i +
wkk

w11
(|ξ k

i |
2
+ |ξ k

i |
2)

+
2c0

w11

∑
p 6=1

Re(wp1iξ
p

i +wp1iξ
p

i )+
∑
p 6=1

2c0wpp

w11
2 Re(w1piξ p

i +wp1iξ
p

i )

+
2c0wpp

2

w11
2 (|ξ p

i |
2
+ |ξ p

i |
2
)+ c0(ξ

1
i i + ξ

1
i i ).

For this term (∗∗)i i , we have the estimate

(∗∗)i i ≥−
c0

2w11
2

∑
p 6=1

(|w1pi |
2
+ |w1pi |

2)−C,

where C is a positive constant depending only on (M, ω).
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Let F(ωu)= (σk(ωu))
1/k. We denote by

F i j
=
∂F
∂wi j

, F i j,pq
=

∂2 F
∂wi j∂wpq

,

where (wu)i j = gi j+ui j . Then, the positive definite matrix (F i j (ωu)) is diagonalized
at the point x0. More precisely,

(4-8) F i j (ωu)= δi j F i i (ωu)=
1
k
[σk(λ)]

1/k−1σk−1(λ|i)δi j .

Furthermore, at x0,

(4-9) F i j,pq(ωu)=


F i i,pp, if i = j, p = q;
F i p,pi , if i = q , p = j, i 6= p;
0, otherwise,

in which

F i i,pp
=

1
k
[σk(λ)]

1/k−1(1− δip)σk−2(λ|ip)

+
1
k

(1
k
− 1
)
[σk(λ)]

1/k−2σk−1(λ|i)σk−1(λ|p),

F ip,pi
=−

1
k
[σk(λ)]

1/k−1σk−2(λ|ip).

We have, in addition, at x0

(4-10)
n∑

i=1

F i iwi i =

n∑
i=1

F i iλi = σ
1/k
k = e f/k .

By the maximum principal, we have

(4-11) 0≥ F i jQi j = F i iQi i

≥ (1+ 2c0)

n∑
i=1

F i i u11i i

w11
+

c0

2

n∑
i=1

∑
p 6=1

F i i
|u1pi |

2

w2
11

− (1+ 2c0)

n∑
i=1

F i i
|u11i |

2

w2
11

+ψ ′
n∑

i=1

F i i ui i +ψ
′′

n∑
i=1

F i i
|ui |

2

+ϕ′′
n∑

i=1

F i i
|∇u|2i |∇u|2i +ϕ

′

n∑
i,p=1

F i i (|upi |
2
+ |upi |

2)

+ϕ′
n∑

i,p=1

F i i (upii up + upii up)−C1

n∑
i=1

F i i

:= I1+ I2+ I3+ I4+ I5+ I6+ I7+ I8−C1

n∑
i=1

F i i
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The equation can be written as F(ωu)= e f/k
:= h. Differentiating this, we get

n∑
i, j=1

F i j ui jl =∇l F = hl,

n∑
i, j=1

F i j ui jlm +

n∑
i, j,p,q=1

F i j,pqui jlupqm = hlm .

and
n∑

i=1

F i i ui i11 = h11−

n∑
i, j,p,q=1

F i j,pqui j1upq1.

By commuting the covariant derivatives formula (2-12), we have

(4-12)
n∑

i=1

F i i u11i i =

n∑
i=1

F i i ui i11+

n∑
i=1

F i i (u11−

n∑
i=1

ui i )Ri i11

+

n∑
i=1

F i i
( n∑

p=1

T p
1i up1i +

n∑
q=1

T q
1i u1qi −

n∑
p=1

|T p
1i |

2upp

)
.

Inserting (4-12) into the term I1, we have

(4-13) I1 = (1+ 2c0)

n∑
i=1

F i i u11i i

w11

= (1+ 2c0)

n∑
i=1

F i i ui i11

w11
+ (1+ 2c0)

n∑
i=1

F i i (u11− ui i )Ri i11

w11

+ 2(1+ 2c0)

n∑
i,p=1

F i i Re
(T p

1i up1i

w11

)
− (1+ 2c0)

n∑
i,p=1

F i i |T
p

1i |
2upp

w11

= (1+ 2c0)
h11

w11
− (1+ 2c0)

n∑
i, j,p,q=1

F i j,pqui j1upq1

w11

+ (1+ 2c0)

n∑
i=1

F i i (u11− ui i )Ri i11

w11
+ 2(1+ 2c0)

n∑
i

F i i Re
(T 1

1i u11i

w11

)
+ 2(1+ 2c0)

n∑
i=1

F i i Re
(∑

p 6=1

T p
1i up1i

w11

)
− (1+ 2c0)

n∑
i,p=1

F i i |T
p

1i |
2upp

w11

:= I11+ I12+ I13+ I14+ I15+ I16.

We estimate each term in this sum. First we have

I11+ I13+ I16 ≥−C1− 3(nC2+C3)

n∑
i=1

F i i ,

where we have supposed that supM |T |
2
g ≤ C2, supM |R| ≤ C3.
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We claim I15+ I2 ≥−18n2C2
∑n

i=1 F i i . Indeed, since 1
n2 ≤ c0 ≤ 1, we have

I15+ I2 =
c0

2

n∑
i=1

∑
p 6=1

F i i
|u1pi |

2

w2
11

+2(1+ 2c0)

n∑
i=1

F i i Re
(∑

p 6=1

T p
1i up1i

w11

)
=

c0

2

n∑
i=1

F i i
∑
p 6=1

∣∣∣u1pi

w11
+

2(1+ 2c0)

c0
T p

1i

∣∣∣2− 2(1+ 2c0)
2

c0

n∑
i=1

∑
p 6=1

F i i
|T p

1i |
2

≥−
2(1+ 2c0)

2

c0

n∑
i=1

∑
p 6=1

F i i
|T p

1i |
2

≥−18n2C2

n∑
i=1

F i i.

Then we obtain

(4-14) I1+ I2 ≥−(1+2c0)

n∑
i, j,p,q=1

F i j,pqui j1upq1

w11
+2(1+2c0)

n∑
i=1

F i i Re
(T 1

1i u11i

w11

)
− (21n2C2+3C3)

n∑
i=1

F i i
−C1.

For terms I7+ I8, we claim

(4-15) I7+ I8 ≥
1
2
ϕ′

n∑
i=1

F i i
|ui i |

2
1− (C2+C3)

n∑
i=1

F i i
−C1.

Indeed, by the commutation formula for covariant derivatives (2-11) in Section 2,

upii = ui i p + T i
pi ui i + uq Ri i pq , upii = ui pi = ui i p − T i

i pui i .

Then

n∑
i=1

F i i upii =

n∑
i=1

F i i ui i p +

n∑
i=1

F i i (T i
pi ui i + uq Ri i pq)

= h p +

n∑
i=1

F i i (T i
pi ui i + uq Ri i pq)

n∑
i=1

F i i upii =

n∑
i=1

F i i ui i p +

n∑
i=1

F i i T i
i pui i = h p +

n∑
i=1

F i i T i
i pui i
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Inserting the above formula into I8, we obtain

(4-16) I8 = ϕ
′

n∑
i,p=1

F i i (upii up + upii up)

=ϕ′
n∑

p=1

up

[
h p+

n∑
i=1

F i i (T i
piui i+uq Ri i pq)

]
+ϕ′

n∑
p=1

up

[
h p−

n∑
i=1

F i i T i
i pui i

]

= 2ϕ′
n∑

i,p=1

F i iui i Re(upT i
pi )+ϕ

′

n∑
p=1

[
2 Re(uph p)+

n∑
i,q=1

upuqF i iRi i pq

]
= I81+ I82.

For the term I82, we have

I82 ≥−C3

n∑
i=1

F i i
−C1.

For the term I81, we obtain

I81+ I7 = 2ϕ′
n∑

i,p=1

F i iui i Re(upT i
pi )+ϕ

′

n∑
i,p=1

F i i(|upi |
2
+ |upi |

2)

≥ ϕ′
n∑

i=1

F i i
[
|ui i |

2
+ 2ui i Re

( n∑
p=1

upT i
pi

)]

= ϕ′
n∑

i=1

F i i
∣∣∣∣ui i

2
+ 2

n∑
p=1

upT i
pi

∣∣∣∣2+ 3
4
ϕ′

n∑
i=1

F i i
|ui i |

2
− 4ϕ′

n∑
i=1

F i i
∣∣∣∣ n∑

p=1

upT i
pi

∣∣∣∣2
≥

1
2
ϕ′

n∑
i=1

F i i
|ui i |

2
−C2

n∑
i=1

F i i.

Thus we have proved the above claim (4-15). Moreover, applying (4-10) yields

ψ ′
n∑

i=1

F i i ui i = ψ
′

n∑
i=1

F i i (λi − 1)

= ψ ′h−ψ ′
n∑

i=1

F i i
≥−2(C0+ 1) sup

M
e f/k
−ψ ′

n∑
i=1

F i i.
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Similarly,

1
2
ϕ′

n∑
i=1

F i i
|ui i |

2
=

1
2
ϕ′

n∑
i=1

F i i (λi − 1)2

=
1
2
ϕ′

n∑
i=1

F i iλ2
i −ϕ

′

n∑
i=1

F i iλi +
1
2
ϕ′

n∑
i=1

F i i

=
1
2
ϕ′

n∑
i=1

F i iλ2
i −ϕ

′h+
1
2
ϕ′

n∑
i=1

F i i

≥
1
2
ϕ′

n∑
i=1

F i iλ2
i −

1
2

sup
M

e f/k
+

1
2
ϕ′

n∑
i=1

F i i .

Inserting these terms into (4-11), we obtain

(4-17) 0≥ F i i Qi i

≥−(1+ 2c0)

n∑
i, j,p,q=1

F i j,pqui j1upq1

w11
+ 2(1+ 2c0)

n∑
i=1

F i i Re
(T 1

1i u11i

w11

)
− (1+ 2c0)

n∑
i=1

F i i
|u11i |

2

w2
11

+ϕ′′
n∑

i=1

F i i
|∇u|2i |∇u|2i +ψ

′′

n∑
i=1

F i i
|ui |

2
+

1
2
ϕ′

n∑
i=1

F i iλ2
i

+

(
−ψ ′+

1
2
ϕ′− 22n2C2− 4C3

) n∑
i=1

F i i
−C1

= A1+ A2+ A3+ A4+ A5+ A6

+

(
−ψ ′+

1
2
ϕ′− 22n2C2− 4C3

) n∑
i=1

F i i
−C1,

where C1 is a positive constant depending only on C0, sup e f/k, sup |∇(e f/k)|2 and
sup |∂∂(e f/k)|.

Let ε = 1
4δ ≤

1
16 and δ = 1/(2A + 1), where A = 2L(C0 + 1) and C0 =

31n2C2+ 4C3. We divide into two cases to derive the estimate, which is similar to
[Hou et al. 2010].

Case 1: λn <−ελ1.
By condition (4-7), for 1≤ i ≤ n, we have

−(1+ 2c0)
2
∣∣∣u11i

w11

∣∣∣2 =−|ϕ′|∇u|2i +ψ
′ui |

2
≥−2(ϕ′)2|∇u|2i |∇u|2i − 2(ψ ′)2|ui |

2

=−ϕ′′|∇u|2i |∇u|2i − 2(ψ ′)2|ui |
2.
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This gives

A2 = 2(1+ 2c0)
∑
i 6=1

F i i Re
(T 1

1i u11i

w11

)
≥−c0

∑
i 6=1

F i i
∣∣∣u11i

w11

∣∣∣2− (1+ 2c0)
2

c0

∑
i 6=1

F i i
|T 1

1i |
2

≥−c0
∑
i 6=1

F i i
∣∣∣u11i

w11

∣∣∣2− 9n2C2
∑
i 6=1

F i i
|T 1

1i |
2

Thus

A2+ A3 ≥−(1+ 3c0)

n∑
i=1

F i i
|u11i |

2

w2
11

− 9n2C2
∑
i 6=1

F i i
|T 1

1i |
2

≥−(1+ 2c0)
2

n∑
i=1

F i i
|u11i |

2

w2
11

− 9n2C2

n∑
i=1

F i i

=−A4− 2(ψ ′)2
n∑

i=1

F i i
|ui |

2
− 9n2C2

n∑
i=1

F i i .

We therefore obtain

(4-18) A2+ A3+ A4 ≥−2(ψ ′)2
n∑

i=1

F i i
|ui |

2
− 9n2C2

n∑
i=1

F i i .

Using the inequality
n∑

i=1

F i iλ2
i ≥ Fnnλ2

n > ε
2 Fnnλ2

1 ≥
ε2

n

n∑
i=1

F i iλ2
1,

we have

(4-19) A6 =
1
2
ϕ′

n∑
i=1

F i iλ2
i ≥

ε2

2n
ϕ′

n∑
i=1

F i iλ2
1.

Combining (4-17) and (4-18) (4-19), we obtain

0≥
n∑

i=1

F i i Qi i ≥
ε2

2n
ϕ′

n∑
i=1

F i iλ2
1− 2(ψ ′)2

n∑
i=1

F i i
|ui |

2

+

(
−ψ ′+

1
2
ϕ′− 31n2C2− 4C3

) n∑
i=1

F i i
−C1

≥

( ε2

8nK
λ2

1− 8K (C0+ 1)2
) n∑

i=1

F i i
−C1

≥
ε2

8nK
λ2

1− 8K (C0+ 1)2−C1,



506 DEKAI ZHANG

where we use the fact that
∑n

i=1 F i i
≥ 1, which follows from the definition of F i i

and the Newton–Maclaurin inequality.
Hence, we obtain

λ1 ≤ 8
√

2(2A+ 1)
√

nK (8K (C0+ 1)2+C1)≤ CK .

Case 2: λn >−ελ1.
Let I = {i ∈ {1, . . . , n}|σk−1(λ|i)≥ ε−1σk−1(λ|1)}. Obviously, 1 /∈ I and i ∈ I

if and only if F i i > ε−1 F11. We first treat those indices which are not in I. By
(4-7), we have

−(1+ 2c0)
∑
i /∈I

F i i
|u11i |

2

w2
11

+ 2(1+ 2c0)
∑
i /∈I

F i i Re
T 1

1i u11i

w11

≥−(1+ 2c0)
2
∑
i /∈I

F i i
|u11i |

2

w2
11

−
(1+ 2c0)

2

c0

∑
i /∈I

F i i
|T 1

1i |
2

=−ϕ′′
∑
i /∈I

F i i
|∇u|2i |∇u|2i − 2(ψ ′)2

∑
i /∈I

F i i
|ui |

2
− 9n2C2

∑
i /∈I

F i i
|T 1

1i |
2

≥−ϕ′′
∑
i /∈I

F i i
|∇u|2i |∇u|2i − 2ε−1K (ψ ′)2 F11

− 9n2C2

n∑
i=1

F i i.

Substituting the above inequality into (4-17) yields

(4-20) 0≥ F i i Qi i

≥−(1+ 2c0)

n∑
i, j,p,q=1

F i j,pqui j1upq1

w11
+ 2(1+ 2c0)

∑
i∈I

F i i Re
(T 1

1i u11i

w11

)

− (1+ 2c0)
∑
i∈I

F i i
|u11i |

2

w2
11

+ϕ′′
∑
i∈I

F i i
|∇u|2i |∇u|2i +ψ

′′

n∑
i=1

F i i
|ui |

2

+
1
2
ϕ′

n∑
i=1

F i iλ2
i − 2ε−1K (ψ ′)2 F11

+

(
−ψ ′+

1
2
ϕ′− 31n2C2− 4C3

) n∑
i=1

F i i
−C1

= B1+ B2+ B3+ B4+ B5+ B6+ B7+ B8.

Firstly, we have

B6+ B7 =
1
2
ϕ′

n∑
i=1

F i iλ2
i − 2ε−1K (ψ ′)2 F11

≥
1
4
ϕ′

n∑
i=1

F i iλ2
i ,
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where we assume that 1
4ϕ
′F11λ2

1 ≥ 2ε−1K (ψ ′)2 F11 (for otherwise 1
4ϕ
′F11λ2

1 ≤

2ε−1K (ψ ′)2 F11, i.e., λ1 ≤ CK ).
We next use B1 to cancel the other terms containing the third derivatives of u.
As the proof in [Hou et al. 2010, p. 559], we have

λ1σk−2(λ|1i)≥ (1− 2ε)σk−1(λ|i) for i ∈ I.

Then

−λ1 F i1,1i
=

F1−k

k
λ1σk−2(λ|1i)≥ F1−k

k
(1− 2ε)σk−1(λ|i)= (1− 2ε)F i i .

Since ui11 = u11i − T 1
1i (λ1− 1), we get

B1 =−
1+ 2c0

λ1

n∑
i, j,p,q=1

F i j,pqui j1upq1

≥−
1+ 2c0

λ2
1

∑
i∈I

λ1 F i1,1i ui11u1i1

≥
1+ 2c0

λ2
1

(1− 2ε)
∑
i∈I

F i i
|u11i − T 1

1i (λ1− 1)|2,

and

B2 =
2(1+ 2c0)

λ1

∑
i∈I

F i i Re(T 1
1i u11i ).

From (4-7), we have

B4 = ϕ
′′
∑
i∈I

F i i
|∇u|2i |∇u|2i

= 2
∑
i∈I

F i i
∣∣∣(1+ 2c0)

u11i

w11
+ψ ′ui

∣∣∣2
≥ 2(1+ 2c0)

2δ
∑
i∈I

F i i |u11i |

w2
11

2

−
2δ

1− δ
(ψ ′)2

∑
i∈I

F i i
|ui |

2

≥ 2(1+ 2c0)
2δ
∑
i∈I

F i i |u11i |

w2
11

2

− B5,

where we use (2δ/(1− δ))(ψ ′)2 = ψ ′′ by choosing δ = 1/(2A+ 1).
So we get

B3+ B4+ B5 ≥−(1+ 2c0)
[1− 2(1+ 2c0)δ]

λ2
1

∑
i∈I

F i i
|u11i |

2.
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Then we conclude

B1+ B2+ B3+ B4+ B5

≥
1+ 2c0

λ2
1

(1− 2ε)
∑
i∈I

F i i
|u11i − T 1

1i (λ1− 1)|2

− (1+ 2c0)
[1− 2(1+ 2c0)δ]

λ2
1

∑
i∈I

F i i
|u11i |

2

+
2(1+ 2c0)

λ2
1

∑
i∈I

F i i Re(λ1T 1
1i u11i )

=
1+ 2c0

λ2
1

∑
i∈I

F i i
{(1− 2ε)|u11i − T 1

1i (λ1− 1)|2

− (1− 2(1+ 2c0)δ)|u11i |
2
+ 2 Re(λ1T 1

1i u11i )}

=
1+ 2c0

λ2
1

∑
i∈I

F i i
{(2(1+ 2c0)δ− 2ε)|u11i |

2

+ 2[2ε(λ1− 1)+ 1]Re(T 1
1i u11i )+ (1− 2ε)(λ1− 1)2|T 1

1i |
2
}

≥ 0,

where the last inequality holds if we choose ε = 1
4δ ≤

1
16 . In fact,

1= B2
− 4AC = 4[2ε(λ1− 1)+ 1]2− 4(1− 2ε)(λ1− 1)2(2(1+ 2c0)δ− 2ε)

≤ 36ε2(λ1− 1)2− 4(1− 2ε)(λ1− 1)2(2(1+ 2c0)δ− 2ε)

≤ 4(λ1− 1)2(9ε2
− 2(1− 2ε)((1+ 2c0)δ)+ 2ε(1− 2ε))

≤ 4(λ1− 1)2(5ε2
+ 2ε− δ)

≤ 4(λ1− 1)2(4ε− δ)

= 0.

Then we finally obtain

0≥
1
4
ϕ′

n∑
i=1

F i i
|ui i |

2
+

(
−ψ ′+

1
2
ϕ′−C2−C3

) n∑
i=1

F i i
−C1

=

(
−ψ ′+

1
2
ϕ′−C2−C3

) n∑
i=1

F i i
+

1
4
ϕ′

n∑
i=1

F i i
|ui i |

2
−C1

≥

n∑
i=1

F i i
+

1
16K

n∑
i=1

F i iλi
2
−C1,

where we use −ψ ′ ≥ C0+ 1 and C0 = 31n2C2+ 4C3.
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In particular,
∑n

i=1 F i i
≤ C. By Lemma 2.2 in [Hou et al. 2010], we have

F11
≥ c(n, k)/Ck−1

1 , where c(n, k) is a positive constant depending only on n and k.
Then we get the desired estimate

λ1 ≤
4Ck/2

1

c(n, k)1/2
√

K ,

where C1 is given in (4-17). �
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