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TORSION PAIRS IN SILTING THEORY

LIDIA ANGELERI HÜGEL, FREDERIK MARKS AND JORGE VITÓRIA

In the setting of compactly generated triangulated categories, we show that
the heart of a (co)silting t-structure is a Grothendieck category if and only if
the (co)silting object satisfies a purity assumption. Moreover, in the cosilting
case the previous conditions are related to the coaisle of the t-structure being
a definable subcategory. If we further assume our triangulated category
to be algebraic, it follows that the heart of any nondegenerate compactly
generated t-structure is a Grothendieck category.

1. Introduction

Silting and cosilting objects in triangulated categories are useful generalisations of
tilting and cotilting objects. While (co)tilting objects have been a source of many
interactions with torsion and localisation theory, it is in the setting of (co)silting
objects that classification results occur more naturally. This paper strengthens
this claim by showing that, in the setting of compactly generated triangulated
categories, relevant torsion-theoretic structures are parametrised by suitable classes
of (co)silting objects.

The concept of a silting object, first introduced in [Keller and Vossieck 1988] in
the context of derived module categories over finite dimensional hereditary algebras,
has recently been extended to the setting of abstract triangulated categories [Aihara
and Iyama 2012; Mendoza Hernández et al. 2013; Nicolás et al. 2015; Psaroudakis
and Vitória 2015]. In this paper, our focus is on t-structures and co-t-structures
arising from (co)silting objects. For this purpose, we use the vast theory of purity
in compactly generated triangulated categories, where a central role is played by
the category of contravariant functors on the compact objects. We show that a
fundamental property of the t-structure associated to a cosilting object C — namely,
its heart being a Grothendieck abelian category — is related to the pure-injectivity
of C . An analogous result holds true for silting objects. Moreover, it turns out that
in the cosilting case the pure-injectivity of C is further related to the definability
(in terms of coherent functors) of the coaisle of the associated t-structure. We can
summarise our results as follows.
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Theorem [Theorems 3.6 and 4.9, Corollary 4.10]. Let (U,V,W) be a triple in a
compactly generated triangulated category T such that (U,V) is a nondegenerate
t-structure and (V,W) is a co-t-structure. Then the following are equivalent:

(1) V is definable in T ;

(2) V = ⊥>0C for a pure-injective cosilting object C in T ;

(3) H := U[−1] ∩V is a Grothendieck category.

In particular, if we further assume T to be algebraic, it follows that any nondegen-
erate compactly generated t-structure in T has a Grothendieck heart.

For partial results in this direction we refer to [Nicolás et al. 2015, Proposition 4.2;
Bravo and Parra 2016, Corollary 2.5]. In a forthcoming paper ([Marks and Vitória
2017]), it will be proved that cosilting complexes in derived module categories are
always pure-injective and give rise to definable subcategories as above. We do not
know, however, if the same holds true for arbitrary cosilting objects in compactly
generated triangulated categories. Moreover, it will be shown in [Marks and Vitória
2017] that there are cosilting complexes (in fact, cosilting modules) inducing triples
(U,V,W) as above such that the t-structure has a Grothendieck heart, although it
is not compactly generated. This will answer [Bravo and Parra 2016, Question 3.5].

The structure of the paper is as follows. In Section 2, we present our setup
and provide the reader with some preliminaries on torsion pairs and (co)silting
objects. In Section 3, we briefly recall the key concepts of pure-projectivity and
pure-injectivity and we establish the connection between (co)silting objects having
such properties and t-structures with Grothendieck hearts. Finally, in Section 4, we
discuss definable subcategories and we prove the above mentioned relation between
pure-injective cosilting objects and certain definable subcategories of the underlying
triangulated category.

2. Preliminaries

Setup and notation. Throughout, we denote by T a compactly generated triangu-
lated category, i.e., a triangulated category with coproducts for which the subcategory
of compact objects, denoted by T c, has only a set of isomorphism classes and such
that for any Y in T with HomT (X, Y ) = 0 for all X in T c, we have Y = 0.
Since T admits arbitrary set-indexed coproducts, it is idempotent complete (see
[Neeman 2001, Proposition 1.6.8]). It is also well known (see [Neeman 2001,
Proposition 8.4.6 and Theorem 8.3.3]) that such triangulated categories admit
products. In some places, we will further assume T to be algebraic, i.e., T can be
constructed as the stable category of a Frobenius exact category (see [Happel 1988]).
Note that algebraic and compactly generated triangulated categories are essentially
derived categories of small differential graded categories [Keller 1994].
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All subcategories considered are strict and full. For a set of integers I (which is
often expressed by symbols such as > n, < n, ≥ n, ≤ n, 6= n, or just n, with the
obvious associated meaning) we define the following orthogonal classes:

⊥I X :=
{
Y ∈ T : HomT (Y, X [i])= 0, for all i ∈ I }

X⊥I := {Y ∈ T : HomT (X, Y [i])= 0, for all i ∈ I
}
.

If C is a subcategory of T , then we denote by Add(C ) (respectively, Prod(C )) the
smallest subcategory of T containing C and closed under coproducts (respectively,
products) and summands. If C consists of a single object M , we write Add(M)
and Prod(M) for the respective subcategories. For a ring A, we denote by Mod(A)
the category of right A-modules and by D(A) the unbounded derived category of
Mod(A). The subcategories of injective and of projective A-modules are denoted,
respectively, by Inj(A) and Proj(A), and their bounded homotopy categories by
Kb(Inj(A)) and Kb(Proj(A)), respectively.

Torsion pairs. We consider the notion of a torsion pair in a triangulated category
(see, for example, [Iyama and Yoshino 2008]), which gives rise to the notions of a
t-structure [Beı̆linson et al. 1982] and a co-t-structure [Bondarko 2010; Pauksztello
2008].

Definition 2.1. A pair of subcategories (U,V) in T is said to be a torsion pair if

(1) U and V are closed under summands;

(2) HomT (U,V)= 0;

(3) For every object X of T , there are U in U , V in V and a triangle

U → X→ V →U [1].

In a torsion pair (U,V), the class U is called the aisle, the class V the coaisle, and
(U,V) is said to be

• nondegenerate if
⋂

n∈Z U[n] = 0=
⋂

n∈Z V[n];
• a t-structure if U[1] ⊆ U , in which case we say that U[−1] ∩V is the heart of
(U,V);

• a co-t-structure if U[−1] ⊆ U , in which case we say that U ∩ V[−1] is the
coheart of (U,V).

It follows from [Beı̆linson et al. 1982] that the heart HT of a t-structure T := (U,V)
in T is an abelian category with the exact structure induced by the triangles of
T lying in HT. Furthermore, the triangle in Definition 2.1(3) can be expressed
functorially as

u(X)
f
// X

g
// v(X) // u(X)[1],
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where u : T → U is the right adjoint of the inclusion of U in T and v : T → V is
the left adjoint of the inclusion of V in T . The existence of one of these adjoints,
usually called truncation functors, is in fact equivalent to the fact that (U,V) is a
t-structure ([Keller and Vossieck 1988, Proposition 1.1]). Observe that the maps
f and g in the triangle are, respectively, the counit and unit map of the relevant
adjunction. In particular, it follows that if f = 0 (respectively, g= 0), then u(X)= 0
(respectively, v(X)= 0). Furthermore, u and v give rise to a cohomological functor
defined by

H 0
T : T →HT, X 7→ H 0

T(X) := v(u(X [1])[−1])= u(v(X)[1])[−1].

Recall that an additive covariant functor from T to an abelian category A is said to
be cohomological if it sends triangles in T to long exact sequences in A.

We will also be interested in the properties of torsion pairs generated or cogener-
ated by certain subcategories of T , which are defined as follows.

Definition 2.2. Let (U,V) be a torsion pair in T and A a subcategory of T . We say
that (U,V) is

• generated by A if (U,V)= (⊥0(A⊥0),A⊥0);

• cogenerated by A if (U,V)= (⊥0A, (⊥0A)⊥0);

• compactly generated if (U,V) is generated by a set of compact objects.

Moreover, we say that A generates T if the subcategory
⋃

n∈Z A[n] generates
the torsion pair (T , 0). Dually, we say that A cogenerates T if the subcategory⋃

n∈Z A[n] cogenerates the torsion pair (0, T ).

Recall that a subcategory U of T is said to be suspended (respectively, cosus-
pended) if it is closed under extensions and positive (respectively, negative) shifts.
For example, a torsion pair (U,V) is a t-structure if and only if U is suspended (or,
equivalently, V is cosuspended). In particular, a t-structure generated (respectively,
cogenerated) by a subcategory A is also generated (respectively, cogenerated) by the
smallest suspended (respectively, cosuspended) subcategory containing A. A dual
statement holds for co-t-structures.

Definition 2.3. Two torsion pairs of the form (U,V) and (V,W) are said to be
adjacent. More precisely, we say that (U,V) is left adjacent to (V,W) and that
(V,W) is right adjacent to (U,V). Such V is then called a TTF (torsion-torsion-
free) class and the triple (U,V,W) is said to be a TTF triple. Moreover, a TTF triple
(U,V,W) is said to be suspended (respectively, cosuspended) if the corresponding
TTF class is a suspended (respectively, cosuspended) subcategory of T .

Note that, in a TTF triple, one of the torsion pairs is a t-structure if and only if
the adjacent one is a co-t-structure.
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Example 2.4. (1) Let A be a ring and consider its derived category D(A). De-
note by D≤−1 (respectively, D≥0) the subcategory of D(A) formed by the
complexes whose usual complex cohomology vanishes in all nonnegative
degrees (respectively, in all negative degrees). The pair (D≤−1, D≥0) is a
nondegenerate t-structure in D(A), called the standard t-structure. We note
that the standard t-structure admits both a left and a right adjacent co-t-structure.
We refer to [Angeleri Hügel et al. 2016, Example 2.9 (2)] for details on the
left adjacent co-t-structure. Analogously, the right adjacent co-t-structure is
the pair (D≥0, K≤−1) where K≤−1 stands for the subcategory of objects in
D(A) which are isomorphic to a complex X• of injective A-modules such that
X i
= 0 for all i ≥ 0. The triple (D≤−1, D≥0, K≤−1) is then a cosuspended

TTF triple. Clearly, the heart of (D≤−1, D≥0) is Mod(A) and the coheart of
(D≥0, K≤−1) coincides with Inj(A).

(2) It follows from [Aihara and Iyama 2012, Theorem 4.3] that if A is a set of
compact objects, then the pair (⊥0(A⊥0),A⊥0) is a torsion pair. If T is moreover
an algebraic triangulated category, then such a pair admits a right adjacent
torsion pair, as shown in [Št́ovíček and Pospíšil 2016, Theorem 3.11]. In this
case, if A is a suspended (respectively, cosuspended) subcategory of T c, then
the triple (⊥0(A⊥0),A⊥0, (A⊥0)⊥0) is a cosuspended (respectively, suspended)
TTF triple. We investigate some properties of the heart of compactly generated
cosuspended TTF triples in Section 4.

(3) Following the arguments in [Neeman 2010, Proposition 1.4], we have that if V
is a cosuspended and preenveloping (respectively, suspended and precovering)
subcategory of T , then the inclusion of V in T has a left (respectively, right)
adjoint. In particular, there is a t-structure (U,V) (respectively, a t-structure
(V,W)) in T . In our context, this shows that a co-t-structure (V,W) has a
left (respectively, right) adjacent t-structure if and only if V is preenveloping
(respectively, W is precovering).

(Co)silting. Recall the definition of silting and cosilting objects in a triangulated
category (see [Psaroudakis and Vitória 2015]):

Definition 2.5. An object M in T is called

• silting if (M⊥>0,M⊥≤0) is a t-structure in T and M ∈ M⊥>0 ;

• cosilting if (⊥≤0 M,⊥>0 M) is a t-structure in T and M ∈ ⊥>0 M .

We say that two silting (respectively, cosilting) objects are equivalent, if they give
rise to the same t-structure in T and we call such a t-structure silting (respectively,
cosilting). The heart of the t-structure associated to a silting or cosilting object M
is denoted by HM and the cohomological functor T →HM by H 0

M .
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It follows from the definition that silting and cosilting t-structures are nonde-
generate and that a silting (respectively, cosilting) object generates (respectively,
cogenerates) the triangulated category T (see [Psaroudakis and Vitória 2015]).

Example 2.6. Let A be a ring and D(A) its derived category.

(1) Let E be an injective cogenerator of Mod(A). Regarded as an object in D(A),
E is a cosilting object and the associated cosilting t-structure is the standard one.
As discussed in Example 2.4 (1), there is also a right adjacent co-t-structure
with coheart Prod(E)= Inj(A).

(2) It follows from [Angeleri Hügel et al. 2016, Theorem 4.6] that a silting object
T of D(A) lying in Kb(Proj(A)) gives rise to a suspended TTF triple, that is,
the silting t-structure (T⊥>0, T⊥≤0) admits a left adjacent co-t-structure with
coheart Add(T ) (see also [Wei 2013]). Dually, a cosilting object C of D(A)
lying in Kb(Inj(A)) gives rise to a cosuspended TTF triple, that is, the cosilting
t-structure (⊥≤0C,⊥>0C) admits a right adjacent co-t-structure with coheart
Prod(C). For this dual statement, we refer to forthcoming work in [Marks and
Vitória 2017].

Silting and cosilting objects produce hearts with particularly interesting homolog-
ical properties. First, recall from [Parra and Saorín 2015] that hearts of t-structures
in a triangulated category with products and coproducts also have products and
coproducts. Indeed, the (co)product of a family of objects in the heart is obtained by
applying the functor H 0

T to the corresponding (co)product of the same family in T .
Of course, this (co)product in the heart may differ from the (co)product formed
in T .

Lemma 2.7 [Psaroudakis and Vitória 2015, Proposition 4.3]. Let M be a silting
(respectively, cosilting) object in T . Then the heart HM is an abelian category with
a projective generator (respectively, an injective cogenerator) given by H 0

M(M).

The following lemma establishes a particularly nice behaviour of the cohomo-
logical functors arising from (co)silting t-structures with respect to products and
coproducts.

Lemma 2.8. If T is a silting object in T , then the functor H 0
T induces an equivalence

between AddT (T ) and AddHT (H
0
T (T )) = Proj(HT ). Dually, if C is a cosilting

object in T , then the functor H 0
C induces an equivalence between ProdT (C) and

ProdHC (H
0
C(C))= Inj(HC).

Proof. We prove the statement for a cosilting object C in T (the silting case is
shown dually). Let the truncation functors of the associated cosilting t-structure
(⊥≤0C,⊥>0C) be denoted by u : T → ⊥≤0C and v : T → ⊥>0C . Recall that
ProdT (C)= ⊥>0C∩(⊥>0C[−1])⊥0 [Psaroudakis and Vitória 2015, Lemma 4.5(iii)].
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We first show that H 0
C is fully faithful on ProdT (C) (compare with [Keller and

Vossieck 1988, Lemma 5.1(d); Assem et al. 2008, Lemma 1.3; Nicolás et al. 2015,
Lemma 3.2]). Let X1 and X2 be objects in ProdT (C). Suppose that f : X1→ X2

is a map in T such that H 0
C( f ) = 0. Since, by assumption, X i (i = 1, 2) lies in

⊥>0C , there is a truncation triangle of the form

v(X i [1])[−2]
κi
// H 0

C(X i )
µi
// X i // v(X i [1])[−1].

Now f induces a morphism of triangles and, in particular, we have that 0 =
µ2 H 0

C( f )= f µ1. Thus, f factors through v(X1[1])[−1]. However, since X2 lies
in (⊥>0C[−1])⊥0 , we have that HomT (v(X1[1])[−1], X2)= 0 and, therefore, f = 0.
Now let us show that H 0

C is also full on ProdT (C). Suppose that g is a map in
HomT (H 0

C(X1), H 0
C(X2)). Since X2 lies in (⊥>0C[−1])⊥0 , the composition µ2gκ1

vanishes and, therefore, there is a map g̃ : X1→ X2 such that g̃µ1=µ2g. Therefore,
g extends to a morphism of triangles and, as a consequence, g = H 0

C(g̃).
It remains to show that the essential image of H 0

C restricted to ProdT (C) coincides
with ProdHC (H

0
C(C)). Observe first that H 0

C

(∏
i∈I X i

)
=
∏

i∈I H 0
C(X i ) for every

family (X i )i∈I of objects in ProdT (C), where the product of the family (H 0
C(X i ))i∈I

is taken in HC . The proof is dual to the argument for silting objects in [Nicolás
et al. 2015, Lemma 3.2.2(a)]. Take an object M in ProdHC (H

0
C(C)) and let N be

an object in HC such that M ⊕ N = H 0
C(C)

I for some set I . Then there is an
idempotent element eM in EndHC (H

0
C(C)

I ) = EndHC (H
0
C(C

I )) whose image is
the summand M . Since H 0

C is fully faithful on ProdT (C), it follows that there
is an idempotent element e in EndT (C I ) such that H 0

C(e)= eM . Given that T is
idempotent complete, the map e factors as C I f

→ X g
→C I such that f g = idX , and

it then follows that H 0
C(X)= M . �

We finish this section with a general observation on abelian categories that will
be useful later.

Lemma 2.9. Let A and B be abelian categories with enough injective (respectively,
projective) objects and let F : A→ B be a left (respectively, right) exact functor
yielding an equivalence Inj(A)→ Inj(B) (respectively, Proj(A)→ Proj(B)). Then
F is an equivalence of abelian categories.

Proof. Suppose that A and B have enough injective objects. Then both categories
can be recovered as factor categories of the corresponding categories Mor(Inj(A))
and Mor(Inj(B)) of morphisms between injectives. Indeed, the kernel functors
induce equivalences KerA :Mor(Inj(A))/RA→A and KerB :Mor(Inj(A))/RB→B,
where the relations RA and RB are the obvious ones (compare with [Auslander
et al. 1995, Proposition IV.1.2] for the case of projectives). Since F induces
an equivalence between Inj(A) and Inj(B), it clearly also induces an equivalence
between the corresponding morphism categories and, moreover, since F is left
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exact, it indeed defines an equivalence F̃ : Mor(Inj(A))/RA→ Mor(Inj(B))/RB
such that KerB ◦F̃ = F ◦KerA. Hence, F is an equivalence. The dual statement
follows analogously. �

3. Grothendieck hearts in compactly generated triangulated categories

Recall that a Grothendieck category is an abelian category with coproducts, exact
direct limits and a generator. It is well known that Grothendieck categories have
enough injective objects and every object admits an injective envelope. This section
is dedicated to the question of determining when hearts of silting and cosilting
t-structures are Grothendieck categories. We answer this question using a suitable
category of functors and a corresponding theory of purity. We begin this section
with a quick reminder of the relevant concepts.

Functors and purity. We consider the category Mod-T c of contravariant additive
functors from T c to Mod(Z), which is known to be a locally coherent Grothendieck
category (see [Krause 1997; 2000, Subsection 1.2]).

Consider the restricted Yoneda functor

y : T →Mod-T c, yX = HomT (−, X)|T c , for all X ∈ T .

It is well known that y is not, in general, fully faithful. A triangle

1 : X
f
// Y

g
// Z // X [1]

in T is said to be a pure triangle if y1 is a short exact sequence. In other words,
the triangle 1 is pure, if for any compact object K in T , the sequence

0 // HomT (K , X)
HomT (K , f )

// HomT (K , Y )
HomT (K ,g)

// HomT (K , Z) // 0

is exact. We say that a morphism f : X → Y in T is a pure monomorphism
(respectively, a pure epimorphism) if y f is a monomorphism (respectively, an
epimorphism) in Mod-T c. An object E of T is said to be pure-injective if any
pure monomorphism f : E→ Y in T splits. Similarly, an object P is said to be
pure-projective in T if any pure epimorphism g : X→ P splits.

The following theorem collects useful properties of pure-injective and pure-
projective objects.

Theorem 3.1 [Krause 2000, Theorem 1.8, Corollary 1.9; Beligiannis 2000, §11].
The following statements are equivalent for an object E in T :

(1) E is pure-injective.

(2) yE is an injective object in Mod-T c.

(3) The map HomT (X, E)→ HomMod-T c( yX, yE), φ 7→ yφ is an isomorphism
for any object X in T .
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(4) For every set I , the summation map E (I )→ E factors through the canonical
map E (I )→ E I .

Dually, the following are equivalent for an object P in T :

(1) P is pure-projective.

(2) yP is a projective object in Mod-T c.

(3) The map HomT (P, Y )→ HomMod-T c( yP, yY ), φ 7→ yφ is an isomorphism
for any object Y in T .

(4) P lies in Add(T c).

Moreover, any projective (respectively, injective) object in Mod-T c is of the form
yP (respectively, yE), for a pure-projective object P (respectively, a pure-injective
object E), uniquely determined up to isomorphism.

It follows from above that T has enough pure-injective objects and that every
object X in T admits a pure-injective envelope. The following theorem collects
two results that will become essential later on.

Theorem 3.2. Let H : T → A be a cohomological functor from T to an abelian
category A.

(1) [Beligiannis 2000, Theorem 3.4] If H sends pure triangles in T to short exact
sequences in A, then there is a unique exact functor H :Mod-T c

→ A such
that H ◦ y = H.

(2) [Krause 2000, Corollary 2.5] If A has exact direct limits and H preserves
coproducts, then H sends pure triangles in T to short exact sequences in A.

We recall from [Beligiannis 2000] how to construct H . Given F in Mod-T c,
consider an injective copresentation

0 // F // yE0
yα
// yE1,

where E0 and E1 are pure-injective in T and α is a map in HomT (E0, E1). Then
we define H(F) := Ker H(α), and it can be checked that H is indeed well defined
(that is, it does not depend on the choice of the injective copresentation of F). This
functor can also be obtained in a dual way by taking a projective presentation of F .

Grothendieck hearts and purity. Note that, in general, the cohomological functor
associated to a t-structure does not commute with products and coproducts in T . The
following lemma provides necessary and sufficient conditions for this to happen.

Lemma 3.3. Let T= (U,V) be a nondegenerate t-structure in T with heart HT and
associated cohomological functor H 0

T : T →HT. Then the functor H 0
T preserves

T -coproducts (respectively, T -products) if and only if V is closed under coproducts
(respectively, U is closed under products).

If these conditions are satisfied, we say T is smashing (respectively, cosmashing).



266 LIDIA ANGELERI HÜGEL, FREDERIK MARKS AND JORGE VITÓRIA

Proof. We prove the statement for coproducts; the statement for products follows
dually. Notice that aisles are always closed under coproducts. If also the coaisle V
is closed under coproducts, then both truncation functors u : T → U and v : T → V
commute with T -coproducts and, hence, so does H 0

T . In particular, coproducts in
HT coincide with coproducts in T . For the converse, it is easy to check that nonde-
generate t-structures can be cohomologically described, i.e., V can be described
as the subcategory formed by objects X such that H 0

T(X [k]) = 0 for all k < 0.
Consequently, since H 0

T commutes with T -coproducts, this description shows that
V is closed under coproducts. �

Example 3.4. (1) By definition, every silting t-structure is cosmashing and every
cosilting t-structure is smashing.

(2) If a silting object T is pure-projective, then the associated t-structure is smash-
ing. Indeed, let (X i )i∈I be a family of objects in T⊥<0 and let X be their
coproduct in T . Since T is pure-projective,

HomT (T, X [n])∼= HomMod-T c( yT, yX [n])

for all n in Z. The statement then follows from the fact that y commutes with
coproducts and Ker HomMod-T c( yT,−) is coproduct-closed.

(3) If a cosilting object C is pure-injective, in general, it does not follow that
the associated t-structure is cosmashing. Indeed, let A be the Kronecker
algebra and let C be the Reiten–Ringel cotilting module from [Reiten and
Ringel 2006, Proposition 10.1] with associated torsion pair (Q ,Cogen(C))
in Mod(A), where Q is the class of all modules generated by preinjective
A-modules. The object C is cosilting in D(A) (see [Št́ovíček 2014, Theorem
4.5]). Note that, since C is pure-injective in Mod(A) by [Bazzoni 2003], it
follows from Theorem 3.1 that C is also pure-injective when viewed as an
object in D(A). It turns out that the aisle of the associated cosilting t-structure
consists precisely of those complexes whose zeroth cohomology belongs to
Q and for which all positive cohomologies vanish (compare with [Happel
et al. 1996]). In particular, the cosilting t-structure is cosmashing if and only
if Q is closed under products in Mod(A). But the latter cannot be true due to
[Angeleri Hügel 2003, Theorem 5.2 and Example 5.4].

For a compactly generated triangulated category T , (co)silting t-structures can
be obtained in a rather abstract way. First, recall that T satisfies a Brown repre-
sentability theorem (i.e., every cohomological functor H : T op

→Mod(Z) which
sends coproducts to products is representable) and a dual Brown representability
theorem (i.e., every cohomological functor H : T →Mod(Z) which sends products
to products is representable); see [Krause 2002a] for details. We can now state the
following result:
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Theorem 3.5 [Nicolás et al. 2015, §4]. There is a bijection between

• cosmashing nondegenerate t-structures whose heart has a projective generator;

• equivalence classes of silting objects.

Dually, there is a bijection between

• smashing nondegenerate t-structures whose heart has an injective cogenerator;

• equivalence classes of cosilting objects.

The first statement is proven in [Nicolás et al. 2015]. For the reader’s convenience,
we briefly sketch an argument for the second bijection. First recall that cosilting
t-structures are smashing, nondegenerate and their hearts have injective cogenerators
(see Lemma 2.7). Hence, there is an injective assignment from equivalence classes
of cosilting objects to the t-structures with the assigned properties. To see that the
assignment is surjective, we use the fact that T satisfies Brown representability.
Indeed, given a smashing nondegenerate t-structure T whose heart has injective
cogenerator E , the corresponding cosilting object C can be obtained as the (unique)
representative of the cohomological functor HomT (H 0

T(−), E) ∼= HomT (−,C).
Note that HomT (H 0

T(−), E) sends coproducts to products by the smashing assump-
tion. The dual arguments were used in [Nicolás et al. 2015] to show the silting case.

We can now prove the main result of this section by building on Theorem 3.5
and identifying which (co)silting t-structures have Grothendieck hearts. A similar
result was obtained independently in [Nicolás et al. 2015, Proposition 4.2] with the
additional assumption that all t-structures considered are cosmashing.

Theorem 3.6. Let T = (U,V) be a smashing nondegenerate t-structure in T with
heart HT. Denote by H 0

T : T → HT the associated cohomological functor. The
following statements are equivalent.

(1) HT is a Grothendieck category;

(2) There is a pure-injective cosilting object C in T such that T = (⊥≤0C,⊥>0C).

If the above conditions are satisfied, there is a (unique) exact functor H 0
T :Mod-T c

→

HT with a right adjoint j∗ such that H 0
T ◦ y = H 0

T and j∗H 0
T(C)∼= yC. Moreover,

there is a localisation sequence of the form

Ker H 0
T =

⊥0 yC
i∗

// Mod-T c
H0

T
//

i !
gg

HT
j∗

ee

Proof. Suppose that HT is a Grothendieck category. By Theorem 3.5, T is a cosilting
t-structure for a cosilting object C , such that HomT (H 0

T(−), E) ∼= HomT (−,C)
for some injective cogenerator E in HT. It remains to show that C is pure-injective.
Since, by Lemma 3.3, H 0

T commutes with T -coproducts, Theorem 3.2(2) shows that
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H 0
T sends pure triangles to short exact sequences. In particular, HomT (−,C) sends

pure triangles to short exact sequences, showing that C is indeed pure-injective.
Conversely, let C be a pure-injective cosilting object in T with associated t-

structure T = (⊥≤0C,⊥>0C). It follows that the functor HomT (−,C) is naturally
equivalent to HomT (H 0

T(−), H 0
T(C)) and, therefore, also the functor H 0

T sends pure
triangles to short exact sequences. Consequently, by Theorem 3.2(1), there is a
(unique) exact functor H 0

T :Mod-T c
→HT such that H 0

T ◦ y= H 0
T . The following

argument is inspired by the proof of [Št́ovíček 2014, Theorem 6.2]. Consider the
hereditary torsion pair in Mod-T c cogenerated by the injective object yC , i.e.,
the pair (⊥0 yC,Cogen( yC)). The quotient category GC := Mod-T c/⊥0 yC is a
Grothendieck category (see [Gabriel 1962, Proposition III.9]) and the quotient
functor π : Mod-T c

→ GC admits a fully faithful right adjoint functor ρ : GC →

Mod-T c, with essential image

Cogen( yC)∩Ker Ext1Mod-T c(
⊥0 yC,−)

(see [Gabriel 1962, Corollary of Proposition III.3; Prest 2009, §11.1.1]). In particu-
lar, as in the proof of [Št́ovíček 2014, Theorem 6.2], it follows that an object X of
GC is injective if and only if ρ(X) lies in Prod( yC), i.e., the full subcategory of
injective objects in GC is equivalent to Prod( yC) which, by Theorem 3.1, is further
equivalent to Prod(C). Thus, using Lemma 2.8, we get the following commutative
diagram of equivalences:

Inj(GC)
ρ
// Prod( yC)

H0
T
��

Prod(C)

H0
Txx

y
oo

Prod(H 0
T(C))

Hence, the functor H 0
T ◦ ρ yields an equivalence between the category of injective

objects in GC and the category of injective objects in HT. Since the functor H 0
T ◦ ρ

is clearly left exact, by Lemma 2.9, it extends to an equivalence of categories
GC ∼=HT showing, in particular, that HT is a Grothendieck category.

Assume now that T satisfies (1) and (2). We first show that Ker H 0
T =

⊥0 yC .
Indeed, if F is an object in ⊥0 yC , then HomMod-T c( yα, yC) is an epimorphism for
any map yα : yE0→ yE1 between injective objects in Mod-T c with Ker( yα)= F .
Using the pure-injectivity of C , we get that HomT (α,C) is an epimorphism and,
thus, so is HomHT

(H 0
T(α), H 0

T(C)). Since H 0
T(C) is an injective cogenerator of HT,

it follows that H 0
T(α) is a monomorphism and, thus, H 0

T(F)= 0, by the construction
of H 0

T. Finally, since this argument is reversible the desired equality holds.
Now, in order to show the existence of the localisation sequence above, it is

enough to prove that the functor H 0
T admits a right adjoint. To this end, since H 0

T◦ρ

is an equivalence and π has a right adjoint, it suffices to check that H 0
T
∼= H 0

T ◦ ρ ◦π .
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By using the unit of the adjunction (π, ρ), we get a natural transformation of functors
H 0

T→H 0
T◦ρ◦π . We need to see that it induces an isomorphism on objects. But this

follows from the fact that the kernel and cokernel of the natural map X→ ρπ(X),
for X in Mod-T c, are torsion, that is, they belong to ⊥0 yC = Ker H 0

T. Finally, by
using the adjunction (H 0

T, j∗), we get j∗H 0
T(C)∼= j∗H 0

T( yC)∼= yC . �

One can state a somewhat dual result for silting objects.

Theorem 3.7. Let T = (T≤0,T≥0) be a smashing and cosmashing nondegenerate
t-structure in T with heart HT. Denote by H 0

T : T → HT the associated cohomo-
logical functor. The following are equivalent.

(1) HT is a Grothendieck category with a projective generator;

(2) There is a pure-projective silting object T in T such that T = (T⊥>0, T⊥≤0).

If the above conditions are satisfied, there is a (unique) exact functor H 0
T :Mod-T c

→

HT with a left adjoint j! such that H 0
T ◦ y = H 0

T and j!H 0
T(T )∼= yT . Moreover,

there is a recollement of the form

Ker H 0
T

i∗
// Mod-T c

H0
T

//

i∗

vv

i !gg
HT.

j!

xx

j∗
ee

Proof. The arguments are dual to those in the proof of Theorem 3.6. Note that the
additional assumption of the t-structure being smashing comes into play through
the use of Theorem 3.2(2), which is needed in an essential way to prove the
pure-projectivity of the associated silting object. On the other hand, we have
seen in Example 3.4(2) that the t-structure is smashing whenever T is a pure-
projective silting object. Finally, observe that we get a recollement rather than just
a localisation sequence like in Theorem 3.6, since, in the given context, Ker H 0

T is
closed under products and coproducts in Mod-T c (see also [Psaroudakis and Vitória
2014, Corollary 4.4]). �

As an immediate consequence of these results, we can identify the t-structures
with Grothendieck hearts within the bijections of Theorem 3.5.

Corollary 3.8. There is a bijection between

• smashing nondegenerate t-structures of T whose heart is a Grothendieck
category;

• equivalence classes of pure-injective cosilting objects.

Dually, there is a bijection between

• smashing and cosmashing nondegenerate t-structures in T whose heart is a
Grothendieck category with a projective generator;

• equivalence classes of pure-projective silting objects.
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4. Cosuspended TTF classes

In this section, we focus on cosuspended TTF classes in a compactly generated
triangulated category T . We relate the properties of the previous section (namely,
Grothendieck hearts and the pure-injectivity of the associated cosilting objects) with
the definability of the cosuspended TTF class. As a consequence, if T is algebraic,
nondegenerate compactly generated t-structures have Grothendieck hearts.

Coherent functors and definability. We begin with a short reminder on coherent
functors and definable subcategories of T , and we obtain an easy (but useful)
criterion to check whether a certain subcategory of T is definable or not. We also
prove that a definable subcategory V of T is preenveloping, i.e., for any object X
in T there is a map φ : X → V with V in V such that HomT (φ, V ′) is surjective
for all V ′ in V .

Recall from [Krause 2002b, Proposition 5.1] that a covariant additive functor
F : T →Mod(Z) is said to be coherent if the following equivalent conditions are
satisfied:

(1) There are compact objects K and L and a presentation

HomT (K ,−)→ HomT (L ,−)→ F→ 0.

(2) F preserves products and coproducts and sends pure triangles to short exact
sequences.

The category of coherent functors is denoted by Coh-T . For a locally coherent
Grothendieck category G or, more generally, a locally finitely presented additive
category with products, coherent functors are defined analogously, replacing in
(1) the compactness of K and L by the property of being finitely presented. The
analogue of (2) then states that coherent functors are precisely the functors G→
Mod(Z) preserving products and direct limits [Krause 2003, Proposition 3.2].

Definition 4.1. A subcategory V of T is said to be definable if there is a set of
coherent functors (Fi )i∈I from T to Mod(Z) such that X lies in V if and only if
Fi (X)= 0 for all i in I .

Definable subcategories of a locally finitely presented additive category G with
products are defined as above: they are zero-sets of families of coherent functors.
Recall that a subcategory of G is definable if and only if it is closed under products,
direct limits and pure subobjects [Krause 2003, Theorem 2]. Moreover, definable
subcategories of G are closed under pure-injective envelopes (see [Prest 2009,
§16.1.2]). Note that, by definition, definable subcategories of T are also closed
under products, coproducts, pure subobjects and pure quotients, but we do not
know whether they are characterised by such closure conditions (unless stronger
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assumptions are imposed, see [Krause 2002b, Theorem 7.5]). A useful criterion for
definability in T will be provided in Corollary 4.4 below.

For a subcategory V of a compactly generated triangulated (respectively, a locally
coherent Grothendieck) category, we denote by Def(V) the smallest definable
subcategory containing V .

Example 4.2. A notion of flatness in Mod-T c is developed in [Krause 2000, §2.3]
and [Beligiannis 2000, §8.1]. The subcategory Flat-T c of flat objects in Mod-T c is
locally finitely presented and contains precisely the functors F that send triangles
to exact sequences or, equivalently, that satisfy Ext1(G, F) = 0 for all finitely
presented functors G in Mod-T c. Moreover, Flat-T c is a definable subcategory of
Mod-T c by [Prest 2009, Theorem 16.1.12]. Note that all objects of the form yX,
for X in T , are flat.

The definable closure Def(V) in Mod-T c of a set V of objects contained in Flat-
T c consists of pure subobjects of direct limits in Mod-T c of directed systems whose
terms are products of objects in V . To prove this, one uses the notion of a reduced
product from [Krause 1998, p. 465]. Since Flat-T c is a definable subcategory of
Mod-T c, it suffices to show that the pure subobjects of reduced products of objects
in V form a definable subcategory of Flat-T c. But the latter statement follows from
[Krause 1998, Corollary 4.10] combined with [Krause 1998, Proposition 2.2].

We have this the following useful fact (compare with [Arnesen et al. 2016,
Theorem 1.9]):

Proposition 4.3. Let fun(Flat-T c) denote the category of coherent functors from
the locally finitely presented category Flat-T c to Mod(Z). Then the assignment
fun(Flat-T c)→ Coh-T that sends a functor F to F ◦ y is an equivalence of
categories.

Proof. First, we observe that the assignment is well defined. It is clear that given F
in fun(Flat-T c), the composition F ◦ y preserves products and coproducts. Now,
given a pure triangle1 in T , we have that y(1) is a short exact sequence in Flat-T c.
Since short exact sequences in Flat-T c are pure or, equivalently, direct limits of
split exact sequences (see [Prest 2009, Theorem 16.1.15]), we see that F( y(1)) is
a short exact sequence of abelian groups. It then follows that F ◦ y is coherent by
the description (2) of coherent functors above.

In order to see that this assignment yields an equivalence of categories we show
that it admits a quasi-inverse. By [Krause 2002b, Proposition 4.1], each functor
G in Coh-T gives rise to a unique functor G in fun(Flat-T c) such that G ◦ y = G.
The uniqueness guarantees the functoriality of this assignment and it is clear that
the assignments are inverse to each other. �

As a corollary of the proposition above, we deduce the following statement.
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Corollary 4.4. Let V be a class of objects in T . The smallest definable subcategory
of T containing V is

Def(V)= {X ∈ T : yX ∈ Def( yV)}.

As a consequence, any definable subcategory of T is closed under pure-injective
envelopes.

Recall from [Crivei et al. 2010, Theorem 4.1] that any definable subcategory of
a locally finitely presented additive category G with products is preenveloping. The
following proposition establishes a triangulated analogue. Its proof is inspired by
the proof of [Aihara and Iyama 2012, Theorem 4.3].

Proposition 4.5. Let V be a definable subcategory of T . Then V is preenveloping.
In particular, if V is cosuspended, then (⊥0V,V) is a t-structure.

Proof. Since V is definable, by definition, there is a set of maps {φi : X i→Yi | i ∈ I }
in T c such that an object V in T lies in V if and only if HomT (φi , V ) is surjective
for all i in I. We need to build a V-preenvelope for a given object Z = Z0 in T .
First, setting Ki,0 := HomT (X i , Z0), we define the map

X0 :=
⊕

i∈I X (Ki,0)

i

φ0:=
⊕

i∈I φ
(Ki,0)
i

// Y 0 :=
⊕

i∈I Y (Ki,0)

i

and consider the canonical universal map a0 : X0→ Z0. Let z0 : Z0→ Z1 denote
the corresponding component of the cone of the map (φ0,−a0)

T
: X0→ Y 0⊕ Z0,

and proceed inductively to define objects Zn and maps zn : Zn → Zn+1. We
prove that the Milnor colimit VZ of the inductive system (Zn, zn)n∈N0 yields a
V-approximation of Z . Let us first observe that VZ indeed lies in V . Since both X i

and Yi are compact for any i in I , it follows that

HomT (φi , VZ )∼= lim
−−→

n∈N0

HomT (φi , Zn) : lim
−−→

n∈N0

HomT (Yi , Zn)→ lim
−−→

n∈N0

HomT (X i , Zn).

In order to see that this map is surjective, it suffices to show that any element
in lim
−−→n∈N0

HomT (X i , Zn) which is represented by a map g in HomT (X i , Zm) for
some m in N0 lies in the image of HomT (φi , VZ ). By construction of the inductive
system, there clearly is a map h in HomT (Yi , Zm+1) such that hφi = zm g. As a
consequence, the element in lim

−−→n∈N0
HomT (Yi , Zn) represented by the map h is a

preimage via lim
−−→n∈N0

HomT (φi , Zn) of the element in lim
−−→n∈N0

HomT (X i , Zn) that
we started with. This proves that HomT (φi , VZ ) is surjective for all i in I and, thus,
VZ lies in V .

We proceed to prove that the induced map v : Z→ VZ is a left V-approximation.
Given a morphism f : Z→ V with V in V , the composition f a0 factors through φ0.
Let f : Y 0 → V be such that f φ0 = f a0. By construction of Z1 as the cone
of (φ0,−a0)

T, it follows that there is a map f1 : Z1 → V such that f = f1z0.
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Inductively, one can then see that the map f indeed factors successively through
any Zn and, therefore, through the Milnor colimit VZ , as wanted.

The final statement follows from Example 2.4(3). �

Cosuspended TTF triples. Before we discuss how definability arises in the context
of cosuspended TTF triples, we first prove some auxiliary statements.

Lemma 4.6. Let (U,V,W) be a cosuspended TTF triple in T . Then (U,V) is a
nondegenerate t-structure if and only if the coheart C := V ∩W[−1] cogenerates T .
In this case, we have V = ⊥>0C .

Proof. Let (U,V,W) be a cosuspended TTF triple in T . Suppose that (U,V) is a
nondegenerate t-structure and let X be an object of T such that HomT (X,C [k])= 0,
for all k in Z. Given an integer k in Z, let us denote by uk

: T → U[k] and vk
: T →

V[k] the truncation functors corresponding to the t-structure (U[k],V[k]). Consider
a truncation triangle of the object vk(X) for the co-t-structure (V[k−1],W[k−1]),
yielding a diagram of the form

uk(X) // X
f k
// vk(X) // uk(X)[1]

Vk−1
g
// vk(X) h

// Wk−1 // Vk−1[1]

with Vk−1 in V[k − 1] and Wk−1 in W[k − 1]. We can easily deduce that Wk−1
lies in C [k] and, thus, h f k

= 0 by assumption on X. Then there is a morphism
α : X → Vk−1 such that gα = f k. Now, since Vk−1 lies in V[k − 1] ⊆ V[k], it
follows that α factors through the truncation f k−1

: X→ vk−1(X). This then yields
a map vk−1(X)→ vk(X). Considering the two compositions of this map with the
canonical morphism vk(X)→ vk−1(X) and using the minimality of the maps f k

and f k−1, we conclude that both maps are isomorphisms. Since this holds for
arbitrary k, the nondegeneracy of (U,V) implies that vk(X) = 0 for all k in Z.
Thus, X must lie in ∩n∈Z U[n] and, again by the nondegeneracy of (U,V) it must,
therefore, be zero.

Conversely, suppose that C cogenerates T and let X lie in ∩n∈Z U[n]. Consider
a morphism f : X→ C[k] for k in Z and C in C . Now, since C[k] lies in V[k] and
X lies in U[k], it follows that f = 0 and, thus, by assumption, also X = 0. Similarly,
if X is in ∩n∈ZV[n], since C[k] lies in W[k− 1], it must follow that X = 0.

Finally, assuming that C cogenerates T , we show that V = ⊥>0C . It is always
the case that V ⊆ ⊥>0C . For the reverse inclusion, let X be an object in ⊥>0C and
consider the truncation triangle

v(X)[−1] → u(X)→ X→ v(X).
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Given C in C and applying the functor HomT (−,C[k]) to the triangle, we see that
HomT (v(X),C[k + 1]) = HomT (X,C[k]) = 0 for all k > 0 and, thus, we have
HomT (u(X),C[k])= 0 for all k > 0. Moreover, since C [k] ⊂ V for all k ≤ 0, we
see that HomT (u(X),C[k])= 0 for all k ≤ 0. Since C cogenerates T , we have that
u(X)= 0 and X belongs to V , as wanted. �

Lemma 4.7. Let C be subcategory of T . Suppose that C is closed under products
and summands, and that all objects in C are pure-injective. Then there is an object
C in C such that C = Prod(C).

Proof. Consider the hereditary torsion pair (⊥0( yC ),F := Cogen( yC )) in Mod-T c.
It is well known that there is an injective object yC in Mod-T c such that F =
Cogen( yC) (see [Stenström 1975, VI, Proposition 3.7]). It follows that Prod( yC )=

Prod( yC). Since y commutes with products and is fully faithful on pure-injectives,
we get C = Prod(C )= Prod(C). �

Lemma 4.8. Let C be an additive subcategory of T and V = ⊥>0C . Then the
following statements are equivalent:

(1) V is product-closed and every object in C is pure-injective.

(2) V is definable.

Moreover, if the above conditions are satisfied, then there is a t-structure (U,V).

Proof. Suppose that (1) holds. We have to show that every object X in Def(V)
lies in V = ⊥>0C . By Corollary 4.4, the object yX lies in the definable closure
Def( yV) in Mod-T c of all objects of the form yV with V in V . By the description
of the definable closure given in Example 4.2, yX is a pure subobject of a direct
limit in Mod-T c of a directed system whose objects are products of the form∏

i∈I yX i , with X i in V . Note that, since y commutes with products, we have∏
i∈I yX i = yX I , where X I =

∏
i∈I X i . Now, since V is closed under products,

X I lies in V . Applying the functor HomMod-T c(−, yC[k]), with k > 0 and C in
C to the embedding yX→ lim

−−→I yX I , and using the pure-injectivity of C (and its
shifts), we get an epimorphism

lim
←−−

I
HomT (X I ,C[k])∼= HomMod-T c(lim

−−→
I

yX I , yC[k])� HomMod-T c( yX, yC[k])

∼= HomT (X,C[k]).

Since X I lies in V , the domain of this map vanishes and, hence, so does the
codomain, as wanted.

Conversely, suppose that V is definable. First, the subcategory V is closed under
products. Let X be an object in C and f : X→ I (X) its pure-injective envelope
in T . Since definable subcategories are closed under pure-injective envelopes and
pure quotients (see Corollary 4.4), it follows that both I (X) and Z := cone( f ) lie
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in V . Since HomT (V,C [1])= 0 it follows that HomT (Z , X [1])= 0, the triangle
induced by f splits and X is a summand of I (X), i.e., X is pure-injective.

The last statement of the lemma follows from Proposition 4.5, since V is clearly
cosuspended. �

Finally, we can now use the rather technical statements above to prove the main
theorem of this section.

Theorem 4.9. Let (U,V,W) be a cosuspended TTF triple in T such that the
t-structure (U,V) is nondegenerate. Then the following are equivalent:

(1) V is definable in T ;

(2) V = ⊥>0C for a pure-injective cosilting object C in T .

Proof. First observe that by Lemma 4.6, the coheart C = V∩W[−1] cogenerates T
and V = ⊥>0C . Since V is a TTF class, it is closed under products and, therefore, by
Lemma 4.8, V is definable if and only if every object in C is pure-injective. In that
case, since both V and W (and, thus, C ) are closed under products and summands,
by Lemma 4.7, there is C in T such that C = Prod(C).

(1)⇒ (2): Suppose now that V is definable and let C be as above. As observed,
we have that V = ⊥>0C and we only need to show that U = ⊥≤0C . Since C[k] lies
in V for all k ≤ 0, it is clear that U ⊆ ⊥≤0C . Now let X lie in ⊥≤0C and consider a
truncation triangle

u(X)→ X→ v(X)→ u(X)[1]

with u(X) in U and v(X) in V . Since both X and u(X)[1] lie in ⊥≤0C , so does v(X).
However, v(X) also lies in ⊥>0C , showing that v(X)= 0, since C is a cogenerator
of T . Hence, we have that U = ⊥≤0C .

(2)⇒ (1): In order to show that V is definable, it is enough to show that the
coheart C coincides with Prod(C) (thus proving that every object in C is pure-
injective). The argument is dual to the one used in [Angeleri Hügel et al. 2016,
Lemma 4.5]. Indeed, let X be an object in C , let I denote the set HomT (X,C)
and consider the induced universal map φ : X→ C I. If Z denotes the cone of the
map φ, then it is easy to check that Z lies in ⊥>0C and, thus, the map Z → X [1]
of the induced triangle is zero, by the assumption on X. Hence, the triangle splits
and X lies in Prod(C). This shows that C ⊆ Prod(C) and the reverse inclusion
is clear. �

Corollary 4.10. Let T be an algebraic, compactly generated triangulated category.
Every nondegenerate compactly generated t-structure has a Grothendieck heart.

Proof. From Example 2.4(2), every compactly generated t-structure (U,V) in T
admits a right adjacent co-t-structure (V,W). It is clear that V is definable as it is
the subcategory obtained as the intersection of the kernels of the coherent functors
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HomT (X,−) with X in U ∩ T c. Now, Theorem 4.9 combined with Theorem 3.6
finishes the proof. �

The corollary above extends [Bravo and Parra 2016, Corollary 2.5], which treats
the special case when T is a derived module category and the compactly generated
t-structure arises as an HRS-tilt of a torsion pair in the underlying module category.
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