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TRANSFINITE DIAMETER
ON COMPLEX ALGEBRAIC VARIETIES

DAVID A. COX AND SIONE MA‘U

We use methods from computational algebraic geometry to study Chebyshev
constants and the transfinite diameter of a pure m-dimensional affine alge-
braic variety in Cn (m≤n). The main result is a generalization of Zaharyuta’s
integral formula for the Fekete–Leja transfinite diameter.

1. Introduction

This paper studies a notion of transfinite diameter on a pure m-dimensional algebraic
subvariety of Cn, 1 ≤ m ≤ n. This is a natural generalization of the Fekete–Leja
transfinite diameter in Cn, which is an important quantity in pluripotential theory
and polynomial approximation. In the study of the Fekete–Leja transfinite diameter
in Cn (n > 1), an important paper is that of Zaharyuta [1975]. Given a compact set
K ⊆ Cn, Zaharyuta showed that its Fekete–Leja transfinite diameter, denoted d(K ),
was given by a well-defined limiting process analogous to the one-dimensional
case. The main result of that paper is an integral formula that realizes d(K ) as
a “geometric average” of so-called directional Chebyshev constants associated
to K ; these constants measure (in an asymptotic sense) the minimum size on K of
polynomials with prescribed leading terms.

Further developments and generalizations make use of the essential techniques in
that paper. In [Jędrzejowski 1991] the notion of homogeneous transfinite diameter
was studied and a Zaharyuta-type formula proved. In [Rumely and Lau 1994],
and later in [Rumely et al. 2000], Lau, Rumely and Varley developed Zaharyuta’s
techniques in the setting of arithmetic geometry to study the notion of sectional
capacity. More recently, Bloom and Levenberg [2003; 2010] studied a notion of
weighted transfinite diameter in Cn.

In [Baleikorocau and Ma‘u 2015] a notion of transfinite diameter was defined
and studied on an algebraic curve V ⊆Cn. It was shown that Zaharyuta’s arguments,
which exploit standard algebraic properties of polynomials, may be adapted to
handle algebraic computations in the coordinate ring of V. Well-developed methods
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exist to carry out such computations, using Gröbner bases. In this paper we will
apply these methods to higher dimensional algebraic varieties.

We should mention here that the notion of transfinite diameter on algebraic
varieties may be studied as a by-product of Berman and Boucksom’s [2010] general
theory of Monge–Ampère energy on compact complex manifolds. A generalization
of Zaharyuta’s result to this setting has been proved in [Witt Nyström 2014].
The Berman–Boucksom methods are quite different to those of this paper. The
connection between their setting and ours is explored in [Ma‘u 2017].

Before we describe the contents of the paper more specifically, we briefly recall
the definition of the Fekete–Leja transfinite diameter.

Let {zαj }
∞

j=1 be the monomials in n variables listed according to a graded order
(i.e., |αj | ≤ |αk | whenever j < k). Here we are using standard multi-index notation:
if αj = (αj1, . . . , αjn)⊆ Zn

≥0, then zαj = zαj1
1 zαj2

2 · · · z
αjn
n and |αj | = αj1+· · ·+αjn

denotes the total degree. Write ej = zαj ; so for a = (a1, . . . , an) ∈ Cn we have
ej (a)= aαj1

1 · · · a
αjn
n . Given a positive integer M and points {ζ1, . . . , ζM} ⊆ Cn, the

M ×M determinant

(1-1) Van(ζ1, . . . , ζM)= det
(
ej (ζi )

)M
i, j=1 = det


1 1 · · · 1

e2(ζ1) e2(ζ2) · · · e2(ζM)
...

...
. . .

...

eM(ζ1) eM(ζ2) · · · eM(ζM)


is called a Vandermonde determinant of order M. (Note that e1 = 1.)

Let K ⊆ Cn be compact and s a positive integer. Let ms be the number of
monomials of degree at most s in n variables, and let ls =

∑ms
j=1 |αj | be the sum of

the degrees. Define the s-th order diameter of K by

(1-2) ds(K ) := sup{|Van(ζ1, . . . , ζms )|
1/ls : {ζ1, . . . , ζms } ⊆ K }.

The Fekete–Leja transfinite diameter of K is defined as d(K ) := lim sups→∞ ds(K ).
In this paper, we construct a basis C of polynomials for the coordinate ring C[V ]

of a pure m-dimensional algebraic variety V ⊆ Cn (1 ≤ m ≤ n) of degree d, as
long as the ring satisfies certain algebraic conditions (see (3-1)). Write C = {ej }

∞

j=1
for this basis which we assume is listed in a graded ordering: deg(ej ) ≤ deg(ek)

if j < k. We define VanC(ζ1, . . . , ζM) to be the Vandermonde determinant with
respect to C using the formula (1-1).

Define ms = ms(V ) to be the number of elements of C of degree at most s, and
let ls = ls(V )=

∑ms
j=1 deg(ej ) be the sum of the degrees. The s-th order diameter

of a compact set K ⊆ V is defined as in (1-2) with VanC(·) replacing Van(·) on the
right-hand side. Our main theorem (Theorem 6.2) says the following.
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Theorem. The limit d(K ) := lims→∞ ds(K ) exists and

d(K )=
( d∏

j=1

T (K , λj )

)1/d

.

Following Zaharyuta’s terminology, the quantities T (K , λj ) on the right-hand
side are called principal Chebyshev constants and are defined in Section 5 as integral
averages of so-called directional Chebyshev constants. Here d is the degree of V
and the λj are the d points of intersection of the projective closure of V in Pn with a
certain subspace of the hyperplane at infinity. When V is a curve the above result is in
[Baleikorocau and Ma‘u 2015].∗ When deg(V )= 1 then there is only one principal
Chebyshev constant, and one recovers Zaharyuta’s formula, up to a normalization.

In Section 2 we give some of the background needed for subsequent sections,
including Noether normalization, the grevlex monomial ordering, normal forms
and Hilbert functions.

In Section 3 we construct a basis (denoted by C) of polynomials on the variety. The
basis C consists of d groups of polynomials associated to the Noether normalization
(elements of the form (∗∗), see Proposition 3.9), together with a “smaller” collection
of monomials (elements of the form (∗)). When V is a hypersurface, the basis C
can be computed rather explicitly.

Section 4 is a general study of weakly submultiplicative functions. In [Bloom and
Levenberg 2003] it was observed that Zaharyuta’s computations with polynomials
can be reformulated abstractly as properties of submultiplicative functions. We
verify here that the relevant calculations go through with small modifications under
slightly weaker conditions.

In Section 5, directional and principal Chebyshev constants are defined and
studied. The main point is to construct weakly submultiplicative functions using
computational properties of the basis C (Corollary 5.4). The results of Sections 3
and 4 can then be applied to this setting.

In Section 6 we prove the main theorem relating transfinite diameter to Chebyshev
constants. The standard argument, based on estimating ratios of Vandermonde
determinants with directional Chebyshev constants, goes through in its entirety.

In Section 7, we show in Theorem 7.2 that the transfinite diameter may be com-
puted using the standard basis of monomials on the variety (i.e., those monomials
that give normal forms). This uses the fact that, up to a geometric factor in some
finite set—the collection of the vi in Proposition 3.9—each polynomial in the basis
C is a monomial.

∗The principal Chebyshev constants in this paper are called directional Chebyshev constants
in [Baleikorocau and Ma‘u 2015]; for a one-dimensional curve, the λj may be interpreted as the
directions of its linear asymptotes.
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In the Appendix we compare our method to that of Rumely, Lau and Varley
[Rumely et al. 2000], whose so-called monic basis is constructed by generating basis
elements multiplicatively from a finite collection of polynomials with prescribed
behavior. We compare both methods concretely in the case of the complexified
sphere in C3.

2. Background material

We begin with Noether normalization. Consider an ideal I ⊆ C[z1, . . . , zn] with
the following properties:

(1) C[z1, . . . , zm] ∩ I = {0};

(2) For each i = m+ 1, . . . , n there is a gi ∈ I which can be written in the form

(2-1) gi = zdi
i +

di−1∑
j=0

hi j (z1, . . . , zi−1)z
j
i , with deg(hi j )+ j ≤ di for all i.

Property (1) is equivalent to saying that the map C[z1, . . . , zm] → C[z1, . . . , zn]/I,
induced by the inclusion into C[z1, . . . , zn], is injective, and property (2) implies
that the quotient is finite over C[z1, . . . , zm]. The Noether normalization theorem
says that one can always make a change of variables so that the above properties
hold. We state a specialized version of this theorem (cf., [Greuel and Pfister 2002,
Theorem 3.4.1]).

Theorem 2.1 (Noether Normalization). Let J ⊆ C[x1, . . . , xn] be an ideal. Then
there is a positive integer m ≤ n and a complex linear change of coordinates
z=T (x), zi =

∑n
j=1 Ti j x j , such that the following properties hold (write I =T (J )):

(1) The map C[z1, . . . , zm] → C[z1, . . . , zn]/I induced by inclusion is injective,
and exhibits C[z1, . . . , zn]/I as a finite C-algebra over C[z1, . . . , zm].

(2) For i = m+ 1, . . . , n, we can find polynomials gi ∈ I that satisfy (2-1).

When property (1) of the theorem holds, we write C[z1,...,zm] ⊆C[z1,...,zn]/I.
This inclusion is called a Noether normalization. All Noether normalizations used
in this paper will be assumed to satisfy the additional condition (2) of the theorem
since the degree condition in (2-1) will be important.

The grevlex ordering, which we will denote here by <gr , is the ordering defined
on Zn

≥0 by α <gr β if:

(1) |α|< |β|, or,

(2) |α|= |β|, and for some i ∈{1, . . . , n}we have αi <βi and αj =βj , for all j < i .

Define grevlex on monomials by putting zα <gr zβ if α <gr β. More precisely,
this gives the grevlex ordering with z1 <gr z2 <gr · · ·<gr zn . Note that |α|< |β|
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implies zα <gr zβ. A monomial ordering that satisfies this property is called a
graded ordering.

Denote by LT(p) the leading term of a polynomial with respect to grevlex, and
for an ideal I put LT(I ) := {LT(p) : p ∈ I }. It is well known that for each element
of C[z1, . . . , zn]/I there is a unique polynomial representative, the normal form
(with respect to grevlex), which contains no monomials in the ideal 〈LT(I )〉. If an
element of C[z1, . . . , zn]/I contains the polynomial p, then the normal form r may
be computed in practice as the remainder on dividing p by a Gröbner basis of I ;
see [Cox et al. 1997, §5.3].

Write C[z]I = C[z1, . . . , zn]I for the collection of normal forms of elements of
C[z]/I = C[z1, . . . , zn]/I. As a vector space, C[z]I has a basis consisting of all
monomials zγ /∈ 〈LT(I )〉. We can give C[z]I the structure of an algebra over C with
multiplication operation given by

(r1, r2) 7→ “the normal form of r1r2”.

We will usually denote this by r1r2, though we will write r1∗r2 when we want to
emphasize that this is the normal form of the ordinary product. Note that C[z]I and
C[z]/I are isomorphic as C-algebras, where the isomorphism is given by identifying
normal forms with their polynomial classes.

Hilbert functions play an important role in some of our proofs. We begin with
C[z]≤s = C[z1,...,zn]≤s , which consists of polynomials of degree ≤ s. Recall that

(2-2) dimC[z1,...,zn]≤s =

(
s+ n

n

)
=
(s+ n)···(s+ 1)

n!
=

1
n!

sn
+ O(sn−1).

Then (C[z]/I )≤s consists of all classes represented by a polynomial of degree ≤ s.
The dimension dim(C[z]/I )≤s gives the Hilbert function of I. We also define
C[z]I≤s to consist of all normal forms of degree ≤ s. Since <gr is a graded order,
the isomorphism C[z]I ' C[z]/I induces an isomorphism

C[z]I≤s ' (C[z]/I )≤s;

see [Cox et al. 1997, §9.3]. This has two useful consequences:

• The Hilbert function dim(C[z]/I )≤s is given by the number of monomials
zγ /∈ 〈LT(I )〉 of degree ≤ s.

• If r1 ∈ C[z]I≤s and r2 ∈ C[z]I≤t , then r1∗r2 ∈ C[z]I≤s+t .

A Noether normalization C[z1, . . . , zm] ⊆ C[z]/I has the following properties.

Proposition 2.2. Every element of C[z1, . . . , zm] is a normal form, so that

C[z1, . . . , zm] ⊆ C[z]I .

Furthermore, for i = m+ 1, . . . , n, we have zdi
i ∈ 〈LT(I )〉, where di is as in (2-1).



284 DAVID A. COX AND SIONE MA‘U

Proof. For the second assertion of the proposition, suppose i ∈ {m+ 1, . . . , n} and
gi ∈ I is as in (2-1). Then the definition of grevlex and the degree condition in (2-1)
makes it easy to see that LT(gi )= zdi

i , which implies zdi
i ∈ 〈LT(I )〉.

Since normal forms are known to form a subspace, it suffices to show that every
monomial in C[z1, . . . , zm] is a normal form. Let α = (α1, α2, . . . , αm, 0, . . . , 0),
so that zα = zα1

1 zα2
2 · · · z

αm
m . We want to show that zα 6∈ 〈LT(I )〉.

Suppose not, i.e., zα ∈ 〈LT(I )〉. We will obtain a contradiction by studying the
Hilbert function. Take zγ /∈ 〈LT(I )〉, where γ = (γ1, . . . , γn). If i ≥ m + 1, then
zdi

i ∈ 〈LT(I )〉, so zdi
i cannot divide zγ. Hence

(2-3) γi < di , for all i = m+ 1, . . . , n.

Furthermore, zα ∈ 〈LT(I )〉, so zα cannot divide zγ. Then

(2-4) γi < αi , for some i = 1, . . . ,m.

Now let

L(s) := {γ : zγ /∈ 〈LT(I )〉, |γ | ≤ s},

so that |L(s)| = dim(C[z]/I )≤s is the Hilbert function. Also, for i = 1, . . . ,m, let

L i (s)= {γ ∈ L(s) : γi < αi and γm+1 < dm+1, . . . , γn < dn}.

Then (2-3) and (2-4) imply that

(2-5) L(s)⊆ L1(s)∪ · · · ∪ Lm(s).

Observe that

|L i (s)| ≤ αi · dm+1 · · · dn · dim C[z1, . . . , ẑi , . . . , zm]≤s .

Combining this with (2-2) and (2-5), we obtain |L(s)| = O(sm−1). It follows that

(2-6) dim(C[z]/I )≤s = O(sm−1).

On the other hand, the inclusion C[z1, . . . , zm] ⊆ C[z]/I gives an inclusion

C[z1, . . . , zm]≤s ⊆ (C[z]/I )≤s,

and then (2-2) implies dim(C[z]/I )≤s ≥ (1/m!)sm
+ O(sm−1). This contradicts

(2-6) and completes the proof. �

3. Constructing an ordered basis

In what follows we will use the following standard notation.



TRANSFINITE DIAMETER ON COMPLEX ALGEBRAIC VARIETIES 285

Notation 3.1. Given a set of polynomials I ⊆ C[z1, . . . , zn] = C[z], write

V (I ) := {(a1, . . . , an) ∈ Cn
: p(a1, . . . , an)= 0 for all p ∈ I },

and given a set V ⊆ Cn, write

I(V ) := {p ∈ C[z] : p(a1, . . . , an)= 0 for all (a1, . . . , an) ∈ V }.

Let V ⊆ Cn be an affine algebraic variety of pure dimension m (m ≤ n). Here,
“pure” means that all irreducible components of V have dimension m. If we set
I := I(V )⊆ C[z1, . . . , zn], then the coordinate ring C[V ] of polynomial functions
on V satisfies

C[V ] ' C[z]/I ' C[z]I .

In what follows, we will use these isomorphisms to identify C[V ] with C[z]I and
write C[V ] = C[z]I.

We will construct a special basis of C[V ] by doing interpolation at infinity.
Identify (a1,...,an)∈Cn with [1 : a1 : ··· : an] ∈Pn; the hyperplane at infinity is then

H∞ := {[a0 : a1 : · · · : an] ∈ Pn
: a0 = 0}

and we write Cn
∪ H∞ = Pn. Denote by V ⊆ Pn the projective closure of V, which

may be computed as follows. If I = I(V )⊆ C[z] = C[z1, . . . , zn], let

I h
:= {ph

∈ C[z0, . . . , zn] : p ∈ I },

where p(z)=
∑
|α|≤d cαzα ∈ C[z] of degree d homogenizes to

ph(z0, z) :=
∑
|α|≤d

cαzd−|α|
0 zα ∈ C[z0, z] = C[z0, z1, . . . , zn].

Then the projective closure V ⊆ Pn is given by

V = V (I h)= {[a0 : · · · : an] ∈ Pn
: p(a0, . . . , an)= 0 for all p ∈ I h

}.

Note that I h is a homogeneous ideal (i.e., it is generated by homogeneous
polynomials). For a homogeneous ideal J ⊆ C[z0, . . . , zn] we will write

Jt = {p ∈ J : p is homogeneous, deg p = t},

and

(C[z0, . . . , zn]/J )t = C[z0, . . . , zn]t/Jt .
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We will assume that V has the following properties:

(3-1)

(0) V is pure of dimension m and has degree d .

(1) R := C[z1, . . . , zm] ⊆ C[V ] is a Noether normalization as above.

(2) V ∩ P consists of d distinct points, where V is the projective

closure of V in Pn and P = V (z0, . . . , zm−1)⊆ Pn.

(3) If V ∩ P = {p1, . . . , pd}, with pi = [0 : · · · : 0 : pim : · · · : pin],

then for each i , pim 6= 0.

Note that V ⊆ Pn is pure of dimension m and has degree d, while P ⊆ Pn is a
linear space of dimension n−m and has degree 1. Since V ∩ P is finite by property
(3), Bézout’s theorem implies that V ∩ P consists of d · 1= d points counted with
multiplicity. Property (3) then implies that the multiplicities of the pi are all one.
In algebraic geometry, we express this by saying that

V (I h
+〈z0, . . . , zm−1〉)= {p1, . . . , pd}

as subschemes of Pn. In other words, the variety of an ideal equals a finite collection
of points as a subscheme exactly when all of the points have multiplicity one.

It follows that the homogeneous ideals I h
+〈z0, . . . , zm−1〉 and I({p1, . . . , pd})

define the same subscheme of Pn. Hence there is an integer t0 ≥ 0 such that

(I h
+〈z0, . . . , zm−1〉)t = (I({p1, . . . , pd}))t

= { f ∈ C[z0, . . . , zn]t : f (pi )= 0, for all i = 1, . . . , d}

when t ≥ t0; see [Hartshorne 1977, II.5].
A polynomial f ∈ C[z0, . . . , zn]t gives a function on

(3-2) Um = {z = [z0 : z1 : · · · : zn] ∈ Pn
: zm 6= 0},

via [a0 : · · · : an] 7→ a−t
m f (a0, . . . , an). It is easy to see that the computation is

independent of homogeneous coordinates. For convenience this local evaluation
will be denoted f (a).

Lemma 3.2. The map C[z0, . . . , zn]t → Cd given by f 7→ ( f (p1), . . . , f (pd)) is
onto for t � 0.

Proof. By property (3) of (3-1), the points p1,..., pd are in the affine chart Um

given by (3-2). For each i = 1,...,d and pi = [0 : ··· : 0 : 1 : ui(m+1) : ··· : uin],
put qi := (0,...,0,ui(m+1),...,uin) ∈ Cn

m , where Cn
m denotes affine space with

coordinates (z0,...,zm−1,zm+1,...,zn). It is standard that one can find interpolating
polynomials w1,...,wd in C[z0,...,zm−1,zm+1,...,zn] such that wi (q j )= δi j .
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Pick any t ≥max(degw1, . . . , degwd) and set

(3-3) vi := zt
mwi (z0/zm, . . . , zm−1/zm, zm+1/zm, . . . , zn/zm).

This is a homogeneous polynomial of degree t in z0, . . . , zn and its evaluation on
Um satisfies vi (pj )= δi j . For each i , the polynomial vi ∈ C[z0, . . . , zn] evaluates
to the standard basis vector (0, . . . , 0, 1, 0, . . . , 0) = ei ∈ Cd (the 1 is in the i-th
slot), so the map is onto. �

Corollary 3.3. For t � 0, we have an exact sequence

0→ (I h
+〈z0, . . . , zm−1〉)t → C[z0, . . . , zn]t → Cd

→ 0.

Thus there are polynomials v1, . . . , vd ∈ C[z0, . . . , zn]t , unique up to elements of
(I h
+〈z0, . . . , zm−1〉)t , such that vi (pj )= δi j .

Now fix such a t and let S :=C[z0, . . . , zn]/(I h
+〈z0, . . . , zm−1〉). If we regard

the polynomials v1, . . . , vd in the above corollary as elements of St , then they have
the following properties:

(3-4) v2
i = zt

mvi for all i = 1, . . . , d; and viv j = 0 whenever i 6= j.

Lemma 3.4. For any τ ≥ t , the polynomials {zτ−t
m vi }

d
i=1 form a basis of Sτ .

Proof. The construction (3-3) applied to τ (in place of t) gives the additional powers
of zm . �

When we consider the vi as polynomials in C[z0, . . . , zn]/(I h
+〈z0〉), we have

v2
i = zt

mvi +

m−1∑
k=1

zk Hk(z1, . . . , zn),(3-5)

viv j =

m−1∑
k=1

zk Qk(z1, . . . , zn),(3-6)

where for each k, Hk(z1, . . . , zn) and Qk(z1, . . . , zn) are homogeneous polynomials
of degree 2t − 1.

The next step is to translate the vi into polynomials vi in C[V ], paying careful
attention to their degrees and the analogs of (3-5) and (3-6). Let C[V ]≤t = C[z]I≤t

be the collection of normal forms of degree ≤ t , and let C[V ]=t be those that are
homogeneous of degree t .

Lemma 3.5. We have C[V ]=t 'C[V ]≤t/C[V ]≤t−1' (C[z0, . . . , zn]/(I h
+〈z0〉))t .

Proof. Writing a normal form as a sum of homogeneous components gives the
direct sum decomposition C[V ]≤t =C[V ]=t⊕C[V ]≤t−1, and the first isomorphism
follows immediately.



288 DAVID A. COX AND SIONE MA‘U

For the second, the map p 7→ zt
0 p(z1/z0, . . . , zn/z0) induces an isomorphism

C[V ]≤t ' (C[z]/I )≤t ' (C[z0, z]/I h)t ;

see [Cox et al. 1997, §9.3]. This isomorphism sends C[V ]≤t−1 ⊆ C[V ]≤t to
z0(C[z0, z]/I h)t−1, so that we get an isomorphism

C[V ]≤t/C[V ]≤t−1 ' (C[z0, z]/I h)t/z0(C[z0, z]/I h)t−1

' (C[z0, z]/(I h
+〈z0〉))t . �

Remark 3.6. Note that multiplication in C[z0, . . . , zn]/(I h
+〈z0〉) corresponds to

linear maps ∗̂ : C[V ]=t × C[V ]=s → C[V ]=s+t , where to get p∗̂q, we compute
p∗q (the normal form of pq) and then take the homogeneous part of degree s+ t .

Lemma 3.7. For each i = 1, . . . , d , there is a polynomial vi ∈C[V ]=t that satisfies
the following equations in C[V ]:

(1) vi∗vi = zt
m∗vi+

∑m−1
k=1 zk∗hk+h0 with deg(hk)≤2t−1 for each k=0,...,m−1.

(2) vi∗vj =
∑m−1

k=1 zk∗qk + q0 if i 6= j with deg(qk) < 2t − 1 for each k.

Remark 3.8. Since C[V ] is identified with the space C[z]I of normal forms, the
products involving ∗ in Lemma 3.7 represent multiplication of polynomials followed
by reduction to normal form.

Proof. Given vi ∈ (C[z0, . . . , zn]/(I h
+〈z0〉))t , let vi be the element of C[V ]=t given

by the isomorphism in Lemma 3.5. For each k = 1, . . . ,m− 1, let hk ∈ C[V ]=2t−1

be the element corresponding to Hk ∈ (C[z0, . . . , zn]/(I h
+ 〈z0〉))2t−1 in (3-5).

Then by (3-5), the polynomial

vi ∗̂vi − zt
m ∗̂vi −

m−1∑
k=1

zk ∗̂hk ∈ C[V ]=2t

corresponds to the zero polynomial in (C[z0, . . . , zn]/(I h
+ 〈z0〉))2t , so it must

be zero in C[V ]=2t . (Here, ∗̂ is as in Remark 3.6.) Thus the polynomial h0 :=

vi∗vi − zt
m∗vi −

∑m−1
k=1 zk∗hk is in C[V ]≤2t−1. This proves (1).

A similar argument applied to (3-6) proves (2). �

In what follows, we use the notation

zα = za1
1 · · · z

am−1
m−1, zβ = zbm+1

m+1 · · · z
bn
n .

Define the finite set of monomials

(3-7) B := {zl
mzβ /∈ 〈LT(I )〉, l + |β| ≤ t − 1} ⊆ C[V ].
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Proposition 3.9. C[V ] is spanned over C by the homogeneous polynomials

zαzl
m∗z

β
: α ∈ Zm−1

≥0 , zl
mzβ ∈ B,(∗)

zαzl
m∗vi : α ∈ Zm−1

≥0 , l ≥ 0, i = 1, . . . , d.(∗∗)

Remark 3.10. Note that zαzl
m is a normal form by Proposition 2.2, while the

products zαzl
mzβ and zαzl

mvi may fail to be normal forms. This explains why the
proposition uses zαzl

m∗z
β and zαzl

m∗vi .

Proof. To simplify the proof, we will omit the ∗ when multiplying normal forms. It
suffices to show that any monomial zαzl

mzβ /∈ 〈LT(I )〉 can be expressed as a linear
combination of elements of (∗) and (∗∗).

We will prove this by induction on s = |α| + l+ |β|. Suppose zαzl
mzβ /∈ 〈LT(I )〉

with s ≤ t − 1. Then |α| + l + |β| ≤ t − 1, so that zl
mzβ ∈ B. Hence the monomial

is in (∗), which proves the base case.
Next, assume s≥ t and that C[V ]≤s−1 is spanned by the polynomials (∗) and (∗∗)

of degree ≤ s− 1. Take zαzl
mzβ /∈ 〈LT(I )〉 of degree s. No factor of this monomial

is in the ideal either; in particular, zl
mzβ /∈ 〈LT(I )〉. If l+|β| ≤ t−1, then zl

mzβ ∈ B
and therefore zαzl

mzβ is an element of the form (∗).
Otherwise, τ := l + |β| ≥ t . By Lemma 3.4, we have an equation

zl
mzβ =

d∑
i=1

ai zτ−t
m vi +

m−1∑
j=0

z j H j (z0, z)+ H(z0, z),

in C[z0, z], where ai ∈ C, deg H j = τ − 1 and H ∈ I h. If we dehomogenize by
setting z0 = 1, we obtain

zl
mzβ =

d∑
i=1

ai zτ−t
m vi +

m−1∑
j=1

z j h j (z)+ h0(z)

in C[z]/I, where ai ∈ C and deg h j ≤ τ − 1. We can multiply by zα to obtain

zαzl
mzβ =

d∑
i=1

ai zαzτ−t
m vi +

m−1∑
j=1

z j (zαh j (z))+ zαh0(z)

in C[z]/I. Using the isomorphism C[V ] = C[z]I ' C[z]/I, this becomes

zαzl
mzβ =

d∑
i=1

ai zαzτ−t
m vi +

m−1∑
j=1

z j (zαh j (z))+ zαh0(z).

in C[V ]. The first sum is a linear combination of elements of the form (∗∗). For
the second sum, note that deg(zαh j ) ≤ s − 1 for each j = 1, . . . ,m − 1. By the
inductive hypothesis, this means that zαh j is a linear combination of terms in (∗)
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and (∗∗), and therefore z j zαh j is too, by definition. Finally, deg(zαh0) ≤ s − 1,
and again by induction, zαh0 is a linear combination of terms in (∗) and (∗∗). �

The following is an immediate corollary of the above proof:

Corollary 3.11. C[V ]≤s is spanned over C by the polynomials in (∗) and (∗∗) of
degree ≤ s.

Now that we have a spanning set, the next step in constructing the desired
basis for C[V ] is to show that the elements of the form (∗∗) are linearly in-
dependent over C. These elements are monomials in z1, . . . , zm multiplied by
one of v1, . . . , vd . Since the inclusion C[z1, . . . , zm] ⊆ C[V ] makes C[V ] into a
module over R =C[z1, . . . , zm], we can verify linear independence by showing the
following:

Theorem 3.12. The polynomials v1, . . . , vd generate a free R-submodule of C[V ].

Proof. We first observe that since V has dimension m and degree d , we have

(3-8) dim C[V ]≤s =
d
m!

sm
+ O(sm−1);

see, e.g., [Cox et al. 1997, §9.3]. Now let

M :=
d∑

i=1

Rvi and N :=
∑
B

C[z1, . . . , zm−1]zl
mzβ,

and for s ≥ t define

M≤s :=

d∑
i=1

R≤s−tvi , N≤s :=
∑
B

C[z1, . . . , zm−1]≤s−l−|β|zl
mzβ .

The corollary implies C[V ]≤s = M≤s + N≤s . Using (2-2), one easily obtains

dim N≤s ≤
|B|

(m−1)!
sm−1
+ O(sm−2).

Combining this with (3-8) and C[V ]≤s = M≤s + N≤s yields

dim M≤s =
d
m!

sm
+ O(sm−1).

Suppose there is a nontrivial relation

(3-9) f1v1+ · · ·+ fdvd = 0, fi ∈ R, not all fi = 0.

Let D =max{deg f1, . . . , deg fd} and take a large integer s ≥ t + D. There is an
exact sequence

0→ Ks→ Rd
≤s−t

ϕs
→ M≤s→ 0,
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where ϕs : Rd
≤s−t → M≤s−t is given by ϕ(g1, . . . , gd)=

∑
i givi and Ks := kerϕs .

We have Rs−t−D · ( f1, . . . , fd)⊆ Rd
≤s−t , so by (3-9),

Rs−t−D( f1, . . . , fd)⊆ Ks .

Since ( f1,..., fd) 6= (0,...,0), we have Ks 6= 0 and so dim Ks ≥ dim Rs−t−D . Thus

dim Rd
≤s−t = dim M≤s + dim Ks ≥ dim M≤s + dim Rs−t−D.

A Hilbert function calculation then gives the inequality

d
m!

sm
+ O(sm−1)≥

( d
m!

sm
+ O(sm−1)

)
+

( 1
m!
(s− t − D)m + O(sm−1)

)
,

so that (1/m!)sm
≤ O(sm−1), a contradiction. This says that no equation of the

form (3-9) can hold, and so v1, . . . , vd are free over R. �

We now construct the sought-after ordered basis for C[V ].

Definition 3.13. By Proposition 3.9, the polynomials given by (∗) and (∗∗) span
C[V ] and by Theorem 3.12, those from (∗∗) are linearly independent. We first
create a basis of C[V ] by adjoining a sufficient number of elements of the form (∗)
to those of the form (∗∗). List those of the form (∗) in grevlex order and discard
any monomial that is linearly dependent with respect to elements of the form (∗∗)
together with previous elements of (∗); otherwise keep it. This yields the basis C of
C[V ]. We define an ordering ≺ on C as follows. First, order the elements by total
degree; then for a fixed degree s,

• let elements of (∗) precede elements of (∗∗);

• let zαzl
m∗vi ≺ zα̂z l̂

m∗vj if zαzl
m precedes zα̂z l̂

m according to grevlex;

• let zαzl
m∗vi ≺ zαzl

m∗vj if i < j ; and

• let elements of the form (∗) be ordered according to grevlex.

It is easy to see that the elements of C of degree ≤ s form a basis of C[V ]≤s .
The Chebyshev constants defined in Section 5 will use the ordered basis of C[V ]
given in Definition 3.13.

We conclude this section by computing some examples of C and ≺.

Example 3.14. Let V ={z= (z1, . . . , zn)∈Cn
: zm+1= zm+2= · · · = zn = 0}. The

Noether normalization is the identity, C[z1, . . . , zm] = C[V ], and in the notation of
(3-1), V ∩ P = {[0 : · · · : 0 : 1 : 0 : · · · : 0]}, where the 1 is in the m-th slot. We take
v1 = v1 = 1 (so t = 0). The basis C consists of the monomials in C[z1, . . . , zm],
which are elements of the form (∗∗), ordered by grevlex. There are no elements of
the form (∗) in this case.
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Example 3.15. Let V be the complexified sphere in C3, i.e., the algebraic surface
given by the equation z2

1+ z2
2+ z2

3 = 1. A basis of C[V ] is given by all monomials
not in 〈z2

3〉, i.e.,

1, z1, z2, z3, z2
1, z1z2, z1z3, z2

2, z2z3, z3
1, . . . .

The Noether normalization is C[z1, z2] ⊆ C[V ].
In P3, V is given by all points [z0 : z1 : z2 : z3] satisfying z2

1 + z2
2 + z2

3 = z2
0,

and P = {z0 = z1 = 0}. The points of V ∩ P are then p1 = [0 : 0 : 1 : −i] and
p2 = [0 : 0 : 1 : i]. Thus (3-1) is satisfied.

Interpolating polynomials are v1 =
1
2(z2+ i z3) and v2 =

1
2(z2− i z3). In this case

t = 1 so that v1 = v1 and v2 = v2. The first few elements of the basis C, ordered
by ≺, are

1, z1, v1, v2, z2
1, z1v1, z1v2, z2v1, z2v2, z3

1, . . . .

Basis elements of the form (∗) are zk
1 while those of the form (∗∗) are zα1

1 zα2
2 vi .

(Note that since l < t = 1, no factors of the form zl
2 appear in (∗)).

Example 3.16. When V =V ( f )⊆Cn is a hypersurface given by f ∈C[z1, . . . , zn],
we can generalize Example 3.15 by computing the basis C rather explicitly. We
assume that f is a product of distinct irreducible polynomials, so that I = I(V )=
〈 f 〉. We also assume that LT( f ) = zd

n where d = deg( f ). This ensures that
C[z1, . . . , zn−1] ⊆ C[V ] is a Noether normalization.

Let F := f h
∈C[z0, . . . , zn] be the homogenization of f ; then in Pn, V = V (F)

and I h
= 〈F〉. If the properties (3-1) hold, then V (F, z0, . . . , zn−2)⊆ Pn consists

of d distinct points, all with zn−1 6= 0, given by [0 : · · · : 1 : βi ] for i = 1, . . . , d .
Separating the terms of F containing only the variables zn−1, zn from the others,

(3-10) F(z)= G(zn−1, zn)+

n−2∑
l=0

zl Hl(z0, . . . , zn),

where deg(G)= d and deg Hl = d−1 for each l = 0, . . . , n−2. Thus G(1, βi )= 0
for i = 1, . . . , d .

In the notation of earlier in the section, we have

S = C[z0, . . . , zn]/(I h
+〈z0, . . . , zn−2〉)= C[z0, . . . , zn]/〈F(z), z0, . . . , zn−2〉

= C[z0, . . . , zn]/〈G(zn−1, zn), z0, . . . , zn−2〉

' C[zn−1, zn]/〈G(zn−1, zn)〉,

where the second line uses (3-10) and the third uses the map

p(z0, z1, . . . , zn) 7→ p(0, . . . , 0, zn−1, zn).



TRANSFINITE DIAMETER ON COMPLEX ALGEBRAIC VARIETIES 293

We factor G(zn−1, zn)=
∏d

i=1(zn−βi zn−1)=
∏d

i=1 li (zn−1, zn). Note that βi 6= βj

if i 6= j. For each i = 1, . . . , d , define

(3-11) vi (zn−1, zn)=
∏
j 6=i

lj (zn−1, zn)

lj (1, βi )
.

Then deg(vi )= d − 1 for each i , and clearly

(3-12) vi (1, βj )=

{
0 if j 6= i,
1 if j = i.

Note that when f = z2
1 + z2

2 + z2
3 − 1 as in Example 3.15, we have the points

[0 : 0 : 1 : −i] and [0 : 0 : 1 : i]. Then G = z2
2+ z2

3 = (z3+ i z2)(z3− i z2)= l1l2 and
the formula for v1 reduces to

v1 =
l2(z2, z3)

l2(1,−i)
=

z3− i z2

−2i
=

1
2
(z2+ i z3),

in agreement with Example 3.15. The formula for v2 works similarly.
By (3-12), v1, . . . , vd satisfy Lemma 3.4 with t = d−1. Since the vi only involve

zn−1, zn and are normal forms with respect to grevlex (having degree ≤ d−1 in zn),
we can take vi = vi in Lemma 3.7. Thus v1, . . . , vd are defined by (3-11) and have
degree d − 1.

The next step is to identify the set B from (3-7). Since m = n−1, the monomials
zα and zβ from Proposition 3.9 are

zα = za1
1 · · · z

an−2
n−2 , zβ = zb

n.

In this notation, a monomial in z1, . . . , zn is written zαzl
n−1zb

n . Since the vi have
degree t = d − 1 and 〈LT(I )〉 = 〈LT( f )〉 = 〈zd

n〉, it follows that (3-7) becomes

B = {zl
n−1zb

n /∈ 〈z
d
n〉 : l + b ≤ d − 2} = {zl

n−1zb
n : l + b ≤ d − 2}.

Hence the collections (∗) and (∗∗) from Proposition 3.9 are

(3-13)
(∗) zαzl

n−1zb
n : α ∈ Zn−2

≥0 , l + b ≤ d − 2,

(∗∗) zαzl
n−1vi : α ∈ Zn−2

≥0 , l ≥ 0, i = 1, . . . , d.

These products are all normal forms, so no ∗ is needed in the multiplications.
The nicest feature of the hypersurface case is that the basis C consists precisely

of the polynomials in (3-13). They span by Proposition 3.9, so we only need to
prove linear independence. The polynomials in (∗∗) are linearly independent by
Theorem 3.12, and those in (∗) are linearly independent since they are normal-form
monomials. Hence it remains to study an equation of the form

linear combination of zαzl
n−1zb

n = linear combination of zαzl
n−1vi .
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The left-hand side has degree ≤ d−2 in zn−1, zn and the right-hand side has degree
≥ d − 1. This forces the linear combinations to be trivial, and linear independence
follows.

To summarize: when V = V ( f ) is a hypersurface of degree d, the vi are
polynomials of degree d − 1 that we can compute explicitly in terms of f , and the
elements of (∗) consist of all monomials zα1

1 · · · z
αn−1
n−1 zαn

n with αn−1+αn ≤ d − 2.

4. Weakly submultiplicative functions

Bloom and Levenberg [2003] observed that the main properties of Zaharyuta’s
directional Chebyshev constants followed from the submultiplicative property of
sup norms of Chebyshev polynomials, and could be recast rather abstractly as
properties of submultiplicative functions on integer tuples. We verify here that these
properties still hold under slightly weaker conditions. The arguments are those
of Zaharyuta’s [1975] paper with minor adjustments. We will apply these results
concretely in the next section.

Definition 4.1. Let m be a positive integer. A nonnegative function Y :Zm
≥0→R≥0

is said to be weakly submultiplicative if there is a finite subset F of Zm
≥0 such that:

For all α, β ∈ Zm
≥0 there exists γ ∈ F such that Y (α+β + γ )≤ Y (α)Y (β).

Y has subexponential growth if for some C, r > 1 we have Y (α)≤ Cr |α| for all α.

Remark 4.2 (cf., [Bloom and Levenberg 2003]). When Y (α + β) ≤ Y (α)Y (β),
i.e., F = {(0, . . . , 0)}, Y is called submultiplicative. A submultiplicative function
automatically has subexponential growth: if α = (α1, . . . , αm) then

Y (α)= Y
( m∑

k=1

αkek

)
≤

m∏
k=1

Y (ek)
αk ≤ r |α|,

where ek is the k-th coordinate vector and r = maxk Y (ek). It seems that weak
submultiplicativity should also imply subexponential growth, but the above argument
runs into some technical difficulties.

Let

6m :=
{
θ = (θ1, . . . , θm) ∈ Rm

: θi ≥ 0 for all i,
∑

iθi = 1
}

denote the simplex in Rm, and let 6◦m := {θ ∈6m : θi > 0 for all i} be its interior.

Lemma 4.3. Let Y : Zm
≥0→ R≥0 be weakly submultiplicative with subexponential

growth. For all θ ∈6◦m , the limit T (θ) := lim
|α|→∞
α/|α|→θ

Y (α)1/|α| exists.
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Proof. Let {α( j)} and {α̃( j)} be sequences in Zm
≥0 such that α( j)/|α( j)|,α̃( j)/|α̃( j)|→θ

as j→∞ and

lim
j→∞

Y (α( j))
1/|α( j)| = lim inf

|α|→∞,α/|α|→θ
Y (α)1/|α| := L1,

lim
j→∞

Y (α̃( j))
1/|α̃( j)| = lim sup

|α|→∞,α/|α|→θ

Y (α)1/|α| := L2.

To prove the lemma it is sufficient to show that L2≤ L1. By passing to subsequences
we may assume that |α̃( j)|/|α( j)| →∞ as j→∞.

Let q j denote the largest nonnegative integer for which all the components of
r( j) := α̃( j)− q jα( j) are nonnegative. We claim that

(4-1)
q j |α( j)|

|α̃( j)|
→ 1,

|r( j)|

|α̃( j)|
→ 0 as j→∞.

Write α( j) = |α( j)|(θ + ε( j)) and α̃( j) = |α̃( j)|(θ + ε̃( j)) where ε( j), ε̃( j) → 0 as
j→∞. A calculation in components shows that

(4-2) α̃( j)ν =
|α̃( j)|

|α( j)|

(
1+
|α( j)|

α( j)ν
(ε̃( j)ν − ε( j)ν)

)
α( j)ν for each ν = 1, . . . ,m,

where we write α( j) = (α( j)1, . . . , α( j)m), etc. For any ν, we have

|α( j)|

α( j)ν
(ε̃( j)ν − ε( j)ν)→

1
θν
(0− 0)= 0 as j→∞.

(Here we use the fact that θ ∈ 6◦m , so θν 6= 0.) This says that given ε > 0, the
quantity in parentheses on the right-hand side of (4-2) exceeds 1− ε for all ν when
j is sufficiently large. The definition of q j then implies that

q j ≥
|α̃( j)|

|α( j)|
(1− ε)− 1,

and hence q j |α( j)|/|α̃( j)| ≥ 1− ε− |α( j)|/|α̃( j)| → 1− ε as j→∞. On the other
hand, q j |α( j)|/|α̃( j)| ≤ 1 for all j. Since ε is arbitrary, (4-1) follows.

Let c := max{γν : ν ∈ {1, . . . ,m}, (γ1, . . . , γm) ∈ F}, and let sj be the largest
nonnegative integer such that

sj (α( j)ν + c)≤ q jα( j)ν for all ν = 1, . . . ,m.

Using this, there exists r̃( j) ∈ Zm
≥0 such that

Y (α̃( j))=Y (q jα( j)+ r( j))= Y (sjα( j)+ sjγ( j)+ r̃( j)),
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where γ( j)∈F satisfies Y (2α( j)+γ( j))≤Y (α( j))
2. It is easy to see that |q j |/|sj |→1,

and hence (4-1) holds with q j , r( j) replaced by sj , r̃( j). Finally,

Y (α̃( j))
1/|α̃( j)| = Y (sjα( j)+ sjγ( j)+ r̃( j))

1/|α̃( j)|

≤ (Y (α( j))
sj Y (r̃( j)))

1/|α̃( j)|

≤ (Y (α( j))
1/|α( j)|)sj |α( j)|/|α̃( j)|C1/|α̃( j)|r |r̃( j)|/|α̃( j)|,

where C, r are as in Definition 4.1. Taking the limit as j→∞ of the first and last
expressions yields L2 ≤ L1. This completes the proof. �

Recall that a positive real-valued function f on a convex set C ⊆ Rn is said
to be logarithmically convex if f ((1− t)a+ tb)≤ f (a)1−t f (b)t for all a, b ∈ C ;
equivalently, log( f ) is convex.

Lemma 4.4. The function θ 7→ T (θ), defined as in the previous lemma, is uniformly
bounded and logarithmically convex on 6◦m (and hence continuous).

Proof. Boundedness follows easily from subexponential growth: if Y (α)≤ Cr |α|

for all α ∈ Zm
≥0 then T (θ)≤ r for all θ ∈6◦m .

To prove logarithmic convexity, fix θ, θ̃ ∈6◦m and t ∈ (0, 1). Let α( j), α( j) satisfy
α( j)/|α( j)|→ θ, α̃( j)/|α̃( j)|→ θ̃ as j→∞ and |α( j)| = |α̃( j)| =: aj for each j. Let
q j , q̃ j be positive integers such that q j/(q j + q̃ j )→ t as j→∞.

For each j there exist β( j), γ( j), γ̃( j) ∈ F such that

Y
(
q jα( j)+ q̃ j α̃( j)+β( j)+ (q j − 1)γ( j)+ (q̃ j − 1)γ̃( j)

)
≤ Y

(
q jα( j)+ (q j − 1)γ( j)

)
Y
(
q̃ j α̃( j)+ (q̃ j − 1)γ̃( j)

)
≤ Y (α( j))

q j Y (α̃( j))
q̃ j .

Let ζ( j) := q jα( j)+ q̃ j α̃( j)+β( j)+ (q j −1)γ( j)+ (q̃ j −1)γ̃( j). Since F is bounded,
it is easy to see that |ζ( j)|/|q jα( j)+ q̃ j α̃( j)| → 1 as j→∞ and

lim
j→∞

ζ( j)

|ζ( j)|
= lim

j→∞

q jα( j)+ q̃ j α̃( j)

|q jα( j)+ q̃ j α̃( j)|

= lim
j→∞

q jα( j)

(q j + q̃ j )aj
+

q̃ j α̃( j)

(q j + q̃ j )aj
= tθ + (1− t)θ̃ .

Hence

T (tθ + (1− t)θ̃)= lim
j→∞

Y (ζ( j))
1/|ζ( j)|

= lim
j→∞

Y (ζ( j))
1/|q jα( j)+q̃ j α̃( j)|

≤ lim
j→∞

(Y (α( j))
1/|α( j)|)q j/q j+q̃ j (Y (α̃( j))

1/|α̃( j)|)q̃ j/q j+q̃ j

= T (θ)t T (θ̃)1−t ,

which concludes the proof. �
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Given b ∈ ∂6m =6m \6
◦
m , define

(4-3) T−(b) := lim inf
|α|→∞,α/|α|→b

Y (α)1/|α|.

Lemma 4.5. Let b ∈ ∂6m . Then

T−(b)= lim inf
θ→b, θ∈6◦m

T (θ).

Proof. Let {θ( j)} j≥1 be a sequence of points in 60
m with θ( j)→ b as j→∞, and

for each j choose α( j) such that∣∣∣ α( j)

|α( j)|
− θ( j)

∣∣∣< 1
j
, |Y (α( j))

1
|α( j)| − T (θ( j))|<

1
j
.

Then α( j)/|α( j)| → b as j→∞, so

T−(b)≤ lim inf
j→∞

Y (α( j))
1/|α( j)| ≤ lim inf

j→∞

(
T (θ( j))+

1
j

)
= lim inf

j→∞
T (θ( j)).

Hence T−(b)≤ lim infθ→b, θ∈6◦m T (θ) since the sequence θ( j) was arbitrary.
It remains to prove the reverse inequality. Let σ = (σ1, . . . , σm) satisfy σν > 0

for each ν; then (b+ σ)/(1+ |σ |) ∈6◦m . We will show that

(4-4) T
( b+σ

1+|σ |

)
≤ r

|σ |
1+|σ | T−(b)

1
1+|σ | .

(Here r is as in Definition 4.1.)
Choose sequences α( j), `( j) in Zm

≥0 such that |α( j)| →∞ and

α( j)

|α( j)|
→ b with Y (α( j))

1
|α( j)| → T−(b), and

`( j)

|α( j)|
→ σ.

Since Y is weakly submultiplicative with subexponential growth,

(4-5) Y (`( j)+α( j)+ γ( j))≤ Y (`( j))Y (α( j))≤ Cr |`( j)|Y (α( j))

for appropriate γ( j) ∈ F.
We compute `( j)/|α( j)+ `( j)|→σ/(1+|σ |) and α( j)/|α( j)+ `( j)|→b/(1+|σ |)

as j→∞. Since F is bounded we also have γ( j)/|`( j)+α( j)+ γ( j)|→ (0, . . . , 0)
and |`( j)+α( j)|/|`( j)+α( j)+ γ( j)| → 1. The inequality (4-5) then yields (4-4) by
a similar limiting process as detailed in the previous lemmas. Finally, using (4-4),

lim inf
θ→b, θ∈6◦m

T (θ)≤ lim inf
|σ |→0

σi>0 for all i

T
( b+σ

1+|σ |

)
≤ lim
|σ |→0

r
|σ |

1+|σ | T−(b)
1

1+|σ | = T−(b),

which is the desired inequality. �

An immediate consequence of Lemma 4.4 and equation (4-4) is the following.
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Corollary 4.6. Suppose T (φ) 6= 0 for some φ ∈6◦m . Then T (θ) 6= 0 for all θ ∈6◦m
and T−(b) 6= 0 for all b ∈ ∂6m . The same conclusion holds if T−(c) 6= 0 for some
c ∈ ∂6m .

Lemma 4.7. Let Q be a compact subset of 6◦m . Then

lim sup
|α|→∞

{
|Y (α)1/|α|− T (θ(α))| : α

|α|
=: θ(α) ∈ Q

}
= 0.

If T is as in the previous corollary, then also

lim sup
|α|→∞

{
| log Y (α)1/|α|− log T (θ(α))| : α

|α|
=: θ(α) ∈ Q

}
= 0.

Proof. Let L denote the first lim sup, and let {α( j)} be a sequence for which

lim
j→∞
|Y (α( j))

1/|α( j)|− T (θ( j))| = L ,

where θ( j) = α( j)/|α( j)|. We may assume that θ( j)→ θ ∈ Q by passing perhaps to
a subsequence. Then

|Y (α( j))
1/|α( j)|− T (θ( j))| ≤ |Y (α( j))

1/|α( j)|− T (θ)| + |T (θ)− T (θ( j))|

and as j→∞, the first expression on the right-hand side goes to zero by Lemma 4.3
and the second by continuity of T (Lemma 4.4). So L = 0 as required.

If T is as in the previous corollary, then all quantities inside the second lim sup
are finite. To prove this second statement, one does a similar argument as above,
writing log Y (α( j))

1/|α( j)|, log T (θ( j)), etc. in place of Y (α( j))
1/|α( j)|, T (θ( j)). �

For a positive integer s, let hm(s) denote the number of elements in the set
{α ∈ Zm

≥0 : |α| = s}; we have hm(s)=
(s+m−1

s

)
=

(s+m−1)!
s!(m−1)! .

Lemma 4.8. We have

(4-6)
1

hm(s)

∑
|α|=s

log Y (α)1/|α|→
1

vol(6m)

∫
6◦m

log T (θ) dθ as s→∞,

where on the right-hand side we integrate over θ with respect to the usual m-
dimensional volume on Rm, with vol(6m)=

∫
6m

dθ .

Proof. By Corollary 4.6 we have two cases: either T is never zero on 6◦m or T ≡ 0.
We consider the first case. For convenience write θ(α)= α/|α|. The set 6(s) :=
{θ(α) : |α| = s} is a uniformly distributed grid of points on 6m such that the discrete
probability measure (1/hm(s))

∑
|α|=s δθ(α) supported on 6(s) converges weak∗ to

(1/ vol(6m))dθ as s→∞. Since θ→ T (θ) is a bounded continuous function on
6◦m and vol(∂6)= 0,

1
hm(s)

∑
|α|=s

log T (θ(α))→
1

vol(6m)

∫
6◦m

log T (θ) dθ as s→∞.
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(To see this, note that the formula holds by weak∗ convergence when log T (θ) is
replaced by (1−χ) log T (θ) with χ an arbitrary smooth cutoff function supported
in a neighborhood of ∂6; now shrink the support of χ .)

Hence to prove (4-6), it is sufficient to show that

(4-7)
( 1

hm(s)

∑
|α|=s

|log Y (α)1/|α|− log T (θ(α))|
)
→ 0 as s→∞.

Fix δ>0 and define the compact set Qδ := {θ = (θ1, . . . , θm)∈6
◦
m : θν ≥ δ for all ν}.

For a positive integer s, let

L1(s) :=
{
α = (α1, . . . , αm) ∈ Zm

≥0 : |α| = s, α

|α|
∈ Qδ

}
and let L2(s) :=

{
α = (α1, . . . , αm) ∈ Zm

≥0 : |α| = s, α

|α|
6∈ Qδ

}
; write

L2(s)=
m⋃
ν=1

{
α ∈ L2(s) :

αν
s
< δ

}
=:

m⋃
ν=1

L2,ν(s).

Using αν < δs and
∑

η 6=ν αη ≤ s, we can estimate the size of L2,ν(s) for each ν as
|L2,ν(s)| ≤ δs

(s+m−2
s

)
. A calculation then gives

|L2(s)|
hm(s)

=

m∑
ν=1

|L2,ν(s)|
hm(s)

≤ m ·
δs
(s+m−2

s

)(s+m−1
s

) ≤ δm2.

Hence

1
hm(s)

∑
|α|=s

| log Y (α)1/|α|− log T (θ(α))|

=
1

hm(s)

∑
α∈L1(s)

| log Y (α)1/|α|− log T (θ(α))|

+
1

hm(s)

∑
α∈L2(s)

| log Y (α)1/|α|− log T (θ(α))|

≤
|L1(s)|
hm(s)

sup{|log Y (α)1/|α|− log T (θ(α))| : |α| = s, θ(α) ∈ Qδ}

+
|L2(s)|
hm(s)

(log(C
1
s r)+ log r)

≤ sup{|log Y (α)1/|α|− log T (θ(α))| : |α| = s, θ(α) ∈ Qδ}

+ δm2(log(C1/sr)+ log r),
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with C, r as in Definition 4.1. By Lemma 4.7 the sup in the above line goes to zero
as s→∞, so

lim sup
s→∞

(
1

hm(s)

∑
|α|=s

|log Y (α)1/|α|− log T (θ(α))|
)
≤ δm2(log(C1/sr)+ log r).

Since δ > 0 was arbitrary, (4-7) follows.
For the case T ≡ 0, we need to show that the left-hand side of (4-6) goes to −∞

as s→∞. Fix a compact set Q ⊆6◦m . The first part of the previous lemma yields

lim sup{Y (α)1/|α| : |α| →∞, α/|α| ∈ Q} = 0.

Hence given ε > 0,

sup{Y (α)1/|α| : |α|> N , α/|α| ∈ Q}< ε

for sufficiently large N. Using the notation L1(s), L2(s) from the proof of the first
case (with Q in place of Qδ), we have

1
hm(s)

∑
|α|=s
α/|α|∈Q

log Y (α)1/|α| ≤ 1/hm(s)
∑
|α|=s
α/|α|∈Q

log ε =
|L1(s)|
hm(s)

log ε ≤ log ε

for s > N. Finally, note that Y (α)1/|α| is uniformly bounded above for all α (say by
some constant M) since Y has subexponential growth. For all s,

1
hm(s)

∑
|α|=s
α/|α|6∈Q

log Y (α)1/|α| =
|L2(s)|
hm(s)

M ≤ M.

Altogether, (1/hm(s))
∑
|α|=s log Y (α)1/|α| ≤ M + log ε when s > N. Since ε is

arbitrary, the left-hand side of (4-6) goes to −∞ as required. �

5. Chebyshev constants

In this section we construct Chebyshev constants on an algebraic variety V ⊆ Cn.
Suppose that V satisfies the properties (3-1). As before, R :=C[z1, . . . , zm]⊆C[V ]
is a Noether normalization, and v1, . . . , vd are the polynomials of Section 2. We
will write λ1, . . . , λd for the interpolating points denoted by p1, . . . , pd earlier,
so that we can use the letter “p” to denote polynomials. We also introduce some
additional notation.

Notation 5.1. Recall that the basis C of C[V ] was constructed in Definition 3.13,
ordered by ≺. Denote by {ej }

∞

j=1 the enumeration of C according to ≺. For
f =

∑
j aj ej ∈C[V ] we write LT≺( f )= ak ek for the leading term, i.e., ak 6= 0 and

aj = 0 for all j > k. For f, g ∈ C[V ], write f ≺ g if LT≺( f )≺ LT≺(g).
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In what follows, α will always denote a multi-index in Zm
≥0, and we write

α = (α′, αm) where α′ ∈ Zm−1
≥0 and αm ∈ Z≥0. For convenience, we will also

identify α and α′ with (α1, . . . , αm, 0, . . . , 0) and (α1, . . . , αm−1, 0, . . . , 0) in Zn
≥0

when using multi-index notation (i.e., in expressions such as zα).

Definition 5.2. Let α ∈Zm
≥0 be a multi-index. Define for i = 1, . . . , d the collection

of polynomials

Mi (α) := {p(z) ∈ C[V ] : p(z)= zαvi + g(z), g(z)≺ zαvi }.

Fix a compact set K ⊆ V. We define the function Yi : Z
m
≥0→ R≥0 by

Yi (α) := inf{‖p‖K : p ∈Mi (α)}.

For a fixed i ∈ {1, . . . , d}, we will write `i (zα) to denote an arbitrary g ∈ C[V ]
with g ≺ zαvi . An immediate consequence of Lemma 3.7 is the following.

Lemma 5.3. We have v2
i = zt

mvi + `i (zt
m) and vivj = `i (zt

m). Hence if p ∈Mi (α),
q ∈Mi (α̃), then pq ∈Mi (α+ α̃+ γm), where γm = (0, . . . , 0, t, 0, . . . , 0), where
the t is in the m-th slot.

In the above lemma, t is as in (3-4). As a consequence, we obtain a weakly
submultiplicative function on Zm

≥0, where the set F in Definition 4.1 may be taken
to be the singleton {γm}.

Corollary 5.4. The function Yi is weakly submultiplicative with subexponential
growth. In particular,

Yi (α+ α̃+ γm)≤ Yi (α)Yi (α̃), α, α̃ ∈ Zm
≥0.

Proof. Fix indices α, α̃ ∈ Zm
≥0. Choose p ∈Mi (α) such that ‖p‖K = Yi (α) and

q ∈Mi (α̃) such that ‖q‖K = Yi (α̃). By the previous lemma, pq ∈Mi (α+ α̃+γm),
so that Yi (α+ α̃+ γm)≤ ‖pq‖K ≤ ‖p‖K‖q‖K = Yi (α)Yi (α̃).

Choose r > 1 such that K ⊆ B(0, r)={z ∈Cn
: |z| ≤ r}. Then Yi (α)≤ r |α|‖vi‖K ,

so Yi has subexponential growth (choose C >max{1, ‖vi‖K }). �

As a consequence of the results in the previous section, we have the following:

Proposition 5.5. The limit

T (K , λi , θ) := lim
|α|→∞
α/|α|→θ

Yi (α)
1/|α|

exists for each θ ∈6◦m , and θ 7→ T (K , λi , θ) defines a logarithmically homogeneous
function on 6◦m . Moreover, we have the convergence

1
hm(s)

∑
|α|=s

log Yi (α)
1/|α|
→

1
vol(6m)

∫
6◦m

log T (K , λi , θ) dθ as s→∞.
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Definition 5.6. We call T (K , λi , θ) the directional Chebyshev constant of K asso-
ciated to λi and θ .

We call

T (K , λi ) := exp
(

1
vol(6m)

∫
6◦m

log T (K , λi , θ) dθ
)

the principal Chebyshev constant of K associated to λi .
As in (4-3), we also define T−(K , λi , b) := lim inf

|α|→∞, α/|α|→b
Yi (α)

1/|α| for b∈ ∂6m .

In the proof of the main theorem on transfinite diameter, we will need to account
for polynomials whose leading terms in C are of the form (∗). For α′ ∈ Zm−1

≥0 define

M̃(α′) := {p ∈ C[V ] : LT≺(p)= zα
′

zl
mzβ with zl

mzβ ∈ B}.

Recall that this means that l + |β| < t . Set Ỹ (α′) := inf
{
‖p‖K : p ∈ M̃(α′)

}
. If

K ⊆ B(0, r) it is easy to see that

(5-1) Ỹ (α′)≤ r |α
′
|.

Also, set

(5-2) T̃ (α′) := inf{‖p‖1/deg p
K : p ∈ M̃(α′)}

and define the function

T̃−(K , θ ′) := lim inf
|α′|→∞
α′/|α′|→θ ′

T̃ (α′)

on 6m−1 := {θ
′
= (θ1, . . . , θm−1) ∈ Rm−1

:
∑

k θk = 1}. We want to get a lower
estimate for this quantity. First we make the following observation. Since the
monomial zt−|β|

m zβ is not in B it must be expressed in C[V ] with respect to the basis
C as

(5-3) zt−|β|
m zβ =

d∑
i=1

Cβivi + q(z),

where deg q ≤ t , LT≺(q)≺ v1, and not all Cβi are zero.

Lemma 5.7. Suppose Cβi 6= 0 for some i ∈ {1, . . . , d}. Then for each θ ′ ∈6m−1,

(5-4) T−(K , λi , θ)≤ T̃−(K , θ ′),

where θ = (θ ′, 0)= (θ1, . . . , θm−1, 0) ∈ ∂6m .

Proof. Fix θ ′ ∈ 6m−1 and let ε > 0. Let {α′( j)} be a sequence in Zm−1
≥0 with

|α′( j)| →∞, α′( j)/|α
′

( j)| → θ ′, and T̃ (α′( j))→ T̃−(K , θ ′) as j→∞.
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Next, choose a sequence of polynomials {pj } ⊆ C[V ] such that pj ∈ M̃(α′( j))

and ‖p‖1/deg pj
K ≤ T̃ (α′( j))+ε. Since B is finite, we can assume, by passing perhaps

to a subsequence, that LT≺(pj )= zα
′

( j)zl
mzβ , where l and β are the same for all j.

Let Q := C−1
βi zt−l−|β|

m vi and define {Pj } ⊆ C[V ] by Pj := Qpj for each j. Then
a calculation using equation (5-3) and Lemma 5.3 shows that Pj ∈Mi (α( j)) where
α( j)= (α

′

( j), t−|β|). Clearly α( j)/|α( j)|→ θ as j→∞ since l and |β| are bounded
from above by t . Now

Yi (α( j))
1/|α( j)| ≤ ‖Q‖1/|α( j)|

K ‖pj‖
1/|α( j)|

K ≤ ‖Q‖1/|α( j)|

K (T̃ (α′( j))+ ε)
deg pj/|α( j)|.

We take the lim inf as j → ∞. We have T−(K , λi , θ) ≤ T̃−(K , θ ′) + ε since
deg pj/|α( j)| → 1, and (5-4) follows since ε was arbitrary. �

Corollary 5.8. We have

lim inf
|α′|→∞

Ỹ (α′)1/|α
′
|
= lim inf
|α′|→∞

T̃ (α)≥min
{
T−(K , λi , θ) : i ∈ {1, . . . , d}, θ ∈ ∂6m

}
.

6. The transfinite diameter

Recall that {ej }
∞

j=1 denotes the enumeration of the basis C according to the ordering
≺. For a finite set {ζ1, . . . , ζs} ⊆ V, define

(6-1) VanC(ζ1, . . . , ζs) := det


1 1 · · · 1

e2(ζ1) e2(ζ2) · · · e2(ζs)
...

...
. . .

...

es(ζ1) es(ζ2) · · · es(ζs)

 .

As in the previous section, fix a compact set K ⊆ V. We have K ⊆ B(0, r) =
{|z|< r} for some r > 0.

Notation 6.1. For a positive integer s,

Vs := sup{|VanC(ζ1, . . . , ζs)| : {ζ1, . . . , ζs} ⊆ K }.

Also, given any positive integer s, let hs denote the dimension of C[V ]=s , let
ms :=

∑s
ν=0 hν denote the dimension of C[V ]≤s , and let ls :=

∑s
ν=0 νhν denote

the sum of the degrees of the basis elements C ∩C[V ]≤s .

We now state our main theorem:

Theorem 6.2. The limit d(K )= lim
s→∞

V 1/ ls
ms

exists and we have the formula

d(K )=
( d∏

i=1

T (K , λi )

)1/d

.
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To prove the theorem we will need some lemmas. Recall that B is the collection
of monomials given by (3-7).

Lemma 6.3. Let s be a positive integer. If es = zαvi for some i ∈ {1, . . . , d}, then

(6-2) Yi (α)≤
Vs

Vs−1
≤ sYi (α).

If es = zα
′

zl
mzβ with zl

mzβ ∈ B∩ C, then

(6-3) Ỹ (α′)≤
Vs

Vs−1
≤ sỸi (α

′).

Proof. Choose points ζ1, . . . , ζs−1 in K such that VanC(ζ1, . . . , ζs−1)= Vi−1. It is
easy to see that the polynomial P(z) := VanC(ζ1, . . . , ζs−1, z)/VanC(ζ1, . . . , ζs−1)

is in M(α) by expanding the determinant, and hence

Yi (α)≤ ‖P‖K ≤
Vs

Vs−1
,

which gives the first inequality of (6-2).
Now choose points ζ1, . . . , ζs in K such that VanC(ζ1, . . . , ζs) = Vi and let

t (z)= es +
∑

ν<s cνeν be a polynomial in M(α) such that ‖t‖K = Yi (α). Then by
properties of determinants,

Vi =

∣∣∣∣∣∣∣∣∣∣∣
det


1 1 · · · 1

e2(ζ1) e2(ζ2) · · · e2(ζs)
...

...
. . .

...

es−1(ζ1) es−1(ζ2) · · · es−1(ζs)

t (ζ1) t (ζ2) · · · t (ζs)



∣∣∣∣∣∣∣∣∣∣∣
≤

s∑
ν=1

|t (ζν)||V (ζ1, . . . , ζ̂ν, . . . , ζs)| ≤

s∑
ν=1

Yi (α)Vs−1 = sYi (α)Vs−1,

where we expand along the bottom row. This gives the second inequality of (6-2).
The proof of (6-3) is similar, so we omit it. �

We need to keep track of exponents. Let t be as in Section 3 (see the paragraph
following Corollary 3.3). Fix an integer s > t . For an element zαvi there are d
choices for i and hm(s−t)=

(s−t+m−1
m−1

)
=

(s−t+m−1)!
(s−t)!(m−1)! choices for α when |α|= s−t .

Hence the number of basis elements of degree s of the form (∗∗) is dhm(s− t).
Let as := hs − dhm(s − t) be the number of remaining basis elements, of the

form (∗), i.e., zα
′

azl
mzβ with α′ ∈ Zm−1

≥0 and zl
mzβ ∈ B. We then have the estimate

as ≤ |B|
(s+m−2

m−2

)
, where |B| denotes the size of the set B. Hence

(6-4)
as

hs
≤
|B|
(s+m−2

m−2

)
d
(s−t+m−1

m−1

) → 0 as s→∞, and so
dhm(s− t)

hs
→ 1.
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Let T̃s := inf{T̃ (α′) : s−t≤|α′|≤ s}, where T̃ (α′) is as in (5-2). A straightforward
corollary of the previous lemma is the following:

Corollary 6.4. For a positive integer s > t , we have

(6-5) T̃ sas
s

( ∏
|α|=s−t

d∏
i=1

Yi (α)

)
≤

Vms

Vms−1

≤

( ms !

ms−1!

)2
r sas

∏
|α|=s−t

d∏
i=1

Yi (α).

Proof. We apply Lemma 6.3 to the product

Vms

Vms−1

=
Vms

Vms−1

Vms−1

Vms−2
· · ·

Vms−1+1

Vms−1

.

For the upper estimate, we have

Vms

Vms−1

=
Vms

Vms−1

Vms−1

Vms−2
· · ·

Vms−1+1

Vms−1

=

( Vms

Vms−1
· · ·

Vms−1+as+1

Vms−1+as

)( Vms−1+as

Vms−1+as−1
· · ·

Vms−1+1

Vms−1

)
≤

(
msms−1 · · · (ms−1+ as + 1)

∏
|α|=s−t

d∏
i=1

Yi (α)
)

×

(
(ms−1+ as) · · · (ms−1+ 1)

ms−1+as∏
ν=ms−1+1

Ỹ (α′(eν))
)
,

where in the last two lines the first large parentheses apply (6-2) to those fractions
Vk/Vk−1 for which eν is of the form (∗∗)† while the second large parentheses apply
(6-3) to those fractions for which eν is of the form (∗). We have also written α′(eν)
to denote the multi-index α′ ∈ Zm−1

≥0 for which eν = zα
′

zl
mzβ. We have(

msms−1 · · · (ms−1+ as + 1)
∏
|α|=s−t

d∏
i=1

Yi (α)

)
×

(
(ms−1+ as) · · · (ms−1+ 1)

ms−1+as∏
ν=ms−1+1

Ỹ (α′(eν))
)

≤

(
ms !

ms−1!

∏
|α|=s−t

d∏
i=1

Yi (α)

)(
ms !

ms−1!

ms−1+as∏
ν=ms−1+1

r s
)

where we use (5-1) in the last line. This last expression is the upper estimate in
(6-5). The lower estimate follows similarly, using the fact that s− t ≤ |α′(eν)| ≤ s
for all ν = ms−1+ 1, . . . ,ms−1+ as , so that Ỹ (α′(eν))≥ T̃ s

s for all ν. �

†Recall that deg(zαvi )= s when |α| = s− t
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Similar reasoning as in the paragraphs before the above corollary give

ms ≤ d
(

s− t +m
m

)
+ |B|

(
s− t +m− 1

m− 1

)
,

and when s > t ,

ls =

s∑
ν=1

νhν ≥
s∑
ν=t

νhν ≥
s−t∑
ν=1

νhν+t ≥

s−t∑
ν=1

ν · d
(
ν+m− 1

m− 1

)
= dm

(
s− t +m

m+ 1

)
.

Then
ms

ls
≤

m+ 1
m(s− t)

+
|B|(m+ 1)

d(s− t)(s− t +m)
,

in particular ms/ls→ 0, and

(6-6) 1≤ (ms !)
1/ls ≤ mms/ls

s → 1 as s→∞.

Set Ts(λi ) :=
(∏
|α|=s−t Yi (α)

)1/shs
; then (6-5) becomes

(6-7) T̃ sas
s

d∏
i=1

Ts(λi )
shs ≤

Vms

Vms−1

≤ r sas
( ms !

ms−1!

)2 d∏
i=1

Ts(λi )
shs .

Write Vms = (Vms/Vms−1) · · · (Vmt+1/Vmt )Vmt . Then the above calculation yields
the following:

Corollary 6.5.

s∏
ν=t+1

(
T̃ νaν
ν

d∏
i=1

Tν(λi )
νhν

)
Vmt ≤ Vms ≤ (ms !)

2
s∏

ν=t+1

(
rνaν

d∏
i=1

Tν(λi )
νhν

)
Vmt .

To prove Theorem 6.2 we take ls-th roots in the above inequality and show that
the upper and lower estimates have the desired limit as s→∞.

Lemma 6.6. As s→∞, we have

(6-8) (ms !)
2/ls → 1,

∑s
ν=t+1 νaν

ls
→ 0, and

shs

(s− t)hm(s− t)
→ d.

Proof. The first limit follows immediately from (6-6). Writing the left-hand side
of the second limit as

∑s
ν=t+1 νaν/

∑s
ν=1 νhν , convergence of this limit to zero

follows easily from as/hs→ 0 (the first limit in (6-4)). The third limit (to d) follows
easily from the second limit in (6-4). �

Proof of Theorem 6.2. We first verify that

(6-9) Ts(λi )→ T (K , λi )
1/d as s→∞.
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By Proposition 5.5,( ∏
|α|=s−t

Yi (α)

) 1
(s−t)hm(s−t)

= exp
(

1
hm(s− t)

∑
|α|=s−t

log Yi (α)
1
|α|

)
→ T (K , λi ).

Together with the third limit of (6-8) and the definition of Ts(λi ), we get (6-9). In
turn, writing l̃s =

∑s
ν=t+1 νhν , this gives the convergence( s∏

ν=t+1

Tν(λi )
νhν

)1/l̃s

→ T (K , λi )
1/d as s→∞

of weighted geometric means. Note that l̃s/ ls→ 1 as s→∞, so we may replace
l̃s-th roots with ls-th roots in what follows. We have

(ms !)
2/ls

s∏
ν=t+1

(
rνaν

d∏
i=1

Tν(λi )
νhν

)1/ls

V 1/ls
mt

= (ms !)
2/ls r

∑
νaν/ls

d∏
i=1

( s∏
ν=t+1

Tν(λi )
νhν

)1/ ls

V 1/ls
mt
→

( d∏
i=1

T (K , λi )

)1/d

as s→∞, which shows that lim sups→∞ V 1/ ls
ms ≤

(∏d
i=1 T (K , λi )

)1/d
.

If T (K , λi )= 0 for some i then the theorem is proved, with d(K )= 0. Otherwise,
T (K , λi ) > 0 for all i ; using Corollary 4.6 it is easy to see that T−(K , λi , b) > 0
for all i = 1, . . . , d and b ∈ ∂6m ; and since ∂6m is compact, there exists c > 0
such that T−(K , λi , b)≥ c for all i and b. By Lemma 5.7,

lim inf
s→∞

T̃s ≥ lim inf
|α′|→∞

T̃ (α′)≥ min
θ ′∈6m−1

T̃−(θ ′)≥min
i,b

T−(K , λi , b)≥ c,

so there is some uniform constant ε ∈ (0, c) such that Ts > ε for all s > t , which
gives

s∏
ν=t+1

(
ενaν

d∏
i=1

Tν(λi )
νhν

)
Vmt ≤ Vms .

Now the ls-th root of the left-hand side of the above goes to
(∏d

i=1 T (K , λi )
)1/d

as s→∞ by a similar argument as before. This concludes the proof. �

7. Transfinite diameter using the standard basis

In this section we verify that the transfinite diameter of the previous section may be
computed in terms of the standard (grevlex) basis of monomials in C[V ]. Recall
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that the basis for normal forms C[z]I (where I = I(V )) is given by the collection
of monomials

{zγ : γ ∈ Z≥0, zγ 6∈ 〈LT(I )〉}.

Writing {ẽj }
∞

j=1 for the enumeration of these monomials according to grevlex, define
Van(ζ1, . . . , ζM) as in the right-hand side of (6-1) for a finite set {ζ1, . . . , ζM} ⊆ V,
replacing the ej with the ẽj . Put

Wms := sup{|Van(ζ1, . . . , ζms )| : {ζ1, . . . , ζms } ⊆ K }.

Later in this section we will need to consider Vandermonde determinants formed
from other graded polynomial bases. The Vandermonde determinant associated to
a basis F will be denoted VanF ( · ).

Lemma 7.1. Let F1 = {f̃ j }
∞

j=1 and F2 = {f j }
∞

j=1 be bases of polynomials for C[V ],
enumerated according to a graded ordering, and suppose that for some positive
integer M, f̃τ = fτ whenever τ > M. Then there exists a uniform constant κ 6= 0
such that for any integer τ ≥ M and finite set {ζ1, . . . , ζτ },

VanF1(ζ1, . . . , ζτ )= κVanF2(ζ1, . . . , ζτ ).

Proof. Fix the set {ζ1, . . . , ζτ } where τ ≥ M. Let El = [f̃ j (ζk)]
l
j,k=1 and Fl =

[f j (ζk)]
l
j,k=1 denote the Vandermonde matrices at the l-th stage for l = 1, . . . , τ .

With this notation, we have EM = PM FM , where PM is the change of basis
matrix from {f̃ j }

M
j=1 to {f j }

M
j=1 over the linear space spanned by these polyno-

mials. In particular, det PM 6= 0. Taking determinants, VanF1(ζ1, . . . , ζM) =

det(PM)VanF2(ζ1, . . . , ζM).
Similarly, write Eτ = Pτ Fτ ; then Eτ and Fτ are of the form

Eτ =
[

EM | ∗

E ′

]
, Fτ =

[
FM | ∗

E ′

]
,

the last rows (denoted by E ′) being the same since el = fl when l > M. It follows
that Pτ must be of the form

Pτ =
[

PM ∗

0 I

]
where I denotes the identity matrix, so that det Pτ = det PM .

Taking κ := det PM , the lemma follows immediately. �
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Recall that the basis C of Definition 3.13 is made up of the normal forms of two
types of polynomials:‡

(∗) zαzl
mzβ : α ∈ Zm−1

≥0 , l + |β| ≤ t − 1

(∗∗) zαzl
mvi : α ∈ Zm−1

≥0 , l ≥ 0, i = 1, . . . , d.

When these polynomials are already normal forms, as in the examples of Section 3,
we have the following theorem:

Theorem 7.2. Suppose the polynomials (∗) and (∗∗) are already in normal form.
Then lims→∞W 1/ ls

ms = d(K ). (Here ls,ms are as in Notation 6.1.)

The idea is to show that (V 1/ ls
ms /W 1/ ls

ms ) → 1 as s → ∞, where Vms is as in
the notation of the previous section. To this end, we analyze the Vandermonde
determinants that give these quantities in more detail.

Write
vj (z)=

∑
β∈D

A jβzβ, j = 1, . . . , d

where D is the collection of all basis monomials that appear in the polynomials vj for
all j = 1 . . . , d . Choose constants c,C > 0 such that for any positive integer k ≤ d ,

(7-1) c ≤ | det A| ≤ C

whenever A is a k× k nonsingular square matrix obtained by deleting sufficiently
many rows and columns of the d × |D| matrix [A jβ] j,β .§ There are finitely many
possible values for |det A|, so we may take the maximum and minimum of these as
our constants.

We are interested in |Van(ζ1, . . . , ζmτ
)| for a finite set {ζ1, . . . , ζmτ

}. The value
is the same for any graded ordering of the monomials of C[V ]≤τ , so let us construct
yet another graded ordering that will be convenient for calculation.

Fix the usual grevlex ordering on monomials of degree < t . For τ ≥ t , and
supposing that monomials of degree < τ have already been ordered, we order the
monomials of degree τ as follows. First, list the monomials of the form (∗) according
to the ordering on C. We set up some convenient notation before continuing.

Notation 7.3. Let W0 be the set consisting of the monomial basis of C[V ]≤τ−1

together with the monomials of the form (∗) of degree τ . Let W0 denote this same
set with our ordering imposed. (With this notation, the matrices given below are
uniquely determined.) Also, Wk will have the same meaning when Wk , k= 1, 2, . . .
is defined later in the section.

‡cf., Remark 3.10.
§Since only the absolute value of the determinant appears, the order of the columns (indexed by β)

is not important.
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Having listed the monomials in W0, we will use the elements of (∗∗) to order
the remaining monomials in C[V ]≤τ . Before we do this, observe that for α ∈ Zm

≥0,

zαvj =
∑
β∈D

A jβzα+β,

and since zαvj is a normal form, each of the monomials in the sum on the right-hand
side is a basis monomial.

Returning to the construction of our ordering, let us enumerate the multi-indices
α ∈ Zm

≥0 of total degree τ − t as α(1), α(2), . . . , according to their order of appear-
ance in the elements of the form (∗∗) in C.

The polynomials {zα(1)vj }
d
j=1 are linearly independent by Theorem 3.12. This

allows us to choose, for each j = 1, . . . , d , a term zα(1)+β( j) of zα(1)vj that is not a
term of zα(1)vi whenever i < j. We can also arrange that none of these terms be
in W0 either, since by the construction of C in Section 2, none of the polynomials
zα(1)vj are in the span of W0. The set of monomials defined by

W1 := {zγ : zγ ∈W0 or zγ = zα(1)+β( j)
}

is therefore a linearly independent subset of basis monomials in C[V ]≤τ .

Remark 7.4. When k > 1, note that zα(k)vj is not in the span of W1. If it were,
then all its monomials would be in W1, and, irrespective of how one orders the
remaining monomials that are not in W1, the change of basis matrix on C[V ]≤τ
from C to the monomial basis would not have full rank. This contradicts the fact
that a change of basis matrix must be invertible.

Now, write

W0

zα(1)v1
...

zα(1)vd

rest of C
(deg≤ τ)


=



W0∑
β A1βzα(1)+β

...∑
β Adβzα(1)+β

rest of C
(deg≤ τ)


=

 I 0 0
∗ A(1) ∗
0 0 I




W0

zα(1)+β(1)
...

zα(1)+β(d)

rest of C
(deg≤ τ)


,

where the ( j, k)-th entry in the block A(1) is given by A jβ with β = β(k). (The
“∗” in the blocks adjacent to A(1) also consist of entries of the form A jβ but do not
enter into subsequent calculations.) Clearly c ≤ det A(1) ≤ C as in (7-1).

Let us write this more compactly as W0

rest
of C

=
 I 0 0
∗ A(1) ∗
0 0 I

 W1

rest
of C

 .



TRANSFINITE DIAMETER ON COMPLEX ALGEBRAIC VARIETIES 311

The ordering of the remaining monomials is done by repeating the same pro-
cess as above with the polynomials zα(2), zα(3), . . . , in turn, to form W2,W3, . . . ,
etc. Assuming that Wν−1 has already been constructed, consider the polynomi-
als {zα(ν)vj }

d
j=1. They are linearly independent, and by similar reasoning as in

Remark 7.4, none of them are in the span of Wν−1. Hence they yield d additional
basis monomials which, adjoined to Wν−1, form the set Wν . We also have an
equation of the form

(7-2)

 Wν−1

rest
of C

=
 I 0 0
∗ A(ν) ∗
0 0 I

 Wν

rest
of C

 ,
with c ≤ |det A(ν)| ≤ C as in (7-1). This is the main formula needed for the
proposition below.

Example 7.5. For the complexified sphere V (z2
1+ z2

2+ z2
3− 1) in C3, the elements

of degree τ in the basis C are

zτ1, zτ−1
1 v1, zτ−1

1 v2, zτ−2
1 z2v1, zτ−2

1 z2v2, . . . ,

where v1 =
1
2(z2+ i z3) and v2 =

1
2(z2− i z3). Then

W0 = {...,zτ1}, W1 = {...,zτ1,z
τ−1
1 z2,zτ−1

1 z3}, W2 =W1 ∪ {zτ−2
1 z2

2,z
τ−2
1 z2z3}.

Recall that for a positive integer τ ≥ t , hm(τ − t) coincides with the number
of multi-indices α for which zαvj is an element in the basis C of degree τ , where
j ∈ {1, . . . , d}. Introduce the notation

bτ :=
τ∑

s=t

hm(s− t).

A straightforward calculation shows that

(7-3) bτ/ lτ → 0 as τ →∞.

Proposition 7.6. For any collection of points {ζ1, . . . , ζmτ
}, with τ ≥ t , we have

cbτ |Van(ζ1, . . . , ζmτ
)| ≤ |VanC(ζ1, . . . , ζmτ

)| ≤ Cbτ |Van(ζ1, . . . , ζmτ
)|,

where c,C are as in (7-1).

Proof. The proof is by induction on τ . We concentrate on the upper inequality
involving C, and note that the same proof works for the lower inequality. When
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τ = t , we have
monomials in (∗)

of deg≤ t
v1...
vd

=


W0∑
β A1βzβ
...∑

β Adβzβ

= [ I | 0
A

] [
W1
]
,

and note that in this case, [W1] uses all monomials of degree ≤ t . Forming
Vandermonde determinants, we have

|VanC(ζ1, . . . , ζmt )| =

∣∣∣∣det
[

I | 0
A

]
Van(ζ1, . . . , ζmt )

∣∣∣∣≤ C |Van(ζ1, . . . , ζmt )|,

where we apply (7-1) and the fact that the determinant in the middle term is the
determinant of a d × d minor of A. This proves the base case.

Suppose the inequality holds when τ is replaced by τ − 1. For j = 0, . . . , bτ ,
let us introduce the convenient notation Van j (ζ1, . . . , ζmτ

) for the “intermediate”
Vandermonde determinants:

Van j (ζ1, . . . , ζmτ
)= det


Wj (ζ1) · · · Wj (ζmτ

)

zα( j+1)v1(ζ1) · · · zα( j+1)v1(ζmτ
)

...
. . .

...

zα(bτ )v1(ζ1) · · · zα(bτ )vd(ζmτ
)

 .
In particular, |Vanhm(τ−t)(ζ1, . . . , ζmτ

)| = |Van(ζ1, . . . , ζmτ
)|.

Using equation (7-2),

|Vanν−1(ζ1, . . . , ζmτ
)| = |det(A(ν))| · |Vanν(ζ1, . . . , ζmτ

)| ≤ C |Vanν(ζ1, . . . , ζmτ
)|

for all ν = 1, . . . , bτ , and hence by repeated application of the above,

|Van0(ζ1, . . . , ζmτ
)| ≤ Chm(τ−t)

|Van(ζ1, . . . , ζmτ
)|.

If we define κ by the equation VanC(ζ1, . . . , ζmτ−1)= κVan(ζ1, . . . , ζmτ−1), then
by Lemma 7.1,

VanC(ζ1, . . . , ζmτ
)= κVan0(ζ1, . . . , ζmτ

),

as both determinants use the same elements {emτ−1+1, . . . , emτ
} of degree τ . Also,

note that by the inductive hypothesis, we have |κ| ≤ Cbτ−1.
Putting everything together,

|VanC(ζ1, . . . , ζmτ
)| ≤ Cbτ−1 |Van0(ζ1, . . . , ζmτ

)|

≤ Cbτ−1+hm(τ−t)
|Van(ζ1, . . . , ζmτ

)| = Cbτ |Van(ζ1, . . . , ζmτ
)|,

and the induction is complete. �

Theorem 7.2 is now an easy corollary.
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Proof of Theorem 7.2. Let K ⊂V be compact. If Wmτ
=0 for some τ , then by a simi-

lar argument as in Lemma 7.1, Wms = Vms = 0 for all s ≥ τ , and the theorem follows.
Otherwise, suppose Wmτ

> 0 for all τ . It follows from the above proposition that

(7-4) cbτ Wmτ
≤ Vmτ

≤ Cbτ Wmτ
.

Using (7-3), we have cbτ / lτ ,Cbτ / lτ → 1 as τ →∞. Hence dividing by Wmτ
and

taking lτ -th roots in (7-4), we have (Vmτ
)1/ lτ /(Wmτ

)1/ lτ → 1 as τ → ∞. The
theorem is proved. �

We close the section by sketching an argument that shows how to get rid of the
assumption that the products zαzl

mzβ and zαzl
mvj used in Theorem 7.2 are normal

forms. In general, the methods of this section can be used to construct a basis W of
linearly independent (but not necessarily normal form) monomials on the variety V,
made up of the terms in these products. The same proofs also show that transfinite
diameter defined in terms of VanW( · ) gives the same value as that defined in terms
of VanC( · ).

Now all monomials in W are of the form

zαzβ = zα1
1 · · · z

αm
m zβm+1

m+1 · · · z
βn
n

with |β| ≤ t , since deg vi = t for all i . Given zαzβ as above, consider a monomial
zαzβ̃ with |β̃| ≤ s for some s ≥ t . Then for any compact set K ⊂ V that avoids the
coordinate axes in Cn,¶ one can find constants m and M such that, upon evaluating
these monomials at any point ζ ∈ K,

(7-5) ms
≤
|zαzβ̃(ζ )|
|zαzβ(ζ )|

≤ M s .

For example, choose an M > 1 such that

M ≥
max{|z| : z ∈ K }

min{|zi | : z = (z1, . . . , zn) ∈ K })
.

All elements of the (grevlex) monomial basis for C[V ] have their total degree in
the variables zm+1, . . . , zn uniformly bounded above (say by s≥ t), as a consequence
of our hypotheses in Section 3 on Noether normalization. We can therefore compare
these basis monomials to those in W using (7-5).

For an integer τ ≥ t and collection of points {ζ1, . . . , ζmτ
}⊂ K, it follows that one

can estimate the ratio |VanW(ζ1, . . . , ζmτ
)|/|Van(ζ1, . . . , ζmτ

)| with powers of m
and M, by repeatedly applying (7-5) to compare rows of the associated Vandermonde
matrices. One can verify that the growth of these powers is strictly smaller, as a
function of τ , than the growth of lτ . Finally, a similar argument as carried out in the
above proof (forming an equation similar to (7-4), taking lτ -th roots, etc.) shows

¶Further analysis can be carried out at the end to remove this condition on the axes.
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that transfinite diameter defined in terms of Van( · ) gives the same value as that
defined in terms of VanW( · ).

Appendix: The monic basis

In [Rumely et al. 2000], Rumely, Lau and Varley construct the sectional capacity
of an algebraic variety. As in our case above, Zaharyuta’s method plays an essential
role. A so-called monic basis is constructed on the variety with good multiplicative
properties, similar to those of the basis C from Definition 3.13. Using the monic
basis, Chebyshev constants are then defined in terms of normalized polynomial
classes, and products of Chebyshev constants give the sectional capacity.

The monic basis of [Rumely et al. 2000, §4] is defined in a very general, abstract
setting. For simplicity, let X ⊆ Pn be an irreducible variety of dimension m
and degree d over C. As before, homogeneous coordinates in Pn are denoted by
z = [z0 : z1 : · · · : zn]. Then X gives the graded ring C[X ] = C[z]/I(X). The
monic basis is a vector space basis of C[X ] consisting of homogeneous elements
ηγ ∈ C[X ]s . Here is a brief sketch of how the monic basis is constructed:

(1) Write X = X (0)
⊇ X (1)

⊇ X (2)
⊇ · · · ⊇ X (m−1), where for `= 1, . . . ,m−1 we

have X (`)
= {z ∈ X (`−1)

: z` = 0}. We assume X (`) to be an irreducible variety
of dimension m − `, and that the curve X (m−1) intersects z0 = 0 in distinct
smooth points of points of X (m−1); say on the set D = {q1, . . . , qd}.

(2) Fix a sufficiently large positive integer j0, so that for j ≥ j0,
(a) For each i = 1, . . . , d there exists a rational function on X (m−1) with a

pole of order j at qi and no other poles.
(b) The collection of rational functions on X (m−1) with poles of order at most

j on D is isomorphic to the collection of homogeneous polynomials on
X (m−1) of degree j.

(3) For each i, j as above, choose a rational function ηi, j (normalized appropri-
ately) that satisfies part (a) of the previous step. Choose these functions so that
the collection {ηi, j } is multiplicatively finitely generated.‖

(4) Use these rational functions to construct, for each j, a basis for the homoge-
neous polynomials of degree j on X (m−1). (Note that these are polynomials in
the variables z0, zm, zm+1, . . . , zn only.)

(5) Construct a basis for homogeneous polynomials on the spaces X (m−2),...,X (1),
X in turn by inductively adjoining monomials in the remaining variables.

The properties of the monic basis and a justification of the above steps is given
in [Rumely et al. 2000, §§4 and 5]. See especially their Theorem 4.1.

‖This will ensure that the monic basis has good multiplicative properties, as can be seen in
Example A.1 below.
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Note in particular that the monic basis gives a basis of C[X ]s for every s. This
differs from our setting, where V ⊆ Cn is an affine variety with coordinate ring
C[V ] = C[z1, . . . , zn]/I (V ). The basis C we construct in Definition 3.13 consists
of polynomials that restrict to a basis of C[V ]≤s for every s. Thus our basis is
compatible with a filtration, while the monic basis in [Rumely et al. 2000] is
compatible with a grading.

We illustrate how the two bases are related by examining the monic basis for the
complexified sphere considered in Example 3.15.

Example A.1. Let

X = {[z0 : z1 : z2 : z3] ∈ P3
: z2

1+ z2
2+ z2

3 = z2
0} ⊆ P3,

and C[X ] = C[z]/〈z2
1 + z2

2 + z2
3 − z2

0〉. Then X (1) is the quadratic curve given by
z1 = z2

2+ z2
3− z2

0 = 0 that intersects z0 = 0 in [0 : 0 : 1 : ±i].
For each j = 1, 2, . . . , it is easy to see that

η1, j (z0, z2, z3) :=
( z2+ i z3

2z0

) j
=

(v1

z0

) j

defines a rational function on X (1) with a pole of order j at [0 : 0 : 1 : −i] and no
other poles. The function defined by

η2, j (z0, z2, z3) :=
( z2− i z3

2z0

) j
=

(v2

z0

) j

has the same property in relation to [0 : 0 : 1 : i]. The rational functions with at
most poles of order j at [0 : 0 : 1 : ±i] are then spanned by

{1, η1,1, η2,1, η1,2, η2,2, . . . , η1, j , η2, j }.

A multiplicative generating set is {1, η1,1, η2,1}.
Clearing denominators (i.e., multiplying by z j

0) gives the corresponding basis
of homogeneous polynomials of degree j on X (1). For example, when j = 2 we
obtain the polynomials

z2
0, z0v1, z0v2, v

2
1, v

2
2 .

To get the basis for the variety X, we adjoin powers of z1 to basis elements for
X (1) using the decomposition C[X ] j = z1C[X ] j−1⊕C[X (1)

] j . When j = 2, for
example, we compute that

(A-1) C[X ]2 = z1C[X ]1⊕C[X (1)
]2

= z1(z1C[X ]0⊕C[X (1)
]1)⊕C[X (1)

]2

= z2
1C[X ]0⊕ z1C[X (1)

]1⊕C[X (1)
]2

= z2
1 span{1}⊕ z1 span{z0, v1, v2}⊕ span{z2

0, z0v1, z0v2, v
2
1, v

2
2}

= span{z2
0, z0z1, z2

1, z0v1, z1v1, v
2
1, z0v2, z1v2, v

2
2}.
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The last line gives the monic basis for j = 2, where the basis elements are listed
according to the ordering used in [Rumely et al. 2000].

For arbitrary j, monic basis elements C[X ] j are either monomials in z0 and
z1 of degree j, or are homogeneous polynomials of the form zα0

0 zα1
1 v

α2
i with

α0 + α1 + α2 = j. Monomials in z0, z1 are listed first in lexicographic order
(with z0 preceding z1), followed by elements of the form zα0

0 zα1
1 v

α2
i . The latter are

listed in increasing order on i , then lexicographically by α = (α0, α1, α2) ∈ Z3
≥0.

This completes the construction of the monic basis for X.

The monic basis constructed in Example A.1 involves arbitrarily large powers
of v1 and v2. This is related to the multiplicative properties of the monic basis
described in [Rumely et al. 2000, Theorem 4.1].

It is interesting to compare the monic basis of Example A.1 to the basis con-
structed in Example 3.15. There, we worked with

V = V(z2
1+ z2

2+ z2
3− 1)⊆ C3.

Since the Zariski closure of V is V = X =V(z2
1+z2

2+z2
3−z2

0)⊆P3, homogenization
with respect to z0 induces an isomorphism

C[V ]≤ j ' C[X ] j

for all j. It follows that the basis of Example 3.15, when restricted to elements of
degree ≤ j, gives a basis of C[X ] j . However, this basis differs from the monic basis
in degree j. For example, when j = 2, homogenizing the basis of Example 3.15 in
degree ≤ 2 gives the homogeneous polynomials

z2
0, z0z1, z0v1, z0v2, z2

1, z1v1, z1v2, z2v1, z2v2.

Comparing this to the last line of (A-1), we see that in degree 2, the monic basis
uses v2

1 and v2
2 , while our basis uses z1v1 and z1v2. These are related by

v2
1 = z1v1+

1
4 z2

1−
1
4 z2

0, v2
2 = z1v2+

1
4 z2

1−
1
4 z2

0.

At the conceptual level, the basis C constructed in Definition 3.13 focuses on
the module properties of the basis, as highlighted in Theorem 3.12. In contrast,
the monic basis constructed in [Rumely et al. 2000] focuses on the multiplicative
properties of the basis. In our treatment, the multiplicative properties of C follow
from Lemma 3.7. Our construction is more direct (we avoid the inductive approach
needed in that work) but less general.
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