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We provide an explicit construction of star products on U(g)-module alge-
bras by using the Fedosov approach. This allows us to give a constructive
proof to Drinfeld’s theorem and to obtain a concrete formula for Drinfeld
twists. We prove that the equivalence classes of twists are in one-to-one
correspondence with the second Chevalley–Eilenberg cohomology of the Lie
algebra g. Finally, we show that for Lie algebras with Kähler structure we
obtain a strongly positive universal deformation of ∗-algebras by using a
Wick-type deformation. This results in a positive Drinfeld twist.
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1. Introduction

The concept of deformation quantization was defined by Bayen, Flato, Fronsdal,
Lichnerowicz and Sternheimer in [Bayen et al. 1978a; 1978b] based on Gersten-
haber’s theory [1964] of associative deformations of algebra. A formal star product
on a symplectic (or Poisson) manifold M is defined as a formal associative deforma-
tion ? of the algebra of smooth functions C∞(M) on M. The existence as well as
the classification of star products has been studied in many different settings, e.g., in
[De Wilde and Lecomte 1983; Fedosov 1986; 1994; 1996; Kontsevich 2003; Nest
and Tsygan 1995; Bertelson et al. 1997]; see also the textbooks [Esposito 2015;
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Waldmann 2007] for more details in deformation quantization. Quite parallel to
this, Drinfeld introduced the notion of quantum groups and started the deformation
of Hopf algebra; see, e.g., the textbooks [Kassel 1995; Chari and Pressley 1994;
Etingof and Schiffmann 1998] for a detailed discussion.

It turned out that under certain circumstances one can give simple and fairly
explicit formulas for associative deformations of algebras: whenever a Lie algebra
g acts on an associative algebra A by derivations, the choice of a formal Drinfeld
twist F ∈ (U (g)⊗ U (g))[[t]] allows one to deform A by means of a universal
deformation formula

(1-1) a ?F b = µA (F F (a⊗ b))

for a, b ∈ A [[t]]. Here
µA : A ⊗A → A

is the algebra multiplication and F is the action of g extended to the universal
enveloping algebra U (g) and then to U (g)⊗U (g) acting on A ⊗A . Finally, all
operations are extended R[[t]]-multilinearly to formal power series. Recall that a
formal Drinfeld twist [Drinfeld 1983; 1986] is an invertible element

F ∈ (U (g)⊗U (g))[[t]]

satisfying

(1⊗ id)(F)(F ⊗ 1)= (id⊗1)(F)(1⊗ F),(1-2)

(ε⊗ 1)F = 1= (1⊗ ε)F,(1-3)

F = 1⊗ 1+O(t).(1-4)

The properties of a twist are now easily seen to guarantee that (1-1) is indeed an
associative deformation.

Yielding the explicit formula for the deformation universally in the algebra A ,
Drinfeld twists are considered to be of great importance in deformation theory
in general, and in fact, are used at many different places. We just mention a few
recent developments, certainly not exhaustive: Giaquinto and Zhang studied the
relevance of universal deformation formulas like (1-1) in great detail in the seminal
paper [Giaquinto and Zhang 1998]. Bieliavsky and Gayral [2015] used universal
deformation formulas also in a nonformal setting by replacing the notion of a
Drinfeld twist with a certain integral kernel. This sophisticated construction leads
to a wealth of new strict deformations having the above formal deformations as
asymptotic expansions. But also beyond pure mathematics the universal deformation
formulas found applications, e.g., in the construction of quantum field theories on
noncommutative spacetimes; see, e.g., [Aschieri and Schenkel 2014].

In characteristic zero, there is one fundamental example of a Drinfeld twist in
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the case of an abelian Lie algebra g. Here one chooses any bivector π ∈ g⊗ g and
considers the formal exponential

(1-5) FWeyl–Moyal = exp(tπ),

viewed as element in (U (g)⊗ U (g))[[t]]. An easy verification shows that this
is indeed a twist. The corresponding universal deformation formula goes back
at least till [Gerstenhaber 1968, Theorem 8] under the name of deformation by
commuting derivations. In deformation quantization the corresponding star product
is the famous Weyl–Moyal star product if one takes π to be antisymmetric.

While this is an important example, it is not at all easy to find explicit formulas
for twists in the general nonabelian case. A starting point is the observation that the
antisymmetric part of the first order of a twist, F1−T(F1), where T is the usual flip
isomorphism, is first an element in 32g instead of 32U (g), and second a classical
r-matrix. This raises the question whether one can go the opposite direction of
a quantization: does every classical r-matrix r ∈32g on a Lie algebra g arise as
the first order term of a formal Drinfeld twist? It is now a celebrated theorem of
Drinfeld [1983, Theorem 6] that this is true.

But even more can be said: given a twist F one can construct a new twist by
conjugating with an invertible element S ∈U (g)[[t]] starting with S = 1+O(t) and
satisfying ε(S)= 1. More precisely,

(1-6) F ′ =1(S)−1F(S⊗ S)

turns out to be again a twist. In fact, this defines an equivalence relation on the set
of twists, preserving the semiclassical limit, i.e., the induced r -matrix. In the spirit
of Kontsevich’s formality theorem, and in fact building on its techniques, Halbout
[2006] showed that the equivalence classes of twists quantizing a given classical
r-matrix are in bijection with the equivalence classes of formal deformations of
the r-matrix in the sense of r -matrices. In fact, this follows from Halbout’s more
profound result on formality for general Lie bialgebras; the quantization of r-
matrices into twists is just a special case thereof. His theorem holds in a purely
algebraic setting (in characteristic zero) but relies heavily on the fairly inexplicit
formality theorems of Kontsevich [2003] and Tamarkin [1998] which in turn require
a rational Drinfeld associator.

On the other hand, there is a simpler approach to the existence of twists in the
case of real Lie algebras: in seminal work of Drinfeld [1983] he showed that a twist
is essentially the same as a left G-invariant star product on a Lie group G with Lie
algebra g, by identifying the G-invariant bidifferential operators on G with elements
in U (g)⊗U (g). The associativity of the star product gives then immediately the
properties necessary for a twist and vice versa. Moreover, an r -matrix is nothing else
as a left G-invariant Poisson structure; see his Theorem 1. In that paper, Drinfeld
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also gives an existence proof of such G-invariant star products and therefore of
twists; see Theorem 6. His argument uses the canonical star product on the dual of a
central extension of the Lie algebra by the cocycle defined by the (inverse of the) r -
matrix, suitably pulled back to the Lie group; see also Remark 5.8 for further details.

The equivalence of twists translates into the usual G-invariant equivalence of star
products as discussed in [Bertelson et al. 1998]. Hence one can use the existence
(and classification) theorems for invariant star products to yield the corresponding
theorems for twists, a fact we learned from personal communication with Beliavsky.
This is also the point of view taken by Dolgushev et al. in [Dolgushev et al. 2002],
where the star product is constructed in a way inspired by Fedosov’s construction
of star products on symplectic manifolds.

A significant simplification concerning the existence comes from the observation
that for every r -matrix r ∈32g there is a Lie subalgebra of g, namely

(1-7) gr = {(α⊗ id)(r) | α ∈ g∗},

such that r ∈32gr and r becomes nondegenerate as an r -matrix on this Lie subal-
gebra [Etingof and Schiffmann 1998, Propositions 3.2–3.3]. Thus it will always
be sufficient to consider nondegenerate classical r-matrices when interested in
the existence of twists. For the classification this is of course not true since a
possibly degenerate r -matrix might be deformed into a nondegenerate one only in
higher orders: here one needs Halbout’s results for possibly degenerate r -matrices.
However, starting with a nondegenerate r-matrix, one will have a much simpler
classification scheme as well.

The aim of this paper is now twofold: On the one hand, we want to give a direct
construction to obtain the universal deformation formulas for algebras acted upon
by a Lie algebra with nondegenerate r-matrix. This will be obtained in a purely
algebraic fashion for sufficiently nice Lie algebras and algebras over a commutative
ring R containing the rationals. Our approach is based on a certain adaptation of
the Fedosov construction of symplectic star products, which is in some sense closer
to the original Fedosov construction compared to the approach of [Dolgushev et al.
2002] but yet completely algebraic. More precisely, the construction will not involve
a twist at all but just the classical r -matrix. Moreover, it will be important to note
that we can allow for a nontrivial symmetric part of the r -matrix, provided a certain
technical condition on it is satisfied. This will produce deformations with more
specific features: as in usual deformation quantization one is not only interested
in the Weyl–Moyal like star products, but certain geometric circumstances require
more particular star products like Wick-type star products on Kähler manifolds
[Karabegov 1996; 2013; Bordemann and Waldmann 1997] or standard-ordered star
products on cotangent bundles [Bordemann et al. 1998; 2003].

On the other hand, we give an alternative construction of Drinfeld twists, again in
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the purely algebraic setting, based on the above correspondence to star products but
avoiding the techniques from differential geometry completely in order to be able
to work over a general field of characteristic zero. We also obtain a classification
of the above restricted situation where the r -matrix is nondegenerate.

In fact, both questions turn out to be intimately linked since applying our universal
deformation formula to the tensor algebra of U (g) will yield a deformation of the
tensor product which easily allows one to construct the twist. This is remarkable
insofar as the tensor algebra is of course rigid, the deformation is equivalent to the
undeformed tensor product, but the deformation is not the identity, allowing one
therefore to consider nontrivial products of elements in T•(U (g)).

We show that the universal deformation formula we construct in fact coincides
with (1-1) for the twist we construct. However, it is important to note the detour via
the twist is not needed to obtain the universal deformation of an associative algebra.

Finally, we add the notion of positivity: this seems to be new in the whole
discussion of Drinfeld twists and universal deformation formulas so far. To this
end we consider now an ordered ring R containing Q and its complex version
C= R(i) with i2 =−1, and ∗-algebras over C with a ∗-action of the Lie algebra g,
which is assumed to be a Lie algebra over R admitting a Kähler structure. Together
with the nondegenerate r -matrix we can define a Wick-type universal deformation
which we show to be strongly positive: every undeformed positive linear functional
stays positive also for the deformation. Applied to the twist we conclude that the
Wick-type twist is a convex series of positive elements.

The paper is organized as follows. In Section 2 we explain the elements of
the (much more general) Fedosov construction which we will need. Section 3
contains the construction of the universal deformation formula. Here not only the
deformation formula will be universal for all algebras A but also the construction
itself will be universal for all Lie algebras g. In Section 4 we construct the Drinfeld
twist while Section 5 contains the classification in the nondegenerate case. Finally,
Section 6 discusses the positivity of the Wick-type universal deformation formula.
In two Appendices we collect some more technical arguments and proofs. The
results of this paper are partially based on the master thesis [Schnitzer 2016].

For symplectic manifolds with suitable polarizations one can define various types
of star products with separation of variables [Karabegov 1996; 2013; Bordemann
and Waldmann 1997; Donin 2003; Bordemann et al. 1998; 1999; 2003] which have
specific properties adapted to the polarization. The general way to construct (and
classify) them is to modify the Fedosov construction by adding suitable symmetric
terms to the fiberwise symplectic Poisson tensor. We have outlined that this can
be done for twists as well in the Kähler case, but there remain many interesting
situations. In particular a more cotangent bundle-like polarization might be useful.
We plan to come back to these questions in a future project.
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2. The Fedosov Setup

In the following we present the Fedosov approach in the particular case of a Lie
algebra g with a nondegenerate r-matrix r . We follow the presentation of the
Fedosov approach given in [Waldmann 2007] but replace differential geometric
concepts by algebraic versions in order to be able to treat not only the real case. The
setting for this work will be to assume that g is a Lie algebra over a commutative
ring R containing the rationals Q⊆R such that g is a finite-dimensional free module.

We denote by {e1, . . . , en} a basis of g and by {e1, . . . , en
} its dual basis of g∗.

We also assume the r -matrix r ∈32g to be nondegenerate in the strong sense from
the beginning, since, at least in the case of R being a field, we can replace g by gr

from (1-7) if necessary. Hence r induces the musical isomorphism

(2-1) ] : g∗→ g

by pairing with r , the inverse of which we denote by [ as usual. Then the defining
property of an r -matrix is Jr, rK= 0, where J · , · K is the unique extension of the Lie
bracket to 3•g turning the Grassmann algebra into a Gerstenhaber algebra. Since
we assume r to be (strongly) nondegenerate we have the inverse ω ∈ 32g∗ of r
and Jr, rK = 0 becomes equivalent to the linear condition δCEω = 0, where δCE is
the usual Chevalley–Eilenberg differential. Moreover, the musical isomorphisms
intertwine δCE on 3•g∗ with the differential Jr, · K on 3•g. We refer to ω as the
induced symplectic form.

Remark 2.1. For the Lie algebra g there seems to be little gain in allowing a ring R

instead of a field K of characteristic zero, as we have to require g to be a free module
and (2-1) to be an isomorphism. However, for the algebras which we would like
to deform there will be no such restrictions later on. Hence allowing for algebras
over rings in the beginning seems to be the cleaner way to do it, since after the
deformation we will arrive at an algebra over a ring, namely R[[t]] anyway.

Definition 2.2 (Formal Weyl algebra). The algebra
(∏
∞

k=0 Skg∗⊗3•g∗
)
[[t]] is called

the formal Weyl algebra where the product µ is defined by

(2-2) ( f ⊗ α) · (g⊗ β)= µ( f ⊗ α, g⊗ β)= f ∨ g⊗ α∧β.

for any factorizing tensors f ⊗ α, g⊗ β ∈W ⊗3• and extended R[[t]]-bilinearly.
We write W =

∏
∞

k=0 Skg∗[[t]] and 3• =3•g∗[[t]].

Since g is assumed to be finite-dimensional we have

(2-3) W ⊗3• =
( ∞∏

k=0

Skg∗⊗3•g∗
)
[[t]].
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Since we will deform this product µ we shall refer to µ also as the undeformed
product of W ⊗3•. It is clear that µ is associative and graded commutative with
respect to the antisymmetric degree. In order to handle this and various other
degrees, it is useful to introduce the degree maps

(2-4) degs, dega, degt :W ⊗3
•
→W ⊗3•,

defined by the conditions

(2-5) degs( f ⊗ α)= k f ⊗ α and dega( f ⊗ α)= ` f ⊗ α

for f ∈ Skg∗ and α ∈ 3`g∗. We extend these maps to formal power series by
R[[t]]-linearity. Then we can define the degree map degt by

(2-6) degt = t
∂

∂t
,

which is, however, not R[[t]]-linear. Finally, the total degree is defined by

(2-7) Deg= degs+2 degt .

It will be important that all these maps are derivations of the undeformed product
µ of W ⊗3•. We denote by

(2-8) Wk ⊗3
•
=

⋃
r≥k

{a ∈W ⊗3• | Deg a = ra}

the subspace of elements which have total degree bigger or equal to +k. This
endows W ⊗3• with a complete filtration, a fact which we shall frequently use
in the sequel. Moreover, the filtration is compatible with the undeformed product
(2-2) in the sense that

(2-9) ab ∈Wk+`⊗3
• for a ∈Wk ⊗3

• and b ∈W`⊗3
•.

Following the construction of Fedosov, we define the operators δ and δ∗ by

(2-10) δ = ei
∧ is(ei ) and δ∗ = ei

∨ ia(ei ),

where is and ia are the symmetric and antisymmetric insertion derivations. Both
maps are graded derivations of µ with respect to the antisymmetric degree: δ lowers
the symmetric degree by one and raises the antisymmetric degree by one; for δ∗ it
is the other way round. For homogeneous elements a ∈ Skg∗⊗3`g∗ we define

(2-11) δ−1(a)=
{

0 if k+ `= 0,
1/(k+ `)δ∗(a) else,

and extend this R[[t]]-linearly. Notice that this map is not the inverse of δ; instead
we have the following properties:
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Lemma 2.3. For δ, δ∗ and δ−1 defined above, δ2
= (δ∗)2 = (δ−1)2 = 0 and

(2-12) δδ−1
+ δ−1δ+ σ = id,

where σ is the projection on the symmetric and antisymmetric degree zero.

In fact, this can be seen as the polynomial version of the Poincaré lemma: δ
corresponds to the exterior derivative and δ−1 is the standard homotopy.

The next step consists of deforming the product µ into a noncommutative one:
we define the star product ◦π for a, b ∈W ⊗3• by

(2-13) a ◦π b = µ ◦ e(t/2)P(a⊗ b), where P = π i j is(ei )⊗ is(ej ),

for π i j
=r i j
+si j, where r i j are the coefficients of the r -matrix and si j

= s(ei , e j )∈R

are the coefficients of a symmetric bivector s ∈ S2g. When taking s = 0 we denote
◦π simply by ◦Weyl.

Proposition 2.4. The star product ◦π is an associative R[[t]]-bilinear product on
W ⊗3• deforming µ in zeroth order of t . Moreover, the maps δ, dega, and Deg are
graded derivations of ◦π of antisymmetric degree +1 for δ and 0 for dega and Deg,
respectively.

Proof. The associativity follows from the fact that the insertion derivations are
commuting; see [Gerstenhaber 1968, Theorem 8]. The statement about δ, dega and
Deg are immediate verifications. �

Next, we will need the graded commutator with respect to the antisymmetric
degree, denoted by

(2-14) ad(a)(b)= [a, b] = a ◦π b− (−1)k`b ◦π a

for any a ∈W⊗3k and b ∈W⊗3` and extended K[[t]]-bilinearly as usual. Since
◦π deforms the graded commutative product µ, all graded commutators [a, b]
will vanish in the zeroth order of t . This allows one to define graded derivations
(1/t) ad(a) of ◦π .

Lemma 2.5. An element a ∈W ⊗ 3• is central, that is ad(a) = 0, if and only if
degs(a)= 0.

By definition, a covariant derivative is an arbitrary bilinear map

(2-15) ∇ : g× g 3 (X, Y ) 7→ ∇X Y ∈ g.

The idea is that in the geometric interpretation the covariant derivative is uniquely
determined by its values on the left invariant vector fields: we want an invariant
covariant derivative and hence it should take values again in g. An arbitrary covariant
derivative is called torsion-free if

(2-16) ∇X Y −∇Y X − [X, Y ] = 0
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for all X, Y ∈ g. Having a covariant derivative, we can extend it to the tensor algebra
over g by requiring the maps

(2-17) ∇X : T•g→ T•g

to be derivations for all X ∈ g. We also extend ∇X to elements in the dual by

(2-18) (∇Xα)(Y )=−α(∇X Y )

for all X, Y ∈ g and α ∈ g∗. Finally, we can extend ∇X to T•g∗ as a derivation, too.
Acting on symmetric or antisymmetric tensors, ∇X will preserve the symmetry type
and yields a derivation of the ∨- and ∧-products, respectively. The fact that we
extended ∇ as a derivation in a way which is compatible with natural pairings will
lead to relations like

(2-19) [∇X , is(Y )] = is(∇X Y )

for all X, Y ∈ g, as one can easily check on generators.
Sometimes it will be advantageous to use the basis of g for computations. With

respect to the basis we define the Christoffel symbols

(2-20) 0k
i j = ek(∇ei ej )

of a covariant derivative, where i, j, k= 1, . . . , n. Clearly, ∇ is uniquely determined
by its Christoffel symbols. Moreover, ∇ is torsion-free if and only if

(2-21) 0k
i j −0

k
ji = Ck

i j ,

with the usual structure constants Ck
i j = ek([ei , ej ]) ∈ R of the Lie algebra g.

As in symplectic geometry, the Hess trick [1981] shows the existence of a
symplectic torsion-free covariant derivative:

Proposition 2.6 (Hess trick). Let (g, r) be a Lie algebra with nondegenerate r-
matrix r and inverse ω. Then there exists a torsion-free covariant derivative ∇ such
that for all X ∈ g we have

(2-22) ∇Xω = 0 and ∇Xr = 0.

Proof. The idea is to start with the half-commutator connection as in the geometric
case and make it symplectic by means of the Hess trick. The covariant derivative

∇̃ : g× g 3 (X, Y ) 7→ 1
2 [X, Y ] ∈ g

is clearly torsion-free. Since ω is nondegenerate, we can determine a map ∇X

uniquely by

(2-23) ω(∇X Y, Z)= ω(∇̃X Y, Z)+ 1
3(∇̃Xω)(Y, Z)+ 1

3(∇̃Yω)(X, Z).
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It is then an immediate computation using the closedness δCEω = 0 of ω, that this
map satisfies all requirements. �

The curvature R̃ corresponding to ∇ is defined by

(2-24) R̃ : g×g×g3 (X, Y, Z) 7→ R̃(X, Y )Z =∇X∇Y Z−∇Y∇X Z−∇[X,Y ]Z ∈ g.

For a symplectic covariant derivative, we contract R̃ with the symplectic form ω

and get

(2-25) R : g× g× g× g 3 (Z ,U, X, Y ) 7→ ω(Z , R̃(X, Y )U ) ∈ R,

which is symmetric in the first two components and antisymmetric in the last ones:
this follows at once from ∇ being torsion-free and symplectic. In other words,
R ∈ S2(g∗)⊗32g∗ becomes an element of the formal Weyl algebra satisfying

(2-26) degs R = 2R = Deg R, dega R = 2R, and degt R = 0.

In the following, we will fix a symplectic torsion-free covariant derivative, the
existence of which is granted by Proposition 2.6. Since ∇X acts on all types of
tensors already, we can use ∇ to define the following derivation D on the formal
Weyl algebra

(2-27) D :W ⊗3• 3 ( f ⊗ α) 7→ ∇ei f ⊗ ei
∧α+ f ⊗ ei

∧∇eiα ∈W ⊗3
•+1.

Notice that we do not use the explicit expression of ∇ given in (2-23). In fact, any
other symplectic torsion-free covariant derivative will do the job as well.

For every torsion-free covariant derivative ∇ it is easy to check that

(2-28) ei
∧∇eiα = δCEα

holds for all α ∈3•g∗: indeed, both sides define graded derivations of antisymmetric
degree +1 and coincide on generators in g∗ ⊆3•g∗. Therefore, we can rewrite D as

(2-29) D( f ⊗ α)=∇ei f ⊗ ei
∧α+ f ⊗ δCEα.

From now on, unless clearly stated, we refer to [ · , · ] as the supercommutator with
respect to the antisymmetric degree.

Proposition 2.7. Let ∇ be a symplectic torsion-free covariant derivative. If in
addition s is covariantly constant, i.e., if ∇X s = 0 for all X ∈ g, the map D :
W ⊗3•→W ⊗3•+1 is a graded derivation of antisymmetric degree +1 of the
star product ◦π , i.e.,

(2-30) D(a ◦π b)= D(a) ◦π b+ (−1)ka ◦π D(b)

for a ∈W ⊗3k and b ∈W ⊗3•. In addition, we have

(2-31) δR=0, DR=0, [δ, D]= δD+Dδ=0, D2
=

1
2
[D, D]= 1

t
ad(R).
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Proof. For the operator P from (2-13) we have

(id⊗∇ek +∇ek ⊗ id)P(a⊗ b)

= π i j is(ei )a⊗∇ek is(ej )b+π i j
∇ek is(ei )a⊗ is(ej )b

(a)
= (π`j0i

k`+π
i`0

j
k`) is(ei )a⊗ is(ej )b+P(id⊗∇ek +∇ek ⊗ id)(a⊗ b)

= P(id⊗∇ek +∇ek ⊗ id)(a⊗ b)

for a, b∈W⊗3•. Here we used the relation [∇X , is(Y )]= is(∇X Y ) as well as the def-
inition of the Christoffel symbols in (a). In the last step we used π`j0i

k`+π
i`0

j
k`=0

which follows from ∇(r + s)= 0. Therefore we have

∇ei ◦µ ◦ e
1
2 tP
= µ ◦ (id⊗∇ei +∇ei ⊗ id) ◦ e

1
2 tP
= µ ◦ e

1
2 tP
◦ (id⊗∇ei +∇ei ⊗ id).

By ∧-multiplying by the corresponding ei it follows that D is a graded derivation
of antisymmetric degree +1. Let f ⊗ α ∈W ⊗3•. Just using the definition of δ,
(2-29) and the fact that ∇ is torsion-free we get

δD( f ⊗ α)= δ(∇ek f ⊗ ek
∧α+ f ⊗ δCEα)

=−Dδ( f ⊗ α)+ 1
2(0

`
ik −0

`
ki −C`

ik) is(e`) f ⊗ ei
∧ ek
∧α

=−Dδ( f ⊗ α).

Using a similar computation in coordinates, we get D2
=

1
2 [D, D] = (1/t) ad(R).

Finally, from the Jacobi identity of the graded commutator we get (1/2t) ad(δR)=
[δ, [D, D]] = 0. Hence δR is central. Since δR has symmetric degree +1, this can
only happen if δR = 0. With the same argument, 0= [D, [D, D]] yields that DR
is central, which again gives DR = 0 by counting degrees. �

Remark 2.8. In principle, we will mainly be interested in the case s = 0 in the
following. However, if the Lie algebra allows for a covariantly constant s it might
be interesting to incorporate this into the universal construction: already in the
abelian case this leads to the freedom of choosing a different ordering than the
Weyl ordering (total symmetrization). Here in particular the Wick ordering is of
significance due to the better positivity properties; see [Bursztyn and Waldmann
2000] for a universal deformation formula in this context.

The core of Fedosov’s construction is now to turn −δ+D into a differential: due
to the curvature R the derivation −δ+ D is not a differential directly. Nevertheless,
from the above discussion we know that it is an inner derivation. Hence the idea is
to compensate the defect of being a differential by inner derivations, leading to the
following statement:
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Proposition 2.9. Let � ∈ t32g∗[[t]] be a series of δCE-closed two-forms. Then there
is a unique % ∈W2⊗3

1, such that

(2-32) δ% = R+ D%+ 1
t % ◦π %+�

and

(2-33) δ−1% = 0.

Moreover, the derivation DF =−δ+ D+ (1/t) ad(%) satisfies D2
F = 0.

Proof. Let us first assume that (2-32) is satisfied and apply δ−1 to (2-33). This
yields

δ−1δ% = δ−1
(

R+ Dx + 1
t
% ◦π %+�

)
.

From the Poincaré Lemma as in Lemma 2.3 we have

(2-34) % = δ−1
(

R+ D%+ 1
t
% ◦π %+�

)
.

Let us define the operator B :W ⊗31
→W ⊗31 by

B(a)= δ−1
(

R+ Da+ 1
t

a ◦π a+�
)
.

Thus the solutions of (2-33) coincide with the fixed points of the operator B.
Now we want to show that B has indeed a unique fixed point. By a careful but
straightforward counting of degrees we see that B maps W2 ⊗ 3

1 into W2 ⊗ 3
1.

Second, we note that B is a contraction with respect to the total degree. Indeed, for
a, a′ ∈W2⊗3

1 with a− a′ ∈Wk ⊗3
1 we have

B(a)− B(a′)= δ−1 D(a− a′)+ 1
t
(a ◦π a− a′ ◦π a′)

= δ−1 D(a− a′)+ 1
t
δ−1((a− a′) ◦π a′+ a ◦π (a− a′)).

The first term δ−1 D(a−a′) is an element of Wk+1⊗3
1, because D does not change

the total degree and δ−1 increases it by+1. Since Deg is a ◦π -derivation and since a,
a′ have total degree at least 2 and their difference has total degree at least k, the sec-
ond term has total degree at least k+1, as 1/t has total degree −2 but δ−1 raises the
total degree by +1. This allows one to apply the Banach fixed-point theorem for the
complete filtration by the total degree: we have a unique fixed-point B(%)= % with
%∈W2⊗3

1, i.e., % satisfies (2-34). Finally, we show that this % fulfills (2-33). Define

A = δ%− R− D%− 1
t
% ◦π %−�.



A UNIVERSAL CONSTRUCTION OF UNIVERSAL DEFORMATION FORMULAS 331

Applying δ to A and using Proposition 2.7, we obtain

δA =−δD%− 1
t
(δ% ◦π %− % ◦π δ%)

= Dδ%+ 1
t

ad(%)δ%

= D
(

A+ R+ D%+ 1
t
% ◦π %+�

)
+

1
t

ad(%)
(

A+ R+ D%+ 1
t
% ◦π %+�

)
(a)
= D A+ 1

t
ad(%)(A).

In (a) we used that (−δ+D+ (1/t) ad(%))(R+D%+ (1/t)%◦π %+�)= 0, which
can be seen as a version of the second Bianchi identity for −δ+ D+ (1/t) ad(%).
This follows by an explicit computation for arbitrary %. On the other hand

δ−1 A = δ−1
(
δ%− R− D%− 1

t
% ◦π %−�

)
= δ−1δ%− % = δδ−1% = 0

for % being the fixed-point of the operator B. In other words,

A = δ−1δA = δ−1
(

D A+ 1
t

ad(%)(A)
)

is a fixed-point of the operator K :W ⊗3•→W ⊗3• defined by

K a = δ−1
(

Da+ 1
t

ad(%)(a)
)
.

Using an analogous argument to the one above, this operator is a contraction with
respect to the total degree, and has a unique fixed-point. Finally, since K is linear
the fixed-point has to be zero, which means that A = 0. �

Remark 2.10. It is important to note that the above construction of the element %,
which will be the crucial ingredient in the universal deformation formula below, is
a fairly explicit recursion formula. Writing % =

∑
∞

r=3 %
(r) with components %(r) of

homogeneous total degree Deg %(r) = r%(r) we see that %(3) = δ−1(R+ t�1) and

(2-35) %(r+3)
= δ−1

(
D%(r+2)

+
1
t

r−1∑
`=1

%(`+2)
◦π %

(r+2−`)
+�(r+2)

)
,

where �(2k)
= tk�k for k ∈ N and �(2k+1)

= 0. Moreover, if we find a flat ∇, i.e.,
if R = 0, then for trivial �= 0 we have % = 0 as solution.

3. Universal deformation formula

Let us consider a triangular Lie algebra (g, r) acting on a generic associative algebra
(A , µA ) via derivations. We denote by F the corresponding Hopf algebra action
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U (g)→ End(A ). In the following we refer to

A ⊗W ⊗3• =
∞∏

k=0

(A ⊗ Skg∗⊗3•g∗)[[t]]

as the enlarged Fedosov algebra. The operators defined in the previous section are
extended to A ⊗W ⊗3• by acting trivially on the A -factor and as before on the
W ⊗3•-factor.

The deformed product ◦π on W ⊗3• together with the product µA of A yields
a new (deformed) R[[t]]-bilinear product mA

π for the extended Fedosov algebra.
Explicitly, on factorizing tensors we have

(3-1) mA
π (ξ1⊗ f1⊗ α1, ξ2⊗ f2⊗ α2)= (ξ1 · ξ2)⊗ ( f1⊗ α1) ◦π ( f2⊗ α2),

where ξ1, ξ2 ∈ A , f1, f2 ∈ S•g∗ and α1, α2 ∈3
•g∗. We simply write ξ1 · ξ2 for the

(undeformed) product µA of A . Clearly, this new product mA
π is again associative.

As new ingredient we use the action F to define the operator LA :A ⊗W⊗3•→
A ⊗W ⊗3• by

(3-2) LA (ξ ⊗ f ⊗ α)= ei F ξ ⊗ f ⊗ ei
∧α

on factorizing elements and extend it R[[t]]-linearly as usual. Since the action of Lie
algebra elements is by derivations, we see that LA is a derivation of A ⊗W ⊗3•

of antisymmetric degree +1. The sum

(3-3) DA = LA +DF

is thus still a derivation of antisymmetric degree +1 which we call the extended
Fedosov derivation. It turns out to be a differential, too:

Lemma 3.1. The map DA = LA +DF squares to zero.

Proof. First, we observe that D2
A = L2

A +[DF, LA ], because D2
F = 0. Next, since F

is a Lie algebra action, we immediately obtain

L2
A (ξ ⊗ f ⊗ α)= 1

2Ck
i j ek F ξ ⊗ f ⊗ ei

∧ e j
∧α

on factorizing elements. We clearly have [δ, LA ] = 0 = [ad(%), LA ] since the
maps act on different tensor factors. It remains to compute the only nontrivial term
in [DF, LA ] = [D, LA ]. Using δCEek

=−
1
2Ck

i j e
i
∧ e j , this results immediately in

[D, LA ] = −L2
A . �

The cohomology of this differential turns out to be almost trivial: we only have
a nontrivial contribution in antisymmetric degree 0, the kernel of DA . In higher
antisymmetric degrees, the following homotopy formula shows that the cohomology
is trivial:
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Proposition 3.2. The operator

(3-4) D−1
A = δ

−1 1

id−
[
δ−1, D+ LA +

1
t

ad(%)
]

is a well-defined R[[t]]-linear endomorphism of A ⊗W ⊗3• and we have

(3-5) a = DA D−1
A a+D−1

A DA a+
1

id−
[
δ−1, D+ LA +

1
t

ad(%)
]σ(a).

for all a ∈ A ⊗W ⊗3•.

Proof. Let us denote by A the operator [δ−1, D + LA + (1/t) ad(%)]. Since it
increases the total degree by +1, the geometric series (id− A)−1 is well defined as a
formal series in the total degree. We start with the Poincaré equation (2-12) and get

(3-6) −DA δ
−1a− δ−1DA a+ σ(a)= (id− A)a,

since DA deforms the differential −δ by higher order terms in the total degree. The
usual homological perturbation argument then gives (3-4) by a standard computation;
see, e.g., [Waldmann 2007, Proposition 6.4.17] for this computation. �

Corollary 3.3. Let a ∈ A ⊗W ⊗30. Then DA a = 0 if and only if

(3-7) a =
1

id−
[
δ−1, D+ LA +

1
t

ad(%)
]σ(a).

Since the element a∈A⊗W⊗30 is completely determined in the symmetric and
antisymmetric degree 0, we can use it to define the extended Fedosov Taylor series.

Definition 3.4 (Extended Fedosov Taylor series). Given the extended Fedosov
derivation DA =−δ+ D+ LA + (1/t) ad(%), the extended Fedosov Taylor series
of ξ ∈ A [[t]] is defined by

(3-8) τA (ξ)=
1

id−
[
δ−1, D+ LA +

1
t

ad(%)
]ξ.

Lemma 3.5. For ξ ∈ A [[t]] we have

(3-9) σ(τA (ξ))= ξ.

Moreover, the map τA : A [[t]] → ker DA ∩ ker dega is a R[[t]]-linear isomorphism
starting with

(3-10) τA (ξ)=
∞∑

k=0

[
δ−1, D+LA +

1
t

ad(%)
]k
(ξ)= ξ⊗1⊗1+ei Fξ⊗ei

⊗1+· · ·
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in zeroth and first order of the total degree.

Proof. The isomorphism property follows directly from Corollary 3.3. The commu-
tator [δ−1, D+ LA + (1/t) ad(%)] raises the total degree at least by one, thus the
zeroth and first order terms in the total degree come from the terms with k = 0 and
k = 1 in the geometric series in (3-10). Here it is easy to see that the only nontrivial
contribution is [

δ−1, D+ LA +
1
t

ad(%)
]
ξ = LA ξ,

proving the claim in (3-10). Note that already for k = 2 we also get contributions
of S and ad(%). �

Given the R[[t]]-linear isomorphism τA :A [[t]]→ ker DA ∩ker dega we can turn
A [[t]] into an algebra by pulling back the deformed product: note that the kernel of
a derivation is always a subalgebra and hence the intersection ker DA ∩ ker dega is
also a subalgebra. This allows us to obtain a universal deformation formula for any
U (g)-module algebra A :

Theorem 3.6 (Universal deformation formula). Let g be a Lie algebra with non-
degenerate r-matrix. Moreover, let s ∈ S2g be such that there exists a symplectic
torsion-free covariant derivative ∇ with s being covariantly constant. Consider
then π = r+s. Finally, let�∈ t32g∗[[t]] be a formal series of δCE-closed two-forms.
Then for every associative algebra A with action of g by derivations one obtains an
associative deformation mA

? : A [[t]]×A [[t]] → A [[t]] by

(3-11) mA
? (ξ, η)= σ(m

A
π (τA (ξ), τA (η))).

Writing simply ?= ?�,∇,s for this new product, one has

(3-12) ξ ? η = ξ · η+
t
2
π i j (ei F ξ) · (ej F η)+O(t2) for ξ, η ∈ A .

Proof. The product mA
? is associative, because mA

π is associative and τA is an
isomorphism onto a subalgebra with inverse σ . The second part is a direct conse-
quence of Lemma 3.5. �

Remark 3.7. The above theorem can be further generalized by observing that given
a Poisson structure on A induced by a generic bivector on g, we can reduce to the
quotient g/ ker F and obtain an r -matrix on the quotient, inducing the same Poisson
structure.

4. Universal construction for Drinfeld twists

Let us consider the particular case in which A is the tensor algebra (T•(U (g)),⊗).
In this case, we denote by L the operator LT•(U (g)) : T•(U (g)) ⊗ W ⊗ 3• →
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T•(U (g))⊗W ⊗3•, which is given by

(4-1) LT•(U (g))(ξ ⊗ f ⊗ α)= Lei ξ ⊗ f ⊗ ei
∧α.

Here Lei is the left multiplication in U (g) of the element ei extended as a derivation
of the tensor product. Note that it is independent of the choice of the basis in g.

Applying the results discussed in the last section, we obtain a star product for
the tensor algebra over U (g) as a particular case of Theorem 3.6:

Corollary 4.1. The map m? :T•(U (g))[[t]]×T•(U (g))[[t]]→T•(U (g))[[t]] given by

(4-2) m?(ξ, η)= ξ ? η = σ(mπ (τ (ξ), τ (η)))

is an associative product and

(4-3) ξ ? η = ξ ⊗ η+ 1
2 tπ i j Lei ξ ⊗ Lejη+O(t2) for ξ, η ∈ T•(U (g)).

In the following we prove that the star product m? defined above allows one to
construct a formal Drinfeld twist. Let us define, for any linear map

(4-4) 8 : U (g)⊗k
→ U (g)⊗`,

the lifted map

(4-5) 8Lift
:U (g)⊗k

⊗W⊗3• 3 ξ⊗ f ⊗α 7→8(ξ)⊗ f ⊗α ∈U (g)⊗`⊗W⊗3•,

obeying the following simple properties:

Lemma 4.2. Let 8 : U (g)⊗k
→ U (g)⊗` and 9 : U (g)⊗m

→ U (g)⊗n be linear
maps.

(i) The lifted map 8Lift commutes with δ, δ−1, D, and ad(x) for all x ∈W ⊗3•.

(ii) We have

(4-6) 8 ◦ σ |U (g)⊗k⊗W⊗3• = σ |U (g)⊗`⊗W⊗3• ◦8
Lift.

(iii) We have

(4-7) (8⊗9)Liftmπ (a1, a2)= mπ (8
Lift(a1),9

Lift(a2)),

for any a1 ∈ U (g)⊗k
⊗W ⊗3• and a2 ∈ U (g)⊗m

⊗W ⊗3•.

Let η ∈ U (g)⊗k
[[t]] be given. Then we can consider the right multiplication by

η using the algebra structure of U (g)⊗k
[[t]] coming from the universal enveloping

algebra as a map

(4-8) ·η : U (g)⊗k
3 ξ 7→ ξ · η ∈ U (g)⊗k .
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To this map we can apply the above lifting process and extend it this way to a
R[[t]]-linear map such that on factorizing elements

(4-9) ·η : U (g)⊗k
⊗W ⊗3• 3 ξ ⊗ f ⊗ α 7→ (ξ · η)⊗ f ⊗ α ∈ U (g)⊗k,

where we simply write ·η instead of (·η)Lift. Note that a · η is only defined if the
tensor degrees k of η ∈ Tk(U (g)) and a coincide since we use the algebra structure
inherited from the universal enveloping algebra.

In the following we denote by D the derivation DT•(U (g)) as obtained in (3-3). We
collect some properties how the lifted right multiplications match with the extended
Fedosov derivation:

Lemma 4.3. (i) For any a ∈ Tk(U (g))⊗W⊗3• and ξ ∈ Tk(U (g))[[t]], we have
D(a · ξ)= D(a) · ξ

(ii) The extended Fedosov-Taylor series τ preserves the tensor degree of elements
in T•(U (g)).

(iii) For any ξ, η ∈ Tk(U (g))[[t]], we have τ(ξ · η)= τ(ξ) · η.

(iv) For any a1 ∈ Tk(U (g))⊗W ⊗3• and a2 ∈ T`(U (g))⊗W ⊗3• as well as
η1 ∈ Tk(U (g))[[t]] and η2 ∈ T`(U (g))[[t]], we have mπ (a1 · η1, a2 ·l η2) =

mπ (a1, a2) · (η1⊗ η2).

Proof. Let ξ ⊗ a ∈ Tk(U (g))⊗W ⊗3• and η ∈ Tk(U (g)). Then we have

D((ξ ⊗ a) · η)= D((ξ · η)⊗ a)

= Lei (ξ · η)⊗ ei
∧ a+ (ξ · η)⊗DF(a)

= (Lei (ξ)⊗ ei
∧ a) · η+ (ξ ⊗DF(a)) · η = D(a) · η.

This proves the first claim. The second claim follows immediately from the fact
that all operators defining τ do not change the tensor degree. In order to prove the
claim (iii), let us consider ξ, η ∈ Tk(U (g))[[t]]. Then we have

D(τ (ξ) · η)= D(τ (ξ)) · η = 0,

according to (i). Thus, τ(ξ) · η ∈ ker D ∩ ker dega and therefore

τ(ξ) · η = τ(σ (τ (ξ) · η))= τ(σ (τ (ξ)) · η)= τ(ξ · η).

Finally, to prove the last claim we choose ξ1 ⊗ f1 ∈ Tk(U (g))⊗W ⊗ 3• and
ξ2⊗ f2 ∈ T`(U (g))⊗W⊗3• as well as η1 ∈ Tk(U (g))[[t]] and η2 ∈ T`(U (g))[[t]].
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We obtain

mπ ((ξ1⊗ f1) · η1, (ξ2⊗ f2) · η2)= mπ ((ξ1 · η1)⊗ f1, (ξ2 · η2)⊗ f2)

= ((ξ1 · η1)⊗ (ξ2 · η2))⊗ ( f1 ◦π f2)

= ((ξ1⊗ ξ2) · (η1⊗ η2))⊗ ( f1 ◦π f2)

= ((ξ1⊗ ξ2)⊗ ( f1 ◦π f2)) · (η1⊗ η2).

This concludes the proof. �

From the above lemma, we observe that the isomorphism τ can be computed for
any element ξ ∈ Tk(U (g))[[t]] via

(4-10) τ(ξ)= τ(1⊗k
· ξ)= τ(1⊗k) · ξ,

where 1 ∈ U (g) is the unit element of the universal enveloping algebra. Moreover,
from Lemma 4.2, we have

(4-11) ξ ? η = σ(mπ (τ (ξ)⊗ τ(η)))= (1⊗k ? 1⊗`) · (ξ ⊗ η)

for ξ ∈ Tk(U (g))[[t]] and η ∈ T`(U (g))[[t]]. Thus ? is entirely determined by the
values on tensor powers of the unit element of the universal enveloping algebra.
Note that the unit of ? is the unit element in R⊆ T•(U (g)) of the tensor algebra
but not 1 ∈ U (g).

Lemma 4.4. Let 1 : U (g)[[t]] → U (g)⊗2
[[t]] be the coproduct of U (g)[[t]] and

ε : U (g)→ R[[t]] the counit.

(i) We have

(4-12) L|U (g)⊗2⊗W⊗3• ◦1
Lift
=1Lift

◦ L|U (g)⊗W⊗3• .

(ii) For the Fedosov-Taylor series one has

(4-13) 1Lift
◦ τ = τ ◦1.

(iii) We have

(4-14) εLift
◦ L|U (g)⊗W⊗3• = 0.

(iv) For the Fedosov-Taylor series one has

(4-15) εLift
◦ τ = ε.
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Proof. Let ξ ⊗ f ⊗ α ∈ U (g)⊗W ⊗3•. Then we get

1Lift L(ξ ⊗ f ⊗ α)=1Lift(Lei (ξ)⊗ f ⊗ ei
∧α)

=1Lift(eiξ ⊗ f ⊗ ei
∧α)

=1(eiξ)⊗ f ⊗ ei
∧α

=1(ei ) ·1(ξ)⊗ f ⊗ ei
∧α

= (ei ⊗ 1+ 1⊗ ei ) ·1(ξ)⊗ f ⊗ ei
∧α

= Lei (1(ξ))⊗ f ⊗ ei
∧α

= L1Lift(ξ ⊗ f ⊗ α),

since we extended the left multiplication by ei as a derivation of the tensor product
to higher tensor powers. Hence all the operators appearing in τ commute with 1Lift

and therefore we get the second part. Similarly, we get

εLift(L(ξ ⊗ f ⊗ α)= εLift(eiξ ⊗ f ⊗ ei
∧α)

= ε(eiξ)⊗ f ⊗ ei
∧α = ε(ei )ε(ξ)⊗ f ⊗ ei

∧α = 0,

where we used that ε vanishes on primitive elements of U (g). Since εLift commutes
with all other operators δ−1, D and ad(%) according to Lemma 4.2, we first get

εLift
◦

[
δ−1, D+ L + 1

t
ad(%)

]
=

[
δ−1, D+ 1

t
ad(%)

]
◦ εLift.

Hence for ξ ∈ U (g)[[t]] we have

εLiftτ(ξ)= εLift

( ∞∑
k=0

[
δ−1, D+ L + 1

t
ad(%)

]k
ξ

)

=

∞∑
k=0

[
δ−1, D+ 1

t
ad(%)

]k
εLift(ξ)

= ε(ξ),

since εLift(ξ)= ε(ξ) is just a constant and hence unaffected by all the operators in
the series. Thus only the zeroth term remains. �

This is now the last ingredient to show that the element 1 ? 1 is the twist we are
looking for:

Theorem 4.5. The element 1 ? 1 ∈ U (g)⊗2
[[t]] is a twist such that

(4-16) 1 ? 1= 1⊗ 1+ t
2
π +O(t2).
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Proof. First we see that

(1⊗ id)(1 ? 1)= (1⊗ id)σ (mπ (τ (1), τ (1)))

= σ((1⊗ id)Lift(mπ (τ (1), τ (1))))

= σ(mπ (1
Liftτ(1), τ (1)))

= σ(mπ (τ (1(1)), τ (1)))

= σ(mπ (τ (1⊗ 1), τ (1)))

= (1⊗ 1) ? 1.

Similarly, we get (id⊗1)(1 ? 1)= 1 ? (1⊗ 1). Thus, using the associativity of ?
we obtain the first condition (1-2) for a twist as follows,

(1⊗ id)(1 ? 1) · ((1 ? 1)⊗ 1)= ((1⊗ 1) ? 1) · ((1 ? 1)⊗ 1)

= (1 ? 1) ? 1

= 1 ? (1 ? 1)

= (id⊗1)(1 ? 1) · (1⊗ (1 ? 1)).

To check the normalization condition (1-3) we use Lemma 4.2 and Lemma 4.4
again to get

(ε⊗ id)(1 ? 1)= (ε⊗ id)σ (mπ (τ (1), τ (1)))

= σ((ε⊗ id)Lift(mπ (τ (1), τ (1))))

= σ((mπ (ε
Liftτ(1), τ (1))))

= σ((mπ (ε(1), τ (1))))

= ε(1)σ (τ (1))

= 1,

since ε(1) is the unit element of R and thus the unit element of T•(U (g)), which
serves as unit element for mπ as well. Similarly we obtain (id⊗ ε)(1 ? 1) = 1.
Finally, the facts that the first term in t of 1 ?1 is given by π and that zero term in t
is 1⊗ 1 follow from Corollary 4.1. �

Remark 4.6. From now on we refer to 1 ? 1 as the Fedosov twist

(4-17) F�,∇,s = 1 ? 1,

corresponding to the choice of the δCE-closed form �, the choice of the torsion-free
symplectic covariant derivative and the choice of the covariantly constant s. In
the following we will be mainly interested in the dependence of F�,∇,s on the
two-forms� and hence we shall write F� for simplicity. We also note that for s= 0
and�= 0 we have a preferred choice for ∇, namely the one obtained from the Hess
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trick out of the half-commutator covariant derivative as described in Proposition 2.6.
This gives a canonical twist F0 quantizing r .

The results discussed above allow us to give an alternative proof of the Drinfeld
theorem [1983], stating the existence of twists for every r -matrix:

Corollary 4.7 (Drinfeld). Let (g, r) be a Lie algebra with r-matrix over a field K

with characteristic 0. Then there exists a formal twist F ∈ (U (g)⊗U (g))[[t]] such
that

F = 1⊗ 1+ t
2

r +O(t2).

To conclude this section we consider the question whether the two approaches
of universal deformation formulas actually coincide: on the one hand we know that
every twist gives a universal deformation formula by (1-1). On the other hand, we
have constructed directly a universal deformation formula (3-11) in Theorem 3.6
based on the Fedosov construction. Since we also get a twist from the Fedosov
construction, we are interested in the consistence of the two constructions. In order
to answer this question, we need some preparation. Hence let A be an algebra with
action of g by derivations as before. Then we define the map

(4-18) • :U (g)⊗W⊗3•×A 3 (ξ⊗α, a) 7→ (ξ⊗α)•a= ξ Fa⊗α ∈A ⊗W⊗3•

for any a ∈A and α ∈W⊗3•. Then the following algebraic properties are obtained
by a straightforward computation:

Lemma 4.8. For any ξ ∈ U (g), α ∈W ⊗3• and a ∈ A we have

(i) σ((ξ ⊗ α)•a)= σ(ξ ⊗ α) F a,

(ii) LA (ξ F a⊗ α)= L(ξ ⊗ α)•a,

(iii) τA (a)= τ(1)•a,

(iv) mA
π (ξ1⊗a1⊗α1, ξ2⊗a2⊗α2)= (µA⊗ id⊗ id)(mπ (ξ1⊗α1, ξ2⊗α2)•(a1⊗a2)).

For matching parameters �, ∇, and s of the Fedosov construction, the two
approaches coincide:

Proposition 4.9. For fixed choices of �, ∇, and s and for any a, b ∈ A we have

(4-19) a ?�,∇,s b = a ?F�,∇,s b.
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Proof. This is now just a matter of computation. We have

a ? b = σ(mA
π (τA (a)⊗ τA (b)))

(a)
= σ(mπ ((τ (1)⊗ τ(1))•(a⊗ b)))
(b)
= µA (σ (mπ (τ (1)⊗ τ(1))) F (a⊗ b))

= µA ((1 ? 1) F (a⊗ b))

= a ?F b,

where in (a) we use the third claim of the above lemma and in (b) the first and the
fourth. �

5. Classification of Drinfeld twists

In this section we discuss the classification of twists on universal enveloping algebras
for a given Lie algebra g with nondegenerate r-matrix. Recall that two twists F
and F ′ are said to be equivalent and denoted by F ∼ F ′ if there exists an element
S ∈ U (g)[[t]], with S = 1+O(t) and ε(S)= 1 such that

(5-1) 1(S)F ′ = F(S⊗ S).

In the following we prove that the set of equivalence classes of twists Twist(U (g), r)
with fixed r-matrix r is in bijection to the formal series in the second Chevalley–
Eilenberg cohomology H2

CE(g)[[t]].
We will fix the choice of ∇ and the symmetric part s in the Fedosov construction.

Then the cohomological equivalence of the two-forms in the construction yields
equivalent twists. In fact, an equivalence can even be computed recursively:

Lemma 5.1. Let % and %′ be the two elements in W2 ⊗ 3
1 uniquely determined

from Proposition 2.9, corresponding to two closed two-forms �,�′ ∈ t32g∗[[t]],
respectively, and let �−�′ = δCEC for a fixed C ∈ tg∗[[t]]. Then there is a unique
solution h ∈W3⊗3

0 of

(5-2) h=C⊗1+δ−1

(
Dh−1

t
ad(%)h−

1
t

ad(h)

exp
(1

t
ad(h)

)
− id

(%′−%)

)
, σ (h)=0.

For this h we have
D ′F =AhDFA−h,

with Ah = exp((1/t) ad(h)) being an automorphism of ◦π .

Proof. In the context of the Fedosov construction it is well known that cohomologous
two-forms yield equivalent star products. The above approach with the explicit
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formula for h follows the arguments of [Reichert and Waldmann 2016, Lemma 3.5]
which is based on [Neumaier 2001, §3.5.1.1]. �

Lemma 5.2. Let �,�′ ∈ t32g∗[[t]] be δCE-cohomologous. Then the corresponding
Fedosov twists are equivalent.

Proof. By assumption, we can find an element C ∈ tg∗[[t]], such that �−�′= δCEC .
From Lemma 5.1 we get an element h ∈W3⊗3

0 such that D ′F =AhDFA−h . An
easy computation shows that Ah commutes with L , therefore

D ′ =AhDA−h .

Thus, Ah is an automorphism of mπ with Ah : ker D → ker D ′ being a bijection
between the two kernels. Let us consider the map

Sh : T•(U (g))[[t]] 3 ξ 7→ (σ ◦Ah ◦ τ)(ξ) ∈ T•(U (g))[[t]],

which defines an equivalence of star products, i.e.,

(5-3) Sh(ξ ? η)= Sh(ξ) ?
′ Sh(η)

for any ξ, η ∈ T•(U (g))[[t]]. Let ξ, η ∈ U (g). Then using Lemma 4.3,

Sh(ξ ⊗ η)= (σ ◦Ah ◦ τ)(ξ ⊗ η)

= (σ ◦Ah)(τ (1⊗ 1) · (ξ ⊗ η))

= σ((Ah(τ (1⊗ 1))) · (ξ ⊗ η))

= σ(Ah(τ (1⊗ 1))) · (ξ ⊗ η)

= σ(Ah(1
Liftτ(1))) · (ξ ⊗ η)

=1(σ(Ah(τ (1)))) · (ξ ⊗ η)

=1(Sh(1)) · (ξ ⊗ η).

From the linearity of Sh we immediately get Sh(ξ ? η) = 1(Sh(1))(ξ ? η). Now,
putting ξ = η = 1 in (5-3) and using (4-11) we obtain

1(Sh(1)) · (1 ? 1)= Sh(1 ? 1)= Sh(1) ?′ Sh(1)= (1 ?′ 1) · (Sh(1)⊗ Sh(1)).

Thus, the twists F� = 1 ? 1 and F�′ = 1 ?′ 1 are equivalent since

ε(Sh(1))= 1. �

Lemma 5.3. Let � ∈ t32g∗ with δCE� = 0, x the element in W2 ⊗ 3
1 uniquely

determined from Proposition 2.9 and F� the corresponding Fedosov twist.

(i) The lowest total degree of %, where �k appears, is 2k+ 1, and

(5-4) %(2k+1)
= tkδ−1�k + terms not containing �k .
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(ii) For ξ ∈ T•(U (g)) the lowest total degree of τ(ξ) where �k appears is 2k +
1, and

(5-5) τ(ξ)(2k+1)
=

1
2 tk(ei ⊗ ia((ei )])�k)+ terms not containing �k .

(iii) The lowest t-degree of F� where �k appears is k+ 1, and

(F�)k+1 =−
1
2(�k)

]
+ terms not containing �k .

(iv) The map � 7→ F� is injective.

Proof. The proof uses the recursion formula for % as well as the explicit formulas
for τ and ? and consists of a careful counting of degrees. It follows along lines of
[Waldmann 2007, Theorem 6.4.29]. �

Lemma 5.4. Let F� and F�′ be two equivalent Fedosov twists corresponding to
the closed two-forms �,�′ ∈ t32g∗. Then there exists an element C ∈ tg∗[[t]], such
that δCEC =�−�′.

Proof. We can assume that � and �′ coincide up to order k − 1 for k ∈ N, since
they coincide at order 0. Due to Lemma 5.3,

(F�)i = (F�′)i for any i ∈ {0, . . . , k}

and
(F�)k+1− (F�′)k+1 =

1
2(−�

]
k +�

′]
k).

From Lemma B.4, we know that we can find an element ξ ∈ g∗, such that

([(F�)k+1− (F�′)k+1])
[
=−�

]
k +�

′]
k = δCEξ,

where [(F�)k+1−(F�′)k+1] denotes the skew-symmetrization of (F�)k+1−(F�′)k+1.
Let us define �̂=�− tkδCEξ . From Lemma 5.3 we see that

(F�̂)k+1− (F�′)k+1 = 0.

Therefore the two twists F�̂ and F�′ coincide up to order k + 1. Finally, since
F�̂ and F� are equivalent (from Lemma 5.2) and F� and F�′ are equivalent by
assumption, the two twists F�̂ and F�′ are also equivalent. By induction, we find
an element C ∈ tg∗[[t]] such that

F�+δCEC = F�′,

and therefore, from Lemma 5.3, �+ δCEC =�′. �

Lemma 5.5. Let F ∈ (U (g)⊗U (g))[[t]] be a formal twist with r-matrix r . Then
there exists a Fedosov twist F� such that F ∼ F�.
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Proof. Let F ∈ (U (g)⊗U (g))[[t]] be a given twist. We can assume that there is
a Fedosov twist F�, which is equivalent to F up to order k. Therefore we find
a F̂ such that F̂ is equivalent to F and coincides with F� up to order k. Due to
Lemma B.4, we can find an element ξ ∈ g∗ such that

[(F�)k+1− F̂k+1)] = (δCEξ)
].

From Lemma 5.2, the twist F�′ corresponding to �′ = �− tkδCEξ is equivalent
to F�. Moreover, F�′ coincides with F̂ up to order k, since F�′ coincides with F�
and

(F�′)k+1 = (F�)k+1+
1
2δCEξ.

Therefore the skew-symmetric part of (F�′)k+1− F̂k+1 is vanishing and this differ-
ence is exact with respect to the differential defined in (A-1). Applying Lemma B.2,
we can see that F�′ is equivalent to F̂ up to order k + 1. The claim follows by
induction. �

Summing up all the above lemmas we obtain the following characterization of
the equivalence classes of twists:

Theorem 5.6 (Classification of twists). Let g be a Lie algebra over R such that g
is free and finite-dimensional and let r ∈32g be a classical r-matrix such that ] is
bijective. Then the set of equivalence classes of twists Twist(U (g), r) with r-matrix
r is in bijection to H2

CE(g)[[t]] via � 7→ F�.

It is important to remark that even for an abelian Lie algebra g the second
Chevalley–Eilenberg cohomology H2

CE(g)[[t]] is different from zero. Thus, not all
twists are equivalent. An example of a Lie algebra with trivial H2

CE(g)[[t]] is the
two-dimensional nonabelian Lie algebra:

Example 5.7 (ax + b). Let us consider the two-dimensional Lie algebra given by
the R-span of the elements X, Y ∈ g fulfilling

(5-6) [X, Y ] = Y,

with r-matrix r = X ∧ Y. We denote the dual basis of g∗ by {X∗, Y ∗}. Since g is
two-dimensional, all elements of 32g∗ are a multiple of X∗ ∧ Y ∗, which is closed
for dimensional reasons. For Y ∗ we have

(5-7) (δCEY ∗)(X, Y )=−Y ∗([X, Y ])=−Y ∗(Y )=−1.

Therefore δCEY ∗=−X∗∧Y ∗ and H2
CE(g)={0}. From Theorem 5.6 we can therefore

conclude that all twists with r -matrix r of g are equivalent.

Remark 5.8 (Original construction of Drinfeld). Let us briefly recall the original
construction of Drinfeld [1983, Theorem 6]: as a first step he uses the inverse
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B ∈ 32g∗ of r as a 2-cocycle to extend g to g̃ = g⊕ R by considering the new
bracket

(5-8) [(X, λ), (X ′, λ′)]g̃ = ([X, X ′]g, B(X, X ′)),

where X, X ′ ∈ g and λ, λ′ ∈R. On g̃∗ one has the canonical star product quantizing
the linear Poisson structure ?DG according to Drinfeld and Gutt [Gutt 1983]. Inside
g̃∗ one has an affine subspace defined by H = g∗ + `0 where `0 is the linear
functional `0 : g̃ 3 (X, λ) 7→ λ. Since the extension is central, ?DG turns out to
be tangential to H , therefore it restricts to an associative star product on H . In
a final step, Drinfeld then uses a local diffeomorphism G→ H by mapping g to
Ad∗g−1 `0 to pull back the star product to G, which turns out to be left-invariant. By
[Drinfeld 1983, Theorem 1] this gives a twist. Without major modification it should
be possible to include also closed higher order terms � ∈ t32g∗[[t]] by considering
B+� instead. We conjecture that

(i) this gives all possible classes of Drinfeld twists by modifying his construction
including �,

(ii) the resulting classification matches the classification by our Fedosov construc-
tion.

Note that a direct comparison of the two approaches will be nontrivial due to the
presence of the combinatorics in the BCH formula inside ?DG in the Drinfeld
construction on the one hand and the recursion in our Fedosov approach on the
other hand. We will come back to this in a future project.

6. Hermitian and completely positive deformations

In this section we bring aspects of positivity into the picture. In addition, let R be
now an ordered ring and set C = R(i) where i2 = −1. In C we have a complex
conjugation as usual, denoted by z 7→ z. The Lie algebra g will now be a Lie algebra
over R, still being free as a R-module with finite dimension.

The formal power series R[[t]] are then again an ordered ring in the usual way and
we have C[[t]] = (R[[t]])(i). Moreover, we consider a ∗-algebra A over C which we
would like to deform. Here we are interested in Hermitian deformations ?, where
we require

(6-1) (a ? b)∗ = b∗ ? a∗ for all a, b ∈ A [[t]].

Instead of the universal enveloping algebra directly, we consider now the complex-
ified universal enveloping algebra UC(g)=U (g)⊗RC=U (gC), where gC= g⊗RC

is the complexified Lie algebra. Then this is a ∗-Hopf algebra, where the ∗-involution



346 CHIARA ESPOSITO, JONAS SCHNITZER AND STEFAN WALDMANN

is determined by the requirement

(6-2) X∗ =−X

for X ∈ g, i.e., the elements of g are anti-Hermitian. The needed compatibility of
the action of g on A with the ∗-involution is then

(6-3) (ξ F a)∗ = S(ξ)∗ F a∗

for all ξ ∈UC(g) and a ∈A . This is equivalent to (X Fa)∗ = X Fa∗ for X ∈ g. We
also set the elements of g∗ ⊆ g∗C to be anti-Hermitian.

In a first step we extend the complex conjugation to tensor powers of g∗C and
hence to the complexified Fedosov algebra

(6-4) WC⊗3
•

C =

( ∞∏
k=0

Skg∗C⊗3
•g∗C

)
[[t]]

and obtain a (graded) ∗-involution, i.e.,

(6-5) (( f ⊗ α) · (g⊗ β))∗ = (−1)ab(g⊗ β)∗ · ( f ⊗ α)∗,

where a and b are the antisymmetric degrees of α and β, respectively.
Let π ∈ gC ⊗ gC have antisymmetric and symmetric parts π− ∈ 32gC and

π+ ∈3
2gC, respectively. Then for the corresponding operator Pπ as in (2-13),

(6-6) T ◦Pπ (a⊗ b)= Pπ̃ ◦T(a⊗ b),

where π̃ =π+−π−. In particular, we have π̃ =π if and only if π+ is Hermitian and
π− is anti-Hermitian. We set t = it for the formal parameter as in the previous sec-
tions, i.e., we want to treat t as imaginary. Then we arrive at the following statement:

Lemma 6.1. Let π = π++π− ∈ gC⊗ gC. Then the fiberwise product

(6-7) a ◦π b = µ ◦ e
1
2 itPπ (a⊗ b)

satisfies (a ◦π b)∗ = (−1)abb∗ ◦ a∗ if and only if π+ is anti-Hermitian and π− is
Hermitian.

This lemma is now the motivation to take a real classical r -matrix r ∈32g⊆32gC.
Moreover, writing the symmetric part of π as π+= is, then s= s ∈ S2g is Hermitian
as well. In the following we shall assume that these reality conditions are satisfied.

It is now not very surprising that with such a Poisson tensor π on g we can
achieve a Hermitian deformation of a ∗-algebra A by the Fedosov construction.
We summarize the relevant properties in the following proposition:

Proposition 6.2. Let π = r+is with a real strongly nondegenerate r-matrix r ∈32g

and a real symmetric s ∈ S2g such that there exists a symplectic torsion-free
covariant derivative ∇ for g with ∇s = 0.
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(i) The operators δ, δ−1, and σ are real.

(ii) The operator D is real and D2
= (1/it) ad(R) with a Hermitian curvature

R = R∗.

(iii) Suppose that � = �∗ ∈ 32g∗C[[t]] is a formal series of Hermitian δCE-closed
two-forms. Then the unique % ∈W2⊗3

1 with

(6-8) δ% = R+ D%+ 1
it
% ◦π %+�

and δ−1% = 0 is Hermitian, too. In this case, the Fedosov derivative DF =

−δ+ D+ 1/(it) ad(%) is real.

Suppose now in addition that A is a ∗-algebra over C with a ∗-action of g, i.e.,
(6-3).

(iv) The operator LA as well as the extended Fedosov derivation DA are real.

(v) The Fedosov–Taylor series τA is real.

(vi) The formal deformation ? from Theorem 3.6 is a Hermitian deformation.

When we apply this to the twist itself we first have to clarify which ∗-involution
we take on the tensor algebra T•(UC(g)): by the universal property of the tensor
algebra, there is a unique way to extend the ∗-involution of UC(g) as a ∗-involution.
With respect to this ∗-involution we have r∗ = −r since r is not only real as an
element of gC⊗ gC but also antisymmetric, causing an additional sign with respect
to the ∗-involution of T•(UC(g)). Analogously, we have s∗ = s for the real and
symmetric part of π .

Corollary 6.3. The Fedosov twist F is Hermitian.

Proof. Indeed, 1 ∈ UC(g) is Hermitian and hence (1 ? 1)∗ = 1∗ ? 1∗ = 1 ? 1. �

Up to now we have not yet used the fact that R is ordered but only that we have a ∗-
involution. The ordering of R allows one to transfer concepts of positivity from R to
every ∗-algebra over C. Recall that a linear functional ω :A →C is called positive if

(6-9) ω(a∗a)≥ 0

for all a ∈ A . This allows one to define an algebra element a ∈ A to be positive if
ω(a)≥ 0 for all positive ω. Note that the positive elements denoted by A +, form a
convex cone in A and a∈A + implies b∗ab∈A + for all b∈A . Moreover, elements
of the form a = b∗b are clearly positive: their convex combinations are denoted
by A ++ and are called algebraically positive. More details on these notions of
positivity can be found in [Bursztyn and Waldmann 2001; 2005a; Waldmann 2005].

Since with R also R[[t]] is ordered, one can compare the positive elements of A

and the ones of (A [[t]], ?), where ? is a Hermitian deformation. The first trivial
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observation is that for a positive linear functional ω=ω0+tω1+· · · of the deformed
algebra, i.e., ω(a∗ ? a)≥ 0 for all a ∈A [[t]] the classical limit ω0 of ω is a positive
functional of the undeformed algebra. The converse need not be true: one has
examples where a positive ω0 is not directly positive for the deformed algebras,
i.e., one needs higher order corrections, and one has examples where one simply
can not find such higher order corrections at all; see [Bursztyn and Waldmann
2000; 2005b]. One calls the deformation ? a positive deformation if every positive
linear functional ω0 of the undeformed algebra A can be deformed into a positive
functional ω = ω0 + tω1 + · · · of the deformed algebra (A [[t]], ?). Moreover,
since also Mn(A ) is a ∗-algebra in a natural way we call ? a completely positive
deformation if for all n the canonical extension of ? to Mn(A )[[t]] is a positive
deformation of Mn(A ); see [Bursztyn and Waldmann 2005b]. Finally, if no higher
order corrections are needed, then ? is called a strongly positive deformation; see
[Bursztyn and Waldmann 2000, Definition 4.1]

In a next step we want to use a Kähler structure for g. In general, this will not
exist so we have to require it explicitly. In detail, we want to be able to find a basis
e1, . . . , en, f1, . . . , fn ∈ g with the property that the r -matrix decomposes into

(6-10) (ek
⊗ f `)(r)= Ak`

=−( f `⊗ek)(r), (ek
⊗e`)(r)= Bk`

=−( f k
⊗ f `)(r)

with a symmetric matrix A= AT
∈Mn(R) and an antisymmetric matrix B =−BT

∈

Mn(R). We set

(6-11) s = Ak`(ek ⊗ e`+ fk ⊗ f`)+ Bk`ek ⊗ f`+ Bk` f`⊗ ek .

The requirement of being Kähler is now that first we find a symplectic covariant
derivative ∇ with ∇s = 0. Second, we require the symmetric two-tensor s to be
positive in the sense that for all x ∈ g∗ we have (x ⊗ x)(s) ≥ 0. In this case we
call s (and the compatible ∇) a Kähler structure for r . We have chosen this more
coordinate-based formulation over the invariant one since in the case of an ordered
ring R instead of the reals R it is more convenient to start directly with the nice
basis we need later on.

As usual we consider now gC with the vectors

(6-12) Zk =
1
2(ek − i fk) and Z ` = 1

2(e`+ i f`),

which together constitute a basis of the complexified Lie algebra. Finally, we have
the complex matrix

(6-13) g = A+ iB ∈Mn(C),

which now satisfies the positivity requirement

(6-14) zk gk`z` ≥ 0 for all z1, . . . , zn ∈ C.
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If our ring R has sufficiently many inverses and square roots, one can even find a
basis e1, . . . , en, f1, . . . , fn such that g becomes the unit matrix. However, since
we want to stay with an arbitrary ordered ring R we do not assume this.

We now use π = r + is to obtain a fiberwise Hermitian product ◦Wick, called
the fiberwise Wick product. Important now is the following explicit form of ◦Wick,
which is a routine verification:

Lemma 6.4. For the fiberwise Wick product ◦Wick built out of π = r + is with a
Kähler structure s one has

(6-15) a ◦Wick b = µ ◦ e2tgk` is(Zk)⊗is(Z`)(a⊗ b),

where g is the matrix from (6-13).

The first important observation is that the scalar matrix g can be viewed as an
element of Mn(A ) for any unital ∗-algebra. Then we have the following positivity
property:

Lemma 6.5. Let A be a unital ∗-algebra over C. Then for all m ∈ N and for all
ak1···km ∈ A with k1, . . . , km = 1, . . . , n

(6-16)
n∑

k1,`1,...,km ,`m=1

gk1`1 · · · gkm`m a∗k1···km
a`1···`m ∈ A +.

Proof. First we note that g⊗m
= g⊗ · · · ⊗ g ∈Mn(C)⊗ · · · ⊗Mn(C) =Mnm (C)

still satisfies the positivity property

n∑
k1,`1,...,km ,`m=1

gk1`1 · · · gkm`m z(1)k1
· · · z(m)km

z(1)`1
· · · z(m)`m

≥0 for all z(1), . . . , z(m)∈Cn

as the left-hand side clearly factorizes into m copies of the left hand side of (6-14).
Hence g⊗m

∈Mnm (C) is a positive element. For a given positive linear functional
ω : A → C and b1, . . . , bN ∈ A we consider the matrix (ω(b∗i bj )) ∈MN (C). We
claim that this matrix is positive, too. Indeed, with the criterion from [Bursztyn and
Waldmann 2001, App. A], for all z1, . . . , zN ∈ C,

N∑
i, j=1

ziω(b∗i bj )z j = ω

(( N∑
i=1

zi bi

)∗( N∑
j=1

z j bj

))
≥ 0,
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hence (ω(b∗i bj )) is positive. Putting these statements together we see, for every pos-
itive linear functional ω :A → C, for the matrix �= (ω(a∗k1···km

a`1···`m )) ∈Mnm (C),

ω

( n∑
k1,`1,...,km ,`m=1

gk1`1 · · · gkm`m a∗k1···km
a`1···`m

)

=

n∑
k1,`1,...,km ,`m=1

gk1`1 · · · gkm`mω(a∗k1···km
a`1···`m )

= tr(g⊗m�)≥ 0,

since the trace of the product of two positive matrices is positive by [Bursztyn and
Waldmann 2001, Appendix A]. Note that for a ring R one has to use this slightly
more complicated argumentation: for a field one could use the diagonalization of g
instead. By definition of A +, this shows the positivity of (6-16). �

Remark 6.6. Suppose that in addition g = diag(λ1, . . . , λn) is diagonal with pos-
itive λ1, . . . , λn > 0. In this case one can directly see that the left-hand side of
(6-16) is a convex combination of squares and hence in A ++. This situation can
often be achieved, e.g., for R= R.

We come now to the main theorem of this section: unlike the Weyl-type deforma-
tion, using the fiberwise Wick product yields a positive deformation in a universal
way:

Theorem 6.7. Let A be a unital ∗-algebra over C = R(i) with a ∗-action of g
and let � = �∗ ∈ 32g∗C be a formal series of Hermitian δCE-closed two-forms.
Moreover, let s be a Kähler structure for the nondegenerate r-matrix r ∈ g and
consider the fiberwise Wick product ◦Wick yielding the Hermitian deformation ?Wick

as in Proposition 6.2.

(i) For all a ∈ A ,

(6-17) a∗ ?Wick a =
∞∑

m=0

(2t)m

m!

n∑
k1,...,km ,`1,...,`m=1

gk1`1 · · · gkm`m a∗k1···km
a`1···`m ,

where ak1···km = σ(is(Z k1) · · · is(Z km )τWick(a)).

(ii) The deformation ?Wick is strongly positive.

Proof. From Lemma 6.4 we immediately get (6-17). Now let ω :A →C be positive.
Then also the C[[t]]-linear extension ω : A [[t]] → C[[t]] is positive with respect to
the undeformed product: this is a simple consequence of the Cauchy–Schwarz
inequality for ω. Then we apply Lemma 6.5 to conclude that ω(a∗ ? a)≥ 0. �

Corollary 6.8. The Wick-type twist FWick in the Kähler situation is a convex series
of positive elements.
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Remark 6.9 (Positive twist). Note that already for a Hermitian deformation, the
twist F = 1 ? 1= 1∗ ? 1 constructed as above is a positive element of the deformed
algebra T•(UC(g))[[t]]. However, this seems to be not yet very significant: it is
the statement of Corollary 6.8 and Theorem 6.7 which gives the additional and
important feature of the corresponding universal deformation formula.

Appendix A: Hochschild-Kostant-Rosenberg theorem

Let us define the map

(A-1) ∂ : U (g) 3 ξ 7→ ξ ⊗ 1+ 1⊗ ξ −1(ξ) ∈ U (g)⊗2,

and extend it as a graded derivation of degree +1 of the tensor product to T•(U (g)).
We recall that the map ∂ : T•(U (g))→ T•(U (g)) is a differential. Its cohomology
is described as follows:

Theorem A.1 (Hochschild–Kostant–Rosenberg). Let C ∈ Tp(U (g)) such that
∂C = 0. Then there is a X ∈3kg and a S ∈ Tp−1(U (g)) with

(A-2) C = X + ∂S

with X = Alt(C).

We do not prove the above theorem in full generality, since we need only the
case p = 2. In this case the proof consists of the following two lemmas:

Lemma A.2. Let C ∈ T2(U (g)) with ∂C = 0. Then

(i) ∂T(C)= 0.

(ii) The antisymmetric part satisfies C − T(C) ∈ g∧ g⊆ T2(U (g)).

Proof. We have

∂C = 0⇐⇒ C ⊗ 1+ (1⊗ id)(C)= 1⊗ C + (id⊗1)(C).

Thus,
T(C)⊗ 1= (T⊗ id)(C ⊗ 1)

= (T⊗ id)(1⊗ C + (id⊗1)(C)− (1⊗ id)(C))

= C13+ (T⊗ id)(id⊗1)(C)− (1⊗ id)(C).

Now we apply the cyclic permutation to this equation and get

1⊗ T(C)= T(C)⊗ 1+ (1⊗ id)(T(C))− (id⊗1)(T(C)),

which is equivalent to ∂T(C)= 0. Since ∂ is linear, we get ∂(T − T(C))= 0 and
denote A = T − T(C), which is now skew-symmetric. We define

Q = (1⊗ id)A− A23− A13
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and get that Q = −Alt(Q) with the fact that A is ∂-closed. Therefore we have
Q = Alt3 Q = (−1)3 Q = −Q and we can conclude Q = 0. Thus, A has to
be primitive in the first argument and with the skew-symmetry we get the same
statement for the second argument. �

Lemma A.3. Let C ∈ T2(U (g)) with ∂C = 0. Then there exists a S ∈ U (g) and a
X ∈ g∧ g, such that

(A-3) C = X + ∂S,

where X = 1
2(C − T(C)).

Proof. It is clear from Lemma A.2, that X is well defined and we have to prove
that symmetric C are ∂-exact. So we assume that C ∈ T2(U (g)) is ∂-closed and
symmetric. Let k be the highest order appearing in C and assume the claim is true
for all r < k (in the sense of the filtration of U (g)=

⋃
n∈N0

U (g)n). Then we can
write for a given basis {ei }i∈{1,...,n}

C =
∑
|i |=k

ei ⊗ D i
+ l.o.t..

We mean lower order terms with respect to the filtration in the first tensor degree
and the i are multi-indices such that ei = ei1 · · · eik . We can assume that Di is
symmetric in the multi-index, because we can compensate for asymmetry by lower
order terms. Since ∂(U (g)m)⊆U (g)m−1⊗U (g)m−1, we see that ∂C = 0 implies
that ∂D i

= 0, which is equivalent to D i
∈ g. Therefore, we can write

C =
∑
|i |=k

D i, j ei ⊗ ej + H,

where H ∈U (g)k−1⊗U (g) is now of order strictly less then k in the first argument.
Now we expand H =

∑
|i1|,|i2|≤k−1 Hi1,i2ei1 ⊗ ei2 and see, by using

0= ∂C =
∑
|i |=k

D i, j∂(ei )⊗ ej + ∂H

=−Di1,...,ik , j
∑

r

ei1 · · · êir · · · eik ⊗ eir ⊗ ej + ∂H + l.o.t.,

that H has to be of the form

H =
∑

|i1|=k−1,|i2|=2

Hi1,i2ei1 ⊗ ei2 + l.o.t.,

and hence
∂H =

∑
|i1|=k−1, j1, j2

Hi1, j1, j2ei1 ⊗ e j1 ⊗ e j2 + l.o.t..
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This implies that Di1,...,ik , j is symmetric in all indices, since ∂C = 0 and Hi1, j1, j2 =

Hi1, j2, j1 . Thus for

G =
1

k+ 1
Di1,...,ik+1ei1 · · · eik+1,

we have

∂G =−
∑
|i |=k

D i, j (ei ⊗ ej + ej ⊗ ei )+ l.o.t..

Note that here the lower order terms are meant in both tensor arguments. Using the
symmetry of C , we obtain

C =
∑
|i |=k

D i, j (ei ⊗ ej + ej ⊗ ei )+ l.o.t.,

again the lower order terms are in both tensor factors. Thus,

C + ∂G ∈ U (g)k−1⊗U (g)k−1.

This implies the lemma, because for k = 0 the statement is trivial. �

Corollary A.4. Let C ∈ T2(U (g)) with ∂C = 0 and (ε ⊗ id)C = (id⊗ ε)C = 0.
Then we can find S ∈ U (g) and X ∈32g such that C = X + ∂S with ε(S)= 0.

Proof. The statement is clear from the construction of Lemma A.2. �

Appendix B: Technical Lemmas

In this section we prove several technical results necessary for the proofs is Section 5.

Lemma B.1. Let F,F ′ ∈ (U (g)⊗U (g))[[t]] be two twists coinciding up to order k.
Then

(B-1) ∂(Fk+1− F ′k+1)= 0.
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Proof. We have

∂(Fk+1)= 1⊗ Fk+1− Fk+1⊗ 1+ (id⊗1)(Fk+1)− (1⊗ id)(Fk+1)

=

k+1∑
i=0

(1⊗ Fi )(id⊗1)(Fk+1−i )−

k∑
i=1

(1⊗ Fi )(id⊗1)(Fk+1−i )

+

k∑
i=1

(Fi ⊗ 1)(1⊗ id)(Fk+1−i )−

k+1∑
i=0

(Fi ⊗ 1)(1⊗ id)(Fk+1−i )

=−

k∑
i=1

(1⊗ Fi )(id⊗1)(Fk+1−i )+

k∑
i=1

(Fi ⊗ 1)(1⊗ id)(Fk+1−i )

=−

k∑
i=1

(1⊗ F ′i )(id⊗1)(F
′

k+1−i )+

k∑
i=1

(F ′i ⊗ 1)(1⊗ id)(F ′k+1−i )

= ∂(F ′k+1). �

Lemma B.2. Let F,F ′ ∈ (U (g)⊗U (g))[[t]] be two twists coinciding up to order k
such that

(B-2) Fk+1− F ′k+1 = ∂Tk+1.

Then they are equivalent up to order k+ 1.

Proof. Consider exp(tk+1Tk+1)= 1+ tk+1Tk+1+O(tk+2). Then we have

(1(exp(tk+1Tk+1))F)i = (F ′(exp(tk+1Tk+1)⊗ exp(tk+1Tk+1)))i

for any i ≤ k+ 1. Note that, because

(ε⊗ id)(Fk+1− F ′k+1)= (id⊗ ε)(Fk+1− F ′k+1)= 0,

we can choose Tk+1 such that ε(Tk+1)= 0 and therefore ε(exp(tk+1Tk+1))= 1. �

Lemma B.3. Let F,F ′ ∈ (U (g)⊗U (g))[[t]] be two equivalent twists coinciding
up to order k. Then there exists a T = 1+ tk Tk +O(tk+1) ∈ U (g)[[t]] such that

(B-3) 1(T )F ′ = F(T ⊗ T ).

Proof. Since the twists F and F ′ are equivalent, there is a T̃ = 1+ t`T̃`+O(t`+1)

such that
1(T̃ )F ′ = F(T̃ ⊗ T̃ ).

Let us consider `≤ k. The above equation at order ` reads

1(T̃`)+ F ′` = F`+ T̃`⊗ 1+ 1⊗ T̃`.
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Therefore, since F and F ′ coincide up to order k,

1(T̃`)= T̃`⊗ 1+ 1⊗ T̃`,

and T̃` ∈ g⊆ U (g). For ` < k we get at order `+ 1

1(T̃`+1)+1(T̃`)F ′1+ F ′`+1 = F`+1+ F1(T̃`⊗ 1+ 1⊗ T̃`)+ T̃`+1⊗ 1+ 1⊗ T̃`+1.

The skew-symmetrization of the above equation gives

(T̃`⊗ 1+ 1⊗ T̃`)r = r(T̃`⊗ 1+ 1⊗ T̃`).

An easy computation shows that this property is equivalent to δCET̃ [
` = 0. Thus, we

can define the map S : U (g)→ U (g) by defining it on primitive elements via

g 3 ξ 7→ T̃ [
` (ξ) · 1 ∈ U (g)

and extend it as a derivation of the product of U (g). This map allows us to define
an element

A = 1
t
(ε ◦ S⊗ id)[F] = −T̃`+O(t),

which fulfills 1(A)F = F(A⊗ 1+ 1⊗ A) and ε(A)= 0. Thus we get

exp(t`A)F = F(exp(t`A)⊗ exp(t`A)) as well as ε(exp(t`A))= 1.

We define T = exp(t`A)T̃ and obtain 1(T )F ′ = F(T ⊗ T ) and

T = 1+ t`+1T`+1+O(t`+2).

Repeating this method k− ` times, we get an equivalence starting at order k. �

Lemma B.4. Let F,F ′ ∈ (U (g)⊗U (g))[[t]] be two equivalent twists coinciding
up to order k. Then there exists an element ξ ∈ g∗ such that

(B-4) ([Fk+1− F ′k+1])
[
= δCEξ.

Proof. First, [Fk+1 − F ′k+1] ∈ 3
2g, because of Theorem A.1 and since, as in

Lemma B.1, ∂(Fk+1− F ′k+1)= 0. From Lemma B.3 we know that we can find an
element T = 1+ tk Tk+O(tk+1) in U (g) such that 1(T )F ′ =F(T ⊗ T ). At order
k this reads

1(Tk)+ F ′k = Fk + Tk ⊗ 1+ 1⊗ Tk,

which is equivalent to Tk ∈ g, because F ′k = Fk . At order k+ 1, we can see that

1(Tk+1)+1(Tk)F ′1+ F ′k+1 = Fk+1+ F1(Tk⊗ 1+1⊗ Tk)+ Tk+1⊗ 1+1⊗ Tk+1.

For the skew-symmetric part we have

[Fk+1− F ′k+1] = (Tk ⊗ 1+ 1⊗ Tk)r − r(Tk ⊗ 1+ 1⊗ Tk)= [Tk ⊗ 1+ 1⊗ Tk, r ],
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which is equivalent to ([Fk+1− F ′k+1])
[
=−δCET [

k . �
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