Pacific
 Journal of Mathematics

UNIFORM STABLE RADIUS, LÊ NUMBERS AND TOPOLOGICAL TRIVIALITY FOR LINE SINGULARITIES

Christophe Eyral

UNIFORM STABLE RADIUS, LÊ NUMBERS AND TOPOLOGICAL TRIVIALITY FOR LINE SINGULARITIES

Christophe Eyral

Let $\left\{f_{t}\right\}$ be a family of complex polynomial functions with line singularities. We show that if $\left\{f_{t}\right\}$ has a uniform stable radius (for the corresponding Milnor fibrations), then the Lê numbers of the functions f_{t} are independent of t for all small t. A similar assertion was proved by M. Oka and D. B. O'Shea in the case of isolated singularities - a case for which the only nonzero Lê number coincides with the Milnor number.

By combining our result with a theorem of J. Fernández de Bobadilla, we conclude that a family of line singularities in $\mathbb{C}^{n}, \boldsymbol{n} \geq \mathbf{5}$, is topologically trivial if it has a uniform stable radius.

As an important example, we show that families of weighted homogeneous line singularities have a uniform stable radius if the nearby fibres $f_{t}^{-1}(\eta), \eta \neq 0$, are "uniformly" nonsingular with respect to the deformation parameter \boldsymbol{t}.

1. Introduction

Let $(t, \boldsymbol{z}):=\left(t, z_{1}, \ldots, z_{n}\right)$ be linear coordinates for $\mathbb{C} \times \mathbb{C}^{n}(n \geq 2)$, and let

$$
\begin{equation*}
f:\left(\mathbb{C} \times \mathbb{C}^{n}, \mathbb{C} \times\{\mathbf{0}\}\right) \rightarrow(\mathbb{C}, 0), \quad(t, \boldsymbol{z}) \mapsto f(t, \boldsymbol{z}) \tag{1-1}
\end{equation*}
$$

be a polynomial function. As usual, we write $f_{t}(z):=f(t, z)$, and for any $\eta \in \mathbb{C}$ we denote by $V\left(f_{t}-\eta\right)$ the hypersurface in \mathbb{C}^{n} defined by the equation $f_{t}(z)=\eta$. (Note that (1-1) implies $f_{t}(\mathbf{0})=f(t, \mathbf{0})=0$, so that the origin $\mathbf{0} \in \mathbb{C}^{n}$ belongs to the hypersurface $V\left(f_{t}\right)=f_{t}^{-1}(0)$ for all $t \in \mathbb{C}$.)

The purpose of this paper is to show that if the polynomial function f defines a family $\left\{f_{t}\right\}$ of hypersurfaces with line singularities and with a uniform stable radius (for the corresponding Milnor fibrations), then the Lê numbers

$$
\lambda_{f_{t}, z}^{0}(\mathbf{0}), \ldots, \lambda_{f_{t}, z}^{n-1}(\mathbf{0})
$$

of the polynomial functions f_{t} at $\mathbf{0}$ with respect to the coordinates z - which do exist in this case - are independent of t for all small t (see Theorem 4.1). In the

[^0]Keywords: line singularities, uniform stable radius, Lê numbers, equisingularity.
case of hypersurfaces with isolated singularities - a case for which the constancy of the Lê numbers means the constancy of the Milnor number - a similar assertion was proved by M. Oka [1973] and D.B. O'Shea [1983a].

By combining Theorem 4.1 with a theorem of J. Fernández de Bobadilla [2013], to the effect that a family of hypersurfaces with line singularities in $\mathbb{C}^{n}, n \geq 5$, is topologically trivial if it has constant Lê numbers, it follows that a family of hypersurfaces with line singularities in $\mathbb{C}^{n}, n \geq 5$, is topologically trivial if it has a uniform stable radius (see Corollary 4.2).

Oka [1973] and O'Shea [1983a] also proved that, if $\left\{f_{t}\right\}$ is a family of isolated hypersurface singularities such that each f_{t} is weighted homogeneous with respect to a given system of weights, then $\left\{f_{t}\right\}$ has a uniform stable radius. In Theorem 5.1, we show this still holds true for weighted homogeneous hypersurfaces with line singularities provided that the nearby fibres $V\left(f_{t}-\eta\right), \eta \neq 0$, are "uniformly" nonsingular with respect to the deformation parameter t - that is, nonsingular in a small ball the radius of which does not depends on t. (Note that this condition always holds true for isolated singularities.) In particular, by Theorem 4.1 and Corollary 4.2, such families have constant Lê numbers, and for $n \geq 5$, they are topologically trivial.

Finally, let us observe that by combining Corollary 4.2 with a theorem of Oka [1982] — which says that a family $\left\{f_{t}\right\}$ of nondegenerate functions with constant Newton boundary has a uniform stable radius - we get a new proof of a theorem of J. Damon [1983] which says that if $\left\{f_{t}\right\}$ is a family of nondegenerate line singularities in $\mathbb{C}^{n}, n \geq 5$, with constant Newton boundary, then $\left\{f_{t}\right\}$ is topologically trivial.

Notation 1.1. In this paper, we are only interested in the behaviour of functions (or hypersurfaces) near the origin $\mathbf{0} \in \mathbb{C}^{n}$. We denote by B_{ε} the closed ball centred at $\mathbf{0} \in \mathbb{C}^{n}$ with radius $\varepsilon>0$, and we write $\stackrel{\circ}{B}_{\varepsilon}$ and S_{ε} for its interior and boundary, respectively. As usual, in \mathbb{C}, we write D_{ε} and $\stackrel{\circ}{D}_{\varepsilon}$ rather than B_{ε} and $\stackrel{\circ}{B}_{\varepsilon}$.

2. Uniform stable radius

By [Hamm and Lê 1973, lemme (2.1.4)], we know that for each t there exists a positive number $r_{t}>0$ such that for any pair $\left(\varepsilon_{t}, \varepsilon_{t}^{\prime}\right)$ with $0<\varepsilon_{t}^{\prime} \leq \varepsilon_{t} \leq r_{t}$, there exists $\delta\left(\varepsilon_{t}, \varepsilon_{t}^{\prime}\right)>0$ such that for any nonzero complex number η with $0<|\eta| \leq \delta\left(\varepsilon_{t}, \varepsilon_{t}^{\prime}\right)$, the hypersurface $V\left(f_{t}-\eta\right)$ is nonsingular in $\stackrel{\circ}{B}_{r_{t}}$ and transversely intersects with the sphere $S_{\varepsilon^{\prime \prime}}$ for any $\varepsilon^{\prime \prime}$ with $\varepsilon_{t}^{\prime} \leq \varepsilon^{\prime \prime} \leq \varepsilon_{t}$. Any such a number r_{t} is called a stable radius for the Milnor fibration of f_{t} at $\mathbf{0}$ [Oka 1982, §2].
Definition 2.1 [Oka 1982, §3]. We say that the family $\left\{f_{t}\right\}$ has a uniform stable radius (we also say that $\left\{f_{t}\right\}$ is uniformly stable) if there exist $\tau>0$ and $r>0$ such that for any pair $\left(\varepsilon, \varepsilon^{\prime}\right)$ with $0<\varepsilon^{\prime} \leq \varepsilon \leq r$, there exists $\delta\left(\varepsilon, \varepsilon^{\prime}\right)>0$ such that for any nonzero complex number η with $0<|\eta| \leq \delta\left(\varepsilon, \varepsilon^{\prime}\right)$, the hypersurface $V\left(f_{t}-\eta\right)$
is nonsingular in $\stackrel{\circ}{B}_{r}$ and transversely intersects with the sphere $S_{\varepsilon^{\prime \prime}}$ for any $\varepsilon^{\prime \prime}$ with $\varepsilon^{\prime} \leq \varepsilon^{\prime \prime} \leq \varepsilon$ and for any t with $0 \leq|t| \leq \tau$. Any such a number r is called a uniform stable radius for $\left\{f_{t}\right\}$.

In the special case where the polynomial function f defines a family $\left\{f_{t}\right\}$ of isolated hypersurface singularities (i.e., f_{t} has an isolated singularity at $\mathbf{0}$ for all small t), then, by [Milnor 1968], we also know that for each t there exists $R_{t}>0$ such that the hypersurface $V\left(f_{t}\right)$ is nonsingular in $\stackrel{\circ}{B}_{R_{t}} \backslash\{\boldsymbol{0}\}$ and transversely intersects the sphere S_{ρ} for any ρ with $0<\rho \leq R_{t}$.
Definition 2.2 [Oka 1973, §2]. Suppose that f defines a family $\left\{f_{t}\right\}$ of isolated hypersurface singularities. We say that $\left\{f_{t}\right\}$ satisfies condition (A) if there exist $v>0$ and $R>0$ such that $V\left(f_{t}\right)$ is nonsingular in $\stackrel{\circ}{B}_{R} \backslash\{\boldsymbol{0}\}$ and transversely intersects the sphere S_{ρ} for any ρ with $0<\rho \leq R$ and for any t with $0 \leq|t| \leq \nu$.

It is easy to see that a family $\left\{f_{t}\right\}$ of isolated hypersurface singularities satisfies condition (A) if and only if it has no vanishing fold and no nontrivial critical arc in the sense of [O'Shea 1983a]. Also, it is worthwhile to observe that if $\left\{f_{t}\right\}$ satisfies condition (A), then it has a uniform stable radius [Oka 1973; O'Shea 1983a].

3. The Oka-O'Shea theorem for isolated singularities

Throughout this section we assume that the polynomial function f defines a family $\left\{f_{t}\right\}$ of isolated hypersurface singularities.
Theorem 3.1 [Oka 1973; O'Shea 1983a]. Suppose that f defines a family $\left\{f_{t}\right\}$ of isolated hypersurface singularities. If furthermore $\left\{f_{t}\right\}$ satisfies condition (A) or has a uniform stable radius, then it is μ-constant-that is, the Milnor number $\mu_{f_{t}}(\mathbf{0})$ of f_{t} at $\mathbf{0}$ is independent of t for all small t.

Actually Oka showed that if $\left\{f_{t}\right\}$ satisfies condition (A) or if it has a uniform stable radius, then the Milnor fibrations at $\mathbf{0}$ of f_{0} and f_{t} are isomorphic.

Lê Dũng Tráng and C. P. Ramanujam [Lê and Ramanujam 1976] showed that for $n \neq 3$ any family of isolated hypersurface singularities with constant Milnor number is topologically \mathscr{V}-equisingular. With the same assumption, J. G. Timourian [1977] showed that the family is actually topologically trivial. We recall that a family $\left\{f_{t}\right\}$ is topologically \mathscr{V}-equisingular (respectively, topologically trivial) if there exist open neighbourhoods $D \subseteq \mathbb{C}$ and $U \subseteq \mathbb{C}^{n}$ of the origins in \mathbb{C} and \mathbb{C}^{n}, together with a continuous map $\varphi:(D \times U, D \times\{\mathbf{0}\}) \rightarrow\left(\mathbb{C}^{n}, \mathbf{0}\right)$ such that for all sufficiently small t, there is an open neighbourhood $U_{t} \subseteq U$ of $\mathbf{0} \in \mathbb{C}^{n}$ such that the map

$$
\varphi_{t}:\left(U_{t}, \mathbf{0}\right) \rightarrow\left(\varphi\left(\{t\} \times U_{t}\right), \mathbf{0}\right), \quad z \mapsto \varphi_{t}(z):=\varphi(t, z),
$$

is a homeomorphism satisfying the relation

$$
\varphi_{t}\left(V\left(f_{0}\right) \cap U_{t}\right)=V\left(f_{t}\right) \cap \varphi_{t}\left(U_{t}\right)
$$

(respectively, the relation $f_{0}=f_{t} \circ \varphi_{t}$ on U_{t}).
Note that, in general, " μ-constant" does not imply condition (A) [Oka 1989; Briançon].

Finally, observe that the Briançon-Speder famous family shows that condition (A) does not imply the Whitney conditions along the t-axis [Briançon and Speder 1975].

4. Uniformly stable families of line singularities

Setup and statement of the main result. From now on we suppose that the polynomial function f defines a family $\left\{f_{t}\right\}$ of hypersurfaces with line singularities. As in [Massey 1988, §4], by such a family we mean a family $\left\{f_{t}\right\}$ such that for each t small enough, the singular locus Σf_{t} of f_{t} near the origin $\mathbf{0} \in \mathbb{C}^{n}$ is given by the z_{1}-axis, and the restriction of f_{t} to the hyperplane $V\left(z_{1}\right)$ defined by $z_{1}=0$ has an isolated singularity at the origin. Then, by [Massey 1995, Remark 1.29], the partition of $V\left(f_{t}\right)$ given by

$$
\mathscr{S}_{t}:=\left\{V\left(f_{t}\right) \backslash \Sigma f_{t}, \Sigma f_{t} \backslash\{\mathbf{0}\},\{\mathbf{0}\}\right\}
$$

is a good stratification for f_{t} at $\mathbf{0}$, and the hyperplane $V\left(z_{1}\right)$ is a prepolar slice for f_{t} at $\mathbf{0}$ with respect to \mathscr{S}_{t} for all t small enough. In particular, combined with [Massey 1995, Proposition 1.23], this implies that the Lê numbers

$$
\lambda_{f_{t}, z}^{0}(\mathbf{0}) \quad \text { and } \quad \lambda_{f_{t}, z}^{1}(\mathbf{0})
$$

of f_{t} at $\mathbf{0}$ with respect to the coordinates z do exist. (For the definitions of good stratifications, prepolarity and Lê numbers, we refer the reader to [Massey 1995].) Note that for line singularities, the only possible nonzero Lê numbers are precisely $\lambda_{f_{t}, z}^{0}(\mathbf{0})$ and $\lambda_{f_{t}, z}^{1}(\mathbf{0})$. All the other Lê numbers $\lambda_{f_{t}, z}^{k}(\mathbf{0})$ for $2 \leq k \leq n-1$ are defined and equal to zero; see [Massey 1995].

Here is our main observation.
Theorem 4.1. Suppose that f defines a family $\left\{f_{t}\right\}$ of hypersurfaces with line singularities. Iffurthermore $\left\{f_{t}\right\}$ has a uniform stable radius, then it is λ_{z}-constantthat is, the Lê numbers $\lambda_{f_{t}, z}^{0}(\mathbf{0})$ and $\lambda_{f_{t}, z}^{1}(\mathbf{0})$ are independent of for all small t.

Theorem 4.1 extends to line singularities Oka and O'Shea's Theorem 3.1 concerning isolated singularities. Indeed, for isolated singularities, the only possible nonzero Lê number is $\lambda_{f_{t}, z}^{0}(\mathbf{0})$ and the latter coincides with the Milnor number $\mu_{f_{t}}(\mathbf{0})$.

Note that if $\left\{f_{t}\right\}$ is a λ_{z}-constant family of line singularities in \mathbb{C}^{n} with $n \geq 5$, then, by a theorem of D. B. Massey [1988, Theorem (5.2)], the diffeomorphism type of the Milnor fibration of f_{t} at $\mathbf{0}$ is independent of t for all small t. Under the same assumption, Fernández de Bobadilla [2013, Theorem 42] showed that $\left\{f_{t}\right\}$ is actually topologically trivial. Combining this result with our Theorem 4.1 gives the following corollary.

Corollary 4.2. Suppose that f defines a family $\left\{f_{t}\right\}$ of hypersurfaces with line singularities in \mathbb{C}^{n} with $n \geq 5$. If furthermore $\left\{f_{t}\right\}$ has a uniform stable radius, then it is topologically trivial.

Application to families of nondegenerate line singularities with constant Newton boundary. Oka [1982, Corollary 1] showed that if $\left\{f_{t}\right\}$ is a family of hypersurface singularities - not necessary line singularities - such that for all small t the polynomial function f_{t} is nondegenerate and the Newton boundary of f_{t} at $\mathbf{0}$ with respect to the coordinates \boldsymbol{z} is independent of t, then $\left\{f_{t}\right\}$ has a uniform stable radius. (For the definitions of nondegeneracy and Newton boundary, see [Kouchnirenko 1976; Oka 1979].) Combined with Oka's result, Corollary 4.2 provides a new proof of the following result, which is a particular case of a more general theorem of Damon.
Theorem 4.3 [Damon 1983]. Suppose that f defines a family $\left\{f_{t}\right\}$ of hypersurfaces with line singularities in \mathbb{C}^{n} with $n \geq 5$. If furthermore for any sufficiently small t the polynomial function f_{t} is nondegenerate and the Newton boundary of f_{t} at $\mathbf{0}$ with respect to the coordinates \boldsymbol{z} is independent of t, then the family $\left\{f_{t}\right\}$ is topologically trivial.
Proof of Theorem 4.1. Consider the map $\Phi: \mathbb{C} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{2}$ defined by

$$
(t, z) \mapsto \Phi(t, z):=(f(t, z), t)
$$

and pick positive numbers τ and r which satisfy the condition of Definition 2.1. Then, in particular, the following property holds:
(\mathscr{P}) For any ε with $0<\varepsilon<r$, there exists $\delta(\varepsilon)>0$ such that for any t with $0 \leq|t| \leq \tau$ and for any η with $0<|\eta| \leq \delta(\varepsilon)$, the hypersurface $V\left(f_{t}-\eta\right)$ is nonsingular in $\stackrel{\circ}{B}_{r}$ and transversely intersects the sphere S_{ε}.
This property implies that the critical set $\Sigma \Phi$ of Φ does not intersect the set

$$
U\left(\circ_{r}\right):=\left(\circ_{\tau} \times \circ_{r}\right) \cap \Phi^{-1}\left(\left({\stackrel{\circ}{D_{\delta(\varepsilon)}}} \backslash\{\mathbf{0}\}\right) \times \circ_{\tau}\right)
$$

Indeed, suppose there is a point $\left(t_{0}, z_{0}\right) \in \Sigma \Phi \cap U\left(\dot{B}_{r}\right)$. Then $z_{0} \in \Sigma\left(f_{t_{0}}-f_{t_{0}}\left(z_{0}\right)\right)$. But this is not possible, since by (\mathscr{P}) the hypersurface $V\left(f_{t_{0}}-f_{t_{0}}\left(z_{0}\right)\right)$ is smooth. (We recall that a complex variety can never be a smooth manifold throughout a neighbourhood of a critical point; see [Milnor 1968, §2].)

It also follows from property (\mathscr{P}) that the map

$$
\left.\Phi\right|_{U\left(S_{\varepsilon}\right)}: U\left(S_{\varepsilon}\right) \rightarrow\left(\stackrel{\circ}{D}_{\delta(\varepsilon)} \backslash\{\boldsymbol{0}\}\right) \times \stackrel{\circ}{D}_{\tau}
$$

(restriction of Φ to $\left.U\left(S_{\varepsilon}\right):=\left(\stackrel{\circ}{D}_{\tau} \times S_{\varepsilon}\right) \cap \Phi^{-1}\left(\left(\stackrel{\circ}{D}_{\delta(\varepsilon)} \backslash\{\boldsymbol{0}\}\right) \times \check{D}_{\tau}\right)\right)$ is a submersion. Indeed, as $\Sigma \Phi \cap U\left(\stackrel{\circ}{B}_{r}\right)=\varnothing$ and $U\left(\check{B}_{r}\right)$ is an open subset of $\mathbb{C} \times \mathbb{C}^{n}$, the map

$$
\left.\Phi\right|_{U\left(\AA_{r}\right)}: U\left(\stackrel{\circ}{B}_{r}\right) \rightarrow\left(\stackrel{\circ}{D}_{\delta(\varepsilon)} \backslash\{\boldsymbol{0}\}\right) \times \stackrel{\circ}{D}_{\tau}
$$

is a submersion. Thus, to show that $\left.\Phi\right|_{U\left(S_{\varepsilon}\right)}$ is a submersion, it suffices to observe that the inclusion $U\left(S_{\varepsilon}\right) \hookrightarrow U\left(\dot{B}_{r}\right)$ is transverse to the submanifold $\left.\Phi\right|_{U\left(\dot{B}_{r}\right)} ^{-1}(f(t, z), t)$ for any point $(t, z) \in U\left(S_{\varepsilon}\right)$ - or equivalently that the submanifolds

$$
\left.\Phi\right|_{U\left(\dot{B}_{r}\right)} ^{-1}(f(t, z), t) \quad \text { and } \quad\left(\{t\} \times S_{\varepsilon}\right) \cap U\left(\stackrel{\circ}{B}_{r}\right)
$$

are transverse to each other. This is exactly the content of (\mathscr{P}).
Now, as $\left.\Phi\right|_{U\left(S_{\varepsilon}\right)}$ is also a proper map, a result of Massey and D. Siersma [1992, Proposition 1.10] shows that the Milnor number of a generic hyperplane slice of f_{t} at a point on Σf_{t} sufficiently close to the origin (which coincides with the Lê number $\lambda_{f_{t}, z}^{1}(\mathbf{0})$ for line singularities; see [Lê 1980; Massey 1988]) is independent of t for all small t.

Finally, since the family $\left\{f_{t}\right\}$ has a uniform stable radius - the full strength of this assumption is used here - it follows from [Oka 1982, Lemma 2] that the diffeomorphism type of the Milnor fibration of f_{t} at the origin is independent of t for all small t. In particular, the reduced Euler characteristic $\tilde{\chi}\left(F_{f_{t}, \mathbf{0}}\right)$ of the Milnor fibre $F_{f_{t}, \mathbf{0}}$ of f_{t} at $\mathbf{0}$, which by [Massey 1995, Theorem 3.3] equals

$$
(-1)^{n-1} \lambda_{f_{t}, z}^{0}(\mathbf{0})+(-1)^{n-2} \lambda_{f_{t}, z}^{1}(\mathbf{0})
$$

is independent of t for all small t. The constancy of $\lambda_{f_{t}, z}^{0}(\mathbf{0})$ now follows from that of $\lambda_{f_{t}, z}^{1}(\mathbf{0})$.

5. Uniform stable radius and weighted homogeneous line singularities

By a result of Oka [1973] and O'Shea [1983a], we know that if $\left\{f_{t}\right\}$ is a family of isolated hypersurface singularities such that each f_{t} is weighted homogeneous with respect to a given system of weights, then $\left\{f_{t}\right\}$ satisfies condition (A), and hence, is uniformly stable. Our next observation says this still holds true for weighted homogeneous line singularities provided that the nearby fibres $V\left(f_{t}-\eta\right), \eta \neq 0$, of the functions f_{t} are "uniformly" nonsingular with respect to the deformation parameter t-that is, nonsingular in a small ball the radius of which does not depends on t. (We recall that by [Hamm and Lê 1973] the nearby fibres are "individually" nonsingular - that is, nonsingular in a small ball the radius of which depends on t.)

Theorem 5.1. Suppose that f defines a family $\left\{f_{t}\right\}$ of hypersurfaces with line singularities such that each f_{t} is weighted homogeneous with respect to a given system of weights $\boldsymbol{w}=\left(w_{1}, \ldots, w_{n}\right)$ on the variables $\left(z_{1}, \ldots, z_{n}\right)$, with $w_{i} \in \mathbb{N} \backslash\{0\}$. Also, assume that the nearby fibres $V\left(f_{t}-\eta\right), \eta \neq 0$, of the functions f_{t} are uniformly nonsingular with respect to the deformation parameter t - that is, there exist positive numbers τ, r, δ such that for any $0<|\eta| \leq \delta$ and $0 \leq|t| \leq \tau$, the hypersurface $V\left(f_{t}-\eta\right)$ is nonsingular in $\stackrel{\circ}{B}_{r}$. Under these assumptions, the family
$\left\{f_{t}\right\}$ has a uniform stable radius. (In particular, $\left\{f_{t}\right\}$ is λ_{z}-constant, and for $n \geq 5$, it is topologically trivial.)

Proof. The argument is similar to those used in [Oka 1973; O'Shea 1983a]. Suppose that the family $\left\{f_{t}\right\}$ does not have a uniform stable radius. Then, as the nearby fibres of the functions f_{t} are uniformly nonsingular with respect to the deformation parameter t, for all $\tau>0$ and all $r>0$ small enough, there exist $0<\varepsilon^{\prime} \leq \varepsilon \leq r$ such that for all sufficiently small $\delta>0$ there exist $\eta_{\delta}, \varepsilon_{\delta}$ and t_{δ}, with $0<\left|\eta_{\delta}\right| \leq \delta, \varepsilon^{\prime} \leq \varepsilon_{\delta} \leq$ ε and $\left|t_{\delta}\right| \leq \tau$, such that $V\left(f_{t_{\delta}}-\eta_{\delta}\right)$ is nonsingular in $\stackrel{\circ}{B}_{r}$ and does not transversely intersect the sphere $S_{\varepsilon_{\delta}}$. It follows that there is a point $\boldsymbol{z}_{\delta} \in V\left(f_{t_{\delta}}-\eta_{\delta}\right) \cap S_{\varepsilon_{\delta}}$ which is a critical point of the restriction to $V\left(f_{t_{\delta}}-\eta_{\delta}\right) \cap B_{r}$ of the squared distance function:

$$
z \in V\left(f_{t_{\delta}}-\eta_{\delta}\right) \cap B_{r} \mapsto\|z\|^{2}=\sum_{1 \leq i \leq n}\left|z_{i}\right|^{2}
$$

In other words, the point $\left(t_{\delta}, z_{\delta}\right)$ lies in the intersection of $D_{\tau} \times\left(B_{\varepsilon} \backslash \stackrel{\circ}{B}_{\varepsilon^{\prime}}\right)$ with the real algebraic set C consisting of the points (t, z) such that

$$
\begin{equation*}
\left(\frac{\partial f_{t}}{\partial z_{1}}(z), \ldots, \frac{\partial f_{t}}{\partial z_{n}}(z)\right)=\lambda \bar{z} \tag{5-1}
\end{equation*}
$$

for some $\lambda \in \mathbb{C} \backslash\{0\}$, where $\bar{z}:=\left(\bar{z}_{1}, \ldots, \bar{z}_{n}\right)$ and \bar{z}_{i} denotes the complex conjugate of z_{i} (see e.g., [O'Shea 1983b, Lemma 1]). Let $C_{\tau, r}:=C \cap\left(D_{\tau} \times\left(B_{\varepsilon} \backslash{\stackrel{\circ}{B^{\prime}}}^{\prime}\right)\right)$. Take $\delta:=\delta(m):=1 / m$ (where $m \in \mathbb{N} \backslash\{0\}$ is sufficiently large), and consider the corresponding sequence of points $\left(t_{\delta(m)}, \boldsymbol{z}_{\delta(m)}\right)$ in $C_{\tau, r}$. As $C_{\tau, r}$ is compact, taking a subsequence if necessary, we may assume that $\left(t_{\delta(m)}, \boldsymbol{z}_{\delta(m)}\right)$ converges to a point $\left(t_{\tau, r}, \boldsymbol{z}_{\tau, r}\right) \in C_{\tau, r}$, and hence $\eta_{\delta(m)}:=f\left(t_{\delta(m)}, \boldsymbol{z}_{\delta(m)}\right)$ tends to $f\left(t_{\tau, r}, \boldsymbol{z}_{\tau, r}\right)$ as $m \rightarrow \infty$. Since $0<\left|\eta_{\delta(m)}\right| \leq \delta(m)=1 / m \rightarrow 0$ as $m \rightarrow \infty$, we have $f\left(t_{\tau, r}, z_{\tau, r}\right)=0$. Thus $\left(t_{\tau, r}, \boldsymbol{z}_{\tau, r}\right) \in V(f) \cap C_{\tau, r}$.

Now, since $f_{t_{\tau, r}}$ is weighted homogeneous with respect to the weights $\boldsymbol{w}=$ $\left(w_{1}, \ldots, w_{n}\right)$, the Euler identity implies the following contradiction:

$$
d_{w} \cdot \underbrace{f_{t, r}\left(z_{\tau, r}\right)}_{=0} \stackrel{\text { Euler }}{=} \sum_{1 \leq i \leq n} w_{i}\left(z_{\tau, r}\right) \frac{\partial f_{t_{\tau, r}}}{\partial z_{i}}\left(z_{\tau, r}\right) \stackrel{(5-1)}{=} \lambda \sum_{1 \leq i \leq n} w_{i}\left|\left(z_{\tau, r}\right)_{i}\right|^{2} \neq 0,
$$

where $d_{\boldsymbol{w}}$ is the weighted degree of $f_{t_{\tau, r}}$ with respect to the weights \boldsymbol{w} and $\left(z_{\tau, r}\right)_{i}$ is the i-th component of $\boldsymbol{z}_{\tau, r}$.

Remark 5.2. Actually, the proof shows that if f defines a family $\left\{f_{t}\right\}$ of hypersurfaces - not necessarily with line singularities - such that each f_{t} is weighted homogeneous with respect to a given system of weights \boldsymbol{w}, and if furthermore, the nearby fibres $V\left(f_{t}-\eta\right), \eta \neq 0$, of the functions f_{t} are uniformly nonsingular with respect to the deformation parameter t, then the family $\left\{f_{t}\right\}$ has a uniform stable radius.

References

[Briançon] J. Briançon, "Le théorème de Kouchnirenko", unpublished lecture notes.
[Briançon and Speder 1975] J. Briançon and J.-P. Speder, "La trivialité topologique n'implique pas les conditions de Whitney", C. R. Acad. Sci. Paris Sér. A-B 280:6 (1975), 365-367. MR Zbl
[Damon 1983] J. Damon, "Newton filtrations, monomial algebras and nonisolated and equivariant singularities", pp. 267-276 in Singularities, I (Arcata, CA, 1981), edited by P. Orlik, Proc. Sympos. Pure Math. 40, American Mathematical Society, Providence, RI, 1983. MR Zbl
[Fernández de Bobadilla 2013] J. Fernández de Bobadilla, "Topological equisingularity of hypersurfaces with 1-dimensional critical set", Adv. Math. 248 (2013), 1199-1253. MR Zbl
[Hamm and Lê 1973] H. A. Hamm and Lê D. T., "Un théorème de Zariski du type de Lefschetz", Ann. Sci. École Norm. Sup. (4) 6 (1973), 317-355. MR Zbl
[Kouchnirenko 1976] A. G. Kouchnirenko, "Polyèdres de Newton et nombres de Milnor", Invent. Math. 32:1 (1976), 1-31. MR Zbl
[Lê 1980] Lê D. T., "Ensembles analytiques complexes avec lieu singulier de dimension un (d'après I. N. Iomdine)", pp. 87-95 in Séminaire sur les singularités (Paris, 1976/1977), edited by Lê D. T., Publ. Math. Univ. Paris VII 7, Univ. Paris VII, 1980. MR Zbl
[Lê and Ramanujam 1976] Lê D. T. and C. P. Ramanujam, "The invariance of Milnor's number implies the invariance of the topological type", Amer. J. Math. 98:1 (1976), 67-78. MR Zbl
[Massey 1988] D. B. Massey, "The Lê-Ramanujam problem for hypersurfaces with one-dimensional singular sets", Math. Ann. 282:1 (1988), 33-49. MR Zbl
[Massey 1995] D. B. Massey, Lê cycles and hypersurface singularities, Lecture Notes in Mathematics 1615, Springer, Berlin, 1995. MR Zbl
[Massey and Siersma 1992] D. B. Massey and D. Siersma, "Deformation of polar methods", Ann. Inst. Fourier (Grenoble) 42:4 (1992), 737-778. MR Zbl
[Milnor 1968] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies 61, Princeton Univ. Press, 1968. MR Zbl
[Oka 1973] M. Oka, "Deformation of Milnor fiberings", J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 397-400. Correction in 27:2 (1980), 463-464. MR Zbl
[Oka 1979] M. Oka, "On the bifurcation of the multiplicity and topology of the Newton boundary", J. Math. Soc. Japan 31:3 (1979), 435-450. MR Zbl
[Oka 1982] M. Oka, "On the topology of the Newton boundary, III", J. Math. Soc. Japan 34:3 (1982), 541-549. MR Zbl
[Oka 1989] M. Oka, "On the weak simultaneous resolution of a negligible truncation of the Newton boundary", pp. 199-210 in Singularities (Iowa City, 1986), edited by R. Randell, Contemp. Math. 90, American Mathematical Society, Providence, RI, 1989. MR Zbl
[O'Shea 1983a] D. B. O'Shea, "Finite jumps in Milnor number imply vanishing folds", Proc. Amer. Math. Soc. 87:1 (1983), 15-18. MR Zbl
[O'Shea 1983b] D. B. O'Shea, "Vanishing folds in families of singularities", pp. 293-303 in Singularities, II (Arcata, CA, 1981), edited by P. Orlik, Proc. Sympos. Pure Math. 40, American Mathematical Society, Providence, RI, 1983. MR Zbl
[Timourian 1977] J. G. Timourian, "The invariance of Milnor's number implies topological triviality", Amer. J. Math. 99:2 (1977), 437-446. MR Zbl

Christophe Eyral
Institute of Mathematics
Polish Academy of Sciences
00-656 WARSAW
Poland
eyralchr@yahoo.com

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm
EDITORS
Don Blasius (Managing Editor)
Department of Mathematics University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Jie Qing

Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135 chari@math.ucr.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Daryl Cooper
Department of Mathematics
University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu

Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu

Paul Yang

Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA UNIV. OF CALIFORNIA, BERKELEY UNIV. OF CALIFORNIA, DAVIS UNIV. OF CALIFORNIA, LOS ANGELES UNIV. OF CALIFORNIA, RIVERSIDE UNIV. OF CALIFORNIA, SAN DIEGO UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2017 is US $\$ 450 /$ year for the electronic version, and $\$ 625 /$ year for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

- mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2017 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 291 No. $2 \quad$ December 2017
Torsion pairs in silting theory 257
Lidia Angeleri Hügel, Frederik Marks and Jorge Vitória
Transfinite diameter on complex algebraic varieties 279
David A. Cox and Sione Ma'u
A universal construction of universal deformation formulas, Drinfeld 319
twists and their positivityChiara Esposito, Jonas Schnitzer and StefanWALDMANN
Uniform stable radius, Lê numbers and topological triviality for line 359 singularitiesChristophe Eyral
Rost invariant of the center, revisited 369
Skip Garibaldi and Alexander S. Merkurjev
Moduli spaces of rank 2 instanton sheaves on the projective space 399
Marcos Jardim, Mario Maican and Alexander S. Tikhomirov
A symmetric 2-tensor canonically associated to Q-curvature and its 425 applications
Yueh-Ju Lin and Wei Yuan
Gauge invariants from the powers of antipodes 439
Cris Negron and Siu-Hung NG
Branching laws for the metaplectic cover of GL_{2} 461
Shiv Prakash Patel
Hessian equations on closed Hermitian manifolds 485
Dekai Zhang

[^0]: MSC2010: primary 14B05, 14B07, 14J17, 14J70; secondary 32S05, 32S25.

