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Let { ft} be a family of complex polynomial functions with line singularities.
We show that if { ft} has a uniform stable radius (for the corresponding Mil-
nor fibrations), then the Lê numbers of the functions ft are independent of t
for all small t . A similar assertion was proved by M. Oka and D. B. O’Shea
in the case of isolated singularities — a case for which the only nonzero Lê
number coincides with the Milnor number.

By combining our result with a theorem of J. Fernández de Bobadilla,
we conclude that a family of line singularities in Cn, n ≥ 5, is topologically
trivial if it has a uniform stable radius.

As an important example, we show that families of weighted homoge-
neous line singularities have a uniform stable radius if the nearby fibres
f −1

t (η), η 6= 0, are “uniformly” nonsingular with respect to the deformation
parameter t .

1. Introduction

Let (t, z) := (t, z1, . . . , zn) be linear coordinates for C×Cn (n ≥ 2), and let

(1-1) f : (C×Cn,C×{0})→ (C, 0), (t, z) 7→ f (t, z),

be a polynomial function. As usual, we write ft(z) := f (t, z), and for any η ∈ C

we denote by V ( ft − η) the hypersurface in Cn defined by the equation ft(z)= η.
(Note that (1-1) implies ft(0)= f (t, 0)= 0, so that the origin 0 ∈ Cn belongs to
the hypersurface V ( ft)= f −1

t (0) for all t ∈ C.)
The purpose of this paper is to show that if the polynomial function f defines a

family { ft } of hypersurfaces with line singularities and with a uniform stable radius
(for the corresponding Milnor fibrations), then the Lê numbers

λ0
ft ,z(0), . . . , λ

n−1
ft ,z (0)

of the polynomial functions ft at 0 with respect to the coordinates z — which do
exist in this case — are independent of t for all small t (see Theorem 4.1). In the
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case of hypersurfaces with isolated singularities — a case for which the constancy
of the Lê numbers means the constancy of the Milnor number — a similar assertion
was proved by M. Oka [1973] and D.B. O’Shea [1983a].

By combining Theorem 4.1 with a theorem of J. Fernández de Bobadilla [2013],
to the effect that a family of hypersurfaces with line singularities in Cn , n ≥ 5,
is topologically trivial if it has constant Lê numbers, it follows that a family of
hypersurfaces with line singularities in Cn , n ≥ 5, is topologically trivial if it has a
uniform stable radius (see Corollary 4.2).

Oka [1973] and O’Shea [1983a] also proved that, if { ft } is a family of isolated
hypersurface singularities such that each ft is weighted homogeneous with respect
to a given system of weights, then { ft } has a uniform stable radius. In Theorem 5.1,
we show this still holds true for weighted homogeneous hypersurfaces with line
singularities provided that the nearby fibres V ( ft − η), η 6= 0, are “uniformly”
nonsingular with respect to the deformation parameter t — that is, nonsingular in
a small ball the radius of which does not depends on t . (Note that this condition
always holds true for isolated singularities.) In particular, by Theorem 4.1 and
Corollary 4.2, such families have constant Lê numbers, and for n ≥ 5, they are
topologically trivial.

Finally, let us observe that by combining Corollary 4.2 with a theorem of Oka
[1982] — which says that a family { ft } of nondegenerate functions with constant
Newton boundary has a uniform stable radius — we get a new proof of a theorem of
J. Damon [1983] which says that if { ft } is a family of nondegenerate line singularities
in Cn , n ≥ 5, with constant Newton boundary, then { ft } is topologically trivial.

Notation 1.1. In this paper, we are only interested in the behaviour of functions
(or hypersurfaces) near the origin 0 ∈ Cn . We denote by Bε the closed ball centred
at 0 ∈ Cn with radius ε > 0, and we write B̊ε and Sε for its interior and boundary,
respectively. As usual, in C, we write Dε and D̊ε rather than Bε and B̊ε.

2. Uniform stable radius

By [Hamm and Lê 1973, lemme (2.1.4)], we know that for each t there exists a
positive number rt >0 such that for any pair (εt , ε

′
t)with 0<ε′t ≤ εt ≤rt , there exists

δ(εt , ε
′
t) > 0 such that for any nonzero complex number η with 0< |η| ≤ δ(εt , ε

′
t),

the hypersurface V ( ft − η) is nonsingular in B̊rt and transversely intersects with
the sphere Sε′′ for any ε′′ with ε′t ≤ ε

′′
≤ εt . Any such a number rt is called a stable

radius for the Milnor fibration of ft at 0 [Oka 1982, §2].

Definition 2.1 [Oka 1982, §3]. We say that the family { ft } has a uniform stable
radius (we also say that { ft } is uniformly stable) if there exist τ > 0 and r > 0 such
that for any pair (ε, ε′) with 0< ε′ ≤ ε ≤ r , there exists δ(ε, ε′) > 0 such that for
any nonzero complex number η with 0< |η| ≤ δ(ε, ε′), the hypersurface V ( ft −η)
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is nonsingular in B̊r and transversely intersects with the sphere Sε′′ for any ε′′ with
ε′ ≤ ε′′ ≤ ε and for any t with 0≤ |t | ≤ τ . Any such a number r is called a uniform
stable radius for { ft }.

In the special case where the polynomial function f defines a family { ft } of
isolated hypersurface singularities (i.e., ft has an isolated singularity at 0 for all
small t), then, by [Milnor 1968], we also know that for each t there exists Rt >0 such
that the hypersurface V ( ft) is nonsingular in B̊Rt \ {0} and transversely intersects
the sphere Sρ for any ρ with 0< ρ ≤ Rt .

Definition 2.2 [Oka 1973, §2]. Suppose that f defines a family { ft } of isolated
hypersurface singularities. We say that { ft } satisfies condition (A) if there exist ν >0
and R > 0 such that V ( ft) is nonsingular in B̊R \ {0} and transversely intersects
the sphere Sρ for any ρ with 0< ρ ≤ R and for any t with 0≤ |t | ≤ ν.

It is easy to see that a family { ft } of isolated hypersurface singularities satisfies
condition (A) if and only if it has no vanishing fold and no nontrivial critical arc in
the sense of [O’Shea 1983a]. Also, it is worthwhile to observe that if { ft } satisfies
condition (A), then it has a uniform stable radius [Oka 1973; O’Shea 1983a].

3. The Oka–O’Shea theorem for isolated singularities

Throughout this section we assume that the polynomial function f defines a family
{ ft } of isolated hypersurface singularities.

Theorem 3.1 [Oka 1973; O’Shea 1983a]. Suppose that f defines a family { ft } of
isolated hypersurface singularities. If furthermore { ft } satisfies condition (A) or has
a uniform stable radius, then it is µ-constant — that is, the Milnor number µ ft (0) of
ft at 0 is independent of t for all small t .

Actually Oka showed that if { ft } satisfies condition (A) or if it has a uniform
stable radius, then the Milnor fibrations at 0 of f0 and ft are isomorphic.

Lê Dũng Tráng and C. P. Ramanujam [Lê and Ramanujam 1976] showed that for
n 6= 3 any family of isolated hypersurface singularities with constant Milnor number
is topologically V -equisingular. With the same assumption, J. G. Timourian [1977]
showed that the family is actually topologically trivial. We recall that a family { ft }

is topologically V -equisingular (respectively, topologically trivial) if there exist
open neighbourhoods D ⊆ C and U ⊆ Cn of the origins in C and Cn , together
with a continuous map ϕ : (D×U, D×{0})→ (Cn, 0) such that for all sufficiently
small t , there is an open neighbourhood Ut ⊆U of 0 ∈ Cn such that the map

ϕt : (Ut , 0)→ (ϕ({t}×Ut), 0), z 7→ ϕt(z) := ϕ(t, z),

is a homeomorphism satisfying the relation

ϕt(V ( f0)∩Ut)= V ( ft)∩ϕt(Ut)
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(respectively, the relation f0 = ft ◦ϕt on Ut ).
Note that, in general, “µ-constant” does not imply condition (A) [Oka 1989;

Briançon].
Finally, observe that the Briançon–Speder famous family shows that condition (A)

does not imply the Whitney conditions along the t-axis [Briançon and Speder 1975].

4. Uniformly stable families of line singularities

Setup and statement of the main result. From now on we suppose that the poly-
nomial function f defines a family { ft } of hypersurfaces with line singularities.
As in [Massey 1988, §4], by such a family we mean a family { ft } such that for
each t small enough, the singular locus 6 ft of ft near the origin 0 ∈ Cn is given
by the z1-axis, and the restriction of ft to the hyperplane V (z1) defined by z1 = 0
has an isolated singularity at the origin. Then, by [Massey 1995, Remark 1.29], the
partition of V ( ft) given by

St :=
{

V ( ft) \6 ft , 6 ft \ {0}, {0}
}

is a good stratification for ft at 0, and the hyperplane V (z1) is a prepolar slice
for ft at 0 with respect to St for all t small enough. In particular, combined with
[Massey 1995, Proposition 1.23], this implies that the Lê numbers

λ0
ft ,z(0) and λ1

ft ,z(0)

of ft at 0 with respect to the coordinates z do exist. (For the definitions of good
stratifications, prepolarity and Lê numbers, we refer the reader to [Massey 1995].)
Note that for line singularities, the only possible nonzero Lê numbers are precisely
λ0

ft ,z(0) and λ1
ft ,z(0). All the other Lê numbers λk

ft ,z(0) for 2≤ k ≤ n−1 are defined
and equal to zero; see [Massey 1995].

Here is our main observation.

Theorem 4.1. Suppose that f defines a family { ft } of hypersurfaces with line
singularities. If furthermore { ft } has a uniform stable radius, then it is λz-constant —
that is, the Lê numbers λ0

ft ,z(0) and λ1
ft ,z(0) are independent of t for all small t .

Theorem 4.1 extends to line singularities Oka and O’Shea’s Theorem 3.1 concern-
ing isolated singularities. Indeed, for isolated singularities, the only possible nonzero
Lê number is λ0

ft ,z(0) and the latter coincides with the Milnor number µ ft (0).
Note that if { ft } is a λz-constant family of line singularities in Cn with n ≥ 5,

then, by a theorem of D. B. Massey [1988, Theorem (5.2)], the diffeomorphism
type of the Milnor fibration of ft at 0 is independent of t for all small t . Under the
same assumption, Fernández de Bobadilla [2013, Theorem 42] showed that { ft } is
actually topologically trivial. Combining this result with our Theorem 4.1 gives the
following corollary.
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Corollary 4.2. Suppose that f defines a family { ft } of hypersurfaces with line
singularities in Cn with n ≥ 5. If furthermore { ft } has a uniform stable radius, then
it is topologically trivial.

Application to families of nondegenerate line singularities with constant Newton
boundary. Oka [1982, Corollary 1] showed that if { ft } is a family of hypersur-
face singularities — not necessary line singularities — such that for all small t the
polynomial function ft is nondegenerate and the Newton boundary of ft at 0 with
respect to the coordinates z is independent of t , then { ft } has a uniform stable radius.
(For the definitions of nondegeneracy and Newton boundary, see [Kouchnirenko
1976; Oka 1979].) Combined with Oka’s result, Corollary 4.2 provides a new proof
of the following result, which is a particular case of a more general theorem of
Damon.

Theorem 4.3 [Damon 1983]. Suppose that f defines a family { ft } of hypersurfaces
with line singularities in Cn with n ≥ 5. If furthermore for any sufficiently small
t the polynomial function ft is nondegenerate and the Newton boundary of ft

at 0 with respect to the coordinates z is independent of t , then the family { ft } is
topologically trivial.

Proof of Theorem 4.1. Consider the map 8 : C×Cn
→ C2 defined by

(t, z) 7→8(t, z) := ( f (t, z), t),

and pick positive numbers τ and r which satisfy the condition of Definition 2.1.
Then, in particular, the following property holds:

(P) For any ε with 0 < ε < r , there exists δ(ε) > 0 such that for any t with
0 ≤ |t | ≤ τ and for any η with 0< |η| ≤ δ(ε), the hypersurface V ( ft − η) is
nonsingular in B̊r and transversely intersects the sphere Sε.

This property implies that the critical set 68 of 8 does not intersect the set

U (B̊r ) := (D̊τ × B̊r )∩8
−1((D̊δ(ε) \ {0})× D̊τ ).

Indeed, suppose there is a point (t0, z0) ∈68∩U (B̊r ). Then z0 ∈6( ft0− ft0(z0)).
But this is not possible, since by (P) the hypersurface V ( ft0 − ft0(z0)) is smooth.
(We recall that a complex variety can never be a smooth manifold throughout a
neighbourhood of a critical point; see [Milnor 1968, §2].)

It also follows from property (P) that the map

8|U (Sε) : U (Sε)→ (D̊δ(ε) \ {0})× D̊τ

(restriction of 8 to U (Sε) := (D̊τ × Sε)∩8−1((D̊δ(ε) \{0})× D̊τ )) is a submersion.
Indeed, as 68∩U (B̊r )=∅ and U (B̊r ) is an open subset of C×Cn , the map

8|U (B̊r )
: U (B̊r )→ (D̊δ(ε) \ {0})× D̊τ
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is a submersion. Thus, to show that8|U (Sε) is a submersion, it suffices to observe that
the inclusion U (Sε) ↪→U (B̊r ) is transverse to the submanifold 8|−1

U (B̊r )
( f (t, z), t)

for any point (t, z) ∈U (Sε)— or equivalently that the submanifolds

8|−1
U (B̊r )

( f (t, z), t) and ({t}× Sε)∩U (B̊r )

are transverse to each other. This is exactly the content of (P).
Now, as 8|U (Sε) is also a proper map, a result of Massey and D. Siersma [1992,

Proposition 1.10] shows that the Milnor number of a generic hyperplane slice of
ft at a point on 6 ft sufficiently close to the origin (which coincides with the Lê
number λ1

ft ,z(0) for line singularities; see [Lê 1980; Massey 1988]) is independent
of t for all small t .

Finally, since the family { ft } has a uniform stable radius — the full strength
of this assumption is used here — it follows from [Oka 1982, Lemma 2] that the
diffeomorphism type of the Milnor fibration of ft at the origin is independent of t
for all small t . In particular, the reduced Euler characteristic χ̃(Fft ,0) of the Milnor
fibre Fft ,0 of ft at 0, which by [Massey 1995, Theorem 3.3] equals

(−1)n−1λ0
ft ,z(0)+ (−1)n−2λ1

ft ,z(0),

is independent of t for all small t . The constancy of λ0
ft ,z(0) now follows from that

of λ1
ft ,z(0).

5. Uniform stable radius and weighted homogeneous line singularities

By a result of Oka [1973] and O’Shea [1983a], we know that if { ft } is a family of
isolated hypersurface singularities such that each ft is weighted homogeneous with
respect to a given system of weights, then { ft } satisfies condition (A), and hence,
is uniformly stable. Our next observation says this still holds true for weighted
homogeneous line singularities provided that the nearby fibres V ( ft − η), η 6= 0,
of the functions ft are “uniformly” nonsingular with respect to the deformation
parameter t — that is, nonsingular in a small ball the radius of which does not
depends on t . (We recall that by [Hamm and Lê 1973] the nearby fibres are
“individually” nonsingular — that is, nonsingular in a small ball the radius of which
depends on t .)

Theorem 5.1. Suppose that f defines a family { ft } of hypersurfaces with line sin-
gularities such that each ft is weighted homogeneous with respect to a given system
of weights w = (w1, . . . , wn) on the variables (z1, . . . , zn), with wi ∈ N \ {0}.
Also, assume that the nearby fibres V ( ft − η), η 6= 0, of the functions ft are
uniformly nonsingular with respect to the deformation parameter t — that is, there
exist positive numbers τ , r , δ such that for any 0 < |η| ≤ δ and 0 ≤ |t | ≤ τ , the
hypersurface V ( ft − η) is nonsingular in B̊r . Under these assumptions, the family
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{ ft } has a uniform stable radius. (In particular, { ft } is λz-constant, and for n ≥ 5,
it is topologically trivial.)

Proof. The argument is similar to those used in [Oka 1973; O’Shea 1983a]. Suppose
that the family { ft } does not have a uniform stable radius. Then, as the nearby
fibres of the functions ft are uniformly nonsingular with respect to the deformation
parameter t , for all τ > 0 and all r > 0 small enough, there exist 0<ε′ ≤ ε≤ r such
that for all sufficiently small δ>0 there exist ηδ , εδ and tδ , with 0< |ηδ|≤δ, ε′≤εδ≤
ε and |tδ| ≤ τ , such that V ( ftδ − ηδ) is nonsingular in B̊r and does not transversely
intersect the sphere Sεδ . It follows that there is a point zδ ∈ V ( ftδ −ηδ)∩ Sεδ which
is a critical point of the restriction to V ( ftδ − ηδ) ∩ Br of the squared distance
function:

z ∈ V ( ftδ − ηδ)∩ Br 7→ ‖z‖2 =
∑

1≤i≤n

|zi |
2.

In other words, the point (tδ, zδ) lies in the intersection of Dτ × (Bε \ B̊ε′) with the
real algebraic set C consisting of the points (t, z) such that

(5-1)
(
∂ ft

∂z1
(z), . . . ,

∂ ft

∂zn
(z)
)
= λz

for some λ ∈C\{0}, where z := (z1, . . . , zn) and zi denotes the complex conjugate
of zi (see e.g., [O’Shea 1983b, Lemma 1]). Let Cτ,r := C ∩ (Dτ × (Bε \ B̊ε′)).
Take δ := δ(m) := 1/m (where m ∈ N \ {0} is sufficiently large), and consider
the corresponding sequence of points (tδ(m), zδ(m)) in Cτ,r . As Cτ,r is compact,
taking a subsequence if necessary, we may assume that (tδ(m), zδ(m)) converges to a
point (tτ,r , zτ,r ) ∈ Cτ,r , and hence ηδ(m) := f (tδ(m), zδ(m)) tends to f (tτ,r , zτ,r ) as
m→∞. Since 0< |ηδ(m)|≤ δ(m)= 1/m→ 0 as m→∞, we have f (tτ,r , zτ,r )= 0.
Thus (tτ,r , zτ,r ) ∈ V ( f )∩Cτ,r .

Now, since ftτ,r is weighted homogeneous with respect to the weights w =
(w1, . . . , wn), the Euler identity implies the following contradiction:

dw · ftτ,r (zτ,r )︸ ︷︷ ︸
=0

Euler
=

∑
1≤i≤n

wi (zτ,r )i
∂ ftτ,r

∂zi
(zτ,r )

(5-1)
= λ

∑
1≤i≤n

wi |(zτ,r )i |2 6= 0,

where dw is the weighted degree of ftτ,r with respect to the weights w and (zτ,r )i is
the i-th component of zτ,r . �

Remark 5.2. Actually, the proof shows that if f defines a family { ft } of hyper-
surfaces — not necessarily with line singularities — such that each ft is weighted
homogeneous with respect to a given system of weights w, and if furthermore, the
nearby fibres V ( ft−η), η 6= 0, of the functions ft are uniformly nonsingular with re-
spect to the deformation parameter t , then the family { ft } has a uniform stable radius.
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