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ROST INVARIANT OF THE CENTER, REVISITED

SKIP GARIBALDI AND ALEXANDER S. MERKURJEV

The Rost invariant of the Galois cohomology of a simple simply connected
algebraic group over a field F is defined regardless of the characteristic of F,
but certain formulas for it have only been known under a hypothesis on the
characteristic. We improve on those formulas by removing the hypothesis
on the characteristic and removing an ad hoc pairing that appeared in those
formulas. As a preliminary step of independent interest, we also extend the
classification of invariants of quasitrivial tori to all fields.

1. Introduction

Cohomological invariants provide an important tool to distinguish elements of
Galois cohomology groups such as H 1(F,G) where G is a semisimple algebraic
group. In the case where G is simple and simply connected there are no nonconstant
invariants with values in H d(∗,Q/Z(d−1)) for d < 3. For d = 3, modulo constants
the group of invariants H 1(∗,G)→ H 3(∗,Q/Z(2)) is finite cyclic with a canonical
generator known as the Rost invariant and denoted by rG ; this was shown by Markus
Rost in the 1990s and full details can be found in [Garibaldi et al. 2003]. Rost’s
theorem raised the questions: How do we calculate the Rost invariant of a class in
H 1(F,G)? What is a formula for it?

At least for G of inner type An there is an obvious candidate for rG , which is
certainly equal to mrG for some m relatively prime to n+1. The papers [Merkurjev
et al. 2002; Garibaldi and Quéguiner-Mathieu 2007] studied the composition

(1.1) H 1(F,C)→ H 1(F,G)
rG
−→ H 3(F,Q/Z(2))

for C the center of G, and under some assumptions on char(F), computed the
composition in terms of the value of m for type A. Eventually the value of m was
determined in [Gille and Quéguiner-Mathieu 2011]. The main result of this paper is
Theorem 1.2, which gives a formula for (1.1) that does not depend on the type of G
nor on char(F). This improves on the results of [Merkurjev et al. 2002; Garibaldi
and Quéguiner-Mathieu 2007] by removing the hypothesis on the characteristic
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and avoiding the ad hoc type-by-type arguments used in those papers. We do rely
on [Gille and Quéguiner-Mathieu 2011] for the computation of m for type A, but
nothing more.

The strategy is to (1) extend the determination of invariants of quasitrivial tori
from [Merkurjev et al. 2002] to all fields (see Theorem 3.7), (2) to follow the general
outline of [Garibaldi and Quéguiner-Mathieu 2007] to reduce to the case of type A,
and (3) to avoid the ad hoc formulas used in previous work by giving a formula
independent of the Killing–Cartan type of G.

Specifically, there is a canonically defined element t◦G ∈ H 2(F,C◦), where C◦

denotes the dual multiplicative group scheme of C in a sense defined below, and a
natural cup product H 1(F,C)⊗ H 2(F,C◦)→ H 3(F,Q/Z(2)). We prove:

Theorem 1.2. Let G be a semisimple and simply connected algebraic group over
a field F, and C ⊂ G be the center of G. Let t◦G be the image of the Tits class tG

under ρ̂∗ : H 2(F,C)→ H 2(F,C◦). Then the diagram

H 1(F,C)

−t◦G∪ ''

i∗
// H 1(F,G)

rG
��

H 3(F,Q/Z(2))

commutes, where the cup product map is the one defined in (2.9).

The map ρ̂∗ is deduced from a natural map ρ defined in terms of the root system,
see Section 5C.

Theorem 1.2 gives a general statement, which we state precisely in Theorem 6.4,
for all invariants H 1(∗,G)→ H 3(∗,Q/Z(2)).

2. Cohomology of groups of multiplicative type

Let F be a field and M a group scheme of multiplicative type over F. Then M is
uniquely determined by the Galois module M∗ of characters over Fsep. In particular,
we have

M(Fsep)= Hom(M∗, F×sep).

If M is a torus T, then T ∗ is a Galois lattice and we set T∗ =Hom(T ∗,Z). We have

(2.1) T (Fsep)= T∗⊗ F×sep.

If M is a finite group scheme C of multiplicative type, set C∗ :=Hom(C∗,Q/Z),
so we have a perfect pairing of Galois modules

(2.2) C∗⊗C∗→Q/Z.

Write C◦ for the group of multiplicative type over F with the character module C∗.
We call C◦ the group dual to C .
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Example 2.3. We write µn for the sub-group-scheme of Gm of n-th roots of unity.
The restriction of the natural generator of G∗m (the identity Gm→ Gm) generates
µ∗n and thereby identifies µ∗n with Z/nZ. Thus µ∗n = Z/nZ via the pairing (2.2),
hence µ◦n = µn .

The change-of-sites map α : Spec(F)fppf→ Spec(F)ét yields a functor

α∗ : Shfppf(F)→ Shét(F)

between the categories of sheaves over F and an exact functor

Rα∗ : D+ Shfppf(F)→ D+ Shét(F)

between derived categories.
Every group M of multiplicative type can be viewed as a sheaf of abelian groups

either in the étale or fppf topology. We have α∗(M) = M for every group M of
multiplicative type. If M is smooth, we have Riα∗(M) = 0 for i > 0 by [Milne
1980, proof of Theorem 3.9]. It follows that Rα∗(M)= M, hence

(2.4) H i
ét(F,M)= H i

ét(F, Rα∗(M))= H i
fppf(F,M), for M smooth.

If
1→ C→ T → S→ 1

is an exact sequence of algebraic groups with C a finite group of multiplicative
type and T and S tori, this sequence is exact in the fppf-topology but not in the
étale topology (unless C is smooth). Applying Rα∗ to the exact triangle

C→ T → S→ C[1]

in D+ Shfppf(F), we get an exact triangle,

Rα∗(C)→ T (Fsep)→ S(Fsep)→ Rα∗(C)[1],

in D+ Shét(F) since Rα∗(T )= T (Fsep) and Rα∗(S)= S(Fsep). In other words,

(2.5) Rα∗(C)= cone(T (Fsep)→ S(Fsep))[−1].

Recall that Z(1) is the complex in D+ Shét(F) with only one nonzero term F×sep
placed in degree 1, i.e., Z(1)= F×sep[−1]. Set

C∗(1) := C∗
L
⊗Z(1), C∗(1) := C∗

L
⊗Z(1),

where the derived tensor product is taken in the derived category D+ Shét(F). If T
is an algebraic torus, we write

T∗(1) := T∗
L
⊗Z(1)= T∗⊗Z(1)= T (Fsep)[−1].



372 SKIP GARIBALDI AND ALEXANDER S. MERKURJEV

Tensoring the exact sequence

0→ T∗→ S∗→ C∗→ 0

with Z(1) and using (2.1), we get an exact triangle

C∗(1)→ T (Fsep)→ S(Fsep)→ C∗(1)[1].

It follows from (2.5) that
C∗(1)= Rα∗(C)

and therefore,

H i
fppf(F,C)= H i

ét(F, Rα∗(C))= H i
ét(F,C∗(1)).

Recall that we also have

H i
fppf(F, T )= H i

ét(F, T )= H i+1
ét (F, T∗(1)).

Remark 2.6. There is a canonical isomorphism (see [Merkurjev 2016, §4c])

C∗(1)' C(Fsep)⊕ (C∗⊗ F×sep)[−1].

The second term in the direct sum vanishes if char(F) does not divide the order of
C∗ or if F is perfect.

Notation 2.7. To simplify notation we will write H i (F,C) for H i
ét(F,C∗(1)) =

H i
fppf(F,C) and H i (F,C◦) for H i

ét(F,C∗(1))= H i
fppf(F,C◦).

Every C-torsor E over F has a class c(E) ∈ H 1(F,C).

Example 2.8. Taking colimits of the connecting homomorphism arising from the
sequences 1→Gm→GLd→PGLd→1 or 1→µd→SLd→PGLd→1 — which
are exact in the fppf topology — gives isomorphisms H 2(K ,Gm) ' Br(K ) and
H 2(K , µn)' nBr(K ) as in [Gille and Szamuely 2006, 4.4.5]1, which we use.

In view of (2.4) and Notation 2.7, we work in the derived category of étale sheaves
as in, for example, [Freitag and Kiehl 1988, Appendix A.II]. We use the motivic
complex Z(2) of étale sheaves over F defined in [Lichtenbaum 1987; 1990]. Set

Q/Z(2) :=Q/Z
L
⊗Z(2).

The complex Q/Z(2) is the direct sum of two complexes. The first complex is
given by the locally constant étale sheaf (placed in degree 0) the colimit over n
prime to char(F) of the Galois modules µ⊗2

n := µn ⊗µn . The second complex is
nontrivial only in the case p = char(F) > 0 and it is defined as

colim
n

Wn�
2
log[−2]

1This reference assumes char(F) does not divide n, since it uses H1 to denote Galois cohomology.
With our notation, their arguments go through with no change.
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with Wn�
2
log the sheaf of logarithmic de Rham–Witt differentials (see [Kahn 1996]).

Note that
H i (F,Q/Z(2))' H i+1(F,Z(2))

for i ≥ 3.
Tensoring (2.2) with Z(2), we get the pairings

(2.9)
C∗(1)

L
⊗ C∗(1)→Q/Z(2) and

H i (F,C)⊗ H j (F,C◦)→ H i+ j (F,Q/Z(2)).

If S is a torus over F, we have S∗(1)= S∗⊗Gm[−1] = S[−1] and the pairings

(2.10)
S∗⊗ S∗→ Z, S∗(1)

L
⊗S∗(1)→ Z(2) and

H i (F, S)⊗ H j (F, S◦)→ H i+ j+2(F,Z(2))= H i+ j+1(F,Q/Z(2))

if i + j ≥ 2.
Let

1→ C→ T → S→ 1

be an exact sequence with T and S tori and C finite. Dualizing we get an exact
sequence of dual groups

(2.11) 1→ C◦→ S◦→ T ◦→ 1.

We have the homomorphisms

ϕ : S(F)→ H 1(F,C), ψ : H 2(F,C◦)→ H 2(F, S◦).

Proposition 2.12. For every a ∈ S(F) and b ∈ H 2(F,C◦), we have ϕ(a) ∪ b =
a ∪ψ(b) in H 3(F,Q/Z(2)). Here the cup products are taken with respect to the
pairings (2.9) and (2.10) respectively.

Proof. The pairing S∗⊗ S∗→ Z extends uniquely to a pairing S∗⊗ T ∗→Q. We
have then a morphism of exact triangles

S∗(1)
L
⊗S∗(1)

��

// S∗(1)
L
⊗T ∗(1)

��

// S∗(1)
L
⊗C∗(1)

s
��

// S∗(1)
L
⊗S∗(1)[1]

��

Z(2) // Q(2) // Q/Z(2) // Z(2)[1]

and a commutative diagram

H 1(F, S∗(1))⊗ H 2(F,C∗(1))

��

// H 1(F, S∗(1))⊗ H 2(F, S∗(1)[1])

��

H 3(F,Q/Z(2)) // H 3(F,Z(2)[1])
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and therefore, a commutative diagram:

H 0(F, S)⊗ H 2(F,C◦)

��

// H 0(F, S)⊗ H 2(F, S◦)

��

H 3(F,Q/Z(2)) H 3(F,Q/Z(2))

On the other hand, the composition S∗(1)
L
⊗C∗(1)→ C∗(1)

L
⊗C∗(1)→ Q/Z(2)

coincides with s. Therefore, we have a commutative diagram

H 1(F, S∗(1))⊗ H 2(F,C∗(1))

��

// H 1(F,C∗(1))⊗ H 2(F,C∗(1))

��

H 3(F,Q/Z(2)) H 3(F,Q/Z(2))

and therefore, a diagram:

H 0(F, S)⊗ H 2(F,C◦)

��

// H 1(F,C)⊗ H 2(F,C◦)

��

H 3(F,Q/Z(2)) H 3(F,Q/Z(2))

The result follows. �

Remark 2.13. We have used that the diagram

H i (A[a])⊗ H j (B[b]) // H i+ j (A[a]⊗ B[b])

H i+a(A)⊗ H j+b(B) // H i+ j+a+b(A⊗ B)

is (−1)ib-commutative for all complexes A and B.

Let A be an étale algebra over F and C a finite group scheme of multiplicative
type over A. Then C ′ := RA/F (C) is a finite group of multiplicative type over F.
Moreover, C ′◦ ' RA/F (C◦) and there are canonical isomorphisms

ι : H i (A,C)−→∼ H i (F,C ′) and ι◦ : H i (A,C◦)−→∼ H i (F,C ′◦).

Lemma 2.14. We have ι(x)∪ ι◦(y)= NA/F (x ∪ y) in H i+ j (F,Q/Z(2)) for every
x ∈ H i (A,C) and y ∈ H j (A,C◦).

Proof. The group scheme C ′A is naturally isomorphic to the product C1×C2×· · ·×Cs

of group schemes over A with C1 = C . Let π : C ′A→ C be the natural projection.
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Similarly, C ′◦'C◦1×C◦2×· · ·×C◦s . Write ε :C◦→C ′A
◦ for the natural embedding.

Then the inverse of ι coincides with the composition

H i (F,C ′) res
−→ H i (A,C ′A)

π∗
−→ H i (A,C)

and ι◦ coincides with the composition

H i (A,C◦) ε∗
−→ H i (A,C ′◦A)

NA/F
−−→ H i (F,C ′◦).

Since π∗(ι(x))= x , we have res(ι(x))= (x, x2, . . . , xs) for some xi . On the other
hand, ε∗(y)= (y, 0, . . . , 0), hence

(2.15) res(ι(x))∪ ε∗(y)= x ∪ y.

Finally,

ι(x)∪ ι◦(y)= ι(x)∪ NA/F (ε
∗(y))

= NA/F (res(ι(x))∪ ε∗(y)) by the projection formula

= NA/F (x ∪ y) by (2.15). �

Lemma 2.16 (projection formula). Let f : C→ C ′ be a homomorphism of finite
group schemes of multiplicative type. For a ∈ H m(F,C), the diagram

H k(F,C ′◦)

f ∗

��

∪ f∗(a)
// H k+m(F,Q/Z(2))

H k(F,C◦) ∪a
// H k+m(F,Q/Z(2))

commutes.

Proof. The pairings used in the diagram are induced by the pairings C∗⊗C∗→Q/Z

and C ′∗⊗C ′
∗
→Q/Z. The (obvious) projection formula for these pairings reads

〈 f ∗(x), y〉 = 〈x, f∗(y)〉 for x ∈ C ′∗ and y ∈ C∗. �

3. Invariants of quasitrivial tori

3A. Cohomological invariants. For a field F write H j (F) for the cohomology
group H j (F,Q/Z( j − 1)), where j ≥ 1 (see [Garibaldi et al. 2003]). In particular,
H 1(F) is the character group of continuous homomorphisms 0F → Q/Z and
H 2(F) is the Brauer group Br(F).

The assignment K 7→ H j (K ) is functorial with respect to arbitrary field exten-
sions. If K ′/K is a finite separable field extension, we have a well-defined norm
map NK ′/K : H j (K ′)→ H j (K ).

The graded group H∗(F) is a (left) module over the Milnor ring K∗(F).
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Definition 3.1. Let A be a functor from the category of field extensions of F to
pointed sets. A degree d cohomological invariant of A is a collection of maps of
pointed sets

ιK :A(K )→ H d(K )

for all field extensions K/F , functorial in K. The degree d cohomological invariants
of G form an abelian group denoted by Inv d(A). If L/F is a field extension, we
have a restriction homomorphism

Inv d(A)→ Inv d(AL),

where GL is the restriction of G to the category of field extensions of L .
If the functor A factors through the category of groups, we further consider

the subgroup Inv d
h (A) of Inv d(A) consisting of those invariants ι such that ιK is a

group homomorphism for every K.

Example 3.2. If G is an algebraic group over F, we can view G as a functor taking
a field extension K to the group G(K ) of K -points of G; in this case we consider
Inv d

h (G). We have also another functor H 1(G) : K → H 1(K ,G) and we consider
Inv d(H 1(G)). If G is commutative, then H 1(K ,G) is a group for every K, and
we also consider Inv d

h (H
1(G)).

3B. Residues. Our goal is to prove Theorem 3.7 concerning the group Inv d
h (T )

for T a quasisplit torus. Such invariants of order not divisible by char(F) were
determined in [Merkurjev et al. 2002]. We modify the method from [Merkurjev
et al. 2002] so that it works in general. The difficulty is that the groups H j (K ) do
not form a cycle module, because the residue homomorphisms need not exist.

If K is a field with discrete valuation v and residue field κ(v), write H j (F)nr,v for
the subgroup of all elements of H j (F) that are split by finite separable extensions
K/F such that v admits an unramified extension to K. Note that every element in
H j (F)nr,v of order not divisible by char(F) belongs to H j (F)nr,v.

There are residue homomorphisms (see [Garibaldi et al. 2003] or [Kato 1982])

∂v : H j (K )nr,v→ H j−1(κ(v)).

Example 3.3. Let K = F(t) and let v be the discrete valuation associated with t .
Then κ(v)= F and ∂v(t · hK )= h for all h ∈ H j−1(F).

Lemma 3.4. Let K ′/K be a field extension and let v′ be a discrete valuation on K ′

unramified over its restriction v on K. Then the diagram

H j (K )nr,v

��

∂v
// H j−1(κ(v))

��

H j (K ′)nr,v′
∂v′
// H j−1(κ(v′))

commutes.



ROST INVARIANT OF THE CENTER, REVISITED 377

3C. Invariants of tori. Let A be an étale F-algebra and T A the corresponding
quasisplit torus, i.e.,

T A(K )= (A⊗F K )×

for every field extension K/F . If B is another étale F-algebra, then

T A×B
= T A

× T B

and
Inv d

h (T
A×B)' Inv d

h (T
A)⊕ Inv d

h (T
B).

Write A as a product of fields: A = L1× L2× · · ·× Ls . Set

H i (A) := H i (L1)⊕ H i (L2)⊕ · · ·⊕ H i (Ls).

For d ≥ 2 define a homomorphism

αA
: H d−1(A)→ Inv d

h (T
A)

as follows. If h ∈ H d−1(A), then the invariant αA(h) is defined by

αA(h)(t)= NA⊗K/K (t · h A⊗K ) ∈ H d(K )

for a field extension K/F and t ∈ T A(K )= (A⊗F K )×.

Remark 3.5. In the notation of the previous section, (T A)◦ ' T A, and we have

H d−1(F, (T A)◦)= H d−1(F, T A)= H d−1(A,Gm)= H d−1(A).

The pairing (2.10) for the torus T A, i = 0, and j = 2,

A×⊗ H 2(A)= T A(F)⊗ H 2(F, (T A)◦)→ H 3(F),

takes t⊗h to NA/F (t ∪h A)= α
A(h)(t). In other words, the map αA coincides with

the map
H 2(F, (T A)◦)→ Inv3

h(T
A)

given by the cup product.

Note that every element h ∈ H d−1(A) is split by an étale extension of A, hence
the invariant αA(h) vanishes when restricted to Fsep.

Question 3.6. Do all invariants in Inv d
h (T

A) vanish when restricted to Fsep?

The answer is “yes” when char(F)= 0. For any prime p 6= char(F) and for F
separably closed, the zero map is the only invariant T A(∗)→ H d(∗,Qp/Zp(d−1))
that is a homomorphism of groups [Merkurjev 1999, Proposition 2.5].

The main result of this section is:
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Theorem 3.7. The sequence

0→ H d−1(A) αA
−→ Inv d

h (T
A)

res
−→ Inv d

h (T
A

sep)

is exact.

That is, defining Ĩnvd
h(T

A) := ker res, we claim that αA
: H d−1(A)−→∼ Ĩnvd

h(T
A).

The torus T A is embedded into the affine space A(A) as an open set. Let Z A

be the closed complement A(A) \ T A and let S A be the smooth locus of Z A (see
[Merkurjev et al. 2002]). Then S A is a smooth scheme over A. In fact, S A is a
quasisplit torus over A of the A-algebra A′ such that A× A′ ' A⊗F A. We have
A= L1× L2×· · ·× Ls , where the L i are finite separable field extensions of F, and
the connected components of S A (as well as the irreducible components of Z A) are
in one-to-one correspondence with the factors L i . Let vi for i = 1, 2, . . . , s be the
discrete valuation of the function field F(T A) corresponding to the i-th connected
component Si of S A, or equivalently, to the i-th irreducible component Zi of Z A.
The residue field of vi is equal to the function field F(Zi )= F(Si ). We then have
the residue homomorphisms

∂i : H d(F(T A))nr,vi → H d−1(F(Zi ))= H d−1(F(Si )).

Write H̃ d(F(T A)) for the kernel of the natural homomorphism H d(F(T A))→

H d(Fsep(T A)). Since every extension of the valuation vi to Fsep(T A) is unramified,
we have H̃ d(F(T A))⊂ H d(F(T A))nr,vi for all i . Write F(S A) for the product of
F(Si ) over all i . The sum of the restrictions of the maps ∂i on H̃ d(F(T A)) yields
a homomorphism

∂ A
: H̃ d(F(T A))→ H d−1(F(S A)).

Applying u ∈ Ĩnvd
h(T

A) to the generic element ggen of T A over the function field
F(T A), we get a cohomology class u(ggen) ∈ H d(F(T A)). By assumption on u,
we have u(ggen) ∈ H̃ d(F(T A)). Applying ∂ A, we get a homomorphism

β A
: Ĩnvd

h(T
A)→ H d−1(F(S A)), u 7→ ∂ A(u(ggen)).

If B is another étale F-algebra, we have (see [Merkurjev et al. 2002])

S A×B
= S A

× T B
+ T A

× SB.

In particular, F(S A)⊂ F(S A×B)⊃ F(SB). Lemma 3.4 then gives:

Lemma 3.8. The diagram

Ĩnvd
h(T

A)⊕ Ĩnvd
h(T

B)
β A
⊕βB
// H d−1(F(S A))⊕ H d−1(F(SB))

��

Ĩnvd
h(T

A×B)
β A×B

// H d−1(F(S A×B))

commutes.
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Recall that S A is a smooth scheme over A with an A-point. It follows that
A ⊂ F(S A) and the natural homomorphism

H j (A)→ H j (F(S A))

is injective by [Garibaldi et al. 2003, Proposition A.10]. We shall view H j (A) as a
subgroup of H j (F(S A)).

Let A = L1× L2× · · ·× Ls be the decomposition of an étale F-algebra A into
a product of fields. The height of A is the maximum of the degrees [L i : F]. The
height of A is 1 if and only if A is split. The following proposition will be proved
by induction on the height of A.

Proposition 3.9. The image of the homomorphism β A is contained in H d−1(A).

Proof. By Lemma 3.8 we may assume that A = L is a field. If L = F, we have
S A
= Spec F, so A = F(S A) and the statement is clear.

Suppose L 6= F. The algebra L is a canonical direct factor of L⊗F L . It follows
that the homomorphism βL is a direct summand of βL⊗L. Since the height of
the L-algebra L ⊗F L is less than the height of A, by the induction hypothesis,
Im(βL⊗L)⊂ H d−1(L ⊗ L). It follows that Im(βL)⊂ H d−1(L). �

It follows from Proposition 3.9 that we can view β A as a homomorphism

β A
: Ĩnvd

h(T
A)→ H d−1(A).

We will show that αA and β A are isomorphisms inverse to each other. First
consider the simplest case.

Lemma 3.10. The maps αA and β A are isomorphisms inverse to each other in the
case A = F.

Proof. If A = F, then we have T A
= Gm . The generic element ggen is equal to

t ∈ F(t)× = F(Gm). Let h ∈ H d−1(A) = H d−1(F). Then the invariant αF (h)
takes t to t · h ∈ H̃ d(F(t)). By Example 3.3, βF (αF (h)) = ∂v(t · h) = h, i.e.,
the composition βF

◦αF is the identity. It suffices to show that αF is surjective.
Take u ∈ Ĩnvd

h(Gm). We consider t as an element of the complete field L := F((t))
and let x = uL(t) ∈ H d(L). By assumption, x is split by the maximal unramified
extension L ′ := Fsep((t)) of L . By a theorem of Kato [1982],

x ∈ Ker
(
H d(L)→ H d(L ′)

)
= H d(F)⊕ t · H d−1(F),

i.e., x = h′L + t · hL for some h′ ∈ H d(F) and h ∈ H d−1(F).
Let K/F be a field extension. We want to compute uK (a) ∈ H d(K ) for an

element a ∈ K×. Consider the field homomorphism ϕ : L→ M := K ((t)) taking a
power series f (t) to f (at). By functoriality,

uM(at)= uM(ϕ(t))= ϕ∗(uL(t))= ϕ∗(x)= ϕ∗(h′L + t · hL)= h′M + (at) · hM ,
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therefore,

uM(a)= uM(at)− uM(t)= (h′M + (at) · hM)− (h′M + t · hM)= a · hM .

It follows that u(a)=a ·hK since the homomorphism H d(K )→ H d(M) is injective
by [Garibaldi et al. 2003, Proposition A.9]. We have proved that u = αA(h), i.e.,
αA is surjective. �

Lemma 3.11. The homomorphism β A is injective.

Proof. The proof is similar to the proof of Proposition 3.9. We induct on the
height of A. The right vertical homomorphism in Lemma 3.8 is isomorphic to
the direct sum of the two homomorphisms H d−1(F(S A))→ H d−1(F(S A

× T B))

and H d−1(F(SB))→ H d−1(F(T A
× SB)). Both homomorphisms are injective by

[Garibaldi et al. 2003, Proposition A.10]. It follows from Lemma 3.8 that we may
assume that A = L is a field.

The case L = F follows from Lemma 3.10, so we may assume that L 6= F. The
homomorphism βL is a direct summand of βL⊗L. The latter is injective by the
induction hypothesis, hence so is βL. �

Lemma 3.12. The composition β A
◦αA is the identity.

Proof. We again induct by the height of A. By Lemma 3.8 that we may assume
that A = L is a field.

The case L = F follows from Lemma 3.10, so we may assume that L 6= F. The
homomorphisms αL and βL are direct summands of αL⊗L and βL⊗L, respectively.
The composition βL⊗L

◦αL⊗L is the identity by the induction hypothesis, hence
β A
◦αA is also the identity. �

It follows from Lemma 3.11 and Lemma 3.12 that αA and β A are isomorphisms
inverse to each other. This completes the proof of Theorem 3.7.

4. Invariants of groups of multiplicative type

In this section, C denotes a group of multiplicative type over F such that there
exists an exact sequence

1→ C→ T → S→ 1

such that S and T are quasitrivial tori. For example, this holds if C is the center
of a simply connected semisimple group G over F, such as µn . In that case, C
is isomorphic to the center of the quasisplit inner form Gq of G, and we take T
to be any quasitrivial maximal torus in Gq . Then T ∗ is the weight lattice 3w and
S∗ '3r , where the Galois action permutes the fundamental weights and simple
roots, respectively.
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Proposition 4.1. Every invariant in Ĩnv3
h(H

1(C)) is given by the cup product via
the pairing (2.9) with a unique element in H 2(F,C◦).

Proof. Since H 1(K , T )= 1 for every K, the connecting homomorphism S(K )→
H 1(K ,C) is surjective for every K and therefore the natural homomorphism

Inv3
h(H

1(C))→ Inv3
h(S)

is injective.
Consider the diagram

H 2(F,C◦)

��

� � // H 2(F, S◦)

o

��

// H 2(F, T ◦)

o

��

Ĩnv3
h(H

1(C)) �
�

// Ĩnv3
h(S) // Ĩnv3

h(T )

where the vertical homomorphisms are given by cup products and the top row
comes from the exact sequence (2.11); it is exact since H 1(K , T ◦)= 1 for every
field extension K/F . The bottom row comes from applying Ĩnv3

h to the sequence
T (K )→ S(K )→ H 1(K ,C); it is a complex. The vertical arrows are cup products,
and the middle and right ones are isomorphisms by Theorem 3.7 and Remark 3.5.
The diagram commutes by Proposition 2.12. By diagram chase, the left vertical
map is an isomorphism. �

Note that the group H 2(F, T ) is a direct sum of the Brauer groups of finite
extensions of F. Therefore, we have the following, a coarser version of [Garibaldi
2012, Proposition 7]:

Lemma 4.2. The homomorphism H 2(F,C)→
∐

Br(K ), where the direct sum is
taken over all field extensions K/F and all characters of C over K, is injective.

Remark 4.3. The group G becomes quasisplit over the function field F(X) of the
variety X of Borel subgroups of G, so F(X) kills tG . But the kernel of H 2(F,C)→
H 2(F(X),C) need not be generated by tG , as can be seen by taking G of inner
type Dn for n divisible by 4.

5. Root system preliminaries

5A. Notation. Let V be a real vector space and R ⊂ V a root system (which we
assume is reduced). Write 3r ⊂3w for the root and weight lattices, respectively.
For every root α ∈ R, the reflection sα with respect to α is given by the formula

(5.1) sα(x)= x −α∨(x) ·α,

for every x ∈ V, where α∨ ∈ V ∗ := HomR(V,R) is the coroot dual to α. Write
R∨ ⊂ V ∗ for the dual root system and 3∨r ⊂ 3

∨
w for the corresponding lattices.
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We have
3∨r = (3w)

∗
:= Hom(3w,Z) and 3∨w = (3r )

∗.

The Weyl group W of R is a normal subgroup of the automorphism group
Aut(R) of the root system R. The factor group Aut(R)/W is isomorphic to the
automorphism group Aut(Dyn(R)) of the Dynkin diagram of R. There is a unique
Aut(R)-invariant scalar product ( , ) on V normalized so that square-length dα∨ :=
(α, α) of short roots in every irreducible component of R is equal to 1. The formula
(5.1) yields an equality

α∨(x)=
2(α, x)
(α, α)

for all x ∈ V and α ∈ R.
We may repeat this construction with the dual root system R∨, defining ( , )∨ on

V ∗ so that the square-length dα := (α∨, α∨)∨ is 1 for short coroots α∨ (equivalently,
long roots α).

5B. The map ϕ.

Proposition 5.2. There is a unique R-linear map ϕ : V ∗→ V such that ϕ(α∨)= α
for all short α∨. Furthermore, ϕ is Aut(R)-invariant, ϕ(α∨)= dαα for all α∨ ∈ R∨,
ϕ(3∨w)⊆3w, and ϕ(3∨r )⊆3r . Analogous statements hold for ϕ∨ : V → V ∗. If R
is irreducible, then ϕϕ∨ : V ∗→ V ∗ and ϕ∨ϕ : V → V are multiplication by dα for
α a short root.

Proof. Define ϕ∨ by 〈ϕ∨(x), y〉 = 2(x, y) for x, y ∈ V and ϕ by 〈x ′, ϕ(y′)〉 =
2(x ′, y′)∨ for x ′, y′ ∈ V ∗. We have

〈ϕ∨(α), x〉 = 2(α, x)= (α, α) ·α∨(x)= dα∨ ·α∨(x),

hence ϕ∨(α)= dα∨ ·α∨, and similarly for ϕ. For uniqueness of ϕ and ϕ∨, it suffices
to note that the short roots generate V ∗, which is obvious because they generate a
subspace that is invariant under the Weyl group.

Let x ∈3w. By definition,

Z 3 α∨(x)=
2(x, α)
(α, α)

for all α ∈ R. It follows that 〈ϕ∨(x), α〉 = 2(x, α) ∈ Z since (α, α) ∈ Z. Therefore,

ϕ(x) ∈3∨w.

For each root β ∈ R, ϕ∨ϕ(β∨) = dβdβ∨β∨ and similarly for ϕϕ∨. As R is
irreducible, either all roots have the same length (in which case dβdβ∨ = 1) or there
are two lengths and β and β∨ have different lengths (in which case dβdβ∨ is the
square-length of a long root); in either case the product equals dα as claimed. �
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Remark 5.3. If the root system R is simply laced, then ϕ gives isomorphisms from
V ∗, 3∨w, and 3∨r to V, 3w, and 3r , respectively, that agree with the canonical
bijection R∨→ R defined by α∨↔ α.

Example 5.4. For α∨ a simple coroot, we write f ∨α for the corresponding fun-
damental dominant weight of R∨. Consider an element x ′ =

∑
xββ∨ where

β ranges over the simple roots. As ( f ∨α , β
∨)∨ = 1

2〈 f
∨
α , β〉(β

∨, β∨)∨, we have
( f ∨α , x ′)∨ = xα( f ∨α , α

∨)∨ = 1
2 dαxα. That is, 〈ϕ( f ∨α ), x ′〉 = dαxα = 〈dα fα, x ′〉 for

all x ′, and we conclude that ϕ( f ∨α )= dα fα.

Remark 5.5. Let q ∈ S2(3w)
W be the only quadratic form on 3∨r that is equal to 1

on every short coroot in every component of R∨. It is shown in [Merkurjev 2016,
Lemma 2.1] that the polar form p of q in 3w ⊗3w in fact belongs to 3r ⊗3w.
Then the restriction of ϕ on 3∨w coincides with the composition

3∨w
id⊗p
−−→3∨w⊗ (3r ⊗3w)= (3

∨

w⊗3r )⊗3w→3w.

5C. The map ρ. Write 1 :=3w/3r and 1∨ :=3∨w/3
∨
r . Note that 1 and 1∨ are

dual to each other with respect to the pairing

1⊗1∨→Q/Z.

The group W acts trivially on 1 and 1∨, hence 1 and 1∨ are Aut(Dyn(R))-
modules. The homomorphism ϕ yields an Aut(R)-equivariant homomorphism

ρ :1∨→1.

The map ρ is an isomorphism if R is simply laced (because ϕ is an isomorphism) or
if3w =3r . Similarly, ρ = 0 if and only if ϕ(3∨w)⊆3r , if and only if p ∈3r⊗3r .

Example 5.6. Suppose R has type Cn for some n ≥ 3. Consulting the tables in
[Bourbaki 2002], f ∨n , the fundamental weight of R∨ dual to the unique long simple
root αn , is the only fundamental weight of R∨ not in the root lattice. As αn is long,
dαn = 1, so ϕ( f ∨n )= fn , which belongs to 3r if and only if n is even. That is, ρ = 0
if and only if n is even; for n odd, ρ is an isomorphism.

Example 5.7. Suppose R has type Bn for some n ≥ 2. For the unique short simple
root αn , dαn = 2, and ϕ( f ∨n )= 2 fn is in 3r . For 1≤ i < n, ϕ( f ∨i )= fi ∈3r . We
find that ρ = 0 regardless of n.

Thus we have determined ker ρ for every irreducible root system.

Example 5.8. Suppose R is irreducible and char(F) = dα for some short root α.
Then for G, G∨ simple simply connected with root system R, R∨ respectively,
there is a “very special” isogeny π : G→ G∨. The restriction of π to a maximal
torus in G induces a Z-linear map on the cocharacter lattices π∗ :3∨r →3r , which,
by [Conrad et al. 2015, Proposition 7.1.5] or [Steinberg 1963, 10.1], equals ϕ.
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In the case R = Bn , π is the composition of the natural map G = Spin2n+1→

SO2n+1 with the natural (characteristic 2 only) map SO2n+1→ Sp2n . As π vanishes
on the center of G, it follows that ρ= 0 as in Example 5.7. Similarly, in case R=Cn ,
one can recover Example 5.6 by noting that the composition π :G=Sp2n→Spin2n+1
with the spin representation Spin2n+1 ↪→ GL2n is the irreducible representation of
G with highest weight fn by [Steinberg 1963, §11].

Example 5.9. For R = An−1, define τ :1−→∼ Z/nZ via τ( f1)= 1/n ∈Q/Z. As
〈 f1, f ∨1 〉 = (n−1)/n ∈Q, defining τ∨ :1∨ −→∼ Z/nZ via τ∨( f ∨1 )=−1/n ∈Q/Z

gives a commutative diagram

1⊗1∨
〈 , 〉

//

τ⊗τ∨ o

��

Q/Z

Z/nZ⊗Z/nZ

natural

88

i.e., τ∨ is the isomorphism induced by τ and the natural pairings. Furthermore,
although ρ is induced by the canonical isomorphism R∨' R, the previous discussion
shows that the diagram

(5.10)

1∨
ρ

//

τ∨ o

��

1

τ o

��

Z/nZ
−1
// Z/nZ

commutes, where the bottom arrow is multiplication by −1.
(The action of Aut(R) on1 interchanges f1 and fn−1. Defining instead τ(− f1)=

τ( fn−1) = 1/n also gives the same commutative diagram (5.10). That is, the
commutativity of (5.10) is invariant under Aut(R). )

6. Statement of the main result

6A. The map ρ. Let G be a simply connected semisimple group with root system R.
Let C be the center of G. Then C∗ =3w/3r =1 and C∗ =3∨w/3

∨
r =1

∨, and
we get from Section 5C a homomorphism

ρ = ρG : C∗→ C∗

of Galois modules. Therefore, we have a group homomorphism

ρ̂ = ρ̂G : C→ C◦.

Note that ρ̂ is an isomorphism if R is simply laced.

6B. The Tits class. Let G be a simply connected group over F with center C .
Write tG for the Tits class tG ∈ H 2(F,C). By definition, tG =−∂(ξG), where

∂ : H 1(F,G/C)→ H 2(F,C)
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is the connecting map for the exact sequence 1→ C → G → G/C → 1 and
ξG ∈ H 1(F,G/C) is the unique class such that the twisted group ξG is quasisplit.

6C. Rost invariant for an absolutely simple group. Let G be a simply connected
group over F. Recall (see [Garibaldi et al. 2003]) that, for G absolutely simple,
Rost defined an invariant rG ∈ Inv3(H 1(G)) called the Rost invariant, i.e., a map

rG : H 1(F,G)→ H 3(F,Q/Z(2))

that is functorial in F.

Lemma 6.1. If G is an absolutely simple and simply connected algebraic group,
then o(rG) · tG = 0.

Proof. The order o(rG) of rG is calculated in [Garibaldi et al. 2003], and in each
case it is a multiple of the order of tG . �

As mentioned in [Gille 2000, §2.3], there are several definitions of the Rost
invariant that may differ by a sign. Gille and Quéguiner [2011] proved that for
the definition of the Rost invariant rG they chose, in the case G = SL1(A) for
a central simple algebra A of degree n over F, the value of rG on the image of
the class aF×n

∈ F×/F×n
= H 1(F, µn) in H 1(F,G) is equal to (a)∪ [A] if n is

not divisible by char(F) and to −(a) ∪ [A] if n is a power of p = char(F) > 0.
Therefore, we normalize the Rost invariant by multiplying the p-primary component
of the Rost invariant (of all groups) by −1 in the case p = char(F) > 0.

6D. The main theorem. For G semisimple and simply connected over F, there is
an isomorphism

(6.2) ψ : G −→∼
n∏

i=1

RFi/F (Gi ),

where the Fi are finite separable extensions of F , and Gi is an absolutely simple
and simply connected Fi -group. The product of the corestrictions of the rGi (in the
sense of [Garibaldi et al. 2003, page 34]) is then an invariant of H 1(G), which we
also denote by rG and call the Rost invariant of G. The map ψ identifies the center
C of G with

∏
i RFi/F (Ci ) for Ci the center of Gi , and the Tits class tG ∈ H 2(F,C)

with
∑

tGi ∈
∑

H 2(Fi ,Ci ).
The composition rG ◦ i∗ is a group homomorphism by [Merkurjev et al. 2002,

Corollary 1.8] or [Garibaldi 2001, Lemma 7.1]. That is, the composition rG ◦ i∗

in Theorem 1.2 taken over all field extensions of F can be viewed not only as an
invariant of H 1(C), but as an element of Inv3

h(H
1(C) as in Definition 3.1. Over a

separable closure of F, the inclusion of C into G factors through a maximal split
torus and hence this invariant is trivial by Hilbert’s Theorem 90. By Proposition 4.1
the composition is given by the cup product with a unique element in H 2(F,C◦).
We will prove Theorem 1.2, which says that this element is equal to −t◦G .
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6E. Alternative formulation. Alternatively, we could formulate the main theorem
as follows. The group of invariants Inv3(H 1(G)) is a sum of n cyclic groups with
generators (the corestrictions of) the rGi , and in view of Lemma 6.1 we may define
a homomorphism

(6.3) Inv3(H 1(G))→ H 2(F,C) via
∑

nirGi 7→

∑
−ni tGi .

Theorem 6.4. For every invariant s : H 1(∗,G)→ H 3(∗,Q/Z(2)), the composition

H 1(∗,C)→ H 1(∗,G)→ H 3(∗,Q/Z(2))

equals the cup product with the image of s under the composition

Inv3(H 1(G))→ H 2(F,C)→ H 2(F,C◦).

This will follow immediately from the main theorem, which we will prove over
the course of the next few sections.

7. Rost invariant of transfers

The following statement is straightforward.

Lemma 7.1. Let A be an étale F-algebra and G a simply connected semisimple
group scheme over A, with C the center of G. Then C ′ := RA/F (C) is the center of
G ′ := RA/F (G) and C ′◦ ' RA/F (C◦), and the diagram

H i (A,C)

o

��

ρ̂∗G
// H i (A,C◦)

o

��

H i (F,C ′)
ρ̂∗G′
// H i (F,C ′◦)

commutes.

Lemma 7.2. Set C ′ := RA/F (C) and G ′ := RA/F (G). Then the image of tG under
the isomorphism H 2(A,C)−→∼ H 2(F,C ′) is equal to tG ′ .

Proof. The corestriction of a quasisplit group is quasisplit. �

Lemma 7.3. Let G be a simply connected semisimple algebraic group scheme over
an étale F-algebra A. If Theorem 1.2 holds for G, then it also holds for RA/F (G).

Proof. Let C be the center of G and G ′ := RA/F (G). The group C ′ := RA/F (C) is
the center of G ′. Let x ∈ H 1(A,C) and let x ′ ∈ H 1(F,C ′) be the image of x under
the isomorphism ν : H 1(A,C)−→∼ H 1(F,C ′). We have

rG ′(i ′
∗
(x ′))= rG ′(ν(i∗(x)))

= NA/F (rG(i∗(x)) by [Garibaldi et al. 2003, Proposition 9.8]

= NA/F (−t◦G ∪ x) by Theorem 1.2 for x

=−t◦G ′ ∪ x ′ by Lemmas 2.14, 7.1 and 7.2. �
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If Theorem 1.2 holds for semisimple groups G1 and G2, then it also holds for the
group G1×G2. Combining this with Lemma 7.3 reduces the proof of Theorem 1.2
to the case where G is absolutely almost simple.

8. Rost invariant for groups of type A

In this section, we will prove Theorem 1.2 for G absolutely simple of type An−1

for each n ≥ 2.

8A. Inner type. Suppose G has inner type. Then there is an isomorphism ψ :

SL1(A)−→∼ G, where A is a central simple algebra of degree n over F. The map
ψ restricts to an isomorphism µn −→

∼ C , identifying C∗ with Z/nZ, and induces
ψ◦ : C◦ −→∼ µn . We find a commutative diagram

(8.1)

H 2(F,C◦)⊗ H 1(F,C) −−−→ H 3(F,Q/Z(2))

ψ◦⊗ψ−1

y ∥∥∥
H 2(F, µn)⊗ H 1(F, µn) −−−→ H 3(F,Q/Z(2))

where the top and bottom arrows are the cup product from (2.9).
The connecting homomorphism arising from the Kummer sequence

1→ µn→ Gm→ Gm→ 1

gives an isomorphism H 1(K , µn)' K×/K×n for every extension K/F . For each
field extension K/F , the isomorphismψ identifies the map H 1(K ,C)→H 1(K ,G)
with the obvious map K×/K×n

= H 1(K , µn)→ H 1(K ,SL1(A))= K×/Nrd(A×K ).
Further, ψ−1(tG) ∈ H 2(K , µn) is the Brauer class [A] of A as in [Knus et al. 1998,
pages 378 and 426]. By Example 5.9, the composition

H 1(F, µn)
ψ
−→ H 1(F,C) ρ̂∗

−→ H 1(F,C◦) ψ◦
−→ H 1(F, µn)

is multiplication by −1 and in particular [A] 7→ tG 7→ t◦G 7→ −[A]. That is,
Theorem 1.2 claims that the diagram

(8.2)

H 1(K , µn)

[A]⊗
��

ψ−1
// H 1(K ,C) // H 1(K ,G)

rG
��

H 2(K , µn)⊗ H 1(K , µn) // H 3(K ,Q/Z(2))

commutes, where the bottom arrow is the same as in (8.1).
Let p be a prime integer and write m for the largest power of p dividing n.

Both maps H 1(K , µn)→ H 3(K ,Q/Z(2)) in (8.2) are group homomorphisms, so
it suffices to verify Theorem 1.2 on each p-primary component rG(x)p of the Rost
invariant with values in Qp/Zp(2). In the case where p does not divide char(F), the
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commutativity of (8.2) is part of [Gille and Quéguiner-Mathieu 2011, Theorem 1.1].
(Note that the definition of cup product used in [Gille and Quéguiner-Mathieu 2011],
the one from [Gille and Szamuely 2006, §3.4], is the same as (8.1), cf. [Freitag and
Kiehl 1988, pages 302–303].)

Now let p = char(F) > 0. Consider the sheaf νm( j) in the étale topology
over F defined by νm( j)(L)= K j (L)/pm K j (L). The natural morphisms Z( j)→
νm( j)[− j] for j ≤ 2 are consistent with the products, hence we have a commutative
diagram:

(Z/mZ)(1)
L
⊗(Z/mZ)(1)

o

��

// (Z/mZ)(2)

o

��

νm(1)[−1]⊗ νm(1)[−1] // νm(2)[−2]

Therefore, we have a commutative diagram

H 2(F, µm)⊗ H 1(F, µm)

o

��

// H 3(F,Z/pmZ(2))

o

��

H 1(F, νm(1))⊗ H 0(F, νm(1)) // H 1(F, νm(2))

(see Remark 2.13 after Proposition 2.12). The bottom arrow is given by the cup
product map

mBr(F)⊗ (F×/F×m)→ H 3(F,Q/Z(2))

(see [Gille and Quéguiner-Mathieu 2011, 4D]). It is shown in [Gille and Quéguiner-
Mathieu 2011, Theorem 1.1] that the p-component of the Rost invariant of G is
given by the formula

rG(x)p = [A]p ∪ (x) ∈ H 3(K ,Qp/Zp(2))

for every x ∈ K×. (The formula in [Gille and Quéguiner-Mathieu 2011] contains
an additional minus sign, but it does not appear here due to the adjustment in the
definition of rG in Section 6C.) This completes the proof of Theorem 1.2 for groups
of inner type A.

8B. Outer type. Now suppose that G has outer type An−1. There is an isomorphism
ψ :G−→∼ SU(B, τ ), where B is a central simple algebra of degree n over a separable
quadratic field extension K/F with an involution τ of the second kind (τ restricts
to a nontrivial automorphism of K/F). The map ψ identifies C with µn,[K ], and
C = C◦.

Suppose first that n is odd. Since G K ' SL1(B), the theorem holds over K. As
K has degree 2 over F and C has odd exponent, the natural map H 1(F,C)→
H 1(K ,C) is injective, hence the theorem holds over F by the following general
lemma.
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Lemma 8.3. Let L1, L2, . . . , Ls be field extensions of F such that the natural
homomorphism H 2(F,C)→

∏
i H 2(L i ,C) is injective. If Theorem 1.2 holds for

G over all fields L i , then it also holds over F.

Proof. The left vertical map in Theorem 1.2 is multiplication by some element
h ∈ H 2(F,C◦). We need to show that h = −t◦G . This equality holds over all
fields L i , hence it holds over F by the injectivity assumption. �

So we may assume that n is even. Then H 1(F,C) is isomorphic to a factor group
of the group of pairs (a, z) ∈ F×× K× such that NK/F (z)= an and H 2(F,C) is
isomorphic to a subgroup of Br(F)⊕Br(K ) of all pairs (v, u) such that vK = mu
and NK/F (u)= 0, see [Merkurjev et al. 2002, pages 795–796].

Suppose that B is split; we follow the argument in [Knus et al. 1998, 31.44]. Then
SU(B, τ )= SU(h), where h is a hermitian form of trivial discriminant on a vector
K -space of dimension n for the quadratic extension K/F . Let q(v) := h(v, v)
be the associated quadratic form on V viewed as a 2n-dimensional F-space. The
quadratic form q is nondegenerate, and we can view SU(h) as a subgroup of
H := Spin(V, q). The Dynkin index of G in H is 1, hence the composition
H 1(K ,G)→ H 1(K , H) rH

−→ H 3(K ) equals the Rost invariant of G. Then rH is
given by the Arason invariant, which has order 2. A computation shows that the
image of the pair (a, z) representing an element x ∈H 1(F,C) under the composition

H 1(F,C)→ H 1(F,G) rG
−→ H 3(F)

coincides with [D] ∪ x , where D is the class of the discriminant algebra of h. On
the other hand, [D] ∪ x coincides with the cup product of x with the Tits class
tG =−t◦G represented by the pair ([D], 0) in H 2(F,C◦), proving Theorem 1.2 in
this case.

Now drop the assumption that B is split. As for the n odd case, the theorem
holds over K. Note that there is an injective map H 2(F,C)→Br(F)⊕Br(K ). Let
X = RK/F (SB(B)). By [Merkurjev and Tignol 1995, 2.4.6], the map Br(F)→
Br(F(X)) is injective, hence the natural homomorphism

H 2(F,C)→ H 2(F,CF(X))⊕ H 2(F,CK )

is injective. The theorem holds over K and by the preceding paragraph the theorem
holds over F(X). Therefore, by Lemma 8.3, the theorem holds over F.

9. Conclusion of the proof of Theorem 1.2

Choose a system of simple roots 5 of G. Write 5r for the subset of 5 consisting
of all simple roots whose fundamental weight belongs to 3r and let 5′ :=5 \5r .
Inspection of the Dynkin diagram shows that all connected components of 5′ have
type A.
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Every element of 5r is fixed by every automorphism of the Dynkin diagram,
hence is fixed by the ∗-action of the absolute Galois group of F on 5. It follows
that the variety X of parabolic subgroups of Gsep of type 5′ is defined over F. By
[Merkurjev and Tignol 1995], the kernel of the restriction map Br(K )→Br(K (X))
for every field extension K/F is generated by the Tits algebras associated with
the classes in C∗ of the fundamental weights fα corresponding to the simple roots
α∈5r . But fα ∈3r , so these Tits algebras are split [Tits 1971], hence the restriction
map Br(K )→Br(K (X)) is injective and, by Lemma 4.2, the natural homomorphism
H 2(F,C)→ H 2(F(X),C) is injective. In view of Lemma 8.3, it suffices to prove
Theorem 1.2 over the field F(X), i.e., we may assume that G has a parabolic
subgroup of type 5′. The Levi subgroup G ′ of that parabolic is simply connected
with Dynkin diagram 5′, and its center C ′ contains C [Garibaldi and Quéguiner-
Mathieu 2007, Proposition 5.5]. Write j for the embedding homomorphism C→C ′

and j◦ for the dual C ′◦→ C◦.
Let G ′ =

∏
i G ′i with Gi simply connected simple groups, C =

∏
Ci , where Ci

is the center of Gi , and 5′i ⊂5 is the system of simple roots of Gi . Write j◦i for
the composition C ′◦i → C ′◦→ C◦.

Lemma 9.1. The map j∗i : H
2(F,C)→ H 2(F,C ′i ) takes the Tits class tG to tG ′i .

Proof #1. It suffices to check that j∗(tG)= tG ′ , for the projection

H 2(F,C ′)→ H 2(F,C ′i )

sends tG ′ 7→ tG ′i .
There is a rank |5r | split torus S in G whose centralizer is S ·G ′. Arguing as in

Tits’ Witt-type theorem [Tits 1966, 2.7.1, 2.7.2(d)], one sees that the quasisplit inner
form of G is obtained by twisting G by a 1-cocycle γ with values in CG(S)/C ,
equivalently, in G ′/C . Clearly, twisting G ′ by γ gives the quasisplit inner form of G ′.
The Tits class tG is defined to be−∂G(γ )where ∂G is the connecting homomorphism
H 1(F,G/C)→H 2(F,C) induced by the exact sequence 1→C→G→G/C→1
and similarly for G ′ and C ′. The diagram

H 1(F,G ′/C) //

��

H 1(F,G/C)
∂G

// H 2(F,C)

j∗

��

H 1(F,G ′/C ′)
∂G′

// H 2(F,C ′)

commutes trivially, so j∗(tG)= j∗(−∂G(γ ))=−∂G ′(γ )= tG ′ as claimed. �

Proof #2. For each χ ∈T ∗, define F(χ) to be the subfield of Fsep of elements fixed by
the stabilizer of χ under the Galois action. Note that because G is absolutely almost
simple, the ∗-action fixes 5r elementwise, and F(χ) equals the field extension
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F(χ |T ′) defined analogously for χ ∈ (T ′)∗. The diagram

H 2(F,C)
j∗
//

χ |C

''

H 2(F,C ′)

χ |C ′

��

H 2(F(χ),Gm)

commutes. Now χ |C ′(tG ′ − j∗(tG)) = χ |C ′(tG ′)− χ |C(tG), which is zero for all
χ ∈ T ∗ by [Tits 1971, §5.5]. As

∏
χ∈(T ′)∗ χ |C ′ is injective by [Garibaldi 2012,

Proposition 7], tG ′ = j∗(tG) as claimed. �

The diagram 5′i is simply laced. Write di for the square-length of α∨ ∈ R∨ for
α ∈5′i .

Lemma 9.2. The homomorphism ρ̂G : C→ C◦ coincides with the composition

C j
−→C ′ ρ̂G′

−−→C ′◦ =
∏

i

C ′◦i
∏

i ( ji ◦)di
−−−−→C◦,

where ji is the composition C→ C ′→ C ′i .

Proof. For every simple root α ∈5 write fα for the corresponding fundamental
weight. Write 3′r and 3′w for the root and weight lattices, respectively, of the root
system R′ of G ′. Let

8 := { fα | α ∈5r }.

Then 8 is a Z-basis for the kernel of the natural surjection 3w→3′w. If α ∈5′,
we write α′ for the image of α and f ′α for the image of fα under this surjection.
All α′ (respectively, f ′α) form the system of simple roots (respectively, fundamental
weights) of R′. If α ∈5′, the image α′∨ of α∨ under the inclusion 3′r

∨
↪→3r

∨ is
a simple coroot of R′.

If V is the real vector space of R, then R′ ⊂ V ′ := V/ span(8) and R′∨ ⊂
V ′∗ ⊂ V ∗. Let x ∈ 3∨w, i.e., 〈x, α〉 ∈ Z for all α ∈ 5. Since 8 ⊂ 3r , we have
aα := 〈x, fα〉 ∈ Z for all α ∈ 5r . Then the linear form x ′ := x −

∑
α∈5r

aαα∨

vanishes on the subspace of V spanned by 8, hence x ′ ∈ 3′w
∨. We then have a

well-defined homomorphism

(9.3) s :3∨w→3′w
∨
, x 7→ x ′.

If α ∈ 5′, then 〈x ′, α〉 = 〈x ′, α′〉. It follows that if x ′ =
∑

α∈5 bα f ∨α in 3∨w for
bα = 〈x ′, α〉 ∈ Z, then x ′ =

∑
α∈5′ bα f ′α

∨ in 3′w
∨.

Since 8⊂3r , we have a surjective homomorphism

C ′∗ =3′w/3
′

r =3w/ span(8,5′)→3w/3r = C∗

dual to the inclusion of C into C ′. The dual homomorphism

C∗ =3∨w/3
∨

r →3′w
∨
/3′r

∨
= C ′

∗
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is induced by s.
Consider the diagram

3∨w

s
��

ϕ
// 3w

3′w
∨ ϕ′

// 3′w

t

OO

where the map t is defined by t ( f ′α)= dα fα for all α ∈5′ and the maps ϕ and ϕ′

are defined in Proposition 5.2.
It suffices to prove that Im(t ◦ϕ′ ◦ s−ϕ)⊂3r .
Consider the other diagram

3∨w
ρ
// 3w

3′w
∨

t∨

OO

ρ′
// 3′w

t

OO

where t∨( f ′α
∨
)= f ∨α for all α ∈5′. This diagram is commutative. Indeed,

(ρ ◦ t∨)( f ′α
∨
)= ρ( f ∨α )= dα fα = t ( f ′α)= (t ◦ ρ

′)( f ′α
∨
),

where the second equality is by Example 5.4. (Recall that the root system R′ of G ′

is simply laced, hence ρ ′( f ′α
∨
)= f ′α.)

We claim that
(t∨ ◦ s)(x)− x ∈ span(8∨)+3∨r

for every x ∈ 3∨w, where 8∨ := { f ∨α | α ∈ 5r }. Indeed, in the notation of (9.3)
we have

(t∨ ◦ s)(x)− x = t∨(x ′)− x = t∨(x ′)− x ′−
∑
α∈5r

aαα∨

= t∨
(∑
α∈5′

bα f ′α
∨
)
−

∑
α∈5

bα f ∨α −
∑
α∈5r

aαα∨

=−

∑
α∈5r

bα f ∨α −
∑
α∈5r

aαα∨ ∈ span(8∨)+3∨r .

It follows from the claim that

(t◦ρ ′◦s)(x)−ρ(x)= (ρ◦t∨◦s)(x)−ρ(x)=ρ((t∨◦s)(x)−x)∈ρ(span(8∨)+3∨r ).

As ρ( f ∨α )= dα fα ∈3r for all fα ∈8, this is contained in3r , proving the claim. �

Lemmas 9.1 and 9.2 yield:

Corollary 9.4. The element t◦G is equal to
∑

i di · j◦∗i (t
◦

G ′i
).
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Lemma 9.5. The diagram

H 1(F,G ′)

��

∏
i H 1(F,G ′i )∑

di ·rG′i
��

H 1(F,G)
rG
// H 3(F,Q/Z(2))

commutes.

Proof. The composition

H 1(F,G ′i )→ H 1(F,G) rG
−→ H 3(F,Q/Z(2))

coincides with the k-th multiple of the Rost invariant rG ′i , where k is the order of
the cokernel of the map Q(G)→ Q(G ′i ) of infinite cyclic groups generated by
positive definite quadratic forms qG and qG ′i on the lattices of coroots normalized
so that the forms have value 1 on the short coroots (see [Garibaldi et al. 2003]).
Recall that all coroots of G ′i have the same length, hence qG ′i has value 1 on all
coroots of G ′i . Therefore, k coincides with di , the square-length of all coroots of
G ′i viewed as coroots of G. �

Write each G ′i = RL i/F (Hi ) for L i a separable field extension of F and Hi a
simply connected absolutely simple algebraic group of type A over L i . Theorem 1.2
is proved for such groups in Section 8. By Lemma 7.3, Theorem 1.2 holds for the
group G ′i and hence for G ′.

Let x ∈ H 1(F,C) and let y ∈ H 1(F,G),
∏

x ′i ∈ H 1(F,C ′) =
∏

H 1(F,C ′i )
and

∏
y′i ∈

∏
H 1(F,G ′i ) denote its images under the natural maps. We find

rG(y)=
∑

i

di · rG ′i (yi ) by Lemma 9.5

=

∑
i

di · (−t◦G ′i ∪ x ′i ) by the main theorem for all G ′i

=

∑
i

di · j◦∗i (−t◦G ′i )∪ x by Lemma 2.16

=−t◦G ∪ x by Corollary 9.4.

This completes the proof of Theorem 1.2.

10. Concrete formulas

The explicit formulas for the restriction of the Rost invariant to the center given
in [Merkurjev et al. 2002; Garibaldi and Quéguiner-Mathieu 2007] (for F of good
characteristic) relied on an ad hoc formula for a pairing C⊗C→Q/Z(2) depending
on the type of G. In this section, we deduce those formulas from Theorem 1.2; as a
consequence we find that those formulas hold regardless of char(F).
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10A. The pairing induced by ρ. The map ρ defines a bilinear pairing1∨⊗1∨→
Q/Z via

(10.1) 1∨⊗1∨
id⊗ρ
−−→1∨⊗1→Q/Z.

We now determine this pairing for each simple root system R.
For R with different root lengths, ρ is zero and hence (10.1) is zero unless R=Cn

for odd n ≥ 3. In that case (and also for R = E 7), 1 ' Z/2 ' 1∨ and ρ is the
unique isomorphism, so (10.1) amounts to the product map x⊗ y 7→ xy. Therefore
we may assume that R has only one root length.

If 1∨ is cyclic, we pick a fundamental dominant weight f ∨i that generates 1∨

and the pairing (10.1) is determined by the image of f ∨i ⊗ f ∨i . The image of this
under id⊗ρ is f ∨i ⊗ fi as in Example 5.4, so the image in Q/Z is the same as that
of the coefficient of the simple root αi appearing in the expression for fi in terms
of simple roots, for which we refer to [Bourbaki 2002].

For R=An , we have1∨'Z/(n+1) generated by f ∨1 and f ∨1 ⊗ f ∨1 7→n/(n+1),
cf. Example 5.9.

For R = Dn for odd n > 4, 1∨ ' Z/4 generated by f ∨n and f ∨n ⊗ f ∨n 7→ n/4.
For R = E6, we have 1∨ ' Z/3 generated by f ∨1 and f ∨1 ⊗ f ∨1 7→ 1/3.
For R = Dn for even n ≥ 4, 1∨ is isomorphic to Z/2 ⊕ Z/2 generated by

f ∨n−1, f ∨n . The tables show that f ∨n−1 ⊗ f ∨n−1 and f ∨n ⊗ f ∨n map to n/4 whereas
f ∨n ⊗ f ∨n−1 and f ∨n−1⊗ f ∨n map to (n− 2)/4. That is, viewing (10.1) as a bilinear
form on F2⊕F2, for n ≡ 0 mod 4 it is the wedge product (which is hyperbolic) and
for n ≡ 2 mod 4 it is the unique (up to isomorphism) metabolic form that is not
hyperbolic.

10B. The cup product on C. Let G be a simple simply connected algebraic group
over F with center C . The pairing (10.1) reads as follows:

C∗⊗C∗
id⊗ρ
−−→C∗⊗C∗→Q/Z.

Twisting (tensoring with Z(1)
L
⊗Z(1)) we get a composition

C∗(1)
L
⊗ C∗(1)→ C∗(1)

L
⊗ C∗(1)→Q/Z(2),

where the second map was already defined in (2.9). Therefore, we have a pairing

(10.2) H 1(F,C)⊗ H 2(F,C)→ H 1(F,C)⊗ H 2(F,C◦)→ H 3(F,Q/Z(2)),

which we denote by • . In this language, Theorem 1.2 says that

(10.3) rG i∗(x)=−x • tG for x ∈ H 1(F,C).

Combining this observation with the computation of (10.1) recovers the formulas
given in [Merkurjev et al. 2002; Garibaldi and Quéguiner-Mathieu 2007], with no
restriction on char(F).
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Example 10.4. Suppose G has inner type Dn for some n≥ 4. Then G is isomorphic
to Spin(A, σ, f ) for some central simple algebra A with quadratic pair (σ, f ) such
that the (even) Clifford algebra of (A, σ, f ) is a product C+×C−, see [Knus et al.
1998, 26.15]. Put µ2 for the kernel of the map Spin(A, σ, f ) → SO(A, σ, f )
and write i2 for the inclusion µ2 ↪→ G. (The highest weights of the representa-
tions Spin(A, σ, f )→GL1(Cε) for ε =± both restrict to the nonzero character
on i2(µ2).)

We claim that, for z ∈ H 1(F, µ2), the equalities

(10.5) rG i∗2 (z)=
{

z ∪ [A] if n even,
z ∪ [C+] if n odd,

hold in H 3(F,Z/2Z(2)). This can be seen by combining (10.3) with the calculations
in Section 10A. Alternatively, arguing as in the beginning of Section 9, it suffices
to verify (10.5) in case the variety X has an F-point, where we may check the
equality via Lemma 9.5 on the subgroup G ′. Then Equation 12.2 of [Garibaldi and
Quéguiner-Mathieu 2007] settles the n even case, and an analogous computation
handles n odd. Note that for n odd, one could also write z ∪ [C−] in (10.5), as
[C−] = 3[C+] and 2z = 0.

Example 10.6. The exact sequence 1→ C i
−→G→ G/C→ 1 gives a connect-

ing homomorphism ∂ : (G/C)(F)→ H 1(F,C). It follows from (10.3) that, for
y ∈ (G/C)(F), ∂(y) • tG = rG i∗∂(y)= 0, i.e.,

(10.7) (im ∂) • tG = 0 in H 3(F,Q/Z(2)).

For G of inner type An−1, G is isomorphic to SL1(A) for a central simple algebra
A and we may identify im ∂ with Nrd(A×)⊆ H 1(F, µn). In this case, (10.7) says:
If x ∈ Nrd(A×), then (x)∪ [A] = 0.

For G of type Cn , G is isomorphic to Sp(A, σ ) for a central simple algebra A
with symplectic involution σ and we may identify im ∂ with the group G(A, σ ) of
multipliers of similitudes of (A, σ ). If n is even, (10.7) is an empty claim because •
is identically zero. If n is odd, (10.7) says that G(A, σ )∪ [A] = 0, i.e., since A is
Brauer-equivalent to a quaternion algebra, G(A, σ )⊆ Nrd(A×); this is proved in
[Knus et al. 1998, 12.22].
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