Pacific Journal of Mathematics

A SYMMETRIC 2-TENSOR
CANONICALLY ASSOCIATED TO Q-CURVATURE
AND ITS APPLICATIONS

Yueh-Ju Lin and Wei Yuan

A SYMMETRIC 2-TENSOR CANONICALLY ASSOCIATED TO Q-CURVATURE AND ITS APPLICATIONS

Yueh-Ju Lin and Wei Yuan

Abstract

We define a symmetric 2 -tensor, called the J-tensor, canonically associated to the Q-curvature on any Riemannian manifold with dimension at least three. The relation between the J-tensor and the Q-curvature is like that between the Ricci tensor and the scalar curvature. Thus the J-tensor can be interpreted as a higher-order analogue of the Ricci tensor. This tensor can be used to understand the Chang-Gursky-Yang theorem on 4-dimensional Q-singular metrics. We show that an almost-Schur lemma holds for the Q curvature, yielding an estimate of the Q-curvature on closed manifolds.

1. Introduction

Let M be a smooth manifold and \mathcal{M} be the space of all metrics on M. Consider scalar curvature as a nonlinear map

$$
R: \mathcal{M} \rightarrow C^{\infty}(M), \quad g \mapsto R_{g}
$$

It is well known that the linearization of scalar curvature at a given metric g is

$$
\begin{equation*}
\gamma_{g} h:=D R_{g} \cdot h=-\Delta_{g} \operatorname{tr}_{g} h+\delta_{g}^{2} h-\operatorname{Ric}_{g} \cdot h \tag{1-1}
\end{equation*}
$$

where $h \in S_{2}(M)$ is a symmetric 2-tensor and $\delta_{g}=-\operatorname{div}_{g}$; see [Besse 1987; Chow et al. 2006; Fischer and Marsden 1975]. Thus, its L^{2}-formal adjoint is given by

$$
\begin{equation*}
\gamma_{g}^{*} f=\nabla_{g}^{2} f-g \Delta_{g} f-f \operatorname{Ric}_{g} \tag{1-2}
\end{equation*}
$$

for any smooth function $f \in C^{\infty}(M)$.
An interesting observation is that, if we take f to be constantly 1 , we get

$$
\operatorname{Ric}_{g}=-\gamma_{g}^{*} 1
$$

[^0]That means we can recover Ricci tensor from γ_{g}^{*}. Furthermore, the scalar curvature is given by

$$
R_{g}=-\operatorname{tr}_{g} \gamma_{g}^{*} 1
$$

Now let $\left(M^{n}, g\right)$ be an n-dimensional Riemannian manifold ($n \geq 3$). We can define the Q-curvature to be

$$
\begin{equation*}
Q_{g}=A_{n} \Delta_{g} R_{g}+B_{n}\left|\operatorname{Ric}_{g}\right|_{g}^{2}+C_{n} R_{g}^{2} \tag{1-3}
\end{equation*}
$$

where

$$
A_{n}=-\frac{1}{2(n-1)}, \quad B_{n}=-\frac{2}{(n-2)^{2}}, \quad C_{n}=\frac{n^{2}(n-4)+16(n-1)}{8(n-1)^{2}(n-2)^{2}}
$$

In fact, Q-curvature was introduced originally to generalize the classic GaussBonnet theorem on surfaces to closed 4-manifolds $\left(M^{4}, g\right)$:

$$
\begin{equation*}
\int_{M^{4}}\left(Q_{g}+\frac{1}{4}\left|W_{g}\right|_{g}^{2}\right) d v_{g}=8 \pi^{2} \chi(M) \tag{1-4}
\end{equation*}
$$

where W_{g} is the Weyl tensor.
Paneitz and Branson extended Q-curvature to any dimension $n \geq 3$ (see [Branson 1985; Paneitz 2008]) such that it satisfies certain conformal invariant properties. For more details, please refer to the appendix of [Lin and Yuan 2016].

Like the scalar curvature, we can also view Q-curvature as a nonlinear map

$$
Q: \mathcal{M} \rightarrow C^{\infty}(M), \quad g \mapsto Q_{g} .
$$

Let $\Gamma_{g}: S_{2}(M) \rightarrow C^{\infty}(M)$ be the linearization of Q-curvature at the metric g and $\Gamma_{g}^{*}: C^{\infty}(M) \rightarrow S_{2}(M)$ be its L^{2}-formal adjoint.

Now we can define the central notion in this article:
Definition 1.1. Let $\left(M^{n}, g\right)$ be a Riemannian manifold ($n \geq 3$). We define the symmetric 2-tensor

$$
J_{g}:=-\frac{1}{2} \Gamma_{g}^{*} 1
$$

We say (M, g) is J-Einstein if $J_{g}=\Lambda g$ for some smooth function $\Lambda \in C^{\infty}(M)$. In particular, it is J-flat if $\Lambda=0$.

In [Lin and Yuan 2016], we calculated the explicit expression of Γ_{g}^{*} and showed

$$
\begin{equation*}
\operatorname{tr}_{g} \Gamma_{g}^{*} f=\frac{1}{2}\left(P_{g}-\frac{n+4}{2} Q_{g}\right) f \tag{1-5}
\end{equation*}
$$

for any $f \in C^{\infty}(M)$. Here P_{g} is the Paneitz operator defined by

$$
\begin{equation*}
P_{g}=\Delta_{g}^{2}-\operatorname{div}_{g}\left[\left(a_{n} R_{g} g+b_{n} \operatorname{Ric}_{g}\right) d\right]+\frac{n-4}{2} Q_{g} \tag{1-6}
\end{equation*}
$$

where

$$
a_{n}=\frac{(n-2)^{2}+4}{2(n-1)(n-2)} \quad \text { and } \quad b_{n}=-\frac{4}{n-2} .
$$

In particular, $\operatorname{tr}_{g} \Gamma_{g}^{*} 1=-2 Q_{g}$. Thus

$$
\begin{equation*}
\operatorname{tr}_{g} J_{g}=Q_{g} \tag{1-7}
\end{equation*}
$$

On the other hand, for any smooth vector field $X \in \mathscr{X}(M)$ on M,

$$
\begin{aligned}
\int_{M}\left\langle X, \delta_{g} \Gamma_{g}^{*} f\right\rangle d v_{g} & =\frac{1}{2} \int_{M}\left\langle L_{X} g, \Gamma_{g}^{*} f\right\rangle d v_{g} \\
& =\frac{1}{2} \int_{M} f \Gamma_{g}\left(L_{X} g\right) d v_{g}=\frac{1}{2} \int_{M}\left\langle f d Q_{g}, X\right\rangle d v_{g}
\end{aligned}
$$

Thus

$$
\delta_{g} \Gamma_{g}^{*} f=\frac{1}{2} f d Q_{g}
$$

on M. Hence,

$$
\begin{equation*}
\operatorname{div}_{g} J_{g}=\frac{1}{2} \delta_{g} \Gamma_{g}^{*} 1=\frac{1}{4} d Q_{g} \tag{1-8}
\end{equation*}
$$

Recall that for Ricci tensor, we have

$$
\operatorname{tr}_{g} \operatorname{Ric}_{g}=R_{g} \quad \text { and } \quad \operatorname{div}_{g} \operatorname{Ric}_{g}=\frac{1}{2} d R_{g}
$$

Therefore, if we consider Q-curvature as a higher-order analogue of scalar curvature, we can interpret J_{g} as a higher-order analogue of Ricci curvature on Riemannian manifolds.

A notion closely related to the J-tensor is the Q-singular metric, which refers to a metric satisfying $\operatorname{ker} \Gamma_{g}^{*} \neq\{0\}$. Clearly, J-flat metrics are Q-singular, since it is equivalent to $1 \in \operatorname{ker} \Gamma_{g}^{*}$.

One of the motivations for us to study J-flat manifolds is to understand the following theorem by Chang, Gursky and Yang:
Theorem 1.2 [Chang et al. 2002]. Let $\left(M^{4}, g\right)$ be a Q-singular 4-manifold. Then $1 \in \operatorname{ker} \Gamma_{g}^{*}$ if and only if $\left(M^{4}, g\right)$ is Bach flat with vanishing Q-curvature.

To achieve our goal, we need to give an explicit expression of the J-tensor:
Theorem 1.3. For $n \geq 3$,

$$
\begin{equation*}
J_{g}=\frac{1}{n} Q_{g} g-\frac{1}{n-2} B_{g}-\frac{n-4}{4(n-1)(n-2)} T_{g}, \tag{1-9}
\end{equation*}
$$

where B_{g} is the Bach tensor and

$$
\begin{aligned}
T_{g}:=(n-2)\left(\nabla^{2} \operatorname{tr}_{g} S_{g}-\frac{1}{n} g \Delta_{g}\right. & \left.\operatorname{tr}_{g} S_{g}\right) \\
& +4(n-1)\left(S_{g} \times S_{g}-\frac{1}{n}\left|S_{g}\right|^{2} g\right)-n^{2}\left(\operatorname{tr}_{g} S_{g}\right) \stackrel{\circ}{S_{g}}
\end{aligned}
$$

Here $(S \times S)_{j k}=S_{j}^{i} S_{i k}, S_{g}$ is the Schouten tensor and $\stackrel{\circ}{S}_{g}$ is its traceless part.

Remark 1.4. Note that both the Bach tensor and the tensor T are traceless, thus the traceless part of J is given by

$$
\begin{equation*}
\stackrel{\circ}{J}_{g}=J_{g}-\frac{1}{n} Q_{g} g=-\frac{1}{n-2}\left(B_{g}+\frac{n-4}{4(n-1)} T_{g}\right) \tag{1-10}
\end{equation*}
$$

Thus, an equivalent definition for a metric g being J-Einstein is

$$
\begin{equation*}
B_{g}=-\frac{n-4}{4(n-1)} T_{g} \tag{1-11}
\end{equation*}
$$

In particular, when $n=4, J$-Einstein metrics are exactly Bach flat ones. Hence we can also interpret that J-Einstein metric is a generalization of Bach flat metric on 4-dimensional manifolds.

Remark 1.5. Gursky [1997] introduced a similar tensor for 4-manifolds from the viewpoint of functional determinants. In the same article, he also remarked this tensor can be introduced from the perspective of first variations of total Q-curvature when dimension is at least 5 (see [Case 2012] for a detailed calculation).

With the similar perspective, Gover and Ørsted introduced an abstract tensor called higher Einstein tensor, which coincides with our J-tensor in one of its special case. We refer interested readers to their article [Gover and Ørsted 2013].

Note that for any Einstein metric g, its Q-curvature is given by

$$
Q_{g}=B_{n}\left|\operatorname{Ric}_{g}\right|^{2}+C_{n} R_{g}^{2}=\left(\frac{1}{n} B_{n}+C_{n}\right) R_{g}^{2}=\frac{(n+2)(n-2)}{8 n(n-1)^{2}} R_{g}^{2}
$$

which is a nonnegative constant and vanishes if and only if g is Ricci flat.
It is easy to check that $T_{g}=0$ for any Einstein metric g. Combining this with the well-known fact that any Einstein metric is Bach flat, we can easily deduce that any nonflat Einstein metrics are also positive J-Einstein and Ricci flat metrics are J-flat as well.

With the aid of this notion, we can recover and generalize Theorem 1.2 to any dimension $n \geq 3$:
Corollary 1.6. Let $\left(M^{n}, g\right)$ be a Q-singular n-dimensional Riemannian manifold. Then $1 \in \operatorname{ker} \Gamma_{g}^{*}$ if and only if $\left(M^{n}, g\right)$ is J-flat or equivalently $\left(M^{n}, g\right)$ satisfies

$$
B_{g}=-\frac{n-4}{4(n-1)} T_{g}
$$

with vanishing Q-curvature.
Remark 1.7. In [Chang et al. 2002], Bach flatness in Theorem 1.2 is derived using the variational property of the Bach tensor for 4-manifolds.

As another application of J-tensor, we can derive the Schur lemma for Q curvature as follows:

Theorem 1.8 (Schur lemma). Let $\left(M^{n}, g\right)$ be an n-dimensional J-Einstein manifold with $n \neq 4$ or equivalently,

$$
B_{g}=-\frac{n-4}{4(n-1)} T_{g} .
$$

Then Q_{g} is a constant on M.
Moreover, the following almost-Schur lemma holds exactly like the case for Ricci tensor and scalar curvature, cf., [Cheng 2013; De Lellis and Topping 2012; Ge and Wang 2012].

Theorem 1.9 (almost-Schur lemma). For $n \neq 4$, let $\left(M^{n}, g\right)$ be an n-dimensional closed Riemannian manifold with positive Ricci curvature. Then

$$
\begin{equation*}
\int_{M}\left(Q_{g}-\bar{Q}_{g}\right)^{2} d v_{g} \leq \frac{16 n(n-1)}{(n-4)^{2}} \int_{M}\left|\circ_{g}\right|^{2} d v_{g} \tag{1-12}
\end{equation*}
$$

where \bar{Q}_{g} is the average of Q_{g}. Moreover, the equality holds if and only if (M, g) is J-Einstein.

In order to derive an equivalent form of above inequality, we need to define the J-Schouten tensor as follows:

$$
\begin{equation*}
S_{J}=\frac{1}{n-4}\left(J_{g}-\frac{3}{4(n-1)} Q_{g} g\right) . \tag{1-13}
\end{equation*}
$$

Immediately, we have

$$
\begin{equation*}
\operatorname{tr}_{g} S_{J}=\frac{1}{4(n-1)} Q_{g} \tag{1-14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{div}_{g} S_{J}=\frac{1}{4(n-1)} d Q_{g}=d \operatorname{tr}_{g} S_{J} \tag{1-15}
\end{equation*}
$$

Remark 1.10. Recall the definition of classic Schouten tensor

$$
\begin{equation*}
S_{g}=\frac{1}{n-2}\left(\operatorname{Ric}_{g}-\frac{1}{2(n-1)} R_{g} g\right) . \tag{1-16}
\end{equation*}
$$

We have

$$
\begin{equation*}
\operatorname{tr}_{g} S_{g}=\frac{1}{2(n-1)} R_{g} \tag{1-17}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{div}_{g} S_{g}=\frac{1}{2(n-1)} d R_{g}=d \operatorname{tr}_{g} S_{g} \tag{1-18}
\end{equation*}
$$

We can see the tensor S_{J} shares similar properties with the classic Schouten tensor.
Following the observation in [Ge and Wang 2012], we get immediately the following result by rewriting Theorem 1.9 with J-Schouten tensor:

Corollary 1.11. For $n \neq 4$, let $\left(M^{n}, g\right)$ be an n-dimensional closed Riemannian manifold with positive Ricci curvature. Then

$$
\begin{equation*}
\left(\operatorname{Vol}_{g} M\right)^{-(n-8) / n} \int_{M} \sigma_{2}^{J}(g) d v_{g} \leq \frac{n-1}{2 n} Y_{Q}^{2}(g), \tag{1-19}
\end{equation*}
$$

where

$$
Y_{Q}(g):=\frac{\int_{M} \sigma_{1}^{J}(g) d v_{g}}{\left(\operatorname{Vol}_{g} M\right)^{(n-4) / n}}
$$

is the Q-Yamabe quotient and $\sigma_{i}^{J}(g)=\sigma_{i}\left(S_{J}(g)\right), i=1,2$ are the i-th symmetric polynomial of $S_{J}(g)$. Moreover, the equality holds if and only if (M, g) is J Einstein.

Remark 1.12. Our almost-Schur lemma can be generalized to a broader setting by combining it with the work [Gover and Ørsted 2013]. More detailed discussion together with some related topics will be presented in a subsequent article.

This article is organized as follows: In Section 2, we derive an explicit formula for the J-tensor and with it we prove Theorem 1.3 and Corollary 1.6. We then prove Theorem 1.8 (Schur lemma) and Theorem 1.9 (almost-Schur lemma) in Section 3.

2. J-flatness and Q-singular metrics

We begin with some discussion of conformal tensors. Let

$$
\begin{equation*}
S_{j k}=\frac{1}{n-2}\left(R_{j k}-\frac{1}{2(n-1)} R g_{j k}\right) \tag{2-1}
\end{equation*}
$$

be the Schouten tensor.
For $n \geq 4$, the Bach tensor is defined to be

$$
\begin{equation*}
B_{j k}=\frac{1}{n-3} \nabla^{i} \nabla^{l} W_{i j k l}+W_{i j k l} S^{i l} . \tag{2-2}
\end{equation*}
$$

In order to extend the definition to $n=3$, we introduce the Cotton tensor

$$
\begin{equation*}
C_{i j k}=\nabla_{i} S_{j k}-\nabla_{j} S_{i k} \tag{2-3}
\end{equation*}
$$

It is related to Weyl tensor by the equation

$$
\begin{equation*}
\nabla^{l} W_{i j k l}=(n-3) C_{i j k} \tag{2-4}
\end{equation*}
$$

Therefore, for any $n \geq 3$, we can define the Bach tensor as

$$
\begin{equation*}
B_{j k}=\nabla^{i} C_{i j k}+W_{i j k l} S^{i l} . \tag{2-5}
\end{equation*}
$$

The following identity is well known for experts; we include calculations here for the convenience of readers.

Proposition 2.1. The Bach tensor can be written as

$$
\begin{equation*}
B_{g}=\Delta_{g} S-\nabla^{2} \operatorname{tr} S+2 R^{\circ} m \cdot S-(n-4) S \times S-|S|^{2} g-2(\operatorname{tr} S) S \tag{2-6}
\end{equation*}
$$ where $\left(R^{\circ} m \cdot S\right)_{j k}=R_{i j k l} S^{i l}$ and $(S \times S)_{j k}=S_{j}^{i} S_{i k}$. Equivalently,

$$
\begin{equation*}
B_{g}=\Delta_{L} S-\nabla^{2} \operatorname{tr} S+n\left(S \times S-\frac{1}{n}|S|^{2} g\right) \tag{2-7}
\end{equation*}
$$

where Δ_{L} is the Lichnerowicz Laplacian.
Proof. By the second contracted Bianchi identity,

$$
\begin{aligned}
\nabla^{i} S_{i k}=\frac{1}{n-2}\left(\nabla^{i} R_{i k}-\frac{1}{2(n-1)} \nabla_{k} R\right) & =\frac{1}{n-2}\left(\frac{1}{2} \nabla_{k} R-\frac{1}{2(n-1)} \nabla_{k} R\right) \\
& =\frac{1}{2(n-1)} \nabla_{k} R \\
& =\nabla_{k} \operatorname{tr} S
\end{aligned}
$$

and

$$
\operatorname{tr} S=\frac{1}{n-2}\left(R-\frac{n}{2(n-1)} R\right)=\frac{1}{2(n-1)} R
$$

we have

$$
\operatorname{Ric}=(n-2) S+(\operatorname{tr} S) g
$$

Using these facts,

$$
\begin{aligned}
\nabla^{i} C_{i j k} & =\nabla^{i}\left(\nabla_{i} S_{j k}-\nabla_{j} S_{i k}\right) \\
& =\Delta_{g} S_{j k}-\left(\nabla_{j} \nabla_{i} S_{k}^{i}+R_{i j p}^{i} S_{k}^{p}-R_{i j k}^{p} S_{p}^{i}\right) \\
& =\Delta_{g} S_{j k}-\nabla_{j} \nabla_{k} \operatorname{tr} S-(\operatorname{Ric} \times S)_{j k}+\left(R^{\circ} m \cdot S\right)_{j k} \\
& =\Delta_{g} S_{j k}-\nabla_{j} \nabla_{k} \operatorname{tr} S-(((n-2) S+(\operatorname{tr} S) g) \times S)_{j k}+\left(\text { Rio }^{\circ} \cdot S\right)_{j k} \\
& =\Delta_{g} S_{j k}-\nabla_{j} \nabla_{k} \operatorname{tr} S-(n-2)(S \times S)_{j k}-(\operatorname{tr} S) S_{j k}+\left(\text { R土 }^{\circ} \cdot S\right)_{j k}
\end{aligned}
$$

and

$$
\begin{aligned}
W_{i j k l} S^{i l} & =(R m-S \otimes g)_{i j k l} S^{i l} \\
& =R_{i j k l} S^{i l}-\left(S_{i l} g_{j k}+S_{j k} g_{i l}-S_{i k} g_{j l}-S_{j l} g_{i k}\right) S^{i l} \\
& =\left(R^{\circ} m \cdot S\right)_{j k}-|S|^{2} g_{j k}+2(S \times S)_{j k}-(\operatorname{tr} S) S_{j k},
\end{aligned}
$$

where \otimes is the Kulkarni-Nomizu product:

$$
(\alpha \otimes \beta)_{i j k l}:=\alpha_{i l} \beta_{j k}+\alpha_{j k} \beta_{i l}-\alpha_{i k} \beta_{j l}-\alpha_{j l} \beta_{i k}
$$

for any symmetric 2-tensor $\alpha, \beta \in S_{2}(M)$.
Combining them, we get

$$
B_{j k}=\Delta_{g} S_{j k}-\nabla_{j} \nabla_{k} \operatorname{tr} S+2(R m \cdot S)_{j k}-(n-4)(S \times S)_{j k}-|S|^{2} g_{j k}-2(\operatorname{tr} S) S_{j k}
$$

From this,

$$
\begin{aligned}
B_{j k} & =\Delta_{L} S_{j k}+2(\operatorname{Ric} \times S)_{j k}-\nabla_{j} \nabla_{k} \operatorname{tr} S-(n-4)(S \times S)_{j k}-|S|^{2} g_{j k}-2(\operatorname{tr} S) S_{j k} \\
& =\Delta_{L} S_{j k}+2((\operatorname{Ric}-(\operatorname{tr} S) g) \times S)_{j k}-\nabla_{j} \nabla_{k} \operatorname{tr} S-(n-4)(S \times S)_{j k}-|S|^{2} g_{j k} \\
& =\Delta_{L} S-\nabla^{2} \operatorname{tr} S+n(S \times S)-|S|^{2} g \\
& =\Delta_{L} S-\nabla^{2} \operatorname{tr} S+n\left(S \times S-\frac{1}{n}|S|^{2} g\right) .
\end{aligned}
$$

The Q-curvature can also be rewritten using Schouten tensor:
Lemma 2.2. $\quad Q_{g}=-\Delta_{g} \operatorname{tr} S-2|S|^{2}+\frac{n}{2}(\operatorname{tr} S)^{2}$.
Proof. Using the equalities Ric $=(n-2) S+(\operatorname{tr} S) g$ and $R=2(n-1) \operatorname{tr} S$,

$$
\begin{aligned}
Q_{g} & =A_{n} \Delta_{g} R+B_{n}|\operatorname{Ric}|^{2}+C_{n} R^{2} \\
& =2(n-1) A_{n} \Delta_{g} \operatorname{tr} S+B_{n}|(n-2) S+(\operatorname{tr} S) g|^{2}+4(n-1)^{2} C_{n}(\operatorname{tr} S)^{2} \\
& =-\Delta_{g} \operatorname{tr} S-2|S|^{2}+\left((3 n-4) B_{n}+4(n-1)^{2} C_{n}\right)(\operatorname{tr} S)^{2} \\
& =-\Delta_{g} \operatorname{tr} S-2|S|^{2}+\frac{n}{2}(\operatorname{tr} S)^{2} .
\end{aligned}
$$

We recall the expression of Γ_{g}^{*} in [Lin and Yuan 2016] as follows:

Lemma 2.3.

$$
\begin{align*}
& \Gamma_{g}^{*} f:=A_{n}\left(-g \Delta^{2} f+\nabla^{2} \Delta f-\operatorname{Ric} \Delta f+\frac{1}{2} g \delta(f d R)+\nabla(f d R)-f \nabla^{2} R\right) \tag{2-8}\\
&-B_{n}\left(\Delta(f \text { Ric })+2 f R m \cdot \operatorname{Ric}+g \delta^{2}(f \text { Ric })+2 \nabla \delta(f \text { Ric })\right) \\
&-2 C_{n}\left(g \Delta(f R)-\nabla^{2}(f R)+f R \text { Ric }\right)
\end{align*}
$$

Now we can calculate an explicit expression of J_{g} :
Theorem 2.4. For $n \geq 3$,

$$
\begin{equation*}
J_{g}=\frac{1}{n} Q_{g} g-\frac{1}{n-2} B_{g}-\frac{n-4}{4(n-1)(n-2)} T_{g}, \tag{2-9}
\end{equation*}
$$

where

$$
\begin{aligned}
T_{g}:=(n-2)\left(\nabla^{2} \operatorname{tr}_{g} S_{g}-\frac{1}{n} g \Delta_{g}\right. & \left.\operatorname{tr}_{g} S_{g}\right) \\
& +4(n-1)\left(S_{g} \times S_{g}-\frac{1}{n}\left|S_{g}\right|^{2} g\right)-n^{2}\left(\operatorname{tr}_{g} S_{g}\right) \AA_{g}
\end{aligned}
$$

Here $\stackrel{\circ}{S}_{g}=S_{g}-(1 / n) \operatorname{tr}_{g} S_{g} g$ is the traceless part of Schouten tensor.
Proof. By Lemma 2.3,

$$
\begin{aligned}
\Gamma_{g}^{*} 1=-\left(\frac{1}{2} A_{n}+\frac{1}{2} B_{n}+2 C_{n}\right) g \Delta R+\left(B_{n}+\right. & \left.2 C_{n}\right) \nabla^{2} R \\
& -B_{n}\left(\Delta \mathrm{Ric}+2 R^{\circ} m \cdot \mathrm{Ric}\right)-2 C_{n} R \text { Ric } .
\end{aligned}
$$

Applying equalities Ric $=(n-2) S+(\operatorname{tr} S) g$ and $R=2(n-1) \operatorname{tr} S$,

$$
\begin{array}{r}
\Gamma_{g}^{*} 1=-\left((n-1) A_{n}+n B_{n}+4(n-1) C_{n}\right) g \Delta \operatorname{tr} S+2(n-1)\left(B_{n}+2 C_{n}\right) \nabla^{2} \operatorname{tr} S \\
\quad-(n-2) B_{n}\left(\Delta S+2 R^{\circ} m \cdot S\right)-2(n-2)\left(B_{n}+2(n-1) C_{n}\right)(\operatorname{tr} S) S \\
\quad-2\left(B_{n}+2(n-1) C_{n}\right)(\operatorname{tr} S)^{2} g
\end{array} \quad \begin{array}{r}
=\frac{3}{2(n-1)} g \Delta \operatorname{tr} S+\frac{2}{n-2}\left(\Delta S+2 R^{\circ} m \cdot S\right)+\frac{n^{2}-10 n+12}{2(n-1)(n-2)} \nabla^{2} \operatorname{tr} S \\
\quad-\frac{n^{2}-2 n+4}{2(n-1)}(\operatorname{tr} S) S-\frac{n^{2}-2 n+4}{2(n-1)(n-2)}(\operatorname{tr} S)^{2} g .
\end{array}
$$

Since $\operatorname{tr} \Gamma_{g}^{*} 1=-2 Q_{g}$, by Lemma 2.2,

$$
\begin{aligned}
& \Gamma_{g}^{*} 1+\frac{2}{n} Q_{g} g \\
& \begin{aligned}
&=\left(\frac{3}{2(n-1)}-\frac{2}{n}\right) g \Delta \operatorname{tr} S+\frac{2}{n-2}(\Delta S+2 R m \cdot S)+\frac{n^{2}-10 n+12}{2(n-1)(n-2)} \nabla^{2} \operatorname{tr} S \\
&-\frac{4}{n}|S|^{2} g-\frac{n^{2}-2 n+4}{2(n-1)}(\operatorname{tr} S) S+\left(1-\frac{n^{2}-2 n+4}{2(n-1)(n-2)}\right)(\operatorname{tr} S)^{2} g
\end{aligned} \\
& =-\frac{n-4}{2 n(n-1)} g \Delta \operatorname{tr} S+\frac{2}{n-2}(\Delta S+2 R m \cdot S)+\frac{n^{2}-10 n+12}{2(n-1)(n-2)} \nabla^{2} \operatorname{tr} S \\
& \\
& \quad-\frac{4}{n}|S|^{2} g-\frac{n^{2}-2 n+4}{2(n-1)}(\operatorname{tr} S) S+\frac{n(n-4)}{2(n-1)(n-2)}(\operatorname{tr} S)^{2} g .
\end{aligned}
$$

Applying Proposition 2.1,

$$
\begin{aligned}
\Gamma_{g}^{*} 1+\frac{2}{n} Q_{g} g=\frac{2}{n-2} B_{g} & -\frac{n-4}{2 n(n-1)} g \Delta \operatorname{tr} S+\left(\frac{2}{n-2}+\frac{n^{2}-10 n+12}{2(n-1)(n-2)}\right) \nabla^{2} \operatorname{tr} S \\
& +\frac{2(n-4)}{n-2} S \times S+\left(\frac{2}{n-2}-\frac{4}{n}\right)|S|^{2} g \\
& +\left(\frac{4}{n-2}-\frac{n^{2}-2 n+4}{2(n-1)}\right)(\operatorname{tr} S) S+\frac{n(n-4)}{2(n-1)(n-2)}(\operatorname{tr} S)^{2} g
\end{aligned}
$$

That is,

$$
\begin{aligned}
\Gamma_{g}^{*} 1+\frac{2}{n} Q_{g} g= & \frac{2}{n-2} B_{g}-\frac{n-4}{2 n(n-1)} g \Delta \operatorname{tr} S+\frac{n-4}{2(n-1)} \nabla^{2} \operatorname{tr} S+\frac{2(n-4)}{n-2} S \times S \\
& -\frac{2(n-4)}{n(n-2)}|S|^{2} g-\frac{n^{2}(n-4)}{2(n-1)(n-2)}(\operatorname{tr} S) S+\frac{n(n-4)}{2(n-1)(n-2)}(\operatorname{tr} S)^{2} g \\
= & \frac{2}{n-2} B_{g}+\frac{n-4}{2(n-1)}\left(\nabla^{2} \operatorname{tr} S-\frac{1}{n} g \Delta \operatorname{tr} S\right)+\frac{2(n-4)}{n-2}\left(S \times S-\frac{1}{n}|S|^{2} g\right) \\
& -\frac{n^{2}(n-4)}{2(n-1)(n-2)}(\operatorname{tr} S)\left(S-\frac{1}{n}(\operatorname{tr} S) g\right) \\
= & \frac{2}{n-2} B_{g}+\frac{n-4}{2(n-1)(n-2)} T_{g},
\end{aligned}
$$

where

$$
\begin{aligned}
T_{g}:=(n-2)\left(\nabla^{2} \operatorname{tr}_{g} S_{g}-\frac{1}{n} g \Delta_{g}\right. & \left.\operatorname{tr}_{g} S_{g}\right) \\
& +4(n-1)\left(S_{g} \times S_{g}-\frac{1}{n}\left|S_{g}\right|^{2} g\right)-n^{2}\left(\operatorname{tr}_{g} S_{g}\right) \dot{S}_{g}
\end{aligned}
$$

Therefore,

$$
J_{g}=-\frac{1}{2} \Gamma_{g}^{*} 1=\frac{1}{n} Q_{g} g-\frac{1}{n-2} B_{g}-\frac{n-4}{4(n-1)(n-2)} T_{g}
$$

Immediately, we have the following generalization of Theorem 1.2:
Corollary 2.5. Let $\left(M^{n}, g\right)$ be a Q-singular n-dimensional Riemannian manifold. Then $1 \in \operatorname{ker} \Gamma_{g}^{*}$ if and only if $\left(M^{n}, g\right)$ is J-flat or equivalently $\left(M^{n}, g\right)$ satisfies

$$
\begin{equation*}
B_{g}=-\frac{n-4}{4(n-1)} T_{g} \tag{2-10}
\end{equation*}
$$

with vanishing Q-curvature.
Remark 2.6. A similar result holds for Ricci curvature: a vacuum static space admits a constant static potential if and only if it is Ricci flat, cf., [Fischer and Marsden 1975].

3. An almost-Schur lemma for \boldsymbol{Q}-curvature

Since the tensor J_{g} can be interpreted as a higher-order analogue of Ricci tensor, we can also derive the Schur lemma for J_{g} as follows:

Theorem 3.1 (Schur lemma). Let $\left(M^{n}, g\right)$ be an n-dimensional J-Einstein manifold with $n \neq 4$ or equivalently,

$$
B_{g}=-\frac{n-4}{4(n-1)} T_{g}
$$

Then Q_{g} is a constant on M.
Proof. By the assumption, $J_{g}=\Lambda g$ for some smooth function Λ on M. Then

$$
\Lambda=\frac{1}{n} \operatorname{tr}_{g} J_{g}=\frac{1}{n} Q_{g} \quad \text { and } \quad d \Lambda=\operatorname{div}_{g} J_{g}=\frac{1}{4} d Q_{g}
$$

Therefore,

$$
\frac{n-4}{4 n} d Q_{g}=0
$$

on M, which implies that Q_{g} is a constant on M provided $n \neq 4$.
Remark 3.2. When $n=4, J$-Einstein metrics are exactly Bach flat ones. Due to the conformal invariance of Bach flatness in dimension 4, we can easily see that the constancy of Q-curvature can not always be achieved. Thus the above Schur

Lemma does not hold for 4-dimensional manifolds, which is exactly like the classic Schur lemma for surfaces.

In fact, a more general result can be derived:
Theorem 3.3 (almost-Schur lemma). For $n \neq 4$, let $\left(M^{n}, g\right)$ be an n-dimensional closed Riemannian manifold with positive Ricci curvature. Then

$$
\begin{equation*}
\int_{M}\left(Q_{g}-\bar{Q}_{g}\right)^{2} d v_{g} \leq \frac{16 n(n-1)}{(n-4)^{2}} \int_{M}\left|\circ_{g}\right|^{2} d v_{g} \tag{3-1}
\end{equation*}
$$

where \bar{Q}_{g} is the average of Q_{g}. Moreover, the equality holds if and only if $\left(M^{n}, g\right)$ is J-Einstein.

The proof is along the same lines as in [De Lellis and Topping 2012]. For completeness, we include it here. For more details, please refer to that work.

Proof. Let u be the unique solution to

$$
\left\{\begin{aligned}
\Delta_{g} u & =Q_{g}-\bar{Q}_{g} \\
\int_{M} u d v_{g} & =0
\end{aligned}\right.
$$

Then

$$
\begin{aligned}
\int_{M}\left(Q_{g}-\bar{Q}_{g}\right)^{2} d v_{g}=\int_{M}\left(Q_{g}-\bar{Q}_{g}\right) \Delta_{g} u d v_{g} & =-\int_{M}\left\langle\nabla Q_{g}, \nabla u\right\rangle d v_{g} \\
& =-\frac{4 n}{n-4} \int_{M}\left\langle\operatorname{div}_{g} \stackrel{\circ}{J}_{g}, \nabla u\right\rangle
\end{aligned}
$$

where for the last step we use the fact

$$
\operatorname{div}_{g} \stackrel{\circ}{g}_{g}=\operatorname{div}_{g}\left(J_{g}-\frac{1}{n} Q_{g} g\right)=\frac{1}{4} d Q_{g}-\frac{1}{n} d Q_{g}=\frac{n-4}{4 n} d Q_{g}
$$

Integrating by parts,

$$
\begin{aligned}
-\frac{4 n}{n-4} \int_{M}\left\langle\operatorname{div}_{g} \stackrel{\circ}{J}_{g}, \nabla u\right\rangle d v_{g} & =\frac{4 n}{n-4} \int_{M}\left\langle\circ_{g}, \nabla^{2} u\right\rangle d v_{g} \\
& =\frac{4 n}{n-4} \int_{M}\left\langle\stackrel{\circ}{J}_{g}, \nabla^{2} u-\frac{1}{n} g \Delta_{g} u\right\rangle d v_{g} \\
& \leq \frac{4 n}{n-4}\left(\int_{M}\left|\circ_{g}\right|^{2} d v_{g}\right)^{1 / 2}\left(\int_{M}\left|\nabla^{2} u-\frac{1}{n} g \Delta_{g} u\right|^{2} d v_{g}\right)^{1 / 2} \\
& =\frac{4 n}{n-4}\left(\int_{M}\left|\dot{\circ}_{g}\right|^{2} d v_{g}\right)^{1 / 2}\left(\int_{M}\left|\nabla^{2} u\right|^{2}-\frac{1}{n}\left(\Delta_{g} u\right)^{2} d v_{g}\right)^{1 / 2}
\end{aligned}
$$

From the Bochner formula and the assumption $\operatorname{Ric}_{g}>0$,

$$
\int_{M}\left|\nabla^{2} u\right|^{2} d v_{g}=\int_{M}\left(\Delta_{g} u\right)^{2} d v_{g}-\int_{M} \operatorname{Ric}_{g}(\nabla u, \nabla u) d v_{g} \leq \int_{M}\left(\Delta_{g} u\right)^{2} d v_{g}
$$

Thus,

$$
\begin{aligned}
\int_{M}\left(Q_{g}-\bar{Q}_{g}\right)^{2} d v_{g} & \leq \frac{4 n}{n-4}\left(\int_{M}\left|\circ_{g}\right|^{2} d v_{g}\right)^{1 / 2}\left(\frac{n-1}{n}\left(\Delta_{g} u\right)^{2} d v_{g}\right)^{1 / 2} \\
& =\frac{4 n}{n-4}\left(\int_{M}\left|\circ_{g}\right|^{2} d v_{g}\right)^{1 / 2}\left(\frac{n-1}{n}\left(Q_{g}-\bar{Q}_{g}\right)^{2} d v_{g}\right)^{1 / 2}
\end{aligned}
$$

That is,

$$
\int_{M}\left(Q_{g}-\bar{Q}_{g}\right)^{2} d v_{g} \leq \frac{16 n(n-1)}{(n-4)^{2}} \int_{M}\left|\circ_{g}\right|^{2} d v_{g}
$$

Now we consider the equality case.
If g is J-Einstein, then Q_{g} is a constant by the Schur lemma (Theorem 1.8). Thus both sides of inequality (3-1) vanish and equality is achieved.

On the contrary, assume in (3-1) equality is achieved:

$$
\int_{M}\left(Q_{g}-\bar{Q}_{g}\right)^{2} d v_{g}=\frac{16 n(n-1)}{(n-4)^{2}} \int_{M}\left|\circ_{g}\right|^{2} d v_{g}
$$

Then in particular we have $\operatorname{Ric}(\nabla u, \nabla u)=0$, which implies that $\nabla u=0$ and hence u is a constant on M, since we assume $\operatorname{Ric}_{g}>0$.

Thus $Q \equiv \bar{Q}$ on M and

$$
\int_{M}\left|\circ_{g}\right|^{2} d v_{g}=\frac{(n-4)^{2}}{16 n(n-1)} \int_{M}\left(Q_{g}-\bar{Q}_{g}\right)^{2} d v_{g}=0
$$

Therefore, $\stackrel{\circ}{g}_{g} \equiv 0$ on M, i.e., (M, g) is J-Einstein.
Remark 3.4. By assuming Ric $\geq-(n-1) K g$ for some constant $K \geq 0$ and following the proof in [Cheng 2013], the inequality (3-1) can be improved to

$$
\begin{equation*}
\int_{M}\left(Q_{g}-\bar{Q}_{g}\right)^{2} d v_{g} \leq \frac{16 n(n-1)}{(n-4)^{2}}\left(1+\frac{n K}{\lambda_{1}}\right) \int_{M}\left|\circ_{g}\right|^{2} d v_{g} \tag{3-2}
\end{equation*}
$$

where $\lambda_{1}>0$ is the first nonzero eigenvalue of $\left(-\Delta_{g}\right)$.
Now we can derive an equivalent form of inequality (3-1):
Corollary 3.5. For $n \neq 4$, let $\left(M^{n}, g\right)$ be an n-dimensional closed Riemannian manifold with positive Ricci curvature. Then

$$
\begin{equation*}
\left(\operatorname{Vol}_{g} M\right)^{-(n-8) / n} \int_{M} \sigma_{2}^{J}(g) d v_{g} \leq \frac{n-1}{2 n} Y_{Q}^{2}(g) \tag{3-3}
\end{equation*}
$$

Moreover, the equality holds if and only if $\left(M^{n}, g\right)$ is J-Einstein.
Proof. Note that

$$
\sigma_{1}^{J}(g)=\operatorname{tr}_{g} S_{J}=\frac{1}{4(n-1)} Q_{g}
$$

and

$$
\sigma_{2}^{J}(g)=\frac{1}{2}\left(\left(\sigma_{1}^{J}\right)^{2}-\left|S_{J}\right|^{2}\right)=\frac{n-1}{2 n}\left(\sigma_{1}^{J}\right)^{2}-\frac{1}{2(n-4)^{2}}\left|\stackrel{\circ}{j}_{g}\right|^{2},
$$

where we use the fact

$$
\left|S_{J}\right|^{2}=\left|\stackrel{\circ}{S}_{J}+\frac{1}{n}\left(\operatorname{tr}_{g} S_{J}\right) g\right|^{2}=\left|\frac{1}{n-4} \stackrel{\circ}{J}_{g}+\frac{1}{n}\left(\sigma_{1}^{J}\right) g\right|^{2}=\frac{1}{(n-4)^{2}}\left|\circ_{g}\right|^{2}+\frac{1}{n}\left(\sigma_{1}^{J}\right)^{2}
$$

By substituting these terms in the inequality (3-1), we get

$$
\left(\int_{M} \sigma_{1}^{J}(g) d v_{g}\right)^{2} \geq \frac{2 n}{n-1} \operatorname{Vol}_{g}(M) \int_{M} \sigma_{2}^{J}(g) d v_{g}
$$

Therefore,

$$
\begin{aligned}
\int_{M} \sigma_{2}^{J}(g) d v_{g} & \leq \frac{n-1}{2 n}\left(\operatorname{Vol}_{g} M\right)^{-1}\left(\int_{M} \sigma_{1}^{J}(g) d v_{g}\right)^{2} \\
& =\frac{n-1}{2 n}\left(\operatorname{Vol}_{g} M\right)^{(n-8) / n}\left(\frac{\int_{M} \sigma_{1}^{J}(g) d v_{g}}{\left(\operatorname{Vol}_{g} M\right)^{(n-4) / n}}\right)^{2} \\
& =\frac{n-1}{2 n}\left(\operatorname{Vol}_{g} M\right)^{(n-8) / n} Y_{Q}^{2}(g)
\end{aligned}
$$

Remark 3.6. Note that the Q-Yamabe quotient

$$
Y_{Q}(g):=\frac{\int_{M} \sigma_{1}^{J}(g) d v_{g}}{\left(\operatorname{Vol}_{g} M\right)^{(n-4) / n}}
$$

is scaling invariant and in particular, when $n=8$,

$$
\int_{M} \sigma_{2}^{J}(g) d v_{g} \leq \frac{7}{16} Y_{Q}^{2}(g)
$$

provided that $\operatorname{Ric}_{g}>0$, where the equality holds if and only if (M, g) is J-Einstein.

Acknowledgement

We would like to thank Professor Sun-Yung Alice Chang, Professor Matthew Gursky and Professor Jeffrey Case for their interest in this work and inspiring discussions. We would especially like to thank Professor Case for bringing the work [Gover and Ørsted 2013; Gursky 1997] to our attention and his wonderful comments.

Part of the work was done when Lin was in residence at the Mathematical Sciences Research Institute in Berkeley, supported by the NSF grant DMS-1440140 during Spring 2016. Also, part of the work was done when Yuan visited Institut Henri Poincaré in Paris during Fall 2015. We would like to express our deepest appreciations to both MSRI and IHP for their sponsorship and hospitality.

References

[Besse 1987] A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik (3) 10, Springer, Berlin, 1987. MR Zbl
[Branson 1985] T. P. Branson, "Differential operators canonically associated to a conformal structure", Math. Scand. 57:2 (1985), 293-345. MR Zbl
[Case 2012] J. S. Case, "Some computations with the Q-curvature", preprint, 2012, Available at http://www.personal.psu.edu/jqc5026/notes/symmetric.pdf.
[Chang et al. 2002] S.-Y. A. Chang, M. Gursky, and P. C. Yang, "Remarks on a fourth order invariant in conformal geometry", pp. 373-372 in Proceedings of International Conference on Aspects of Mathematics (Hong Kong, 1996), edited by N. Mok, Hong Kong University, 2002.
[Cheng 2013] X. Cheng, "A generalization of almost-Schur lemma for closed Riemannian manifolds", Ann. Global Anal. Geom. 43:2 (2013), 153-160. MR Zbl
[Chow et al. 2006] B. Chow, P. Lu, and L. Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics 77, American Mathematical Society, Providence, RI, 2006. MR Zbl
[De Lellis and Topping 2012] C. De Lellis and P. M. Topping, "Almost-Schur lemma", Calc. Var. Partial Differential Equations 43:3-4 (2012), 347-354. MR Zbl
[Fischer and Marsden 1975] A. E. Fischer and J. E. Marsden, "Deformations of the scalar curvature", Duke Math. J. 42:3 (1975), 519-547. MR Zbl
[Ge and Wang 2012] Y. Ge and G. Wang, "An almost Schur theorem on 4-dimensional manifolds", Proc. Amer. Math. Soc. 140:3 (2012), 1041-1044. MR Zbl
[Gover and Ørsted 2013] A. R. Gover and B. Ørsted, "Universal principles for Kazdan-Warner and Pohozaev-Schoen type identities", Commun. Contemp. Math. 15:4 (2013), art. id. 1350002. MR Zbl
[Gursky 1997] M. J. Gursky, "Uniqueness of the functional determinant", Comm. Math. Phys. 189:3 (1997), 655-665. MR Zbl
[Lin and Yuan 2016] Y.-J. Lin and W. Yuan, "Deformations of Q-curvature, I", Calc. Var. Partial Differential Equations 55:4 (2016), art. id. 101. MR Zbl
[Paneitz 2008] S. M. Paneitz, "A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary)", SIGMA Symm. Integ. Geom. Methods Appl. 4 (2008), art. id. 036. MR Zbl

Received April 13, 2016.

YuEh-JU Lin

MSRI and Department of Mathematics
University of Michigan
Ann Arbor, MI 48109
United States
yuehjul@umich.edu
Wei Yuan
Department of Mathematics
SUN Yat-sen University
510275 GUANGZHOU
China
gnr-x@163.com

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm
EDITORS
Don Blasius (Managing Editor)
Department of Mathematics University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Jie Qing

Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135 chari@math.ucr.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Daryl Cooper
Department of Mathematics
University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu

Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu

Paul Yang

Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA UNIV. OF CALIFORNIA, BERKELEY UNIV. OF CALIFORNIA, DAVIS UNIV. OF CALIFORNIA, LOS ANGELES UNIV. OF CALIFORNIA, RIVERSIDE UNIV. OF CALIFORNIA, SAN DIEGO UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2017 is US $\$ 450 /$ year for the electronic version, and $\$ 625 /$ year for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

- mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2017 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 291 No. $2 \quad$ December 2017
Torsion pairs in silting theory 257
Lidia Angeleri Hügel, Frederik Marks and Jorge Vitória
Transfinite diameter on complex algebraic varieties 279
David A. Cox and Sione Ma'u
A universal construction of universal deformation formulas, Drinfeld 319
twists and their positivityChiara Esposito, Jonas Schnitzer and StefanWALDMANN
Uniform stable radius, Lê numbers and topological triviality for line 359 singularitiesChristophe Eyral
Rost invariant of the center, revisited 369
Skip Garibaldi and Alexander S. Merkurjev
Moduli spaces of rank 2 instanton sheaves on the projective space 399
Marcos Jardim, Mario Maican and Alexander S. Tikhomirov
A symmetric 2-tensor canonically associated to Q-curvature and its 425 applications
Yueh-Ju Lin and Wei Yuan
Gauge invariants from the powers of antipodes 439
Cris Negron and Siu-Hung NG
Branching laws for the metaplectic cover of GL_{2} 461
Shiv Prakash Patel
Hessian equations on closed Hermitian manifolds 485
Dekai Zhang

[^0]: This work was partially supported by NSF (Grant No. DMS-1440140), NSFC (Grant No. 11521101, No. 11601531), The Fundamental Research Funds for the Central Universities (Grant No.2016-34000-31610258).
 MSC2010: 53C20, 53C25.
 Keywords: J-tensor, Q-curvature, Q-singular metric.

