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A SYMMETRIC 2-TENSOR
CANONICALLY ASSOCIATED TO Q-CURVATURE

AND ITS APPLICATIONS

YUEH-JU LIN AND WEI YUAN

We define a symmetric 2-tensor, called the J-tensor, canonically associated
to the Q-curvature on any Riemannian manifold with dimension at least
three. The relation between the J-tensor and the Q-curvature is like that
between the Ricci tensor and the scalar curvature. Thus the J-tensor can be
interpreted as a higher-order analogue of the Ricci tensor. This tensor can
be used to understand the Chang–Gursky–Yang theorem on 4-dimensional
Q-singular metrics. We show that an almost-Schur lemma holds for the Q-
curvature, yielding an estimate of the Q-curvature on closed manifolds.

1. Introduction

Let M be a smooth manifold and M be the space of all metrics on M. Consider
scalar curvature as a nonlinear map

R :M→ C∞(M), g 7→ Rg.

It is well known that the linearization of scalar curvature at a given metric g is

(1-1) γgh := DRg · h =−1g trg h+ δ2
gh−Ricg·h,

where h ∈ S2(M) is a symmetric 2-tensor and δg =− divg; see [Besse 1987; Chow
et al. 2006; Fischer and Marsden 1975]. Thus, its L2-formal adjoint is given by

(1-2) γ ∗g f =∇2
g f − g1g f − f Ricg

for any smooth function f ∈ C∞(M).
An interesting observation is that, if we take f to be constantly 1, we get

Ricg =−γ
∗

g 1.
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That means we can recover Ricci tensor from γ ∗g . Furthermore, the scalar curvature
is given by

Rg =− trg γ
∗

g 1.

Now let (Mn, g) be an n-dimensional Riemannian manifold (n ≥ 3). We can
define the Q-curvature to be

(1-3) Qg = An1g Rg + Bn|Ricg|
2
g +Cn R2

g,

where

An =−
1

2(n−1)
, Bn =−

2
(n−2)2

, Cn =
n2(n−4)+16(n−1)

8(n−1)2(n−2)2
.

In fact, Q-curvature was introduced originally to generalize the classic Gauss-
Bonnet theorem on surfaces to closed 4-manifolds (M4, g):

(1-4)
∫

M4

(
Qg +

1
4 |Wg|

2
g
)

dvg = 8π2χ(M),

where Wg is the Weyl tensor.
Paneitz and Branson extended Q-curvature to any dimension n≥ 3 (see [Branson

1985; Paneitz 2008]) such that it satisfies certain conformal invariant properties.
For more details, please refer to the appendix of [Lin and Yuan 2016].

Like the scalar curvature, we can also view Q-curvature as a nonlinear map

Q :M→ C∞(M), g 7→ Qg.

Let 0g : S2(M)→ C∞(M) be the linearization of Q-curvature at the metric g
and 0∗g : C

∞(M)→ S2(M) be its L2-formal adjoint.
Now we can define the central notion in this article:

Definition 1.1. Let (Mn, g) be a Riemannian manifold (n ≥ 3). We define the
symmetric 2-tensor

Jg := −
1
20
∗

g 1.

We say (M, g) is J -Einstein if Jg =3g for some smooth function 3 ∈C∞(M). In
particular, it is J -flat if 3= 0.

In [Lin and Yuan 2016], we calculated the explicit expression of 0∗g and showed

(1-5) trg 0
∗

g f = 1
2

(
Pg −

n+4
2

Qg

)
f,

for any f ∈ C∞(M). Here Pg is the Paneitz operator defined by

(1-6) Pg =1
2
g − divg[(an Rgg+ bn Ricg)d] +

n−4
2

Qg,
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where

an =
(n−2)2+4

2(n−1)(n−2)
and bn =−

4
n−2

.

In particular, trg 0
∗
g 1=−2Qg. Thus

(1-7) trg Jg = Qg.

On the other hand, for any smooth vector field X ∈ X(M) on M,∫
M
〈X, δg0

∗

g f 〉 dvg =
1
2

∫
M
〈L X g, 0∗g f 〉 dvg

=
1
2

∫
M

f 0g(L X g) dvg =
1
2

∫
M
〈 f d Qg, X〉 dvg.

Thus
δg0
∗

g f = 1
2 f d Qg

on M. Hence,

(1-8) divg Jg =
1
2δg0

∗

g 1= 1
4 d Qg.

Recall that for Ricci tensor, we have

trg Ricg = Rg and divg Ricg =
1
2 d Rg.

Therefore, if we consider Q-curvature as a higher-order analogue of scalar
curvature, we can interpret Jg as a higher-order analogue of Ricci curvature on
Riemannian manifolds.

A notion closely related to the J -tensor is the Q-singular metric, which refers to
a metric satisfying ker0∗g 6= {0}. Clearly, J -flat metrics are Q-singular, since it is
equivalent to 1 ∈ ker0∗g .

One of the motivations for us to study J -flat manifolds is to understand the
following theorem by Chang, Gursky and Yang:

Theorem 1.2 [Chang et al. 2002]. Let (M4, g) be a Q-singular 4-manifold. Then
1 ∈ ker0∗g if and only if (M4, g) is Bach flat with vanishing Q-curvature.

To achieve our goal, we need to give an explicit expression of the J -tensor:

Theorem 1.3. For n ≥ 3,

(1-9) Jg =
1
n

Qgg− 1
n−2

Bg −
n−4

4(n−1)(n−2)
Tg,

where Bg is the Bach tensor and

Tg := (n− 2)
(
∇

2 trg Sg −
1
n

g1g trg Sg

)
+ 4(n− 1)

(
Sg × Sg −

1
n
|Sg|

2g
)
− n2(trg Sg)S̊g.

Here (S× S)jk = Si
j Sik , Sg is the Schouten tensor and S̊g is its traceless part.
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Remark 1.4. Note that both the Bach tensor and the tensor T are traceless, thus
the traceless part of J is given by

(1-10) J̊g = Jg −
1
n

Qgg =− 1
n−2

(
Bg +

n−4
4(n−1)

Tg

)
.

Thus, an equivalent definition for a metric g being J -Einstein is

(1-11) Bg =−
n−4

4(n−1)
Tg.

In particular, when n = 4, J -Einstein metrics are exactly Bach flat ones. Hence we
can also interpret that J -Einstein metric is a generalization of Bach flat metric on
4-dimensional manifolds.

Remark 1.5. Gursky [1997] introduced a similar tensor for 4-manifolds from the
viewpoint of functional determinants. In the same article, he also remarked this
tensor can be introduced from the perspective of first variations of total Q-curvature
when dimension is at least 5 (see [Case 2012] for a detailed calculation).

With the similar perspective, Gover and Ørsted introduced an abstract tensor
called higher Einstein tensor, which coincides with our J -tensor in one of its special
case. We refer interested readers to their article [Gover and Ørsted 2013].

Note that for any Einstein metric g, its Q-curvature is given by

Qg = Bn|Ricg|
2
+Cn R2

g =

(1
n

Bn +Cn

)
R2

g =
(n+2)(n−2)

8n(n−1)2
R2

g,

which is a nonnegative constant and vanishes if and only if g is Ricci flat.
It is easy to check that Tg = 0 for any Einstein metric g. Combining this with

the well-known fact that any Einstein metric is Bach flat, we can easily deduce that
any nonflat Einstein metrics are also positive J -Einstein and Ricci flat metrics are
J -flat as well.

With the aid of this notion, we can recover and generalize Theorem 1.2 to any
dimension n ≥ 3:

Corollary 1.6. Let (Mn, g) be a Q-singular n-dimensional Riemannian manifold.
Then 1 ∈ ker0∗g if and only if (Mn, g) is J -flat or equivalently (Mn, g) satisfies

Bg =−
n−4

4(n−1)
Tg

with vanishing Q-curvature.

Remark 1.7. In [Chang et al. 2002], Bach flatness in Theorem 1.2 is derived using
the variational property of the Bach tensor for 4-manifolds.

As another application of J -tensor, we can derive the Schur lemma for Q-
curvature as follows:
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Theorem 1.8 (Schur lemma). Let (Mn, g) be an n-dimensional J -Einstein manifold
with n 6= 4 or equivalently,

Bg =−
n−4

4(n−1)
Tg.

Then Qg is a constant on M.

Moreover, the following almost-Schur lemma holds exactly like the case for
Ricci tensor and scalar curvature, cf., [Cheng 2013; De Lellis and Topping 2012;
Ge and Wang 2012].

Theorem 1.9 (almost-Schur lemma). For n 6= 4, let (Mn, g) be an n-dimensional
closed Riemannian manifold with positive Ricci curvature. Then

(1-12)
∫

M
(Qg − Qg)

2 dvg ≤
16n(n−1)
(n−4)2

∫
M
| J̊g|

2 dvg,

where Qg is the average of Qg. Moreover, the equality holds if and only if (M, g)
is J -Einstein.

In order to derive an equivalent form of above inequality, we need to define the
J -Schouten tensor as follows:

(1-13) SJ =
1

n−4

(
Jg −

3
4(n−1)

Qgg
)
.

Immediately, we have

(1-14) trg SJ =
1

4(n−1)
Qg

and

(1-15) divg SJ =
1

4(n−1)
d Qg = d trg SJ .

Remark 1.10. Recall the definition of classic Schouten tensor

(1-16) Sg =
1

n−2

(
Ricg −

1
2(n−1)

Rgg
)
.

We have

(1-17) trg Sg =
1

2(n−1)
Rg

and

(1-18) divg Sg =
1

2(n−1)
d Rg = d trg Sg.

We can see the tensor SJ shares similar properties with the classic Schouten tensor.

Following the observation in [Ge and Wang 2012], we get immediately the
following result by rewriting Theorem 1.9 with J -Schouten tensor:
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Corollary 1.11. For n 6= 4, let (Mn, g) be an n-dimensional closed Riemannian
manifold with positive Ricci curvature. Then

(1-19) (Volg M)−(n−8)/n
∫

M
σ J

2 (g) dvg ≤
n−1
2n

Y 2
Q(g),

where

YQ(g) :=

∫
M σ

J
1 (g) dvg

(Volg M)(n−4)/n

is the Q-Yamabe quotient and σ J
i (g)= σi (SJ (g)), i = 1, 2 are the i-th symmetric

polynomial of SJ (g). Moreover, the equality holds if and only if (M, g) is J -
Einstein.

Remark 1.12. Our almost-Schur lemma can be generalized to a broader setting by
combining it with the work [Gover and Ørsted 2013]. More detailed discussion
together with some related topics will be presented in a subsequent article.

This article is organized as follows: In Section 2, we derive an explicit formula
for the J -tensor and with it we prove Theorem 1.3 and Corollary 1.6. We then prove
Theorem 1.8 (Schur lemma) and Theorem 1.9 (almost-Schur lemma) in Section 3.

2. J-flatness and Q-singular metrics

We begin with some discussion of conformal tensors. Let

(2-1) Sjk =
1

n−2

(
R jk −

1
2(n−1)

Rg jk

)
be the Schouten tensor.

For n ≥ 4, the Bach tensor is defined to be

(2-2) Bjk =
1

n−3
∇

i
∇

l Wi jkl +Wi jkl Sil .

In order to extend the definition to n = 3, we introduce the Cotton tensor

(2-3) Ci jk =∇i Sjk −∇j Sik .

It is related to Weyl tensor by the equation

(2-4) ∇
l Wi jkl = (n− 3)Ci jk .

Therefore, for any n ≥ 3, we can define the Bach tensor as

(2-5) Bjk =∇
i Ci jk +Wi jkl Sil .

The following identity is well known for experts; we include calculations here
for the convenience of readers.
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Proposition 2.1. The Bach tensor can be written as

(2-6) Bg =1g S−∇2 tr S+ 2R̊m · S− (n− 4)S× S− |S|2g− 2(tr S)S,

where (R̊m · S)jk = Ri jkl Sil and (S× S)jk = Si
j Sik . Equivalently,

(2-7) Bg =1L S−∇2 tr S+ n
(

S× S− 1
n
|S|2g

)
,

where 1L is the Lichnerowicz Laplacian.

Proof. By the second contracted Bianchi identity,

∇
i Sik =

1
n−2

(
∇

i Rik −
1

2(n−1)
∇k R

)
=

1
n−2

(1
2
∇k R− 1

2(n−1)
∇k R

)
=

1
2(n−1)

∇k R

=∇k tr S
and

tr S = 1
n−2

(
R− n

2(n−1)
R
)
=

1
2(n−1)

R,

we have
Ric= (n− 2)S+ (tr S)g.

Using these facts,

∇
i Ci jk =∇

i (∇i Sjk −∇j Sik)

=1g Sjk − (∇j∇i Si
k + Ri

i j p S p
k − R p

i jk Si
p)

=1g Sjk −∇j∇k tr S− (Ric×S)jk + (R̊m · S)jk

=1g Sjk −∇j∇k tr S− (((n− 2)S+ (tr S)g)× S)jk + (R̊m · S)jk

=1g Sjk −∇j∇k tr S− (n− 2)(S× S)jk − (tr S)Sjk + (R̊m · S)jk

and
Wi jkl Sil

= (Rm− S ? g)i jkl Sil

= Ri jkl Sil
− (Sil g jk + Sjk gil − Sik g jl − Sjl gik)Sil

= (R̊m · S)jk − |S|2g jk + 2(S× S)jk − (tr S)Sjk,

where ? is the Kulkarni–Nomizu product:

(α?β)i jkl := αilβ jk +α jkβil −αikβ jl −α jlβik

for any symmetric 2-tensor α, β ∈ S2(M).
Combining them, we get

Bjk =1g Sjk −∇j∇k tr S+ 2(R̊m · S)jk − (n− 4)(S× S)jk − |S|2g jk − 2(tr S)Sjk .
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From this,

Bjk =1LSjk+2(Ric×S)jk−∇j∇k tr S−(n−4)(S×S)jk−|S|2g jk−2(tr S)Sjk

=1LSjk+2((Ric−(tr S)g)× S)jk−∇j∇k tr S−(n−4)(S×S)jk−|S|2g jk

=1LS−∇2 tr S+n(S×S)−|S|2g

=1LS−∇2 tr S+n
(

S×S− 1
n
|S|2g

)
. �

The Q-curvature can also be rewritten using Schouten tensor:

Lemma 2.2. Qg =−1g tr S− 2|S|2+ n
2
(tr S)2.

Proof. Using the equalities Ric= (n− 2)S+ (tr S)g and R = 2(n− 1) tr S,

Qg = An1g R+ Bn|Ric|2+Cn R2

= 2(n− 1)An1g tr S+ Bn|(n− 2)S+ (tr S)g|2+ 4(n− 1)2Cn(tr S)2

=−1g tr S− 2|S|2+ ((3n− 4)Bn + 4(n− 1)2Cn)(tr S)2

=−1g tr S− 2|S|2+ n
2
(tr S)2. �

We recall the expression of 0∗g in [Lin and Yuan 2016] as follows:

Lemma 2.3.

(2-8) 0∗g f := An
(
−g12 f +∇21 f −Ric1 f + 1

2 gδ( f d R)+∇( f d R)− f∇2 R
)

− Bn(1( f Ric)+ 2 f R̊m ·Ric+gδ2( f Ric)+ 2∇δ( f Ric))

− 2Cn(g1( f R)−∇2( f R)+ f R Ric).

Now we can calculate an explicit expression of Jg:

Theorem 2.4. For n ≥ 3,

(2-9) Jg =
1
n

Qgg− 1
n−2

Bg −
n−4

4(n−1)(n−2)
Tg,

where

Tg := (n− 2)
(
∇

2 trg Sg −
1
n

g1g trg Sg

)
+ 4(n− 1)

(
Sg × Sg −

1
n
|Sg|

2g
)
− n2(trg Sg)S̊g.

Here S̊g = Sg − (1/n) trg Sgg is the traceless part of Schouten tensor.

Proof. By Lemma 2.3,

0∗g 1=−
( 1

2 An +
1
2 Bn + 2Cn

)
g1R+ (Bn + 2Cn)∇

2 R

− Bn(1Ric+2R̊m ·Ric)− 2Cn R Ric .



A SYMMETRIC 2-TENSOR CANONICALLY ASSOCIATED TO Q-CURVATURE 433

Applying equalities Ric= (n− 2)S+ (tr S)g and R = 2(n− 1) tr S,

0∗g 1=−((n− 1)An + nBn + 4(n− 1)Cn)g1 tr S+ 2(n− 1)(Bn + 2Cn)∇
2 tr S

− (n− 2)Bn(1S+ 2R̊m · S)− 2(n− 2)(Bn + 2(n− 1)Cn)(tr S)S

− 2(Bn + 2(n− 1)Cn)(tr S)2g

=
3

2(n−1)
g1 tr S+ 2

n−2
(1S+ 2R̊m · S)+ n2

−10n+12
2(n−1)(n−2)

∇
2 tr S

−
n2
−2n+4

2(n−1)
(tr S)S− n2

−2n+4
2(n−1)(n−2)

(tr S)2g.

Since tr0∗g 1=−2Qg, by Lemma 2.2,

0∗g 1+ 2
n

Qgg

=

( 3
2(n−1)

−
2
n

)
g1 tr S+ 2

n−2
(1S+ 2R̊m · S)+ n2

−10n+12
2(n−1)(n−2)

∇
2 tr S

−
4
n
|S|2g− n2

−2n+4
2(n−1)

(tr S)S+
(

1− n2
−2n+4

2(n−1)(n−2)

)
(tr S)2g

=−
n−4

2n(n−1)
g1 tr S+ 2

n−2
(1S+ 2R̊m · S)+ n2

−10n+12
2(n−1)(n−2)

∇
2 tr S

−
4
n
|S|2g− n2

−2n+4
2(n−1)

(tr S)S+ n(n−4)
2(n−1)(n−2)

(tr S)2g.

Applying Proposition 2.1,

0∗g 1+ 2
n

Qgg = 2
n−2

Bg −
n−4

2n(n−1)
g1 tr S+

( 2
n−2

+
n2
−10n+12

2(n−1)(n−2)

)
∇

2 tr S

+
2(n−4)

n−2
S× S+

( 2
n−2

−
4
n

)
|S|2g

+

( 4
n−2

−
n2
−2n+4

2(n−1)

)
(tr S)S+ n(n−4)

2(n−1)(n−2)
(tr S)2g.

That is,

0∗g 1+ 2
n

Qgg = 2
n−2

Bg−
n−4

2n(n−1)
g1trS+ n−4

2(n−1)
∇

2 trS+ 2(n−4)
n−2

S× S

−
2(n−4)
n(n−2)

|S|2g− n2(n−4)
2(n−1)(n−2)

(trS)S+ n(n−4)
2(n−1)(n−2)

(trS)2g

=
2

n−2
Bg+

n−4
2(n−1)

(
∇

2 trS− 1
n

g1trS
)
+

2(n−4)
n−2

(
S× S− 1

n
|S|2g

)
−

n2(n−4)
2(n−1)(n−2)

(trS)
(
S− 1

n
(trS)g

)
=

2
n−2

Bg+
n−4

2(n−1)(n−2)
Tg,



434 YUEH-JU LIN AND WEI YUAN

where

Tg := (n− 2)
(
∇

2 trg Sg −
1
n

g1g trg Sg

)
+ 4(n− 1)

(
Sg × Sg −

1
n
|Sg|

2g
)
− n2(trg Sg)S̊g.

Therefore,

Jg =−
1
2
0∗g 1= 1

n
Qgg− 1

n−2
Bg −

n−4
4(n−1)(n−2)

Tg. �

Immediately, we have the following generalization of Theorem 1.2:

Corollary 2.5. Let (Mn, g) be a Q-singular n-dimensional Riemannian manifold.
Then 1 ∈ ker0∗g if and only if (Mn, g) is J -flat or equivalently (Mn, g) satisfies

(2-10) Bg =−
n−4

4(n−1)
Tg

with vanishing Q-curvature.

Remark 2.6. A similar result holds for Ricci curvature: a vacuum static space
admits a constant static potential if and only if it is Ricci flat, cf., [Fischer and
Marsden 1975].

3. An almost-Schur lemma for Q-curvature

Since the tensor Jg can be interpreted as a higher-order analogue of Ricci tensor,
we can also derive the Schur lemma for Jg as follows:

Theorem 3.1 (Schur lemma). Let (Mn, g) be an n-dimensional J -Einstein manifold
with n 6= 4 or equivalently,

Bg =−
n−4

4(n−1)
Tg.

Then Qg is a constant on M.

Proof. By the assumption, Jg =3g for some smooth function 3 on M. Then

3=
1
n

trg Jg =
1
n

Qg and d3= divg Jg =
1
4

d Qg.

Therefore,
n−4
4n

d Qg = 0

on M, which implies that Qg is a constant on M provided n 6= 4. �

Remark 3.2. When n = 4, J -Einstein metrics are exactly Bach flat ones. Due to
the conformal invariance of Bach flatness in dimension 4, we can easily see that
the constancy of Q-curvature can not always be achieved. Thus the above Schur
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Lemma does not hold for 4-dimensional manifolds, which is exactly like the classic
Schur lemma for surfaces.

In fact, a more general result can be derived:

Theorem 3.3 (almost-Schur lemma). For n 6= 4, let (Mn, g) be an n-dimensional
closed Riemannian manifold with positive Ricci curvature. Then

(3-1)
∫

M
(Qg − Qg)

2 dvg ≤
16n(n−1)
(n−4)2

∫
M
| J̊g|

2 dvg,

where Qg is the average of Qg. Moreover, the equality holds if and only if (Mn, g)
is J -Einstein.

The proof is along the same lines as in [De Lellis and Topping 2012]. For
completeness, we include it here. For more details, please refer to that work.

Proof. Let u be the unique solution to{
1gu = Qg − Qg,∫

M u dvg = 0.
Then∫

M
(Qg − Qg)

2 dvg =

∫
M
(Qg − Qg)1gu dvg =−

∫
M
〈∇Qg,∇u〉 dvg

=−
4n

n−4

∫
M
〈divg J̊g,∇u〉,

where for the last step we use the fact

divg J̊g = divg

(
Jg −

1
n

Qgg
)
=

1
4

d Qg −
1
n

d Qg =
n−4
4n

d Qg.

Integrating by parts,

−
4n

n−4

∫
M
〈divg J̊g,∇u〉 dvg =

4n
n−4

∫
M
〈 J̊g,∇

2u〉 dvg

=
4n

n−4

∫
M

〈
J̊g,∇

2u− 1
n

g1gu
〉

dvg

≤
4n

n−4

(∫
M
|J̊g|

2 dvg

)1/2(∫
M

∣∣∣∇2u− 1
n

g1gu
∣∣∣2 dvg

)1/2

=
4n

n−4

(∫
M
|J̊g|

2dvg

)1/2(∫
M
|∇

2u|2− 1
n
(1gu)2 dvg

)1/2

.

From the Bochner formula and the assumption Ricg > 0,∫
M
|∇

2u|2 dvg =

∫
M
(1gu)2 dvg −

∫
M

Ricg(∇u,∇u) dvg ≤

∫
M
(1gu)2 dvg.
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Thus,∫
M
(Qg − Qg)

2 dvg ≤
4n

n−4

(∫
M
| J̊g|

2 dvg

)1/2(n−1
n
(1gu)2 dvg

)1/2

=
4n

n−4

(∫
M
| J̊g|

2 dvg

)1/2(n−1
n
(Qg − Qg)

2 dvg

)1/2
.

That is, ∫
M
(Qg − Qg)

2 dvg ≤
16n(n−1)
(n−4)2

∫
M
| J̊g|

2 dvg.

Now we consider the equality case.
If g is J -Einstein, then Qg is a constant by the Schur lemma (Theorem 1.8).

Thus both sides of inequality (3-1) vanish and equality is achieved.
On the contrary, assume in (3-1) equality is achieved:∫

M
(Qg − Qg)

2 dvg =
16n(n−1)
(n−4)2

∫
M
| J̊g|

2 dvg.

Then in particular we have Ric(∇u,∇u) = 0, which implies that ∇u = 0 and
hence u is a constant on M, since we assume Ricg > 0.

Thus Q ≡ Q on M and∫
M
| J̊g|

2 dvg =
(n−4)2

16n(n−1)

∫
M
(Qg − Qg)

2 dvg = 0.

Therefore, J̊g ≡ 0 on M, i.e., (M, g) is J -Einstein. �

Remark 3.4. By assuming Ric ≥ −(n − 1)K g for some constant K ≥ 0 and
following the proof in [Cheng 2013], the inequality (3-1) can be improved to

(3-2)
∫

M
(Qg − Qg)

2 dvg ≤
16n(n−1)
(n−4)2

(
1+ nK

λ1

)∫
M
| J̊g|

2 dvg,

where λ1 > 0 is the first nonzero eigenvalue of (−1g).

Now we can derive an equivalent form of inequality (3-1):

Corollary 3.5. For n 6= 4, let (Mn, g) be an n-dimensional closed Riemannian
manifold with positive Ricci curvature. Then

(3-3) (Volg M)−(n−8)/n
∫

M
σ J

2 (g) dvg ≤
n−1
2n

Y 2
Q(g).

Moreover, the equality holds if and only if (Mn, g) is J -Einstein.

Proof. Note that

σ J
1 (g)= trg SJ =

1
4(n−1)

Qg
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and

σ J
2 (g)=

1
2
((σ J

1 )
2
− |SJ |

2)=
n−1
2n

(σ J
1 )

2
−

1
2(n−4)2

| J̊g|
2,

where we use the fact

|SJ |
2
=

∣∣∣S̊J +
1
n
(trg SJ )g

∣∣∣2 = ∣∣∣ 1
n−4

J̊g +
1
n
(σ J

1 )g
∣∣∣2 = 1

(n−4)2
| J̊g|

2
+

1
n
(σ J

1 )
2.

By substituting these terms in the inequality (3-1), we get(∫
M
σ J

1 (g) dvg

)2

≥
2n

n−1
Volg(M)

∫
M
σ J

2 (g) dvg.

Therefore,∫
M
σ J

2 (g) dvg ≤
n−1
2n

(Volg M)−1
(∫

M
σ J

1 (g) dvg

)2

=
n−1
2n

(Volg M)(n−8)/n
( ∫

M σ
J

1 (g) dvg

(Volg M)(n−4)/n

)2

=
n−1
2n

(Volg M)(n−8)/nY 2
Q(g). �

Remark 3.6. Note that the Q-Yamabe quotient

YQ(g) :=

∫
M σ

J
1 (g) dvg

(Volg M)(n−4)/n

is scaling invariant and in particular, when n = 8,∫
M
σ J

2 (g) dvg ≤
7
16

Y 2
Q(g),

provided that Ricg > 0, where the equality holds if and only if (M, g) is J -Einstein.
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