
Pacific
Journal of
Mathematics

GAUGE INVARIANTS FROM THE POWERS OF ANTIPODES

CRIS NEGRON AND SIU-HUNG NG

Volume 291 No. 2 December 2017



PACIFIC JOURNAL OF MATHEMATICS
Vol. 291, No. 2, 2017

dx.doi.org/10.2140/pjm.2017.291.439

GAUGE INVARIANTS FROM THE POWERS OF ANTIPODES

CRIS NEGRON AND SIU-HUNG NG

We prove that the trace of the n-th power of the antipode of a Hopf algebra
with the Chevalley property is a gauge invariant, for each integer n. As a
consequence, the order of the antipode, and its square, are invariant under
Drinfeld twists. The invariance of the order of the antipode is closely related
to a question of Shimizu on the pivotal covers of finite tensor categories,
which we affirmatively answer for representation categories of Hopf alge-
bras with the Chevalley property.

1. Introduction

This paper is dedicated to a study of the traces of the powers of the antipode of a
Hopf algebra, and an approach to the Frobenius–Schur indicators of nonsemisimple
Hopf algebras.

The antipode of a Hopf algebra has emerged as an object of importance in the
study of Hopf algebras. It has been proved by Radford [1976] that the order of
the antipode S of any finite-dimensional Hopf algebra H is finite. Moreover, the
trace of S2 is nonzero if, and only if, H is semisimple and cosemisimple [Larson
and Radford 1988a]. If the base field k is of characteristic zero, Tr(S2)= dim H
or 0, which characterizes respectively whether H is semisimple or nonsemisimple
[Larson and Radford 1988b]. This means semisimplicity of H is characterized
by the value of Tr(S2). In particular, Tr(S2) is an invariant of the finite tensor
category H -mod. The invariance of Tr(S2) and Tr(S) can also be obtained in any
characteristic via Frobenius–Schur indicators.

A generalized notion of the n-th Frobenius–Schur (FS-)indicator νKMN
n (H) has

been introduced in [Kashina et al. 2012] for studying finite-dimensional Hopf
algebras H, which are not necessarily semisimple or pivotal. However, νKMN

n (H)
coincides with the n-th FS-indicator of the regular representation of H when H is
semisimple, defined in [Linchenko and Montgomery 2000]. These indicators are
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invariants of the finite tensor categories H -mod. In particular, νKMN
2 (H)= Tr(S)

and νKMN
0 (H)= Tr(S2) (see [Shimizu 2015a]) are invariants of H -mod.

The invariance of Tr(S) and Tr(S2) alludes to the following question to be
investigated in this paper:

Question 1.1. For any finite-dimensional Hopf algebra H with the antipode S, is
the sequence {Tr(Sn)}n∈N an invariant of the finite tensor category H -mod?

For the purposes of this paper, we will always assume k to be an algebraically
closed field of characteristic zero, and all Hopf algebras are finite-dimensional
over k.

Recall that a finite-dimensional Hopf algebra H has the Chevalley property if
its Jacobson radical is a Hopf ideal. Equivalently, H has the Chevalley property
if the full subcategory of sums of irreducible modules in H -mod forms a tensor
subcategory. We provide a positive answer to Question 1.1 for Hopf algebras with
the Chevalley property.

Theorem I (Theorem 4.3). Let H and K be finite-dimensional Hopf algebras over
k with antipodes SH and SK respectively. Suppose H has the Chevalley property
and that H -mod and K -mod are equivalent as tensor categories. Then we have

Tr(Sn
H )= Tr(Sn

K )

for all integers n.

In a categorial language, the theorem tells us that for any finite tensor category C

with the Chevalley property which admits a fiber functor to the category of vector
spaces, the “traces of the powers of the antipode” are well-defined invariants which
are independent of the choice of fiber functor. One naturally asks whether these
scalars can be expressed purely in terms of categorial data of C .

Etingof asked the question whether, for any finite-dimensional H, Tr(S2m)= 0
provided ord(S2) - m [Radford and Schneider 2002, p. 186]. This question is
affirmatively answered for pointed and dual pointed Hopf algebras in [Radford and
Schneider 2002]. However, the odd powers of the antipode may have nonzero traces
in general. We note that the above result covers both the even and odd powers of
the antipode.

Theorem I also implies that the orders of the first two powers of the antipode of
a Hopf algebra with the Chevalley property are also invariants.

Corollary I (Corollary 4.4). Let H and K be finite-dimensional Hopf algebras
over k with antipodes SH and SK respectively. Suppose H has the Chevalley
property and that H -mod and K -mod are equivalent as tensor categories. Then
ord(SH )= ord(SK ) and hence ord(S2

H )= ord(S2
K ).

The order of S2 is related to a known invariant called the quasiexponent qexp(H)
[Etingof and Gelaki 2002]. Namely, for any finite-dimensional Hopf algebra,
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ord(S2) divides qexp(H). However, we still do not know whether or not the order
of S2 is an invariant in general.

The questions under consideration here are closely related to some recent inves-
tigations of Frobenius–Schur indicators for nonsemisimple Hopf algebras. The 2nd
Frobenius–Schur indicator ν2(V ) of an irreducible complex representation of a finite
group was introduced in [Frobenius and Schur 1906]; the notion was then extended
to semisimple Hopf algebras, quasi-Hopf algebras, certain C∗-fusion categories
and conformal field theory (see [Linchenko and Montgomery 2000; Mason and Ng
2005; Fuchs et al. 1999; Bantay 1997]). Higher Frobenius–Schur indicators νn(V )
for semisimple Hopf algebra have been extensively studied in [Kashina et al. 2006].
In the most general context, FS-indicators can be defined for each object V in a
pivotal tensor category C , and they are invariants of these tensor categories [Ng
and Schauenburg 2007b].

The n-th Frobenius–Schur indicators νn(H) of the regular representation of a
semisimple Hopf algebra H, defined in [Linchenko and Montgomery 2000], in
particular is an invariant of the fusion category H -mod (see [Ng and Schauenburg
2007b; 2008, Theorem 2.2]). For this special representation it is obtained in
[Kashina et al. 2006] that

(1-1) νn(H)= Tr(S ◦ Pn−1),

where Pk denotes the k-th convolution power of the identity map idH in Endk(H).
On elements, the map S ◦ Pn−1 is given by h 7→ S(h1 . . . hn−1).

The importance of the FS-indicators is illustrated in their applications to semisim-
ple Hopf algebras and spherical fusion categories (see for examples [Bruillard et al.
2016; Dong et al. 2015; Kashina et al. 2006; Ng and Schauenburg 2007a; 2010;
Ostrik 2015; Tucker 2015]). The arithmetic properties of the values of the FS-
indicators have played an integral role in all these applications, and remains the
main interest of FS-indicators (see for example [Guralnick and Montgomery 2009;
Iovanov et al. 2014; Montgomery et al. 2016; Schauenburg 2016; Shimizu 2015a]).

It would be tempting to extend the notion of FS-indicators for the study of finite
tensor categories or nonsemisimple Hopf algebras. One would expect that such
a generalized indicator for a general Hopf algebra H should coincide with the
existing one when H is semisimple.

The introduction of (what we refer to as) the KMN-indicators νKMN
n (H) in

[Kashina et al. 2012] is an attempt at this endeavor. Note that the right-hand side of
(1-1), Tr(S ◦ Pn−1), is well defined for any finite-dimensional Hopf algebra over
any base field, and we denote it as νKMN

n (H). It has been shown in [Kashina et al.
2012] that the scalar νKMN

n (H) is an invariant of the finite tensor category H -mod
for each positive integer n. However, this definition of indicators for the regular
representation in H -mod cannot be extended to other objects in H -mod.
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Shimizu [2015b] lays out an alternative categorial approach to generalized in-
dicators for a nonsemisimple Hopf algebra H. He first constructs a universal
pivotalization (H -mod)piv of H -mod, i.e., a pivotal tensor category with a fixed
monoidal functor 5 : (H -mod)piv

→ H -mod which is universal among all such
categories. The pivotal category (H -mod)piv has a regular object RH , and the
scalar νKMN

n (H) can be recovered from a new version of the n-th indicator νSh
n (R∗H ).

The universal pivotalization is natural in the sense that for any monoidal functor
F : H -mod→ K -mod, where K is a Hopf algebra, there exists a unique pivotal
functor

F piv
: (H -mod)piv

→ (K -mod)piv

compatible with both 5 and F.
However, the invariance of νKMN

n (H) does not follow immediately from this cat-
egorical framework. Instead, it would be a consequence of a proposed isomorphism
F piv(RH ) ∼= RK associated to any monoidal equivalence F : H -mod→ K -mod.
While the latter condition remains open in general, we show below that the regular
objects are preserved under monoidal equivalence for Hopf algebras with the
Chevalley property.

Theorem II (Theorem 7.4). Let H and K be Hopf algebras with the Chevalley
property and F : H -mod→ K -mod an equivalence of tensor categories. Then
the induced pivotal equivalence F piv

: (H -mod)piv
→ (K -mod)piv on the universal

pivotalizations satisfies F piv(RH )∼= RK .

This gives a positive solution to Question 5.12 of [Shimizu 2015b]. From
Theorem II we recover the gauge invariance result of [Kashina et al. 2012], in the
specific case of Hopf algebras with the Chevalley property.

Corollary II [Kashina et al. 2012, Theorem 2.2]. Suppose H and K are Hopf
algebras with the Chevalley property and have equivalent tensor categories of
representations. Then νKMN

n (H)= νKMN
n (K ).

The paper is organized as follows: Section 2 recalls some basic notions and
results on Hopf algebras and pivotal tensor categories. In Section 3, we prove that a
specific element γF associated to a Drinfeld twist F of a semisimple Hopf algebra
H is fixed by the antipode of H, using the pseudounitary structure of H -mod. We
proceed to prove Theorem I and Corollary I in Section 4. In Section 5, we recall the
construction of the universal pivotalization (H -mod)piv, the corresponding definition
of n-th indicators for an object in (H -mod)piv and their relations to νKMN

n (H). In
Section 6, we introduce finite pivotalizations of H -mod and, in particular, the
exponential pivotalization which contains all the possible pivotal categories defined
on H -mod. In Section 7, we answer a question of Shimizu on the preservation of
regular objects for Hopf algebras with the Chevalley property.
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2. Preliminaries

Throughout this paper, we assume some basic definitions on Hopf algebras and
monoidal categories. We denote the antipode of a Hopf algebra H by SH or, when
no confusion will arise, simply by S. A tensor category in this paper is a k-linear
abelian monoidal category with simple unit object 1. A monoidal functor between
two tensor categories is a pair (F, ξ) in which F is a k-linear functor satisfying
F(1)= 1, and

ξV,W : F(V )⊗F(W )→ F(V ⊗W )

is the coherence isomorphism. If the context is clear, we may simply write F for
the pair (F, ξ). The readers are referred to [Kassel 1995; Montgomery 1993] for
the details.

Gauge equivalence, twists, and the antipode. Let H be a finite-dimensional Hopf
algebra over k with antipode S, comultiplication 1 and counit ε. The category
H -mod of finite-dimensional representations of H is a finite tensor category in the
sense of [Etingof and Ostrik 2004]. For V ∈ H -mod, the dual vector space V ′ of V
admits the natural right H -action ↼ given by

(v∗↼ h)(v)= v∗(hv)

for h ∈ H, v∗ ∈ V ′ and v ∈ V. The left dual V ∗ of V is the vector space V ′ endowed
with the left H -action defined by

hv∗ = v∗↼ S(h)

for h ∈ H and v∗ ∈ V ′, with the usual evaluation ev : V ∗⊗ V → k and the dual
basis map as the coevaluation coev : k→ V ⊗ V ∗. The right dual of V is defined
similarly, with S replaced by S−1.

Suppose K is another finite-dimensional Hopf algebra over k such that K -mod
and H -mod are equivalent tensor categories. It follows from [Ng and Schauenburg
2008, Theorem 2.2] that there is a gauge transformation F =

∑
i fi ⊗ gi ∈ H ⊗ H

(see [Kassel 1995]), which is an invertible element satisfying

(ε⊗ id)(F)= 1= (id⊗ε)(F),

such that the map 1F
: H → H ⊗ H, h 7→ F1(h)F−1 together with the counit ε

and the algebra structure of H form a bialgebra H F and that K
σ
∼=H F as bialgebras.

In particular, H F is a Hopf algebra with the antipode give by

(2-1) SF (h)= βF S(h)β−1
F ,

where βF =
∑

i fi S(gi ). Following the terminology of [Kassel 1995] (see [Kashina
et al. 2012]), we say that K and H are gauge equivalent if the categories of their
finite-dimensional representations are equivalent tensor categories. A quantity f (H)
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obtained from a finite-dimensional Hopf algebra H is called a gauge invariant if
f (H)= f (K ) for any Hopf algebra K gauge equivalent to H. For instance, Tr(S)
and Tr(S2) are gauge invariants of H.

If F−1
=
∑

i di ⊗ ei , then β−1
F =

∑
i S(di )ei . For the purpose of this paper, we

set γF = βF S(β−1
F ) and so, by (2-1), we have

(2-2) S2
F (h)= γF S2(h)γ−1

F

for h ∈ H.
Since the associativities of K and H are given by 1⊗ 1⊗ 1, the gauge transfor-

mation F satisfies the condition

(2-3) (1⊗ F)(id⊗1)(F)= (F ⊗ 1)(1⊗ id)(F).

This is a necessary and sufficient condition for 1F to be coassociative. A gauge
transformation F ∈ H⊗H satisfying (2-3) is often called a Drinfeld twist or simply
a twist.

Suppose F ∈ H ⊗ H is a twist and K
σ
∼=H F as Hopf algebras. Following [Kassel

1995], one can define an equivalence (Fσ , ξ F ) : H -mod → K -mod of tensor
categories. For V ∈ H -mod, Fσ (V ) is the left K -module with the action given
by k · v := σ(k)v for k ∈ K and v ∈ V. The assignment V 7→ Fσ (V ) defines a
k-linear equivalence from H -mod to K -mod with identity action on the morphisms.
Together with the natural isomorphism

ξ F
: Fσ (V )⊗Fσ (W )→ Fσ (V ⊗W )

defined by the action of F−1 on V ⊗W, the pair (Fσ , ξ F ) : H -mod→ K -mod is
an equivalence of tensor categories. If K = H F for some twist F ∈ H ⊗ H, then
(Id, ξ F ) : H -mod→ H F -mod is an equivalence of tensor categories since Fid is
the identity functor Id.

Pivotal categories. For any finite tensor category C with the unit object 1, the
left duality can define a functor (−)∗ : C → C op and the double dual functor
(−)∗∗ : C → C is an equivalence of tensor categories. A pivotal structure of C is
an isomorphism j : Id→ (−)∗∗ of monoidal functors. Associated with a pivotal
structure j are the notions of trace and dimension: For any V ∈ C and f : V → V,
one can define ptr( f ) as the scalar of the composition

ptr( f ) := (1 coev
−−→ V ⊗ V ∗ f⊗V ∗

−−→ V ⊗ V ∗ j⊗V ∗
−−→ V ∗∗⊗ V ∗ ev

−→ 1)

and d(V )= ptr(idV ). A finite tensor category with a specified pivotal structure is
called a pivotal category.

Suppose C and D are pivotal categories with the pivotal structures j and j ′

respectively, and (F, ξ) : C → D is a monoidal functor. Then there exists a unique
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natural isomorphism ξ̃ : F(V ∗)→ F(V )∗ which is determined by either of the
following commutative diagrams (see [Ng and Schauenburg 2007b, p. 67]):

(2-4)

F(V ∗)⊗F(V )

ξ

��

ξ̃⊗F(V )
// F(V )∗⊗F(V )

ev
��

F(V ∗⊗V )
F(ev)

// 1

or

F(V )⊗F(V ∗)
F(V )⊗ξ̃

// F(V )⊗F(V )∗

F(V⊗V ∗)

ξ−1

OO

1
F(coev)

oo

coev

OO

The monoidal functor (F, ξ) is said to be pivotal if it preserves the pivotal
structures, which means the commutative diagram

(2-5)

F(V )

j ′F(V )
��

F( jV )
// F(V ∗∗)

ξ̃

��

F(V )∗∗
ξ̃∗
// F(V ∗)∗

is satisfied for V ∈C . It follows from [Ng and Schauenburg 2007b, Lemma 6.1] that
pivotal monoidal equivalence preserves dimensions. More precisely, if F : C → D

is an equivalence of pivotal categories, then d(V )= d(F(V )) for V ∈ C .

3. Semisimple Hopf algebras and pseudounitary fusion categories

In general, a finite tensor category may not have a pivotal structure. However, all
the known semisimple finite tensor categories, also called fusion categories, over k,
admit a pivotal structure. It remains an open question whether every fusion category
admits a pivotal structure (see [Etingof et al. 2005]). We present an equivalent
definition of pseudounitary fusion categories obtained in [Etingof et al. 2005] or
more generally in [Drinfeld et al. 2010] as in the following proposition.

Proposition 3.1 [Etingof et al. 2005]. Let kc denote the subfield of k generated
by Q and all the roots of unity in k. A fusion category C over k is called
(φ-)pseudounitary if there exist a pivotal structure jC and a field monomorphism
φ : kc→ C such that φ(d(V )) is real and nonnegative for all simple V ∈ C , where
d(V ) is the dimension of V associated with jC. In this case, this pivotal structure
jC is unique and φ(d(V )) is identical to the Frobenius–Perron dimension of V.

The reference of φ becomes irrelevant when the dimensions associated with the
pivotal structure jC of C are nonnegative integers. In this case, C is simply said to
be pseudounitary, and jC is called the canonical pivotal structure of C . In particular,
the fusion category H -mod of a finite-dimensional semisimple quasi-Hopf algebra
H is pseudounitary and the pivotal dimension of an H -module V associated with
the canonical pivotal structure of H -mod is simply the ordinary dimension of V
(see [Etingof et al. 2005]).
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The canonical pivotal structure jVec on the trivial fusion category Vec of finite-
dimensional k-linear space is just the usual vector space isomorphism V → V ∗∗,
which sends an element v ∈ V to the evaluation function v̂ : V ∗→ k, f 7→ f (v).

Let H be a finite-dimensional semisimple Hopf algebra over k. Then the antipode
S of H satisfies S2

= id (see [Larson and Radford 1988b]). Thus, for V ∈ H -mod,
the natural isomorphism jVec

: V → V ∗∗ of vector spaces is an H -module map.
In fact, jVec provides a pivotal structure of H -mod and the associated pivotal
dimension d(V ) of V, given by the composition map

k coev
−−→ V ⊗ V ∗ j⊗V ∗

−−→ V ∗∗⊗ V ∗ ev
−→ k,

is equal to its ordinary dimension dim V, which is a nonnegative integer. Therefore,
jVec is the canonical pivotal structure of H -mod.

By [Ng and Schauenburg 2007b, Corollary 6.2], the canonical pivotal structure
of a pseudounitary fusion category is preserved by any monoidal equivalence of
fusion categories. For the purpose of this article, we restate this statement in the
context of semisimple Hopf algebras.

Corollary 3.2 [Ng and Schauenburg 2007b, Corollary 6.2]. Let H and K be finite-
dimensional semisimple Hopf algebras over k. If

(F, ξ) : H-mod→ K -mod

defines a monoidal equivalence, then (F, ξ) preserves their canonical pivotal
structures, i.e., they satisfy the commutative diagram (2-5). In particular, if K

σ
∼=H F

as Hopf algebras for some twist F ∈ H ⊗ H, then the monoidal equivalence
(Fσ , ξ F ) : H-mod→ K -mod preserves their canonical pivotal structures.

Now, we can prove the following on a twist of a semisimple Hopf algebra:

Theorem 3.3. Let H be a semisimple Hopf algebra over k with antipode S, F =∑
i fi ⊗ gi ∈ H ⊗ H a twist and βF =

∑
i fi S(gi ). Then

S(βF )= βF .

Proof. Let F−1
=
∑

i di ⊗ ei . Then β−1
=
∑

i S(di )ei (see Section 2), where βF is
simply abbreviated as β. For V ∈ H -mod, we denote by V ∗ and V∨ respectively
the left duals of V in H -mod and H F -mod. It follows from (2-4) that the duality
transformation ξ̃ F

: V ∗ → V∨, for V ∈ H -mod, of the monoidal equivalence
(Id, ξ F ) : H -mod→ H F -mod, is given by

(3-1) ξ̃ F (v∗)= v∗↼β−1

for all v∗ ∈ V ∗. Since both H and H F are semisimple, their canonical pivotal
structures are the same as the usual natural isomorphism jVec of finite-dimensional
vector spaces over k. Since (Id, ξ F ) preserves the canonical pivotal structures,
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by (2-5), we have

ξ̃ F ( jVec(v))(v∗)= (̃ξ F )∗( jVec(v))(v∗)

= jVec(v)(̃ξ F (v∗))= (v∗↼β−1)(v)= v∗(β−1v),

for all v ∈ V and v∗ ∈ V ∗. Rewriting the first term of this equation, we find

v∗(S(β−1)v)= v∗(β−1v).

This implies β−1
= S(β−1) by taking V = H and v = 1. �

4. Hopf algebras with the Chevalley property

A finite-dimensional Hopf algebra H over k is said to have the Chevalley property
if the Jacobson radical J (H) of H is a Hopf ideal. In this case, H = H/J (H) is a
semisimple Hopf algebra and the natural surjection π : H → H is a Hopf algebra
map. Let F ∈ H ⊗ H be a twist of H. Then

F := (π ⊗π)(F) ∈ H ⊗ H

is a twist and so
π(βF )= βF = S(βF )= π(S(βF ))

by Theorem 3.3, where S denotes the antipode of H. Therefore, S(βF )∈βF+ J (H),
and this proves the next result:

Lemma 4.1. Let H be a finite-dimensional Hopf algebra over k with the Chevalley
property. For any twist F ∈ H ⊗ H,

S(βF ) ∈ βF + J (H).

We will need the following lemma.

Lemma 4.2. Let A be a finite-dimensional algebra over k and T an algebra endo-
morphism or antiendomorphism of A.

(i) For any x ∈ J (A) and a ∈ A,

l(x)r(a)T and l(a)r(x)T

are nilpotent operators, where l(x) and r(x) respectively denote the left and
the right multiplication by x.

(ii) For any a, a′, b, b′ ∈ A such that a′ ∈ a+ J (A) and b′ ∈ b+ J (A), we have
Tr(l(a)r(b)T )= Tr(l(a′)r(b′)T ).

Proof. (i) Let n be a positive integer such that J (A)n = 0. We first consider the
case when T is an algebra endomorphism of A. Then

(l(a)r(x)T )n = l(a)l(T (a)) · · · l(T n−1(a))r(x) · · · r(T n−1(x))T n

= l(aT (a) · · · T n−1(a))r(T n−1(x) · · · T (x)x)T n.
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Since J (A)n = 0 and x, T (x), . . . , T n−1(x) ∈ J (A),

T n−1(x) · · · T (x)x = 0.

Therefore, (l(a)r(x)T )n = 0. We can show that (l(x)r(a)T )n = 0 by the same
argument. In particular, they are nilpotent operators.

If T is an algebra antiendomorphism of A, then

(l(a)r(x)T )2 = l(aT (x))r(T (a)x)T 2.

Since T 2 is an algebra endomorphism of A and aT (x) ∈ J (A), we have that
(l(a)r(x)T )2n is equal to 0. Similarly, (l(x)r(a)T )2n

= 0.

(ii) Let a′ = a+ x and b′ = b+ y for some x, y ∈ J (A).

l(a′)r(b′)T = l(a)r(b)T + l(x)r(b′)T + l(a)r(y)T .

By (i), l(x)r(b′)T and l(a)r(y)T are nilpotent operators, and the result follows. �

We can now prove that the traces of the powers of the antipode of a Hopf algebra
with the Chevalley property are gauge invariants.

Theorem 4.3. Let H be a Hopf algebra over k with the antipode S. Suppose H
has the Chevalley property. Then for any twist F ∈ H ⊗ H, we have

Tr(Sn
F )= Tr(Sn)

for all integers n, where SF is the antipode of H F. Moreover, if K is another Hopf
algebra over k with antipode S′ which is gauge equivalent to H, then

Tr(Sn)= Tr(S′n)

for all integers n.

Proof. By (2-1), the antipode SF of H F is given by

SF (h)= βF S(h)β−1
F

for h ∈ H. Recall from (2-2) that

S2
F (h)= γF S2(h)γ−1

F

where γF = βF S(β−1
F ). Then, for any nonnegative integer n, we can write Sn

F =

l(un)r(u−1
n )Sn where u0 = 1 and

un =

{
γF S2(γF ) · · · Sn−2(γF ) if n is positive and even,
βF S(u−1

n−1) if n is odd.
Thus, if n is an even positive integer, un ∈ 1+ J (H) by Lemma 4.1. It follows
from Lemma 4.2 that

Tr(Sn
F )= Tr(l(un)r(u−1

n )Sn)= Tr(l(1)r(1)Sn)= Tr(Sn).
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From now, we assume n is odd. Then un ∈ βF + J (H) and so we have

(4-1)
Tr(Sn

F )= Tr(l(un)r(u−1
n )Sn)= Tr(l(βF )r(β−1

F )Sn)

= Tr(l(βF )r(Sn(β−1
F ))Sn).

The last equality of the above equation follows from Lemmas 4.1 and 4.2(ii).
Let 3 be a left integral of H and λ a right integral of H∗ such that λ(3) = 1.

By [Radford 1994, Theorem 2],

Tr(T )= λ(S(32)T (31))

for any k-linear endomorphism T on H, where 1(3)=31⊗32 is the Sweedler
notation with the summation suppressed. Thus, by (4-1), we have

(4-2)
Tr(Sn

F )= λ(S(32)βF Sn(31)Sn(β−1
F ))

= λ(S(32)βF Sn(β−1
F 31)).

Recall from [Radford 1994, p. 591] that

31⊗ a32 = S(a)31⊗32

for all a ∈ H. Using this equality and (4-2), we find

Tr(Sn
F )= λ(S(32)βF Sn(β−1

F 31))= λ(S(S−1(β−1
F )32)βF Sn(31))

= λ(S(32)β
−1
F βF Sn(31))= λ(S(32)Sn(31))= Tr(Sn).

The second part of the theorem then follows immediately from Corollary 3.2. �

Corollary 4.4. If H is a finite-dimensional Hopf algebra over k with the Chevalley
property, then ord(S) is a gauge invariant. In particular, ord(S2) is a gauge
invariant.

Proof. Since k is of characteristic zero, Tr(Sn)= dim H if, and only if, Sn
= id. In

particular, ord(S) is the smallest positive integer n such that Tr(Sn)= dim H. If K
is a Hopf algebra (over k) with the antipode S′ and is gauge equivalent to H, then
dim K = dim H by Corollary 3.2. Hence, by Theorem 4.3, ord(S)= ord(S′). Note
that S has odd order if, and only if, S is the identity. Therefore, the last statement
follows. �

5. Pivotalization and indicators

KMN-indicators. For the regular representation H of a semisimple Hopf algebra
H over k with the antipode S, the formula of the n-th Frobenius–Schur indicator
νn(H) was obtained in [Kashina et al. 2006] and is given by (1-1). Since a monoidal
equivalence between the module categories of two finite-dimensional Hopf algebras
preserves their regular representation [Ng and Schauenburg 2008, Theorem 2.2] and
Frobenius–Schur indicators are invariant under monoidal equivalences (see [Ng and
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Schauenburg 2007b, Corollary 4.4] or [Ng and Schauenburg 2008, Proposition 3.2]),
νn(H) is an invariant of Rep(H) if H is semisimple.

The formula (1-1) is well defined even for a nonsemisimple Hopf algebra H
without any pivotal structure in H -mod. In fact, the gauge invariance of these
scalars has been recently proved in [Kashina et al. 2012] which is stated as the
following theorem.

Theorem 5.1 [Kashina et al. 2012, Theorem 2.2]. For any finite-dimensional Hopf
algebra H over any field k, we define νKMN

n (H) as in (1-1). If H and K are gauge
equivalent finite-dimensional Hopf algebras over k, then we have

νKMN
n (H)= νKMN

n (K ).

In general, these indicators νKMN
n (H) can only be defined for the regular repre-

sentation of H. The proof of Theorem 5.1 relies heavily on Corollary 3.2 and theory
of Hopf algebras. We would like to have a categorial framework for the definition
of νKMN

n (H) in order to extend the definitions of the indicators to other objects in
H -mod and give a categorial proof of gauge invariance of these indicators.

The universal pivotalization. In [Shimizu 2015b] the notion of universal pivotal-
ization C piv of a finite tensor category C is proposed in order to produce indicators
for pairs consisting of an object V in C along with a chosen isomorphism to its
double dual. Under this categorical framework, νKMN

n (H) is the n-th indicator of a
special (or regular) object in (H -mod)piv. We recall some constructions and results
from [Shimizu 2015b] here.

For a finite tensor category C one can construct the universal pivotalization
5C : C

piv
→ C of C , which is referred to as the pivotal cover of C in [Shimizu

2015b].1 The category C piv is the abelian, rigid, monoidal category of pairs
(V, φV ) of an object V and an isomorphism φV : V → V ∗∗ in C . Morphisms
(V, φV )→ (W, φW ) in C piv are maps f :V→W in C which satisfy φW f = f ∗∗φV .
Note that the forgetful functor 5C : C

piv
→ C is faithful.

The category C piv will be monoidal under the obvious tensor product

(V, φV )⊗ (W, φW ) := (V ⊗W, φV ⊗φW )

(where we suppress the natural isomorphism (V ⊗W )∗∗ ∼= V ∗∗⊗W ∗∗), and (left)
rigid under the dual (V, φV )

∗
= (V ∗, (φ−1

V )∗). There is a natural pivotal structure
j : Id C piv → (−)∗∗ on C piv which, on each object (V, φV ), is simply given by
j(V,φV ) := φV .

The construction C piv is universal in the sense that any monoidal functor
F : D → C from a pivotal tensor category D factors uniquely through C piv. By

1We accept the term pivotal cover, but adopt the term pivotalization as it is consistent with the
constructions of [Etingof et al. 2015] and admits adjectives more readily.
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faithfulness of the forgetful functor5C :C
piv
→C , the factorization F̃ :D→C piv,

which is a monoidal functor preserving the pivotal structures, is determined uniquely
by where it sends objects. This factorization is described as follows.

Theorem 5.2 [Shimizu 2015b, Theorem 4.3]. Let j denote the pivotal structure on
D and (F, ξ) : D→ C a monoidal functor. Then the factorization F̃ : D→ C piv

sends each object V in D to the pair (F(V ), (̃ξ∗)−1̃ξF( jV )), where ξ̃ is the duality
transformation as in Section 2.

From the universal property for C piv one can conclude that the construction
(−)piv is functorial, which means a monoidal functor F : D→ C induces a unique
pivotal functor F piv

: Dpiv
→ C piv which satisfies the commutative diagram

Dpiv F piv
//

5D

��

C piv

5C

��

D
F

// C

of monoidal functors.

Indicators via C piv. Following [Ng and Schauenburg 2007b], for any V,W ∈ C ,
we denote by AV,W and DV,W the natural isomorphisms HomC (1, V ⊗ W )→

HomC (V ∗,W ) and HomC (V,W )→ HomC (W ∗, V ∗) respectively. Thus,

TV,W := A−1
W,V ∗∗ ◦ DV ∗,W ◦ AV,W

is a natural isomorphism from HomC (1, V ⊗W )→ HomC (1,W ⊗ V ∗∗). We also
define V⊗0

= 1 and V⊗n
= V ⊗ V⊗(n−1) for any positive integer n inductively.

Similar to the definition provided in [Ng and Schauenburg 2007b, p. 71], for any
V = (V, φV ) ∈ C piv and positive integer n, one can define the map

E (n)V : HomC (1, V⊗n)→ HomC (1, V⊗n)

by
E (n)V ( f ) :=8(n) ◦ (id⊗φ−1

V ) ◦ TV,W ( f ),

where W = V⊗(n−1) and 8(n) : W ⊗ V → V ⊗W is the unique map obtained by
the associativity isomorphisms. Shimizu’s version of the n-th FS-indicator of V is
defined as

νSh
n (V )= Tr(E (n)V ).

This indicator is preserved by monoidal equivalence in the following sense:

Theorem 5.3 [Shimizu 2015b, Theorem 5.3]. If F : C → D is an equivalence of
monoidal categories, for any V ∈ C piv and positive integer n, we have

νSh
n (V )= ν

Sh
n (F

piv(V )).



452 CRIS NEGRON AND SIU-HUNG NG

Remark 5.4. The definition of the n-th FS-indicator νSh
n (V ) of V is different from

the definition νn(V ) introduced in [Ng and Schauenburg 2007b], in which E (n)V
is defined on the space HomC piv(1, V⊗n) instead. It is natural to ask the question
whether or how these two notions of indicators are related.

In the case of a finite-dimensional Hopf algebra C = H -mod, we take RH =

(H, φH ) to be the object in C piv, in which H is the left regular H -module and
φH : H→ H∗∗ is the composition jVec

◦ S2
: H→FS2(H)∼= H∗∗. We call RH the

regular object in C piv, and we have the following theorem:

Theorem 5.5 [Shimizu 2015b, Theorem 5.7]. Suppose C = H-mod. Then for each
integer n we have νSh

n (R∗H )= ν
KMN
n (H).

The theorem provides a convincing argument to pursue this categorical framework
of FS-indicator for nonsemisimple Hopf algebras. However, this framework does
not yield another proof for the gauge invariance of νKMN

n (H) (see Theorem 5.1).
The gauge invariance of νKMN

n (H) will follow if this question, raised in [Shimizu
2015b], can be positively answered:

Question 5.6 [Shimizu 2015b]. Let H and K be two gauge equivalent Hopf al-
gebras, and let F : H -mod→ K -mod be a monoidal equivalence. Do we have
F piv(RH )∼= RK in (K -mod)piv?

If the question is affirmatively answered for gauge equivalent Hopf algebras H
and K, then we have F piv(RH )∼= RK in (K -mod)piv for any monoidal equivalence
F : H -mod→ K -mod. Thus,

F piv(R∗H )∼= (F
piv(RH ))

∗ ∼= R∗K .

It follows from [Shimizu 2015b, Theorem 5.3] that

νKMN
n (H)= νSh

n (R
∗

H )= ν
Sh
n (F

piv(R∗H ))= ν
Sh
n (R

∗

K )= ν
KMN
n (K ).

An affirmative answer to the question for semisimple H has been provided in
[Shimizu 2015b, Proposition 5.10], and we will give in Theorem 7.4 a positive
answer for H having the Chevalley property. As discussed above, an affirmative
answer to the above question yields a categorial proof of Theorem 5.1.

6. Finite pivotalizations for Hopf algebras

Let C = H -mod. In this section we remark that the universal pivotalization C piv,
which is not a finite tensor category in general, has a finite alternative for module
categories of Hopf algebras.

For any k-linear map τ : V → V ∗∗ we let τ ∈Autk(V ) denote the automorphism
τ := ( jVec)−1

◦ τ .
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Definition 6.1. For a Hopf algebra H we let H piv denote the smash product H oZ,
where the generator x of Z acts on H by S2. Similarly, for any positive integer N
with ord(S2)|N, we take H Npiv

= H o (Z/NZ), where again the generator x of
Z/NZ acts as S2.

The smash products H piv and H Npiv admit a unique Hopf structure so that the
inclusions H → H piv and H → H Npiv are Hopf algebra maps and x is grouplike.

It has been pointed out in [Shimizu 2015b, Remark 4.5] that H piv-mod is iso-
morphic to (H -mod)piv as pivotal tensor categories. To realize the identification
2 : H piv-mod

∼=
−→ C piv one takes an H piv-module V to the H -module V along

with the isomorphism φV := jVec
◦ l(x) : V → FS2(V ) ∼= V ∗∗. On elements,

φV (v) = jVec(x · v). So we see that the inverse functor 2−1
: C piv

→ H piv-mod
takes the pair (V, φV ) to the H -module V along with the action of the grouplike
x ∈ H piv by x · v = φV (v).

From the above description of C piv for Hopf algebras we see that C piv will not
usually be a finite tensor category.

Note that, for any integer N as above, we have the Hopf projection H piv
→ H Npiv

which is the identity on H and sends x (in H piv) to x (in H Npiv). Dually, we get a
fully faithful embedding of tensor categories H Npiv-mod→ H piv-mod.

Definition 6.2. For any positive integer N which is divisible by the order of S2, we
let C Npiv denote the full subcategory of C piv which is the image of

H Npiv-mod⊂ H piv-mod

along the isomorphism 2 : H piv-mod→ C piv.

From this point on if we write H Npiv or C Npiv we are assuming that N is a
positive integer with ord(S2)|N. We see, from the descriptions of the isomorphisms
2 and 2−1 given above, that C Npiv is the full subcategory consisting of all pairs
(V, φV ) so that the associated automorphism φV ∈ Autk(V ) has order dividing N.

Lemma 6.3. The category C Npiv is a pivotal finite tensor subcategory in the pivotal
(nonfinite) tensor category C piv which contains RH .

Proof. Since the map 2 : H piv-mod→ C piv is a tensor equivalence, it follows
that C Npiv, which is defined as the image of H Npiv-mod in C piv, is a full tensor
subcategory in C piv. The category C Npiv is pivotal with its pivotal structure inherited
from C piv. The fact that RH = (H, jVec

◦ S2) is in C Npiv just follows from the fact
the order of S2

= φRH is assumed to divide N. �

Remark 6.4. There is another interesting object AH introduced in [Shimizu 2015b,
Section 6.1 and Theorem 7.1]. This object is the adjoint representation Had of H
along with the isomorphism φAH = jVec

◦ S2. We will have that AH is also in C Npiv

for any N.
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Some choices for N which are of particular interest are N = ord(S2) or N =
qexp(H), where qexp(H) is the quasiexponent of H. Recall that the quasiexponent
qexp(H) of H is defined as the unipotency index of the Drinfeld element u in the
Drinfeld double D(H) of H (see [Etingof and Gelaki 2002]). This number is always
finite and divisible by the order of S2 [Etingof and Gelaki 2002, Proposition 2.5].
More importantly, qexp(H) is a gauge invariant of H.

When we would like to pivotalize with respect to the quasiexponent we take
H Epiv

= H qexp(H)piv and C Epiv
= C qexp(H)piv. We call C Epiv the exponential piv-

otalization of C = H -mod.
If C admits any pivotal structures, one can show that the exponential pivotalization

contains a copy of (C , j) for any choice of pivotal structure j on C as a full pivotal
subcategory. More specifically, for any choice of pivotal structure j on C the
induced map (C , j)→ C piv will necessarily have image in C Epiv. In this way, the
indicators for C calculated with respect to any choice of pivotal structure can be
recovered from the (Shimizu-)indicators on C Epiv.

For some Hopf algebras H, the integer qexp(H) is minimal so that C Npiv has
this property. For example, when we take the generalized Taft algebra

Hn,d(ζ )= k〈g, x〉/(gnd
− 1, xd , gx − ζ xg),

where ζ is a primitive d-th root of unity (see [Taft 1971; Etingof and Walton 2016,
Definition 3.1]). We have ord(S2) = d and nd = qexp(Hn,d(ζ )) by [Etingof and
Gelaki 2002, Theorem 4.6]. The grouplike element g provides a pivotal structure
j on Hn,d(ζ )-mod, and the resulting map into (Hn,d(ζ )-mod)piv has image in
(Hn,d(ζ )-mod)Npiv if, and only if, qexp(Hn,d(ζ ))|N. This relationship can be seen
as a consequence of the general fact that qexp(H)= exp(G(H)) for any pointed
Hopf algebra H [Etingof and Gelaki 2002, Theorem 4.6].

Our functoriality result for the finite pivotalizations is the following.

Proposition 6.5. For any monoidal equivalence F : H-mod→ K -mod, where H
and K are Hopf algebras, the functor F piv restricts to an equivalence

F Epiv
: (H-mod )Epiv

→ (K -mod )Epiv.

Furthermore, when H has the Chevalley property F piv restricts to an equivalence
FNpiv

: (H-mod )Npiv
→ (K -mod )Npiv for each N (in particular N = ord(S2

H ) =

ord(S2
K )).

The proof of the proposition is given in the appendix.

7. Preservation of the regular object

In this section we show that for a monoidal equivalence F : H -mod→ K -mod of
Hopf algebras H and K with the Chevalley property we will have F piv(RH )∼= RK .
From this we recover Theorem 5.1 for Hopf algebras with the Chevalley property.
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Let H be a finite-dimensional Hopf algebra with antipode S, and F ∈ H ⊗ H a
twist of H. We let C = H -mod, CF = H F -mod, and let F = (Fid, ξ

F ) denote the
associated equivalence from C to CF , by abuse of notation.

For this section we will be making copious use of the isomorphism jVec
:V→V ∗∗,

and adopt the shorthand v̂ = jVec(v) ∈ V ∗∗ for v ∈ V. Recall that v̂ is just the
evaluation map V ∗→ k, η 7→ η(v).

Preservation of regular objects. Recall that the antipode SF of H F is given by
SF (h)= βF S(h)β−1

F and that γF = βF S(βF )
−1. For any positive integer k, define

γ
(k)
F = γF S2(γF ) · · · S2k−2(γF ).

Then we have S2k
F (h) = γ

(k)
F S2k(h)(γ (k)F )−1 for all positive integers k and h ∈ H.

The following lemma is well known and it follows immediately from [Aljadeff et al.
2002, Equation (6)].

Lemma 7.1. The element γ (ord(S2))
F is a grouplike element in H F.

Proof. Take N = ord(S2). We have from [Aljadeff et al. 2002, Equation (6)] that

1(γF )= F−1(γF ⊗ γF )(S2
⊗ S2)(F)

(see also [Majid 1995]). Hence

1(γ
(n)
F )= F−1(γ

(n)
F ⊗ γ

(n)
F )(S2n

⊗ S2n)(F)

for each n and therefore

1F (γ
(N )
F )= F1(γ (N )F )F−1

= γ
(N )
F ⊗ γ

(N )
F . �

We have the following concrete description of the (universal) pivotalization of
an equivalence F : C → CF induced by a twist F on H.

Lemma 7.2. The functor F piv
: C piv

→ C
piv

F sends an object (V, φV ) in C piv to
the pair consisting of the object V along with the isomorphism

V → V ∗∗, v 7→ jVec(γFφV (v)).

In particular, Fpiv(RH )= (H F , jVec
◦ l(γF ) ◦ S2).

Proof. Take β = βF , γ = γF and ξ = ξ F. Recall that F(V ∗) = F(V )∗ = V ∗ as
vector spaces for each V in C . It follows from (3-1) that, for any object V in C ,

ξ̃ : F(V ∗)→ F(V )∗

is given by
ξ̃ ( f )= f ↼β−1 for f ∈ V ∗.

This implies

ξ̃ (v̂)( f )= (v̂ ↼ β−1)( f )= v̂(β−1
· f )= f (S(β−1)v)= jVec(S(β−1)v)( f )
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for v̂ ∈ F(V ∗∗) and f ∈ F(V ∗). Thus,

(̃ξ∗)−1̃ξ(v̂)( f )=(̃ξ∗)−1 jVec(S(β−1)v)( f )= jVec(S(β−1)v)(̃ξ−1( f ))

= jVec(S(β−1)v)( f ↼β)= f (βS(β−1)v)= f (γ v)= jVec(γ v)( f )

for v̂ ∈ F(V ∗∗) and f ∈ F(V )∗. By Theorem 5.2, F piv(V, φV )= (V, (̃ξ∗)−1̃ξφV )

and
(̃ξ∗)−1̃ξφV (v)= (̃ξ

∗)−1̃ξ jVecφV (v)= jVec(γ φV (v))

for v ∈ V. The last statement follows immediately from the definition of RH =

(H, jVec
◦ S2). This completes the proof. �

In the following proposition we let S2 denote the automorphism of H/J (H)
induced by S2.

Proposition 7.3. Let F ∈H⊗H be a twist. The following statements are equivalent.

(i) F piv(RH )∼= RH F in C
piv

F .

(ii) There is a unit t in H which satisfies the equation

(7-1) S2(t)γ−1
F − t = 0.

(iii) There is a unit t in H/J (H) which satisfies the equation

(7-2) S2(t)γ−1
F − t = 0.

Proof. We take N = ord(S2). By Lemma 7.2, F piv(RH )= (H F , jVec
◦ l(γF ) ◦ S2).

An isomorphism F piv(RH )∼= RH F is determined by a H F -module automorphism
of H F, which is necessarily given by right multiplication by a unit t ∈H F, producing
a diagram

H F

r(t)
��

l(γF )S2
// H F

r(t)
��

jVec
// (H F )∗∗

r(t)∗∗

��

H F
S2

F

// H F jVec
// (H F )∗∗

Equivalently, we are looking for a unit t such that

γF S2(h)t = S2
F (ht)= γF S2(h)S2(t)γ−1

F

for all h ∈ H. This equation is equivalent to

(7-3) S2(t)γ−1
F = t.

Let σ denote the k-linear automorphism r(γ−1
F )◦ S2

= r(γF )
−1
◦ S2 of H F, and

let 6 be the subgroup generated by σ in Autk(H F ). Then we have

σ N
= r(γ (N )F )−1

◦ S2N
= r(γ (N )F )−1.
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Since γ (N )F is grouplike in H F, it has a finite order. Therefore σ N has finite order,
as does σ , and 6 is a finite cyclic group.

Since J (H) is a σ -invariant, the exact sequence

0→ J (H)→ H → H/J (H)→ 0

is in Rep(6). Applying the exact functor (−)6, we get another exact sequence

(7-4) 0→ J (H)6→ H6
→ (H/J (H))6→ 0.

Recall that an element in H is a unit if, and only if, its image in H/J (H) is a unit.
So from the exact sequence (7-4), we conclude that there is a unit in (H/J (H))6

if and only if there is a unit in H6. Rather, there exists a unit t solving the equation
σ · X − X = 0 in H/J (H) if, and only if, there exists a unit t solving the equation
in H. Since σ · t = S2(t)γ−1

F and σ · t = S2(t)γ−1
F , the equation S2(X)γ−1

F − X = 0
has a unit solution in H if, and only if, the equation S2(X)γ−1

F − X = 0 has a unit
solution in H. �

As an immediate consequence of this proposition, we can prove preservation of
regular objects for Hopf algebras with the Chevalley property.

Theorem 7.4. Suppose H and K are gauge equivalent finite-dimensional Hopf
algebras with the Chevalley property, and F : H-mod→ K -mod is a monoidal
equivalence. Then we have F piv(RH )∼= RK in (K -mod)piv.

Proof. In view of [Ng and Schauenburg 2008, Theorem 2.2], it suffices to assume
K = H F for some twist F ∈ H ⊗ H, and that F is the associated equivalence

F : H -mod→ H F -mod.

Let S be the antipode of H. It follows from Lemma 4.1 that γ F = 1 and S2
= id.

Therefore, every unit t ∈ H/J (H) satisfies S2(t)γ−1
F − t = 0. The proof is then

completed by Proposition 7.3. �

As a corollary we recover Theorem 5.1 for Hopf algebras with the Chevalley
property.

Corollary 7.5 [Kashina et al. 2012, Theorem 2.2]. If F : H-mod→ K -mod is a
gauge equivalence and H has the Chevalley property then we have

νKMN
n (H)= νKMN

n (K )

for all n ≥ 0.

Proof. We have F piv(RH ) ∼= RK by Theorem 7.4. Since a gauge equivalence
preserves duals this implies F piv(R∗H )∼= R∗K as well. Hence, using [Shimizu 2015b,
Theorems 5.3 and 5.7], we have

νKMN
n (H)= νSh

n (R
∗

H )= ν
Sh
n (R

∗

K )= ν
KMN
n (K ). �
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Appendix: Functoriality of finite pivotalizations

We adopt the notation introduced at the beginning of Section 6. Recall that the
subcategory C Npiv

⊂ C piv is the full subcategory consisting of all pairs (V, φV )

such that the associated automorphism φV ∈ Autk(V ) satisfies ord(φV )|N.

Lemma A.1. Let F ∈ H ⊗ H be a twist and consider the functor F : C → CF .
Then, for any N divisible by ord(S2), the following statements are equivalent:

(i) F piv restricts to an equivalence F Npiv
: C Npiv

→ C
Npiv
F .

(ii) γ (N )F = 1.

Furthermore, the existence of an isomorphism F piv(RH )∼= RH F implies (i) and (ii)
for all such N.

Proof. Consider any (V, φV ) in C Npiv. We have F piv(V, φV )= (V, jVec
◦ l(γF )◦φV ),

by Lemma 7.2. So φF piv(V,φV ) = l(γF )◦φV . Since φV , considered as an H -module
map, is a map from V to FS2(V ), we find by induction that

(l(γF ) ◦φV )
n
= l
(
γ
(n)
F

)
◦φV

n

for each n. In particular,

(A-1) (l(γF ) ◦φV )
N
= l
(
γ
(N )
F

)
since φV

N
= 1.

From Equation (A-1) we see that F piv(V, φV ) lies in C
Npiv
F if, and only if,

l(γ (N )F )= idV , whence we have the implication (ii)⇒ (i). Applying (A-1) to the
case (V, φV )= RH gives the converse implication (i)⇒ (ii) as well as the implica-
tion F piv(RH )∼= RH F ⇒ (ii), since RH F is in each C

Npiv
F . �

We can now give the following proof:

Proof of Proposition 6.5. In view of [Ng and Schauenburg 2008, Theorem 2.2], it
suffices to assume K = H F for some twist F ∈ H ⊗ H and consider the monoidal
equivalence F : H -mod→ H F -mod.

For Hopf algebras with the Chevalley property: Recall ord(S2) = ord(S2
F ) by

Corollary 4.4. So we can pivotalize both H and H F with respect to any N divisible
by ord(S2). We have already seen that F piv(RH )∼= RH F . It follows, by Lemma A.1,
that F piv restricts to an equivalence F Npiv

: C Npiv
→ C

Npiv
F .

For the general case: From [Etingof and Gelaki 2002, Proposition 3.2] and the
proof of [Etingof and Gelaki 2002, Proposition 3.3], γ (qexp(H))

F = 1. By Lemma A.1
it follows that Fpiv restricts to an equivalence F Epiv

: C Epiv
→ C

Epiv
F . �
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