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BRANCHING LAWS FOR THE METAPLECTIC COVER OF GL2

SHIV PRAKASH PATEL

Let F be a nonarchimedean local field of characteristic zero and E/F be a
quadratic extension. The aim of this article is to study the multiplicity of an
irreducible admissible representation of GL2(F) occurring in an irreducible
admissible genuine representation of the nontrivial two-fold covering G̃L2(E)

of GL2(E).

1. Introduction

Let F be a nonarchimedean local field of characteristic zero and let E be a quadratic
extension of F. The branching laws for restriction of representations of SOn+1(F)
to SOn(F) were formulated as conjectures by B. Gross and D. Prasad [1992],
and these are widely known as Gross–Prasad conjectures although they have been
completely proved by Mœglin and Waldspurger [2012]. The first case of these
conjectures is for the restriction of representations of GL2(F) to its maximal tori,
which was considered by J. B. Tunnell [1983] and H. Saito [1993]. A metaplectic
analog of this result was recently considered by the author in a joint work with
Prasad, where the restriction of representations of metaplectic GL2(F) to inverse
images of the maximal tori was studied [Patel and Prasad 2017]. The results of
Tunnell and Saito have, in particular, a multiplicity one result which is then refined
in terms of certain ε-factors. The metaplectic case of this restriction loses the
multiplicity one property, but still one has finite multiplicities which are bounded
by some explicit constants. The next case of Gross–Prasad conjectures can be
considered to be the restriction of representations of GL2(E) to GL2(F) which was
studied by Prasad [1992]. These cases played an important role in the formulation of
Gross–Prasad conjectures. Our aim in this paper is to study an analogous restriction
of representations of metaplectic GL2(E) to GL2(F).

The problem of decomposing a representation of GL2(E) restricted to GL2(F)
was considered and solved by Prasad [1992], proving a multiplicity one theorem,
and giving an explicit classification of representations π1 of GL2(E) and π2 of
GL2(F) such that there exists a nonzero GL2(F) invariant linear form:

l : π1⊗π2→ C.
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This problem is closely related to a similar branching law from GL2(E) to D×F ,
where DF is the unique quaternion division algebra which is central over F, and
D×F ↪→GL2(E). We recall that the embedding D×F ↪→GL2(E) is given by fixing an
isomorphism DF ⊗ E ∼= M2(E), by the Skolem–Noether theorem, which is unique
up to conjugation by elements of GL2(E). Henceforth, we fix one such embedding
of D×F inside GL2(E). The restriction problems for the pair (GL2(E),GL2(F)) and
(GL2(E), D×F ) are related by a certain dichotomy. More precisely, the following
result was proved in [Prasad 1992]:

Theorem 1.1 (Prasad). Let π1 and π2 be irreducible admissible infinite-dimensional
representations of GL2(E) and GL2(F), respectively, such that the central charac-
ter of π1 restricted to the center of GL2(F) is the same as the central character
of π2. Then:

(1) For a principal series representation π2 of GL2(F), we have

dim HomGL2(F)(π1, π2)= 1.

(2) For a discrete series representation π2 of GL2(F), letting π ′2 be the finite-
dimensional representation of D×F associated to π2 by the Jacquet–Langlands
correspondence, we have

dim HomGL2(F)(π1, π2)+ dim HomD×F
(π1, π

′

2)= 1.

In this paper, we study the analogous problem in the metaplectic setting. More
precisely, instead of considering GL2(E) we will consider the group G̃L2(E)C×
which is a topological central extension of GL2(E) by C×, which is obtained from
the two-fold topological central extension G̃L2(E) described below. We recall that
there is unique (up to isomorphism) two-fold cover of SL2(E) called the metaplectic
cover and denoted by S̃L2(E) in this paper, but there are many inequivalent two-fold
coverings of GL2(E) which extend this two-fold covering of SL2(E). We fix a
covering of GL2(E) as follows. Observe that GL2(E) is a semidirect product of
SL2(E) and E×, where E× sits inside GL2(E) by e 7→

( e
0

0
1

)
. The action of E× on

SL2(E) lifts to an action on S̃L2(E). Denote G̃L2(E) to be S̃L2(E)o E× which
we call “the” metaplectic cover of GL2(E). This cover can be described by an
explicit 2-cocycle on GL2(E) with values in {±1}, see [Kubota 1969]. The group
G̃L2(E) is a topological central extension of GL2(E) by µ2 := {±1}, i.e., we have
an exact sequence of topological groups:

1→ µ2→ G̃L2(E)→ GL2(E)→ 1.

The group G̃L2(E)C× := G̃L2(E)×µ2 C× is called the C×-cover of GL2(E) obtained
from the two-fold cover G̃L2(E), and is a topological central extension of GL2(E)
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by C×, i.e., we have an exact sequence of topological groups:

1→ C×→ G̃L2(E)C×→ GL2(E)→ 1.

Now we recall the following result regarding splitting of this cover when restricted
to certain subgroups. This makes it possible to consider an analog of the Prasad’s
restriction problem in the metaplectic case.

Theorem 1.2 [Patel 2016]. Let E be a quadratic extension of a nonarchimedean
local field and G̃L2(E) be the two-fold metaplectic covering of GL2(E). Then:

(1) The two-fold metaplectic covering G̃L2(E) splits over the subgroup GL2(F).

(2) The C×-covering obtained from G̃L2(E) splits over the subgroup D×F .

Note that the splittings over GL2(F) and D×F in Theorem 1.2 are not unique. As
there is more than one splitting in each case, to study the problem of decomposing a
representation of G̃L2(E)C× restricted to GL2(F) and D×F , we must fix one splitting
of each of the subgroups GL2(F) and D×F , which are related to each other. We
make the following working hypothesis, which has been formulated by Prasad.

Working Hypothesis 1.3. Let L be a quadratic extension of F. Write R for the
restriction of scalars torus RL/F Gm . Thus R(F)= L×. Fix embeddings of R into
GL2 and D×F (viewed as algebraic groups over F). The sets of splittings

G̃L2(E)C×

��

G̃L2(E)C×

��

and

GL2(F)
0�

s

AA

// GL2(E) D×F
1�

s′

CC

// GL2(E)

are principal homogeneous spaces over the group Hom(F×,C×). More explicitly,
two splittings s1, s2 of GL2(F) will be related by

s2(g)= χ(det g) · s1(g)

for some character χ ∈ Hom(F×,C×) (for D×F the det should be replaced by Nm
the reduced norm map). A pair (s, s ′) of splittings, where

s : GL2(F)→ G̃L2(E)C× and s ′ : D×F → G̃L2(E)C×,

is called a pair of “compatible splittings” if for any quadratic extension L/F with
the fixed embedding of R into GL2 and D×F the restriction of s and s ′ to L× as in
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the following diagrams

G̃L2(E)C×

��

G̃L2(E)C×

��

and

L×
, �

::

// GL2(F)
1�

s

BB

// GL2(E) L×
. �

<<

// D×F
2�

s′

DD

// GL2(E)

are conjugate in G̃L2(E)C× , i.e., there is an element g ∈ G̃L2(E)C× such that
s(L×)= g · s ′(L×) · g−1. Then we assume that

there exists a pair (s, s ′) of compatible splittings.

If (s, s ′) is a pair of compatible splittings and χ is a character of F× then the
pair of splittings (χ(det(•)s, χ(Nm(•)s ′) is also compatible. Thus, given a single
pair (s, s ′) of compatible splittings, we have a Hom(F×,C×)-equivariant bijection
between the sets of splittings, in such a way that all pairs matched by the bijection
are compatible.

Definition 1.4. A representation of G̃L2(E) (respectively, G̃L2(E)C×) is called
genuine if µ2 acts nontrivially (respectively, C× acts by identity).

In particular, a genuine representation does not factor through GL2(E). In what
follows, we always consider genuine representations of the metaplectic group
G̃L2(E). Let B(E), A(E) and N (E) be the Borel subgroup, maximal torus and
maximal unipotent subgroup of GL2(E) consisting of all upper triangular matri-
ces, diagonal matrices and upper triangular unipotent matrices respectively. Let
B(F), A(F) and N (F) denote the corresponding subgroups of GL2(F). Let Z be
the center of GL2(E) and Z̃ the inverse image of Z in G̃L2(E). Note that Z̃ is an
abelian subgroup of G̃L2(E) but is not the center of G̃L2(E); the center of G̃L2(E)
is Z̃2, the inverse image of Z2

:= {z2
| z ∈ Z}.

Let ψ be a nontrivial additive character of E . Note that the metaplectic covering
splits when restricted to the subgroup N (E) and hence ψ gives a character of N (E).
Let π be an irreducible admissible genuine representation of G̃L2(E) and πN (E),ψ ,
the ψ-twisted Jacquet module which is a Z̃ -module. Let ωπ be the central character
of π . A character of Z̃ appearing in πN (E),ψ agrees with ωπ when restricted to Z̃2.
Let �(ωπ ) be the set of genuine characters of Z̃ whose restriction to Z̃2 agrees
with ωπ . We also realize �(ωπ ) as a Z̃ -module, i.e., as direct sum of characters in
�(ωπ ) with multiplicity one. From [Gelbart et al. 1979, Theorem 4.1], one knows
that the multiplicity of a character µ ∈�(ωπ ) in the Z̃ -module πN (E),ψ is at most
one. Hence πN (E),ψ is a Z̃ -submodule of �(ωπ ). Now we state the main result of
this paper.
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We abuse notation and write G̃L2(E) for G̃L2(E)C× .

Theorem 1.5. Let π1 be an irreducible admissible genuine representation of G̃L2(E)
and let π2 be an infinite-dimensional irreducible admissible representation of
GL2(F). Assume that the central characters ωπ1 of π1 and ωπ2 of π2 agree on
E×2
∩ F×. Fix a nontrivial additive character ψ of E such that ψ |F = 1. Let

Q = (π1)N (E) be the Jacquet module of π1. Assume that Working Hypothesis 1.3
holds.

(A) Let π2= IndGL2(F)
B(F) (χ) be a principal series representation of GL2(F). Assume

HomA(F)(Q, χ · δ1/2)= 0. Then

dim HomGL2(F)(π1, π2)= dim HomZ(F)((π1)N (E),ψ , ωπ2).

(B) Let π1 = IndG̃L2(E)
B̃(E)

(τ̃ ) be a principal series representation of G̃L2(E) and π2 a
discrete series representation of GL2(F). Let π ′2 be the finite-dimensional rep-
resentation of D×F associated to π2 by the Jacquet–Langlands correspondence.
Assume that

HomGL2(F)
(
IndGL2(F)

B(F) (τ̃ .δ1/2), π2
)
= 0.

Then

dim HomGL2(F)(π1, π2)+ dim HomD×F
(π1, π

′

2)=
[
E× : F×E×2].

(C) Let π1 be an irreducible admissible genuine representation of G̃L2(E) and π2 a
supercuspidal representation of GL2(F). Let π ′1 be a genuine representation of
G̃L2(E) which has the same central character as that of π1 and as a Z̃-module
(π1)N (E),ψ ⊕ (π

′

1)N (E),ψ =�(ωπ1). Let π ′2 be the finite-dimensional represen-
tation of D×F associated to π2 by the Jacquet–Langlands correspondence. Then

dim HomGL2(F)(π1⊕π
′

1, π2)+ dim HomD×F
(π1⊕π

′

1, π
′

2)= [E
×
: F×E×2

].

The strategy to prove this theorem is similar to that in [Prasad 1992]. We recall
it briefly. Part (A) of this theorem is proved by looking at the Kirillov model of an
irreducible admissible genuine representation of G̃L2(E) and its Jacquet module
with respect to N (F). Part (B) makes use of Mackey theory. For the third part (C),
we use a trick of Prasad [1992], where we “transfer” the results of a principal series
representation (from part (B)) to those which do not belong to principal series.
Prasad transfers the results from principal series representations to discrete series
representations. This is done by using character theory and an analog of a result of
Casselman and Prasad [Prasad 1992, Theorem 2.7] for G̃L2(E) which we study in
Section 4.

2. Part A of Theorem 1.5

Let π2 = IndGL2(F)
B(F) (χ) be a principal series representation of GL2(F) where χ is

a character of A(F). By Frobenius reciprocity [Bernstein and Zelevinskii 1976,
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Theorem 2.28], we get

HomGL2(F)(π1, π2)= HomGL2(F)(π1, IndGL2(F)
B(F) (χ))

= HomA(F)((π1)N (F), χ. δ
1/2),

where (π1)N (F) is the Jacquet module of π1 with respect to N (F). We can describe
(π1)N (F) by realizing π1 in the Kirillov model. Now depending on whether π1 is a
supercuspidal representation or not, we consider them separately.

2A. Kirillov model and Jacquet module. Now we describe the Kirillov model of
an irreducible admissible genuine representation π of G̃L2(E). Let l :π→πN (E),ψ

be the canonical map. Let C∞(E×, πN (E),ψ) denote the space of smooth functions
on E× with values in πN (E),ψ . Define the Kirillov mapping

K : π→ C∞(E×, πN (E),ψ)

given by v 7→ ξv where ξv(x)= l
(
π
(( x

0
0
1

)
, 1
)
v
)
. More conceptually, πN (E),ψ is a

representation of Z̃ · N (E), and by Frobenius reciprocity, there exists a natural map

π |B̃(E)→ IndB̃(E)
Z̃ ·N (E)

πN (E),ψ .

Since B̃(E)/Z̃ ·N (E) can be identified with E× sitting as
{( e

0
0
1

)
: e∈ E×

}
in B̃(E),

we get a map of B̃(E)-modules:
π |B̃(E)→ C∞(E×, πN (E),ψ).

We summarize some of the properties of the Kirillov mapping in the following
proposition.

Proposition 2.1. (1) If v′ = π
((a

0
b
d

)
, 1
)
v for v ∈ π then

ξv′(x)= (x, d)ψ(bd−1x)π
((

d 0
0 d

)
,1
)
ξv(ad−1x).

(2) For v ∈ π the function ξv is a locally constant function on E× which vanishes
outside a compact subset of E.

(3) The map K is an injective linear map.

(4) The image K(π) of the map K contains the space S(E×, πN (E),ψ) of smooth
functions on E× with compact support with values in πN (E),ψ .

(5) The Jacquet module πN (E) of π is isomorphic to K(π)/S(E×, πN (E),ψ).

(6) The representation π is supercuspidal if and only if K(π)= S(E×, πN (E),ψ).

Proof. Part (1) follows from the definition. The proofs of parts (2) and (3) are
verbatim those of Lemma 2 and Lemma 3 in [Godement 1970]. The proofs of parts
(4), (5) and (6) follow from the proofs of the corresponding statements of [Prasad
and Raghuram 2000, Theorem 3.1]. �
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Since the map K is injective, we can transfer the action of G̃L2(E) on the space
of π to K(π) using the map K. The realization of the representation π on the space
K(π) is called the Kirillov model, on which the action of B̃(E) is explicitly given
by part (1) in Proposition 2.1. It is clear that S(E×, πN (E),ψ) is B̃(E)-stable, which
gives rise to the following short exact sequence of B̃(E)-modules

(1) 0→ S(E×, πN (E),ψ)→ K(π)→ πN (E)→ 0.

2B. The Jacquet module with respect to N(F). In this section, we try to un-
derstand the restriction of an irreducible admissible genuine representation π of
G̃L2(E) to B(F). For this, we describe the Jacquet module πN (F) of π . We
utilize the short exact sequence in equation (1) of B̃(E)-modules arising from the
Kirillov model of π , which is also a short exact sequence of B(F)-modules. By the
exactness of the Jacquet functor with respect to N (F), we get the following short
exact sequence from equation (1),

0→ S(E×, πN (E),ψ)N (F)→ K(π)N (F)→ πN (E)→ 0.

Let us first describe S(E×, πN (E),ψ)N (F), the Jacquet module of S(E×, πN (E),ψ)

with respect to N (F).

Proposition 2.2. There exists an isomorphism

S(E×, πN (E),ψ)N (F) ∼= S(F×, πN (E),ψ)

of F×-modules where F× acts by its natural action on S(F×, πN (E),ψ).

Proposition 2.2 follows from the proposition below. The author thanks Professor
Prasad for suggesting the proof.

Proposition 2.3. Let ψ be a nontrivial additive character of E such that ψ |F = 1.
Let S(E×) be a representation of E where the action of E on S(E×) is given by

(n · f )(x)= ψ(nx) f (x)

for n ∈ E , f ∈ S(E×) and x ∈ E×. Then the restriction map

(2) S(E×)−→ S(F×)

realizes S(E×)F the maximal F-coinvariant quotient of S(E×) as S(F×).

Proof. Note that S(E×) ↪→ S(E). For a fixed Haar measure dw on E , we define
the Fourier transform Fψ : S(E)→ S(E) with respect to the character ψ by

Fψ( f )(z) :=
∫

E
f (w)ψ(zw) dw.

As is well known, Fψ : S(E)→ S(E) is an isomorphism of vector spaces, and the
image of S(E×) can be identified with those functions in S(E) whose integral on
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E is zero. The Fourier transform takes the action of E on S(E×) to the restriction
of the action of E on S(E) given by (n · f )(x) = f (x + n) for n ∈ E , f ∈ S(E)
and x ∈ E . Write E = F(

√
d) for a suitable d ∈ F×. Define φ : E→ F given by

φ(e)= (e− ē)/(2
√

d),

where ē is the nontrivial Galois conjugate of e∈ E , i.e., ē= x−
√

d y for e= x+
√

d y
with x, y ∈ F. Clearly φ(z1)= φ(z2) for z1, z2 ∈ E if and only if z1− z2 ∈ F. We
define the integration along the fibers of the map φ : E → F, to be denoted by
I : S(E)→ S(F), as follows:

I ( f )(y) :=
∫

F
f (x +

√
d y) dx for all y ∈ F.

Clearly I ( f ) belongs to S(F). Note that the maximal quotient of S(E) on which
F acts trivially (F acting by translation on S(E)) can be identified with S(F) by
integration along the fibers of the map φ. Since ψ |F = 1, the restriction of the
character ψ√d (given by x 7→ ψ(

√
dx) for x ∈ E) from E to F is a nontrivial

character of F. The proposition will follow if we prove the commutativity of the
diagram

S(E)
Fψ
//

Res
��

S(E)

I
��

S(F)
Fψ√d

// S(F)

where Fψ is the Fourier transform on S(E) with respect to the character ψ , Fψ√d

is the Fourier transform on S(F) with respect to ψ√d = (ψ
√

d)|F ), Res denotes the
restriction of functions from E to F , and I denotes the integration along the fibers
mentioned above. Recall that Fψ√d

: S(F)→ S(F) is defined by

Fψ√d
(φ)(x) :=

∫
F
φ(y)ψ√d(xy) dy =

∫
F
φ(y)ψ(

√
dxy) dy for all x ∈ F.

We prove that the above diagram is commutative. Let f ∈ S(E). We want to
show that I ◦Fψ( f )(y) = Fψ√d

◦Res( f )(y) for all y ∈ F. We write an element
of E as x +

√
d y with x, y ∈ F. We choose a measure dx on F which is self dual

with respect to ψ√d in the sense that Fψ√d
(Fψ√d

(φ))(x)= φ(−x) for all φ ∈ S(F)
and x ∈ F. We identify E with F × F as a vector space. Consider the product
measure dx dy on E = F × F. Using Fubini’s theorem we have∫

F

∫
F
φ(z2)ψ

√
d(xz2) dz2 dx = Fψ√d

(Fψ√d
(φ))(0)= φ(0)

for φ ∈ S(F). Therefore,
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I ◦Fψ( f )(y)=
∫

F
Fψ( f )

(
x +
√

d y
)

dx

=

∫
F

∫
E=F×F

f
(
z1+
√

dz2
)
ψ
((

x +
√

d y
)(

z1+
√

dz2
))

dz1 dz2 dx

=

∫
F

∫
F

∫
F

f
(
z1+
√

dz2
)
ψ√d(yz1+ xz2) dz1 dz2 dx

=

∫
F

(∫
F

∫
F

f
(
z1+
√

dz2
)
ψ√d(xz2) dz2 dx

)
ψ√d(yz1) dz1

=

∫
F

f (z1)ψ
√

d(yz1) dz1 = Fψ√d
◦Res( f )(y).

This proves the commutativity of the above diagram. �

2C. Completion of the proof of Part (A). First we consider the case when π1 is a
supercuspidal representation of G̃L2(E). Then one knows that the functions in the
Kirillov model for π1 have compact support in E× and one has

π1 ∼= S(E×, (π1)N (E),ψ)

as B̃(E)modules by Proposition 2.1. Now using Proposition 2.2, we get

HomGL2(F)(π1, π2)= HomA(F)
(
(π1)N (F), χ.δ

1/2)
= HomA(F)

(
S(E×, (π1)N (E),ψ)N (F), χ.δ

1/2)
= HomA(F)

(
S(F×, (π1)N (E),ψ), χ.δ

1/2).
Since S(F×, (π1)N ,ψ)∼= indA(F)

Z(F)(π1)N (E),ψ as A(F)-modules, by Frobenius reci-
procity [Bernstein and Zelevinskii 1976, Proposition 2.29], we get

HomGL2(F)(π1, π2)= HomA(F)
(
indA(F)

Z(F)(π1)N (E),ψ , χ.δ
1/2)

= HomZ(F)
(
(π1)N (E),ψ , (χ.δ

1/2)|Z(F)
)

= HomZ(F)((π1)N (E),ψ , ωπ2).

This proves part (A) of Theorem 1.5 for π1 a supercuspidal representation.
Now we consider the case when π1 is not a supercuspidal representation of

G̃L2(E). Then from equation (1) we get the following short exact sequence of
A(F)-modules:

0→ S(F×, (π1)N (E),ψ)→ (π1)N (F)→ Q −→ 0.

Now applying the functor HomA(F)
(
−, χ.δ1/2

)
, we get the long exact sequence

0→ HomA(F)
(
Q, χ.δ1/2)

→ HomA(F)
(
(π1)N (F), χ.δ

1/2)
→ HomA(F)

(
S(F×, (π1)N (E),ψ), χ.δ

1/2)
→ Ext1A(F)

(
Q, χ.δ1/2)

→ · · ·
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Lemma 2.4. HomA(F)
(
Q, χ.δ1/2

)
= 0 if and only if Ext1A(F)

(
Q, χ.δ1/2

)
= 0.

Proof. The space Q is finite-dimensional and completely reducible. So it is enough
to prove the lemma for the one-dimensional representations, i.e., for characters
of A(F). Moreover one can regard these representations as representations of F×

(after tensoring by a suitable character of A(F) so that it descends to a representation
of A(F)/Z(F)∼= F×). Then our lemma follows from the following lemma due to
Prasad. �

Lemma 2.5. If χ1 and χ2 are two characters of F×, then

dim HomF×(χ1, χ2)= dim Ext1F×(χ1, χ2).

Proof. Let O be the ring of integers of F and $ a uniformizer of F. Since
F× ∼=O××$Z and O× is compact, ExtiF×(χ1, χ2)= H i (Z,HomO×(χ1, χ2)). If
HomO×(χ1, χ2)=0, then the lemma is obvious. Hence suppose HomO×(χ1, χ2) 6=0.
Then HomO×(χ1, χ2) is a certain one dimensional vector space with an action of$Z.
If the action of$Z on HomO×(χ1, χ2) is nontrivial then H i (Z,HomO×(χ1, χ2))=0
for all i ≥ 0. Whereas if the action of $Z on HomO×(χ1, χ2) is trivial, then
H 0(Z,C)∼= H 1(Z,C)∼= C. �

We have made an assumption that HomA(F)(Q, χ.δ1/2) = 0 and hence by the
lemma above, Ext1A(F)(Q, χ.δ

1/2)= 0. So in this case

HomA(F)
(
(π1)N (F), χ.δ

1/2)∼= HomA(F)
(
S(F×, (π1)N (E),ψ), χ.δ

1/2)
= HomZ(F)((π1)N (E),ψ , ωπ2).

Hence
dim HomGL2(F)(π1, π2)= dim HomZ(F)((π1)N (E),ψ , ωπ2).

Remark 2.6. Recall that Q := (π1)N (E) is a finite-dimensional representation of
Ã(E) and we have assumed that HomA(F)(Q, χ.δ1/2)=0. The number of characters
χ of A(F) for which HomA(F)(Q, χ.δ1/2) 6= 0 is at most the dimension of Q. The
maximum possible dimension of Q is 2[E× : E×2

] (the maximum occurs only if π1

is a principal series representation). Therefore for a given π1 we leave out finitely
many ( ≤ 2[E× : E×2

]) representations π2 in our analysis.

3. Part B of Theorem 1.5

In this section, we consider the case when π1 is a principal series representation of
G̃L2(E) and π2 a discrete series representation of GL2(F).

Let π1 = IndG̃L2(E)
B̃(E)

(τ̃ ), where (τ̃ , V ) is a genuine irreducible representation of
Ã = Ã(E). The group Ã sits in the central extension

1→ A2
×{±1} → Ã

p
−→ A/A2

→ 1,
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where A/A2 equals E×/E×2
× E×/E×2, and the commutator of two elements ã1

and ã2 of Ã whose images in A/A2 are a1 = (e1, f1) and a2 = (e2, f2), is

[ã1, ã2] = (e1, f2)(e2, f1) ∈ {±1} ⊂ A2
×{±1},

which is the product of Hilbert symbols (ei , f j ) of E . Since the Hilbert symbol is
a nondegenerate bilinear form on E×/E×2, it follows that

[ã1, ã2] : A/A2
× A/A2

→ {±1}

is also a nondegenerate (skew-symmetric) bilinear form. Thus Ã is closely related
to the “usual Heisenberg” groups, and its representation theory is closely related
to the representation theory of the “usual Heisenberg” groups. In particular, given
a character χ : A2

× {±1} → C× which is nontrivial on {±1}, there exists a
unique irreducible representation of Ã which contains χ . Further, for any subgroup
A0 ⊂ A/A2 for which the commutator map [ã1, ã2], ai ∈ A0, is identically trivial,
and for which A0 is maximal for this property, Ã0 = p−1(A0) is a maximal abelian
subgroup of Ã, and the restriction of an irreducible genuine representation τ̃ of Ã
to Ã0 contains all characters of Ã0 with multiplicity one whose restriction to the
center A2

×{±1} is the central character of τ̃ . Further, τ̃ = Ind Ã
Ã0
χ where χ is any

character of Ã0 appearing in τ̃ . All the assertions here are consequences of the fact
that the inner conjugation action of Ã on Ã0 is transitive on the set of characters
of Ã0 with a given restriction on A2

× {±1}; this itself is a consequence of the
nondegeneracy of the Hilbert symbol.

It follows that the set of equivalence classes of irreducible genuine representations
τ̃ of Ã is parametrized by the set of characters of A2, i.e., a pair of characters of E×2.

Lemma 3.1. The subgroup Z̃ · A2 of Ã is a maximal abelian subgroup. Let τ̃ be
an irreducible genuine representation of Ã. Then τ̃ |Z̃ contains all the genuine
characters of Z̃ which agree with the central character of τ when restricted to Z̃2.

Proof. By explicit description of the commutation relation recalled above it is easy
to see that Z̃ · A2 is a maximal abelian subgroup of Ã. The rest of the statements
follow from preceding discussion. �

Proposition 3.2 [Gelbart and Piatetski-Shapiro 1980, Theorem 2.4]. For some
irreducible genuine representation τ̃ of Ã, let π1 = IndG̃L2(E)

B̃(E)
(τ̃ ). Then

(π1)N ,ψ ∼=�(π1)∼= τ̃ |Z̃ .

Now as in [Prasad 1992], we use Mackey theory to understand its restriction
to GL2(F). We have G̃L2(E)/B̃(E) ∼= P1

E and this has two orbits under the
left action of GL2(F). One of the orbits is closed, and naturally identified with
P1

F
∼=GL2(F)/B(F). The other orbit is open, and can be identified with P1

E−P1
F
∼=

GL2(F)/E×. By Mackey theory, we get this exact sequence of GL2(F)-modules:

(3) 0→ indGL2(F)
E× (τ̃ ′|E×)→ π1→ IndGL2(F)

B(F) (τ̃ |B(F)δ
1/2)→ 0,
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where τ̃ ′|E× is the representation of E× obtained from the embedding E× ↪→ Ã
which comes from conjugating the embedding E× ↪→ GL2(F) ↪→ G̃L2(E). We
now identify E× with its image inside Ã which is given by x 7→

(( x
0

0
x̄

)
, ε(x)

)
where x̄ is the nontrivial Gal(E/F)-conjugate of x and ε(x) ∈ {±1}. Now let π2

be any irreducible admissible representation of GL2(F). By applying the functor
HomGL2(F)(−, π2) to the short exact sequence (3), we get the long exact sequence

(4)

0→ HomGL2(F)
(
IndGL2(F)

B(F)

(
τ̃ |B(F)δ

1/2), π2
)

→ HomGL2(F)(π1, π2)→ HomGL2(F)
(
indGL2(F)

E× (τ̃ ′|E×), π2
)

→ Ext1GL2(F)
(
IndGL2(F)

B(F)

(
τ̃ |B(F)δ

1/2), π2
)
→ · · ·

From [Prasad 1990, Corollary 5.9], we know that

HomGL2(F)
(
IndGL2(F)

B(F)

(
χ.δ1/2), π2

)
= 0 ⇔ Ext1GL2(F)

(
IndGL2(F)

B(F)

(
χ.δ1/2), π2

)
= 0.

Since τ̃ |B(F) factors through T (F), which is direct sum of [E× : E×2
] characters

of T (F), we can use the above result of Prasad with χ replaced by τ̃ |B(F). Then
from the exactness of (4), it follows that

HomGL2(F)(π1, π2)= 0

if and only if
HomGL2(F)

(
IndGL2(F)

B(F)

(
τ̃ |B(F)δ

1/2), π2
)
= 0

and
HomGL2(F)

(
indGL2(F)

E× (τ̃ ′|E×), π2
)
= 0.

Note that the representation IndGL2(F)
B(F)

(
τ̃ |B(F)δ

1/2
)

consists of exactly [E× : E×2
]

principal series representations of GL2(F). Since we have made the assumption
that HomGL2(F)

(
IndGL2(F)

B(F)

(
τ̃ .δ1/2

)
, π2

)
= 0, it follows that

Ext1GL2(F)
(
IndGL2(F)

B(F)

(
τ̃ .δ1/2), π2

)
= 0.

This gives
HomGL2(F)(π1, π2)∼= HomGL2(F)

(
indGL2(F)

E× (τ̃ ′|E×), π2
)

∼= HomE×(τ̃
′
|E×, π2|E×).

The following lemma describes τ̃ ′|E× .

Lemma 3.3. If we identify E× with its image
{(( x

0
0
x̄

)
, ε(x)

)
| x ∈ E×

}
inside Ã as

above then the subgroup E× · Ã2 inside Ã is a maximal abelian subgroup. Moreover,
τ̃ ′|E× contains all the characters of E× which are same as ωτ̃ |E×2 when restricted
to E×2, where ωτ̃ is the central character of τ̃ .
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Proof. From the explicit cocycle description and the nondegeneracy of the quadratic
Hilbert symbol, it is easy to verify that E× · Ã2 is a maximal abelian subgroup of Ã.
The rest follows from the discussion preceding Lemma 3.1. �

As π2 is a discrete series representation, it is not always true (unlike what
happens in case of a principal series representation) that any character of E×,
whose restriction to F× is the same as the central character of π2, appears in π2.
Let π ′2 be the finite dimensional representation of D×F associated to π2 by the
Jacquet–Langlands correspondence. Considering the left action of D×F on

P1
E
∼= G̃L2(E)/B̃(E)

induced by D×F ↪→ G̃L2(E) it is easy to verify that P1
E
∼= D×F /E×. Then by Mackey

theory, when restricted to D×F , the principal series representation π1 becomes
isomorphic to indD×F

E× (τ̃
′
|E×). Therefore,

HomDF×
(π1, π

′

2)
∼= HomDF×

(
indD×F

E× (τ̃
′
|E×), π

′

2
)

∼= HomE×(τ̃
′
|E×, π

′

2|E×).

In order to prove

(5) dim HomGL2(F)(π1, π2)+ dim HomD×F
(π1, π

′

2)= [E
×
: F×E×2

]

we shall prove

(6) dim HomE×(τ̃
′
|E×, π2|E×)+ dim HomE×(τ̃

′
|E×, π

′

2|E×)= [E
×
: F×E×2

].

By Remark 2.9 in [Prasad 1992], a character of E× whose restriction to F× is the
same as the central character of π2 appears either in π2 with multiplicity one or in
π ′2 with multiplicity one, and exactly one of the two possibilities hold. Note that
we are assuming that the two embeddings of E×, one via GL2(F) and the other via
D×F are conjugate in G̃L2(E). Then the left-hand side of equation (6) is the same
as the number of characters of E× appearing in (τ̃ , V ) which upon restriction to
F× coincide with the central character of π2, which equals dim HomF×(τ̃ |F×, ωπ2).
We are reduced to the following lemma.

Lemma 3.4. Let (τ̃ , V ) be an irreducible genuine representation of Ã and let χ be
a character of Z(F)= F× such that χ |E×2∩F× = τ̃ |E×2∩F×. Then

dim HomF×(τ̃ , χ)= [E× : F×E×2
].

Proof. Note that E×2
∩ F× = Z×2

∩ F×. From Proposition 3.2, τ̃ |Z̃ ∼=�(ωπ1). If a
character µ ∈�(ωπ1) is specified on F× then it is specified on F×E×2. Therefore
the number of characters in �(ωπ1) which agree with χ when restricted to F× is
equal to [E× : F×E×2

]. �
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4. A theorem of Casselman and Prasad

As mentioned in the introduction, we use results of part (B) involving principal
series representation and “transfer” these to the other cases, as stated in part (C)
which involves restriction of the two representations. To make such a transfer
possible Prasad used a result which says that if two irreducible representations of
GL2(E) have the same central characters then the difference of their characters
is a smooth function on GL2(E). We will need a similar theorem for G̃L2(E),
which we prove in this section. In order to do this, we recall a variant of a theorem
of Rodier which is true for covering groups in general; this variant is proved in
[Patel 2015]. Let us first recall some facts about germ expansions, restricted only
to S̃L2(E).

For any nonzero nilpotent orbit in sl2(E) there is a lower triangular nilpotent
matrix Ya =

( 0
a

0
0

)
such that Ya belongs to the nilpotent orbit. For a given nonzero

nilpotent orbit, the element a is uniquely determined modulo E×2. We write Na for
the nilpotent orbit which contains Ya . Thus the set of all nonzero nilpotent orbits is
{Na | a ∈ E×/E×2

}.
Let τ be an irreducible admissible genuine representation of S̃L2(E). Recall that

for an irreducible admissible genuine representation τ of S̃L2(E), the character
distribution 2τ is a smooth function on the set of regular semisimple elements. The
Harish-Chandra–Howe character expansion of 2τ in a neighborhood of the identity
is given as follows:

2τ ◦ exp= c0(τ )+
∑

a∈E×/E×2

ca(τ ) · µ̂Na

where c0(τ ), ca(τ ) are constants and µ̂Na is the Fourier transform of a suitably
chosen SL2(E)-invariant (under the adjoint action) measure on Na .

Fix a nontrivial additive character ψ of E . Define a character χ of N by χ
( 1

0
x
1

)
=

ψ(x). For a ∈ E× we write ψa for the character of E given by ψa(x)=ψ(ax). We
write (N , ψ) for the nondegenerate Whittaker datum (N , χ). It can be seen that the
set of conjugacy classes of nondegenerate Whittaker data has a set of representatives
{(N , ψa) | a ∈ E×/E×2

}.
From the proof of the main theorem in [Patel 2015], the bijection between
{Na | a ∈ E×/E×2

} and {(N , ψa) | a ∈ E×/E×2
} given by Na↔ (N , ψa) satisfies

the following property: ca 6= 0 if and only if the representation τ of S̃L2(E) admits
a nonzero (N , ψa)-Whittaker functional.

It follows from [Gelbart et al. 1979, Theorem 4.1] that for any nontrivial additive
character ψ ′ of N, the dimension of the space of (N , ψ ′)-Whittaker functionals for
τ is at most one. Therefore, from the theorem of Rodier, as extended in [Patel 2015],
each ca(τ ) is either 1 or 0 depending on whether τ admits a nonzero Whittaker
functional corresponding to the nondegenerate Whittaker datum (N , ψa) or not.
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Remark 4.1. Let G̃ be a topological central extension of a connected reductive
group G by µr , a cyclic group of order r . For g ∈ G̃ there exists a semisimple
element gs ∈ G̃ such that g belongs to any conjugation invariant neighborhood of
gs ∈ G̃.

Let τ1 and τ2 be two irreducible admissible genuine representations of S̃L2(E).
Note that {±̃1} is the center of S̃L2(E) and these are the only nonregular semisimple
elements of S̃L2(E). It is known that the character distributions 2τ1 and 2τ2 are
given by smooth functions at regular semisimple elements. Therefore 2τ1 −2τ2

is also a smooth function at regular semisimple elements. For i = 1, 2, and any
element z ∈ {±̃1}, the character expansion of τi in a neighborhood of z is given
by the ωτi (z) multiplied by the character expansion of τi in a neighborhood of the
identity. Therefore, if we know that 2τ1 −2τ2 is also smooth in a neighborhood of
the identity and both the representations τ1 and τ2 have the same central characters
then 2τ1 −2τ2 is a smooth function on the whole of S̃L2(E).

For any nontrivial additive character ψ ′ of E , let us assume that τ1 admits a
nonzero Whittaker functional for (N , ψ ′) if and only if τ2 does so too. Under this
assumption ca(τ1)= ca(τ2) for all a ∈ E×/E×2. Then we have the following result.

Theorem 4.2. Let τ1, τ2 be two irreducible admissible genuine representations of
S̃L2(E) with the same central characters. For a nontrivial additive character ψ ′

of E , assume that τ1 admits a nonzero Whittaker functional with respect to (N , ψ ′)
if and only if τ2 admits a nonzero Whittaker functional with respect to (N , ψ ′).
Then 2τ1 −2τ2 is constant in a neighborhood of identity and hence extends to a
smooth function on all of S̃L2(E).

Using Theorem 4.2, we prove an extension of a theorem of Casselman and
Prasad [Prasad 1992, Theorem 2.7]. From [Patel and Prasad 2016], let us recall the
following lemma.

Lemma 4.3. Let π be an irreducible admissible genuine representation of G̃L2(E).
Write G̃L2(E)+ = Z̃ · S̃L2(E). Then there exists an irreducible admissible genuine
representation τ of S̃L2(E) and a genuine character µ of Z̃ with µ|

{±̃1} = ωτ and

π ∼= indG̃L2(E)
G̃L2(E)+

µτ.

Moreover, we have

π |̃GL2(E)+
∼=

⊕
a∈G̃L2(E)/̃GL2(E)+

µaτ a.

Now we prove the theorem of Casselman and Prasad for the G̃L2(E).

Theorem 4.4. Let ψ be a nontrivial character of E. Let π1 and π2 be two ir-
reducible admissible genuine representations of G̃L2(E) with the same central
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characters such that (π1)N ,ψ ∼= (π2)N ,ψ as Z̃-modules. Then 2π1 −2π2 , initially
defined on regular semisimple elements of G̃L2(E), extends to a smooth function on
all of G̃L2(E).

Proof. We know that 2π1 and 2π2 are smooth on the set of regular semisimple
elements, so is2π1−2π2 . To prove the smoothness of2π1−2π2 on all of G̃L2(E),
we need to prove the smoothness at every point in Z̃ . As Z̃ is not the center of
G̃L2(E), the smoothness at the identity is not enough to imply the smoothness
at every point in Z̃ . Note that Z̃ is the center of G̃L2(E)+ := Z̃ · S̃L2(E) and
G̃L2(E)+ is an open and normal subgroup of G̃L2(E) of index [E× : E×2

].
Using Lemma 4.3, choose irreducible admissible genuine representations τ1 and

τ2 of S̃L2(E) and genuine characters µ1, µ2 of Z̃ such that

(7) π1 = indG̃L2(E)
G̃L2(E)+

(µ1τ1) and π2 = indG̃L2(E)
G̃L2(E)+

(µ2τ2).

From Lemma 4.3, we have

(8) π1 |̃GL2(E)+ =
⊕

a∈E×/E×2

(µ1τ1)
a and π2 |̃GL2(E)+ =

⊕
a∈E×/E×2

(µ2τ2)
a.

We also know that all the characters µa
1 for a ∈ E×/E×2 are distinct. From the

identity (8) we find that

(9) (π1)N (E),ψ =
⊕

a∈E×/E×2

µa
1(τ

a
1 )N (E),ψ and (π2)N (E),ψ =

⊕
a∈E×/E×2

µa
2(τ

a
2 )N (E),ψ .

Since (π1)N ,ψ ∼= (π2)N ,ψ as Z̃ -modules, in particular, the parts corresponding to
µa-eigenspaces are isomorphic for all a ∈ E×/E×2. Therefore µ1 = µ

b
2 for some

b ∈ E×/E×2. Since
π2 = indG̃L2(E)

G̃L2(E)+
(µ2τ2)= indG̃L2(E)

G̃L2(E)+
(µb

2τ
b
2 ),

by changing τ2 by τ b
2 , we can assume π1= indG̃L2(E)

G̃L2(E)+
(µτ1), and π2= indG̃L2(E)

G̃L2(E)+
(µτ2).

Now (π1)N (E),ψ∼= (π2)N (E),ψ as Z̃ -modules translates into (τ a
1 )N (E),ψ∼= (τ

a
2 )N (E),ψ

for all a ∈ E×/E×2. Therefore, by Theorem 4.2, 2τ a
1
− 2τ a

2
is constant in a

neighborhood of the identity for all a ∈ E×/E×2.
Let 2ρ,g denote the character expansion of an irreducible admissible representa-

tion ρ in a neighborhood of the point g. Then

2π1,z̃ =
∑

a∈E×/E×2

2(µτ1)a, z̃ =
∑

a∈E×/E×2

µa(z̃)2τ a
1 ,1

and
2π2,z̃ =

∑
a∈E×/E×2

2(µτ2)a, z̃ =
∑

a∈E×/E×2

µa(z̃)2τ a
2 ,1.

This proves that 2π1 −2π2 is a constant function on regular semisimple points
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in some neighborhood of z̃ for all z̃ ∈ Z̃ ⊂ G̃L2(E), and therefore it extends to
a smooth function in that neighborhood of z̃. Thus 2π1 −2π2 , which is initially
defined on regular semisimple elements of G̃L2(E), extends to a smooth function
on all of G̃L2(E). �

Corollary 4.5. Let π1, π2 be two irreducible admissible genuine representations
of G̃L2(E) with the same central character such that (π1)N ,ψ ∼= (π2)N ,ψ as Z̃-
modules. Let H be a subgroup of G̃L2(E) that is compact modulo center. Then
there exist finite-dimensional representations σ1, σ2 of H such that

π1|H ⊕ σ1 ∼= π2|H ⊕ σ2.

In other words, this corollary says that the virtual representation (π1−π2)|H is
finite-dimensional and hence the multiplicity of an irreducible representation of H
in (π1−π2)|H will be finite.

5. Part C of Theorem 1.5

Let π1 be an irreducible admissible genuine representation of G̃L2(E). We take
another admissible genuine representation π ′1 having the same central character as
that of π1 and satisfying (π1)N (E),ψ ⊕ (π

′

1)N (E),ψ ∼=�(ωπ1) as Z̃ -modules. From
Proposition 3.2, if π1 is a principal series representation then we can take π ′1 = 0.
It can be seen that if π1 is not a principal series representation then (π1)N (E),ψ is a
proper Z̃ -submodule of �(ωπ1) forcing π ′1 6= 0. In particular, if π1 is one of the
Jordan–Hölder factors of a reducible principal series representation then one can
take π ′1 to be the other Jordan–Hölder factor of the principal series representation.
It should be noted that for a supercuspidal representation π1 we do not have any
obvious choice for π ′1.

Let π2 be a supercuspidal representation of GL2(F). To prove Theorem 1.5
in this case, we use character theory and deduce the result by using the result of
restriction of a principal series representation of G̃L2(E) which has already been
proved in Section 3. We can assume, if necessary after twisting by a character
of F×, that π2 is a minimal representation. Recall that an irreducible representation
π2 of GL2(F) is called minimal if the conductor of π2 is less than or equal to the
conductor of π2⊗χ for any character χ of F×. By a theorem of Kutzko [1978], a
minimal supercuspidal representation π2 of GL2(F) is of the form indGL2(F)

K (W2),
where W2 is a representation of a maximal compact modulo center subgroup K of
GL2(F). By Frobenius reciprocity,

HomGL2(F)(π1⊕π
′

1, π2)= HomGL2(F)
(
π1⊕π

′

1, indGL2(F)
K (W2)

)
= HomK

(
(π1⊕π

′

1)|K,W2
)
.

To prove Theorem 1.5, it suffices to prove that

dim HomK((π1⊕π
′

1)|K,W2)+ dim HomD×F
(π1⊕π

′

1, π
′

2)= [E
×
: F×E×2

].
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For any (virtual) representation π of G̃L2(E), let m(π,W2)= dim HomK[π |K,W2]

and m(π, π ′2)= dim HomD×F
[π, π ′2]. With these notations we will prove

(10) m(π1⊕π
′

1,W2)+m(π1⊕π
′

1, π
′

2)= [E
×
: F×E×2

].

Let Ps be an irreducible principal series representation of G̃L2(E) whose central
character ωPs is the same as the central character ωπ1 of π1 (it is clear that one
exists). By Proposition 3.2, we know that (Ps)N (E),ψ ∼= �(ωPs) as a Z̃ -module.
On the other hand, the representation π ′1 has been chosen in such a way that
(π1)N (E),ψ ⊕ (π

′

1)N (E),ψ =�(ωπ1) as a Z̃ -module. Then, as a Z̃ -module we have

(π1⊕π
′

1)N (E),ψ = (π1)N (E),ψ ⊕ (π
′

1)N (E),ψ =�(ωπ1)=�(ωPs)= (Ps)N (E),ψ .

We have already proved in Section 3 that

m(Ps,W2)+m(Ps, π ′2)= [E
×
: F×E×2

].

In order to prove equation (10), we prove

(11) m(π1⊕π
′

1− Ps,W2)+m(π1⊕π
′

1− Ps, π ′2)= 0.

The relation in equation (11) follows from the following theorem:

Theorem 5.1. Let 51,52 be two genuine representations of G̃L2(E) of finite
length, having the same central characters, and such that(51)N (E),ψ ∼= (52)N (E),ψ

as Z̃-modules. Let π2 be an irreducible supercuspidal representation of GL2(F)
such that the central characters ω51 of 51 and ωπ2 of π2 agree on F× ∩ E×2.
Let π ′2 be the finite-dimensional representation of D×F associated to π2 by the
Jacquet–Langlands correspondence. Then

m(51−52, π2)+m(51−52, π
′

2)= 0.

We will use character theory to prove this relation, following [Prasad 1992] very
closely. First of all, by Theorem 4.4, 251−52 is given by a smooth function on
G̃L2(E). Now we recall the Weyl integration formula for GL2(F).

5A. Weyl integration formula.

Lemma 5.2 [Jacquet and Langlands 1970, Formula 7.2.2]. For a smooth and
compactly supported function f on GL2(F) we have

(12)
∫

GL2(F)
f (y)dy =

∑
Ei

∫
Ei

4(x)
(

1
2

∫
Ei\GL2(F)

f (ḡ−1x ḡ) dḡ
)

dx,

where the Ei are representatives for the distinct conjugacy classes of maximal tori
in GL2(F) and

4(x)=
∥∥∥(x1− x2)

2

x1x2

∥∥∥
F
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where x1 and x2 are the eigenvalues of x.

We will use this formula to integrate the function f (x)=251−52 ·2W2(x) on K
which is extended to GL2(F) by setting it to be zero outside K. In addition, we also
need the following result of Harish-Chandra, cf. [Prasad 1992, Proposition 4.3.2].

Lemma 5.3 (Harish-Chandra). Let F(g) = (gv, v) be a matrix coefficient of a
supercuspidal representation π of a reductive p-adic group G with center Z. Then
the orbital integrals of F at regular nonelliptic elements vanish. Moreover, the
orbital integral of Fat a regular elliptic element x contained in a torus T is given
by the formula

(13)
∫

T \G
F(ḡ−1x ḡ)dḡ =

(v, v) ·2π (x)
d(π) · vol(T/Z)

,

where d(π) denotes the formal degree of the representation π (which depends on a
choice of Haar measure on T \G).

Since π2 is obtained by induction from W2, a matrix coefficient of W2 (extended
to GL2(F) by setting it to be zero outside K) is also a matrix coefficient of π2. It
follows that

(1) for the choice of Haar measure on GL2(F)/F× giving K/F× measure 1,

dim W2 = d(π2),

(2) for a separable quadratic field extension Ei of F and a regular elliptic element
x of GL2(E) which generates Ei , and for the above Haar measure dḡ,

(14)
∫

E×i \GL2(F)
2W2(ḡ

−1x ḡ)dḡ =
2π2(x)

vol(E×i /F×)
.

Equation (14) can be explained as follows. Let the dimension of W2 be n and let
{e1, . . . , en} be an orthonormal basis of W2. For g ∈ K the map g 7→ Fi (g) :=
< gei , ei > defines a matrix coefficient of W2 for all i = 1, . . . , n. Then 2W2(g)=∑n

i=1 Fi (g). Now consider all these Fi as matrix coefficients of π2. Apply
Lemma 5.3 for F = Fi and sum up over all i = 1, . . . , n then we get equation (14),
since d(π2)= dim W2 = n.

5B. Completion of the proof of Theorem 1.5. We recall the following important
observations from Section 5A and Theorem 4.4:

(1) The virtual representation (51−52)|K is finite-dimensional.

(2) 2W2 is a matrix coefficient of π2 (extended to GL2(F) by zero outside K).

(3) There is Haar measure on GL2(F)/F× giving vol(K/F×)= 1 such that the
(14) is satisfied.

(4) The orbital integral in equation (13) vanishes if T is the maximal split torus.
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Let the Ei ’s be the quadratic extensions of F. Then these observations together
with Lemma 5.3 imply the following

m(51−52,W2)

=
1

vol(K/F×)

∫
K/F×

251−52 ·2W2(x) dx

=
1

vol(K/F×)

∫
GL2(F)/F×

251−52 ·2W2(x) dx

=
1

vol(K/F×)

∑
Ei

∫
E×i /F×

4(x)
[

1
2

∫
E×i \GL2(F)

251−52 ·2W2(ḡ
−1x ḡ) dḡ

]
dx

=

∑
Ei

1
2 vol(E×i /F×)

∫
E×i /F×

(4 ·251−52 ·2π2)(x) dx .

Similarly, we have the equality

m(51−52, π
′

2)=
∑

Ei

1
2 vol(E×i /F×)

∫
E×i /F×

(4 ·251−52 ·2π ′2
)(x)dx .

Note that the Ei ’s correspond to quadratic extensions of F and the embeddings of
GL2(F) and D×F have been fixed so that Working Hypothesis 1.3 (as stated in the
introduction) is satisfied, i.e., the embeddings of the Ei in GL2(F) and in D×F are
conjugate in G̃L2(E). Then the value of 251−52(x) for x ∈ Ei , does not depend on
the inclusion of Ei inside G̃L2(E), i.e., on whether the inclusion is via GL2(F) or
via D×F . Now using the relation 2π2(x)=−2π ′2(x) on regular elliptic elements x
[Jacquet and Langlands 1970, Proposition 15.5], we conclude the following, which
proves equation (11):

m(51−52,W2)+m(51−52, π
′

2)= 0.

6. A remark on higher multiplicity

We have shown that the restriction of an irreducible admissible representation of
G̃L2(E), for example a principal series representation, to the subgroup GL2(F)
has multiplicity more than one. Given the important role multiplicity one theorems
play, it would be desirable to modify the situation so that multiplicity one might
be true. One natural way to do this is to decrease the larger group, and increase
the smaller group. In this section we discuss some natural subgroups of the group
G̃L2(E) which can be used, but unfortunately, it still does not help one to achieve
multiplicity one situation. We discuss this modification in this section in some
detail.



BRANCHING LAWS FOR THE METAPLECTIC COVER OF GL2 481

Let us take the subgroup of G̃L2(E) which is generated by GL2(F) and Z̃ . We
will prove that this subgroup also fails to achieve multiplicity one for the restriction
problem from G̃L2(E) to GL2(F) · Z̃ . Let

H = GL2(F)⊂ H+ = Z ·GL2(F)⊂ GL2(E).

We will show that the restriction of an irreducible admissible representation of
G̃L2(E) to the subgroup H̃+ has higher multiplicity. Note that the subgroups Z̃ and
GL2(F) do not commute but Z̃2 commutes with GL2(F). In fact, the commutator
relation is given by

(15) [ẽ, g̃] = (e, det g)E ∈ {±1} ⊂ G̃L2(E),

where ẽ ∈ Z̃ and g̃ ∈ G̃L2(F) lie over elements e ∈ Z and g ∈GL2(F) respectively,
and (−,−)E denotes the Hilbert symbol for the field E . The lemma below proves
that the center of H̃+ is Z̃2 F×.

Lemma 6.1. For an element e ∈ E×, the map F×→{±1} defined by f 7→ (e, f )E

is trivial if and only if e ∈ F×E×2.

Proof. Let (· , ·)E and (· , ·)F denote the Hilbert symbol of the field E and F
respectively. For e ∈ E× and f ∈ F×, the following is well known [Bender 1973]:

(e, f )E = (NE/F (e), f )F ,

where NE/F is the norm map of the extension E/F . Therefore, if (e, f )E = 1 is
true for all f ∈ F×, then by the nondegeneracy of the Hilbert symbol (· , ·)F one
will have NE/F (e) ∈ F×2. The inverse image of F×2 under the norm map NE/F

is now seen to be E×2 F× since this subgroup surjects onto F×2 under the norm
mapping, and contains the kernel {z/z̄ = z2/zz̄ : z ∈ E×} of NE/F . �

Let σ be an irreducible admissible representation of GL2(F). For any character
χ of F× let us abuse the notation and simply write σ ⊗χ for σ ⊗ (χ ◦det). By the
commutator relation (15), for a ∈ Z and g ∈ GL2(F) we have

a(g, ε)a−1
= (g, χa(det g)ε),

where χa is given by x 7→ (x, a)E for all x ∈ E×. Therefore, the conjugation action
by a ∈ Z takes σ to the quadratic twist σ ⊗ χa . We have the following lemma
which easily follows from Clifford theory.

Lemma 6.2. Let H̃0 = Z̃2
· GL2(F). Let σ be an irreducible admissible rep-

resentation of GL2(F). Assume that σ ⊗ χa � σ for any nontrivial element
a ∈ E×/F×E×2. Fix a genuine character η of Z̃2 such that η|F×∩Z̃2 = ωσ |F×∩Z̃2 .
Then ρ = IndH̃+

H̃0
(ησ ) is an irreducible representation of H̃+. The representation

ρ is the only irreducible representation of H̃+ whose central character restricted
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to Z̃2 is η and also contains σ . Moreover, ρ|H̃0
∼=
⊕

a∈E×/F×E×2 η(σ ⊗ χa). In
particular, from Lemma 6.1, the restriction of ρ to H̃0 is multiplicity free.

Note that if σ is a principal series representation of GL2(F) which is not of
the form Ps(χ1, χ2) with χ1/χ2 a quadratic character, then such principal series
representation of GL2(F) have no nontrivial self twist, i.e., for any character χ
of F× the relation Ps(χ1, χ2)⊗ (χ ◦ det) ∼= Ps(χ1, χ2) implies that χ is trivial.
Let π be an irreducible admissible genuine representation of G̃L2(E) such that
dim HomGL2(F)(π, σ )≥ 2. Let η be the central character of π . Note that the central
character of any irreducible representation of H̃+, which is contained in π, agrees
with η when restricted to Z̃2. As in the previous lemma, we let ρ = IndH̃+

H̃0
(ησ ).

The representation ρ is the only representation of H̃+ which appears in π and
contains σ . So the multiplicity of such a principal series representation σ of GL2(F)
in the restriction of an irreducible admissible genuine representation of G̃L2(E) is
the same as the multiplicity of the corresponding irreducible representation of H̃+,
i.e., dim HomH̃+(π, ρ) = dim HomGL2(F)(π, σ ) ≥ 2. Thus we conclude that the
restriction of representations of G̃L2(E) to H̃+ has higher multiplicity.

On the other hand, let us take the group G = {g ∈ GL2(E) : det g ∈ F×E×2
}.

Note that this subgroup G contains GL2(E)+ = Z ·SL2(E). We will prove that the
pair (G̃,GL2(F)) also fails to achieve multiplicity one for the restriction problem
from G̃ to GL2(F). From the commutation relation (15), it follows that the center
of the group G̃ is F̃×Z2. Recall that the restriction from G̃L2(E) to G̃L2(E)+
is multiplicity free and G̃ ⊃ G̃L2(E)+, thus the restriction from G̃L2(E) to G̃ is
also multiplicity free. Let π be an irreducible admissible genuine representation of
G̃L2(E) and ρ be an irreducible admissible genuine representation of G̃ such that
ρ ↪→ π |G̃ . Then we have

π |G̃ =
⊕

a∈E×/F×E×2

ρa.

For a1 6= a2 in E×/F×E×2, ρa1 � ρa2 . In fact, the central characters of ρa1 and
ρa2 are different when restricted to F×.

Let π be an irreducible admissible genuine representation of G̃L2(E) and σ an
irreducible admissible representation of GL2(F) such that

dim HomGL2(F)(π, σ )≥ 2.

If HomGL2(F)(ρ
a1, σ ) 6= 0 then HomGL2(F)(ρ

a2, σ )= 0 for a2 6= a1 in E×/F×E×2,
since the central character of ρa2 restricted to F× will be different from the
central character of σ . Thus there exists only one a ∈ E×/F×E×2 such that
HomGL2(F)(ρ

a, σ ) 6= 0. We can assume that HomGL2(F)(ρ, σ ) 6= 0. We have

HomGL2(F)(ρ, σ )= HomGL2(F)(π, σ )

and hence dim HomGL2(F)(ρ, σ )≥ 2.
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