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LUIS J. ALÍAS, HENRIQUE F. DE LIMA AND FÁBIO R. DOS SANTOS

We deal with complete linear Weingarten spacelike hypersurfaces immersed
in the de Sitter space, that is, spacelike hypersurfaces of de Sitter space
whose mean and scalar curvatures are linearly related. In this setting, we
apply a suitable extension of the generalized maximum principle of Omori–
Yau to show that either such a spacelike hypersurface must be totally um-
bilical or there holds a sharp estimate for the norm of its total umbilicity
tensor, with equality characterizing hyperbolic cylinders of de Sitter space.
We also study the parabolicity of these spacelike hypersurfaces with respect
to a Cheng–Yau modified operator.

1. Introduction

The last few decades have seen a steadily growing interest in the study of the
geometry of spacelike hypersurfaces immersed into a Lorentzian space. Recall that
a hypersurface Mn immersed into a Lorentzian space is said to be spacelike if the
metric induced on Mn from that of the ambient space is positive definite. Apart
from physical motivations, from the mathematical point of view this interest is
mostly due to the fact that such hypersurfaces exhibit nice Bernstein-type properties,
and one can truly say that the first remarkable results in this branch were the rigidity
theorems of E. Calabi [1970] and S. Y. Cheng and S. T. Yau [1976], who showed
(the former for n ≤ 4, and the latter for general n) that the only maximal complete,
noncompact, spacelike hypersurfaces of the Lorentz–Minkowski space Ln+1 are the
spacelike hyperplanes. However, in the case that the mean curvature is a positive
constant, A. E. Treibergs [1982] astonishingly showed that there are many entire
solutions of the corresponding constant mean curvature equation in Ln+1, which he
was able to classify by their projective boundary values at infinity.

When the ambient is the de Sitter space Sn+1
1 , A. J. Goddard [1977] conjectured

that every complete spacelike hypersurface with constant mean curvature H in Sn+1
1

should be totally umbilical. Although the conjecture turned out to be false in its
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original statement, it motivated a great deal of work of several authors trying to find
a positive answer to the conjecture under appropriate additional hypotheses. For
instance, J. Ramanathan [1987] proved Goddard’s conjecture for S3

1 and 0≤ H ≤ 1.
Moreover, if H > 1 he showed that the conjecture is false as can be seen from an
example due to M. Dajczer and K. Nomizu [1981]. K. Akutagawa [1987] proved
that Goddard’s conjecture is true when n = 2 and H 2

≤ 1 or when n ≥ 3 and
H 2 < 4(n− 1)/n2. He also constructed complete spacelike rotation surfaces in S3

1
with constant H satisfying H > 1 which are not totally umbilical.

S. Montiel [1988] proved that Goddard’s conjecture is true provided that Mn is
compact. Furthermore, he exhibited examples of complete spacelike hypersurfaces
in Sn+1

1 with constant H satisfying H 2
≥ 4(n − 1)/n2 and being nontotally um-

bilical, the so-called hyperbolic cylinders, which are isometric to the Riemannian
product H1(r)×Sn−1(

√
1+ r2) of a hyperbolic line of radius r > 0 and an (n−1)-

dimensional Euclidean sphere of radius
√

1+ r2. S. Montiel [1996] characterized
such hyperbolic cylinders as the only complete noncompact spacelike hypersurfaces
in Sn+1

1 with constant mean curvature H = 2
√

n− 1/n and having at least two
ends. A. Brasil Jr., A. G. Colares and O. Palmas [Brasil et al. 2003] obtained a
sort of extension of Montiel’s result, showing that the hyperbolic cylinders are
the only complete spacelike hypersurfaces in Sn+1

1 with constant mean curvature,
nonnegative Ricci curvature and having at least two ends. They also characterized
all complete spacelike hypersurfaces of constant mean curvature with two distinct
principal curvatures as rotation hypersurfaces or generalized hyperbolic cylinders
Hk(r)×Sn−k(

√
1+ r2). Proceeding with the ideas related to Goddard’s conjec-

ture, it is interesting to obtain characterizations of the so-called linear Weingarten
spacelike hypersurfaces (that is, spacelike hypersurfaces whose mean and scalar
curvatures are linearly related) immersed in a certain Lorentzian space. Many
authors have approached problems in this branch. For instance, when the ambient
space is Sn+1

1 , we refer to the readers the works [Chao 2013; Cheng 1990; de Lima
and Velásquez 2013; Hou and Yang 2010; Li 1997].

Here, our purpose is to obtain new characterizations concerning complete lin-
ear Weingarten spacelike hypersurfaces immersed in Sn+1

1 . Under appropriated
constrains on the scalar curvature function, we apply a suitable extension of the
generalized maximum principle of Omori–Yau (see Proposition 7) in order to give
a sharp estimate of the total umbilicity tensor of the hypersurface, which allows us
to characterize hyperbolic cylinders

H1(r)×Sn−1(
√

1+ r2)

of Sn+1
1 when n≥3 (see Theorem 8 and Corollary 9) and totally umbilic 2-spheres in

S3
1 when n = 2 (see Theorem 10 and Corollary 11). We also study the parabolicity
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of these spacelike hypersurfaces with respect to a Cheng–Yau modified operator
(see Theorem 12 and Proposition 13).

2. Preliminaries

Let Rn+2
1 be an (n+2)-dimensional real vector space endowed with an inner product

of index 1 given by

〈x, y〉 =
n+1∑
j=1

x j y j − xn+2 yn+2,

where x = (x1, x2, . . . , xn+2) is the natural coordinate of Rn+2
1 .

Rn+2
1 = Ln+2 is called the (n+ 2)-dimensional Lorentz–Minkowski space. We

define the (n+ 1)-dimensional de Sitter space Sn+1
1 as the following hyperquadric

of Ln+2:
Sn+1

1 = {(x1, x2, . . . xn+2) ∈ Rn+2
1 : 〈x, x〉 = 1}.

The induced metric 〈 · , · 〉makes Sn+1
1 a Lorentzian manifold with constant sectional

curvature 1.
An n-dimensional hypersurface Mn in Sn+1

1 is said to be spacelike if the metric
on Mn induced from the metric of Sn+1

1 is positive definite.
From now on, we will consider complete spacelike hypersurfaces Mn of Sn+1

1 .
We choose a local field of semi-Riemannian orthonormal frame {eA}1≤A≤n+1

in Sn+1
1 , with dual coframe {ωA}1≤A≤n+1, such that, at each point of Mn , e1, . . . , en

are tangent to Mn and en+1 is normal to Mn . We will use the following convention
for the indices

1≤ A, B,C, . . .≤ n+ 1, 1≤ i, j, k, . . .≤ n.

In this setting, denoting by {ωAB} the connection forms of Sn+1
1 , the structure

equations of Sn+1
1 are given by

dωA =
∑

i

ωAi ∧ωi −ωAn+1 ∧ωn+1, ωAB +ωB A = 0,

dωAB =
∑

C

εCωAC ∧ωC B −
1
2

∑
C,D

εCεD K ABC DωC ∧ωD,

K ABC D = εAεB(δACδB D − δADδBC),

where εi = 1 and εn+1 =−1.
Next, we restrict all the tensors to Mn . First of all, ωn+1 = 0 on Mn , so∑
i ωn+1i ∧ωi = dωn+1 = 0 and by Cartan’s lemma we can write

(2-1) ωn+1i =
∑

j

hi jω j , hi j = h j i .
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This gives the second fundamental form of Mn , A =
∑

i j hi jωi ⊗ω j en+1. Fur-
thermore, the mean curvature H of Mn is defined by H = 1/n

∑
i hi i .

The structure equations of Mn are given by

dωi =
∑

j

ωi j ∧ω j , ωi j +ω j i = 0,

dωi j =
∑

k

ωik ∧ωk j −
1
2

∑
k,l

Ri jklωk ∧ωl .

Using the structure equations we obtain the Gauss equation

(2-2) Ri jkl = δikδ jl − δilδ jk − hikh jl + hilh jk,

where Ri jkl are the components of the curvature tensor of Mn .
The Ricci curvature and the normalized scalar curvature of Mn are given, respec-

tively, by

(2-3) Ri j = (n− 1)δi j − nHhi j +
∑

k

hikhk j

and

(2-4) R = 1
n(n−1)

∑
i

Ri i .

From (2-3) and (2-4) we obtain

(2-5) S = n2 H 2
+ n(n− 1)(R− 1)= nH 2

+ n(n− 1)(H 2
− H2),

where S =
∑

i, j h2
i j is the square of the length of the second fundamental form A

of Mn , and H2 = 2S2/(n(n− 1)) denotes the mean value of the second elementary
symmetric function S2 on the eigenvalues of A. In particular, it follows from (2-5)
that Mn is totally umbilical if and only if S = nH 2.

The components hi jk of the covariant derivative ∇A satisfy

(2-6)
∑

k

hi jkωk = dhi j +
∑

k

hikωk j +
∑

k

h jkωki .

Observe that,

|∇A|2 =
∑
i, j,k

h2
i jk .

Then, by exterior differentiation of (2-1), we obtain the Codazzi equation

(2-7) hi jk = h j ik = hik j .
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Similarly, the components hi jkl of the second covariant derivative ∇2 B are
given by ∑

l

hi jklωl = dhi jk +
∑

l

hl jkωli +
∑

l

hilkωl j +
∑

l

hi jlωlk .

By exterior differentiation of (2-6), we can get the following Ricci formula

(2-8) hi jkl − hi jlk =
∑

m

him Rmjkl +
∑

m

h jm Rmikl .

The Laplacian 1hi j of hi j is defined by 1hi j =
∑

k hi jkk . From (2-7) and (2-8),
we have

(2-9) 1hi j =
∑

k

hkki j +
∑
k,l

hkl Rli jk +
∑
k,l

hli Rlk jk .

Since 1S = 2
(∑

i, j hi j1hi j +
∑

i, j,k h2
i jk

)
, from (2-9) we get

(2-10) 1
21S = |∇A|2+

∑
i,i,k

hi j hkki j +
∑

i, j,k,l

hi j hlk Rli jk +
∑

i, j,k,l

hi j hil Rlk jk .

Consequently, taking a (local) orthonormal frame {e1, . . . , en} on Mn such that
hi j = λiδi j , from (2-10) we obtain the following Simons-type formula:

(2-11) 1
21S = |∇A|2+

∑
i

λi (nH),i i +
1
2

∑
i, j

Ri j i j (λi − λ j )
2.

Now, let φ =
∑

i, j φi jωiω j be a symmetric tensor on Mn defined by

φi j = nHδi j − hi j .

Following [Cheng and Yau 1977], we introduce a operator � associated to φ acting
on any smooth function f by

(2-12) � f =
∑
i, j

φi j fi j =
∑
i, j

(nHδi j − hi j ) fi j .

Setting f = nH in (2-12) and taking into account equations (2-5) and (2-11),
with a straightforward computation we obtain

(2-13) �(nH)= |∇A|2− n2
|∇H |2− 1

2 n(n− 1)1R+ 1
2

∑
i, j

Ri j i j (λi − λ j )
2.

3. Linear Weingarten hypersurfaces in Sn+1
1

In what follows, we will consider Mn as being a linear Weingarten spacelike
hypersurface immersed in Sn+1

1 , that is, a spacelike hypersurface of Sn+1
1 whose
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mean curvature H and normalized scalar curvature R satisfy

R = aH + b,

for some a, b ∈ R. We first state some auxiliary results.

Lemma 1 [de Lima and Velásquez 2013]. Let Mn be a linear Weingarten spacelike
hypersurface in Sn+1

1 , such that R = aH + b for some a, b ∈ R. Suppose that

(3-1) (n− 1)a2
+ 4n(1− b)≥ 0.

Then

(3-2) |∇A|2 ≥ n2
|∇H |2.

Moreover, if the inequality (3-1) is strict and the equality holds in (3-2) on Mn , then
H is constant on Mn .

Now, we will consider the following Cheng–Yau’s modified operator:

(3-3) L =�+ n−1
2

a1.

In other words, for any u ∈ C2(M),

(3-4) L(u)= tr(P ◦∇2u),

with

(3-5) P =
(

nH + n−1
2

a
)

I − A,

where I is the identity in the algebra of smooth vector fields on Mn and ∇2u stands
for the self-adjoint linear operator metrically equivalent to the Hessian of u.

Remark 2. From Equation (2-5), since R = aH + b, we have that

(3-6) n2 H 2
= S− n(n− 1)(aH + b− 1).

When b < 1, it follows from (3-6) that H(p) 6= 0 for every p ∈ Mn . In this case,
we can choose the orientation of Mn such that H > 0. On the other hand, when
b = 1, we will assume that H does not change sign on Mn and we will choose the
orientation of Mn such that H ≥ 0.

The next lemma gives a sufficient criterion for the ellipticity of the operator L .

Lemma 3. Let Mn be a linear Weingarten spacelike hypersurface in Sn+1
1 such

that R = aH + b. Let µ− and µ+ be, respectively, the minimum and the maximum
of the eigenvalues of the operator P at every point p ∈ Mn . If b < 1, then the
operator L is elliptic, with

µ− > 0 and µ+ < 2nH + (n− 1)a.
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In the case where b = 1, assume further that the mean curvature function H does
not change sign and R ≥ 1. Then the operator L is semielliptic, with

µ− ≥ 0 and µ+ ≤ 2nH + (n− 1)a,

unless Mn is totally geodesic.

Proof. Let us consider b < 1 and choose the orientation on Mn for which H > 0
(see Remark 2). From (3-6), we have that

n2 H 2
= S+ n(n− 1)(1− aH − b)≥ λ2

i − n(n− 1)aH,

for each principal curvature λi of Mn , i = 1, . . . , n.
On the other hand, with a straightforward computation we verify that

(3-7) λ2
i ≤ n2 H 2

+ n(n− 1)aH

=

(
nH + n−1

2
a
)2

−
(n−1)2

4
a2

≤

(
nH + n−1

2
a
)2

.

From (3-6) we also have that

(3-8) nH(nH + (n− 1)a)= S+ n(n− 1)(1− b) > 0.

We claim that nH + 1
2(n− 1)a > 0. When a ≥ 0, our assertion is immediate since

nH +
(

n−1
2

)
a ≥ nH > 0.

When a < 0, from (3-8) we get nH + (n − 1)a > 0. So, nH + 1
2(n − 1)a >

nH + (n− 1)a > 0.
So, from (3-7) we obtain

−nH −
(

n−1
2

)
acn− 12a < λi < nH +

(
n−1

2

)
acn− 12a, i = 1, . . . , n.

Therefore, for every i , we get

0< nH +
(

n−1
2

)
a− λi < 2nH + (n− 1)a.

However, µi = nH+ 1
2(n−1)a−λi are precisely the eigenvalues of P . In particular,

we conclude that µ− > 0 and µ+ < 2nH + (n− 1)a.
If b = 1, then choose the orientation of Mn for which H ≥ 0. From (3-6), we

have that
n2 H 2

= S− n(n− 1)aH ≥ λ2
i − n(n− 1)aH,
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for each principal curvature λi of Mn , i = 1, . . . , n and

λ2
i ≤

(
nH + n−1

2
a
)2

.

From (3-6) we also have that

nH(nH + (n− 1)a)= S ≥ 0.

Since R = aH +1≥ 1, we have aH ≥ 0. If a ≥ 0 then nH + 1
2(n−1)a ≥ 0 and,

similarly as in the case b< 1, we conclude that µ− ≥ 0 and µ+ ≤ 2nH + (n− 1)a.
On the other hand, if a < 0 we have H ≡ 0 and then R ≡ 1 and S ≡ 0, which

means that Mn must be totally geodesic. �

Remark 4. Also related to the ellipticity of operator L , when Mn is totally geodesic,
we observe that the operator L reduces to L = 1

2(n− 1)a1, which is elliptic if and
only if a > 0. For this reason, in order to keep the validity of Lemma 3 when b= 1,
even in the totally geodesic case, we will choose a to be a positive constant.

We close this section recalling a classic algebraic lemma due to M. Okumura
[1974], which was completed with the equality case by H. Alencar and M. P. do
Carmo [1994].

Lemma 5. Let κ1, . . . , κn be real numbers such that
∑

i κi = 0 and
∑

i κ
2
i = β

2,
with β ≥ 0. Then,

−
(n− 2)
√

n(n− 1)
β3
≤

∑
i

κ3
i ≤

(n− 2)
√

n(n− 1)
β3,

and equality holds if and only if at least (n− 1) of the numbers κi are equal.

4. Characterizations of linear Weingarten spacelike hypersurfaces

From now on, we will also consider the following symmetric tensor

8=
∑
i, j

8i jωi ⊗ω j

associated to the second fundamental form of a hypersurface Mn in Sn+1
1 , whose

components are given by 8i j = hi j − Hδi j . Let |8|2 =
∑

i, j 8
2
i j be the square

of the length of 8. It is not difficult to check that 8 is traceless and, from (2-4),
we get

(4-1) |8|2 = S− nH 2
= n(n− 1)H 2

+ n(n− 1)(R− 1).

In particular, |8|2 = 0 at the umbilic points of Mn . For that reason 8 is usually
called the total umbilicity tensor of Mn .
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In order to establish our characterization results, we will need the following
lower bound for the operator L acting on the square length of the traceless operator
of a linear Weingarten hypersurface.

Proposition 6. Let Mn be a linear Weingarten spacelike hypersurface immersed
in Sn+1

1 , n ≥ 2, such that R = aH + b with b ≤ 1. In the case where b = 1, assume
that the mean curvature function H does not change sign and R ≥ 1. Then,

L(|8|2)≥ 2(n− 1)|8|2ϕa,b(|8|)

√
|8|2

n(n− 1)
+

a2

4
− b+ 1,

where

(4-2) ϕa,b(x)=
n− 2
n− 1

x2
+

(
na−

n(n− 2)
√

n(n− 1)
x
)√

x2

n(n− 1)
+

a2

4
− b+ 1

+
n(n− 2)
√

n(n− 1)
a
2

x − n
(

a2

2
− b

)
.

Proof. Let us choose a local orthonormal frame {e1, . . . , en} on Mn such that
hi j =λiδi j . Taking into account equations (2-10) and (2-13), we get from (3-3) that

(4-3) L(nH)=
∑
i, j,k

h2
i jk − n2

|∇H |2+ 1
2

∑
i, j

Ri j i j (λi − λ j )
2

On the one hand, by a straightforward computation we can check

(4-4) 1
2

∑
i, j

Ri j i j (λi−λ j )
2
=

1
2

∑
i, j

(1−λiλ j )(λi−λ j )
2
= S2
−nH

∑
i

λ3
i +n|8|2.

But, on the other hand, since we are assuming that b ≤ 1, we have that the
relation (3-1) holds, and hence we can apply Lemma 1 to guarantee that

(4-5)
∑
i, j,k

h2
i jk − n2

|∇H |2 ≥ 0.

Thus, from (4-3), (4-4) and (4-5) we have

(4-6) L(nH)≥ S2
− nH

∑
i

λ3
i+n|8|2.

Taking a (local) orthonormal frame {e1, . . . , en} at p ∈ Mn such that

hi j = λiδi j and φi j = κiδi j ,
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it is not difficult to verify the algebraic relations

(4-7)
∑

i

κi = 0,
∑

i

κ2
i = |8|

2 and
∑

i

κ3
i =

∑
i

λ3
i − 3H |8|2− nH 3.

When n ≥ 3, using Lemma 5 and equations (4-1) and (4-7) we have

(4-8) S2
− nH

n∑
i=1

λ3
i = (|8|

2
+ nH 2)2− nH

∑
i

κ3
i − 3nH 2

|8|2− n2 H 4

= |8|4− nH 2
|8|2− nH

∑
i

κ3
i

≥ |8|2
(
|8|2−

n(n− 2)
√

n(n− 1)
H |8| − nH 2

)
.

In the case that n = 2, since κ1+ κ2 = 0 we also have κ3
1 + κ

3
2 = 0, and from

(4-1) and (4-7) we obtain

(4-9) S2
− 2H

2∑
i=1

λ3
i = (λ

2
1+ λ

2
2)

2
− (λ1+ λ2)(λ

3
1+ λ

3
2)

= |8|2(|8|2− 2H 2).

Hence, inserting either (4-8), when n ≥ 3, or (4-9), when n= 2, into (4-6) we get

(4-10) L(nH)≥ |8|2
(
|8|2−

n(n− 2)
√

n(n− 1)
H |8| − n(H 2

− 1)
)
.

On the other hand, from (4-1) and R = aH + b, we have

(4-11) 1
n−1
|8|2 = nH 2

+ naH + n(b− 1).

If Mn is totally geodesic then the operator L reduces to L = 1
2(n− 1)a1 where

a > 0 is any positive constant (see Remark 4). In this case |8|2 ≡ 0 and the
inequality in Proposition 6 holds trivially. On the other hand, if Mn is not totally
geodesic then Lemma 3 guarantees that the operator P is positive definite if b < 1,
and P is positive semidefinite if b = 1. In any case, from (4-11) we have

(4-12) 1
n−1

L(|8|2)= 2H L(nH)+ 2n〈P(∇H),∇H〉+ aL(nH)

≥ 2
(

H + a
2

)
L(nH),

once (3-4) guarantees that L(u2)= 2uL(u)+ 2〈P(∇u),∇u〉 for every u ∈ C2(M).
Therefore, taking into account that H +a/2≥ 0, from (4-10) and (4-12) we get

(4-13) 1
2(n−1)

L(|8|2)≥
(

H+ a
2

)
|8|2

(
|8|2−

n(n− 2)
√

n(n− 1)
H |8|−n(H 2

−1)
)
.
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Besides, from (4-11) we have

H 2
=

1
n(n−1)

|8|2− aH − b+ 1,

and consequently, we can write

(4-14) H + a
2
=

√
|8|2

n(n−1)
+

a2

4
− b+ 1.

From (4-14) and (4-11), after a straightforward computation, we get

(4-15) |8|2−
n(n− 2)
√

n(n− 1)
H |8| − n(H 2

− 1)= ϕa,b(|8|),

where ϕa,b(x) is defined as in (4-2). Therefore, replacing (4-14) and (4-15) in (4-13),
we obtain the desired inequality. �

Let us consider on a Riemannian manifold Mn a semielliptic operator of the
form L= tr(P ◦Hess), where P : TM→ TM is a positive semidefined symmetric
tensor. We say that the Omori–Yau maximum principle holds on Mn for the operator
L if, for any function u ∈ C2(M) with u∗ = supM u <∞, there exists a sequence
{pk}k∈N ⊂ Mn with the properties

u(pk) > u∗− 1
k
, |∇u(pk)|<

1
k

and Lu(pk) <
1
k

for every k ∈ N.
As an application of Theorem 6.13 of [Alías et al. 2016] (see also Lemma 4.2

of [Alías et al. 2012]), we establish the following Omori–Yau maximum principle
which will be our analytical key tool for the proofs of our main results.

Proposition 7. Let Mn be complete noncompact linear Weingarten spacelike hyper-
surface immersed in Sn+1

1 such that R = aH + b with b ≤ 1. In the case where
b = 1, assume that the mean curvature function H does not change sign and R ≥ 1.
If supM |8|

2 <+∞, then the Omori–Yau maximum principle holds on Mn for the
operator L.

Proof. Taking into account that R = aH + b, from (4-1) we get

(4-16) |8|2 = n(n− 1)(H 2
+ aH)+ n(n− 1)(b− 1).

Since we are assuming supM |8|
2<+∞, from (4-16) it follows that supM H <+∞.

Thus, from (3-5) we have

tr(P)= n(n− 1)H + n(n−1)
2

a

and hence,

(4-17) sup
M

tr(P) <+∞.
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On the other hand, recall from the proof of Lemma 3 that nH+ 1
2(n−1)a> 0 and

−nH − n−1
2

a < λi < nH + n−1
2

a, i = 1, . . . , n.

Therefore, from (2-2) we see that the sectional curvatures of Mn satisfy

(4-18) Ri j i j = 1− λiλ j ≥ 1−
(

nH + n−1
2

a
)2

>−∞.

Furthermore, Lemma 3 guarantees us that the operator L is semielliptic. There-
fore, taking into account (3-4), (4-17) and (4-18), we can apply Theorem 6.13 of
[Alías et al. 2016] in the particular case where the sectional curvatures of Mn are
bounded from below by a constant to conclude the desired result. �

Now, we are in position to state and prove our main characterization result
concerning linear Weingarten hypersurfaces immersed in Sn+1

1 .

Theorem 8. Let Mn be a complete linear Weingarten spacelike hypersurface iso-
metrically immersed in the de Sitter space Sn+1

1 , n ≥ 3, such that R = aH + b with
0< b ≤ R < (n− 2)/n. Then

(i) either supM |8|
2
= 0 and Mn is a totally umbilical hypersurface,

(ii) or
sup

M
|8|2 ≥ α(n, a, b) > 0,

where α(n, a, b) is a positive constant depending only on n, a and b.

In (ii), a necessary and sufficient condition for equality to hold and the supremum
to be attained at some point of Mn is that Mn be isometric to a hyperbolic cylinder
H1(r)×Sn−1(

√
1+ r2) of radius r > 0.

Proof. If supM |8|
2
= 0, then Mn is totally umbilical and, hence, item (i) holds.

If supM |8|
2
= +∞, then (ii) is trivially satisfied. So, let us suppose that 0 <

supM |8|
2 <+∞ and let us take u = |8|2. Then, from Proposition 6 we get

(4-19) L(u)≥ f (u),

where

f (u)= 2(n− 1)uϕa,b(
√

u)

√
u

n(n−1)
+ 1− b+ a2

4

and ϕa,b(x) is given by (4-2).
If Mn is compact, there exists a point p0 ∈ Mn such that u(p0)= u∗= supM u.

Consequently, ∇u(p0) = 0 and Lu(p0) ≤ 0. Therefore, from (4-19) we get
f (u∗)≤ 0. Now, assume that Mn is complete and noncompact. Since u∗ <+∞,
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Proposition 7 guarantees that there exists a sequence of points {pk}k∈N ⊂ Mn

satisfying

(4-20) u(pk) > u∗− 1
k

and Lu(pk) <
1
k
,

for every k ∈ N. Therefore from (4-19) and (4-20), we get

(4-21) 1
k
> Lu(pk)≥ f (u(pk)).

Taking the limit k→+∞ in (4-21), by continuity, we have

f (u∗)= 2(n− 1)u∗ϕa,b(
√

u∗)

√
u∗

n(n−1)
+ 1− b+ a2

4
≤ 0.

Since u∗ > 0 and b < 1, we obtain that

(4-22) ϕa,b(
√

u∗)≤ 0.

Recall from Remark 2 that H > 0 on Mn . Thus, since we are assuming that
n ≥ 3 and 0 < b ≤ R < (n − 2)/n, it is not difficult to verify that ϕa,b has an
unique positive root x0 =

√
α(n, a, b) > 0. Moreover, we have that ϕa,b(x) > 0,

for 0≤ x < x0, and ϕa,b(x) < 0, for x > x0.
Therefore, (4-22) implies

u∗ ≥ x2
0 = α(n, a, b),

that is,
sup

M
|8|2 ≥ α(n, a, b).

This proves the inequality of item (ii).
Moreover, the equality supM |8|

2
= α(n, a, b) holds if and only if

√
u∗ = x0.

Thus ϕa,b(
√

u)≥ 0 on Mn , which jointly with (4-19) implies that

L(u)≥ 0 on Mn.

On the other hand, since b < 1 we know from Lemma 3 that the operator
L is elliptic. Therefore, if there exists a point p0 ∈ Mn such that |8(p0)| =

supM |8|, from the maximum principle the function u = |8|2 must be constant and,
consequently, |8| ≡ x0. Thus,

0= L(|8|2)≥ 2(n− 1)|8|2ϕa,b(|8|)

√
|8|2

n(n−1)
+ 1− b+ a2

4
.

Hence, all the inequalities in the proof of Proposition 6 must be equalities. In
particular, since L is elliptic if and only if P is positive definite, returning to (4-12)
we obtain that ∇H = 0 and H is constant. Moreover, equality occurs in (4-5) as
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well, or equivalently,

|∇A|2 =
∑
i, j,k

h2
i jk = n2

|∇H |2 = 0.

So, it follows that λi is constant for every i=1, . . . , n, that is, Mn is an isoparametric
hypersurface. Finally, (4-8) must also be an equality, which guarantees that the
equality in Lemma 5 occurs. This implies that the hypersurface has exactly two
distinct principal curvatures one of which is simple. Therefore, we can apply a
classical congruence theorem due to Abe et al. [1987, Theorem 5.1] to conclude
that Mn must be one of the two following standard product embeddings into Sn+1

1 :

(a) H1(r)×Sn−1(
√

1+ r2),

(b) Hn−1(r)×S1(
√

1+ r2),

in either case with a positive radius r > 0. In case (a), for a given radius r > 0
the standard product embedding H1(r)× Sn−1(

√
1+ r2) ↪→ Sn+1

1 has constant
principal curvatures given by

λ1 =

√
1+ r2

r
, λ2 = · · · = λn =

r
√

1+ r2
.

Therefore,

nH =
1+ nr2

r
√

1+ r2
, S =

1+ 2r2
+ nr4

r2(1+ r2)
, and |8|2 =

n− 1
nr2(1+ r2)

,

and its constant scalar curvature is given

R =
n− 2

n(1+ r2)
,

which satisfies our hypothesis, since

0< R <
n− 2

n
< 1

for every r > 0. On the other hand, in case (b) and for a given radius r > 0
the standard product embedding Hn−1(r)× S1(

√
1+ r2) ↪→ Sn+1

1 has constant
principal curvatures given by

λ1 = · · · = λn−1 =

√
1+ r2

r
, λn =

r
√

1+ r2
.

Therefore,

nH=
(n− 1)+ nr2

r
√

1+ r2
S=

n− 1+ 2(n− 1)r2
+ nr4

r2(1+ r2)
, and |8|2=

n− 1
nr2(1+ r2)

,
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and its constant scalar curvature is given by

R =−
n− 2
nr2 < 0,

which does not satisfy our hypothesis. �

When the spacelike hypersurface has constant scalar curvature (which corre-
sponds to the case a = 0), we also have the following consequence of Theorem 8.

Corollary 9. Let Mn be a complete spacelike hypersurface isometrically immersed
in de Sitter space Sn+1

1 , n ≥ 3, with constant scalar curvature R satisfying 0< R <
(n− 2)/n. Then

(i) either supM |8|
2
= 0 and Mn is a totally umbilical hypersurface,

(ii) or
supM |8|

2
≥ β(n, R) > 0,

where

β(n, R)= α(n, 0, R)=
n(n− 1)R2

(n− 2)(n− 2− n R)
.

In (ii), a necessary and sufficient condition for equality to hold and the supremum
to be attained at some point of Mn is that Mn be isometric to a hyperbolic cylinder
H1(r)×Sn−1(

√
1+ r2) of radius r > 0.

For the proof of Corollary 9 simply observe that when a = 0 (and hence R = b)
the positive root x0 of ϕ0,R(x)= 0 is given explicitly by

x2
0 =

n(n− 1)R2

(n− 2)(n− 2− n R)
.

On the other hand, when n = 2 it is easy to see that, supposing 0< b < 1 and
R ≥ b, the function ϕa,b(x) is increasing for x ≥ 0, with ϕa,b(x) ≥ ϕa,b(0) > 0.
Therefore in this case, and taking into account that R= K is the Gaussian curvature
of M2, Theorem 8 can be written as follows.

Theorem 10. Let M2 be a complete linear Weingarten spacelike surface isometri-
cally immersed in the de Sitter space S3

1 such that K = aH + b with 0< b < 1 and
K ≥ b. If supM |8|

2 <+∞ then M2 is a totally umbilical surface.

In other words, taking into account that the only totally umbilical surfaces in S3
1

having K > 0 are the totally umbilical 2-spheres S2(r) ⊂ S3
1, with radius r > 1,

Theorem 10 says:

The only complete linear Weingarten spacelike surfaces in de Sitter space
S3

1 satisfying K = aH + b with 0 < b < 1 and K ≥ b for which |8|2 is
bounded are the totally umbilical 2-spheres.

The proof of Theorem 10 follows from that of Theorem 8 after observing that
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when n = 2 it cannot happen that 0< supM |8|
2 <+∞ because that would imply

0< ϕa,b(
√

u∗)≤ 0. Thus if supM |8|
2 <+∞ we must have |8|2 ≡ 0 and M2 is a

totally umbilical surface.
Finally, when a = 0 and n = 2, from Theorem 10 we also obtain the following:

Corollary 11. The only complete spacelike surfaces in the de Sitter space S3
1 with

constant Gaussian curvature 0< K < 1 for which |8|2 is bounded (or, equivalently,
H is bounded) are the totally umbilical 2-spheres S2(r)⊂ S3

1, with radius r > 1.

5. L-parabolicity of linear Weingarten hypersurfaces

Recall that a Riemannian manifold Mn is said to be parabolic if the constant
functions are the only subharmonic functions on Mn which are bounded from
above; that is, for a function u ∈ C2(M)

1u ≥ 0 and u ≤ u∗ <+∞ imply u = constant.

So, considering the Cheng–Yau modified operator L given in (3-3), we say that Mn

is L-parabolic if the only solutions of the inequality L(u)≥ 0 which are bounded
from above are the constant functions. In this setting, and motivated by Theorem 3
in [Alías et al. 2012], we have the following result.

Theorem 12. Let Mn be a complete linear Weingarten spacelike hypersurface
immersed in de Sitter space Sn+1

1 , n ≥ 3, such that R = aH + b with 0< b ≤ R <
(n− 2)/n. Suppose that Mn is not totally umbilical. If Mn is L-parabolic, then

(5-1) sup
M
|8|2 ≥ α(n, a, b) > 0,

with equality if and only if Mn is isometric to a hyperbolic cylinder H1(r) ×
Sn−1(

√
1+ r2) of radius r > 0.

Proof. If supM |8|
2
=+∞ then there is nothing to prove. Since Mn is not totally

umbilical, we consider the case that 0< supM |8|
2<+∞. In this case, reasoning as

in the first part of the proof of Theorem 8, we guarantee that supM |8|
2
≥ α(n, a, b).

Moreover, if equality holds in (5-1), then we have ϕa,b(|8|)≥ 0 and, consequently,
L(|8|2)≥ 0 on Mn . Hence, from the L-parabolicity of Mn we conclude that the
function u = |8|2 must be constant and equal to α(n, a, b). Therefore, at this point,
we can reason as in the proof of Theorem 8. �

We close our paper establishing the following L-parabolicity criterion.

Proposition 13. Let Mn be a complete linear Weingarten spacelike hypersurface
immersed in Sn+1

1 such that R = aH + b with b ≤ 1. In the case b = 1, assume
further that mean curvature function H does not change sign and b ≤ R. If
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supM |8|
2 <+∞ and, for some reference point o ∈ Mn ,

(5-2)
∫
+∞

0

dr
vol(∂Br )

=+∞,

then Mn is L-parabolic. Here Br denotes the geodesic ball of radius r in Mn

centered at the origin o.

Proof. By a straightforward computation we can check from (3-4) that

(5-3) L(u)= div(P(∇u)),

for any u ∈ C2(M), where P is defined in (3-5).
Now, we consider on Mn the symmetric (0, 2) tensor field h given by h(X, Y )=
〈P X, Y 〉, or, equivalently, h(∇u, ·)] = P(∇u), where ]

: T ∗M→ TM denotes the
musical isomorphism. Thus, from (5-3) we get

L(u)= div(h(∇u, ·)]).

On the other hand, as supM |8|
2<+∞, from (4-16), we have that supM H <+∞.

So, we can define a positive continuous function h+ on [0,+∞), by

(5-4) h+(r)= 2n sup
∂Br

H + (n− 1)a.

Thus, from (5-4) we have

(5-5) h+(r)= 2n sup
∂Br

H + (n− 1)a ≤ 2n sup
M

H + (n− 1)a <+∞.

Hence, from (5-2) and (5-5) we get∫
+∞

0

dr
h+(r)vol(∂Br )

=+∞.

Therefore, we can apply Theorem 2.6 of [Pigola et al. 2005] to conclude the proof.
�
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