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Let S2 be the Stepanov space with norm ‖ f ‖S2 = supx∈R

(∫ x+1
x | f (t)|2 dt

)1/2,
λn ↑∞, and let (an)n≥1 satisfy Wiener’s condition

∑
n≥1
(∑

k:n≤λk≤n+1 |ak|
)2
<

∞. We establish the following maximal inequality:∥∥∥∥sup
N≥1

∣∣∣∣ N∑
n=1

aneiλn t
∣∣∣∣ ∥∥∥∥

S2
≤ C

(∑
n≥1

( ∑
k:n≤λk≤n+1

|ak|

)2)1/2

,

where C > 0 is a universal constant. Moreover, the series
∑

n≥1 anei tλn con-
verges for λ-a.e. t ∈ R. We give a simple and direct proof. This contains as
a special case Hedenmalm and Saksman’s result for Dirichlet series. We also
obtain maximal inequalities for corresponding series of dilates. Let (λn)n≥1,
(µn)n≥1, be nondecreasing sequences of real numbers greater than 1. We
prove the following interpolation theorem. Let 1 ≤ p, q ≤ 2 be such that
1/ p+ 1/q = 3

2 . There exists C > 0 such that for any sequences (αn)n≥1 and
(βn)n≥1 of complex numbers such that

∑
n≥1
(∑

k:n≤λk<n+1|αk|
) p
< ∞ and∑

n≥1
(∑

k:n≤µk<n+1|βk|
)q
<∞, we have∥∥∥∥sup

N≥1

∣∣∣∣ N∑
n=1

αn D(λn t)
∣∣∣∣∥∥∥∥

S2
≤C
(∑

n≥1

( ∑
k:n≤λk<n+1

|αk|

)p)1/p(∑
n≥1

( ∑
k:n≤µk<n+1

|βk|

)q)1/q

,

where D(t) =
∑

n≥1 βneiµn t is defined in S2. Moreover,
∑

n≥1 αn D(λn t) con-
verges in S2 and for λ-a.e. t ∈ R. We further show that if {λk, k ≥ 1} satisfies
the condition ∑

k 6=`, k′ 6=`′
(k,`)6=(k′,`′)

(1− |(λk−λ`)− (λk′ −λ`′)|)
2
+ <∞,

then the series
∑

k akeiλk t converges on a set of positive Lebesgue measure
only if the series

∑∞
k=1 |ak|

2 converges. The above condition is in particular
fulfilled when {λk, k ≥ 1} is a Sidon sequence.
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1. Introduction

We study almost everywhere convergence properties of almost periodic Fourier
series in the Stepanov space S2 and of corresponding series of dilates. This space is
defined as the subspace of functions f of L2

loc(R) verifying the following analogue
of the Bohr almost periodicity property: For all ε > 0, there exists Kε > 0 such that
for any x0 ∈ R, there exists τ ∈ [x0, x0 + Kε] such that ‖ f (· + τ)− f (·)‖S2 ≤ ε.
The Stepanov norm in S2 is defined by

‖ f ‖S2 = sup
x∈R

(∫ x+1

x
| f (t)|2 dt

)1/2

.

Recall some basic facts. By the fundamental theorem on almost periodic func-
tions, see [Besicovitch 1932, p. 88], the Stepanov space S2 coincides with the closure
of the set of generalized trigonometric polynomials

{∑n
k=1 akeiλk t

:αk ∈C, λk ∈R
}

with respect to this norm. It is clear by considering for instance f = χ[0,1] that
the space { f ∈ L2

loc(R) : ‖ f ‖S2 <∞} is strictly larger than S2. Introduce also the
Besicovitch seminorm of order 2 of f ∈ L2

loc(R)

(1-1) ‖ f ‖B2 = lim sup
T→∞

(
1

2T

∫ T

−T
| f (t)|2 dt

)1/2

.

For every λ ∈R and every f ∈ L1
loc(R) define the Fourier coefficient f̂ (λ) of the

exponent λ of f by

(1-2) f̂ (λ)= lim
T→∞

1
2T

∫ T

−T
f (x)e−iλx dx,

whenever the limit exists. It is easily seen, by approximating by generalized
trigonometric polynomials in the Stepanov norm, that the above limit exists for
every f ∈ S2 and every λ ∈ R. Moreover, for any finite family λ1, . . . , λn ∈ R, we
have by the Parseval equation in B2, see [Bellman 1944, p. 109],

n∑
k=1

| f̂ (λk)|
2
≤ ‖ f ‖2B2 ≤ ‖ f ‖2S2 .

In particular, for f ∈ S2, 3 := {λ ∈ R : f̂ (λ) 6= 0} is countable. We call 3 the
(set of) Fourier exponents of f . Let f ∈ S2 have of Fourier exponents 3. Then

(1-3)
∑
λ∈3

| f̂ (λ)|2 ≤ ‖ f ‖2B2 ≤ ‖ f ‖2S2 .

We then define formally the Fourier series of f ∈ S2 as∑
λ∈3

f̂ (λ)eiλ·.

Notice that the set 3∩ [−A, A] may be infinite for a given A > 0.
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In this paper we are interested in the convergence of the Fourier series of f
(to f ) either in the Stepanov sense or in the almost everywhere sense, and the same
sort of consideration will motivate us in the study of associated series of dilates.
This second question is actually our main objective. See Section 3.

Concerning convergence of the Fourier series, it is necessary to recall Bredihina’s
extension to S2 of Kolmogorov’s theorem asserting that if sn(x) are the partial
sums of the Fourier series of a function f ∈ L2(T), then smn (x) converges almost
everywhere to f provided that mn+1/mn ≥ q > 1. Bredihina [1968] showed
that the Fourier series of a function in S2 with α-separated frequencies (α > 0),
namely |λk − λ`| ≥ α > 0 for all k, `, k 6= `, converges almost everywhere along
any exponentially increasing subsequence. That is, for every ρ > 1, the sequence{∑

1≤k≤ρn f̂ (λk)eiλk t , n≥1
}

converges for λ-almost every t ∈R. The corresponding
maximal inequality has been recently obtained by Bailey [2014] who also considered
Stepanov spaces of higher order.

Remark 1.1. For a short proof of Kolmogorov’s Theorem, see Marcinkiewicz
[1933], who showed that this follows from Fejér’s Theorem, see [Zygmund 1968,
Theorem 3.4-(III)], and the classical fact that if a series

∑
un with partial sums sn

has infinitely many lacunary gaps and is summable (C, 1) to sum s, then sn→ s.
See Theorem 1.27 in Chapter III of [Zygmund 1968].

In view of Carleson’s theorem, a natural question is whether the “full” series
converges for any f ∈ S2.

That question has been addressed in the very specific situation of Dirichlet series
by Hedenmalm and Saksman [2003]. A simplified proof may be found in [Konyagin
and Queffélec 2001/02] (see also below). They proved the following. Let λ denote
here and throughout the Lebesgue measure on the real line.

Theorem 1.2. Let (an)n≥1 be complex numbers such that
∑

n≥1n|an|
2 <∞. Then

the series
∑

n≥1anni t converges λ-almost everywhere.

Their condition is optimal when (an)n≥1 is nonincreasing. However, if (an)n≥1

is supported say on {2n
: n ≥ N } the corresponding series is a standard (periodic)

trigonometric series and in that case, the optimality is lost, since the condition is
much stronger than Carleson’s condition.

On the other hand, it follows from [Wiener 1926] that the series
∑

n≥1anni t

converges in S2 provided that

(1-4)
∑
n≥0

( 2n+1
−1∑

k=2n

|ak |

)2

<∞.

More precisely, the sequence of partial sums converges in S2 to a limit f ∈ S2. If
an > 0 for every n, the converse is also true; see [Tornehave 1954].
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Our first goal (see the next section) is to prove that (1-4) is sufficient for λ-a.e.
convergence and to provide the corresponding maximal inequality. Moreover, it
will turn out that the problem of the λ-almost everywhere convergence of the series∑

n≥1aneiλn t can be reduced to the study of Dirichlet series.
In doing so, we obtain a Carleson-type theorem for almost periodic series and

make the link with the study of almost everywhere convergence of the Fourier series
associated with Stepanov’s almost periodic functions.

Then, in Section 3, we consider associated series of dilates and obtain a sufficient
condition for almost everywhere convergence. We further prove an interpolation
theorem. Finally, in Section 4, we obtain a general necessary condition for the
convergence almost everywhere of series of functions. The condition involves
correlations of order 4. As an application, we show for instance that if {λk, k ≥ 1} is
a Sidon sequence, and the series

∑
k akeiλk t converges on a set of positive λ-measure,

then the series
∑
∞

k=1 |ak |
2 converges.

2. Almost everywhere convergence of almost periodic Fourier series

We start with the proof by Konyagin and Queffélec of Hedenmalm and Saksman’s
result, to which we add a maximal inequality.

Proposition 2.1. There exists C > 0 such that for any sequence (an)n≥1 of complex
numbers such that

∑
n≥1n|an|

2 <∞,

(2-1)
∥∥∥∥sup

n≥1

∣∣∣∣ n∑
k=1

akki ·
∣∣∣∣∥∥∥∥

S2
≤ C

(∑
n≥1

n|an|
2
)1/2

.

Before giving the proof, it is necessary to recall some classical but important
facts. Let g ∈ L p(T), 1< p <∞. Consider the maximal operator

T ∗g(x)=
∞

sup
L=0

∣∣∣∣∑
|k|≤L

ĝ(k)e2iπkx
∣∣∣∣.

For f ∈ L p(R) consider analogously the maximal operator

C∗ f (x)= sup
T>0

∣∣∣∣∫ T

−T
f̂ (t)ei xt dt

∣∣∣∣.
An operator U on L p is called strong (p, p) if ‖U f ‖p ≤ C p‖ f ‖p for all f ∈ L p.
The fact that strong (p, p), 1< p<∞, for T ∗ is equivalent to strong (p, p) for C∗

follows from known elementary arguments, see [Auscher and Carro 1992, p. 166].
We refer to [Hunt 1968, Theorem 1] concerning the deep fact that T ∗ is strong
(p, p), 1< p <∞ and we shall call it “the Carleson–Hunt theorem” when p = 2.
We will freely use the fact the C∗ is consequently strong (p, p), 1< p <∞.
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Proof. We first notice that it is enough to prove that

(2-2)
∥∥∥∥sup

n≥1

∣∣∣∣ n∑
k=1

akki ·
∣∣∣∣∥∥∥∥

L2[0,1]
≤ C

(∑
n≥1

n|an|
2
)1/2

.

Indeed, then the desired result follows from the fact that
n∑

k=1

akki(t+x)
=

n∑
k=1

(akki x)ki t,

since we may apply the above estimate to the sequence (anni x)n≥1 whose moduli
are the same as the ones of the sequence (an)n≥1.

Let us prove (2-2). Define h ∈ L2(R) by setting h ≡ 0 on (−∞, 1) and for every
n ∈ N, h(x)= an whenever x ∈ [n, n+ 1).

Let N ≥ 1. We have

N∑
n=1

anni t
=

N∑
n=1

an

∫ n+1

n
(ei t log n

− ei t log x) dx +
∫ N+1

1
h(x)ei t log x dx

=

N∑
n=1

an

∫ n+1

n
(ei t log n

− ei t log x) dx +
∫ log(N+1)

0
ex h(ex)ei t x dx .

Now, for every x ∈ [n, n+ 1),

|ei t log n
− ei t log x

| ≤
t
n
.

Hence, ∑
n≥1

∣∣∣∣an

∫ n+1

n
(ei t log n

− ei t log x) dx
∣∣∣∣≤ t

(∑
n≥1

n|an|
2
)1/2(∑

n≥1

1
n3

)1/2

.

On the other hand,
∫
+∞

0 e2x
|h|2(ex) dx=

∫
+∞

1 u|h|2(u) du≤
∑

n≥1(n+1)|an|
2<

∞. Hence, since C∗ is strong (2− 2),∥∥∥∥sup
N≥1

∣∣∣∣∫ log(N+1)

0
ex h(ex)ei t x dx

∣∣∣∣∥∥∥∥2

2,dt
≤ C

∫
+∞

0
e2x
|h|2(ex) dx .

Hence (2-1) follows. �

We now derive an improved version of Proposition 2.1.

Theorem 2.2. There exists C > 0 such that for every sequence (an)n≥1 of complex
numbers satisfying (1-4),

(2-3)
∥∥∥∥sup

n≥1

∣∣∣∣ n∑
k=1

akki ·
∣∣∣∣∥∥∥∥

S2
≤ C

(∑
n≥0

(2n+1
−1∑

k=2n

|ak |

)2)1/2

.
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Moreover,
∑

n≥1 anni t converges for λ-a.e. t ∈ R.

Remarks 2.3. The proof of Theorem 2.2 makes use of the Carleson–Hunt theorem
(T ∗ is strong (2− 2)) and of Proposition 2.1. The latter was proved using that C∗

is strong (2− 2), which is equivalent to the Carleson–Hunt theorem. On the other
hand, given any sequence (bn)n≥1 ∈ `

2, applying Theorem 2.2 with (an)n≥1 such
that a2k = bk and an = 0 otherwise, we see that Theorem 2.2 implies the Carleson–
Hunt theorem, hence is equivalent to it. We shall see below that Theorem 2.2
allows one to treat almost everywhere convergence of series

∑
n≥1bnei tλn for non-

decreasing sequences (λn)n≥1. Notice that Theorem 2.2 corresponds to the case
where λn = log n. For more on the Carleson–Hunt theorem we refer to [Lacey
2004]. See also [Jørsboe and Mejlbro 1982].

Proof. As in the previous proof, it is enough to prove a maximal inequality in
L2([0, 1]). We shall first work along the subsequence (2n

− 1)n≥1.
Let n≥1 and define Sk,n :=

∑k
`=2n ak for every 2n

≤ k≤2n+1
−1 and S2n−1,n=0.

In particular, for every 2n
≤ k ≤ 2n+1

− 1,

|Sk,n| ≤

2n+1
−1∑

j=2n

|a j |,

a fact that will be used freely in the sequel.
By Abel summation by parts, we have

2n+1
−1∑

k=2n

akki t
=

2n+1
−1∑

k=2n

(Sk,n−Sk−1,n)ki t
=

2n+1
−1∑

k=2n

Sk,n(ki t
−(k+1)i t)+2(n+1)i t S2n+1−1,n.

Since 2(n+1)i t
= ei(n+1)t log 2 and by our assumption

∑
n≥1 |S2n+1−1,n|

2 < ∞, it
follows from Carleson’s theorem that∥∥∥∥sup

N≥1

N∑
n=1

S2n+1−1,n2(n+1)i t
∥∥∥∥

L2([0,1],dt)
≤ C

(∑
n≥1

|S2n+1−1,n|
2
)1/2

.

Hence, we are back to controlling the L2-norm of

sup
N≥1

∣∣∣∣ N∑
n=1

2n+1
−1∑

k=2n

Sk,n(ki t
− (k+ 1)i t)

∣∣∣∣.
But we have

ki t
− (k+ 1)i t

= ei t log k
− ei t log(k+1)

= ei t log k
(

1− ei t log(1+1/k)
+

i t
k

)
−

i t
k

ei t log k
= uk(t)−

i t
k

ei t log k .
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Now there exists C > 0 such that |uk(t)| ≤ C(t + t2)/k2. Hence,

∑
n≥1

2n+1
−1∑

k=2n

|Sk,n||uk(t)| ≤ C(t + t2)
∑
n≥1

∑2n+1
−1

k=2n |ak |

2n

≤ C(t + t2)

(∑
n≥1

( 2n+1
−1∑

k=2n

|ak |

)2)1/2

.

It remains to control

sup
N≥1

∣∣∣∣ N∑
n=1

2n+1
−1∑

k=2n

Sk,n

k
ei t log k

∣∣∣∣.
But we are exactly in the situation of Proposition 2.1. Hence∥∥∥∥sup

N≥1

∣∣∣∣ N∑
n=1

2n+1
−1∑

k=2n

Sk,n

k
ei t log k

∣∣∣∣∥∥∥∥
L2([0,1],dt)

≤ C
(∑

n≥1

2n+1
−1∑

k=2n

k
|Sk,n|

2

k2

)1/2

≤

(∑
n≥1

( 2n+1
−1∑

k=2n

|ak |

)2)1/2

<∞.

Let n ≥ 1 and 2n
≤ `≤ 2n+1

− 1. We have∣∣∣∣∑̀
k=1

anki t
−

2n
−1∑

k=1

anki t
∣∣∣∣≤ 2n+1

−1∑
k=2n

|ak |.

Hence,

sup
N≥1

∣∣∣∣ N∑
n=1

anei t log n
∣∣∣∣≤ sup

N≥1

∣∣∣∣2
N
−1∑

n=1

anei t log n
∣∣∣∣+(∑

n≥1

( 2n+1
−1∑

k=2n

|ak |

)2)1/2

.

So, (2-3) is proved. The λ-almost everywhere convergence may be proved by a
standard procedure thanks to the maximal inequality. Alternatively, following all
the steps of the proof of the maximal inequality lets us give a more direct proof. �

As a corollary we deduce:

Theorem 2.4. Let (λn)n≥1 be an increasing sequence of positive real numbers
tending to∞. Let (an)n≥1 be such that

(2-4)
∑
n≥1

( ∑
k:n≤λk≤n+1

|ak |

)2

<∞.
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There exists a universal constant C > 0 such that

(2-5)
∥∥∥∥sup

N≥1

∣∣∣∣ N∑
n=1

aneiλn t
∣∣∣∣∥∥∥∥

S2
≤ C

(∑
n≥1

( ∑
k:n≤λk≤n+1

|ak |

)2)1/2

.

Moreover, the series
∑

n≥1anei tλn converges for λ-a.e. t ∈ R.

Proof. Write un := [2λn ]. Hence (un)n≥1 is a nondecreasing sequence of integers.
That sequence may overlap from time to time. So let (vk)k≥1 be a strictly increasing
sequence of integers with same range as (un)n≥1.

Define a sequence (bn)n≥1 as follows. Let n ≥ 1 be such that there exists k ≥ 1
such that n = vk . Then set bn :=

∑
`:u`=vk

a`. If there is no k ≥ 1 such that n = vk ,
set bn := 0.

We first control

sup
N≥1

∣∣∣∣ N∑
n=1

bnei t log2 n
∣∣∣∣,

where log2 stands for the logarithm in base 2.
By Theorem 2.2, we have

∥∥∥∥sup
N≥1

∣∣∣∣ N∑
n=1

bnei log2 n·
∣∣∣∣∥∥∥∥2

S2
≤ C

∑
n≥0

(2n+1
−1∑

k=2n

|bk |

)2

=

∑
n≥0

( ∑
`:2n≤u`≤2n+1−1

|b`|
)2

.

Now, if 2n
≤ u` ≤ 2n+1

− 1, then n ≤ λ` ≤ n+ 1 and our first step is proved.
Let q ≥ p be integers. There exist integers q ′ ≥ p′ such that vp′ = u p and

vq ′ = uq . We have

∣∣∣∣ q∑
k=p

akeitλk−

vq′∑
k=vp′

bkeit log2 uk

∣∣∣∣≤ ∑
k:uk=up

|ak |+
∑

k:uk=uq

|ak |+

q ′∑
`=p′

∑
k:uk=v`

|ak ||eitλk−eit log2 uk |.

Clearly, it suffices to control∑
n≥0

∑
`:2n≤v`≤2n+1−1

∑
k:uk=v`

|ak ||ei tλk − ei t log2 uk |.

Now, for 2n
≤ v` ≤ 2n+1

−1 and uk = v`, using that uk ≤ 2λk ≤ uk+1, we see that
| log2(2

λk )− log2 uk | ≤ C/uk and that

|ei tλk − ei t log2 uk | = |ei t log2(2
λk )
− ei t log2 uk | ≤

C |t |
uk
≤

C |t |
2n .
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Hence, using Cauchy–Schwarz,∑
n≥0

∑
`:2n≤v`≤2n+1−1

∑
k:uk=v`

|ak ||ei tλk − ei t log uk | ≤ Ct
∑
n≥0

2−n
∑

k:2n≤uk≤2n+1−1

|ak |

≤ Ct
(∑

n≥0

( ∑
k:2n≤uk≤2n+1−1

|ak |

)2)1/2

,

which converges by our assumption. �

We shall now derive an almost everywhere convergence result concerning the
Fourier series of an almost periodic function in S2. We shall first recall known
results about norm convergence.

Let (λn)n≥1 be a (not necessarily increasing) sequence of positive real numbers.
As already mentioned (in the case of Dirichlet series), by [Wiener 1926], see also
[Tornehave 1954], if

(2-6)
∑
n≥0

( ∑
k≥1:n≤λk<n+1

|ak |

)2

<∞,

then
∑

n≥1aneiλn t is the Fourier series of an element of f ∈ S2.
On the other hand, if f ∈ S2 admits a sequence of positive real numbers (λn)n≥1

as frequencies and such that f̂ (λn)≥ 0 for every n ≥ 1, then, see [Tornehave 1954],

∑
n≥0

( ∑
k≥1:n≤λk<n+1

| f̂ (λk)|

)2

≤ C‖ f ‖2S2 .

Hence, (2-6) holds.
Condition (2-6) is thus optimal for deciding whether

∑
n≥1aneiλn t is the Fourier

series of an element of S2 or not. One can not however expect that it is always
necessary, so we provide a counterexample in Proposition 2.7 below.

Let f ∈S2 be such that3⊂[0,+∞) (that restriction may be obviously removed).
Assume that 3 is α-separated for some α > 0 and write 3 := {λ1 < λ2 · · · }. Then,

α

C

∑
n≥0

( ∑
k≥1:n≤λk<n+1

| f̂ (λk)|

)2

≤

∑
n≥1

| f̂ (λn)|
2
≤ ‖ f ‖2S2

≤ C
∑
n≥0

( ∑
k≥1:n≤λk<n+1

| f̂ (λk)|

)2

.

In particular, we have the following direct consequence of Theorem 2.2:
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Corollary 2.5. Let f ∈S2 be such that3⊂[0,+∞). Assume that3 is α-separated
for some α > 0. There exists C > 0, independent of f and α such that∥∥∥∥sup

N≥1

∣∣∣∣ N∑
n=1

f̂ (λn)eiλn ·

∣∣∣∣∥∥∥∥
S2
≤ C
‖ f ‖S2

α
.

Moreover, the series
∑

n≥1 f̂ (λn)eiλn · converges for λ-almost every t ∈ R.

We now give an example of Fourier series converging in S2 while (2-6) does not
hold. Let us first recall the following result of Halász; see [Queffélec 1984].

Lemma 2.6. There exists C > 0 such that for every sequence of iid Rademacher
variables (εn)n≥1

(2-7) E

(
sup
t∈R

∣∣∣∣ n∑
k=1

εkki t
∣∣∣∣)≤ C

n
log(n+ 1)

.

Proposition 2.7. Let (εn)n≥1 be iid Rademacher variables on (�,F,P). For P-
almost all ω ∈�,

∑
n≥1 εn(ω)ni t/n

√
log(n+ 1) converges in S2, while (2-4) is not

satisfied (with an = εn(ω)/n
√

log(n+ 1)).

Proof. For every n ≥ 1, every 2n
≤ k ≤ 2n+1 and every ω ∈�, we have∥∥∥∥ k∑

`=2n

ε`(ω)`
i t

`
√

log(`+ 1)

∥∥∥∥
S2
≤

k∑
`=2n

1

`
√

log(`+ 1)
≤

2
√

n
−→

n→+∞
0.

Hence, it suffices to prove that for P-almost every ω ∈�,( 2N∑
n=1

εn(ω)ni t

n
√

log(n+ 1)

)
N≥1

converges in S2.

Let Sn(t) :=
∑n

k=1εkki t (S0(t)= 0) and un :=
(
n
√

log(n+ 1)
)−1. We have

2N∑
n=1

εn(ω)ni t

n
√

log(n+ 1)
=

2N∑
n=1

(Sn(t)−Sn−1(t))un=

2N∑
n=1

Sn(t)(un−un+1)+S2N (t)u2N+1.

It follows from (2-7) that

E

(∑
n≥1

sup
t∈R

|Sn(t)(un − un+1)|

)
<∞, E

(∑
n≥1

sup
t∈R

|S2N (t)u2N+1|

)
<∞,

and the result follows. �
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3. Convergence almost everywhere of associated series of dilates

Theorem 3.1. Let (λn)n≥1 and (µn)n≥1 be nondecreasing sequences of real num-
bers greater than 1. Let (αn)n≥1 be a sequence of complex numbers such that

∑
n≥1

( ∑
k:n≤λk<n+1

|αk |

)2

<∞.

Let (βn)n≥1 ∈ `
1. Then D(t) :=

∑
n≥1βneiµn t defines a continuous function on R

(and in S2) and there exists a universal constant C > 0 such that

(3-1)
∥∥∥∥ sup

N≥1

∣∣∣∣ N∑
n=1

αn D(λnt)
∣∣∣∣∥∥∥∥

S2
≤ C

(∑
n≥1

|βn|

)(∑
n≥1

( ∑
k:n≤λk<n+1

|αk |

)2)1/2

.

Moreover, the series
∑

n≥1αn D(λnt) converges in S2 and for λ-a.e. t ∈ R.

Proof. Let x ∈ R. The fact that D is a continuous function in S2 follows easily
from the fact that (βn)n≥1 ∈ `

1. We also have, for every N ≥ 1,∣∣∣∣ N∑
n=1

αn D(λnt)
∣∣∣∣≤∑

k≥1

|βk |

∣∣∣∣ N∑
n=1

αnei tλnµk

∣∣∣∣.
By Theorem 2.4, we have∫ x+1

x
sup
N≥1

∣∣∣∣ N∑
n=1

αnei tλnµk

∣∣∣∣2 dt =
1
µk

∫ µk(x+1)

µk x
sup
N≥1

∣∣∣∣ N∑
n=1

αnei tλn

∣∣∣∣2 dt

≤
[µk] + 1
µk

∥∥∥∥sup
N≥1

∣∣∣∣ N∑
n=1

αnei tλn

∣∣∣∣∥∥∥∥2

S2
,

and (3-1) follows.
The convergence almost everywhere and in S2 follows by standard arguments. �

We also have the following obvious corollary of Theorem 2.4, whose proof is
left to the reader:

Proposition 3.2. Let (λn)n≥1 and (µn)n≥1 be nondecreasing sequences of real
numbers greater than 1. Let (βn)n≥1 be a sequence of complex numbers such that

∑
n≥1

( ∑
k:n≤µk<n+1

|βk |

)2

<∞.
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Let (αn)n≥1 ∈ `
1. Then, D(t) :=

∑
n≥1βneiµn t converges in S2 and there exists a

universal constant C > 0 such that

(3-2)
∥∥∥∥sup

N≥1

∣∣∣∣ N∑
n=1

αn D(λnt)
∣∣∣∣∥∥∥∥

S2
≤ C

(∑
n≥1

|αn|

)(∑
n≥1

( ∑
k:n≤µk<n+1

|βk |

)2)1/2

.

Moreover, the series
∑

n≥1αn D(λnt) converges in S2 and for λ-a.e. t ∈ R.

Theorem 3.3. Let (λn)n≥1 and (µn)n≥1 be nondecreasing sequences of real num-
bers greater than 1. Let 1 ≤ p, q ≤ 2 satisfy 1/p+ 1/q = 3

2 . There exists C > 0
such that for any sequences (αn)n≥1 and (βn)n≥1 of complex numbers such that

(3-3)
∑
n≥1

( ∑
k:n≤λk<n+1

|αk |

)p

<∞ and
∑
n≥1

( ∑
k:n≤µk<n+1

|βk |

)q

<∞,

we have

(3-4)
∥∥∥∥sup

N≥1

∣∣∣∣ N∑
n=1

αn D(λnt)
∣∣∣∣∥∥∥∥

S2

≤ C
(∑

n≥1

( ∑
k:n≤λk<n+1

|αk |

)p)1/p(∑
n≥1

( ∑
k:n≤µk<n+1

|βk |

)q)1/q

,

where D(t) :=
∑

n≥1βneiµn t is defined in S2. Moreover, the series
∑

n≥1αn D(λnt)
converges in S2 and for λ-a.e. t ∈ R.

Before doing the proof let us mention the following immediate corollaries. We
first apply Theorem 3.3 with the choice µn = log n, n ≥ 1 and λk = k, k ≥ 1.

Corollary 3.4. Assume that∑
k≥1

|αk |
p <∞ and

∑
n≥1

( ∑
k:2n≤k<2n+1

|βk |

)q

<∞,

for some 1≤ p, q ≤ 2 such that 1/p+ 1/q = 3
2 . Let D(t) :=

∑
n≥1βnni t. Then the

series
∑

k≥1αk D(kt) converges in S2 and for λ-a.e. t ∈ R.

Example 3.5. Let 1
2 <α≤1. Choose 1/α< p≤2 and q=2p/(3p−2) (1≤q<2).

Let D(t)=
∑

n≥1βnni t and assume that

(3-5)
∑
n≥1

( ∑
k:2n≤k<2n+1

|βk |

)q

<∞.

Then the series

(3-6)
∑
k≥1

D(kt)
kα
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converges almost everywhere. This extends to Dirichlet series Hartman and Wint-
ner’s result [1938] showing that the series 8α(x) =

∑
∞

k=1ψ(kx)/kα converges
almost everywhere. Here ψ(x) = x − [x] − 1

2 =
∑
∞

j=1sin 2π j x/j , and [x] is the
integer part of x . That result is also a special case of (3-6): take βn = 1/j if n = 2 j,
j ≥ 1 and βn = 0 elsewhere.

Remark 3.6. To our knowledge [Hartman and Wintner 1938] contains, among other
results on 8α, the first convergence result for the series of dilates

∑
∞

k=1αkψ(kx).

Then, we apply Theorem 3.3 with the choice µn = n, n ≥ 1 and λk = k, k ≥ 1.

Corollary 3.7. Assume that∑
k≥1

|αk |
p <∞ and

∑
j≥1

|bj |
q <∞

for some 1≤ p, q ≤ 2 such that 1/p+ 1/q = 3
2 . Let D(t)=

∑
`≥1b`ei`t. Then the

series
∑

k≥1αk D(kt) converges in S2 and for λ-a.e. t ∈ R.

Remark 3.8. Suppose that bj =O(1/jα) for some 1
2 < α ≤ 1. Assume that∑

k≥1

|αk |
p <∞,

for some 1≤ p<2/(3−2α). Then
∑

j≥1|bj |
q<∞ for q such that 1/p+1/q= 3

2 and
we have 1≤ p, q ≤ 2. We deduce from Corollary 3.7 that the series

∑
k≥1αk D(kt)

converges in S2 and for λ-a.e. t ∈R. When 1
2 <α < 1, the nearly optimal sufficient

condition
∑

k≥1 |ck |
2 exp{K (log k)1−α/(log log k)α}<∞ in which K = K (α) has

been recently established in [Aistleitner et al. 2015, Theorem 2]. See also [Weber
2016, Theorem 3.1] for conditions of individual type, i.e., depending on the support
of the coefficient sequence. When α= 1, the optimal sufficient coefficient condition,
namely that

∑
∞

k=1 |αk |
2(log log k)2+ε converges for some ε > 0 suffices for the

convergence almost everywhere, has been recently obtained by Lewko and Radziwiłł
[2017, Corollary 3].

These results are clearly better. However, we note that our results are, even in
the trigonometrical case, independent from these ones, and concern a larger class
of trigonometrical series D(t).

Proof of Theorem 3.3. Clearly, we only need to prove (3-4). Let (αn)n≥1 and
(βn)n≥1 be in `1(N), fixed for all the proof. Let D(t) :=

∑
n≥1βneiµn t. It is enough

to prove that for every N ≥ 1,∥∥∥∥ N
sup
m=1

∣∣∣∣ m∑
n=1

αnD(λnt)
∣∣∣∣∥∥∥∥

S2
≤C

(∑
n≥1

( ∑
k:n≤λk<n+1

|αk |

)p)1/p(∑
n≥1

( ∑
k:n≤µk<n+1

|βk |

)q)1/q

,

for a constant C > 0 not depending on N, (αn)n≥1 and (βn)n≥1.
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We do that by interpolating (3-1) and (3-2). Define Banach spaces as follows:

X1 :=

{
(an)n≥1 ∈ CN

: ‖(an)n≥1‖X1 :=

∑
n≥1

∑
k:n≤λk<n+1

|ak |<∞

}
,

X2 :=

{
(an)n≥1 ∈ CN

: ‖(an)n≥1‖X2 :=

(∑
n≥1

( ∑
k:n≤λk<n+1

|ak |

)2)1/2

<∞

}
,

Y1 :=

{
(bn)n≥1 ∈ CN

: ‖(bn)n≥1‖Y1 :=

∑
n≥1

∑
k:n≤µk<n+1

|bk |<∞

}
,

Y2 :=

{
(bn)n≥1 ∈ CN

: ‖(bn)n≥1‖Y1 :=

(∑
n≥1

( ∑
k:n≤µk<n+1

|bk |

)2)1/2

<∞

}
.

For every t ∈ R, let

J (t) :=min
{

j ∈ N : 1≤ j ≤ N ,
∣∣∣∣ j∑

n=1

αn D(λnt)
∣∣∣∣= N

sup
m=1

∣∣∣∣ m∑
n=1

αn D(λnt)
∣∣∣∣}.

Define a linear operator T on (X1+ X2)× (Y2+ Y1) by setting

T ((an)n≥1, (bn)n≥1) :=

N∑
k=1

1{k≤J (t)}ak

(∑
`≥1

b`eiλkµ`t
)
.

By Propositions 3.1 and 3.2, T is continuous from X1 × Y2 to S2 and from
X2× Y1 to S2.

It follows from paragraph 10.1 of [Calderón 1964] that for every s ∈ [0, 1] there
exists Cs such that, with their notation,

‖T ((an)n≥1, (bn)n≥1)‖S2 ≤ Cs‖(an)n≥1‖[X1,X2]s‖(bn)n≥1‖[Y2,Y1]s ,

where

‖(an)n≥1‖[X1,X2]s = inf{‖ f ‖F : f ∈ F, f (s)= (an)n≥1},

and F is the Banach space of continuous functions f from {z ∈C : 0≤Re z ≤ 1} to
X1+ X2, analytic on {z ∈ C : 0< Re z < 1} such that for every t ∈ R, f (i t) ∈ X1

and f (1+ i t) ∈ X2 with lim|t |→+∞ f (i t) = lim|t |→+∞ f (1+ i t) = 0, endowed
with the norm

‖ f ‖F :=max
(

sup
t∈R

‖ f (i t)‖X1, sup
t∈R

‖ f (1+ i t)‖X2

)
.

The norm ‖(bn)n≥1‖[Y2,Y1]s is defined similarly.
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We shall now give an upper bound for ‖(an)n≥1‖[X1,X2]s . By homogeneity, we
may assume that ∑

n≥1

( ∑
n≤λk<n+1

|ak |

)2/(2−s)

= 1.

Let ε > 0. Define an element fε of F by setting for every z ∈ C such that
0≤Re z≤ 1, fε(z)= (cn(z))n≥1 where, for every n, k ≥ 1 such that n≤ λk < n+1,

ck(z)= eε(z
2
−s2)ak

( ∑
n≤λ`<n+1

|a`|
)(2−z)/(2−s)−1

,

if
∑

n≤λ`<n+1 |a`| 6= 0 and ck(z)= 0 otherwise.
The introduction of ε here is a standard trick to ensure the assumptions

lim
|t |→+∞

fε(i t)= lim
|t |→+∞

fε(1+ i t)= 0.

Notice that fε(s)= (an)n≥1. For every t ∈ R,

‖ fε(i t)‖X1 ≤

∑
n≥1

( ∑
n≤λk<n+1

|ak |

) 2
(2−s)
= 1.

Similarly, for every t ∈ R,

‖ fε(1+ i t)‖X2 ≤ eε
∑
n≥1

( ∑
n≤λk<n+1

|ak |

) 2
(2−s)
= eε.

Letting ε→ 0, we infer that

‖(an)n≥1‖[X1,X2]s ≤ 1=
(∑

n≥1

( ∑
n≤λk<n+1

|ak |

) 2
(2−s)

)2−s
2
.

Similarly, one can prove that

‖(bn)n≥1‖[X1,X2]s ≤

(∑
n≥1

( ∑
n≤λk<n+1

|bk |

) 2
(1+s)

)1+s
2
.

Taking s = 2(1− 1/p) yields the desired result. �

4. A necessary condition for convergence almost everywhere

Hartman [1942] has proved the following result:

Theorem 4.1. Assume that

(4-1)
λk

λk−1
≥ q > 1, k ≥ 1.

Assume that the series
∑
∞

k=1akeiλk t converges for almost all real t . Then the series∑
∞

k=1 |ak |
2 converges.
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The proof is similar to Zygmund’s [1968, Proof of Lemma 6.5, Chapter V] (see
also p. 120–122 of the 1935 edition).

Remark 4.2. The converse of Theorem 4.1 is due to Kac [1941]. If
∑
∞

k=1 |ak |
2

converges, then the series
∑
∞

k=1akeiλk t with (λk)k≥1 verifying (4-1), converges for
almost all real t . Kac’s proof is a modification of Marcinkiewicz’s. See Remark 1.1.
In place of Fejér’s theorem, another summation method is used. See Theorem 13
and pages 84–85 in [Titchmarsh 1948], and Theorem 21 in [Hardy and Riesz 1915].

Theorem 4.1 can be extended in the following way:

Theorem 4.3. Let {λk, k ≥ 1} be a increasing sequence of positive reals satisfying
the condition

(4-2) M :=
∑

k 6=`, k′ 6=`′

(k,`)6=(k′,`′)

(1− |(λk − λ`)− (λk′ − λ`′)|)
2
+
<∞.

Assume that

(4-3) λ

{∑
k

akeiλk t converges
}
> 0.

Then the series
∑
∞

k=1 |ak |
2 converges.

Remark 4.4. By considering integers k such that n ≤ λk < n+ 1
2 , and next those

such that n+ 1
2 ≤ λk ≤ n+ 1, we observe that condition (4-2) implies that

sup
n

#{k : n ≤ λk < n+ 1}<∞.

We give an application. Recall that a Sidon sequence is a set of integers with the
property that the pairwise sums of elements are all distinct. As a corollary we get

Corollary 4.5. Let {λk, k ≥ 1} be a Sidon sequence. Assume that (4-3) is satisfied.
Then the series

∑
∞

k=1 |ak |
2 converges.

Remark 4.6. In contrast with Hadamard gap sequences, Sidon sequences may
grow at most polynomially. See [Ruzsa 2001] where it is for instance proved that
the sequence {n5

+ [ξn4
], n ≥ n0} is for some real number ξ ∈ [0, 1] and n0 large,

a Sidon sequence.

Proof of Corollary 4.5. Let (k, `) 6= (k ′, `′) with k 6= ` and k ′ 6= `′. As the equation
λk − λ` = λk′ − λ`′ means λk + λ`′ = λ`+ λk′ , the fact that {λk, k ≥ 1} is a Sidon
sequence implies that the only possible solutions are k = k ′, `′ = ` or k = `,
`′ = k ′. The last one is impossible by assumption, and the first would mean that
(k, `)= (k ′, `′) which is excluded. Consequently, λk − λ` 6= λk′ − λ`′ . Hence the
sum in (4-2) is always zero. �
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Remark 4.7. It follows from Hartman’s proof that under condition (4-1), the
sequence of differences λk − λ`, k 6= ` is a finite union of subsequences such
that the difference of any two numbers of the same subsequence exceeds 1. These
subsequences fulfill assumption (4-2) of Theorem 4.3, and thus Theorem 4.1 follows
from Theorem 4.3.

Theorem 4.3 is a consequence of the following general necessary condition for
almost everywhere convergence of series of functions.

Theorem 4.8. Let (X,B, τ ) be a probability space. Let {gk, k ≥ 1} ⊂ L4(τ ) be a
sequence of functions with ‖gk‖2,τ = 1, ‖gk‖4,τ ≤ K and satisfying the condition

(4-4) M :=
∑

k 6=`, k′ 6=`′

(k,`)6=(k′,`′)

|〈gk g`, gk′g`′〉τ |2 <∞.

Assume that

(4-5) τ

{∑
k

ak gk(t) converges
}
> 0.

Then the series
∑
∞

k=1 |ak |
2 converges.

Proof of Theorem 4.8. We use Hartman’s method and the below classical general-
ization of Bessel’s inequality.

Lemma 4.9 (Bellman–Boas inequality). Let x, y1, . . . , yn be elements of an inner
product space (H, 〈 · , · 〉). Then

n∑
i=1

|〈x, yi 〉|
2
≤ ‖x‖2

{
max

1≤i≤n
‖yi‖

2
+

( ∑
1≤i 6= j≤n

|〈yi , yj 〉|
2
)1/2}

.

See [Bellman 1944] for instance. As{
t :
∑

k

ak gk(t) converges
}
=

⋂
ε>0

⋃
V

⋂
u>v>V

{
t :
∣∣∣∣ u∑

k=v

ak gk(t)
∣∣∣∣≤ ε},

by assumption it follows that for any ε > 0, there exists an integer V such that if

A :=
⋂

u>v>V

{∣∣∣∣ u∑
k=v

ak gk(t)
∣∣∣∣≤ ε},

then

(4-6) τ(A) > 0.

Assume the series
∑

k≥1 |ak |
2 is divergent. We are going to prove that this will

contradict (4-6).
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By squaring out,

(4-7)
∫

A

∣∣∣∣ m∑
k=n

ak gk(t)
∣∣∣∣2τ(dt)= τ(A)

m∑
k=n

|ak |
2
+

m∑
k,`=n
k 6=`

aka`

∫
A

gk(t)g`(t)τ (dt).

By using the Cauchy–Schwarz inequality,∣∣∣∣ m∑
k,`=n
k 6=`

aka
∫̀

A
gk(t)g`(t)τ (dt)

∣∣∣∣≤( m∑
k,`=n
k 6=`

|ak |
2
|a`|2

)1/2( m∑
k,`=n
k 6=`

∣∣∣∣∫
A

gk(t)g`(t)τ (dt)
∣∣∣∣2)1/2

.

Applying Lemma 4.9 to the system of vectors of L2
τ (R), χ(A), gk(t)g`(t), n ≤

k, `≤ m gives, in view of the assumption made,
m∑

k,`=n
k 6=`

∣∣∣∣∫
A

gk(t)g`(t)τ (dt)
∣∣∣∣2 ≤ τ(A)2{K 2

+

( ∑
(k,`) 6=(k′,`′)
n≤k 6=`≤m

n≤k′ 6=`′≤m

|〈gk g`, gk′g`′〉τ |2
)1/2}

≤ τ(A)2{K 2
+M1/2

}.

Letting n,m tend to infinity, it follows that the series
∑

k 6=`

∣∣∫
Agk(t)g`(t)τ (dt)

∣∣2
converges. Consequently, for all m > n, n > N, N depending on A

m∑
k,`=n
k 6=`

∣∣∣∣∫
A

gk(t)g`(t)τ (dt)
∣∣∣∣2 ≤ τ(A)2/4.

There is no loss in assuming N > V, which we do. Therefore∣∣∣∣ m∑
k,`=n
k 6=`

aka`

∫
A

gk(t)g`(t)τ (dt)
∣∣∣∣≤ ( m∑

k,`=n
k 6=`

|ak |
2
|a`|2

)1/2(
τ(A)

2

)
.

This along with (4-7) implies

(4-8)
∫

A

∣∣∣∣ m∑
k=n

ak gk(t)
∣∣∣∣2τ(dt)≥

(
τ(A)

2

) m∑
k=n

|ak |
2,

for all m > n > N. We get

(4-9)
(
τ(A)

2

) m∑
k=n

|ak |
2
≤

∫
A

∣∣∣∣ m∑
k=n

ak gk(t)
∣∣∣∣2τ(dt)≤ ε2τ(A),

where for the last inequality we have used the fact N > V and the definition of A.
We are now free to let m tend to infinity in (4-9), which we do. We deduce that

necessarily τ(A)= 0, a contradiction with (4-6). This finishes the proof. �
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Proof of Theorem 4.3. Choose τ(dt) as the density function on the real line
associated to τ(t)= (1− cos t)/π t2. Then∫

R

τ(dt)= 1,
∫

R

ei xtτ(dt)= (1− |x |)+.

Since τ is absolutely continuous with respect to the Lebesgue measure, (4-3)
holds with τ in place of λ. Next choose gk(t)= eiλk t. We have

〈gk g`, gk′g`′〉τ = (1− |(λk − λ`)− (λk′ − λ`′)|)+.

Condition (4-4) is thus fulfilled. Theorem 4.8 applies and we deduce that the series∑
∞

k=1 |ak |
2 converges. �

Final note

While finishing this paper, we discovered that Theorem 2.4 was proved by Guniya
[1985] using a completely different method from ours. Guniya’s proof makes use
of Wiener’s result [1926] (previously mentioned) and does not seem to provide
directly a maximal inequality. Our proof is somewhat more elementary. Moreover
it allows one to recover Wiener’s result and provides at the same time a maximal
inequality. It seems that Guniya’s paper has been completely overlooked among
the mathematical community. We observe in particular that Theorem 2.4 notably
includes obviously Hedenmalm and Saksman’s result [2003] published nearly
twenty years after [Guniya 1985].

We now briefly explain Guniya’s approach (see Theorem 1.2, (8) and Lemmas
after and paragraph 2.10). The proof follows from the combination of several
different results proved in the paper, and is based on Riemann theory of trigonometric
series [Zygmund 1968, Chapter XVI-8]. Assume that the coefficients are positive.
Then the series

∑
n cneiλn x converges in S2 to some f . Let I, J be two intervals

with |I | < 2π , |J | = 2π and I 6⊆ J. Let F be represented by the term-by-term
integrated Fourier series of f , and let L be a bump function of class C5 equal to
1 on I and to 0 on J\I ′ where I ⊂ I ′ 6⊆ J. Then by a theorem due to Zygmund
[1968, Theorem 9.19], the partial sums of the Fourier series of f are uniformly
equiconvergent on I with the partial sum of a trigonometric series

∑
m ameimx. Next,

if FL admits a second order derivative in the sense of distributions, say g, then the
above trigonometric series is the one of g. And the a.e. convergence on I follows
from Carleson’s theorem. It remains to be proven that under condition (2-4), F has
indeed second order Schwarz derivatives, controlled by the L2 norm of f , which
should follow from Theorem 2.2 in [Guniya 1985].
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