
Pacific
Journal of
Mathematics

THE POSET OF RATIONAL CONES

JOSEPH GUBELADZE AND MATEUSZ MICHAŁEK

Volume 292 No. 1 January 2018



PACIFIC JOURNAL OF MATHEMATICS
Vol. 292, No. 1, 2018

dx.doi.org/10.2140/pjm.2018.292.103

THE POSET OF RATIONAL CONES

JOSEPH GUBELADZE AND MATEUSZ MICHAŁEK

We introduce a natural partial order on the set Cones(d) of rational cones in
Rd . The poset of normal polytopes, studied by Bruns and the authors (Discrete
Comput. Geom. 56:1 (2016), 181–215), embeds into Cones(d) via the homoge-
nization map. The order in Cones(d) is conjecturally the inclusion order. We
prove this for d =3 and show a stronger version of the connectivity of Cones(d)

for all d. Topological aspects of the conjecture are also discussed.

1. Introduction

Rational cones in Rd are important objects in toric algebraic geometry, combinatorial
commutative algebra, geometric combinatorics, integer programming [Beck and
Robins 2015; Bruns and Gubeladze 2009; Cox et al. 2011; Miller and Sturmfels
2005; Schrijver 1986]. The interaction of these convex objects with the integer
lattice Zd is governed by their Hilbert bases — the finite sets of indecomposable
elements, notoriously difficult to characterize. General results on Hilbert bases are
available only in low dimensions, e.g., see [Aguzzoli and Mundici 1994; Bouvier
and Gonzalez-Sprinberg 1995; Sebő 1990]. In higher dimensions there are mostly
counterexamples to conjectures, e.g., see [Bruns 2007; Bruns and Gubeladze 1999;
Bruns et al. 1999]. In this paper we introduce a partial order on the set of rational
cones in Rd. It is defined in terms of the additive generation of the sets of lattice
points in cones. The resulting poset Cones(d) is a structure in its own right, which
captures a global picture of the interaction of Zd with all cones at once. The
poset NPol(d − 1) of normal polytopes in Rd−1, introduced in [Bruns et al. 2016],
monotonically embeds into Cones(d) via the homogenization map. But the former
poset is much more difficult to analyze than Cones(d). In fact, there are maximal
and nontrivial minimal normal polytopes; at present even the presence of isolated
normal polytopes is not excluded [Bruns et al. 2016]. On the other extreme, we
conjecture that the order in Cones(d) is just the inclusion order (Conjecture 2.6).
We prove the 3-dimensional case of the conjecture (Theorem 3.2) and a stronger
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version of the connectivity of Cones(d) for all d: any two cones can be connected
by a sequence of O(d) many elementary extensions/descents, or O(d2) many such
moves if working with the full-dimensional cones (Theorem 4.1). In Section 5 we
consider topological consequences of Conjecture 2.6.

1A. Cones. We consider the real vector space Rd, consisting of d-columns, together
with the integer lattice Zd. The standard basis vectors will be denoted by e1, . . . , ed ,
the set of nonnegative reals will be denoted by R+, and the set of nonnegative
integers will be denoted by Z+.

For a subset X ⊂ Rd , its conical hull, i.e., the set of nonnegative linear combina-
tions of elements of X, is denoted by R+X. The linear span of X will be denoted
by RX. We also put L(X)= X ∩Zd.

By a cone C we always mean a pointed, rational, polyhedral cone, i.e., C =
R+x1 + · · · + R+xn for some x1, . . . , xn ∈ Zd and there is no nonzero element
x ∈ C with −x ∈ C . Let C ⊂ Rd be a nonzero cone. Then there exists an affine
hyperplane H, meeting C transversally, i.e., such that C ∩ H is a polytope of
dimension dim(C)− 1 [Bruns and Gubeladze 2009, Proposition 1.21]. The first
nonzero lattice point on each 1-dimensional face of C is called an extremal generator
of C . The additive submonoid L(C)⊂Zd has the smallest generating set, consisting
of indecomposable elements. It is called the Hilbert basis of C , denoted by Hilb(C).
The extremal generators of C belong to Hilb(C).

A d-cone C ⊂ Rd has a unique minimal representation as an intersection of
closed half-spaces C =

⋂n
j=1 H+j . The boundary hyperplanes H j ⊂ H+j intersect

C in its facets, i.e., the codimension 1 proper faces of C . Further, for each facet
F ⊂ C there exists a unique linear function htF : R

d
→ R which vanishes on F, is

nonnegative on C , and satisfies htF (Z
d)= Z.

A pair of cones (C, D) is a unimodular extension of cones if C is a facet of D,
the latter has exactly one extremal generator v not in C , and L(D)= L(C)+Z+v.

A cone C ⊂ Rd is called unimodular if Hilb(C) is a part of a basis of Zd.
If the extremal generators of a cone C are linearly independent, then C is said to

be simplicial.
For elements u1, . . . , ud ∈ Rd the matrix, whose i-th column is ui , will be

denoted by [u1| · · · |ud ]. Assume u1, . . . , ud are linearly independent and
C = R+u1+ · · ·+R+ud .

Then we put
par(u1, . . . , ud)= {λ1u1+ · · ·+ λdud | 0≤ λ1, . . . , λd < 1},

Lpar(u1, . . . , ud)= L(par(u1, . . . , ud)) \ {0},

vol(u1, . . . , ud)= vol
(
par(u1, . . . , ud)

)
= |det[u1| · · · |ud ]|,

µ(C)= vol(u1, . . . , ud) if the ui are primitive
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(where primitive means having coprime components).
A triangulation of a cone C into simplicial cones is called unimodular if the cones

in the triangulation are unimodular, and it is called Hilbert if the set of extremal
generators of the involved cones equals Hilb(C).

Proposition 1.1. (a) Let C ⊂ Rd be a nonzero cone and v ∈ L(C) be a nonzero
element in a 1- face of C. Then L(C)+ Zv = L(C0)+ Zv ∼= L(C0)× Zv for
some cone C0 ⊂ Rd with v /∈ C0.

(b) Let C ⊂ Rd be a nonzero cone and w ∈ L(C) be an element in the relative
interior of C. Then

L(C)+Zw = L(RC).

(c) Every nonzero cone has a unimodular triangulation.

(d) For every 2-cone C , its only Hilbert triangulation is unimodular.

(e) Every 3-dimensional cone has a unimodular Hilbert triangulation.

The parts (a), (b), (c), (d), are standard results on cones and all five parts are
proved, for instance, in [Bruns and Gubeladze 2009, Chapter 2]. The part (e)
is originally due to Sebő [1990] (whose argument is reproduced in [Bruns and
Gubeladze 2009, Theorem 2.78]). It was later rediscovered in the context of toric
geometry in [Aguzzoli and Mundici 1994; Bouvier and Gonzalez-Sprinberg 1995],
with important refinements. The existence of unimodular Hilbert triangulations
fails already in dimension 4 [Bouvier and Gonzalez-Sprinberg 1995].

For a poset (5,<), the geometric realization of its order (simplicial) complex
will be called the geometric realization of 5 and denoted by |5|. For generalities
on poset topology we refer the reader to [Wachs 2007], with the caution that our
posets are mostly infinite. But the “finite vs. infinite” dichotomy never plays a
role in our treatment. Section 1 in Quillen’s foundational work on higher algebraic
K -theory [Quillen 1973] remains an indispensable source for homotopy studies of
general posets (in fact, general categories).

1B. The poset of normal polytopes. A lattice polytope P ⊂ Rd (i.e., a convex
polytope with vertices in Zd) is normal if for every c ∈ N and every element
x ∈ L(cP) there exist x1, . . . , xc ∈ L(P), such that x = x1+ · · ·+ xc.

The order in the poset NPol(d) of normal polytopes in Rd, studied in [Bruns
et al. 2016], is generated by the following elementary relations: P < Q if P ⊂ Q
and #L(Q)= #L(P)+ 1.

The poset NPol(d) is known to have (nontrivial) minimal and maximal elements
in dimensions ≥ 4.

The homogenization map P 7→ C(P) := R+(P ×{1})⊂ Rd embeds the set of
lattice polytopes P ⊂ Rd−1 into that of cones C ⊂ Rd. Moreover, a lattice polytope
P is normal if and only if Hilb(C(P))= {(x, 1) | x ∈ L(P)}.
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For a lattice d-polytope P⊂Rd and a facet F⊂ P there exists a unique affine map
htF :R

d
→R with htF (P)⊂R+ and htF (Z

d)=Z. We have the following compatibil-
ity between the facet-height functions: the two maps htF ( · ), htC(F)( · , 1) :Rd

→R

are the same.
2. The poset Cones(d)

2A. Elementary extensions. For a natural number d we denote by Cones(d) the
set of cones C ⊂Rd, made into a poset as follows: C < D if and only if there exists
a sequence of cones of the form

(1)
C = C0 ⊂ · · · ⊂ Cn−1 ⊂ Cn = D,

L(Ci )= L(Ci−1)+Z+x, for some x ∈ Ci \Ci−1, i = 1, . . . , n.

When n = 1 we call C ⊂ D an elementary extension, or elementary descent if
read backwards. Here is an alternative characterization:

Lemma 2.1. Let C ⊂ Rd be a nonzero cone and v ∈ Zd be a primitive vector
with ±v /∈ C. Assume H ⊂ Rd

\ {0} is an affine hyperplane, meeting the cone
D = C +R+v transversally. Put v′ = R+v ∩ H. Then C ⊂ D is an elementary
extension in Cones(d) if and only if there exist unimodular cones U1, . . . ,Un ⊂ D,
satisfying the conditions

(i) v ∈Ui , i = 1, . . . , n,

(ii) D = C
⋃ (⋃n

i=1 Ui
)
,

(iii) {R+((Ui ∩ H)− v′)}ni=1 is a triangulation of the cone R+((D ∩ H)− v′).

Proof. The “if” part is obvious. For the “only if” part we use (a) and (c) of
Proposition 1.1 to fix a representation L(C)+Zv = L(D)+Zv = L(C0)+Zv =

L(C0)×Zv and a unimodular triangulation C0 =
⋃n

i=1 Di . Let X ⊂ C be a finite
subset, which maps bijectively to

⋃n
i=1 Hilb(Dk) under the projection C → C0,

induced by v 7→ 0. Let X i be the preimage of Hilb(Di ) in X. Then the cones
Ui = R+X i +R+v satisfy (i)–(iii). �

2B. Height 1 and Hilbert basis extensions. Cones(d) contains many elementary
extensions of two different types, making it essentially different from NPol(d).

Let C⊂Rd be a d-cone and v∈Zd with±v /∈C . Denote by F+(v) the set of facets
of C , visible from v, i.e., htF (v) < 0 for every F ∈ F+(v). Consider the visible part
of the boundary ∂C , i.e., C+(v)=

⋃
F+(v) F. Put D=C+R+v. There is a sequence

of rational numbers 0< λ1 < λ2 < . . . with λ1 = 1/(max(− htF (v) : F ∈ F+(v)))

and limk→∞ λk =∞, satisfying the conditions:

L(D \C)=
⋃∞

k=1
L(λkv+C+(v)) and L(λkv+C+(v)) 6=∅, k = 1, 2, . . . .

The equality λ1 = 1 is equivalent to the condition htF (v)=−1 for all F ∈ F+(v).
In this case we say that D is a height 1 extension of C . All height 1 extensions
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are elementary extensions of cones but the converse is not true [Bruns et al. 2016,
Theorem 4.3].

The second class of elementary extensions in Cones(d) are the extensions of
type C ⊂ D, where R+(Hilb(D) \ {v})⊂ C for an extremal generator v ∈ D. We
call this class the Hilbert basis extensions (or descents).

As an application of the two types of extensions, we have:

Lemma 2.2. For every natural number d ≥ 2,

(a) for every elementary extension of cones 0 6=C < D there exists a cone E , such
that C < E < D;

(b) Cones(d) has neither maximal nor minimal elements, other than the minimal
element 0.

Remark. We do not know whether 0 is the smallest element of Cones(d). If 0
were the smallest element, then the geometric realization of Cones(d) would be
contractible; see Section 5 for topological aspects of Cones(d).

Proof. (a) The general case easily reduces to the full-dimensional case and then
the claim follows from the observation that there is always a height 1 extension
C ⊂ E with E ( D. In fact, if {v} =Hilb(D) \C , then we can take E = C +R+w

where w ∈ L(λ1v+C+(v)) with w 6= v (notation as above). Obviously, E ⊂ D is
an elementary extension.

(b) One applies appropriate height 1 extensions to show that there are no maximal
elements, and Hilbert basis descents to show that there are no minimal elements in
Cones(d) \ {0}. �

We formally include the extensions of type 0⊂ C , dim C = 1, in both classes of
elementary extensions, discussed above.

Question 2.3. Do either the height 1 or Hilbert basis extensions generate the same
poset Cones(d)?

2C. Distinguished subposets. The subposet of Cones(d), consisting of the cones
in (Rd−1

×R>0)∪ {0}, will be denoted by Cones+(d). The homogenization em-
bedding NPol(d − 1)→ Cones+(d) is a monotonic map. However, the order in
NPol(d − 1) is weaker than the one induced from Cones(d):

Example 2.4. In [Bruns et al. 2016, Example 4.8] we have the polytope P ∈
NPol(3) with vertices (0, 0, 2), (0, 0, 1), (0, 1, 3), (1, 0, 0), (2, 1, 2), (1, 2, 1). The
polytope has two more lattice points: (1, 1, 2), (1, 1, 1). Removing either the first
or the second vertex and taking the convex hull of the other lattice points in P
yields a nonnormal polytope. However, the convex hull Q of the lattice points
in P with the exception of the first two vertices is normal. We have Q 6< P in
NPol(3). Yet, using polymake [Gawrilow and Joswig 1997], one quickly finds four
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Hilbert basis descents (requiring additional Hilbert basis elements at height two)
C(P) > C1 > C2 > C3 > C(Q).

For every integer h> 0 we consider the poset Cones(h)(d) of cones in Cones+(d),
satisfying Hilb(C) ⊂ Rd−1

× [0, h] and ordered as in (1) under the additional
requirement that the intermediate cones Ci are also from Cones(h)(d).

Lemma 2.5. For every natural d ≥ 1,

(a) Cones(1)(d) \ {0} = NPol(d − 1);

(b) Cones(1)(d)⊂ Cones(2)(d)⊂ · · · and
⋃
∞

h=0 Cones(h)(d)= Cones+(d);

(c) Pol(d − 1)⊂ Cones(d−2)(d), assuming d ≥ 3.

(Inclusions are those of sets, and may not represent subposets.)

Parts (a) and (b) are obvious; (c) is proved, for instance, in [Bruns and Gubeladze
2009, Theorem 2.52].

2D. The cone conjecture. Conjecture 2.6 is the maximal possible strengthening
of the absence of extremal elements in Cones(d):

Conjecture 2.6. For every d, the order in Cones(d) is the inclusion order.

The case d = 1 is obvious.
When d = 2, the general case reduces to a pair of cones C ⊂ D in R2, with

dim D = 2 and C a facet of D. Assume {v1, . . . , vn} = Hilb(D) and v1 ∈ C . Then,
by Proposition 1.1(d), we have the following height 1 extensions:

C < C +R+v2 < · · ·< C +R+v2+ · · ·+R+vn = D.

In Section 3 we give a proof for d = 3.
In dimension 4 we have the following computational evidence.
Assume C ⊂ Rd is a cone and v ∈ Zd with ±v /∈ C . We use the notation in

Section 2B. In particular, D = C +R+v. One introduces the bottom-up procedure
for constructing an ascending sequence of height 1 extensions, starting with the
cone C , as follows: one chooses a shortest vector v1 ∈ L(λ1v+C+(v)), repeats the
step for the pair C1⊂ D where C1=C+R+v1, and iterates the process. The height
1 extensions we obtain this way tend to widen the cone as much as possible at each
step, as measured by the increments of the Euclidean (d−1)-volume of the cross
sections with a prechosen affine hyperplane, transversally meeting the cone D.

A complementary approach employs Hilbert basis descents. The corresponding
top-down procedure finds a sequence D = D0 > D1 > · · · of Hilbert basis descents
of the form Di+1 = C + R+(Hilb(Di ) \ {vi }), at each step discarding a shortest
extremal generator vi ∈ Di \C .

Andreas Paffenholz implemented the bottom-up and top-down procedures in R4.
The computational evidence, based on many randomly generated cones C and
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vectors v, supports the expectation that there are no nonterminating processes of
either type, with the tendency of the bottom-up process to last longer than the
top-down one.

3. Cones in R3

Lemma 3.1. Let x, y ∈ par(u, v, w), and let u, v, w ∈ R3 be linearly independent
vectors. Then vol(u, x, y) < vol(u, v, w).

Proof. We can assume (u, v, w) = (e1, e2, e3). Let x = (x1, x2, x3) and y =
(y1, y2, y3). Then

vol(e1, x, y)=

∣∣∣∣∣det

(
1 0 0
x1 x2 x3
y1 y2 y3

)∣∣∣∣∣= |x2 y3− x3 y2| ≤ max
(
|x2 y3|, |x3 y2|

)
< 1. �

Theorem 3.2. The order in Cones(d) is the inclusion order for d = 3.

Proof. We first prove the following basic case: for any simplicial 3-cone D ⊂ R3

and any facet C ⊂ D we have C < D. This will be done by induction on µ(D)
(defined in the introduction).

The case µ(C)= µ(D) is obvious because D is a unimodular extension of C .
So we can assume µ(C) < µ(D), which is equivalent to Lpar(D) 6⊂ C .

Let v0, v1, w be the extremal generators of D with v0, v1 ∈ C . Denote by
v0, v1, v2, . . . , vk (k ≥ 2) the extremal generators of the cone

E = C +R+Lpar(D)⊂ R3.

We assume that the enumeration is done in the cyclic order, i.e., the cones

Ci = R+vi−1+R+vi ⊂ R3, i = 1, . . . , k, k+ 1 mod (k+ 1)

are the facets of E . (Here, C = C1.)
Because of the containment Hilb(D) \ {w} ⊆ E , we have E < D in the poset

Cones(3). Further, the cone E is triangulated by the cones

Di = R+v0+R+vi +R+vi+1, i = 1, . . . , k− 1.

By Lemma 3.1, we have the inequalities

µ(Di ) < µ(D), i = 2, . . . , k.

Then, by the induction hypothesis, we have C < D1 and

(Di−1 ∩ Di ) < Di , i = 2, . . . , k− 1.

By concatenating, we obtain the following chain in Cones(3):

C < D1 < D1 ∪ D2 < · · ·< D1 ∪ D2 ∪ · · · ∪ Dk−1 = E < D.

This completes the proof of the basic case.
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The general case easily reduces to the case of a pair of 3-cones C ( D with
D = C +R+v, to which we apply induction on the number of facets of C visible
from v. When this number is 1, the inequality C < D results from the basic case.
When the number of the visible facets is k ≥ 2 then there is an intermediate cone
C ( B ( D, satisfying the conditions

• B = C +R+w for some w;

• B has only one facet visible from v;

• there are exactly k− 1 facets of C , visible from w.

In fact, if C =
⋂l

j=1 H+j is the irreducible representation, where the indexing is in
the circular order and H1 ∩C, . . . , Hk ∩C ⊂ C are the facets visible from v, then
one can choose

B =
(⋂l

j=k
H+j

)⋂
D.

We are done because, by the induction hypothesis, C < B < D. �

4. Diameter

By the diameter of a subposet X⊂Cones(d), denoted D(X), we mean the supremum
of the lengths of the shortest sequences C0C1 · · ·Cn within X, connecting any two
elements C0,Cn of X, where every two consecutive cones form an elementary
extension or descent.

Consider the following subposets of Cones(d):

(i) Cones(d)o, consisting of the d-cones in Rd (all quantum jumps in NPol(d−1)
live here).

(ii) Unim(d), consisting of the unimodular cones in Rd .

(iii) Unim(d)o consisting of the unimodular d-cones in Rd.

The next theorem implies that Cones(d) and Cones(d)o are both connected.

Theorem 4.1. We have:

(a) D(Unim(d))= 2d for every d ∈ N.

(b) D(Unim(d)o)= O(d2).

(c) D(Cones(d))= O(d).

(d) D(Cones(d)o)= O(d2).

Proof. (a) Any unimodular cone can be reached from any other unimodular cone
by first removing the Hilbert basis elements of the latter, one by one, and then
adding those of the former, also one at a time.
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For the pairs of unimodular d-cones of type C and −C there is no shorter
connecting path. One should remark that this is not true for all pairs of unimodular
d-cones whose intersection is 0; an example when d = 2 is

R+e1+R+(e1+ e2) < R+(−e1+ e2)+R+e1 > R+(−e1+ e2)+R+e2.

(b) Let C =
∑d

i=1 Z+vi and D =
∑d

i=1 Z+wi for two bases {v1, . . . , vd} and
{w1, . . . , wd} of Zd. Put A=[v1| · · · |vd ] and B=[w1| · · · |wd ]. After renumbering
of the basis elements, we can assume det(A) = det(B) = 1. The special linear
group SLd(Z) is generated by the elementary matrices ea

i j , i.e., the matrices with
ones on the main diagonal, at most one nonzero off-diagonal entry a in the i j-spot,
and zeros elsewhere. Using the equalities (ea

i j )
−1
= e−a

i j , there is a representation
of the form Aea1

i1 j1 · · · e
ak
ik jk = B, where a1, . . . ak,∈ Z. By [Carter and Keller 1984],

one can choose k ≤ 36+ 1
2(3d2

− d). Consider the sequence of unimodular cones:

Ct = the cone spanned by the columns of Aea1
i1 j1 · · · e

at
it jt , 0≤ t ≤ k.

(In particular, C0 = C). Since the multiplications by elementary matrices from the
right corresponds to the elementary column transformations, for every 1 ≤ t ≤ k
the inequality at > 0 yields the elementary extension Ct < Ct−1 and the inequality
at < 0 yields the elementary descent Ct > Ct−1.

(c), (d) For d ≤ 1 there are connecting paths of length ≤ 2. So we assume d ≥ 2.
Pick C ∈ Cones(d). By taking unimodular extensions as needed, we can assume

dim C = d. We need at most 2d − 1 unimodular extensions to reach the full-
dimensional case. Consequently, the parts (c) and (d) follow from the parts (a)
and (b), respectively, once we show that a unimodular d-cone can be reached from
C in at most d − 1 elementary extensions/descents.

Pick arbitrarily a facet F⊂C and two elements y∈L(C\F), satisfying htF (y)=1,
and x ∈ L(int(F)), where int(F) is the relative interior of F. Consider the sequence
of cones

Ck = F +R+(y− kx), k = 0, 1, . . . .

We claim that C ⊂ Ck for all sufficiently large k.
Indeed, consider any extremal generator v of C . We have v = htF (v)y+ v′ for

some v′ ∈ Zd with HF (v
′)= 0. By Proposition 1.1(b), L(F)+Zx = L(RF). Hence

v′ =−sx + z for some z ∈ L(F) and an integer s ≥ 0. Consequently,

v = htF (v)
(

y−
⌈ s

htF (v)

⌉
x
)
+ htF (v)

(
1−

{ s
htF (v)

})
x + z ∈ Cds/(htF (v))e.

Pick k� 0 with C ⊂ Ck . Since Ck is a unimodular extension of F, we have the
elementary extension C < Ck in Cones(d).

Keeping R+(y− kx) as a 1-face, we may, inductively on dimension, transform
F to a unimodular d−1-cone using only elementary extensions and descents: one
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uses the fact that unimodular extensions of cones respect elementary extensions in
the previous dimension. In the end, starting from C , we have reached a unimodular
d-cone (in at most d − 1 steps). �

Remark 4.2. In the proofs of Theorem 4.1(a) and (c), one does not need to descend
from unimodular cones all the way to 0. The latter, not being in NPol(d−1), may not
be desirable. It is enough to descend to 1-dimensional cones and the same argument
as in the proof of Theorem 4.1(b) shows that for any pair of 1-cones in Rd there is
an upper bound on the number of connecting elementary extensions/descents: one
finds such extensions within the linear span of the pair of 1-cones. By avoiding 0
the diameter goes up by a constant, independent of d.

The proof of Theorem 4.1 does not imply that D(Cones+(d)) <∞.

5. The space of cones

Conjecture 2.6 has strong consequences for the geometric realization of Cones(d):

Theorem 5.1. Assume Conjecture 2.6 holds for a natural number d. Then:

(a) The spaces |Cones(d)|, |Cones+(d)|, and |Cones+(d) \ {0}| are contractible.

(b) |Cones(d) \ {0}| is a filtered union of spaces, each containing a (d−1)-sphere
as a strong deformation retract.

Proof. (a) The spaces |Cones(d)| and |Cones+(d)| are contractible because 0 is
the smallest element of Cones(d) and Cones+(d). The poset Cones+(d) \ {0} is
filtering, i.e., every finite subset has an upper bound. But the geometric realization
of a filtering poset is contractible [Quillen 1973, Section 1].

(b) Let Sd−1 be the unit (d−1)-sphere in Rd, centered at the origin. Then we
can think of the poset of Cones(d) \ {0} as the poset of intersections C ∩ Sd−1,
C ∈ Cones(d), ordered by inclusion. Abusing terminology, these intersections will
be also called polytopes.

For two polytopal subdivisions 51 and 52 of Sd−1 and a polytope P ⊂ Sd−1 we
write (i) 51 ≺52 if 52 is a subdivision of 51 and (ii) P ≺51 if P is subdivided
by polytopes in 51.

Fix a system of polytopal subdivisions {5i }
∞

i=1 of Sd−1, such that 5i ≺5i+1 for
all i and every polytope P ⊂ Sd−1 admits i with P ≺5i .

For every index i , the simplicial complex |5i | is a barycentric subdivision of 5i .
In particular, |5i | ∼= Sd−1.

Consider the following posets:

• 5̌i ={P ∈Cones(d)\{0} | P≺5i }, made into a poset by adding to the inclusion
order in 5i the new relations Q < P whenever P ∈ 5̌i \5i , Q ∈5i , Q ⊂ P ;
in particular, two different polytopes P and P ′ ∈ 5̌i \5i are not comparable.
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• The subposet 5i = {P ∈ Cones(d) \ {0} | P ≺5i } ⊂ Cones(d); it has more
relations than the poset 5̌i , supported by the same set of polytopes, since for
P and P ′ ∈ 5̌i \5i one has P < P ′ whenever P ⊂ P ′.

• The subposets 5i (P)= {Q | Q ∈5i , Q ⊂ P}∪ {P} ⊂ Cones(d) for P ≺5i .

The (geometric) simplicial complex |5̌i | is obtained from |5i | by changing
the contractible subcomplexes |5i (P)| to pyramids over them. Any two of these
pyramids either do not meet outside |5i | or overlap along a pyramid from the same
family. In particular, the subspace |5i | ⊂ |5̌i | is a strong deformation retract. Let
F : |5̌i | × [0, 1] → |5̌i | be a corresponding homotopy.

Consider an extension of F to a homotopy

G : |5i | × [0, 1] → |5i |,

satisfying the condition that for every t ∈ [0, 1] the map G t is injective on |5i |\|5̌i |

and is the identity on |5i |. In more detail, for every chain

P0 < · · ·< Pk < Pk+1 < · · ·< Pn, Pk ∈5i , Pk+1 ∈ 5̌i \5i ,

and every index k < l ≤ n, the l-subsimplex 4(P0, . . . , Pk, Pl) of the n-simplex
4(P0, . . . , Pn) is collapsed into the k-subsimplex 4(P0, . . . , Pk) by the homo-
topy G, while the rest of the n-simplex homeomorphically remains invariant. In
particular, G1(4(P1, . . . , Pn)) is an n-disc, attached to |5i | along the subdisc
4(P1, . . . , Pk). Then Im G1 consists of |5i | and the mentioned finitely many
attached discs, any two of which either do not meet outside |5i | or overlap along a
disc from the same family.

The claim now follows because |5i | is a strong deformation retract of Im G1. �

Remark. It is very likely that a more elaborate homotopy leads to a deformation
retraction of the total space |Cones(d) \ {0}| to a (d−1)-sphere.

By Lemma 2.5(c), we have the tower of spaces

|NPol(d − 1)| = |Cones(1)(d) \ {0}| ⊂ |Cones(2)(d) \ {0}| ⊂ · · · ,

which, in view of Theorem 5.1, is expected to trivialize in the limit. This observation
can lead to an insight into the more difficult space of normal polytopes if the
trivialization occurs in a controlled way, which is an interesting question in its own
right. In more detail, the group Affd−1(Z) of affine automorphisms of Zd−1 acts
compatibly on the whole tower of posets

Cones(1)(d) \ {0} ⊂ Cones(2)(d) \ {0} ⊂ Cones(3)(d) \ {0} ⊂ · · ·

via the embedding

Affd−1(Z)→ GLd(Z), (α|β) 7→

(
α β

0 1

)
, α ∈ GLd−1(Z), β ∈ Zd−1.
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As a result, the homology groups of all involved geometric realizations are
modules over the group ring Z[Affd−1(Z)].

Question 5.2. Are the relative homology groups

Hi
(
|Cones( j)(d) \ {0}|, |Cones( j−1)(d) \ {0}|,Z

)
finitely generated Z[Affd−1(Z)]-modules for all i and j?

The positive answer to this question for i = 0 (and all j), would imply that the
still elusive isolated elements in NPol(d − 1) form a highly structured family: for
every j, only finitely many such isolated elements (up to unimodular equivalence)
cease to be isolated when one passes from Cones( j−1)(d) \ {0} to Cones( j)(d) \ {0},
and all isolated elements are taken out as j→∞.
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