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DUAL MEAN MINKOWSKI MEASURES
AND THE GRÜNBAUM CONJECTURE

FOR AFFINE DIAMETERS

QI GUO AND GABOR TOTH

For a convex body K in a Euclidean vector space X of dimension n (≥ 2),
we define two subarithmetic monotonic sequences {σK,k}k≥1 and {σ o

K,k}k≥1

of functions on the interior of K . The k-th members are “mean Minkowski
measures in dimension k” which are pointwise dual: σ o

K,k(z) = σK z,k(z),
where z ∈ int K , and K z is the dual (polar) of K with respect to z. They are
measures of (anti-)symmetry of K in the following sense:

1≤ σK,k(z), σ o
K,k(z)≤

k+ 1
2

.

The lower bound is attained if and only if K has a k-dimensional simplicial
slice or simplicial projection. The upper bound is attained if and only if K
is symmetric with respect to z. In 1953 Klee showed that the lower bound
m∗K > n− 1 on the Minkowski measure of K implies that there are n+ 1
affine diameters meeting at a critical point z∗ ∈ K . In 1963 Grünbaum
conjectured the existence of such a point in the interior of any convex body
(without any conditions). While this conjecture remains open (and difficult),
as a byproduct of our study of the dual mean Minkowski measures, we show
that n

m∗K + 1
≤ σ o

K,n−1(z
∗)

always holds, and for sharp inequality Grünbaum’s conjecture is valid.

1. Preliminaries and statement of results

Let X be an n-dimensional Euclidean vector space (n ≥ 2) with scalar product
〈 · , · 〉 and distance function d. We consider a convex body K ⊂ X , a compact
convex set in X with nonempty interior. Let ∂K denote the boundary of K . Given
an interior point z ∈ int K we consider all the chords of K passing through z. For
x ∈ ∂K , let λK (x, z) denote the ratio into which z divides the chord of K starting
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at x , passing through z, and ending up at the opposite xo
∈ ∂K of x (with respect

to z). This defines the distortion function λK : ∂K × int K → R:

λK (x, z)=
d(x, z)
d(xo, z)

, x ∈ ∂K , z ∈ int K .

For the involution of ∂K given by x 7→ xo (with (xo)o = x), we have λK (xo, z)=
1/λK (x, z), x ∈ ∂K .

The (maximum) Minkowski ratio of K at z is defined as

mK (z)= sup
x∈∂K

λK (x, z)≥ 1.

(Due to compactness of K and continuity of the distortion function λK [Toth 2006,
Lemma 1], the supremum is attained. This is also the case for all infima and suprema
that we encounter in this paper.)

Let δK denote the (compact) space of all hyperplanes supporting K . (Associating
to each H∈ δK the unit normal that points inward K , say, gives rise to a topological
equivalence of δK and the unit sphere S ⊂ X .) For H ∈ δK , we define the ratio
ρK (H, z) = d(H, z)/d(Ho, z), where Ho

∈ δK is the (unique) parallel opposite
of H such that K is between H and Ho. This gives rise to the function ρK :

δK × int K → R. For the involution of δK given by H 7→Ho, H ∈ δK , we have
ρK (Ho, z)= 1/ρK (H, z), H ∈ δK .

It is well known that

(1) mK (z)= sup
x∈∂K

λK (x, z)= sup
H∈δK

ρK (H, z), z ∈ int K .

(See [Grünbaum 1963]. It is customary to define ρK (H, z) for a hyperplane H
containing z as the ratio ≥ 1 that H divides the distance between the two supporting
hyperplanes H′,H′′ ∈ δK that are parallel to H. In our study we need more control
of the choice of the supporting hyperplane, henceforth we altered this definition
accordingly. Since we are taking suprema these two definitions are equivalent.)

A technically more convenient reformulation of this second concept is as follows.
Let aff= aff(X ) denote the (n+ 1)-dimensional vector space of affine functionals
f : X → R. We call f ∈ aff normalized for K if f (K ) = [0, 1], that is, the zero
sets H= {u | f (u)= 0} and Ho

= {u | 1− f (u)= 0} are two parallel hyperplanes
supporting and enclosing K . We let affK ⊂ aff denote the (compact) subspace of
affine functionals normalized for K . (Associating to each f ∈ affK the single zero
set H as above gives rise to a topological equivalence of affK and δK . Indeed, any
H ∈ δK and its opposite Ho uniquely define a normalized affine functional with
the respective zero sets as above.) Note that affK has the obvious involution given
by f 7→ 1− f , f ∈ affK .
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Using the notations above, (1) gives

(2) inf
f ∈affK

f (z)= inf
f ∈affK

(1− f (z))=
1

supH∈δK ρK (H, z)+ 1
=

1
mK (z)+ 1

,

z ∈ int K .

The two aspects of the Minkowski ratio above can be interpreted in terms of
duality between the convex body K and its dual (also called polar) K z with respect
to the given interior point z ∈ int K . (For the definition of the dual and its properties,
see the next section. Note that when dealing with duality we will frequently use the
bipolar theorem (K z)z = K without explicit mention; [Eggleston 1958, Chapter
1.9] or [Schneider 2014, Theorem 1.6.1].)

First, as a technical tool, we will introduce and study the “musical equivalencies”

[= [K ,z : ∂K → affK z and ]= ]K ,z : affK → ∂K z.

(For simplicity, we will suppress the subscripts whenever no confusion arises. In
Riemannian geometry the introduction of a Riemannian metric on a manifold gives
rise to “musical isomorphisms” between the tangent bundle and its dual. Due to
the descriptive nature of this concept and analogy we took the liberty of borrowing
this term for our setting.) The musical equivalencies satisfy

(3) (xo)[ = 1− x[ and ( f ])o = (1− f )], x ∈ ∂K , f ∈ aff K .

In addition, as the name suggests, they are inverses of each other:

(4) ]K z,z ◦ [K ,z = id∂K and [K z,z ◦ ]K ,z = idaffK .

These formulas (applied to the dual pair K and K z) imply that the musical equiva-
lencies are actually homeomorphisms of the respective spaces.

The following formulas show that the two aspects of Minkowski ratios are dual
constructions applied to K and its dual K z:

(5) x[(z)=
1

λK (x, z)+ 1
, x ∈ ∂K , z ∈ int K ,

and

(6) f (z)=
1

λK z ( f ], z)+ 1
, f ∈ affK , z ∈ int K .

Taking the infima on the respective sets in (5)–(6) and using (2), we obtain

inf
x∈∂K

x[(z)=
1

mK (z)+ 1
= inf

f ∈affK
f (z)=

1
mK z (z)+ 1

, z ∈ int K .

This gives

(7) mK (z)=mK z (z), z ∈ int K .
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The Minkowski measure of K is defined as

m∗K = inf
z∈int K

m(z).

The set of interior points where this infimum is attained is called the critical set

(8) K ∗ = {z∗ ∈ int K |mK (z∗)=m∗K }.

The critical set K ∗ ⊂ K is compact and convex, and we have Klee’s inequality

(1≤) m∗K + dim K ∗ ≤ n

improving the classical Minkowski–Radon inequality (in which the dimension of
the critical set is absent). (See [Klee 1953].) Clearly, m∗K = 1 if and only if K is
symmetric with respect to then unique regular point. It is also straightforward to
show that the upper bound is attained for simplices. Conversely, Minkowski and
Radon also proved that m∗K = n implies that K is a simplex.

For z∗ ∈ K ∗ critical, by (7), we have

m∗K =mK (z∗)=mK z∗ (z∗)≥m∗K z∗ .

Whether equality holds, that is, whether z∗ ∈ K ∗ is also a critical point of the dual
K z∗, seems to be a difficult problem in general.

Recall that a chord [x, xo
] of K is an affine diameter if there are parallel sup-

porting hyperplanes H and Ho of K at the endpoints of the chord, that is x ∈ H
and xo

∈Ho. (For a general survey on affine diameters and related problems, see
[Soltan 2005; Soltan and Nguyên 1988].) As discussed above, we describe these
hyperplanes as the zero sets of a normalized affine functional f ∈ affK , that is we
have H= {u ∈ X | f (u)= 0} and Ho

= {u ∈ X | 1− f (u)= 0}. Under the musical
equivalencies, affine diameters of K correspond to affine diameters of K z in the
sense that if [x, xo

] is an affine diameter of K with parallel supporting hyperplanes
given by f ∈ affK then [ f ], ( f ])o] = [ f ], (1− f )]] is an affine diameter of K z with
parallel supporting hyperplanes given by x[ ∈ affK z . (For the proof, see Section 2.)

We now introduce the sequence {σK ,k}k≥1 of mean Minkowski measures of K .
(We give here a concise summary; for details, see [Toth 2004; 2006].) The k-th
measure σK ,k : int K→R, k≥1, is a function on the interior of K defined as follows.
First, a (point) k-configuration of K with respect to z is a multiset {x0, . . . , xk}⊂ ∂K
(with repetition allowed) such that the convex hull [x0, . . . , xk] contains z. (We use
square brackets to indicate convex hull rather than “conv”.) With this we define

(9) σK ,k(z)= inf
{x0,...,xk}∈CK ,k(z)

k∑
i=0

1
λK (xi , z)+ 1

, z ∈ int K ,

where CK ,k(z) denotes the set of all k-configurations of K (with respect to z).
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Algebraically, σK ,k is a “k-average” of the rescaled distortion, and, as we will
see below, geometrically σK ,k(z) measures how far the k-dimensional slices of K
across z are from a k-simplex.

A k-configuration {x0, . . . , xk} ∈ CK ,k(z) at which the infimum in (9) is attained
is called minimizing, or simply minimal. Since CK ,k(z) inherits a compact topology
from that of ∂K and the distortion is continuous, minimal configurations always
exist. (As examples show, they are by no means unique.)

For k = 1, a 1-configuration of z is an opposite pair of points {x0, x1} ⊂ ∂K ,
x1 = xo

0 . Since λK (xo
0 , z)= 1/λK (x0, z), we have σK ,1(z)= 1, z ∈ int K .

Since a (minimal) k-configuration can always be extended to a (k+l)-configuration
by adding l copies of a boundary point at which the distortion λK ( · , z) attains its
maximum mK (z), we have subarithmeticity:

(10) σK ,k+l(z)≤ σK ,k(z)+
l

mK (z)+ 1
, z ∈ int K , k, l ≥ 1.

By Carathéodory’s theorem, for k > n, a k-configuration always contains an
n-configuration. In addition, any subconfiguration of a minimal configuration
is minimal, and, at the complementary configuration points, the distortion λK ( · , z)
attains its maximum mK (z). We see that the sequence {σK ,k(z)}k≥1 is arithmetic
with difference 1/(mK (z)+ 1) from the n-th term onwards.

For 1≤ k ≤ n, we have

(11) σK ,k(z)= inf
z∈E⊂X ,dim E=k

σK∩E,k(z), z ∈ int K ,

where the infimum is over affine subspaces E ⊂ X of dimension k which contain z.
This holds because the affine span of any k-configuration {x0, . . . , xk} ∈ CK ,k(z)
is contained in an affine subspace E (containing z) of dimension k; therefore
the infimum in (9) can first be taken for configurations that are contained in a
specific E , yielding σK∩E,k(z), and then for all k-dimensional affine subspaces E
(which contain z) as in (11).

The mean Minkowski measures are measures of symmetry (or asymmetry for
some authors) in the following sense:

(12) 1≤ σK ,k(z)≤
k+ 1

2
, z ∈ int K .

(For measures of symmetry in general, see the seminal work of Grünbaum [1963].)
Assuming k ≥ 2, the upper bound is attained if and only if K is symmetric with
respect to z. For the lower bound, if, for some k ≥ 1, σK ,k(z)= 1 at z ∈ int K then
k ≤ n, and K has a k-dimensional simplicial intersection across z, that is there
exists a k-dimensional affine subspace E ⊂ X such that K ∩ E is a k-simplex (and
consequently σK ,k = 1 identically on K ∩ E).
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The functions σK ,k : int K → R, k ≥ 1, are continuous on int K and extend
continuously to ∂K as

(13) lim
d(z,∂K )→0

σK ,k(z)= 1.

The limiting behavior in (13) follows from subarithmeticity in (10) (k = 1 and
l = k− 1 and σK ,1(z)= 1), and the lower estimate in (12). (For a different proof,
see Theorem D/(b) in [Toth 2004].)

The sequence {σK ,k(z)}k≥1 is superadditive:

(14) σK ,k+l(z)− σK ,k(z)≥ σK ,l(z)− σK ,1(z), z ∈ int K , k, l ≥ 1.

In particular (l = 1), the sequence {σK ,k(z)}k≥1 is monotonic: σK ,k(z)≤ σK ,k+1(z),
k ≥ 1.

Finally, note the obvious lower bound

(15)
k+ 1

mK (z)+ 1
≤ σK ,k(z), z ∈ int K , k ≥ 1.

The main technical tool of the present paper is the “dual construction”. Let k ≥ 1.
First, a dual (or supporting) k-configuration is a multiset { f0, . . . , fn} ⊂ affK

(repetition allowed) such that the intersection

(16)
k⋂

i=0

{u ∈ X | fi (u)≤ 0} =∅.

With this, the k-th dual mean Minkowski measure σ o
K ,k : int K → R is defined as

(17) σ o
K ,k(z)= inf

{ f0,..., fk}∈C
o
K ,k

k∑
i=0

fi (z), z ∈ int K ,

where Co
K ,k denotes the set of all dual k-configurations of z.

The dual mean Minkowski measures have been introduced in [Guo and Toth
2016] along with detailed proofs of their arithmetic properties and extrema.

A dual k-configuration { f0, . . . , fk} ∈ Co
K ,k at which the infimum in (17) is

attained is called minimizing or minimal for short. Since Co
K ,k(z) inherits a com-

pact topology from that of δK and the sum in (17) is continuous with respect to
( f0, . . . , fk) ∈ (affK )

k+1, minimal configurations always exist.
For k = 1, a dual 1-configuration of any z ∈ int K is an opposite pair of affine

functionals { f0, f1} ⊂ affK , f1 = 1− f0, and we have σ o
K ,1 = 1 identically on int K .

Note, by (2), the obvious lower bound

(18)
k+ 1

mK (z)+ 1
≤ σ o

K ,k(z), z ∈ int K , k ≥ 1.
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The first and most obvious property of the dual mean Minkowski measures is
that, being infima of affine functions, σ o

K ,k : int K → R, k ≥ 1, are automatically
concave functions. This is in striking contrast with the mean Minkowski measures
σK ,k : int K → R, k ≥ 1 which, albeit concave in dimension n = 2 (Theorem E in
[Toth 2006]), for n ≥ 3, they, in general, fail to satisfy any concavity properties.
The following example illustrates this point.

Example. Let K be an n-cube, n ≥ 3. Then the function σK ,n−1 is identically 1 on
the complement of the (open) cross-polytope K0 inscribed in K (since the vertex
figures provide n− 1 dimensional simplicial intersections), but in the interior of
K0 we have σK ,n−1 > 1. Thus, σK ,n−1 is not concave. A somewhat more involved
argument shows that σK ,n is also nonconcave. (For a much more general result, see
[Toth 2009, Theorem D].) As a byproduct, we see that, for the n-cube K , n ≥ 3,
σK ,n and σ o

K ,n are different functions.

The following pointwise duality is the cornerstone of our study:

Theorem 1. Let K ⊂ X be a convex body, and z ∈ int K . For k ≥ 1, we have

(19) σ o
K ,k(z)= σK z,k(z),

where K z is the dual of K with respect to z.

Remark. It is important to note that on the right-hand side of (19) the mean
Minkowski measure has a double dependency on the point z; not only in the
argument but also in forming the dual K z . For this reason duality can only be used
pointwise.

The crux of the proof of Theorem 1 (Section 3) is the equivalence

(20) { f0, . . . , fk} ∈ C
o
K ,k ⇐⇒ { f ]0 , . . . , f ]k } ∈ CK z,k(z).

As a byproduct of the proof, it will also follow that, under this equivalence, minimal
configurations correspond to each other.

Pointwise duality allows the properties of the mean Minkowski measures to carry
over to the dual. Replacing K with K z in (10) and using (7) and (19), we have
subarithmeticity:

(21) σ o
K ,k+l(z)≤ σ

o
K ,k(z)+

l
mK (z)+ 1

, z ∈ int K , k, l ≥ 1.

In addition, the sequence {σ o
K ,k(z)}k≥1 is arithmetic with difference 1/(mK (z)+ 1)

from the n-th term onwards.

Remark. It is worth noting that the direct proof of arithmeticity (without the
use of duality) beyond the dimension is an application of (the contrapositive of)
Helly’s theorem (instead of Carathéodory’s): For k > n, any dual k-configuration
(characterized by (16)) contains an n-configuration.
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To state the dual version of (11), for 1 ≤ k ≤ n, we denote by Pk =PX ,k the
space of all orthogonal projections 5 :X→X onto k-dimensional affine subspaces
5(X )= E ⊂ X . We then have

(22) σ o
K ,k(z)= inf

5∈Pk
σ o
5(K ),k(5(z)), z ∈ int K .

(In the infimum 5(z) can be replaced by z if we require z ∈5(X )= E .)
By duality, the bounds in (12) stay the same for the dual mean Minkowski

measures. To characterize the convex bodies for which the lower bound is attained
is somewhat more complex (to be expounded in Section 3). We summarize these
concisely in the following:

Theorem 2. Let K ⊂ X be a convex body. For k ≥ 1, we have

(23) 1≤ σ o
K ,k(z)≤

k+ 1
2

, z ∈ int K .

Assuming k ≥ 2, the upper bound in (23) is attained if and only if K is symmetric
with respect to z. If , for some k ≥ 1, σ o

K ,k(z) = 1 at z ∈ int K then σ o
K ,k = 1

identically on int K ; we have k ≤ n, and K has an orthogonal projection to a
k-simplex.

The functions σ o
K ,k : int K→R, k≥ 1, are continuous on int K . As in the nondual

case, by the lower bound in (23) along with subarithmeticity (k = 1 and l = k− 1
in (21) with σ o

K ,1 = 1), we have continuity up to the boundary via

(24) lim
d(z,∂K )→0

σ o
K ,k(z)= 1.

Example. Let K be a tetrahedron (n= 3) truncated near all four vertices (by vertex
figures, say). Then σK ,2 = 1 identically as K has triangular intersections through
any of its interior points. On the other hand, σ o

K ,2 > 1 everywhere since K has no
triangular projection. We see once again that, in general, the function σK ,k and its
dual σ o

K ,k are different.

Next, again by duality, we note superadditivity

σ o
K ,k+l(z)− σ

o
K ,k(z)≥ σ

o
K ,l(z)− σ

o
K ,1(z), z ∈ int K , k, l ≥ 1,

and, as a consequence, monotonicity: σ o
K ,k(z)≤ σ

o
K ,k+1(z), k ≥ 1.

Most of the properties of the dual mean Minkowski measures discussed above are
consequences of the pointwise duality asserted by Theorem 2. They have, however,
additional and more refined properties showing that, as measures, they are better
adapted convex bodies than their nondual counterparts. Our next result asserts the
striking fact that the n-th dual mean Minkowski measure can be explicitly calculated
at the critical points of a convex body.
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Theorem 3. Let K ⊂ X be a convex body and K ∗ ⊂ K its critical set. For any
critical point z∗ ∈ K ∗, we have

(25) σ o
K ,n(z

∗)=
n+ 1
m∗K + 1

.

The proof of Theorem 3 (Section 3) relies heavily on Klee’s delicate analysis of
the critical set and the proof of his improved Minkowski–Radon inequality.

Remark. It is natural to ask if (25) holds for the n-th (nondual) mean Minkowski
measure σK ,n . While this remains unsolved, it seems to depend on whether a critical
point z∗ ∈ K ∗ is also a critical point for the dual (K )z

∗

or not. For the class of
convex bodies of constant width the answer is affirmative as follows. (For a general
reference on convex bodies of constant width, see [Chakerian and Groemer 1983].)
For a convex body K of constant width d , the critical set K ∗ is a singleton, and the
unique critical point z∗ is the common center of the circumcircle SRK (z

∗) and the
incircle SrK (z

∗) with circumradius RK and inradius rK . The latter can be expressed
in terms of the Minkowski measure as

RK =
m∗K

m∗K + 1
d and rK =

1
m∗K + 1

d.

In particular, we have RK + rK = d and

m∗K =
RK

rK
.

(For these results, see [Jin and Guo 2012], and (for some) also [Bonnesen and
Fenchel 1934, §63] and [Eggleston 1958, Theorem 53 and its corollary, p. 125].)
Another classical fact is that z∗ ∈ [∂K ∩ SRK (z

∗)], so that, by Carathéodory’s
theorem, z∗ is in the convex hull of at most n + 1 boundary points of K on the
circumcircle SRK (z

∗). It follows that the circumcircle contains an n-configuration
of z∗. Thus, for a convex body K of constant width, equality holds in (25) for the
(nondual) mean Minkowski measure σK ,n .

For k = n, an n-configuration {x0, . . . , xn} ∈ CK ,n(z), z ∈ int K , is called simpli-
cial if [x0, . . . , xn] is an n-simplex with z is in its interior. We let 1K (z)⊂ CK ,n(z)
denote the (noncompact) space of all simplicial configurations. (The concept of
simplicial k-configurations, 1≤ k ≤ n, can be defined analogously using relative in-
teriors, but we will not need this here.) In (9) the infimum can be restricted to1K (z),
but a minimizing sequence of simplicial configurations may not (sub)converge. If
degeneracy at the infima does not occur, that is all minimal n-configurations are
simplicial then we call z ∈ int K a regular point. The set of regular points is denoted
by RK ⊂ int K .
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We now turn to the dual construction (Section 4). A dual n-configuration
{ f0, . . . , fn} ∈ C

o
K ,n(z) is called simplicial if the intersection

n⋂
i=0

{u ∈ X | fi (u)≥ 0}

is an n-simplex. Using musical equivalences, this is equivalent to { f ]0 , . . . , f ]n } ∈
CK z,n(z) being simplicial. We let 1o

K (z)⊂ Co
K ,n denote the space of all simplicial

dual configurations. As before, in (17) the infimum can be restricted to 1o
K (z), but

a minimizing sequence of simplicial dual configurations may not (sub)converge.
If all minimal dual n-configurations are simplicial then we call z ∈ int K a dual
regular point. The set of dual regular points is denoted by Ro

K ⊂ int K .
The concept of regularity meshes well with duality, and Theorem 2 gives

(26) z ∈Ro
K ⇐⇒ z ∈RK z , z ∈ int K .

The significance of these concepts lie in the fact that at any regular or dual regular
points n+1 affine diameters meet. This is closely related to Grünbaum’s conjecture:
Any convex body K has an interior point z at which n+ 1 affine diameters meet.
(See [Grünbaum 1963, 6.4.3, p. 254].)

A study of subconvergence of minimizing sequences then gives the following
consequence of Theorem 3:

Theorem 4. Let z∗ ∈ K ∗ ⊂ K be as in Theorem 3. Then we have

(27)
n

m∗K + 1
≤ σ o

K ,n−1(z
∗).

If strict inequality holds then z∗ ∈Ro
K and the Grünbaum conjecture is valid for K :

There are n+ 1 affine diameters that meet at z∗.

Remarks.

(A) Klee [1953] proved Grünbaum’s conjecture under the condition mK (z∗)>n−1.
This is much more restrictive than (27) since σK ,n−1(z∗) ≥ 1 automatically
holds.

(B) The geometric interpretation of the right-hand side in (27) follows from (22):
σ o

K ,n−1(z
∗) is the infimum of σ o

5(K ),n−1(5(z
∗)) for all projections5∈PK ,n−1

of K to hyperplanes in X .

(C) Equality holds in (27) if K is symmetric (necessarily with center z∗). In this
case the Grünbaum conjecture obviously holds.

(D) Let K be a convex body of constant width. By the remark after Theorem 3,
Theorem 4 holds for the (nondual) mean Minkowski measure. Whether the
respective inequality is strict or not depends on the (unique) critical point
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z∗ ∈ K ∗ being regular or not. This, in turn, depends on whether z∗ is in the
convex hull of boundary points of K contained in a (proper) great subsphere of
the circumsphere SRK (z

∗). Note that the construction of raising the dimension
for convex bodies of constant width shows that nonregular points can well
occur; see [Lachand-Robert and Oudet 2007, Theorem 6].

Example. Let K = {(a, b) ∈ R2
| a2
+ b2

≤ 1, b ≥ 0} be the unit half-disk. A
simple computation shows that mK attains its minimum at the (unique) critical point
z∗ = (0,

√
2− 1). (See also [Hammer 1951].) We thus have m∗K =

√
2, and, by

Theorem 3, σ o
K ,2(z

∗)= 3/(
√

2+ 1). Since σ o
K ,1 = 1, in (27) strict inequality holds,

in particular, z∗ ∈Ro
K . (Note that the centroid g(K )= (0, 4/3π) of K is different

form z∗.) We claim that Ro
K = int1, where 1= [x0, x−, x+] is the triangle with

vertices x0 = (0, 1) and x± = (±1, 0). Given z = (a, b) ∈ int K there may be at
most three affine diameters passing through (a, b), those that also pass through x0,
x−, and x+. This immediately gives Ro

K ⊂ int1. For equality, let z= (a, b)∈ int1
with a ≥ 0 (by symmetry). Define f0 ∈ affK by its zero set the first axis, and let
f± ∈ affK have its zero set the tangent line to the unit circle at the opposite xo

±

with respect to z. A simple comparison of ratios shows that f−(z)+ f+(z) < 1 and
f0(z)+ f+(z)< 1. On the other hand, we have 1/(mK (z)+1)=min( f0(z), f−(z)),
and we obtain

f0(z)+ f−(z)+ f+(z) < 1+
1

mK (z)+ 1
.

Since { f0, f−, f+} ∈ Co
K (z), a dual 2-configuration, we see that z is a dual regular

point. The claim follows.

A simple consideration of the affine coordinates associated to a simplex shows
that the interior of a simplex consists of dual regular points only. (See Section 3.)
In the other extreme it is natural to expect that the interior of a symmetric convex
body does not have any dual regular points. This is indeed the case asserted by the
following:

Theorem 5. In a symmetric body K there are no dual regular points.

Remark. The same holds for (nondual) regular points; see [Toth 2009, Theorem A].
This, however, does not imply Theorem 5 due to the fact that the duality in Theorem 2
is only pointwise.

Example. Let K =1× I ⊂ R3 be a prism, where 1⊂ R2 is a triangle and I ⊂ R

is a closed interval. Then there are no dual regular points in the interior of K . This
shows that the converse of Theorem 5 is not true. In addition, since m∗1 = 2, we
have m∗K = 2, and σK ,2 = 1 identically (since K has the triangular projection 1).
We see that equality holds in (27). On the other hand, through any interior points
of K there are four affine diameters so that Grünbaum’s conjecture holds for K .
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This shows that in trying to remove the condition in (27) one needs to consider
nonsymmetric convex bodies with no dual regular points. (As was pointed out
by Hammer and Sobczyk [1951], K is a convex body with 1-dimensional critical
set K ∗. In addition, for K equality holds in Klee’s inequality showing that it is
sharp.)

2. Duality via the musical equivalencies

We define the dual of a convex body K ⊂ X with respect to an interior point
z ∈ int K as follows.

First, let K0 ⊂ X be a convex body with 0 ∈ K0, the origin in X . We define the
dual of K0 with respect to 0 as

(28) K 0
0 = {u ∈ X | supx∈K0

〈x, u〉 ≤ 1}.

Clearly, 0 ∈ int K0, and by the bipolar theorem, we have (K 0
0 )

0
= K0.

The general case (z ∈ int K ) is reduced to this by employing translations Tv :
X → X , v ∈ X , where Tv(u)= u+ v, u ∈ X .

We first let K0 = (Tz)
−1(K ) (so that the point z ∈ int K is moved to the origin

0 ∈ int K0), and then define

(29) K z
= Tz(K 0

0 ), K0 = (Tz)
−1(K ).

Clearly, z ∈ int K z , and, by the above, we also have (K z)z = K .
The translations Tv : X → X , v ∈ X , act on the space of affine functionals

aff= aff(X ) by T o
v : aff→ aff, v ∈X , defined by Tvo( f )= f ◦T−1

v , f ∈ aff. Using
the notations above, for z ∈ int K , the linear map T o

z restricts to T o
z : affK0 → affK ,

K0 = T−1
z (K ), between the normalized affine functionals of the respective convex

bodies. (Indeed, for f0 ∈ aff K0, we have f0(K0) = T o
z ( f0)(K ) = [0, 1].) Since,

by (29), K 0
0 = T−1

z (K z), we also have the restriction T o
z : affK 0

0
→ affK z .

In this spirit, the definition of the musical equivalencies

[K ,z : ∂K → affK z and ]K ,z : affK → ∂K z

can be reduced to

[K0,0 : ∂K0→ affK 0
0

and ]K0,0 : affK0 → ∂K 0
0

by the formulas

(30) [K ,z = T o
z ◦ [K0,0 ◦ T−1

z and ]K ,z = Tz ◦ ]K0,0 ◦ (T
−1
z )o.

It remains to define the musical equivalencies for K0 with respect to 0 ∈ int K0

satisfying (3)–(6). For simplicity, we now suppress the subscript 0 and set K = K0

with 0 ∈ int K .
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For x ∈ ∂K , we let x[ : X → R be the affine functional given by

(31) x[(u)=
1

λK (x, 0)+ 1
(1−〈x, u〉), u ∈ X .

Evaluating this at the origin 0, (5) immediately follows.
The opposite of x ∈ ∂K (with respect to the origin 0) is xo

= −x/λK (x, 0).
Replacing x by xo in (31), a simple computation gives the first formula in (3). Now
a quick look at the definition of the dual K 0 in (28) shows that x[ is normalized
for K 0. We conclude that the musical map [ : ∂K → affK 0 is well-defined.

For f ∈ affK , we write f (u) = 〈A, u〉 + a, A ∈ X and a ∈ (0, 1) (since f is
normalized). We then define

(32) f ] =− A
a
.

Since f is normalized, (28) shows that this point is on the boundary of the dual K 0.
Once again, we obtain that the musical map ] : affK → ∂K 0 is well-defined.

Using (28) and (32) with 1− f in place of f , we obtain

(1− f )] = A
1−a

= ( f ])o,

and the second formula in (3) follows. Since −A/a and A/(1−a) are opposites in
K 0, as a byproduct, we obtain (6).

Finally, it remains to show that the musical equivalencies are inverses of each
other, that is (4) holds. Indeed, combining (31) and (32), we obviously have
(x[)] = x , x ∈ ∂K , and the first relation in (4) follows. For the second, letting
f (u)= 〈A, u〉+ a as above and using (6), we have ( f ])[(u)= a(1+〈A, u〉/a)=
f (u), u ∈ X . The second relation in (4) also follows.

As a final preparatory step, as stated in the previous section, we need to work
out the dual of an affine diameter. Let [x, xo

] ⊂ K be an affine diameter with
parallel supporting hyperplanes H,Ho

∈ δK at both ends, that is x ∈H and xo
∈Ho.

As above, we let f ∈ affK be the normalized affine functional with zero sets
H= {u | f (u)= 0} and Ho

= {u | 1− f (u)= 0}. We have f (x)= 0 and f (xo)= 1.
Letting 0= z and f (u)= 〈A, u〉+ a, u ∈ X , as above, we have

x[( f ])=
1

λK (x, 0)+ 1

(
1−

〈
x,−

A
a

〉)
=

1
a(λK (x, 0)+ 1)

f (x)= 0,

and

x[(( f ])o)=
1

λK (x, 0)+ 1

(
1−

〈
x,

A
1− a

〉)
=

1
(1− a)(λK (x, 0)+ 1)

(1− a−〈x, A〉)= 1,
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since

f (xo)= 〈A, xo
〉+ a =−

1
λK (x, 0)

〈A, x〉+ a = 1.

We see that [ f ], ( f ])o] is an affine diameter of the dual K 0 with parallel supporting
hyperplanes x[, (xo)[ ∈ δK 0 at the endpoints.

We conclude that the dual of an affine diameter configuration is also an affine
diameter configuration.

3. Proofs of Theorems 1–3

Proof of Theorem 1. We will show that σK ,k(z)= σ o
K z,k(z). Since (K z)z = K , this

will imply the theorem.
We first claim that, for any {x0, . . . , xk} ⊂ ∂K , we have

(33) z ∈ [x0, . . . , xk] ⇐⇒

k⋂
i=0

{u ∈ X | x[i (u)≤ 0} =∅,

where [= [K ,z : ∂K → affK z is the musical equivalence.
Without loss of generality, we may set z = 0 ∈ int K , the origin.
First, assume that 0 ∈ [x0, . . . , xk], that is

∑k
i=0 λi xi = 0 with

∑k
i=0 λi = 1,

λi ∈[0, 1], i =0, . . . , k. Assume there exists u ∈X such that x[i (u)≤0, i =0, . . . , k.
By (31), this means that 〈xi , u〉 ≥ 1, i = 0, . . . , k. Summing up, we obtain

k∑
i=0

λi 〈xi , u〉 =
〈 k∑

i=0

λi xi , u
〉
= 0≥

k∑
i=0

λi = 1,

a contradiction.
Conversely, assume that 0 /∈[x0, . . . , xk] so that 0 and the convex hull [x0, . . . , xk]

can be (strictly) separated by a hyperplane H⊂X . A unit normal N ∈X of H then
satisfies 〈xi , N 〉>0, i =0, . . . , k. For t>0 large enough, we then have 〈xi , t N 〉≥1,
i = 0, . . . , k. Thus, t N belongs to the intersection

⋂k
i=0{u ∈ X | x

[
i (u)≤ 0}. The

converse follows.
The claim just proved can be reformulated as

{x0, . . . , xk} ∈ CK ,k(z) ⇐⇒ {x[0, . . . , x[k} ∈ C
o
K z,k .

Using (5), we now calculate

σK ,k(0)= inf
{x0,...,xk}∈CK ,k(0)

k∑
i=0

1
λK (xi , 0)+ 1

= inf
{x[0,...,x

[
k}∈C

o
K z ,k(0)

k∑
i=0

x[i (0)

= inf
{ f0,..., fk}∈C

o
K z ,k(0)

k∑
i=0

fi (0)= σ o
K z,k(0). �
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Remark. Dually, for { f0, . . . , fk} ⊂ affK , we also have

k⋂
i=0

{u ∈ X | fi (u)≤ 0} =∅ ⇐⇒ z ∈ [ f ]0 , . . . , f ]k ].

This is the same as the equivalency asserted in (20). As a byproduct of the computa-
tion above we also see that under the musical equivalencies minimal configurations
correspond to each other.

We turn to the proof of (22). Given a dual k-configuration { f0, . . . , fk} ∈ C
o
K ,k ,

let E ⊂ X be a k-dimensional affine subspace containing the duals f ]0 , . . . , f ]k ∈ X
(and, by (20), also z). We have { f0|E , . . . , fk |E} ∈ C

o
5(K ),k , where 5 ∈Pk is the

orthogonal projection of X to E . The affine functionals fi , i = 0, . . . , k, are constant
along (the fibers of)5, and we also have

∑k
i=0 fi (z)=

∑k
i=0( fi |E)(z). We conclude

that the infimum for σ o
K ,k(z) in (22) can first be taken for dual k-configurations

in Co
5(K ),k(5(z)) for a given 5 ∈ Pk , thus yielding σ o

5(K ),k(5(z)), and finally
followed by the infimum for all 5 ∈Pk . The claim follows.

Proof of Theorem 2. As noted previously, the bounds in (23) follow by duality via
Theorem 1.

We now consider the upper bound in (23). Let k ≥ 2, and assume that σ o
K ,k(z)=

(k+1)/2. Dualizing, again by Theorem 1, we have σK z,k(z)= (k+1)/2. Hence, K z

is symmetric with respect to z. Since duality (with respect to the center) preserves
symmetry, we obtain that K = (K z)z is symmetric with respect to z.

It remains to consider the lower bound in (23). Assume that, for some k ≥ 1, we
have σ o

K ,k(z)= 1 at an interior point z ∈ int K . Since σ o
K ,k is a concave function on

int K and, by (24), it assumes the value 1 on the boundary, we see that σ o
K ,k = 1

identically on K .
If k > n then, by arithmeticity and (23), we have

1= σ o
K ,k(z)= σ

o
K ,n(z)+

k− n
mK (z)+ 1

≥ 1+
k− n

mK (z)+ 1
> 1.

This is a contradiction. Thus k ≤ n. (Alternatively, again by duality, σ o
K ,k(z) =

σK z,k(z)= 1 so that k ≤ n.)
For the last statement, let the infimum in (22) be attained at an orthogonal

projection5∈Pk (onto a k-dimensional affine subspace), so that σ o
5(K ),k(5(z))=1.

As before, σ o
5(K ),k = 1 identically on 5(K ). Let z∗ be a critical point of 5(K ). By

the obvious lower bound in (18) applied to the k-dimensional convex body 5(K )
(and z∗), we have

k+ 1
m∗5(K )+ 1

≤ σ o
5(K ),k(z

∗)= 1.
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This gives k ≤ m5(K )(z∗). By the Minkowski–Radon inequality, m∗5(K ) ≤ k, so
that equality holds and 5(K ) is a k-simplex. �

Example. An n-simplex 1= [x0, . . . , xn] with vertices x0, . . . , xn ∈ X possesses
a unique minimal dual n-configuration for any interior point, the affine coordinate
system { f0, . . . , fn} ⊂ aff1 associated to 1. (For i = 0, . . . , n, fi ∈ aff1 is the
normalized affine functional that vanishes on the i-th face [x0, . . . , x̂i , . . . , xn]

(opposite to the vertex xi ), and fi (xi ) = 1.) For z ∈ int1 with z =
∑n

i=0 λi xi ,∑n
i=0 λi = 1, λi ∈ (0, 1), we have fi (z) = λi , i = 0, . . . , n. Since (16) obviously

holds, we have σ o
1,n(z)≤

∑n
i=0 fi (z)=

∑n
i=0 λi = 1. By (23), equality must hold.

We see that { f0, . . . , fn} ∈ C
o
1,n(z) is the (unique) minimal dual n-configuration

for all z ∈ int1. As a byproduct, we see that all interior points of an n-simplex are
dual regular, that is Ro

1 = int1. (The same holds for (nondual) regular points.)

Remark. The previous example can be used to show directly that if σ o
K ,n(z)= 1

then K is an n-simplex. This gives an alternative proof of the last part of Theorem 2
(for 5(K ) instead of K ) without the recourse of the Minkowski–Radon theorem.

Assume σ o
K ,n(z)= 1 for some z ∈ int K . First, any minimal dual n-configuration

of z must be simplicial. Indeed, otherwise a minimal dual n-configuration would
contain a proper subconfiguration, and we would have arithmeticity: 1= σ o

K ,n =

σ o
K ,n−1 + 1/(mK (z)+ 1) > 1, a contradiction. Second, let { f0, . . . , fn} ∈ 1

o
K (z)

be a minimal simplicial dual configuration. The corresponding n-simplex 1 =⋂n
i=0{u ∈ X | fi (u) ≥ 0} contains K . For each i = 0, . . . , n, let f̃i ∈ aff1 be the

normalized affine functional such that {u ∈ X | fi (u)= 0} = {u ∈ X | f̃i (u)= 0}.
Now, assume that K is not a simplex. Then fi (z)< f̃i (z) for some i = 0, . . . , n. We
then have 1 = σ o

K ,n(z) =
∑n

i=0 fi (z) <
∑n

i=0 f̃i (z) = σ1,n(z) = 1, where the last
two equalities follow from the example immediately above. This is a contradiction,
so that K must be an n-simplex.

Proof of Theorem 3. We first introduce some notation. We define

M(z)= {x ∈ ∂K | λK (x, z)=mK (z)}, z ∈ int K ,

where mK : int K → R is the maximal Minkowski ratio. Clearly, M(z) ⊂ ∂K is
compact, and for every x ∈M(z), the chord [x, xo

] of K is an affine diameter.
(This is an elementary fact; also noted in [Klee 1953, 3.2].)

We now turn to the proof, in which we will use several results of Klee [1953].
Let N (z∗)=M(z∗)o ⊂ ∂K be the opposite set of M(z∗)⊂ ∂K with respect to z∗.
Denote by G the family of closed half-spaces that intersect N (z∗) but disjoint from
int K . Clearly, for each G ∈G, the boundary H= ∂G is a hyperplane supporting K
at a point in N (z∗). Conversely, for any hyperplane H supporting K at a point in
N (z∗), the closed half-space G with boundary H and disjoint from K belongs to G.
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In a technical lemma, Klee [1953, 3.1] proved⋂
G=

⋂
G∈G

G =∅.

Taking interiors, the family

I= intG= {intG | G ∈G}

of open half-spaces is in Klee’s terminology 0-closed. This means that, for any
sequence {Ik}k≥1 ⊂ G which is Kuratowski convergent to a limit I, we have
int I ∈G. (Note that, by definition, any Kuratowski limit is a closed set.)

We now need Klee’s extension of Helly’s theorem for 0-closed families: If any
n+ 1 members of an 0-closed family has nonempty intersection then the interior of
the intersection of all members of the family is nonempty (see [Klee 1953, 3.2]).

We apply this to our family I of open half-spaces above. Since
⋂

I = ∅ (as⋂
G = ∅) we see that there are n+ 1 open half-spaces I0, . . . , In ∈ I such that⋂n
i=0 Ik =∅.
Let i = 0, . . . , n. We select xi ∈M(z∗) such that the opposite xo

i ∈ Īi (with
respect to z∗). Then [xi , xo

i ] is an affine diameter with λK (xi , z∗)=mK (z∗)=m∗K .
We let fi ∈ affK be the (unique) normalized affine functional with zero set ∂Ii .
Since xo

i ∈ ∂Ii , we have fi (xo
i )= 0 and hence fi (xi )= 1. We calculate

fi (z∗)=
d(xo

i , z∗)
d(xo

i , xi )
=

1
d(xi , z∗)/d(xo

i , z∗)+ 1
=

1
λK (xi , z∗)+ 1

=
1

m∗K + 1
.

Summing up, we obtain

σ o
K ,n(z

∗)≤

n∑
i=0

fi (z∗)=
n+ 1
m∗K + 1

.

On the other hand, by (18), the right side is an obvious lower bound for σ o
K ,n(z

∗). �

4. Regular points and the Grünbaum conjecture

Let K ⊂ X be a convex body. Recall that z ∈ int K is a regular point if all minimal
n-configurations in CK ,n(z) are simplicial, that is they belong to 1K (z). Since
minimal simplicial configurations do not contain any proper (necessarily minimal)
subconfigurations, this condition can be conveniently reformulated in terms of
the mean Minkowski measures: z ∈ int K is regular if and only if in (10) strict
subarithmeticity holds:

(34) σK ,n(z) < σK ,n−1(z)+
1

mK (z)+ 1
.
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(For more details, see [Toth 2004].) Since the mean Minkowski measures are
continuous, we see that the set of all regular points RK ⊂ int K is open.

Let z ∈RK be a regular point, and {x0, . . . , xn} ∈1K (z) a minimal simplicial
configuration. Since z is in the interior of the n-simplex [x0, . . . , xn], by (9), for
each i = 0, . . . , n, the distortion λK ( · , z) attains a local maximum at xi . It is well
known that at local maxima of the distortion the corresponding chord (through z) is
an affine diameter. (See, for example [Hammer 1951] or [Toth 2006].) We conclude
that, for each i = 0, . . . , n, the chord [xi , xo

i ] is an affine diameter. Thus, at any
regular point z ∈RK , n+ 1 affine diameters meet.

In 1963 Grünbaum conjectured that any convex body has a common point of
n+ 1 affine diameters. We see that if RK 6=∅ then we have an affirmative answer
to Grünbaum’s conjecture: At any regular point n+ 1 affine diameters meet.

We turn to the dual scenario. Recall that a dual n-configuration { f0, . . . , fn} ∈

Co
K ,n(z) is called simplicial if { f ]0 , . . . , f ]n } ∈CK z,n(z) is simplicial, where ]= ]K ,z :

affK → ∂K z denotes the musical equivalence. As noted previously, geometrically
speaking, a dual n-configuration { f0, . . . , fn} ∈ C

o
K ,n(z) is simplicial if and only

if
⋂n

i=0{u ∈ X | fi (u) ≥ 0} is an n-simplex with z in its interior. The set of dual
simplicial configurations is denoted by 1o

K (z). By (20), for { f0, . . . , fn} ⊂ affK ,
we have

{ f0, . . . , fn} ∈1
o
K (z) ⇐⇒ { f ]0 , . . . , f ]n } ∈1K z (z).

Recall that an interior point z ∈ int K is called dual regular if any minimal dual
n-configuration in Co

K ,n(z) is simplicial. The set of all dual regular points is denoted
by Ro

K ⊂ int K . As in the dual case, z ∈Ro
K if and only if

(35) σ o
K ,n(z) < σ

o
K ,n−1(z)+

1
mK (z)+ 1

,

in particular, Ro
K ⊂ int K is open.

Now, comparing (34) and (35), Theorem 1 along with (7) gives (26).
Let z ∈ Ro

K be a dual regular point and { f0, . . . , fn} ∈ 1
o
K (z) be a minimal

simplicial configuration. We have z ∈ RK z , and, by Theorem 1, { f ]0 , . . . , f ]n } ∈
1K z (z) is a minimal simplicial configuration. By the discussion above, for each
i = 0, . . . , n, the chord [ f ]i , ( f ]i )

o
] is an affine diameter of K z . Let Ki and Ko

i
be parallel hyperplanes at the endpoints of f ]i and ( f ]i )

o. Finally, let gi ∈ affK z

be the normalized affine functional with zero sets Ki = {u ∈ X | gi (u) = 0} and
Ko

i = {u ∈ X | 1− gi (u)= 0}. By the discussion at the end of Section 2, for each
i = 0, . . . , n, the chord [g]i , (g

]
i )

o
] is an affine diameter of K = (K z)z , and the

parallel supporting hyperplanes at the endpoints are given by the respective zero
sets of the original affine functional fi = ( f ]i )

[. Letting xi = g]i ∈ ∂K , we see that



DUAL MEAN MINKOWSKI MEASURES AND THE GRÜNBAUM CONJECTURE 135

the zero sets Hi = {u ∈X | fi (u)= 0} and Ho
i = {u ∈X | 1− fi (u)= 0} are parallel

supporting hyperplanes of K with affine diameters [xi , xo
i ] ⊂ K , i = 0, . . . , n.

We claim that the affine diameters [xi , xo
i ], i = 0, . . . , n, are distinct. Assume

that [xi , xo
i ] = [x j , xo

j ] for some i 6= j , i, j = 0, . . . , n. (This means that this
common affine diameter has two pairs of parallel supporting hyperplanes, Hi , Ho

i
and H j , Ho

j .) Because xi = x j or xi = xo
j , in the dual, we have gi = g j or gi = 1−g j .

In particular, the affine diameters [ f ]i , ( f ]i )
o
] and [ f ]j , ( f ]j )

o
] of K z share a single

pair of parallel supporting hyperplanes, Ki = K j , Ko
i = Ko

j , or Ki = Ko
j , K

o
i = K j .

On the other hand, in a minimal simplicial configuration of a regular point (such
as { f ]0 , . . . , f ]n } ∈ 1K z (z) with z ∈ RK z ) two affine diameters cannot share the
same parallel supporting hyperplanes since otherwise we can slide one in the
respective hyperplanes (along a line segment) to the other to obtain another minimal
configuration with multiple points or a pair of antipodal points. These contradict
regularity.

We conclude that if z ∈Ro
K then n+ 1 affine diameters meet at z.

Proof of Theorem 4. Let z∗ ∈ K ∗ be a critical point of K . Subarithmeticity in (21)
gives

σ o
K ,n(z

∗)≤ σ o
K ,n−1(z

∗)+
1

m∗K + 1
.

The equality in (25) of Theorem 3 reduces this to (27), and the first statement of
Theorem 4 follows. Strict inequality holds if and only if z∗ ∈Ro

K , a dual regular
point. By the discussion above, this implies the existence of n+ 1 affine diameters
across z∗. The second statement of Theorem 4 follows. �

Proof of Theorem 5. Let K be a symmetric convex body with center z0. Assume that
z ∈ int K is a dual regular point. Since the center z0 is obviously not dual regular,
we may assume that z 6= z0. Let { f0, . . . , fn} ∈ C

o
K ,n(z) be a minimal configuration.

Since z ∈Ro
K , this configuration is simplicial. Fix i = 0, . . . , n, and, for simplicity,

suppress the subscript and set f = fi ∈ affK . By the discussion before the proof
of Theorem 4, K has an affine diameter [x, xo

] ⊂ K with supporting hyperplanes
H = {u ∈ X | f (u) = 0} and Ho

= {u ∈ X | 1− f (u) = 0} such that x ∈ H and
xo
∈Ho. (Here the opposite is with respect to z.)
Let A ∈ ∂K be the point at which the ray r emanating from z0 and passing

through z meets the boundary of K . We claim that [A, Ao
] is an affine diameter

of K , and, beyond A, this ray r enters into the half-space {u ∈X | f (u)≤ 0}. Since r
is independent of i = 0, . . . , n, this means that the intersection in (16) is nonempty;
a contradiction.

If x is on r then A = x and we are done. Thus we may assume that the points x ,
z, and z0 are not collinear.



136 QI GUO AND GABOR TOTH

Let xo
0 ∈ ∂K ∩Ho be the opposite of x with respect to the center z0. By symmetry,

we have [xo, xo
0 ] ⊂ ∂K ∩Ho.

Let A1 ∈ ∂K be the opposite of xo
0 with respect to z. Moving along the line

segment [xo, xo
0 ] and taking the opposites (with respect to z), we see that A1 ∈H

since f (z) is a local minimum in affK . Since H supports K , we have [A1, x] ⊂
∂K ∩H. We now define Ak , k ≥ 1, inductively as follows. Assume that Ak ∈ ∂K is
constructed with [Ak, x] ⊂ ∂K ∩H. We take the opposite of Ak with respect to z0

followed by the opposite with respect to z. This gives the point Ak+1. As before, we
have [Ak+1, x]⊂ ∂K ∩H. The sequence {Ak}k≥1 is actually collinear and converges
to A ∈ ∂K which then must be on H. (In fact, an elementary argument shows that
the sequence {d(Ak, A)}k≥1 is geometric.) By construction, the chord [A, Ao

] is
an affine diameter, where Ao is the opposite of A with respect to z. After A the ray
r enters the open half-space {u ∈ X | f (u) < 0}. The claim follows. �
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