Pacific

Journal of Mathematics

DUAL MEAN MINKOWSKI MEASURES AND THE GRÜNBAUM CONJECTURE FOR AFFINE DIAMETERS

Qi Guo and Gabor Toth

DUAL MEAN MINKOWSKI MEASURES AND THE GRÜNBAUM CONJECTURE FOR AFFINE DIAMETERS

Qi Guo and Gabor Toth

For a convex body K in a Euclidean vector space \mathcal{X} of dimension $\boldsymbol{n}(\geq \mathbf{2)}$, we define two subarithmetic monotonic sequences $\left\{\sigma_{K, k}\right\}_{k \geq 1}$ and $\left\{\sigma_{K, k}^{o}\right\}_{k \geq 1}$ of functions on the interior of \boldsymbol{K}. The \boldsymbol{k}-th members are "mean Minkowski measures in dimension k " which are pointwise dual: $\sigma_{K, k}^{o}(z)=\sigma_{K^{z}, k}(z)$, where $z \in$ int K, and K^{z} is the dual (polar) of K with respect to z. They are measures of (anti-)symmetry of K in the following sense:

$$
1 \leq \sigma_{K, k}(z), \sigma_{K, k}^{o}(z) \leq \frac{k+1}{2} .
$$

The lower bound is attained if and only if \boldsymbol{K} has a \boldsymbol{k}-dimensional simplicial slice or simplicial projection. The upper bound is attained if and only if K is symmetric with respect to z. In 1953 Klee showed that the lower bound $\mathfrak{m}_{K}^{*}>\boldsymbol{n - 1}$ on the Minkowski measure of K implies that there are $\boldsymbol{n}+1$ affine diameters meeting at a critical point $z^{*} \in K$. In 1963 Grünbaum conjectured the existence of such a point in the interior of any convex body (without any conditions). While this conjecture remains open (and difficult), as a byproduct of our study of the dual mean Minkowski measures, we show that

$$
\frac{n}{\mathfrak{m}_{K}^{*}+1} \leq \sigma_{K, n-1}^{o}\left(z^{*}\right)
$$

always holds, and for sharp inequality Grünbaum's conjecture is valid.

1. Preliminaries and statement of results

Let \mathcal{X} be an n-dimensional Euclidean vector space ($n \geq 2$) with scalar product $\langle\cdot, \cdot\rangle$ and distance function d. We consider a convex body $K \subset \mathcal{X}$, a compact convex set in \mathcal{X} with nonempty interior. Let ∂K denote the boundary of K. Given an interior point $z \in \operatorname{int} K$ we consider all the chords of K passing through z. For $x \in \partial K$, let $\lambda_{K}(x, z)$ denote the ratio into which z divides the chord of K starting

[^0]at x, passing through z, and ending up at the opposite $x^{o} \in \partial K$ of x (with respect to z). This defines the distortion function $\lambda_{K}: \partial K \times \operatorname{int} K \rightarrow \mathbb{R}$:
$$
\lambda_{K}(x, z)=\frac{d(x, z)}{d\left(x^{o}, z\right)}, \quad x \in \partial K, z \in \operatorname{int} K
$$

For the involution of ∂K given by $x \mapsto x^{o}\left(\right.$ with $\left.\left(x^{o}\right)^{o}=x\right)$, we have $\lambda_{K}\left(x^{o}, z\right)=$ $1 / \lambda_{K}(x, z), x \in \partial K$.

The (maximum) Minkowski ratio of K at z is defined as

$$
\mathfrak{m}_{K}(z)=\sup _{x \in \partial K} \lambda_{K}(x, z) \geq 1 .
$$

(Due to compactness of K and continuity of the distortion function λ_{K} [Toth 2006, Lemma 1], the supremum is attained. This is also the case for all infima and suprema that we encounter in this paper.)

Let δK denote the (compact) space of all hyperplanes supporting K. (Associating to each $\mathcal{H} \in \delta K$ the unit normal that points inward K, say, gives rise to a topological equivalence of δK and the unit sphere $\mathcal{S} \subset \mathcal{X}$.) For $\mathcal{H} \in \delta K$, we define the ratio $\rho_{K}(\mathcal{H}, z)=d(\mathcal{H}, z) / d\left(\mathcal{H}^{o}, z\right)$, where $\mathcal{H}^{o} \in \delta K$ is the (unique) parallel opposite of \mathcal{H} such that K is between \mathcal{H} and \mathcal{H}^{0}. This gives rise to the function ρ_{K} : $\delta K \times \operatorname{int} K \rightarrow \mathbb{R}$. For the involution of δK given by $\mathcal{H} \mapsto \mathcal{H}^{o}, \mathcal{H} \in \delta K$, we have $\rho_{K}\left(\mathcal{H}^{o}, z\right)=1 / \rho_{K}(\mathcal{H}, z), \mathcal{H} \in \delta K$.

It is well known that

$$
\begin{equation*}
\mathfrak{m}_{K}(z)=\sup _{x \in \partial K} \lambda_{K}(x, z)=\sup _{\mathcal{H} \in \delta K} \rho_{K}(\mathcal{H}, z), \quad z \in \operatorname{int} K . \tag{1}
\end{equation*}
$$

(See [Grünbaum 1963]. It is customary to define $\rho_{K}(\mathcal{H}, z)$ for a hyperplane \mathcal{H} containing z as the ratio ≥ 1 that \mathcal{H} divides the distance between the two supporting hyperplanes $\mathcal{H}^{\prime}, \mathcal{H}^{\prime \prime} \in \delta K$ that are parallel to \mathcal{H}. In our study we need more control of the choice of the supporting hyperplane, henceforth we altered this definition accordingly. Since we are taking suprema these two definitions are equivalent.)

A technically more convenient reformulation of this second concept is as follows. Let aff $=\operatorname{aff}(\mathcal{X})$ denote the $(n+1)$-dimensional vector space of affine functionals $f: \mathcal{X} \rightarrow \mathbb{R}$. We call $f \in$ aff normalized for K if $f(K)=[0,1]$, that is, the zero sets $\mathcal{H}=\{u \mid f(u)=0\}$ and $\mathcal{H}^{o}=\{u \mid 1-f(u)=0\}$ are two parallel hyperplanes supporting and enclosing K. We let aff ${ }_{K} \subset$ aff denote the (compact) subspace of affine functionals normalized for K. (Associating to each $f \in \operatorname{aff}_{K}$ the single zero set \mathcal{H} as above gives rise to a topological equivalence of aff ${ }_{K}$ and δK. Indeed, any $\mathcal{H} \in \delta K$ and its opposite \mathcal{H}^{o} uniquely define a normalized affine functional with the respective zero sets as above.) Note that aff_{K} has the obvious involution given by $f \mapsto 1-f, f \in \operatorname{aff}_{K}$.

Using the notations above, (1) gives

$$
\begin{equation*}
\inf _{f \in \operatorname{aff}_{K}} f(z)=\inf _{f \in \operatorname{aff}_{K}}(1-f(z))=\frac{1}{\sup _{\mathcal{H} \in \delta K} \rho_{K}(\mathcal{H}, z)+1}=\frac{1}{\mathfrak{m}_{K}(z)+1} \tag{2}
\end{equation*}
$$

$$
z \in \operatorname{int} K
$$

The two aspects of the Minkowski ratio above can be interpreted in terms of duality between the convex body K and its dual (also called polar) K^{z} with respect to the given interior point $z \in \operatorname{int} K$. (For the definition of the dual and its properties, see the next section. Note that when dealing with duality we will frequently use the bipolar theorem $\left(K^{z}\right)^{z}=K$ without explicit mention; [Eggleston 1958, Chapter 1.9] or [Schneider 2014, Theorem 1.6.1].)

First, as a technical tool, we will introduce and study the "musical equivalencies"

$$
b=b_{K, z}: \partial K \rightarrow \operatorname{aff}_{K^{z}} \quad \text { and } \quad \sharp=\sharp_{K, z}: \operatorname{aff}_{K} \rightarrow \partial K^{z}
$$

(For simplicity, we will suppress the subscripts whenever no confusion arises. In Riemannian geometry the introduction of a Riemannian metric on a manifold gives rise to "musical isomorphisms" between the tangent bundle and its dual. Due to the descriptive nature of this concept and analogy we took the liberty of borrowing this term for our setting.) The musical equivalencies satisfy

$$
\begin{equation*}
\left(x^{o}\right)^{b}=1-x^{b} \quad \text { and } \quad\left(f^{\sharp}\right)^{o}=(1-f)^{\sharp}, \quad x \in \partial K, f \in \operatorname{aff} K . \tag{3}
\end{equation*}
$$

In addition, as the name suggests, they are inverses of each other:

$$
\begin{equation*}
\sharp_{K^{z}, z} \circ \mathrm{~b}_{K, z}=\mathrm{id}_{\partial K} \quad \text { and } \quad b_{K^{z}, z} \circ \sharp_{K, z}=\operatorname{id}_{\mathrm{aff}_{K}} . \tag{4}
\end{equation*}
$$

These formulas (applied to the dual pair K and K^{z}) imply that the musical equivalencies are actually homeomorphisms of the respective spaces.

The following formulas show that the two aspects of Minkowski ratios are dual constructions applied to K and its dual K^{z} :

$$
\begin{equation*}
x^{b}(z)=\frac{1}{\lambda_{K}(x, z)+1}, \quad x \in \partial K, z \in \operatorname{int} K \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z)=\frac{1}{\lambda_{K^{z}}\left(f^{\sharp}, z\right)+1}, \quad f \in \operatorname{aff}_{K}, z \in \operatorname{int} K . \tag{6}
\end{equation*}
$$

Taking the infima on the respective sets in (5)-(6) and using (2), we obtain

$$
\inf _{x \in \partial K} x^{b}(z)=\frac{1}{\mathfrak{m}_{K}(z)+1}=\inf _{f \in \operatorname{aff}_{K}} f(z)=\frac{1}{\mathfrak{m}_{K^{z}}(z)+1}, \quad z \in \operatorname{int} K
$$

This gives

$$
\begin{equation*}
\mathfrak{m}_{K}(z)=\mathfrak{m}_{K^{z}}(z), \quad z \in \operatorname{int} K \tag{7}
\end{equation*}
$$

The Minkowski measure of K is defined as

$$
\mathfrak{m}_{K}^{*}=\inf _{z \in \operatorname{int} K} \mathfrak{m}(z) .
$$

The set of interior points where this infimum is attained is called the critical set

$$
\begin{equation*}
K^{*}=\left\{z^{*} \in \operatorname{int} K \mid \mathfrak{m}_{K}\left(z^{*}\right)=\mathfrak{m}_{K}^{*}\right\} . \tag{8}
\end{equation*}
$$

The critical set $K^{*} \subset K$ is compact and convex, and we have Klee's inequality

$$
(1 \leq) \mathfrak{m}_{K}^{*}+\operatorname{dim} K^{*} \leq n
$$

improving the classical Minkowski-Radon inequality (in which the dimension of the critical set is absent). (See [Klee 1953].) Clearly, $\mathfrak{m}_{K}^{*}=1$ if and only if K is symmetric with respect to then unique regular point. It is also straightforward to show that the upper bound is attained for simplices. Conversely, Minkowski and Radon also proved that $\mathfrak{m}_{K}^{*}=n$ implies that K is a simplex.

For $z^{*} \in K^{*}$ critical, by (7), we have

$$
\mathfrak{m}_{K}^{*}=\mathfrak{m}_{K}\left(z^{*}\right)=\mathfrak{m}_{K^{z^{*}}}\left(z^{*}\right) \geq \mathfrak{m}_{K^{z^{*}}}^{*} .
$$

Whether equality holds, that is, whether $z^{*} \in K^{*}$ is also a critical point of the dual $K^{z^{*}}$, seems to be a difficult problem in general.

Recall that a chord $\left[x, x^{o}\right]$ of K is an affine diameter if there are parallel supporting hyperplanes \mathcal{H} and \mathcal{H}^{o} of K at the endpoints of the chord, that is $x \in \mathcal{H}$ and $x^{o} \in \mathcal{H}^{o}$. (For a general survey on affine diameters and related problems, see [Soltan 2005; Soltan and Nguyên 1988].) As discussed above, we describe these hyperplanes as the zero sets of a normalized affine functional $f \in \operatorname{aff}_{K}$, that is we have $\mathcal{H}=\{u \in \mathcal{X} \mid f(u)=0\}$ and $\mathcal{H}^{o}=\{u \in \mathcal{X} \mid 1-f(u)=0\}$. Under the musical equivalencies, affine diameters of K correspond to affine diameters of K^{z} in the sense that if $\left[x, x^{o}\right]$ is an affine diameter of K with parallel supporting hyperplanes given by $f \in \operatorname{aff}_{K}$ then $\left[f^{\sharp},\left(f^{\sharp}\right)^{o}\right]=\left[f^{\sharp},(1-f)^{\sharp}\right]$ is an affine diameter of K^{z} with parallel supporting hyperplanes given by $x^{b} \in \operatorname{aff}_{K^{z}}$. (For the proof, see Section 2.)

We now introduce the sequence $\left\{\sigma_{K, k}\right\}_{k \geq 1}$ of mean Minkowski measures of K. (We give here a concise summary; for details, see [Toth 2004; 2006].) The k-th measure $\sigma_{K, k}:$ int $K \rightarrow \mathbb{R}, k \geq 1$, is a function on the interior of K defined as follows. First, a (point) k-configuration of K with respect to z is a multiset $\left\{x_{0}, \ldots, x_{k}\right\} \subset \partial K$ (with repetition allowed) such that the convex hull $\left[x_{0}, \ldots, x_{k}\right]$ contains z. (We use square brackets to indicate convex hull rather than "conv".) With this we define

$$
\begin{equation*}
\sigma_{K, k}(z)=\inf _{\left\{x_{0}, \ldots, x_{k}\right\} \in \mathfrak{C}_{K, k}(z)} \sum_{i=0}^{k} \frac{1}{\lambda_{K}\left(x_{i}, z\right)+1}, \quad z \in \operatorname{int} K \tag{9}
\end{equation*}
$$

where $\mathfrak{C}_{K, k}(z)$ denotes the set of all k-configurations of K (with respect to z).

Algebraically, $\sigma_{K, k}$ is a " k-average" of the rescaled distortion, and, as we will see below, geometrically $\sigma_{K, k}(z)$ measures how far the k-dimensional slices of K across z are from a k-simplex.

A k-configuration $\left\{x_{0}, \ldots, x_{k}\right\} \in \mathfrak{C}_{K, k}(z)$ at which the infimum in (9) is attained is called minimizing, or simply minimal. Since $\mathfrak{C}_{K, k}(z)$ inherits a compact topology from that of ∂K and the distortion is continuous, minimal configurations always exist. (As examples show, they are by no means unique.)

For $k=1$, a 1-configuration of z is an opposite pair of points $\left\{x_{0}, x_{1}\right\} \subset \partial K$, $x_{1}=x_{0}^{o}$. Since $\lambda_{K}\left(x_{0}^{o}, z\right)=1 / \lambda_{K}\left(x_{0}, z\right)$, we have $\sigma_{K, 1}(z)=1, z \in \operatorname{int} K$.

Since a (minimal) k-configuration can always be extended to a $(k+l)$-configuration by adding l copies of a boundary point at which the distortion $\lambda_{K}(\cdot, z)$ attains its maximum $\mathfrak{m}_{K}(z)$, we have subarithmeticity:

$$
\begin{equation*}
\sigma_{K, k+l}(z) \leq \sigma_{K, k}(z)+\frac{l}{\mathfrak{m}_{K}(z)+1}, \quad z \in \operatorname{int} K, k, l \geq 1 \tag{10}
\end{equation*}
$$

By Carathéodory's theorem, for $k>n$, a k-configuration always contains an n-configuration. In addition, any subconfiguration of a minimal configuration is minimal, and, at the complementary configuration points, the distortion $\lambda_{K}(\cdot, z)$ attains its maximum $\mathfrak{m}_{K}(z)$. We see that the sequence $\left\{\sigma_{K, k}(z)\right\}_{k \geq 1}$ is arithmetic with difference $1 /\left(\mathfrak{m}_{K}(z)+1\right)$ from the n-th term onwards.

For $1 \leq k \leq n$, we have

$$
\begin{equation*}
\sigma_{K, k}(z)=\inf _{z \in \mathcal{E} \subset \mathcal{X}, \operatorname{dim} \mathcal{E}=k} \sigma_{K \cap \mathcal{E}, k}(z), \quad z \in \operatorname{int} K \tag{11}
\end{equation*}
$$

where the infimum is over affine subspaces $\mathcal{E} \subset \mathcal{X}$ of dimension k which contain z. This holds because the affine span of any k-configuration $\left\{x_{0}, \ldots, x_{k}\right\} \in \mathfrak{C}_{K, k}(z)$ is contained in an affine subspace \mathcal{E} (containing z) of dimension k; therefore the infimum in (9) can first be taken for configurations that are contained in a specific \mathcal{E}, yielding $\sigma_{K \cap \mathcal{E}, k}(z)$, and then for all k-dimensional affine subspaces \mathcal{E} (which contain z) as in (11).

The mean Minkowski measures are measures of symmetry (or asymmetry for some authors) in the following sense:

$$
\begin{equation*}
1 \leq \sigma_{K, k}(z) \leq \frac{k+1}{2}, \quad z \in \operatorname{int} K \tag{12}
\end{equation*}
$$

(For measures of symmetry in general, see the seminal work of Grünbaum [1963].) Assuming $k \geq 2$, the upper bound is attained if and only if K is symmetric with respect to z. For the lower bound, if, for some $k \geq 1, \sigma_{K, k}(z)=1$ at $z \in$ int K then $k \leq n$, and K has a k-dimensional simplicial intersection across z, that is there exists a k-dimensional affine subspace $\mathcal{E} \subset \mathcal{X}$ such that $K \cap \mathcal{E}$ is a k-simplex (and consequently $\sigma_{K, k}=1$ identically on $K \cap \mathcal{E}$).

The functions $\sigma_{K, k}: \operatorname{int} K \rightarrow \mathbb{R}, k \geq 1$, are continuous on int K and extend continuously to ∂K as

$$
\begin{equation*}
\lim _{d(z, \partial K) \rightarrow 0} \sigma_{K, k}(z)=1 . \tag{13}
\end{equation*}
$$

The limiting behavior in (13) follows from subarithmeticity in (10) ($k=1$ and $l=k-1$ and $\sigma_{K, 1}(z)=1$), and the lower estimate in (12). (For a different proof, see Theorem D/(b) in [Toth 2004].)

The sequence $\left\{\sigma_{K, k}(z)\right\}_{k \geq 1}$ is superadditive:

$$
\begin{equation*}
\sigma_{K, k+l}(z)-\sigma_{K, k}(z) \geq \sigma_{K, l}(z)-\sigma_{K, 1}(z), \quad z \in \operatorname{int} K, k, l \geq 1 \tag{14}
\end{equation*}
$$

In particular $(l=1)$, the sequence $\left\{\sigma_{K, k}(z)\right\}_{k \geq 1}$ is monotonic: $\sigma_{K, k}(z) \leq \sigma_{K, k+1}(z)$, $k \geq 1$.

Finally, note the obvious lower bound

$$
\begin{equation*}
\frac{k+1}{\mathfrak{m}_{K}(z)+1} \leq \sigma_{K, k}(z), \quad z \in \operatorname{int} K, k \geq 1 \tag{15}
\end{equation*}
$$

The main technical tool of the present paper is the "dual construction". Let $k \geq 1$. First, a dual (or supporting) k-configuration is a multiset $\left\{f_{0}, \ldots, f_{n}\right\} \subset \operatorname{aff}_{K}$ (repetition allowed) such that the intersection

$$
\begin{equation*}
\bigcap_{i=0}^{k}\left\{u \in \mathcal{X} \mid f_{i}(u) \leq 0\right\}=\varnothing . \tag{16}
\end{equation*}
$$

With this, the k-th dual mean Minkowski measure $\sigma_{K, k}^{o}: \operatorname{int} K \rightarrow \mathbb{R}$ is defined as

$$
\begin{equation*}
\sigma_{K, k}^{o}(z)=\inf _{\left\{f_{0}, \ldots, f_{k}\right\} \in \mathbb{C}_{K, k}^{o}} \sum_{i=0}^{k} f_{i}(z), \quad z \in \operatorname{int} K, \tag{17}
\end{equation*}
$$

where $\mathfrak{C}_{K, k}^{o}$ denotes the set of all dual k-configurations of z.
The dual mean Minkowski measures have been introduced in [Guo and Toth 2016] along with detailed proofs of their arithmetic properties and extrema.

A dual k-configuration $\left\{f_{0}, \ldots, f_{k}\right\} \in \mathfrak{C}_{K, k}^{o}$ at which the infimum in (17) is attained is called minimizing or minimal for short. Since $\mathfrak{C}_{K, k}^{o}(z)$ inherits a compact topology from that of δK and the sum in (17) is continuous with respect to $\left(f_{0}, \ldots, f_{k}\right) \in\left(\operatorname{aff}_{K}\right)^{k+1}$, minimal configurations always exist.

For $k=1$, a dual 1 -configuration of any $z \in \operatorname{int} K$ is an opposite pair of affine functionals $\left\{f_{0}, f_{1}\right\} \subset \operatorname{aff}_{K}, f_{1}=1-f_{0}$, and we have $\sigma_{K, 1}^{o}=1$ identically on int K.

Note, by (2), the obvious lower bound

$$
\begin{equation*}
\frac{k+1}{\mathfrak{m}_{K}(z)+1} \leq \sigma_{K, k}^{o}(z), \quad z \in \operatorname{int} K, k \geq 1 . \tag{18}
\end{equation*}
$$

The first and most obvious property of the dual mean Minkowski measures is that, being infima of affine functions, $\sigma_{K, k}^{o}:$ int $K \rightarrow \mathbb{R}, k \geq 1$, are automatically concave functions. This is in striking contrast with the mean Minkowski measures $\sigma_{K, k}:$ int $K \rightarrow \mathbb{R}, k \geq 1$ which, albeit concave in dimension $n=2$ (Theorem E in [Toth 2006]), for $n \geq 3$, they, in general, fail to satisfy any concavity properties. The following example illustrates this point.

Example. Let K be an n-cube, $n \geq 3$. Then the function $\sigma_{K, n-1}$ is identically 1 on the complement of the (open) cross-polytope K_{0} inscribed in K (since the vertex figures provide $n-1$ dimensional simplicial intersections), but in the interior of K_{0} we have $\sigma_{K, n-1}>1$. Thus, $\sigma_{K, n-1}$ is not concave. A somewhat more involved argument shows that $\sigma_{K, n}$ is also nonconcave. (For a much more general result, see [Toth 2009, Theorem D].) As a byproduct, we see that, for the n-cube $K, n \geq 3$, $\sigma_{K, n}$ and $\sigma_{K, n}^{o}$ are different functions.

The following pointwise duality is the cornerstone of our study:
Theorem 1. Let $K \subset \mathcal{X}$ be a convex body, and $z \in \operatorname{int} K$. For $k \geq 1$, we have

$$
\begin{equation*}
\sigma_{K, k}^{o}(z)=\sigma_{K^{z}, k}(z) \tag{19}
\end{equation*}
$$

where K^{z} is the dual of K with respect to z.
Remark. It is important to note that on the right-hand side of (19) the mean Minkowski measure has a double dependency on the point z; not only in the argument but also in forming the dual K^{z}. For this reason duality can only be used pointwise.

The crux of the proof of Theorem 1 (Section 3) is the equivalence

$$
\begin{equation*}
\left\{f_{0}, \ldots, f_{k}\right\} \in \mathfrak{C}_{K, k}^{o} \quad \Longleftrightarrow \quad\left\{f_{0}^{\sharp}, \ldots, f_{k}^{\sharp}\right\} \in \mathfrak{C}_{K^{z}, k}(z) . \tag{20}
\end{equation*}
$$

As a byproduct of the proof, it will also follow that, under this equivalence, minimal configurations correspond to each other.

Pointwise duality allows the properties of the mean Minkowski measures to carry over to the dual. Replacing K with K^{z} in (10) and using (7) and (19), we have subarithmeticity:

$$
\begin{equation*}
\sigma_{K, k+l}^{o}(z) \leq \sigma_{K, k}^{o}(z)+\frac{l}{\mathfrak{m}_{K}(z)+1}, \quad z \in \operatorname{int} K, k, l \geq 1 \tag{21}
\end{equation*}
$$

In addition, the sequence $\left\{\sigma_{K, k}^{o}(z)\right\}_{k \geq 1}$ is arithmetic with difference $1 /\left(\mathfrak{m}_{K}(z)+1\right)$ from the n-th term onwards.

Remark. It is worth noting that the direct proof of arithmeticity (without the use of duality) beyond the dimension is an application of (the contrapositive of) Helly's theorem (instead of Carathéodory's): For $k>n$, any dual k-configuration (characterized by (16)) contains an n-configuration.

To state the dual version of (11), for $1 \leq k \leq n$, we denote by $\mathfrak{P}_{k}=\mathfrak{P}_{\mathcal{X}, k}$ the space of all orthogonal projections $\Pi: \mathcal{X} \rightarrow \mathcal{X}$ onto k-dimensional affine subspaces $\Pi(\mathcal{X})=\mathcal{E} \subset \mathcal{X}$. We then have

$$
\begin{equation*}
\sigma_{K, k}^{o}(z)=\inf _{\Pi \in \mathfrak{F}_{k}} \sigma_{\Pi(K), k}^{o}(\Pi(z)), \quad z \in \operatorname{int} K \tag{22}
\end{equation*}
$$

(In the infimum $\Pi(z)$ can be replaced by z if we require $z \in \Pi(\mathcal{X})=\mathcal{E}$.)
By duality, the bounds in (12) stay the same for the dual mean Minkowski measures. To characterize the convex bodies for which the lower bound is attained is somewhat more complex (to be expounded in Section 3). We summarize these concisely in the following:

Theorem 2. Let $K \subset \mathcal{X}$ be a convex body. For $k \geq 1$, we have

$$
\begin{equation*}
1 \leq \sigma_{K, k}^{o}(z) \leq \frac{k+1}{2}, \quad z \in \operatorname{int} K . \tag{23}
\end{equation*}
$$

Assuming $k \geq 2$, the upper bound in (23) is attained if and only if K is symmetric with respect to z. If, for some $k \geq 1, \sigma_{K, k}^{o}(z)=1$ at $z \in \operatorname{int} K$ then $\sigma_{K, k}^{o}=1$ identically on int K; we have $k \leq n$, and K has an orthogonal projection to a k-simplex.

The functions $\sigma_{K, k}^{o}:$ int $K \rightarrow \mathbb{R}, k \geq 1$, are continuous on int K. As in the nondual case, by the lower bound in (23) along with subarithmeticity ($k=1$ and $l=k-1$ in (21) with $\sigma_{K, 1}^{o}=1$), we have continuity up to the boundary via

$$
\begin{equation*}
\lim _{d(z, \partial K) \rightarrow 0} \sigma_{K, k}^{o}(z)=1 \tag{24}
\end{equation*}
$$

Example. Let K be a tetrahedron $(n=3)$ truncated near all four vertices (by vertex figures, say). Then $\sigma_{K, 2}=1$ identically as K has triangular intersections through any of its interior points. On the other hand, $\sigma_{K, 2}^{o}>1$ everywhere since K has no triangular projection. We see once again that, in general, the function $\sigma_{K, k}$ and its dual $\sigma_{K, k}^{o}$ are different.

Next, again by duality, we note superadditivity

$$
\sigma_{K, k+l}^{o}(z)-\sigma_{K, k}^{o}(z) \geq \sigma_{K, l}^{o}(z)-\sigma_{K, 1}^{o}(z), \quad z \in \operatorname{int} K, k, l \geq 1,
$$

and, as a consequence, monotonicity: $\sigma_{K, k}^{o}(z) \leq \sigma_{K, k+1}^{o}(z), k \geq 1$.
Most of the properties of the dual mean Minkowski measures discussed above are consequences of the pointwise duality asserted by Theorem 2. They have, however, additional and more refined properties showing that, as measures, they are better adapted convex bodies than their nondual counterparts. Our next result asserts the striking fact that the n-th dual mean Minkowski measure can be explicitly calculated at the critical points of a convex body.

Theorem 3. Let $K \subset \mathcal{X}$ be a convex body and $K^{*} \subset K$ its critical set. For any critical point $z^{*} \in K^{*}$, we have

$$
\begin{equation*}
\sigma_{K, n}^{o}\left(z^{*}\right)=\frac{n+1}{\mathfrak{m}_{K}^{*}+1} . \tag{25}
\end{equation*}
$$

The proof of Theorem 3 (Section 3) relies heavily on Klee's delicate analysis of the critical set and the proof of his improved Minkowski-Radon inequality.

Remark. It is natural to ask if (25) holds for the n-th (nondual) mean Minkowski measure $\sigma_{K, n}$. While this remains unsolved, it seems to depend on whether a critical point $z^{*} \in K^{*}$ is also a critical point for the dual $(K)^{z^{*}}$ or not. For the class of convex bodies of constant width the answer is affirmative as follows. (For a general reference on convex bodies of constant width, see [Chakerian and Groemer 1983].) For a convex body K of constant width d, the critical set K^{*} is a singleton, and the unique critical point z^{*} is the common center of the circumcircle $\mathcal{S}_{R_{K}}\left(z^{*}\right)$ and the incircle $\mathcal{S}_{r_{K}}\left(z^{*}\right)$ with circumradius R_{K} and inradius r_{K}. The latter can be expressed in terms of the Minkowski measure as

$$
R_{K}=\frac{\mathfrak{m}_{K}^{*}}{\mathfrak{m}_{K}^{*}+1} d \quad \text { and } \quad r_{K}=\frac{1}{\mathfrak{m}_{K}^{*}+1} d .
$$

In particular, we have $R_{K}+r_{K}=d$ and

$$
\mathfrak{m}_{K}^{*}=\frac{R_{K}}{r_{K}} .
$$

(For these results, see [Jin and Guo 2012], and (for some) also [Bonnesen and Fenchel 1934, §63] and [Eggleston 1958, Theorem 53 and its corollary, p. 125].) Another classical fact is that $z^{*} \in\left[\partial K \cap \mathcal{S}_{R_{K}}\left(z^{*}\right)\right]$, so that, by Carathéodory's theorem, z^{*} is in the convex hull of at most $n+1$ boundary points of K on the circumcircle $\mathcal{S}_{R_{K}}\left(z^{*}\right)$. It follows that the circumcircle contains an n-configuration of z^{*}. Thus, for a convex body K of constant width, equality holds in (25) for the (nondual) mean Minkowski measure $\sigma_{K, n}$.

For $k=n$, an n-configuration $\left\{x_{0}, \ldots, x_{n}\right\} \in \mathfrak{C}_{K, n}(z), z \in \operatorname{int} K$, is called simplicial if $\left[x_{0}, \ldots, x_{n}\right]$ is an n-simplex with z is in its interior. We let $\Delta_{K}(z) \subset \mathfrak{C}_{K, n}(z)$ denote the (noncompact) space of all simplicial configurations. (The concept of simplicial k-configurations, $1 \leq k \leq n$, can be defined analogously using relative interiors, but we will not need this here.) In (9) the infimum can be restricted to $\Delta_{K}(z)$, but a minimizing sequence of simplicial configurations may not (sub)converge. If degeneracy at the infima does not occur, that is all minimal n-configurations are simplicial then we call $z \in$ int K a regular point. The set of regular points is denoted by $\mathcal{R}_{K} \subset$ int K.

We now turn to the dual construction (Section 4). A dual n-configuration $\left\{f_{0}, \ldots, f_{n}\right\} \in \mathfrak{C}_{K, n}^{o}(z)$ is called simplicial if the intersection

$$
\bigcap_{i=0}^{n}\left\{u \in \mathcal{X} \mid f_{i}(u) \geq 0\right\}
$$

is an n-simplex. Using musical equivalences, this is equivalent to $\left\{f_{0}^{\sharp}, \ldots, f_{n}^{\sharp}\right\} \in$ $\mathfrak{C}_{K^{z}, n}(z)$ being simplicial. We let $\Delta_{K}^{o}(z) \subset \mathfrak{C}_{K, n}^{o}$ denote the space of all simplicial dual configurations. As before, in (17) the infimum can be restricted to $\Delta_{K}^{o}(z)$, but a minimizing sequence of simplicial dual configurations may not (sub)converge. If all minimal dual n-configurations are simplicial then we call $z \in$ int K a dual regular point. The set of dual regular points is denoted by $\mathcal{R}_{K}^{o} \subset$ int K.

The concept of regularity meshes well with duality, and Theorem 2 gives

$$
\begin{equation*}
z \in \mathcal{R}_{K}^{o} \quad \Longleftrightarrow \quad z \in \mathcal{R}_{K^{z}}, \quad z \in \operatorname{int} K . \tag{26}
\end{equation*}
$$

The significance of these concepts lie in the fact that at any regular or dual regular points $n+1$ affine diameters meet. This is closely related to Grïnbaum's conjecture: Any convex body K has an interior point z at which $n+1$ affine diameters meet. (See [Grünbaum 1963, 6.4.3, p. 254].)

A study of subconvergence of minimizing sequences then gives the following consequence of Theorem 3:
Theorem 4. Let $z^{*} \in K^{*} \subset K$ be as in Theorem 3. Then we have

$$
\begin{equation*}
\frac{n}{\mathfrak{m}_{K}^{*}+1} \leq \sigma_{K, n-1}^{o}\left(z^{*}\right) . \tag{27}
\end{equation*}
$$

If strict inequality holds then $z^{*} \in \mathcal{R}_{K}^{o}$ and the Grünbaum conjecture is valid for K : There are $n+1$ affine diameters that meet at z^{*}.

Remarks.

(A) Klee [1953] proved Grünbaum's conjecture under the condition $\mathfrak{m}_{K}\left(z^{*}\right)>n-1$. This is much more restrictive than (27) since $\sigma_{K, n-1}\left(z^{*}\right) \geq 1$ automatically holds.
(B) The geometric interpretation of the right-hand side in (27) follows from (22): $\sigma_{K, n-1}^{o}\left(z^{*}\right)$ is the infimum of $\sigma_{\Pi(K), n-1}^{o}\left(\Pi\left(z^{*}\right)\right)$ for all projections $\Pi \in \mathfrak{P}_{K, n-1}$ of K to hyperplanes in \mathcal{X}.
(C) Equality holds in (27) if K is symmetric (necessarily with center z^{*}). In this case the Grünbaum conjecture obviously holds.
(D) Let K be a convex body of constant width. By the remark after Theorem 3, Theorem 4 holds for the (nondual) mean Minkowski measure. Whether the respective inequality is strict or not depends on the (unique) critical point
$z^{*} \in K^{*}$ being regular or not. This, in turn, depends on whether z^{*} is in the convex hull of boundary points of K contained in a (proper) great subsphere of the circumsphere $\mathcal{S}_{R_{K}}\left(z^{*}\right)$. Note that the construction of raising the dimension for convex bodies of constant width shows that nonregular points can well occur; see [Lachand-Robert and Oudet 2007, Theorem 6].

Example. Let $K=\left\{(a, b) \in \mathbb{R}^{2} \mid a^{2}+b^{2} \leq 1, b \geq 0\right\}$ be the unit half-disk. A simple computation shows that \mathfrak{m}_{K} attains its minimum at the (unique) critical point $z^{*}=(0, \sqrt{2}-1)$. (See also [Hammer 1951].) We thus have $\mathfrak{m}_{K}^{*}=\sqrt{2}$, and, by Theorem 3, $\sigma_{K, 2}^{o}\left(z^{*}\right)=3 /(\sqrt{2}+1)$. Since $\sigma_{K, 1}^{o}=1$, in (27) strict inequality holds, in particular, $z^{*} \in \mathcal{R}_{K}^{o}$. (Note that the centroid $g(K)=(0,4 / 3 \pi)$ of K is different form z^{*}.) We claim that $\mathcal{R}_{K}^{o}=$ int Δ, where $\Delta=\left[x_{0}, x_{-}, x_{+}\right]$is the triangle with vertices $x_{0}=(0,1)$ and $x_{ \pm}=(\pm 1,0)$. Given $z=(a, b) \in \operatorname{int} K$ there may be at most three affine diameters passing through (a, b), those that also pass through x_{0}, x_{-}, and x_{+}. This immediately gives $\mathcal{R}_{K}^{o} \subset$ int Δ. For equality, let $z=(a, b) \in \operatorname{int} \Delta$ with $a \geq 0$ (by symmetry). Define $f_{0} \in \operatorname{aff}_{K}$ by its zero set the first axis, and let $f_{ \pm} \in \operatorname{aff}_{K}$ have its zero set the tangent line to the unit circle at the opposite $x_{ \pm}^{o}$ with respect to z. A simple comparison of ratios shows that $f_{-}(z)+f_{+}(z)<1$ and $f_{0}(z)+f_{+}(z)<1$. On the other hand, we have $1 /\left(\mathfrak{m}_{K}(z)+1\right)=\min \left(f_{0}(z), f_{-}(z)\right)$, and we obtain

$$
f_{0}(z)+f_{-}(z)+f_{+}(z)<1+\frac{1}{\mathfrak{m}_{K}(z)+1}
$$

Since $\left\{f_{0}, f_{-}, f_{+}\right\} \in \mathfrak{C}_{K}^{o}(z)$, a dual 2 -configuration, we see that z is a dual regular point. The claim follows.

A simple consideration of the affine coordinates associated to a simplex shows that the interior of a simplex consists of dual regular points only. (See Section 3.) In the other extreme it is natural to expect that the interior of a symmetric convex body does not have any dual regular points. This is indeed the case asserted by the following:

Theorem 5. In a symmetric body K there are no dual regular points.

Remark. The same holds for (nondual) regular points; see [Toth 2009, Theorem A]. This, however, does not imply Theorem 5 due to the fact that the duality in Theorem 2 is only pointwise.

Example. Let $K=\Delta \times I \subset \mathbb{R}^{3}$ be a prism, where $\Delta \subset \mathbb{R}^{2}$ is a triangle and $I \subset \mathbb{R}$ is a closed interval. Then there are no dual regular points in the interior of K. This shows that the converse of Theorem 5 is not true. In addition, since $\mathfrak{m}_{\Delta}^{*}=2$, we have $\mathfrak{m}_{K}^{*}=2$, and $\sigma_{K, 2}=1$ identically (since K has the triangular projection Δ). We see that equality holds in (27). On the other hand, through any interior points of K there are four affine diameters so that Grünbaum's conjecture holds for K.

This shows that in trying to remove the condition in (27) one needs to consider nonsymmetric convex bodies with no dual regular points. (As was pointed out by Hammer and Sobczyk [1951], K is a convex body with 1 -dimensional critical set K^{*}. In addition, for K equality holds in Klee's inequality showing that it is sharp.)

2. Duality via the musical equivalencies

We define the dual of a convex body $K \subset \mathcal{X}$ with respect to an interior point $z \in \operatorname{int} K$ as follows.

First, let $K_{0} \subset \mathcal{X}$ be a convex body with $0 \in K_{0}$, the origin in \mathcal{X}. We define the dual of K_{0} with respect to 0 as

$$
\begin{equation*}
K_{0}^{0}=\left\{u \in \mathcal{X} \mid \sup _{x \in K_{0}}\langle x, u\rangle \leq 1\right\} \tag{28}
\end{equation*}
$$

Clearly, $0 \in$ int K_{0}, and by the bipolar theorem, we have $\left(K_{0}^{0}\right)^{0}=K_{0}$.
The general case $(z \in$ int $K)$ is reduced to this by employing translations T_{v} : $\mathcal{X} \rightarrow \mathcal{X}, v \in \mathcal{X}$, where $T_{v}(u)=u+v, u \in \mathcal{X}$.

We first let $K_{0}=\left(T_{z}\right)^{-1}(K)$ (so that the point $z \in$ int K is moved to the origin $0 \in \operatorname{int} K_{0}$), and then define

$$
\begin{equation*}
K^{z}=T_{z}\left(K_{0}^{0}\right), \quad K_{0}=\left(T_{z}\right)^{-1}(K) \tag{29}
\end{equation*}
$$

Clearly, $z \in \operatorname{int} K^{z}$, and, by the above, we also have $\left(K^{z}\right)^{z}=K$.
The translations $T_{v}: \mathcal{X} \rightarrow \mathcal{X}, v \in \mathcal{X}$, act on the space of affine functionals $\operatorname{aff}=\operatorname{aff}(\mathcal{X})$ by $T_{v}^{o}: \operatorname{aff} \rightarrow \operatorname{aff}, v \in \mathcal{X}$, defined by $T_{v}{ }^{o}(f)=f \circ T_{v}^{-1}, f \in \operatorname{aff}$. Using the notations above, for $z \in \operatorname{int} K$, the linear map T_{z}^{o} restricts to $T_{z}^{o}: \operatorname{aff}_{K_{0}} \rightarrow \operatorname{aff}_{K}$, $K_{0}=T_{z}^{-1}(K)$, between the normalized affine functionals of the respective convex bodies. (Indeed, for $f_{0} \in$ aff K_{0}, we have $f_{0}\left(K_{0}\right)=T_{z}^{o}\left(f_{0}\right)(K)=[0,1]$.) Since, by (29), $K_{0}^{0}=T_{z}^{-1}\left(K^{z}\right)$, we also have the restriction $T_{z}^{o}: \operatorname{aff}_{K_{0}^{0}} \rightarrow \operatorname{aff}_{K^{z}}$.

In this spirit, the definition of the musical equivalencies

$$
b_{K, z}: \partial K \rightarrow \operatorname{aff}_{K^{z}} \quad \text { and } \quad \sharp_{K, z}: \operatorname{aff}_{K} \rightarrow \partial K^{z}
$$

can be reduced to

$$
b_{K_{0}, 0}: \partial K_{0} \rightarrow \operatorname{aff}_{K_{0}^{0}} \quad \text { and } \quad \sharp_{K_{0}, 0}: \operatorname{aff}_{K_{0}} \rightarrow \partial K_{0}^{0}
$$

by the formulas

$$
\begin{equation*}
\mathrm{b}_{K, z}=T_{z}^{o} \circ b_{K_{0}, 0} \circ T_{z}^{-1} \quad \text { and } \quad \sharp_{K, z}=T_{z} \circ \sharp_{K_{0}, 0} \circ\left(T_{z}^{-1}\right)^{o} . \tag{30}
\end{equation*}
$$

It remains to define the musical equivalencies for K_{0} with respect to $0 \in$ int K_{0} satisfying (3)-(6). For simplicity, we now suppress the subscript 0 and set $K=K_{0}$ with $0 \in \operatorname{int} K$.

For $x \in \partial K$, we let $x^{b}: \mathcal{X} \rightarrow \mathbb{R}$ be the affine functional given by

$$
\begin{equation*}
x^{b}(u)=\frac{1}{\lambda_{K}(x, 0)+1}(1-\langle x, u\rangle), \quad u \in \mathcal{X} . \tag{31}
\end{equation*}
$$

Evaluating this at the origin $0,(5)$ immediately follows.
The opposite of $x \in \partial K$ (with respect to the origin 0) is $x^{o}=-x / \lambda_{K}(x, 0)$. Replacing x by x^{o} in (31), a simple computation gives the first formula in (3). Now a quick look at the definition of the dual K^{0} in (28) shows that x^{b} is normalized for K^{0}. We conclude that the musical map $b: \partial K \rightarrow \operatorname{aff}_{K^{0}}$ is well-defined.

For $f \in \operatorname{aff}_{K}$, we write $f(u)=\langle A, u\rangle+a, A \in \mathcal{X}$ and $a \in(0,1)$ (since f is normalized). We then define

$$
\begin{equation*}
f^{\sharp}=-\frac{A}{a} . \tag{32}
\end{equation*}
$$

Since f is normalized, (28) shows that this point is on the boundary of the dual K^{0}. Once again, we obtain that the musical map $\#: \operatorname{aff}_{K} \rightarrow \partial K^{0}$ is well-defined.

Using (28) and (32) with $1-f$ in place of f, we obtain

$$
(1-f)^{\sharp}=\frac{A}{1-a}=\left(f^{\sharp}\right)^{o},
$$

and the second formula in (3) follows. Since $-A / a$ and $A /(1-a)$ are opposites in K^{0}, as a byproduct, we obtain (6).

Finally, it remains to show that the musical equivalencies are inverses of each other, that is (4) holds. Indeed, combining (31) and (32), we obviously have $\left(x^{b}\right)^{\sharp}=x, x \in \partial K$, and the first relation in (4) follows. For the second, letting $f(u)=\langle A, u\rangle+a$ as above and using (6), we have $\left(f^{\sharp}\right)^{b}(u)=a(1+\langle A, u\rangle / a)=$ $f(u), u \in \mathcal{X}$. The second relation in (4) also follows.

As a final preparatory step, as stated in the previous section, we need to work out the dual of an affine diameter. Let $\left[x, x^{o}\right] \subset K$ be an affine diameter with parallel supporting hyperplanes $\mathcal{H}, \mathcal{H}^{o} \in \delta K$ at both ends, that is $x \in \mathcal{H}$ and $x^{o} \in \mathcal{H}^{o}$. As above, we let $f \in \operatorname{aff}_{K}$ be the normalized affine functional with zero sets $\mathcal{H}=\{u \mid f(u)=0\}$ and $\mathcal{H}^{o}=\{u \mid 1-f(u)=0\}$. We have $f(x)=0$ and $f\left(x^{o}\right)=1$. Letting $0=z$ and $f(u)=\langle A, u\rangle+a, u \in \mathcal{X}$, as above, we have

$$
x^{b}\left(f^{\sharp}\right)=\frac{1}{\lambda_{K}(x, 0)+1}\left(1-\left\langle x,-\frac{A}{a}\right\rangle\right)=\frac{1}{a\left(\lambda_{K}(x, 0)+1\right)} f(x)=0,
$$

and

$$
\begin{aligned}
x^{\mathrm{b}}\left(\left(f^{\sharp}\right)^{o}\right) & =\frac{1}{\lambda_{K}(x, 0)+1}\left(1-\left\langle x, \frac{A}{1-a}\right\rangle\right) \\
& =\frac{1}{(1-a)\left(\lambda_{K}(x, 0)+1\right)}(1-a-\langle x, A\rangle)=1,
\end{aligned}
$$

since

$$
f\left(x^{o}\right)=\left\langle A, x^{o}\right\rangle+a=-\frac{1}{\lambda_{K}(x, 0)}\langle A, x\rangle+a=1 .
$$

We see that $\left[f^{\sharp},\left(f^{\sharp}\right)^{o}\right]$ is an affine diameter of the dual K^{0} with parallel supporting hyperplanes $x^{b},\left(x^{o}\right)^{b} \in \delta K^{0}$ at the endpoints.

We conclude that the dual of an affine diameter configuration is also an affine diameter configuration.

3. Proofs of Theorems 1-3

Proof of Theorem 1. We will show that $\sigma_{K, k}(z)=\sigma_{K^{z}, k}^{o}(z)$. Since $\left(K^{z}\right)^{z}=K$, this will imply the theorem.

We first claim that, for any $\left\{x_{0}, \ldots, x_{k}\right\} \subset \partial K$, we have

$$
\begin{equation*}
z \in\left[x_{0}, \ldots, x_{k}\right] \Longleftrightarrow \bigcap_{i=0}^{k}\left\{u \in \mathcal{X} \mid x_{i}^{\mathrm{b}}(u) \leq 0\right\}=\varnothing, \tag{33}
\end{equation*}
$$

where $b=b_{K, z}: \partial K \rightarrow \operatorname{aff}_{K^{z}}$ is the musical equivalence.
Without loss of generality, we may set $z=0 \in \operatorname{int} K$, the origin.
First, assume that $0 \in\left[x_{0}, \ldots, x_{k}\right]$, that is $\sum_{i=0}^{k} \lambda_{i} x_{i}=0$ with $\sum_{i=0}^{k} \lambda_{i}=1$, $\lambda_{i} \in[0,1], i=0, \ldots, k$. Assume there exists $u \in \mathcal{X}$ such that $x_{i}^{b}(u) \leq 0, i=0, \ldots, k$. By (31), this means that $\left\langle x_{i}, u\right\rangle \geq 1, i=0, \ldots, k$. Summing up, we obtain

$$
\sum_{i=0}^{k} \lambda_{i}\left\langle x_{i}, u\right\rangle=\left\langle\sum_{i=0}^{k} \lambda_{i} x_{i}, u\right\rangle=0 \geq \sum_{i=0}^{k} \lambda_{i}=1
$$

a contradiction.
Conversely, assume that $0 \notin\left[x_{0}, \ldots, x_{k}\right]$ so that 0 and the convex hull $\left[x_{0}, \ldots, x_{k}\right]$ can be (strictly) separated by a hyperplane $\mathcal{H} \subset \mathcal{X}$. A unit normal $N \in \mathcal{X}$ of \mathcal{H} then satisfies $\left\langle x_{i}, N\right\rangle>0, i=0, \ldots, k$. For $t>0$ large enough, we then have $\left\langle x_{i}, t N\right\rangle \geq 1$, $i=0, \ldots, k$. Thus, $t N$ belongs to the intersection $\bigcap_{i=0}^{k}\left\{u \in \mathcal{X} \mid x_{i}^{b}(u) \leq 0\right\}$. The converse follows.

The claim just proved can be reformulated as

$$
\left\{x_{0}, \ldots, x_{k}\right\} \in \mathfrak{C}_{K, k}(z) \quad \Longleftrightarrow \quad\left\{x_{0}^{b}, \ldots, x_{k}^{b}\right\} \in \mathfrak{C}_{K^{z}, k}^{o}
$$

Using (5), we now calculate

$$
\begin{aligned}
\sigma_{K, k}(0) & =\inf _{\left\{x_{0}, \ldots, x_{k}\right\} \in \mathfrak{C}_{K, k}(0)} \sum_{i=0}^{k} \frac{1}{\lambda_{K}\left(x_{i}, 0\right)+1}=\inf _{\left\{x_{0}^{\mathrm{b}}, \ldots, x_{k}^{b}\right\} \in \mathfrak{C}_{K^{z}, k}^{o}} \sum_{i=0}^{k} x_{i}^{\mathrm{b}}(0) \\
& =\inf _{\left\{f_{0}, \ldots, f_{k}\right\} \in \mathfrak{C}_{K^{z}, k}^{o}(0)} \sum_{i=0}^{k} f_{i}(0)=\sigma_{K^{z}, k}^{o}(0) .
\end{aligned}
$$

Remark. Dually, for $\left\{f_{0}, \ldots, f_{k}\right\} \subset \operatorname{aff}_{K}$, we also have

$$
\bigcap_{i=0}^{k}\left\{u \in \mathcal{X} \mid f_{i}(u) \leq 0\right\}=\varnothing \quad \Longleftrightarrow \quad z \in\left[f_{0}^{\sharp}, \ldots, f_{k}^{\sharp}\right] .
$$

This is the same as the equivalency asserted in (20). As a byproduct of the computation above we also see that under the musical equivalencies minimal configurations correspond to each other.

We turn to the proof of (22). Given a dual k-configuration $\left\{f_{0}, \ldots, f_{k}\right\} \in \mathfrak{C}_{K, k}^{o}$, let $\mathcal{E} \subset \mathcal{X}$ be a k-dimensional affine subspace containing the duals $f_{0}^{\sharp}, \ldots, f_{k}^{\sharp} \in \mathcal{X}$ (and, by (20), also z). We have $\left\{f_{0}\left|\mathcal{E}, \ldots, f_{k}\right| \mathcal{E}\right\} \in \mathfrak{C}_{\Pi(K), k}^{o}$, where $\Pi \in \mathfrak{P}_{k}$ is the orthogonal projection of \mathcal{X} to \mathcal{E}. The affine functionals $f_{i}, i=0, \ldots, k$, are constant along (the fibers of) Π, and we also have $\sum_{i=0}^{k} f_{i}(z)=\sum_{i=0}^{k}\left(f_{i} \mid \mathcal{E}\right)(z)$. We conclude that the infimum for $\sigma_{K, k}^{o}(z)$ in (22) can first be taken for dual k-configurations in $\mathfrak{C}_{\Pi(K), k}^{o}(\Pi(z))$ for a given $\Pi \in \mathfrak{P}_{k}$, thus yielding $\sigma_{\Pi(K), k}^{o}(\Pi(z))$, and finally followed by the infimum for all $\Pi \in \mathfrak{P}_{k}$. The claim follows.

Proof of Theorem 2. As noted previously, the bounds in (23) follow by duality via Theorem 1.

We now consider the upper bound in (23). Let $k \geq 2$, and assume that $\sigma_{K, k}^{o}(z)=$ $(k+1) / 2$. Dualizing, again by Theorem 1 , we have $\sigma_{K^{z}, k}(z)=(k+1) / 2$. Hence, K^{z} is symmetric with respect to z. Since duality (with respect to the center) preserves symmetry, we obtain that $K=\left(K^{z}\right)^{z}$ is symmetric with respect to z.

It remains to consider the lower bound in (23). Assume that, for some $k \geq 1$, we have $\sigma_{K, k}^{o}(z)=1$ at an interior point $z \in \operatorname{int} K$. Since $\sigma_{K, k}^{o}$ is a concave function on int K and, by (24), it assumes the value 1 on the boundary, we see that $\sigma_{K, k}^{o}=1$ identically on K.

If $k>n$ then, by arithmeticity and (23), we have

$$
1=\sigma_{K, k}^{o}(z)=\sigma_{K, n}^{o}(z)+\frac{k-n}{\mathfrak{m}_{K}(z)+1} \geq 1+\frac{k-n}{\mathfrak{m}_{K}(z)+1}>1 .
$$

This is a contradiction. Thus $k \leq n$. (Alternatively, again by duality, $\sigma_{K, k}^{o}(z)=$ $\sigma_{K^{z}, k}(z)=1$ so that $k \leq n$.)

For the last statement, let the infimum in (22) be attained at an orthogonal projection $\Pi \in \mathfrak{P}_{k}$ (onto a k-dimensional affine subspace), so that $\sigma_{\Pi(K), k}^{o}(\Pi(z))=1$. As before, $\sigma_{\Pi(K), k}^{o}=1$ identically on $\Pi(K)$. Let z^{*} be a critical point of $\Pi(K)$. By the obvious lower bound in (18) applied to the k-dimensional convex body $\Pi(K)$ (and z^{*}), we have

$$
\frac{k+1}{\mathfrak{m}_{\Pi(K)}^{*}+1} \leq \sigma_{\Pi(K), k}^{o}\left(z^{*}\right)=1 .
$$

This gives $k \leq \mathfrak{m}_{\Pi(K)}\left(z^{*}\right)$. By the Minkowski-Radon inequality, $\mathfrak{m}_{\Pi(K)}^{*} \leq k$, so that equality holds and $\Pi(K)$ is a k-simplex.

Example. An n-simplex $\Delta=\left[x_{0}, \ldots, x_{n}\right]$ with vertices $x_{0}, \ldots, x_{n} \in \mathcal{X}$ possesses a unique minimal dual n-configuration for any interior point, the affine coordinate system $\left\{f_{0}, \ldots, f_{n}\right\} \subset \operatorname{aff}_{\Delta}$ associated to Δ. (For $i=0, \ldots, n, f_{i} \in \operatorname{aff}_{\Delta}$ is the normalized affine functional that vanishes on the i-th face $\left[x_{0}, \ldots, \widehat{x_{i}}, \ldots, x_{n}\right]$ (opposite to the vertex x_{i}), and $f_{i}\left(x_{i}\right)=1$.) For $z \in$ int Δ with $z=\sum_{i=0}^{n} \lambda_{i} x_{i}$, $\sum_{i=0}^{n} \lambda_{i}=1, \lambda_{i} \in(0,1)$, we have $f_{i}(z)=\lambda_{i}, i=0, \ldots, n$. Since (16) obviously holds, we have $\sigma_{\Delta, n}^{o}(z) \leq \sum_{i=0}^{n} f_{i}(z)=\sum_{i=0}^{n} \lambda_{i}=1$. By (23), equality must hold. We see that $\left\{f_{0}, \ldots, f_{n}\right\} \in \mathfrak{C}_{\Delta, n}^{o}(z)$ is the (unique) minimal dual n-configuration for all $z \in \operatorname{int} \Delta$. As a byproduct, we see that all interior points of an n-simplex are dual regular, that is $\mathcal{R}_{\Delta}^{o}=\operatorname{int} \Delta$. (The same holds for (nondual) regular points.)

Remark. The previous example can be used to show directly that if $\sigma_{K, n}^{o}(z)=1$ then K is an n-simplex. This gives an alternative proof of the last part of Theorem 2 (for $\Pi(K)$ instead of K) without the recourse of the Minkowski-Radon theorem.

Assume $\sigma_{K, n}^{o}(z)=1$ for some $z \in \operatorname{int} K$. First, any minimal dual n-configuration of z must be simplicial. Indeed, otherwise a minimal dual n-configuration would contain a proper subconfiguration, and we would have arithmeticity: $1=\sigma_{K, n}^{o}=$ $\sigma_{K, n-1}^{o}+1 /\left(\mathfrak{m}_{K}(z)+1\right)>1$, a contradiction. Second, let $\left\{f_{0}, \ldots, f_{n}\right\} \in \Delta_{K}^{o}(z)$ be a minimal simplicial dual configuration. The corresponding n-simplex $\Delta=$ $\bigcap_{i=0}^{n}\left\{u \in \mathcal{X} \mid f_{i}(u) \geq 0\right\}$ contains K. For each $i=0, \ldots, n$, let $\tilde{f}_{i} \in \operatorname{aff}_{\Delta}$ be the normalized affine functional such that $\left\{u \in \mathcal{X} \mid f_{i}(u)=0\right\}=\left\{u \in \mathcal{X} \mid \tilde{f}_{i}(u)=0\right\}$. Now, assume that K is not a simplex. Then $f_{i}(z)<\tilde{f}_{i}(z)$ for some $i=0, \ldots, n$. We then have $1=\sigma_{K, n}^{o}(z)=\sum_{i=0}^{n} f_{i}(z)<\sum_{i=0}^{n} \tilde{f}_{i}(z)=\sigma_{\Delta, n}(z)=1$, where the last two equalities follow from the example immediately above. This is a contradiction, so that K must be an n-simplex.

Proof of Theorem 3. We first introduce some notation. We define

$$
\mathcal{M}(z)=\left\{x \in \partial K \mid \lambda_{K}(x, z)=\mathfrak{m}_{K}(z)\right\}, \quad z \in \operatorname{int} K,
$$

where $\mathfrak{m}_{K}:$ int $K \rightarrow \mathbb{R}$ is the maximal Minkowski ratio. Clearly, $\mathcal{M}(z) \subset \partial K$ is compact, and for every $x \in \mathcal{M}(z)$, the chord $\left[x, x^{0}\right]$ of K is an affine diameter. (This is an elementary fact; also noted in [Klee 1953, 3.2].)

We now turn to the proof, in which we will use several results of Klee [1953]. Let $\mathcal{N}\left(z^{*}\right)=\mathcal{M}\left(z^{*}\right)^{o} \subset \partial K$ be the opposite set of $\mathcal{M}\left(z^{*}\right) \subset \partial K$ with respect to z^{*}. Denote by \mathfrak{G} the family of closed half-spaces that intersect $\mathcal{N}\left(z^{*}\right)$ but disjoint from int K. Clearly, for each $\mathcal{G} \in \mathfrak{G}$, the boundary $\mathcal{H}=\partial \mathcal{G}$ is a hyperplane supporting K at a point in $\mathcal{N}\left(z^{*}\right)$. Conversely, for any hyperplane \mathcal{H} supporting K at a point in $\mathcal{N}\left(z^{*}\right)$, the closed half-space \mathcal{G} with boundary \mathcal{H} and disjoint from K belongs to \mathfrak{G}.

In a technical lemma, Klee [1953, 3.1] proved

$$
\bigcap \mathfrak{G}=\bigcap_{\mathcal{G} \in \mathfrak{G}} \mathcal{G}=\varnothing .
$$

Taking interiors, the family

$$
\mathfrak{I}=\operatorname{int} \mathfrak{G}=\{\operatorname{int} \mathcal{G} \mid \mathcal{G} \in \mathfrak{G}\}
$$

of open half-spaces is in Klee's terminology 0-closed. This means that, for any sequence $\left\{\mathcal{I}_{k}\right\}_{k \geq 1} \subset \mathfrak{G}$ which is Kuratowski convergent to a limit \mathcal{I}, we have $\operatorname{int} \mathcal{I} \in \mathfrak{G}$. (Note that, by definition, any Kuratowski limit is a closed set.)

We now need Klee's extension of Helly's theorem for 0 -closed families: If any $n+1$ members of an 0 -closed family has nonempty intersection then the interior of the intersection of all members of the family is nonempty (see [Klee 1953, 3.2]).

We apply this to our family \mathfrak{I} of open half-spaces above. Since $\bigcap \mathfrak{I}=\varnothing$ (as $\bigcap \mathfrak{G}=\varnothing$) we see that there are $n+1$ open half-spaces $\mathcal{I}_{0}, \ldots, \mathcal{I}_{n} \in \mathfrak{I}$ such that $\bigcap_{i=0}^{n} \mathcal{I}_{k}=\varnothing$.

Let $i=0, \ldots, n$. We select $x_{i} \in \mathcal{M}\left(z^{*}\right)$ such that the opposite $x_{i}^{o} \in \overline{\mathcal{I}}_{i}$ (with respect to $\left.z^{*}\right)$. Then $\left[x_{i}, x_{i}^{o}\right]$ is an affine diameter with $\lambda_{K}\left(x_{i}, z^{*}\right)=\mathfrak{m}_{K}\left(z^{*}\right)=\mathfrak{m}_{K}^{*}$. We let $f_{i} \in \operatorname{aff}_{K}$ be the (unique) normalized affine functional with zero set $\partial \mathcal{I}_{i}$. Since $x_{i}^{o} \in \partial \mathcal{I}_{i}$, we have $f_{i}\left(x_{i}^{o}\right)=0$ and hence $f_{i}\left(x_{i}\right)=1$. We calculate

$$
f_{i}\left(z^{*}\right)=\frac{d\left(x_{i}^{o}, z^{*}\right)}{d\left(x_{i}^{o}, x_{i}\right)}=\frac{1}{d\left(x_{i}, z^{*}\right) / d\left(x_{i}^{o}, z^{*}\right)+1}=\frac{1}{\lambda_{K}\left(x_{i}, z^{*}\right)+1}=\frac{1}{\mathfrak{m}_{K}^{*}+1} .
$$

Summing up, we obtain

$$
\sigma_{K, n}^{o}\left(z^{*}\right) \leq \sum_{i=0}^{n} f_{i}\left(z^{*}\right)=\frac{n+1}{\mathfrak{m}_{K}^{*}+1}
$$

On the other hand, by (18), the right side is an obvious lower bound for $\sigma_{K, n}^{o}\left(z^{*}\right)$.

4. Regular points and the Grünbaum conjecture

Let $K \subset \mathcal{X}$ be a convex body. Recall that $z \in \operatorname{int} K$ is a regular point if all minimal n-configurations in $\mathfrak{C}_{K, n}(z)$ are simplicial, that is they belong to $\Delta_{K}(z)$. Since minimal simplicial configurations do not contain any proper (necessarily minimal) subconfigurations, this condition can be conveniently reformulated in terms of the mean Minkowski measures: $z \in$ int K is regular if and only if in (10) strict subarithmeticity holds:

$$
\begin{equation*}
\sigma_{K, n}(z)<\sigma_{K, n-1}(z)+\frac{1}{\mathfrak{m}_{K}(z)+1} \tag{34}
\end{equation*}
$$

(For more details, see [Toth 2004].) Since the mean Minkowski measures are continuous, we see that the set of all regular points $\mathcal{R}_{K} \subset$ int K is open.

Let $z \in \mathcal{R}_{K}$ be a regular point, and $\left\{x_{0}, \ldots, x_{n}\right\} \in \Delta_{K}(z)$ a minimal simplicial configuration. Since z is in the interior of the n-simplex $\left[x_{0}, \ldots, x_{n}\right]$, by (9), for each $i=0, \ldots, n$, the distortion $\lambda_{K}(\cdot, z)$ attains a local maximum at x_{i}. It is well known that at local maxima of the distortion the corresponding chord (through z) is an affine diameter. (See, for example [Hammer 1951] or [Toth 2006].) We conclude that, for each $i=0, \ldots, n$, the chord $\left[x_{i}, x_{i}^{o}\right]$ is an affine diameter. Thus, at any regular point $z \in \mathcal{R}_{K}, n+1$ affine diameters meet.

In 1963 Grünbaum conjectured that any convex body has a common point of $n+1$ affine diameters. We see that if $\mathcal{R}_{K} \neq \varnothing$ then we have an affirmative answer to Grünbaum's conjecture: At any regular point $n+1$ affine diameters meet.

We turn to the dual scenario. Recall that a dual n-configuration $\left\{f_{0}, \ldots, f_{n}\right\} \in$ $\mathfrak{C}_{K, n}^{o}(z)$ is called simplicial if $\left\{f_{0}^{\sharp}, \ldots, f_{n}^{\sharp}\right\} \in \mathfrak{C}_{K^{z}, n}(z)$ is simplicial, where $\sharp=\sharp_{K, z}$: $\operatorname{aff}_{K} \rightarrow \partial K^{z}$ denotes the musical equivalence. As noted previously, geometrically speaking, a dual n-configuration $\left\{f_{0}, \ldots, f_{n}\right\} \in \mathfrak{C}_{K, n}^{o}(z)$ is simplicial if and only if $\bigcap_{i=0}^{n}\left\{u \in \mathcal{X} \mid f_{i}(u) \geq 0\right\}$ is an n-simplex with z in its interior. The set of dual simplicial configurations is denoted by $\Delta_{K}^{o}(z)$. By (20), for $\left\{f_{0}, \ldots, f_{n}\right\} \subset \operatorname{aff}_{K}$, we have

$$
\left\{f_{0}, \ldots, f_{n}\right\} \in \Delta_{K}^{o}(z) \quad \Longleftrightarrow \quad\left\{f_{0}^{\sharp}, \ldots, f_{n}^{\sharp}\right\} \in \Delta_{K^{z}}(z) .
$$

Recall that an interior point $z \in \operatorname{int} K$ is called dual regular if any minimal dual n-configuration in $\mathfrak{C}_{K, n}^{o}(z)$ is simplicial. The set of all dual regular points is denoted by $\mathcal{R}_{K}^{o} \subset$ int K. As in the dual case, $z \in \mathcal{R}_{K}^{o}$ if and only if

$$
\begin{equation*}
\sigma_{K, n}^{o}(z)<\sigma_{K, n-1}^{o}(z)+\frac{1}{\mathfrak{m}_{K}(z)+1}, \tag{35}
\end{equation*}
$$

in particular, $\mathcal{R}_{K}^{o} \subset \operatorname{int} K$ is open.
Now, comparing (34) and (35), Theorem 1 along with (7) gives (26).
Let $z \in \mathcal{R}_{K}^{o}$ be a dual regular point and $\left\{f_{0}, \ldots, f_{n}\right\} \in \Delta_{K}^{o}(z)$ be a minimal simplicial configuration. We have $z \in \mathcal{R}_{K^{z}}$, and, by Theorem $1,\left\{f_{0}^{\sharp}, \ldots, f_{n}^{\sharp}\right\} \in$ $\Delta_{K^{z}}(z)$ is a minimal simplicial configuration. By the discussion above, for each $i=0, \ldots, n$, the chord $\left[f_{i}^{\sharp},\left(f_{i}^{\sharp}\right)^{o}\right]$ is an affine diameter of K^{z}. Let \mathcal{K}_{i} and \mathcal{K}_{i}^{o} be parallel hyperplanes at the endpoints of f_{i}^{\sharp} and $\left(f_{i}^{\sharp}\right)^{o}$. Finally, let $g_{i} \in \operatorname{aff}_{K^{z}}$ be the normalized affine functional with zero sets $\mathcal{K}_{i}=\left\{u \in \mathcal{X} \mid g_{i}(u)=0\right\}$ and $\mathcal{K}_{i}^{o}=\left\{u \in \mathcal{X} \mid 1-g_{i}(u)=0\right\}$. By the discussion at the end of Section 2, for each $i=0, \ldots, n$, the chord $\left[g_{i}^{\sharp},\left(g_{i}^{\sharp}\right)^{o}\right.$] is an affine diameter of $K=\left(K^{z}\right)^{z}$, and the parallel supporting hyperplanes at the endpoints are given by the respective zero sets of the original affine functional $f_{i}=\left(f_{i}^{\sharp}\right)^{\mathrm{b}}$. Letting $x_{i}=g_{i}^{\sharp} \in \partial K$, we see that
the zero sets $\mathcal{H}_{i}=\left\{u \in \mathcal{X} \mid f_{i}(u)=0\right\}$ and $\mathcal{H}_{i}^{o}=\left\{u \in \mathcal{X} \mid 1-f_{i}(u)=0\right\}$ are parallel supporting hyperplanes of K with affine diameters $\left[x_{i}, x_{i}^{o}\right] \subset K, i=0, \ldots, n$.

We claim that the affine diameters $\left[x_{i}, x_{i}^{o}\right], i=0, \ldots, n$, are distinct. Assume that $\left[x_{i}, x_{i}^{o}\right]=\left[x_{j}, x_{j}^{o}\right]$ for some $i \neq j, i, j=0, \ldots, n$. (This means that this common affine diameter has two pairs of parallel supporting hyperplanes, $\mathcal{H}_{i}, \mathcal{H}_{i}^{o}$ and $\mathcal{H}_{j}, \mathcal{H}_{j}^{o}$.) Because $x_{i}=x_{j}$ or $x_{i}=x_{j}^{o}$, in the dual, we have $g_{i}=g_{j}$ or $g_{i}=1-g_{j}$. In particular, the affine diameters $\left[f_{i}^{\sharp},\left(f_{i}^{\sharp}\right)^{o}\right]$ and $\left[f_{j}^{\sharp},\left(f_{j}^{\sharp}\right)^{o}\right]$ of K^{z} share a single pair of parallel supporting hyperplanes, $\mathcal{K}_{i}=\mathcal{K}_{j}, \mathcal{K}_{i}^{o}=\mathcal{K}_{j}^{o}$, or $\mathcal{K}_{i}=\mathcal{K}_{j}^{o}, \mathcal{K}_{i}^{o}=\mathcal{K}_{j}$. On the other hand, in a minimal simplicial configuration of a regular point (such as $\left\{f_{0}^{\sharp}, \ldots, f_{n}^{\sharp}\right\} \in \Delta_{K^{z}}(z)$ with $\left.z \in \mathcal{R}_{K^{z}}\right)$ two affine diameters cannot share the same parallel supporting hyperplanes since otherwise we can slide one in the respective hyperplanes (along a line segment) to the other to obtain another minimal configuration with multiple points or a pair of antipodal points. These contradict regularity.

We conclude that if $z \in \mathcal{R}_{K}^{o}$ then $n+1$ affine diameters meet at z.
Proof of Theorem 4. Let $z^{*} \in K^{*}$ be a critical point of K. Subarithmeticity in (21) gives

$$
\sigma_{K, n}^{o}\left(z^{*}\right) \leq \sigma_{K, n-1}^{o}\left(z^{*}\right)+\frac{1}{\mathfrak{m}_{K}^{*}+1} .
$$

The equality in (25) of Theorem 3 reduces this to (27), and the first statement of Theorem 4 follows. Strict inequality holds if and only if $z^{*} \in \mathcal{R}_{K}^{o}$, a dual regular point. By the discussion above, this implies the existence of $n+1$ affine diameters across z^{*}. The second statement of Theorem 4 follows.

Proof of Theorem 5. Let K be a symmetric convex body with center z_{0}. Assume that $z \in \operatorname{int} K$ is a dual regular point. Since the center z_{0} is obviously not dual regular, we may assume that $z \neq z_{0}$. Let $\left\{f_{0}, \ldots, f_{n}\right\} \in \mathfrak{C}_{K, n}^{o}(z)$ be a minimal configuration. Since $z \in \mathcal{R}_{K}^{o}$, this configuration is simplicial. Fix $i=0, \ldots, n$, and, for simplicity, suppress the subscript and set $f=f_{i} \in \operatorname{aff}_{K}$. By the discussion before the proof of Theorem $4, K$ has an affine diameter $\left[x, x^{o}\right] \subset K$ with supporting hyperplanes $\mathcal{H}=\{u \in \mathcal{X} \mid f(u)=0\}$ and $\mathcal{H}^{o}=\{u \in \mathcal{X} \mid 1-f(u)=0\}$ such that $x \in \mathcal{H}$ and $x^{o} \in \mathcal{H}^{o}$. (Here the opposite is with respect to z.)

Let $A \in \partial K$ be the point at which the ray \mathfrak{r} emanating from z_{0} and passing through z meets the boundary of K. We claim that $\left[A, A^{\circ}\right]$ is an affine diameter of K, and, beyond A, this ray \mathfrak{r} enters into the half-space $\{u \in \mathcal{X} \mid f(u) \leq 0\}$. Since \mathfrak{r} is independent of $i=0, \ldots, n$, this means that the intersection in (16) is nonempty; a contradiction.

If x is on \mathfrak{r} then $A=x$ and we are done. Thus we may assume that the points x, z, and z_{0} are not collinear.

Let $x_{0}^{o} \in \partial K \cap \mathcal{H}^{o}$ be the opposite of x with respect to the center z_{0}. By symmetry, we have $\left[x^{o}, x_{0}^{o}\right] \subset \partial K \cap \mathcal{H}^{o}$.

Let $A_{1} \in \partial K$ be the opposite of x_{0}^{o} with respect to z. Moving along the line segment $\left[x^{o}, x_{0}^{o}\right]$ and taking the opposites (with respect to z), we see that $A_{1} \in \mathcal{H}$ since $f(z)$ is a local minimum in aff ${ }_{K}$. Since \mathcal{H} supports K, we have $\left[A_{1}, x\right] \subset$ $\partial K \cap \mathcal{H}$. We now define $A_{k}, k \geq 1$, inductively as follows. Assume that $A_{k} \in \partial K$ is constructed with $\left[A_{k}, x\right] \subset \partial K \cap \mathcal{H}$. We take the opposite of A_{k} with respect to z_{0} followed by the opposite with respect to z. This gives the point A_{k+1}. As before, we have $\left[A_{k+1}, x\right] \subset \partial K \cap \mathcal{H}$. The sequence $\left\{A_{k}\right\}_{k \geq 1}$ is actually collinear and converges to $A \in \partial K$ which then must be on \mathcal{H}. (In fact, an elementary argument shows that the sequence $\left\{d\left(A_{k}, A\right)\right\}_{k \geq 1}$ is geometric.) By construction, the chord $\left[A, A^{o}\right]$ is an affine diameter, where A^{o} is the opposite of A with respect to z. After A the ray \mathfrak{r} enters the open half-space $\{u \in \mathcal{X} \mid f(u)<0\}$. The claim follows.

Acknowledgement

The authors thank the referee for the careful reading and suggestions, which led to the improvement of the original manuscript.

References

[Bonnesen and Fenchel 1934] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Ergebnisse der Math. (3) 1, Springer, Berlin, 1934. Zbl
[Chakerian and Groemer 1983] G. D. Chakerian and H. Groemer, "Convex bodies of constant width", pp. 49-96 in Convexity and its applications, edited by P. M. Gruber and J. M. Wills, Birkhäuser, Basel, 1983. MR Zbl
[Eggleston 1958] H. G. Eggleston, Convexity, Cambridge Tracts in Mathematics and Mathematical Physics 47, Cambridge Univ. Press, 1958. MR Zbl
[Grünbaum 1963] B. Grünbaum, "Measures of symmetry for convex sets", pp. 233-270 in Convexity, edited by V. Klee, Proc. Sympos. Pure Math. 7, American Mathematical Society, Providence, RI, 1963. MR Zbl
[Guo and Toth 2016] Q. Guo and G. Toth, "Dual mean Minkowski measures of symmetry for convex bodies", Sci. China Math. 59:7 (2016), 1383-1394. MR Zbl
[Hammer 1951] P. C. Hammer, "Convex bodies associated with a convex body", Proc. Amer. Math. Soc. 2 (1951), 781-793. MR Zbl
[Hammer and Sobczyk 1951] P. C. Hammer and A. Sobczyk, "Critical points of a convex body", Bull. Amer. Math. Soc. 57 (1951), 127, Abstract 112.
[Jin and Guo 2012] H. Jin and Q. Guo, "Asymmetry of convex bodies of constant width", Discrete Comput. Geom. 47:2 (2012), 415-423. MR Zbl
[Klee 1953] V. Klee, "The critical set of a convex body", Amer. J. Math. 75:1 (1953), 178-188. MR Zbl
[Lachand-Robert and Oudet 2007] T. Lachand-Robert and E. Oudet, "Bodies of constant width in arbitrary dimension", Math. Nachr. 280:7 (2007), 740-750. MR Zbl
[Schneider 2014] R. Schneider, Convex bodies: the Brunn-Minkowski theory, 2nd ed., Encyclopedia of Mathematics and Its Applications 151, Cambridge Univ. Press, 2014. MR Zbl
[Soltan 2005] V. Soltan, "Affine diameters of convex bodies: a survey", Expo. Math. 23:1 (2005), 47-63. MR Zbl
[Soltan and Nguyên 1988] V. Soltan and M. H. Nguyên, "On the Grünbaum problem on affine diameters", Soobshch. Akad. Nauk Gruzin. SSR 132:1 (1988), 33-35. In Russian. MR Zbl
[Toth 2004] G. Toth, "Simplicial intersections of a convex set and moduli for spherical minimal immersions", Michigan Math. J. 52:2 (2004), 341-359. MR Zbl
[Toth 2006] G. Toth, "On the shape of the moduli of spherical minimal immersions", Trans. Amer. Math. Soc. 358:6 (2006), 2425-2446. MR Zbl
[Toth 2009] G. Toth, "On the structure of convex sets with symmetries", Geom. Dedicata 143 (2009), 69-80. MR Zbl

Received March 14, 2016. Revised June 9, 2017.

```
Qi GuO
DEpartment of Mathematics
Suzhou University of Science and Technology
Suzhou
China
guoqi@mail.usts.edu.cn
```

Gabor Toth
Department of Mathematics
Rutgers University
Camden, NJ
United States
gtoth@camden.rutgers.edu

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm
EDITORS
Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@ math.ucla.edu

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department
National University of Singapore
Singapore 119076
matgwt@nus.edu.sg

Sorin Popa

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari@math.ucr.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu
Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics University of California
Santa Barbara, CA 93106-3080 cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

aCADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
oregon state univ.

STANFORD UNIVERSITY
univ. of british columbia
UNIV. OF CALIFORNIA, BERKELEY
univ. of California, davis
UNIV. OF CALIFORNIA, LOS ANGELES
univ. of CALIFORNIA, RIVERSIDE
univ. of CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2018 is US $\$ 475 /$ year for the electronic version, and $\$ 640 /$ year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY

- mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 292 No. $1 \quad$ January 2018
New characterizations of linear Weingarten spacelike hypersurfaces in the 1de Sitter spaceLuis J. Alías, Henrique F. de Lima and Fábio R. dos Santos
Cellular structures using \boldsymbol{U}_{q}-tilting modules 21
Henning Haahr Andersen, Catharina Stroppel and Daniel Tubbenhauer
Meridional rank and bridge number for a class of links 61
Michel Boileau, Yeonhee Jang and Richard Weidmann
Pointwise convergence of almost periodic Fourier series and associated 81
series of dilates
Christophe Cuny and Michel Weber
The poset of rational cones 103
Joseph Gubeladze and Mateusz Michaeek
Dual mean Minkowski measures and the Grünbaum conjecture for affine 117 diametersQi Guo and Gabor Toth
Bordered Floer homology of ($2,2 n$)-torus link complement 139
JaEPiL Lee
A Feynman-Kac formula for differential forms on manifolds with boundary 177
and geometric applicationsLevi Lopes de Lima
Ore's theorem on cyclic subfactor planar algebras and beyond 203
Sebastien Palcoux
Divisibility of binomial coefficients and generation of alternating groups 223
John Shareshian and Russ Woodroofe
On rational points of certain affine hypersurfaces 239
Alexander S. Sivatski

[^0]: This work, including the stay of Toth in Suzhou, China, in January 2015, was supported by the NSF-China, No. 11671293. The authors declare that there is no conflict of interest.
 MSC2010: primary 52A05, 52A20; secondary 52A41, 52B55.
 Keywords: convex body, dual, Minkowski measure, affine diameter.

