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1. Introduction

In recent years, Heegaard Floer theory has fascinated many low-dimensional topol-
ogists. Developed by P. Ozsvath and Z. Szdbo, Heegaard Floer invariants of
closed three-manifolds led to a breakthrough in low dimensional topology. These
invariants were recently shown to be equivalent to three-dimensional Seiberg—
Witten Floer homology by Kutluhan, Lee and Taubes [Kutluhan et al. 2011]. They
were also proven to be equivalent to contact homology by Colin, Ghiggini and
Honda [Colin et al. 2011]; this equivalence had initially motivated Oszvath and
Szabd’s constructions. Moreover, Heegaard Floer theory turned out to be useful in
defining knot and link invariants; see [Ozsvath and Szab6 2004a; 2008a; Rasmussen
2002]. These invariants are now known as knot Floer homology and link Floer
homology. In particular, knot Floer homology and Heegaard Floer homology of a
three-manifold obtained by integral surgery on knot turned out to be closely related;
see [Rasmussen 2002; Ozsvath and Szab6 2008b]. For the link surgery case, the
relation was discovered but appeared more complicated than the knot case; see
[Manolescu and Ozsvath 2010].
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More recently, Lipshitz, Ozsvath and Thurston extended the theory to three-
manifolds with nonempty boundary. Bordered Floer homology, first introduced
in [Lipshitz et al. 2008], consists of two different modules: CFD and CFA. The
homotopy type of each module is a topological invariant of a three-manifold with
connected boundary equipped with a framing (a diffeomorphism to a model surface).
The bordered theory is a powerful tool thanks to the pairing theorem: one can recover
the Heegaard Floer homology of a closed 3-manifold decomposed into two pieces by
taking “Aso-tensor product” of CFA of the first piece and CFD of the second piece.

Moreover, Lipshitz, Ozsvéath and Thurston [Lipshitz et al. 2015] have generalized
bordered Floer homology to doubly bordered Floer homology. As the name suggests,
this is an invariant associated to a three-manifold with two boundary components; we
get three different types of bimodules, C/FEL\, C/FD\D and CFAA. These bimodules
are orginally invented to compute the bordered Floer homology of three-manifold
with different framings. However, the doubly bordered Floer homology also provides
an elegant algorithm to the compute Heegaard Floer homology of a closed three-
manifold [Lipshitz et al. 2014], independent of the previously known combinatoric
approach [Sarkar and Wang 2010].

In this paper, we give a calculation of C/FD\D(S3\1)(L)), where L is (2, 2n)-torus
link. For a number of reasons, we mainly focus on the CFDD module. First, it
is the easiest bimodule to compute since it does not involve any .4..-structure.
Second, it is always possible to convert the CFDD module to CFDA or @, by
attaching the @(H) module to the left or right side of the CFDD module. In
Section 2, we collect the necessary background and notation. The actual calculation
is in Section 3; the answer is shown in Proposition 3.9. (See also Figure 6 for a
(2, 6)-torus link case.) The simplified version of the answer is in Figure 8. We work
with a specific Heegaard diagram in order to find the generators and differentials of
the module explicitly. However, only a few of the differentials can be obtained by
the direct examination of their domains; for the remaining differentials, we have to
exploit the Aoo-structure of CFAA. Tn Section 4, we give several applications of the
pairing formula, recovering some known Floer homologies from our calculation, to
illustrate and check the result.

Some other calculations of bordered invariants for manifolds with disconnected
boundaries were recently obtained by Jonathan Hanselman [2016]. Hanselman
computes the C/F\D—type trimodule associated to the trivial S'-bundle over a pair
of pants, and uses this, together with certain features of the bordered theory, to
recover Heegaard Floer invariants of all graph manifolds. In principle, our results
can also be obtained via Hanselman’s approach (although he does not perform this
calculation); however, our calculations are based on a more direct examination of
the (2, 2n) link complement, and thus it is perhaps more useful for understanding
the bordered theory of more general link complements.
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2. Background on doubly bordered Floer theory

We will assume that the reader is familiar with bordered Floer homology of a single
boundary case. If not, we suggest the reader refer to [Lipshitz et al. 2011] for a
brief introduction to the topic. In this section, we list the definitions and important
results that will be used in the rest of the paper.

Algebraic preliminaries. Throughout this paper, we will use F to refer to [F,.

We first begin with the algebra associated to a boundary surface of a three-
manifold. In a handle decomposition of a genus g surface >8, the zero-handle D
of X8 has 2g marked points @ on d D = Z equipped with a two-to-one matching M
between the points so that each one-handle is attached to a pair of matched points.
We also fix a point z on Z away from a. This set of data is called a pointed matched
circle and denoted by

Z:{Z,a,M,Z}-

F (Z) denotes the surface obtained by the data and D C F(Z) is called a preferred
disk. The bordered Floer package associates a dg algebra to Z, which will be a
strands algebra, and denoted by A(Z).

Since we will be studying the torus boundary case, from now on we will assume
that the genus g of the boundary surface equals one. In this case, A(Z) is F,-vector
space generated by Reeb chords o, I € {1, 2, 3, 12, 23, 123} and two idempotents
t; and ¢, such that ¢; + ¢, = 1. The multiplication rule between Reeb chords
follows the concatenation rule of labels of chords; that is, p; - p;, = p;; where
I1,Je{1,2,3,12,23,123} and 1J is the concatenation of / and J. (If 1J is not
in that set, then their product is zero.) For idempotents, ¢, p; = p, if I starts with
Lor3, p;i;, = p; if I ends with 2, 1,p;, = p, if I starts with 2, and p;t, = p, if I
ends with 1 or 3. We let Z C A(Z) denote the subalgebra generated by idempotents
t; and t,. This strands algebra is called a torus algebra. A detailed description can
be found in [Lipshitz et al. 2008, Chapter 3].

Next, we will study a (right) A.-module and a (left) type-D module. For an
Axo-algebra (A, u;), an Ax-module is a F-module M, equipped with maps

m;:MQ A®=D 5
satisfying compatibility relations

0= Z mi(mj(x®a1 ®---®aj_1)®---®an—1)
i+j=n+1

n—j
+ Z Zmi(x®al®"‘®al—l®,Uvj(al®"‘®al+j—l)®'"®an—1)s
i+j=n+1 I=1
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for alli > 1. An Ay-module is strictly unital if
myx®)=x and m;(x®a® --Qa;—1) =0fori >2andsomea; =1.

In bordered Floer theory, an A,-module is called a fype-A module.
For a dg-algebra (A, 1, n2), a type-D module is a F-module equipped with a
map 8! : N — A ® N, satisfying the compatibility relation

0=(u2®Iy)o(la®8") 08" + (11 ®Iy) 08"

These modules are generalized to the following bimodules, namely a fype-AA
bimodule and a type-DD bimodule. In this paper, we will be mainly studying these
bimodules.

Definition 2.1. Let A and B be .A-algebras over [ equipped with A.-maps
{}i=0 and {8}~ 0, respectively. A right-right Aso-bimodule of type-AA bimodule
M 4 g over A and B consists of a right-right (F, F)-bimodule M and maps

my,j: M®A®i ®B®j — M
such that the following compatibility condition holds.

0= Z mi s (mig (X, a1®- - -Qaj, bi®- - -®by), aj41®- - -Qa;, by11®- - -Qb;)

k-+l=i
Atn=j
i—l+1
+ Y D miixra® Qa1 ®utan® - ®a 1) ®- - Qa;,
k+l=i+1 n=1 bl Q- - ®b])
Jj—n+l1
+ Z Zml,i,x(x,a1®---®ai,
=yl n=l b ® @b 1 ®uEBy® - ®byy_1)® - ®b))

foralli >0and j > 0.

By writing m =, jm1,i,j, the compatibility condition can be drawn as the
diagram below.

+ -3
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The dashed line above represents a module element, and the regular line represents
an element from tensor algebra 7*A and 7*B. The map A4 : T*A — T*AQT*A
represents the canonical comultiplication

n
AM@® - ®a) =) (18 Qapn) @ (@n1 ®- - Qay),

m=0

and DA : T*A — T*A is defined as
n n—j+l1
DY@ ®aN=) ) a1® - @ui@® ®a-1)® - Qdy.
j=1 =1

A8 and D?® are defined similarly.

Definition 2.2. Let A and B be A..-algebras over F. A left-left type-DD bimodule
A-B M over A and B consists of left-left (F, F)-bimodule M and maps

s'M—> AQBM
satisfying the following compatibility condition.
(15, 1)@ o (U4, 15)®8M) 08 +((uF, 15) @) 08 + (U4, uf)1p) 08" =0.

Again, the compatibility condition is drawn as the diagram below.

1 1 1l
s! s! st
| | |
+ | |
st o+ Lt =0
|
/l I I
j2%) [2%) : 25 : 251 :
L U ! v

Heegaard diagram of the bordered three-manifold. A bordered three-manifold is
a quadruple (Y1, Ay, z1, ¥1), where Y is a three-manifold with boundary, A is
a disk in 9Y7, z; is a point in dA(, and ¥ : (F(Z), D,z) — (Y1, A1, z1) is a
parametrization of boundary. That is , ¥ is a homeomorphism from F(Z) to 3Y;
sending D to A; and z to z;.

To describe a bordered three-manifold, we use a bordered Heegaard diagram.

Definition 2.3. A bordered Heegaard diagram is a quadruple H = (o, o, 8, 2)
consisting of

» a compact, oriented surface ¢ of genus g with a single boundary component;

« a g-tuple of disjoint circles B = {Bi, ..., B,} in the interior of &;
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e a g + k-tuple of disjoint curves & = a Ua® in &, where a¢ = {af, . . ., ag_k}
is a set of circles in the interior of &, and & = {af, ..., a3} is a set of arcs
whose boundaries are in 90,

 a point z in 95, away from the boundaries of arcs in a?,
such that 6\« and &\ 8 are connected, and & and B intersect transversally.

We construct a bordered three-manifold from a bordered Heegaard diagram H
in the following manner. First, we obtain a three-manifold with boundary Y (H)
by thickening & x [0, 1] and attaching a three-dimensional two-handle to each
a; x {0} x & and a three-dimensional two-handle to each ; x {1} x &. The boundary
of the resulting manifold is a genus k surface, and the surface is decomposed into a
disk D and a genus k surface with a single boundary by do x {1}. Then, we get a
bordered three-manifold (Y (#), D, z, 1), where i is determined by «“, which is
considered as parametrization data of the surface.

A bordered Floer package defines a type-D module C%(H) and a type-A
module @4(7—[) from a bordered Heegaard diagram 7{, which are well defined up
to quasi-isomorphism. Each module has a generating set G(#), whose element
x ={x1,..., X} is a g-tuple of points in & such that

« exactly one x; lies on each S-circle,
« exactly one x; lies on each «-circle and
e at most one x; lies on each «-arc.

To compute nontrivial differentials for the Floer theory, we will need to compute
holomophic curves in & x Iy x R;, where Iy = [0, 1] with parameter s and R, is R
with parameter . We will consider curves whose boundaries are on & x {1} x R,
and B x {0} x R;, asymtotic to x x Iy and y x I at t = 00 for x, y € &(H). Each
of the curves carries a relative homology class in the relative homology group

Hy (& x Iy x [—00, +00], (@ x {1}UB x {0} U ((05\z) x I})) x [—00, +-00])
U ((x x Iy x {—00}) U (y x Is x {+00}))).

We write > (x, y) as the set of these relative homology classes.

Note that for B € my(x, y), projecting B onto & gives an element in H, (o, ¢ U
B U dc). This is a linear combination of components of ¢\ (e U ). This linear
combination will be called domain. Typically a domain is written as a linear
combination of regions (connected subset of o\ (e U f)). In particular, if any
B € my(x, y) is meeting (05\z) x Iy X [—00, +00], then it can be interpreted as
the corresponding domain being adjacent to the boundary of &, and that gives a
sequence of Reeb chords p = (p,, ..., p,). We call (B, p) a compatible pair.

There is an operation *: 7 (x, y) X2 (y, z2) = m2(x, z), defined by concatenating
two homology classes in the ¢ factor. In particular, if > (x, y) is nonempty, then the
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action of mp(x, x) on m(x, y) is free and transitive. The domain of the element in
my(x, x) is called periodic domain. In addition, 7123 (x, x) denotes a set of periodic
domains not adjacent to the boundary. An element in n23 (x, x) is a provincial
periodic domain, and if every provincial periodic domain of a Heegaard diagram
has both positive and negative coefficients, then the Heegaard diagram is called
provincially admissible.

It is worth mentioning that

e if any B € m,(x, y) represents a holomorphic curve, then all the coefficients
of the domain of B must be nonnegative, and

« the operation * of two classes corresponds to the sum of the respective domains.

We sometimes blur the distinction between homology classes and their domains if
it does not cause confusion.

We define C%(H) as the following. Let X (H) be the F-module generated by
& (H) equipped with an action of Z C A = A(—2) (the negative sign means the
algebra obtained from the pointed matched circle has an orientation opposite from
the induced orientation of #) such that for any idempotent ¢ € Z,
x if the arc corresponding to ¢ is not occupied by x,

LRx =
{0 otherwise.

Then CFD(H) := A®7 X (H). Its differential 8! is defined as

slay= > Y al, -y

yeS(H) Bem(x,y)
where

alyi= ) #HMPx yip)a(-p).
{plind(B, p)=1}

Here, M5 (x, y; p) denotes the moduli space of holomorphic curves of B repre-
senting the compatible pair (B, p), and ind(B, p) the expected dimension of the
moduli space. In addition, for p = {p,, ..., p,} a sequence of Reeb chords, a(—p)
be the product a(—p,) - --a(—p,) € A. (Again, the negative sign means that the
orientation of the boundary d& is opposite from the induced orientation.)

The differential 8! may not be well defined. In fact, there may be infinitely
many homology classes in m;(x, y) if there is a periodic domain representing a
holomorphic curve. To prevent this, we will work on a Heegaard diagram such that
every periodic domain has both positive and negative coefficients. Such diagram is
called admissible, and it is shown in [Lipshitz et al. 2008, Proposition 4.25] that
every Heegaard diagram is isotopic to an admissible Heegaard diagram. (In fact,
the provincial admissibility also ensures the sum is finite since the concatenation of
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nonprovincial periodic domains of holomorphic curves produces an algebra element
that equals zero.)

The definition of CFA(H) is similar. CFA(#) is a F-module generated by & (H),
equipped with an action of Z C A(Z) such that

r® x  if the arc corresponding to ¢ is occupied by x,
L=
0 otherwise.
@4(7—[) is F-module X (H) generated by &, equipped with the A,.-module maps
mit1 : X(H)QRAZ)Q® - QAZ) > X(H)

i-times

such that
Ma1 (X, 01, p) = Y #HMP(x, yi )y,

YeS(H) Bem(x,y)
ind(B,p)=1

my(x, 1) :=x,
Mmyr1(x,...,1,...):=0, n>1.

Although these modules are defined via a specific Heegaad diagram #, it turns
out the homotopy type of these modules are well defined. Thus, they are modules
defined on bordered three-manifold (with single boundary).

Doubly bordered three-manifold. The bordered three-manifold is easily extended
to a three-manifold with two boundary components. A doubly bordered three-
manifold has the following data; (Y12, A1, Ao, 21, 22, Y1, ¥2, ¥). Y2 is an oriented
three-manifold with boundary F(2,) LI F(2,), A; is a preferred disk of surface
F(Z;), z; isapoint on d A;, and y; is a parametrization of F'(Z;), i =1, 2. Moreover,
y is an arc connecting z; and z,, equipped with a framing pointing into A;.

A doubly bordered three-manifold can be realized by a Heegaard diagram with
two boundaries, namely arced bordered Heegaard diagram with two boundaries.

Definition 2.4. An arced bordered Heegaard diagram H with two boundaries is a
tuple (X, a, B, 2) satisfying:

e 0 is a compact, genus g surface with two boundary components d;,6 and dgc;

e B is g-tuple of pairwise disjoint curves in the interior of &;
= L L L R ,R ,R - .

e a={a®t={al", ... a5 e R ={al"", ..., 05} 0" ={af, csag
is a collection of pairwise disjoint embedded arcs with boundary on 9,5 (the
otf’L), arcs with boundary on 0z (the otf’R), and circles (the o) in the interior
of o;

e zis apath in 6\ (e U ) between 0,0 and dgo,

such that & intersects B transversely, and \a and ¢\ 8 are connected.
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Since there are two boundaries, we have two pointed matched circles. These are

ZL(H) = (3,6, 0" ' N0,5, M, 2N 3L5),
Zr(H) = (0zG, a® RN 0RG, Mg, 2N 0R5).

The construction of a doubly bordered three-manifold is similar to the construc-
tion of a single boundary case. For an arced bordered Heegaard diagram H, cut
open the diagram along the arc z. The resulting diagram is a bordered Heegaard
diagram with a single boundary, which will be written as #4,. Then, construct a
bordered three-manifold Y (#4,). The boundary of Y (H,,) is a surface that can be
decomposed as a connected sum F (Z1)#F (Zg). Finally, attach a three-dimensional
two-handle along the connect sum annulus.

The three-manifold Y (H) := Y (H4,) U {two-handle} has the following properties.

o It has two boundary surfaces F'(Z;) and F(Z2g) with parametrization given
by a® and a® R, respectively.

o Each boundary surface has a preferred disk bounded by 9,5 or dga.
o Cutting open the Heegaard diagram # would result in two arcs z*+ and z~ on

the deleted neighborhood of z. Then, the arc z*, thought as a subset of the
boundary of Y (H4,), is the framed arc in Y (#) connecting z; and z;.

For an arced Heegaard dlagram ‘H, the type-DD bimodule CFDD(?—L) is defined
almost the same as in CFD. CFDD(H) is a left-left F-F-module generated by
S (Har), equipped with two left actions of Z; C Ay := A(—Z;) and Zgp C Ag :=
A(—2g) such that for ¢; € Z; and 1, € T,

x  if the arc corresponding to ¢; and ¢, are not occupied by x,

l; Qg Rx =
L=k {O otherwise.

Then CFDD(H) = A; ® Ag ® &(H,,) with the differential

slay= Y Y aly-y,

YeS(Har) Bema(x,y)
where
aly:= ) #MP@yiph pfNa(=p") @ a(=p").
L’pR
ind(B,pk,pR)=1
Similarly, a type-AA bimodule C/FA\A(H) is defined by a right-right F-F bimodule

generated by &(#H4,) with right-right actions of idempotents.

x  if the arc corresponding to ¢; and ¢, are occupied by x,

XQU Qup:i=
Ot Otx {O otherwise.
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The type-AA module maps are

Muimi1 (6, 005 pfopfs o)=Y Y #MPx, % %))y,
ye6&(H) Bem(x.y)
ind(B,pk p®)=1
Lastly, the expected dimension of the moduli space of MZ(x, y; p, p®), or
ind(B, p*, p%) is computed by the formula below.

ind(B, p*, p®) = e(B) +nx(B) +ny(B) + |p"| + 0% | + (") +1(p®),

where e(B) is Euler measure, ny(B) sum of average of local multiplicities sur-
rounding generator x, |p” | number of Reeb chords in the sequence p’, and ((p’)
linking number of sequence p*. In particular, if (B, p*, p%) is a provincial domain,
then the above formula reduces to

(1) ind(B, p", p®) = e(B) +nx(B) +ny(B).
See [Lipshitz et al. 2008, Definition 5.11] for a detailed explanation.

Pairing theorem. The type-A module and type-D modules can be paired, which
results in the classical Heegaard Floer homology of a closed three-manifold. The
original pairing theorem is given in [Lipshitz et al. 2008, Theorem 1.3]. For any
two three-manifolds Y; and Y, with 0Y; = F(2) = —0dY>,

@(Yl)éA(Z)C%(YZ) = CF(Y, Urz) 12)

where ® denotes the derived tensor product. The bimodule version of the pairing
theorem is also given in [Lipshitz et al. 2015]. If Y}, is a doubly bordered three-
manifold with boundary F(Z) LI F(Z,) and Y] is a bordered three-manifold with
boundary F'(Z;), then

C/F\D(Yl Urz) Yio) = @(Y])@A(ZI)CFDD(YQ).

There exists many other variations of the pairing theorem. Interested readers should
refer to [Lipshitz et al. 2015].

3. Computation of the bordered Floer bimodule of the (2, 2r)-torus link

Schubert normal form and diagram of 2-bridge link complements. As we will
mainly focus on 2-bridge links, it is useful to mention Schubert normal form of
a 2-bridge links (or knots). Let p be an even positive integer and g be an integer
such that 0 < g < p and gcd(p, g) = 1. Let us consider a circle with 2p marked
point on its boundary. Choose a point and label it ay. Label the other points
ai, ..., azp—1 in a clockwise direction. Then, connect a; and a;,_; with a straight
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ap laz las lag las ldg a7> ay lap las lag las lae lay
a8 98
o —|=l==l=l=1== o — = =l=1=I=1=1=
ais|ai4laiz|az|ai|daiolds dajsjaisfaz|az|a|ao|ds
Figure 1. Schubert normal form of the S(8, 3)-link, or L5al in
Thistlethwaite’s notation.
line,i =1, ..., p— 1. Finally, connect ag and a, with an underbridge, a straight

line that crosses below all of the other straight lines.

Now consider two copies of such circle. Draw arcs between these two circles
so that each arc is connecting a; on the left circle to a,_; on the right circle (the
labeling is modulo 2 p). These arcs should not intersect any of the straight lines
and arcs. The resulting diagram gives a link that we denote S(p, g). The diagram
is called Schubert normal form of the link. See Figure 1. By construction, the
diagram S(p, g) has exactly two component since every even-labelled point on the
right is connected to the odd-labelled point on the left (and the odd-labelled point
on the right to the even-labelled point on the left). In particular, S(2n, 1) is the
(2, 2n)-torus link. More detailed description, especially about the Schubert normal
form of 2-bridge knot can be found in [Rasmussen 2002, Chapter 2].

Heegaard diagram of 2-bridge link complement. Recall that a 2-bridge link L is
a link in S that admits a link diagram with two maxima and two minima. Let B;
and B, be small neighborhoods of those two maxima. Consider

(S*\VL)\(B1 U By).

Drilling a tunnel connecting B; and B, gives a three-manifold ¥ with single bound-
ary, and the boundary is a genus 2 surface. Also, the longitudes A; and Ay of the
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04
Pon—3 -

N J B2
\ Py /
o Py /
\ 05 %
Qo

Figure 2. A general diagram of the (2, 2n)-torus link. The domain
0Oy has a framed arc. The orientation on the boundaries is opposite
from the usual “right-hand” orientation.

o
Ron—3 _ J
Olg’L : ( Ql j
: 1
al |xi |x | [xan Q2’ é)’zrg—l N b
L@ Q JyZn—2|
1 .

left and right components of L are considered as curves on d(vL); therefore the
longitudes are also curves on the boundary of the drilled three-manifold.

The resulting manifold can be viewed as a handlebody with one zero-handle and
two one-handles attached to it. To get a bordered Heegaard diagram, we will apply
the following procedures on the boundary of the three-manifold. First, apply an
isotopy of the boundary surface so that the longitudes have the Schubert normal
form. Then, draw two circles 8; and §, on the boundary surface so that they are
parallel to the core of the one-handles on the boundary of the one-handles. Next,
draw the meridians @y and @y on the belt sphere of each one-handle. Finally, make
two punctures at the two intersections of meridians and longitudes and relabel A,
to ozi”L and g to ozg’L (respectively, Ag to ozf’R and pg to ag’R).

In particular, if L equals the (2, 2n)-torus link, then we can draw an arc z on the
surface connecting two punctures so that the arc is not intersecting & or 8 curves.
The resulting diagram of the (2, 2n)-torus link complement is given in Figure 2.

Remark 3.1. Readers should be aware that connecting the left and right punctures
with an (framed) arc is not always possible. In fact, a domain that is adjacent to both
punctures does not exist except for the (2, 2n)-torus link case. To fix this, choose
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nr or ug and apply a finger move on the chosen meridian along the longitude so
that the resulting puncture is on the domain that is adjacent to the other puncture.

Computation of the type-DD module differential. Now, we compute C/FD\D(H),
where H is the Heegaard diagram of the (2, 2n)-torus link complement constructed
in the previous section.

First, we will see whether the diagram # is provincially admissible. Second,
we will investigate the genus-zero rectangular domains that cause a nontrivial
differential. Then, using the result as a building block, we will consider domains
of higher genus and the moduli space of homolorphic curves of the domains. The
differentials associated to the higher genus domains are computed by .4.,-relations,
dualizing CFDD-bimodule to CFAA-bimodule.

Periodic domain. First, we investigate periodic domains 75 (x, x). It is well known
that mp(x, x) = Hy(Y (H), 0Y (H)) = Z & Z by the Mayer—Vietoris sequence. Thus,
there are two linearly independent periodic domains in the diagram. The proof can
be found in [Lipshitz 2006, Lemma 2.6.1] or [Lipshitz et al. 2008, Lemma 4.18].
In their proof, they use the isomorphism

o (x, x) = Hy (T x [0, 1], @ x {1}) U (B x {0])),

where ¥’ = (6/95)\{z}. The isomorphism given above is proved by investigating
the long exact sequence of pair (Z/ x [0, 1], (e x {1} U (B x {0})). That is,

o> Hy(B' % [0, 1]) — Ha (2 x [0, 1], (@ x {1}) U (B x {0}))
—
=0 — Hi (@ x {1) U (B x {0})) - Hi(Z).

Thus, the periodic domain x> (x, x) = ker(H1 (e/da)d H (B) — H, (6/85)). This
isomorphism enables us to find periodic domains from a bordered Heegaard diagram
by choosing combinations of & and 8 curves such that the sum of their image in
H{(6/00) equals zero. We briefly describe how to find the periodic domain from
such combinations. Explicitly, first choose any orientation on the longitude ozf’L
(af’R, respectively). This induces the orientation of 8; (8., respectively) as follows.
For example, if the orientation of oz‘ll’L is in a counterclockwise direction, then
the orientation of B; is from right to left in the diagram. Then, we impose the
coefficient zero to the outermost region that contains the framed arc. Starting from
the outermost region, we give coefficients to regions adjacent to it according to
the following rule. Suppose we have two adjacent regions A and B such that the
coefficient of A equals / and the coefficient of B is not determined. If we can reach
region B from region A by crossing a curve of multiplicity k£ from right to left
(notion of “left” and “right” is justified since we have orientation of curves), we
give the region B coefficient k + [; otherwise we give coefficient —k 4 /. If we can
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give coefficients to all regions consistently in this way, then the orientations given
to curves & and B is boundary in H,(c/30).

Since there are two possible choices of orientations of longitudes up to sign, we
find two generators of 7> (x, x). Then the periodic domains are

2n-3
Q3+ Qs+ Y i+ D(Pi+R)+(n+2)(Q1+ 0s) + (n+3) 0
i=1

and
2n—3 1+ (_1)1

7 (Pi—R;j)+ Q04— 0.

The two generators are shown in Figure 3.
Thus, this diagram is provincially admissible; in fact, there is no provincial
periodic domain here.

a +1
4 +2 I

L 0 J
+1 Y,

Figure 3. These two diagrams represents the two generators of
the periodic domain 7, (x, x), where the black dots represent left
and right punctures.
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Generators. According to the labeling given in the diagram, there are 21> + 2n
generators which are classified into four groups.

Xy where i and j have the same parity,
ay; where i is even,
x;b where i is even,

ay;,x;b wherei and j are odd.

From now on, we will disregard generators of the last group for the following reason.
The main purpose of the bordered Floer homology is to compute the Heegaard
Floer homology of a three-manifold obtained by gluing along the boundaries of two
three-manifolds with homeomorphic boundaries. In the link complement case, we
glue the link complement and solid tori. Typically, a bordered Heegaard diagram
of a solid torus is a genus one surface with a puncture, equipped with § = {8} and
o = {af, of}. In particular, these o arcs are glued to a?’L or " of the doubly
bordered diagram of the link complement, and every generator of the diagram of the
solid torus is occupying exactly one « arc. Therefore, after pairing two diagrams of
the solid tori to both sides of the diagram of the link complement, the generators of
the last kind cannot appear in the generator set of the resulting diagram.

The differential §' : G(H) — A(—3.5) ® A(—3x5) ® &(#) maps a generator
xeG(H)to Zp1®oj ®y,where I, J € {¢, 1, 2,3, 12,23, 123}. Here, p; means
an algebra element that comes from the left boundary strands algebra and o, the
right strands algebra. To investigate §' actions on generators, it is convenient to
classify the resulting terms by their strands algebra elements.

Algebra element 1. We begin by finding all provincial domains and show that only
rectangular domains contribute to the differential §'.

Lemma 3.2. Let (B, p) be a compatible pair with ind(B, p) = 1. If B is a nonrect-
angular domain, then p is nonempty.

Proof. Suppose there is a nonrectangular provincial domain B that has a nontrivial
contribution to differential §'. Then B must be a linear combination of R; and P;.
See Figure 2. The region covered by B must be connected, otherwise the number
of corners of B will be more than four. If a domain has more than four corners
then it cannot represent proper differential because the each of two generators of
the differential consists of two points. Therefore, B must be an annulus. Next, we
claim that the number of the corners of B must be two. This claim is justified by
considering the number of corners of different types. Since the number of corners
of any domain should not exceed four, there are only five possibilities, each having
i 90° corners and 4 — i 270° corners (i = 0, 1, 2, 3,4). Since the domain was
assumed to be provincial, it must be a combination of the regions Py, ..., Py,_3
and Ry, ..., Ry,_3. Considering the index formula e(B) +ny(B) +ny(B) of (1),
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the indices of the first three cases cannot be one. Likewise, we can easily rule out
the last case. The fourth case does not exist due to the following reason; because
the shape of the domain is an annulus, the 270° corner must be on the boundary of
the domain. Then, the other boundary must have two 90° corners. If not, i.e., if one
boundary component has all three 90° corners, then there cannot be a holomorphic
involution interchanging inner and outer boundaries. See [Ozsvath and Szab6 2004b,
Lemma 9.4]. Thus, one boundary has two 90° corners and the other boundary has
one 90° corner and one 270° corner. In particular, the boundary that has two 90°
corners should consist of one & curve and one 8 curve, and the intersections have
to be 90°. However, such a boundary cannot be obtained by any combination of

the domains in Figure 2. O

In Figure 2, regions P, ..., P»,_3 and Ry, ..., Ry,_3 are the only ones not
adjacent to the boundaries. Thus, rectangular domains obtained by combining these
regions are the only provincial domains. Fori =1, ...,2n—3and [ <(2n—-5-1)/2,

the combinations have the form

I !
P + Z Riviyon + Pipoyor,  Ri+ Z Pit112k + Riyoqor,
k=0 k=0
I I
P+ Z Pipipor+ Pigogor, Ri+ Z Riti4ok + Rijotox
k=0 k=0

All of these domains are rectangular with four corners and each of these domains
admits a unique holomorphic representative (up to translation) by the Riemann
mapping theorem. The labellings of the corners tell which generators are involved.
For example, the domain P; has four corners x;, x; 1, yi+1 and y;4; due to the
orientation convention, this domain contributes to a differential from x; y; 1, to
X;+1Yi+1. We can write the terms with algebra element 1 obtained by taking
differential of x; y;:

Xj1Yit1+Xxip1yj—1 if j—i>2,
Xjt1Yi-1txi1yj+1 ifi—j>2,

(2) Xiyj > {Xit1yj-1 if j—i=2,
Xi—1Yj+1 ifi—j=2,
0 ifi=].

Algebra elements p, and o,. First, consider the algebra element p,. Domain Q3 is
adjacent to the Reeb chords of algebra element p,. Note that if the multiplicity of the
domain Qs is greater than 1, then it cannot contribute to the nontrivial differential.
(If so, then it will produce the algebra element p, - p,, which equals zero.) We list



BORDERED FLOER HOMOLOGY OF (2,2r)-TORUS LINK COMPLEMENT 155

the possible domains that result in nontrivial differentials:

l I
Q3+ Pra+Pru and Q3+ Y Ripor+ Pryak,
k=0 k=0
where [ <n —2.
All such domains are rectangular domains containing Q3. These domains are all
quadrilateral, and the dimension and the modulo two count of the moduli spaces
are obvious. The differentials obtained from these domains are listed below.

P ® (x1y2u—1+Xu—1y1) ifk#1,

ayy —
Yk {,01 K X1 ) otherwise.

Differentials involving o, can be found in a parallel manner, by using the sym-
metry of the diagram.

0, ® (xpp—1y1 +x1y0-1) ifk#1,

xzkb d .
o, ®x1y1 otherwise.

Algebra elements py and o5. Similarly, domains adjacent to p; are all listed

I !
01+ Z Ron—ok—3+ Royp—2k—4 and Q1+ Z Poy_ok—3+ Rop—2k—a4,
k=0 k=0

where [ <n —2.
Domains adjacent to o are similar. We get the differentials below:

{/03®(x2k+1y2n—1 +xon-1yu+1) ifk#Fn—1,

ayy — .

P3 ® X2n—1Y2n—1 otherwise;

Xoub s {03®(x2n1y2k+1 +X2%k+1Y2m—1) if k 757.1— L,
03 @ X2u—1Y2m—1 otherwise.

Algebra element p, ® 0,. The domain Q> adjacent to p, is adjacent to o, as well.
So, this is the one and only domain where the algebra element p, ® o, occurs. Thus,
we have x2,_1Y2,—1 — p, ® 0, ® ab.

Algebra elements p; @ o, and p; ® 0. There are two domains which contribute
to p3®al;thoseare Oi1+Ri+Ry+---+Ry, 3+Qsand Q1+ Pi+ Ry + P+
R4+ -+ Royp—4+ Pay—3+ Qs. This gives ab > p; @ 0 ® (X1 Y201+ X20-1)1)-
Again, using the symmetry of the diagram, ab — p; ® 03 ® (X1 y2,—1 + X2,—1Y1)-

Now, we will work on differentials whose domains are nonrectangular. To find
holomorphic curves of such domains, we will consider C/FA\A(H, 0) so that we can
use the A-structure of it and ensure the existence of holomorphic curves and their
count (modulo two).
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Algebra element containing p,,. To take advantage of the A.-structure of ETA\A,
the orientation of two boundaries of the Heegaard diagram has to be reversed.
We let p; denote (respectively, &) the algebra element of the left strands algebra
A(Z) (respectively, the right strands algebra); that is, an orientation reversing
diffeomorphism R : —S'\{z} — S'\{z} induces a map R, : A(—Z) — A(Z2) that
maps R.(p,) = p3, R«(0,) = p2, R«(p3) = p1, and so on. The right boundary is
similar.

Returning to @, the domains contributing to p,, must contain Q, and Q3.
Clearly O, + Q3 has more than four corners, so we will consider O, + Q3+ Q4
instead to get the domain of four corners. This domain possibly contributes to the
differential from x;,_» y» to x; y;. The only possible Maslov index one interpretation
is M(x2,—2y2, X1¥1; P23, 012) (there can be cuts between p; and p3, and &1 and
07, but these cuts will increase the Maslov index by one). Under the interpretation,
the domain is an annulus with one boundary consisting of two segments of a
curves and two segments of B curves, and another boundary consisting of & curve
only. In the sense of [Ozsvith and Szabé 2004b, Lemma 9.4], such an annulus
cannot allow a holomorphic involution that interchanges one boundary with another,
carrying & curves to « curves and f curves to 8 curves. Thus, the moduli space
M(X2,-2Y2, X1Y1; P23, 012) cannot give a nontrivial differential. Domains such as
02+ Q34+ Q4+ P+ Pyor Qs+ Q3+ Q4+ Ry + P> can be considered similarly
to 0> + O3+ Q4. In fact, they do not contribute to the nontrivial differential as
long as the shape of the domain is topologically equivalent to Q; + Q3 + Q4.

There are two domains possibly giving a nontrivial differential; they are O, +
O3+ P +--+Pys3+Qsand Qo+ Q03+ R+ P+ + Roy—3+ Q4. We
will consider the domain Q, + Q3 + Py + -+ - + P>,_3 + Qg4 first. It has three
interpretations. Each of the interpretations comes from the choice of cuts made
on the boundary of the domain. Cuts are allowed where the domain has 270° or
180° corners, or a point on the boundary intersecting & curve. (Detailed discussions
of domains and their cuts can be found in [Lipshitz et al. 2008, Chapter 6]. An
interested reader may also want to see [Lipshitz et al. 2009] for more examples.)
Thus, the domain Q; + Q3+ P+ - - -+ P>,—3 + Q4 has two points that possibly
allow cuts; a point between p, and p,, and a point between o, and o;. Of course, it
may not have any cuts at all. We list the moduli spaces of these interpretations as
below:

o M(ayz,—1,ay1; p3, 02,012),
o M(X24—1Y20—1, X2n—1Y1; P23,02,51),
o M(X2k—1Y2n—1, X2k—1Y1; P23, O12).

First, we will consider M (x2k—1¥21—1, X2k—1Y1; P23, 012)-
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Lemma 3.3. The modulo two count of the moduli space

M(X2%—1Y20n—1, X2k—1Y15 P23, 012)
is zero.

Proof. We will compute the signed number of the moduli space by considering the
following A.-compatibility condition.

0 =mm(xX2%—1Y21-1), P2, 3, 012) +m(Mm(X2k—1Y20—1, P2)> P3,012)
+m(m(Xok—1Y2n—1, 012), P2, p3) +m(X2k—1Y20—1, L (P2, P3), O12)
+m(m(Xok—1Y2n—1, P2, 012), p3) + m(m(X2k—1 Y201, P2, 3, 012))-

The right-hand side of the equation above consists of six terms. The second term
vanishes because m(x2x—1y2,—1, p2) does not have the algebra element ¢, (note
that domain Q, is adjacent to p; and ;). Similarly, the third term vanishes
since m(Xx—1Yan—1,012) has &1 as its input but lacks p,. The last term also
vanishes because the Maslov index is not one. Replacing (03, p3) = p23 and
M (Xok—1Yan—1) = X2n—2 Y2k +Xox Y2n—> (€quation (2)), the above equation is reduced
as follows.

0 =m(x2.-2Y2%, P2, P3, 012) +m(X2% Y20—2, P2, P3,012)
+m(X2k—1Y2n—1, P23, 012) + m(m(X2k—1Y2n—1, P2, G12), P3).

The first term on the right-hand side corresponds to the moduli space

M(X2n-2Y2k, X2%—1Y15 P2, P3,012),

whose Maslov index is not one. The second vanishes because any domain con-
taining 0> + O3 + Q4 cannot have corners that contain x,; and y,,_». The last
term also vanishes because the moduli space M (x2x—1Y2,—1, @yax; P2, 012) has
no holomorphic representative since the domain is an annulus and does not al-
low holomorphic involution, so m(xx—1Y2,—1, P2, 012) = 0. Hence, we have
m(X2k—1Y2m—1, P23, 012) = 0 and #FM (X2 —1 y2n—1, X2k—1¥1; P23, 012) = 0 modulo
two. ([l

The second interpretation is M (x2,—1 ¥2,—1, X2n—1Y1; P23, 02, 01). The domain
is an annulus; each boundary consists of one & curve segment and one 8 curve
segment. The modulo two count of the moduli space can be computed by a similar
computation above.

Lemma 3.4. The modulo two count of the moduli space
M(X2n—1Y2n-1, X20—1Y1; P23,02,01)

is one.
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Proof. Again, we will consider the Ay,-compatibility relation as below:

0 = m*(X21—1Y2n—1. P2, P3, 52, 51)
=m(m(X2p—1Y2n—1), P2, 3, 02, 01)+m(X2p—1Y2u—1, #(02, 03),02,01)
+m(m(Xon—1Yon—1, P2, 02), 3, 01)+m(m(X2u—1Y2u—1, P2, £3), 02,01)
+m(m(xX2,—1Y2n-1, 02, 01), P2, p3)+m(m(X2n—1Y2m—1, P2, P3,02),01)

+m(m(xX2,—1Y2m-1, p2,02,01), p3)+m(m(X2,—1Y2n—1, P2, P3,02,01)).

We have m(x3,—1y2,—1) = 0O since there is no provincial domain connecting
X2,-1Y2n—1, SO the first term on the right-hand side vanishes. The fourth term
also vanishes because m (x2,—1¥Y2,—1, P2, p3) = 0 (domain Q5 is adjacent to both
02 and &;). For the same reason, the fifth term vanishes.

In the sixth term, m(x2,—1Y2,—1, P2, 03, 02) does not represent a domain with
four corners. Recall that a domain that involves p, and p3 must have ;. Thus,
the sixth term vanishes. Similarly, the seventh term also vanishes. We have
m(X2u—1Y2n—1, P2, 03, 62, 61) = 0 when considering the Maslov index.

Then the above compatibility relation is reduced to

m(X2,—1Y2n—1, P23, 02, 01) +m(m(X2,—1 Y241, p2,02), p3,01) =0

The second term on the left-hand side equals x5,_1y; + x1y2,—1. This implies
modulo two count of the moduli spaces M (x2,—1Y2n—1, X2n—1¥1; P23, 02, 01) and
M(X2,-1Y2n—1, X1Y20—1; P23, 02, G1) equal one. g

However, idempotents of the type-DD module prohibit a nontrivial differential
from moduli spaces considered above. Explicitly,

61(x2n—1y2n—1) =P, R0 ®X—1y1+- -
=Pl ® 03 @ X2p—1y1+ -
=P ®0p3 @ Xon—1y1+ .
Recall that ¢, x2,—1y1 = 0 since x2,_1y; occupies ozf’L and the idempotent ¢, also
occupies the same «-arc.

The third interpretation is M(ay»,—1, ayi; p3, P2, 012). This is again an annulus
and one of its boundaries has two « curve segments and two B curve segments,
thus it cannot give a nontrivial differential either.

Next, we will consider domain Q4+ Q3+ R;+ P>+ - -+ R2,_3+ Q4. Possible
cuts may arise from a point between o, and o;. The possible interpretations are

o M(X2n—1Y20—1, X1Y20n—15 P23, 02, 01),

o M(X20—1Y2k—15 X1Y2%k—1; P23, O 12)-
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By the above lemma, the modulo two count of the first moduli space is one, but
because of idempotents, it cannot give a nontrivial contribution to the differential.
The second moduli space has modulo two count zero by a similar computation in
Lemma 3.3 or Lemma 3.4.

Algebra element containing p,;. Roughly speaking, the domains that possibly
contribute to the algebra element p,, are obtained by adding regions to the domain
01 + 0> so that the resulting domain has at most four corners.

We will consider these domains by classifying them into three cases.

Case 1. We will first consider the following annular domains:

(3) 01+ 0,

4) Q1+ Q2+ Qs+ Ryy3+ P34+ Roys,
i
(5) Q1+Q02+ Q4+ Ro2k3+Po2k3+Ronok—a+Prok—a+Rop 23,
k=0
where 1 </ <n — 2. (Basically, these domains are obtained by adding an even
number of regions to the top and bottom of Q1+ 0>.)

We will first consider the domain Q| + @». The domain can be interpreted
as M(ayz,—2,ab; p12,52). Again, the modulo two count of the moduli space
can be computed by using the Ano-relation of m?(ay,_s, p1, p2, 72). Recall that
m(ay—2, p1) = X2q—1Y2,—1 and m(x2,1y2,—1, p2, 62) = ab since the associated
domains are rectangular.

0 = m(m(ay2n727 151)9 52’ 62) +m(ay2n727 (1519 52)’ 62)
+m@m(ay,—2,02), p1, P2)
=ab+m(ayy,—2, p12,02) + m(m(ay,—2,62), p1, P2).

The last term on the right-hand side equals zero because m (ayz,—>, 62) =0 (domain
Q> is adjacent to Reeb chords p, and ,). This implies m(ay»,—2, p12, 02) = ab,
hence #M(ays,—2, ab; p2,02) = 1.

Remark 3.5. An annulus domain of this kind (i.e., an outside boundary consisting
of both & and B curves and an inside boundary of & curve only, including a cut on
the inside boundary) always admits a holomorphic representative; since we are free
to choose the length of the cut starting from the point so that the annulus admits a
biholomorphic involution of it, again in the sense of [Ozsvath and Szabd 2004b,
Lemma 9.4].

The moduli space M(ayz,—2, ab; p12,52) = M(ayz,—2, ab; p,;, 0,) correspond-
ing to p,; ® 0, ® ab term occurs in 8!(ay»n—») in CFDD. However, the right-hand
side is zero because of the idempotents.
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Likewise, the second and third domains (see (4) and (5) on the previous page)
allow the following interpretations:

o M(ayzj,ayrj+2; p12,02,01),

o M(ayzj,ayrji2; P12, 012).
First, #M(ay,;, ay>j+2; p12, 02, 01) = 1 modulo two for reasons similar to those
described in Remark 3.5. These contribute to the differential between generators
ay,; and ay,;., with an algebra element containing p,;, but all going to zero
because of idempotents. (Similarly, # M (ab, ay,; p12, 03,02, G1) = 1, but it does
not affect the differential because of idempotents.)

Second, #M(ay»;, aysj+2; p12,012) = 0 modulo two. It can be proved by
considering the following A..-relation:

0=m@m(ayzj, p12,01,02)) + m(m(ayz;,o01), p12,02)
+m@m(ayz;, p12),01,02) +m(m(ayzj, p12,01),02)+m(ayz;, p12, (01,02)).

The term m(ay,;, p12, 01, 62) = 0 since Maslov index is not one. We have that
m(ay>j, p12) and m(ay,;, p12,01) equal zero because 6, was not involved and
there is no such domain corresponding to these interpretations. From the diagram,
it is clear that m(ay,;, 1) = 0. Thus, the last term m(ay;;, p12, (01, 02)) =
m(ayj, P12, 012) equals zero, too.

Case 2. Next, we will consider the following domains:

I
014+ 02+ Y Poum—ok—3+ Ron—ok—a+ Pan_2i—s,
k=0

I
Q1+ Q02+ Qs+ D> Pry—ok—3+ Ron—ok—a+ Prp_2—5s
k=0

m
+ > Rop—2k—3+ Pan—2k—a + Rop—2m—s,
k=0

1 m
Q1+ Q2+ Q04+ > Pypok—3+Rop—ok—4+ Y Rop—ox—3+ Pry—2k—4, and
k=0 k=0

n—3 m
Q1+ 02+ 04+ 05+ ) Pr—ok—3+ Rop—ok—a+ D Rop—ok—3+ Pary_2k—a,
k=0 k=0

where 0 </, m <n — 3. These domains are obtained by adding a topologically rect-
angular domain containing Q1+ Q, and another rectangular domain containing Q4.
The first domain can have a cut at a point between p, and p;. The interpretation

M(X2k—1Y2n—1, X2ub; P2, p1,02)

is essentially a rectangle so modulo two count of the corresponding moduli space
is one. The second domain can have cuts at two different points; a point between
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p, and p;, and a point between o, and ;. Considering the interpretation that
has only one cut, the domain is an annulus with one of its boundary consisting
of two a curve segments and two B curve segments, which does not allow any
holomorphic representative. If the interpretation has both of the cuts, then it is also
a rectangular domain of the moduli space M (xax—1y2—1, X2k Y215 P2, P1,02,01).
Dualizing them, they yield a nontrivial differential of algebra elements p,; ® o,
and p,3 ® 0,5 for the type-D structure map 8! in CFDD.

Remark 3.6. Both of the domains considered above have interpretations without
any cut. However, those interpretations do not have a holomorphic representa-
tive. For example, we can see that the modulo two count of the moduli space
M (Xop—1Y2—-1, X2k Y215 P12, O12) equals zero by considering an A..-relation similar
to that discussed in Lemmas 3.3 and 3.4.

The third domain has almost the same interpretation; the only meaningful one is

M(X21 Y2k, X211 V24415 P2, P1,02,01).

Again, this interpretation is rectangular and modulo two count of the moduli space
is one.
The last domain has two interpretations with Maslov index one. They are

M(xyb, x2141y1; p2, P1,03,02,01)
and

M(x2b, X2111y1: P2, P1,T123).

The first interpretation is clearly a rectangle. However, the second one is topo-
logically a punctured torus. To count the signed number of the moduli space, we
investigate the .A..-relation m?(xyb, 02, p1,012,03) =0.

Lemma 3.7. The modulo two count of the moduli space
M(x2b, X2141y15 P2, P1, T123)
is one.
Proof. Disregarding all terms that equal zero, the relation is reduced to
m(xb, p2, p1,6123) + m(m(xyb, p2, p1,012),03) =0.

m(xyb, p2, p1, 512) = X21+2b because the corresponding domain is an annulus as
in Remark 3.5. Thus, the relation is reduced to

m(xyb, p2, p1, 0123) + m(x242b, 53) = 0.
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J

Figure 4. A diagram of the (2, 6)-torus link complement. The
shaded region is a domain obtained by adding a rectangular domain
to 0>. This domain corresponds to a differential from x; y3 to x,y;.
Cutting along the bold curve on the boundary of the domain, the
domain turns out to be rectangular.

The second term of the right-hand side is clearly x2;+1y1 + X1 y2;+1. This implies
modulo two count of the moduli space

M(x2b, X2141y15 P2, P1, G 123)
equals one. ([

Therefore, the two interpretations of the last domain result in the two same
terms 0,3 ® 053 ® X211 y1 in the CFDD module; so they do not contribute to the
differential.

Remark 3.8. Lemma 3.7 also proves that modulo two count of

M(x2b, x1Y21+1; P2, P1,T123)
also equals one.

Case 3. Domains that possibly contribute to a differential w