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A FEYNMAN–KAC FORMULA FOR DIFFERENTIAL FORMS
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AND GEOMETRIC APPLICATIONS

LEVI LOPES DE LIMA

We establish a Feynman–Kac-type formula for differential forms satisfying
absolute boundary conditions on Riemannian manifolds with boundary and
of bounded geometry. We use this to construct L2-harmonic forms out of
bounded ones on the universal cover of a compact Riemannian manifold
whose geometry displays a positivity property expressed in terms of a cer-
tain stochastic average of the Weitzenböck operator Rp acting on p-forms
and the second fundamental form of the boundary. This extends previous
work by Elworthy, Li and Rosenberg on closed manifolds to this more gen-
eral setting. As an application we find a new obstruction to the existence
of metrics with positive R2 (in particular, positive isotropic curvature) and
2-convex boundary. We also discuss a version of the Feynman–Kac formula
for spinors under suitable boundary conditions and use this to prove a semi-
group domination result for the corresponding Dirac Laplacian under a
mean convexity assumption.

1. Introduction

A celebrated result by Gromov [1971] says that an open manifold carries both
positively and negatively curved metrics. Thus, in any such manifold there is
enough room to interpolate between two rather distinct types of geometries. In
contrast, no such flexibility is available in the context of closed manifolds. For
instance, it already follows from Hadamard and Bonnet–Myers theorems from
basic Riemannian Geometry that a closed manifold which carries a metric with
nonpositive sectional curvature does not carry a metric with positive Ricci curvature.

Our interest here lies in another manifestation of this “exclusion principle” for
closed manifolds due to Elworthy, Li and Rosenberg [Elworthy et al. 1998]. Relying
heavily on stochastic methods, these authors put forward an elegant refinement of the
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famous Bochner technique with far-reaching consequences. For example, they prove
that a sufficiently negatively pinched closed manifold does not carry a metric whose
Weitzenböck operator acting on 2-forms is even allowed to be negative in a region of
small volume, an improvement which definitely makes the obstruction unapproach-
able by the classical reasoning [Rosenberg 1997]. We focus here on extending this
kind of geometric obstruction to compact manifolds with boundary (∂-manifolds,
for short). When pursuing this goal we should have in mind that balls carry a
huge variety of metrics as illustrated by geodesic balls in an arbitrary Riemannian
manifold. These simple examples also show that the boundary can always be chosen
convex just by taking the radius sufficiently small. Thus, even if we insist on having
the boundary appropriately convex in both metrics, some topological assumption
on the underlying manifold must be imposed. Our purpose is to present results in
this direction which qualify as natural extensions of those in [Elworthy et al. 1998].

We now introduce the notation needed to state our main results. If N is a
Riemannian ∂-manifold of dimension n, the Weitzenböck decomposition reads

1q =1
B
q + Rq ,

where 1q = dd?+ d?d is the Hodge Laplacian acting on q-forms, 1≤ q ≤ n− 1,
d? =± ? d? is the codifferential, ? is the Hodge star operator, 1B

q is the Bochner
Laplacian and Rq , the Weitzenböck curvature operator, depends linearly on the
curvature tensor, albeit in a rather complicated way. Recall that R1 = Ric, and
since ?Rp = Rn−p?, this also determines Rn−1, but in general the structure of Rq ,
2≤q≤n−2, is notoriously hard to grasp. To these invariants we attach the functions
r(q) : N → R, r(q)(x) = inf|ω|=1〈Rq(x)ω, ω〉, the least eigenvalue of Rq(x). We
also consider the principal curvatures ρ1, . . . , ρn−1 of ∂N computed with respect to
the inward unit normal vector field. For each x ∈ ∂N and q = 1, . . . , n− 1, define

ρ(q)(x)= inf
1≤i1<···<iq≤n−1

ρi1(x)+ · · ·+ ρiq (x),

the sum of the q smallest principal curvatures at x . We say that ∂N is q-convex if
ρ(q) := infx∈∂M ρ(q)(x) > 0. Note that q-convexity implies (q+1)-convexity. Also,
N is said to be convex if ρ(1) ≥ 0 everywhere. Finally, recall that a Riemannian
metric h on a manifold is κ-negatively pinched if its sectional curvature satisfies
−1≤ Ksec(h) <−κ < 0.

Stochastic notions make their entrance in the theory by means of the following
considerations. Let N be a Riemannian ∂-manifold. In case N is noncompact we
always assume that the underlying metric h is complete and the triple (N , ∂N , h)
has bounded geometry in the sense of [Schick 1996; 1998; 2001]. We then consider
reflecting Brownian motion {x t

} on N starting at some x0
∈ N ; see Section 5 for

a (necessarily brief) description of this diffusion process. Let α : N → R and
β : ∂N → R be C1 functions. Adapting a classical definition to our setting, we say
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that the pair (α, β) is strongly stochastically positive (s.s.p.) if

lim sup
t→+∞

1
t

sup
x0∈K

log Ex0

(
exp

(
−

1
2

∫ t

0
α(x s) ds−

∫ t

0
β(x s) dls

))
< 0,

for any K ⊂ N compact, where l t is the boundary local time associated to {x t
}. This

is certainly the case if both α and β have strictly positive lower bounds but the point
we would like to emphasize here is that, at least if N is compact, it might well happen
with the functions being positive except possibly in regions of small volume, given
that the definition involves expectation with respect to the underlying diffusion.

Similarly to [Elworthy et al. 1998], our main results provide examples of ∂-
manifolds for which there holds an exclusion principle involving the various notions
of curvature appearing above. From now on we always assume that n ≥ 4 and set
κp = p2/(n− p− 1)2.

Theorem 1.1. Let M be a compact ∂-manifold with infinite fundamental group.
Assume also that M satisfies H p(M;R) 6= 0, where 2≤ p< (n−1)/2. If M carries
a convex κp-negatively pinched metric then it does not carry a metric with both
(r(p±1), ρ(p−1)) s.s.p.

Our next result, which handles the least possible value for the degree p, has a
somewhat more satisfactory statement.

Theorem 1.2. Let M be a compact manifold with nonamenable fundamental group.
If M carries a convex κ1-negatively pinched metric then it does not carry a metric
with (r(2), ρ(2)) s.s.p.

Remark 1.1. These results correspond respectively to Corollary 2.1 and Theorem
2.3 in [Elworthy et al. 1998]. We point out that our assumptions on the fundamen-
tal group are natural in the sense that they are automatically satisfied there. As
mentioned above, balls are obvious counterexamples to our results if the topolog-
ical assumptions are removed. Also, the manifold S1

×Dn−1 shows that merely
assuming that the fundamental group is infinite does not suffice in Theorem 1.2;
see Remark 1.5 below. On the other hand, it is not clear whether the convexity
hypothesis with respect to the negatively curved metric can be relaxed somehow.

Using Theorem 1.2 we can exhibit an interesting family of compact ∂-manifolds
for which a natural class of metrics is excluded.

Theorem 1.3. If X is a closed hyperbolic manifold of dimension, l ≥ 2 then its
product with a disk Dm does not carry a metric with (r(2), ρ(2)) s.s.p.

Proof. Write X = Hl/0 as the quotient of hyperbolic space Hl by a (necessarily
nonamenable) group 0 of hyperbolic motions. Embed Hl as a totally geodesic
submanifold of Hl+m and let M̃ ⊂Hl+m be a tubular neighborhood of Hl of constant
radius. Extend the 0-action to M̃ in the obvious manner and observe that, since M̃
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is convex, M = M̃/0 = X ×Dm with the induced hyperbolic metric is convex as
well. Thus, Theorem 1.2 applies. �

Remark 1.2. Theorem 1.3 provides a geometric obstruction to the existence of met-
rics with (r(2), ρ(2)) s.s.p. Notice that if the second Betti number of X vanishes, the
obstruction can not be detected by the classical version of the Bochner technique for
∂-manifolds [Yano 1970, Chapter 8] even if we assume strict positivity of (r(2), ρ(2)).

Remark 1.3. A larger class of manifolds for which the conclusion of Theorem 1.3
obviously holds is formed by tubular neighborhoods of closed embedded totally
geodesic submanifolds in a given hyperbolic manifold.

Corollary 1.1. Under the conditions of Theorem 1.3, assume that n = l+m is even.
Then X×Dm does not carry a metric with positive isotropic curvature and 2-convex
boundary.

Proof. For even-dimensional manifolds it is shown in [Micallef and Wang 1993]
that positive isotropic curvature implies R2 > 0. �

Remark 1.4. Since the computation in [Micallef and Wang 1993] expresses R2 as
a sum of isotropic curvatures, in Corollary 1.1 we can even relax the condition on
the metric to allow the invariants to be negative in a region of small volume.

Remark 1.5. The standard product metric on S1
×Sn−1 is known to have positive

isotropic curvature. It is easy to check that if r < π/2 the boundary of the tubular
neighborhood Ur ⊂S1

×Sn−1 of radius r of the circle factor is 2-convex. Thus, the
conclusion of Corollary 1.1 does not hold for Ur =S1

×Dn−1. Notice that Ur carries
a convex hyperbolic metric since its universal cover Ũr =R×Dn−1 is diffeomorphic
to a tubular neighborhood of a geodesic in Hn. The problem here is that the funda-
mental group is abelian, hence amenable, and the argument leading to Theorem 1.2
breaks down. This also can be understood in stochastic terms. In effect, the proof
of Theorem 1.2 shows that, under the given conditions, Brownian motion on the
universal cover is transient, while recurrence certainly occurs in Ũr ; see Remark 5.1.
In this respect it would be interesting to investigate if the conclusion of Theorem 1.3
holds in case X is flat or, more generally, has nonpositive sectional curvature.

Remark 1.6. Compact ∂-manifolds with positive isotropic curvature have deserved
a lot of attention in recent years. An important result by Fraser [2002] says that
such a ∂-manifold is contractible if it is simply connected and its boundary is
connected and 2-convex. The proof combines index estimates for minimal surfaces
and a variant of the Sachs–Uhlenbeck theory adapted to this setting. However, as
the examples in Remark 1.5 attest, this geometric condition is compatible with an
infinite fundamental group. With no assumption on the fundamental group or on
the topology of the boundary, the techniques in [Fraser 2002] still imply that all the
(absolute and relative) homotopy groups vanish in the range 2≤ i ≤ n/2. Moreover,
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it is shown in [Chen and Fraser 2010] that the fundamental group of the boundary
injects into the fundamental group of the manifold. However, if we take m ≥ l+2 it
is easy to check that none of these homotopical obstructions rules out the metrics in
Corollary 1.1. We point out that a conjecture in [Fraser 2002] asserts that a closed,
embedded 2-convex hypersurface in a manifold with positive isotropic curvature
is either Sn or a connected sum of finitely many copies of S1

×Sn−1. Since the
fundamental group of a closed hyperbolic manifold is neither infinite cyclic nor a
free product, Corollary 1.1 provides further support to the conjecture.

This paper is partly inspired by the beautiful work by Elworthy, Rosenberg and
Li [Elworthy et al. 1998]. Their ideas are used in Section 2 to construct L2 harmonic
forms on the universal cover of certain compact ∂-manifolds starting from bounded
ones. This is precisely where stochastic techniques come into play and a crucial
ingredient at this point is a Feynman–Kac-type formula for differential forms in
higher degree meeting absolute boundary conditions. In order not to interrupt
the exposition, this technical result is established in the final Section 5 following
ideas in [Hsu 2002a], where the case of 1-forms is treated; see also [Airault 1976;
Ikeda and Watanabe 1989] for previous contributions. To illustrate the flexibility
of the method we also discuss a similar formula for spinors evolving under the
heat semigroup generated by the Dirac Laplacian on a spinc ∂-manifold under
suitable boundary conditions. Another important ingredient in the argument is a
Donnelly–Xavier-type eigenvalue estimate described in Section 3, whose proof
uses both the convexity and the assumption that the fundamental group is infinite.
Combined with Schick’s [1996; 1998] L2 Hodge–de Rham theory this allows us to
prove a vanishing result for the relevant L2 cohomology group. Finally, the proofs
of the main applications (Theorem 1.1 and 1.2 above) are presented in Section 4.

2. From bounded to L2-harmonic forms

We consider a complete Riemannian ∂-manifold N with volume element dN and
boundary ∂N oriented by an inward unit normal vector field ν. As always we
assume that the triple (N , ∂N , h) has bounded geometry in the sense of [Schick
1996; 1998; 2001]. For us the case of interest occurs when N = M̃, the universal
cover of a compact ∂-manifold (M, g) and h = g̃, the lifted metric. Recall that a
q-form ω on N satisfies absolute boundary conditions if

(2-1) ν⌟ω = 0, ν⌟dω = 0

along ∂N. Equivalently,

(2-2) ωnor = 0, (dω)nor = 0,
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where ω=ωtan+ν∧ωnor is the natural decomposition of ω in its tangential and nor-
mal components. Here, we identify ν to its dual 1-form in the standard manner. For
simplicity we say that ω is absolute if any of these conditions is satisfied. Notice that
for q = 0 this means that the given function satisfies Neumann boundary condition.

For t > 0 let Pt = e−t1abs
q /2 be the corresponding heat kernel acting on forms.

Thus, for any absolute q-form ω0 ∈ L2
∩ L∞, ωt = Ptω0 is a solution to the

initial-boundary value problem

(2-3)
∂ωt

∂t
+

1
2
1abs

q ωt = 0, lim
t→0

ωt = ω0, ν⌟ωt = 0, ν⌟dωt = 0.

Moreover, the long term behavior of the flow is determined by the space of absolute
L2-harmonic q-forms on (N , h) in the sense that

(2-4) P = lim
t→+∞

Pt

exists and defines the orthogonal projection onto this space. Proofs of these facts
follow from standard spectral theory and the elliptic machinery developed in [Schick
1996; 1998].

A key ingredient in our approach is a Feynman–Kac-type representation of any
solution ωt as above in terms of Brownian motion in N. This is well known to hold
in the boundaryless case [Elworthy 1988; Hsu 2002b; Güneysu 2010; Malliavin
1974; Stroock 2000]. However, as pointed out in [Hsu 2002a], where the case q = 1
is discussed in detail, extra difficulties appear when trying to establish a similar
result in the presence of a boundary. In Section 5 we explain how the method in
[Hsu 2002a] can be adapted to establish a Feynman–Kac formula for solutions of
(2-3), regardless of the value of q; see Theorem 5.2. For the moment we need an
immediate consequence of this formula, namely, the useful estimate

(2-5) |ωt(x0)| ≤ Ex0

(
|ω0(x t)| exp

(
−

1
2

∫ t

0
r(q)(x s) ds−

∫ t

0
ρ(q)(x s) dls

))
,

where {x t
} is reflecting Brownian motion on N starting at x0 and l t is the associated

boundary local time. The remarkable feature of (2-5) is that the geometric quantities
r(q) and ρ(q) play entirely similar roles in stochastically controlling the solution in
the long run. Now we put this estimate to good use and establish a central result in
this work; compare to [Elworthy et al. 1998, Lemma 2.1].

Proposition 2.1. Let P = limt→+∞ Pt ,

θq(x0)=

∫
+∞

0
Ex0

(
exp

(
−

1
2

∫ t

0
r(q)(x s) ds−

∫ t

0
ρ(q)(x s) dls

))
dt,
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and take compactly supported p-forms φ and ψ with ψnor = 0 along ∂N and φ = 0
in a neighborhood of ∂N. If 2≤ p ≤ n− 2,∣∣∣∣∫

N
〈Pφ−φ,ψ〉 dN

∣∣∣∣
≤

1
2

(
supx0∈suppφ θp+1(x0)

)
|dψ |∞|dφ|1+ 1

2

(
supx0∈suppφ θp−1(x0)

)
|d?ψ |∞|d?φ|1.

If p = 1 we have instead∣∣∣∣∫
N
〈Pφ−φ,ψ〉 dN

∣∣∣∣
≤

1
2

(
supx0∈suppφ θ2(x0)

)
|dψ |∞|dφ|1+1

2 supx0∈suppφ

∣∣∣∣∫ +∞
0

(Pτd?φ)(x0) dτ
∣∣∣∣|d?ψ |∞.

Proof. We have∫
N
〈Pφ−φ,ψ〉 dN

= lim
t→+∞

∫
N
〈Ptφ− P0φ,ψ〉 dN

= lim
t→+∞

∫ t

0

∫
N
〈∂τ Pτφ,ψ〉 dN dτ

=−
1
2

∫
+∞

0

∫
N
〈1abs

p Pτφ,ψ〉 dN dτ

=−
1
2

∫
+∞

0

∫
N
〈 d Pτ d?φ,ψ〉 dN dτ −

1
2

∫
+∞

0

∫
N
〈d?Pτ dφ,ψ〉 dN dτ.

We now recall Green’s formula: if α∧ ?β is compactly supported then∫
N
〈dα, β〉 dN =

∫
N
〈α, d?β〉 dN +

∫
∂N
αtan ∧ ?βnor.

Since (Pτdφ)nor = 0 this leads to∫
N
〈Pφ−φ,ψ〉 dN

=−
1
2

∫
+∞

0

∫
N
〈Pτ d?φ, d?ψ〉 dN dτ −

1
2

∫
+∞

0

∫
N
〈Pτ dφ, dψ〉 dN dτ.

The result now follows by applying (2-5) to ωτ = Pτ d?ψ and ωτ = Pτ dψ . �

From this we derive the existence of absolute L2-harmonic p-forms from bounded
ones under appropriate positivity assumptions; compare to [Elworthy et al. 1998,
Theorem 2.1]. In the following we denote by Hq

(2),abs(N , h) the q-th L2 absolute
cohomology group of (N , h). We refer to [Schick 1996; 1998] for the definition
and basic properties of these invariants, including the corresponding L2 Hodge–de
Rham theory.
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Proposition 2.2. Let (N , h) and p be as above. Assume that both supx0∈K θp+1(x0)

and supx0∈K θp−1(x0) are finite if 2≤ p ≤ n− 2 and that both supx0∈K θ2(x0) and
supx0∈K

∣∣∫ +∞
0 (Pτ d?φ)(x0) dτ

∣∣ are finite if p = 1, where K ⊂ N is any compact.
Then N carries a nontrivial absolute L2-harmonic p-form whenever it carries
a nontrivial absolute bounded harmonic p-form. In particular, H p

(2),abs(N , h) is
nontrivial.

Proof. Letψ be a nontrivial absolute bounded harmonic p-form. Consider a Gaffney-
type cutoff sequence {hn}, i.e., each function hn satisfies 0≤ hn ≤ 1, |∇hn| ≤ 1/n,
hn → 1 and ∂hn/∂ν = 0 [Gaffney 1959] and set ψn = hnψ , so that each ψn is a
compactly supported absolute form. Also, ψn→ ψ and since dψn = dhn ∧ψ and
d∗ψn = −∇hn⌟ψ we see that |dψn|∞ + |d?ψn|∞ → 0 as n → +∞. Applying
Proposition 2.1 with ψ replaced by ψn and sending n→+∞ we see that∫

N
〈Pφ−φ,ψ〉 dN = 0.

If no nontrivial absolute L2-harmonic p-form exists then Pφ = 0 for any φ and
hence ψ = 0, a contradiction. The last assertion follows from the L2 Hodge–de
Rham theory in [Schick 1996; 1998]. �

Remark 2.1. Implicit in the discussion above is the well-known fact that the
bounded geometry assumption implies that reflecting Brownian motion x t is nonex-
plosive. For the sake of completeness we include here the well-known argument.
We first observe that the geometric assumption implies that both r (1) and ρ(1) are
finite. Let ξ and η be compactly supported functions on N with ∂ξ/∂ν = 0 along
∂N and η = 0 in a neighborhood of ∂N. Proceeding as above we find that∫

N
(Ptξ − ξ)η dN =−

1
2

∫ t

0

∫
N
〈Pτ dξ, dη〉 dN dτ, t > 0.

Using (2-5) with ω = dξ we get∣∣∣∣∫
N
(Ptξ − ξ)η dN

∣∣∣∣≤ 1
2
|dξ |∞|dη|1 sup

0≤τ≤t
e−τr (1)/2− ρ(1)

∫ τ
0 dls

.

Again applying Gaffney’s trick, i.e., replacing ξ by ξn approaching 1, the function
identically equal to 1, and satisfying |dξn|∞→ 0 as n→+∞, we conclude that
Pt 1= 1. The result follows.

3. A Donnelly–Xavier-type estimate for ∂-manifolds

In this section we present a Donnelly–Xavier-type estimate for the universal cover
of κ-negatively pinched ∂-manifolds which implies the vanishing of certain absolute
L2 cohomology groups. This extends to this setting a sharp result for boundaryless
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manifolds obtained in [Elworthy and Rosenberg 1993], which by its turn improves
on the original result in [Donnelly and Xavier 1984]. The exact analogue for ∂-
manifolds of the estimate in that work, hence with a tighter pinching, appears in
[Schick 1996]; see Remark 3.1 below. Our proof adapts a computation in [Ballmann
and Brüning 2001, Section 5], where the sharp result for boundaryless manifolds is
also achieved, and relies on a rather general integral formula.

Proposition 3.1. Let (N , h) be a ∂-manifold, f : N→R a C2 function and {µi }
n
i=1

the eigenvalues of the Hessian operator of f . If p ≥ 1 then for any compactly
supported p-form ω in N,∫

N
(〈dω,∇ f ∧ω〉+ 〈d?ω,∇ f ⌟ω〉) dN

=

∫
N

(∑
i

µi |ei⌟ω|
2
+

1
2 |ω|

210 f
)

dN −
∫
∂N
〈∇ f ⌟ω, ν⌟ω〉 d∂N

−
1
2

∫
∂N
|ω|2〈∇ f, ν〉 d∂N ,

where {ei } is a local orthonormal frame diagonalizing the Hessian of f and ν is the
inward unit normal vector field along ∂N.

Proof. Consider the vector field V defined by 〈V,W 〉 = 〈∇ f ⌟ω,W⌟ω〉, for any W.
A computation in [Ballmann and Brüning 2001, Section 5] gives

div V =
∑

i

µi |ei⌟ω|
2
−〈dω,∇ f ∧ω〉− 〈d?ω,∇ f ⌟ω〉+ 〈∇∇ f ω,ω〉.

Integrating by parts we obtain∫
N
(〈dω,∇ f ∧ω〉+ 〈d?ω,∇ f ⌟ω〉) dN

=

∫
N

(∑
i

µi |ei⌟ω|
2
+〈∇∇ f ω,ω〉

)
dN −

∫
∂N
〈∇ f ⌟ω, ν⌟ω〉 d∂N .

We thus obtain, as required:∫
N

(
〈∇∇ f ω,ω〉−

1
2 |ω|

210 f
)

dN

=
1
2

∫
N
(〈∇ f,∇|ω|2〉− |ω|210 f ) dN

=
1
2

∫
N

div(|ω|2∇ f ) dN =−1
2

∫
∂N
|ω|2〈∇ f, ν〉 d∂N . �

We can now present a version of the Donnelly–Xavier-type estimate that suffices
for our purposes.
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Proposition 3.2. Let (M, g) be a compact and convex ∂-manifold with infinite
fundamental group and assume that g satisfies −1 ≤ Ksec(g) ≤ −κ < 0. If p ≥ 1
then for any compactly supported p-form ω in M̃ satisfying ν⌟ω = 0 along ∂ M̃,

(3-1) |dω|2+ |d?ω|2 ≥ 1
2((n− p− 1)

√
κ − p)|ω|2.

Proof. Convexity implies that any x ∈ M \ ∂M and y ∈ M can be joined by a
minimizing geodesic segment lying in the interior of M (except possibly for y). The
same holds in M̃ with the segment now being unique. Thus, for any x ∈ M̃ \ ∂ M̃
the Riemannian distance dx to x is well-defined. Notice that 〈∇dx , ν〉 ≤ 0 along
∂ Ñ, |∇dx | = 1 and 10 dx = −

∑
i µi , where we may assume that µ1 = 0. Thus,

using the boundary condition ν⌟ω = 0 and Proposition 3.1 with f = dx we obtain

|ω|2(|dω|2+ |d?ω|2)≥
∫

N

(∑
i

µi |ei⌟ω|
2
−

1
2
|ω|2

∑
i

µi

)
d M̃ .

Expand ω =
∑

I ωI eI, where I = {i1 < · · · < i p} and eI = ei1 ∧ · · · ∧ ei p . Since∑
i µi |ei⌟eI |

2
=
∑

i∈I µi , the right-hand side equals

1
2

∫
N

∑
i,I

(∑
i /∈I

ηi −
∑
i∈I

ηi

)
|ωI |

2 d M̃,

where ηi = −µi are the principal curvatures of the geodesic ball centered at x .
Thus, by standard comparison theory this is bounded from below by

1
2

∫
N
((n− p− 1)

√
κ coth

√
κ dx − p coth dx)|ω|

2 d M̃ .

Now observe that M̃ has infinite diameter because π1(M) is infinite. Hence, we
can find a sequence {xi } ⊂ M̃ so that dxi (y)→+∞ uniformly in y ∈ suppω. By
taking x = xi and passing to the limit we obtain the desired result. �

Remark 3.1. Notice (3-1) is meaningful only if κ > κp, which forces κp < 1, that
is, 2p < n− 1. We note that Schick [1996] proved that under the conditions above

|dω|2+ |d?ω|2 ≥ 1
2((n− 1)

√
κ − 2p)|ω|2.

This only makes sense if κ > κ ′p := 4p2/(n− 1)2, which again forces 2p < n− 1,
but notice that (3-1) gives a better pinching constant if 1 ≤ p < (n − 1)/2. It is
observed in the same work that

|dη|2+ |d?η|2 ≥ 1
2((n− 1)

√
κ − 2(n− p))|η|2,

for any p-form η satisfying ν ∧ η = 0 along ∂ M̃. Taking p = n and using Hodge
duality, we find that

(3-2) |dϕ|2 ≥ 1
2(n− 1)

√
κ|ϕ|2,
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for any compactly supported function ϕ satisfying the Neumann boundary condition.
In other words, (3-1) holds for p = 0 as well. This transplants to our setting a
famous estimate by McKean [1970]. Observe however that the assumption on the
fundamental group is essential in (3-2) as the first Neumann eigenvalue of geodesic
balls in hyperbolic space converges to zero as the radius goes to infinity [Chavel
1984]. Thus, (3-2) illustrates a situation where a topological condition on a compact
∂-manifold poses spectral constraints on its universal cover.

With these estimates at hand it is rather straightforward to establish vanishing
theorems for L2-harmonic forms. For this we consider (M, g) as in Proposition 3.2
and define the absolute Hodge Laplacian 1abs

p on M̃ with domain D(1abs
p ) =

{ω ∈ H 2(∧pT ∗M̃);ωnor = 0, (dω)nor = 0}. Let λabs
p (g̃) = inf Spec(1abs

p ). The
spectral argument in [Schick 1996, Section 6] then provides, under the conditions
of Proposition 3.2, the lower bound

(3-3) λabs
p (g̃)≥ 1

4((n− p− 1)
√
κ − p)2.

We remark that the proof in [Schick 1996] uses induction in p starting at p = 0,
which corresponds to (3-2). Here we use this to prove the following vanishing result.

Proposition 3.3. Let (M, g) be a compact and convex ∂-manifold with infinite
fundamental group and assume that g is κp-negatively pinched where 2≤2p<n−1.
Then λabs

p (g̃) > 0 and (M̃, g̃) carries no nontrivial absolute L2-harmonic p-form.
Hence, H p

(2),abs(M̃, g̃) vanishes.

Proof. The assumptions imply that κp < 1, so we can find κp < κ < 1 such that
−1 ≤ Ksec(g̃) ≤ −κ . The result follows from (3-3) and the L2 Hodge–de Rham
theory in [Schick 1996; 1998]. �

4. The proofs of Theorems 1.1 and 1.2

Here we prove the main results of this work. Notice that if (r(q), ρ(q)) is s.s.p. then

(4-1) sup
x0∈K

θq(x0) <+∞ for any K .

Also, if (α, β) is s.s.p. then (α, β) is s.s.p. as well for any α ≥ α and β ≥ β.

Proof of Theorem 1.1. If M is convex with respect to a κp-negatively pinched
metric g− then H p

(2),abs(M̃, g̃−) vanishes by Proposition 3.3. On the other hand,
by standard Hodge theory for compact ∂-manifolds [Taylor 2011], any nontrivial
class in H p(M;R) can be represented by a nontrivial absolute harmonic p-form
with respect to any metric g+ on M. The lift of this form to (M̃, g̃+) defines a
nontrivial absolute harmonic p-form which is uniformly bounded. Now, if g+ has
both (r(p±1), ρ(p−1)) s.s.p. then the corresponding invariants of g̃+ are s.s.p. as well,
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since the property is preserved by passage to covers; see Remark 5.1. In particular,
(4-1) holds with q = p± 1. Thus we may apply Proposition 2.2 to conclude that
H p
(2),abs(M̃, g̃+) 6= {0}. Since H p

(2),abs(M̃, · ) is a quasi-isometric invariant of the
metric [Schick 1996] we obtain a contradiction which completes the proof. �

We now consider Theorem 1.2. For its proof we need an extension of a well-
known result in [Lyons and Sullivan 1984] to our setting.

Proposition 4.1. If (M, g) is a compact ∂-manifold and π1(M) is nonamenable
then (M̃, g̃) carries a nonconstant bounded absolute harmonic function.

Proof. The argument in [Lyons and Sullivan 1984, Section 5] carries over to our
case. More precisely, using the Neumann heat kernel we construct a natural π1(M)-
equivariant projection from L∞abs(M̃), the space of absolute bounded functions, onto
H∞abs(M̃, g̃), the space of bounded absolute harmonic functions. Also, there exists
a π1(M)-equivariant injection l∞(π1(M)) ↪→ L∞abs(M̃). Hence, if H∞abs(M̃, g̃)= R

the composition l∞(π1(M))→ R defines an invariant mean. �

Proof of Theorem 1.2. If M carries a metric g− which is κ1-negatively curved, then
H 1
(2),abs(M̃, g̃−) vanishes. On the other hand, by Proposition 4.1, for any metric g+

on M, (M̃, g̃+) carries a nonconstant bounded absolute harmonic function, say f .
This implies that reflecting Brownian motion in (M̃, g̃+) is transient and in particular

sup
x0∈K

∫
+∞

0
(Pt d?φ)(x0) dt <+∞,

for any K ⊂ M̃ and compactly supported 1-form φ as in Proposition 2.1; see
[Grigor’yan 1999, Theorem 5.1]. Assuming that g− is such that the corresponding
pair (r(2), ρ(2)) is s.s.p. we can apply Proposition 2.2 because ψ = d f is a bounded
absolute harmonic 1-form; see Lemma 4.1 below. Hence, H 1

(2),abs(M̃, g̃+) 6= {0}
and we get a contradiction. Thus, the proof of Theorem 1.2 is complete as soon as
the next lemma is established. �

Lemma 4.1. If f is a uniformly bounded absolute function as above then the
absolute harmonic 1-form φ = d f is uniformly bounded as well.

Proof. Assume that | f | ≤ K. The Bismut–Elworthy–Li formula in [Elworthy and
Li 1994, Theorem 3.1] holds for our reflecting Brownian motion x t. Hence, if
v0
∈ Tx0 M̃ and Pt = e−t1abs

0 /2 then

d(Pt f )x0(v0)=
1
t

Ex0

(
f (x t)

∫ t

0
〈vs, dx s

〉x s

)
, t > 0,

where vt is defined by (5-4) below. Since f is harmonic, Pt f = f . Thus,

|d fx0(v0)| ≤
|v0
|

t
supM̃ f

∫ t

0
ds ≤ K |v0

|,

as desired. �
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5. A Feynman–Kac formula on ∂-manifolds

In this final section we explain how the method put forward in [Airault 1976;
Hsu 2002a] can be adapted to prove a Feynman–Kac-type formula for q-forms on
∂-manifolds. As an illustration of the flexibility of the method we also include a
similar formula for spinors evolving by the heat semigroup of the Dirac Laplacian on
spinc ∂-manifolds. These results are presented in the second and third subsections,
respectively, after some preparatory material in the first subsection.

The Eells–Elworthy–Malliavin approach. Let (N , h) be a Riemannian ∂-manifold
of dimension n. As in Section 2 we assume that (N , ∂N , h) has bounded geometry.
Let π : POn (N )→ N be the orthonormal frame bundle of N. This is a principal
bundle with structural group On , the orthogonal group in dimension n. Any orthog-
onal representation ζ : On → End(V ) gives rise to the associated vector bundle
Eζ = POn (N )×ζ V, which comes endowed with a natural metric and compatible
connection derived from h and its Levi-Civita connection ∇. Moreover, any section
σ ∈ 0(Eζ ) can be identified to its lift σ †

: POn (N )→ V, which is ζ -equivariant in
the sense that σ †(ug)= ζ(g−1)(σ †(u)), u ∈ POn (N ), g ∈ On . Also, we recall that
in terms of lifts, covariant derivation essentially corresponds to Lie differentiation
along horizontal tangent vectors.

Any bundle Eζ as above comes equipped with a second order elliptic operator
1B
=− trh ∇

2
: 0(Eζ )→ 0(Eζ ), the Bochner Laplacian. Here, ∇2 is the standard

Hessian operator acting on sections. Given an algebraic (zero order) self-adjoint
map R ∈ 0(End(Eζ )) we can form the elliptic operator

1=1B
+R

acting on 0(Eζ ). Standard results [Eichhorn 2007; Schick 1996; 1998] imply
that the heat semigroup Pt = e−t1/2 has the property that, for any σ0 ∈ L2

∩ L∞,
σt = Ptσ0 solves the heat equation

(5-1)
∂σt

∂t
+

1
2
1σt = 0, lim

t→0
σt = σ0,

where we eventually impose elliptic boundary conditions in case ∂N 6=∅.
An important question concerning us here is whether the solutions of (5-1) admit

a stochastic representation in terms of Brownian motion on N. If ∂N = ∅ this
problem admits a very elegant solution in great generality and a Feynman–Kac
formula is available [Elworthy 1988; Güneysu 2010; Hsu 1999; 2002b; Malliavin
1974; Stroock 2000]. Moreover, this representation permits us to estimate the
solutions in terms of the overall expectation of R with respect to the diffusion
process; see (5-5)–(5-6) below. However, in the presence of a boundary it is well
known that the problem is much harder to handle; see [Hsu 2002a].
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Let us assume that N has a nonempty boundary endowed with an inward unit
normal field ν. We first briefly recall how reflecting Brownian motion is defined on N.
We take for granted that Brownian motion {bt

} on Rn is defined. This is the diffusion
process which has half the standard Laplacian

∑
i ∂

2
i as generator. To transplant this

to N we make use of the so-called Eells–Elworthy–Malliavin approach [Elworthy
1988; Eells and Elworthy 1971; Hsu 1999; 2002b; Stroock 2000]. Note that any
u ∈ POn (N ) defines an isometry u : Rn

→ Tx N, x = π(u). Also, the Levi-Civita
connection on TN lifts to an Ehresmann connection on POn (M) which determines
fundamental horizontal vector fields Hi , i = 1, . . . , n. As explained in [Hsu 2002b,
Chapter 2], these elementary remarks naturally lead to an identification of semi-
martingales on Rn, horizontal semimartingales on POn (M) and semimartingales on
M. Thus, on POn (N ) we may consider the stochastic differential equation

(5-2) dut
=

n∑
i=1

Hi (ut) ◦ dbt
i + ν

†(ut) dl t ,

which has a unique solution {ut
} starting at any initial frame u0. This is a horizontal

reflecting Brownian motion on POn (N ) and its projection x t
=πut defines reflecting

Brownian motion on N starting at x0
=πu0. Moreover, l t is the associated boundary

local time. Notice that x t satisfies

(5-3) dx t
=

n∑
i=1

X i (x t) ◦ dbt
i + ν(x

t) dl t , X i = π∗Hi ,

so that if F t is the corresponding stochastic flow, i.e., x t
= F t(x0), then vt

=

d F t
x0(v

0), v0
∈ Tx0 N, satisfies the derivative equation

(5-4) dvt
=

n∑
i=1

(∇X i )(v
t) ◦ dbt

i + (∇ν)(v
t) dl t .

Remark 5.1. Due to the obvious functorial character of this construction it is not
hard to obtain highly desirable properties of Brownian motion. For instance, if the
manifold splits as an isometric product of two other manifolds then its Brownian
motion is the product of Brownian motions on the factors. In particular, if N = X×Y,
where Y is a compact ∂-manifold, then Brownian motion in N is transient if and
only if the same happens to X. Also, if Ñ → N is a normal Riemannian covering
then Brownian motion in Ñ projects down to Brownian motion in N. From this
it is obvious that a pair (α, β) on (N , ∂N ) is s.s.p. if and only if its lift (α̃, β̃) on
(Ñ , ∂ Ñ ) is s.s.p. as well.

We now describe how this formalism leads to an elegant approach to Feynman–
Kac-type formulas. Let A ∈ 0(End(Eζ |∂N )) be a pointwise self-adjoint map.
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In practice, A relates to the zero order piece of the given boundary conditions.
In analogy with the boundaryless case, Itô’s calculus suggests considering the
multiplicative functional M t

∈ End(V ) satisfying

d M t
+M t( 1

2R
† dt +A† dl t)

= 0, M0
= I.

Standard results imply that a solution exists along each path ut. We now apply Itô’s
formula to the process M tσ †(T − t, ut), 0≤ t ≤ T, where σ is a (time-dependent)
section of Eζ . With the help of (5-2) we obtain

d M tσ †(T − t, ut)= [M tLHσ
†(T − t, ut), dbt

] −M t L†σ †(T − t, ut) dt

+M t(Lν† −A†)σ †(T − t, ut) dl t ,

where L is the Lie derivative,

[M tLHσ
†(T − t, ut), dbt ]i =

dim V∑
j=1

n∑
k=1

M t
i jLHkσ

†
j (T − t, ut) dbt

k,

and
L†
=
∂

∂t
+

1
2
(1

†
B +R†)

is the lifted heat operator, with 1†
B = −

∑
k L

2
Hk

being the horizontal Bochner
Laplacian. Notice that in case ∂N =∅ and σ satisfies (5-1) the computation gives

d M tσ †(T − t, ut)= [M tLHσ
†(T − t, ut), dbt

],

which characterizes M tσ †(T − t, ut) as a martingale. Equating the expectations of
this process at t = 0 and t = T yields the celebrated Feynman–Kac formula

(5-5) σ †(t, u0)= Eu0(M tσ †(0, ut)),

where d M t
= −M tR† dt/2 [Elworthy 1988; Hsu 1999; 2002b; Güneysu 2010;

Stroock 2000]. From this we easily obtain the well-known estimate

(5-6) |σ(t, x0)| ≤ Ex0

(
|σ(0, x t)| exp

(
−

1
2

∫ t

0
R(x s) ds

))
,

where R(x) is the least eigenvalue of R(x). However, if ∂N 6=∅ the calculation
merely says that {M t

} is the multiplicative functional associated with the operator
L under boundary conditions

(5-7) (∇ν −A)σ = 0.

As we shall see below through examples, (5-7) is too stringent to encompass
boundary conditions commonly occurring in applications, which usually are of
mixed type.
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The Feynman–Kac formula for absolute differential forms. It turns out that nat-
ural elliptic boundary conditions do not quite fit into the prescription in (5-7).
Hence, the formalism in the previous subsection does not apply as presented. We
illustrate this issue by considering the case ζ = ∧qµ∗n , where µn is the standard
representation of On on Rn, so that Eζ is the bundle of q-forms over N. In this
case, A is explicitly described in terms of the second fundamental form of ∂N
but degeneracies occur due to the splitting of forms into tangential and normal
components which is inherent to absolute boundary conditions.

The splitting is determined by the “fermionic relation” ν⌟ν∧+ν∧ν⌟= I, which
induces an orthogonal decomposition

∧
q T ∗N |∂N = Ran(ν⌟ν∧)⊕Ran(ν ∧ ν⌟),

and we denote by 5tan and 5nor the orthogonal projections onto the factors. As is
clear from the notation, these maps project onto the space of tangential and normal
q-forms, respectively.

Let

A : T ∂N → T ∂N, AX =−∇Xν,

be the second fundamental form of ∂N, which we extend to TN |∂N by declaring
that Aν = 0. This induces the pointwise self-adjoint map Aq ∈ End(∧q T ∗N |∂N ),

(Aqω)(X1, . . . , Xq)=
∑

i

ω(X1, . . . , AX i , . . . , Xq).

Notice that 5norAqω = 0, that is, Aqω only has tangential components. In or-
der to determine the tangential coefficients of Aqω we fix an orthonormal frame
{e1, . . . , en−1} in T ∂N which is principal at x ∈ ∂N in the sense that Aei = ρi ei .
We then find that, at x ,

(5-8) (Aqω)(ei1, . . . , eiq )=

( q∑
j=1

ρi j

)
ω(ei1, . . . , eiq ).

The next result is inspired by [Hsu 2002a, Lemma 4.1]; see also [Yano 1970;
Donnelly and Li 1982] for similar computations.

Proposition 5.1. A q-form ω is absolute if and only if its lift ω† satisfies

(5-9) 5†
norω

†
= 0 and 5

†
tan(Lν† −A†

q)ω
†
= 0 on ∂POn (N ).

Proof. We work downstairs on ∂N and drop the dagger from the notation. First,
ωnor = 0 means that ω = ωtan+ ν ∧ωnor = ωtan, that is, 5†

norω
†
= 0. On the other
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hand, in terms of the principal frame {ei } above,

ν⌟dω(ei1,...,eiq )= dω(ν,ei1,...,eiq )

= ν(ω(ei1,...,eiq ))+
∑

j

(−1) j ei j (ω(ν,ei1,...,êi j ,...,eiq ))

+

∑
j

(−1) jω([ν,ei j ],ei1,...,êi j ,...,eiq )

+

∑
1≤ j<k

(−1) j+kω([ei j ,eik ],ν,ei1,...,êi j ,...,êik ,...,eiq )

= ν(ω(ei1,...,eiq ))+
∑

j

(−1) j ei j ((ν⌟ω)(ei1,...,êi j ,...,eiq ))

−

∑
j

ω(ei1,...,[ν,ei j ],...,eiq )

= ν(ω(ei1,...,eiq ))−
∑

j

ω(ei1,...,∇νei j ,...,eiq )

−

(∑
j

ρi j

)
ω(ei1,...,eiq ),

where we used that [ei j , eik ] = 0, certainly a justifiable assumption, and ν⌟ω = 0.
But

ν(ω(ei1, . . . , eiq ))= (∇νω)(ei1, . . . , eiq )+
∑

j

ω(ei1, . . . ,∇νei j , . . . , eiq ),

so we obtain

ν⌟dω(ei1, . . . , eiq )=

(
∇ν −

∑
j

ρi j

)
ω(ei1, . . . , eiq ).

The results follow in view of (5-8). �

This proposition shows that absolute boundary conditions are of mixed type,
namely, they are Dirichlet in normal directions and Neumann in tangential directions.
This should be compared with (5-7), which is of pure Neumann type. This confirms
that Itô’s calculus is insensitive to the projections defining absolute boundary
conditions. To remedy this we proceed as in [Hsu 2002a]. We can write the
boundary condition as the superposition of two independent components, namely,

5
†
tan(Lν† −A†

q)ω
†
−5†

norω
†
= 0.

The key idea, which goes back to [Airault 1976], is to fix ε > 0 and replace 5†
tan

by 5†
tan+ ε I above, so the condition becomes

(Lν† − (A†
q + ε

−15†
nor))ω

†
= 0,
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which in a sense is the best we can reach in terms of resemblance to (5-7). The
next step is to solve for Mt

ε ∈ End(∧qRn) in

(5-10) dMt
ε +Mt

ε

(1
2 R†

q(u
t) dt + (A†

q(u
t)+ ε−15†

nor(u
t)) dl t)

= 0, M0
ε = I.

Proposition 5.2. For all ε > 0 such that ε−1
≥ ρ(q) we have

(5-11) |Mt
ε | ≤ exp

(
−

1
2

∫ t

0
r(q)(x s) ds−

∫ t

0
ρ(q)(x s) dls

)
, t > 0.

Proof. The same as in [Hsu 2002a, Lemma 3.1], once we take into account that, as
is clear from (5-8), the sums

∑q
j=1 ρi j are the eigenvalues of 5tanAq . �

The following convergence result provides the crucial input in the argument.

Theorem 5.1. As ε → 0, Mt
ε converges to a multiplicative functional Mt in

the sense that limε→0 E|Mt
ε −Mt

|
2
= 0. Moreover, Mt5†

nor(u) = 0 whenever
u ∈ ∂POn (N ).

Proof. The rather technical proof of this result for q = 1 is presented in detail in
[Hsu 2002a]. Fortunately, with the formalism above in place, it is not hard to check
that the proof of the general case follows along the lines of the original argument.
More precisely, in that work the letters P and Q denote normal and tangential
projection, respectively. If we replace these symbols by 5nor and 5tan, the proof
there works here with only minor modifications. Therefore, it is omitted. �

We now have all the ingredients needed to prove the Feynman–Kac-type formula
for differential forms.

Theorem 5.2. Let ω0 be an absolute L2 q-form on N as above. If Pt = e−t1abs
q /2 is

the corresponding heat semigroup, so that ωt = Ptω0 provides the solution to

(5-12)
∂ωt

∂t
+

1
2
1abs

q ωt = 0, lim
t→0

ωt = ω0, ν⌟ωt = 0, ν⌟dωt = 0,

then the following Feynman–Kac formula holds:

(5-13) ω
†
t (u

0)= Eu0(Mtω
†
0(u

t)),

where ut is the horizontal reflecting Brownian motion starting at u0. Consequently,

(5-14) |ωt(x0)| ≤ Ex0

(
|ω0(x t)| exp

(
−

1
2

∫ t

0
r(q)(x s) ds−

∫ t

0
ρ(q)(x s) dls

))
,

where x t
= πut.

Proof. Itô’s formula and (5-2) yield

dMt
εω

†
T−t(u

t)= [Mt
εLHω

†
T−t(u

t), dbt
] −Mt

εL†ω
†
T−t(u

t) dt

+Mt
ε(Lν† −A†

− ε−15†
nor)ω

†
T−t(u

t) dl t .
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If ωt is a solution of (5-12) then the second term on the right-hand side drops out.
Moreover, by Proposition 5.1 the same happens to the term involving ε−1. Sending
ε→ 0 we end up with

dMtω
†
T−t(u

t)= [MtLHω
†
T−t(u

t), dbt
] +Mt5

†
tan(Lν† −A†)ω

†
T−t(u

t) dl t ,

where the insertion of 5†
tan in the last term is legitimate due to the last assertion in

Theorem 5.1. By Proposition 5.1 this actually reduces to

dMtω
†
T−t(u

t)= [MtLHω
†
T−t(u

t), dbt
],

which shows that Mtω
†
T−t(u

t) is a martingale. Thus, (5-13) follows by equating
the expectations at t = 0 and t = T. Finally, (5-14) follows from (5-11). �

The estimate (5-14) has many interesting consequences. We illustrate its use-
fulness by mentioning a semigroup domination result which can be proved as in
[Elworthy and Rosenberg 1988, Theorem 3A]; see also [Bérard 1990; Donnelly
and Li 1982; Elworthy 1988; Hsu 1999; 2002b] for similar results.

Theorem 5.3. Let (N , ∂N , h) be as above and assume that ρ(q) ≥ 0 for some
1≤ q ≤ n− 1. Then there holds

|e−t1abs
q /2(x, y)| ≤

(
n
q

)
e−r (q)t/2e−t1abs

0 /2(x, y), x, y ∈ N , t > 0,

where r (q) = infx∈N r(q)(x). In particular, if λabs
0 (h)+ r (q) ≥ 0 and r(q) > r (q)

somewhere then N carries no nontrivial absolute L2-harmonic q-form.

The Feynman–Kac formula for spinors. Let N be a spinc ∂-manifold [Friedrich
2000]. As usual we assume that (N , ∂N , h) has bounded geometry. Let SN =
PSpinc

n
(N )×ζ V be the spinc bundle of N, where ζ is the complex spin representation.

Recall that PSpinc
n
(N ) is a Spinc principal bundle double covering PSOn (N )×PU1(N ),

where PU1(N ) is the U1 principal bundle associated to the auxiliary complex line
bundle F. After fixing a unitary connection C on F, the Levi-Civita connection on
TN induces a metric connection on SN, still denoted ∇. The corresponding Dirac
operator D : 0(SN )→ 0(SN ) is locally given by

Dψ =
n∑

i=1

γ (ei )∇eiψ, ψ ∈ 0(SN ),

where {ei }
n
i=1 is a local orthonormal frame and γ : Cl(TN )→ End(SN ) is the

Clifford product. The Dirac Laplacian operator is

(5-15) D2ψ =1Bψ +Rψ,
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where
Rψ =

R
4
ψ +

1
2
γ (i�).

Here, R is the scalar curvature of h and i� is the curvature 2-form of C.
The spinc bundle SN |∂N , obtained by restricting SN to ∂N, becomes a Dirac

bundle if its Clifford product is

γ ᵀ(X)ψ = γ (X)γ (ν)ψ, X ∈ 0(T ∂N ), ψ ∈ 0(SN |∂N ),

and its connection is

(5-16) ∇
ᵀ
Xψ =∇Xψ −

1
2γ
ᵀ(AX)ψ,

where as usual A =−∇ν is the second fundamental form of ∂N ; see [Nakad and
Roth 2013]. The associated Dirac operator Dᵀ : 0(SN |∂N )→ 0(SN |∂N ) is

Dᵀψ =
n−1∑
j=1

γ ᵀ(ej )∇
ᵀ
ej
ψ,

where the frame has been adapted so that en = ν. Imposing that Aej = ρj ej , where
ρj are the principal curvatures of ∂N, a direct computation shows that

Dᵀψ =
K
2
ψ +

n−1∑
j=1

γ (ej )∇ejψ,

where K = tr A is the mean curvature. It follows that this tangential Dirac operator
enters into the boundary decomposition of D, namely,

(5-17) −γ (ν)D =∇ν + Dᵀ− K
2
,

which by its turn appears in Green’s formula for the Dirac Laplacian

(5-18)
∫

N
〈D2ψ, ξ〉 dN =

∫
N
〈Dψ, Dξ〉 dN −

∫
∂N
〈γ (ν)Dψ, ξ〉 d∂N ,

where ψ and ξ are compactly supported. Also, since γ ᵀ(ej )γ (ν)=−γ (ν)γ
ᵀ(ej )

and ∇ᵀejγ (ν)= γ (ν)∇
ᵀ
ej , we see that

(5-19) Dᵀγ (ν)=−γ (ν)Dᵀ.

Now fix a nontrivial orthogonal projection5∈0(End(SN |∂N )) and set5+=5
and5−= I−5. It is clear from (5-17) – (5-18) that any of the boundary conditions

(5-20) 5±ψ = 0, 5∓

(
∇ν + Dᵀ− K

2

)
ψ = 0,

turns the Dirac Laplacian D2 into a formally self-adjoint operator. The next defini-
tion isolates a notion of compatibility between the tangential Dirac operator and
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the projections which will allow us to get rid of the middle term in the second
condition above.

Definition 5.1. We say that the tangential Dirac operator Dᵀ intertwines the pro-
jections if 5±Dᵀ = Dᵀ5∓.

Remark 5.2. If Dᵀ intertwines the projections then 5±Dᵀ5± = Dᵀ5∓5± = 0.
Equivalently, 〈Dᵀ5±ψ,5±ξ〉 = 0 for any spinors ψ and ξ .

Proposition 5.3. Under the conditions above assume further that Dᵀ intertwines
the projections as in Definition 5.1. Then a spinor ψ ∈ 0(SN |∂N ) satisfies the
boundary conditions (5-20) if and only if its lift ψ†

: PSpinc
n
(N )→ V satisfies

(5-21) 5
†
±ψ

†
= 0 and 5

†
∓

(
Lν† −

K †

2

)
ψ†
= 0 on ∂PSpinc

n
(N ).

Proof. Obvious in view of (5-20) and Remark 5.2. �

We can now proceed exactly as in the previous subsection. We assume that
(5-21) gives rise to a self-adjoint elliptic realization of D2 and we denote by e−t D2/2

the corresponding heat semigroup [Grubb 2003]. We lift everything in sight to
PSpinc

n
(N ) and consider there the functional Mt

ε defined by

dMt
ε +Mt

ε

(1
2
R†(ut)dt +

(1
2

K †(ut)+ ε−15
†
+(u

t)
)

dl t
)
= 0, M0

ε = I.

The limiting functional Mt, whose existence is guaranteed by the analogue of
Theorem 5.1, appears in the corresponding Feynman–Kac formula.

Theorem 5.4. Let ψ0 ∈ 0(SN ) be a spinor satisfying any of the boundary condi-
tions (5-20), where we assume Dᵀ intertwines the projections as in Definition 5.1.
If ψt = e−t D2/2ψ0 is the solution to

(5-22) ∂ψt
∂t
+

1
2

D2ψt = 0, lim
t→0

ψt =ψ0, 5±ψt = 0, 5∓

(
∇ν−

K
2

)
ψt = 0,

then the following Feynman–Kac formula holds:

(5-23) ψ
†
t (u

0)= Eu0(Mtψ
†
0 (u

t)),

where ut is the horizontal reflecting Brownian motion on PSpinc
n
(N ) starting at u0.

As a consequence,

(5-24) |ψt(x0)| ≤ Ex0

(
|ψ0(x t)| exp

(
−

1
2

∫ t

0
r(x s) ds−

1
2

∫ t

0
K (x s) dls

))
,

where r(x)= inf|ψ |=1〈R(x)ψ,ψ〉.

Proof. The same as in Theorem 5.2. �

It is worthwhile to state the analogue of Theorem 5.3 for spinors.
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Theorem 5.5. Let (N , h) be a spinc ∂-manifold as above and assume that K ≥ 0
along ∂N. Let e−t D2/2 be the heat semigroup of the Dirac Laplacian acting on
spinors subject to boundary conditions as in Theorem 5.4. Then

|e−t D2/2(x, y)| ≤ 2[n/2]+1e−rt/2e−t1abs
0 /2(x, y), x, y ∈ N , t > 0,

where r= infx∈N r(x). In particular, if λabs
0 (h)+r≥ 0 and r> r somewhere then N

carries no nontrivial L2-harmonic spinor satisfying the given boundary conditions.

We now discuss a couple of examples of local boundary conditions for spinors
to which Theorem 5.4 applies.

Example 5.1. (Chirality boundary condition) A chirality operator on a spinc ∂-
manifold (N , ∂N ) is an orthogonal and parallel involution Q ∈0(End(SN )) which
anticommutes with the Clifford product with any tangent vector. Examples include
the Clifford product with the complex volume element in an even-dimensional spin
manifold and with the timelike unit normal to an immersed spacelike hypersurface
in a Lorentzian spin manifold. It is easy to check that DᵀQ = Q Dᵀ and Dᵀγ (ν)=
−γ (ν)D .T Given any such Q define the boundary chirality operator Q̂ = γ (ν)Q ∈
0(End(SN )|∂N ), which is still an orthogonal and parallel involution with associated
projections given by

(5-25) 5± =
1
2(I ∓ Q̂).

Since Dᵀ Q̂ = Dᵀγ (ν)Q = −γ (ν)Q Dᵀ = −Q̂ D ,T we conclude that Dᵀ5± =
5∓D ,T that is, Dᵀ intertwines the projections. Thus, Theorem 5.4 applies to the
self-adjoint elliptic realization of D2 under this boundary condition.

Example 5.2 (MIT bag boundary condition). This time we choose Q̂ = iγ (ν),
an involution which clearly satisfies Dᵀ Q̂ = −Q̂ D .T Thus, Dᵀ intertwines the
projections exactly as in the previous example and Theorem 5.4 again applies to
the self-adjoint elliptic realization of D2 under this boundary condition.

Remark 5.3. For the sake of comparison, it is instructive to examine how absolute
and relative boundary conditions for differential forms fit into the framework
developed in this subsection. In particular, this helps to clarify the role played
by Proposition 5.1 and its analogue for relative forms. Recall that ∧•T ∗N has the
structure of a Clifford module if we define the Clifford product by tangent vectors as
γ (v)= v∧−v⌟. The corresponding Dirac operator is D = d+d?, so that D2

=1,
the Hodge Laplacian. If ω is a q-form then we know that along ∂N,

ω = ωtan+ ν ∧ωnor =5tanω+5norω.

Instead of (5-16) we now have

∇
ᵀ
X =∇

∂N
X + ν ∧ A(X)⌟.
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A direct computation then shows that, with respect to the splitting above, the
boundary decomposition of D is

−γ (ν)D
(
ωtan

ωnor

)
=

(
∇νωtan

∇νωnor

)
−

(
Atan

q D∂N

D∂N Anor
q−1

)(
ωtan

ωnor

)
,

where D∂N = d∂N + d∗∂N and in terms of a principal frame,

Atan,nor
q =

∑
j

ρj5
tan,nor
ej

,

with 5tan
v = v ∧ v⌟ and 5nor

v = v⌟v∧. If ωnor = 0 then Atan
q ω = Aqω and the

boundary integral in Green’s formula for the Hodge Laplacian is∫
∂N
(〈∇νωtan, ωtan〉− 〈Aqωtan, ωtan〉− 〈D∂Nωtan, ωtan〉) d∂N .

However, the last term vanishes because the forms involved in the inner product
have different parities. Thus, the right boundary conditions are

(5-26) 5norω = 0, 5tan(∇ν −Aq)ω = 0.

Proposition 5.1 then shows that (5-26) defines absolute boundary conditions for
the Hodge Laplacian. Similarly, if ωtan = 0 then ω = ν ∧ ωnor and Anor

q−1ωnor =

?An−q ?ωnor, where here ? is the Hodge star operator of ∂N. This time the boundary
integral is∫

∂N
(〈∇νωnor, ωnor〉− 〈?An−q ?ωnor, ωnor〉− 〈D∂Nωnor, ωnor〉) d∂N .

Again, the last term drops out and the correct boundary conditions are

(5-27) 5tanω = 0, 5nor(∇ν − ?An−q?)ω = 0.

As in Proposition 5.1 we compute that

(∇ν − ?An−q?)ω(ν, ei1, . . . , eiq−1)= (ν ∧ d?ω)(ν, ei1, . . . , eiq−1)

= (ν⌟ν ∧ d?ω)(ei1, . . . , eiq−1)

= (5tan d?ω)(ei1, . . . , eiq−1)

so that (5-27) can be rewritten as

ωtan = 0, (d?ω)tan = 0.

This is exactly how relative boundary conditions for the Hodge Laplacian are
defined [Taylor 2011]. We thus see that for differential forms the cancellations
leading to the correct boundary conditions are caused by the fact that D∂N clearly
intertwines the projections onto the spaces of even and odd degree forms; compare
to Definition 5.1.
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