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Ore proved that a finite group is cyclic if and only if its subgroup lattice
is distributive. Now, since every subgroup of a cyclic group is normal, we
call a subfactor planar algebra cyclic if all its biprojections are normal and
form a distributive lattice. The main result generalizes one side of Ore’s
theorem and shows that a cyclic subfactor is singly generated in the sense
that there is a minimal 2-box projection generating the identity biprojection.
We conjecture that this result holds without assuming the biprojections to
be normal, and we show that this is true for small lattices. We finally exhibit
a dual version of another theorem of Ore and a nontrivial upper bound
for the minimal number of irreducible components for a faithful complex
representation of a finite group.
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1. Introduction

Vaughan Jones [1983] proved that the set of possible values for the index |M : N |
of a subfactor (N ⊆ M) is{

4cos2
(
π

n

)
| n ≥ 3

}
t [4,∞].

We observe that it is the disjoint union of a discrete series and a continuous series.
Moreover, |M : N |= |M : P|·|P : N | for a given intermediate subfactor N ⊆ P ⊆M,
therefore by applying a kind of Eratosthenes sieve, we get that a subfactor with
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an index in the discrete series or in the interval (4, 8), except the countable set
of numbers composed of numbers in the discrete series, can’t have a nontrivial
intermediate subfactor. A subfactor without nontrivial intermediate subfactor is
called maximal [Bisch 1994]. For example, any subfactor of index in (4, 3+

√
5)

is maximal; A∞ excepted there are exactly 19 irreducible subfactor planar algebras
for this interval (see [Jones et al. 2014; Afzaly et al. 2015]). The first example is the
Haagerup subfactor [Peters 2010]. Thanks to Galois correspondence [Nakamura
and Takeda 1960], a finite group subfactor, (RG

⊆ R) or (R ⊆ R oG), is maximal
if and only if it is a prime order cyclic group subfactor (i.e., G =Z/p with p prime).
Thus we can say that the maximal subfactors are an extension of the prime numbers.

Question 1.1. What could be the extension of the natural numbers?

To answer this question, we need to find a natural class of subfactors, that we
will call the “cyclic subfactors”, satisfying the following properties:

(1) Every maximal subfactor is cyclic.

(2) A finite group subfactor is cyclic if and only if the group is cyclic.

An old and little-known theorem published in 1938 by the Norwegian mathematician
Øystein Ore states that:

Theorem 1.2 [Ore 1938]. A finite group G is cyclic if and only if its subgroup
lattice L(G) is distributive.

Firstly, the intermediate subfactor lattice of a maximal subfactor is obviously
distributive. Next, by Galois correspondence, the intermediate subfactor lattice of a
finite group subfactor is exactly the subgroup lattice (or its reversal) of the group;
but distributivity is invariant under reversal, so (1) and (2) hold by Ore’s theorem.
Now an abelian group, and a fortiori a cyclic group, admits only normal subgroups;
but T. Teruya [1998] generalized the notion of normal subgroup by the notion of
normal intermediate subfactor, so:

Definition 1.3. A finite index irreducible subfactor is cyclic if all its intermediate
subfactors are normal and form a distributive lattice.

Note that an irreducible finite index subfactor (N ⊆ M) admits a finite lattice
L(N ⊆ M) of intermediate subfactors by [Watatani 1996], as for the subgroup
lattice of a finite group. Moreover, a finite group subfactor remembers the group by
[Jones 1980]. Section 4A exhibits some examples of cyclic subfactors: of course
the cyclic group subfactors and the (irreducible finite index) maximal subfactors;
moreover, up to equivalence, exactly 23279 among 34503 inclusions of groups of
index < 30, give a cyclic subfactor. The class of cyclic subfactors is stable under
dual, intermediate, free composition and certain tensor products. Now the natural
problem concerning cyclic subfactors is to understand in what sense they are “singly
generated”. To answer this question, we extend the following theorem of Ore.
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Theorem 1.4 [Ore 1938]. If an interval of finite groups [H,G] is distributive, then
there exists g ∈ G such that 〈H, g〉 = G.

Theorem 1.5. An irreducible subfactor planar algebra whose biprojections are
central and form a distributive lattice, has a minimal 2-box projection generating
the identity biprojection (i.e., w-cyclic subfactor).

But “normal” means “bicentral”, so a cyclic subfactor planar algebra is w-cyclic.
The converse is false, a group subfactor (RG

⊆ R) is cyclic if and only if G is
cyclic, and is w-cyclic if and only if G is linearly primitive (consider G = S3).
That’s why we have chosen the name w-cyclic (i.e., weakly cyclic). We conjecture
that Theorem 1.5 holds without the assumption that the biprojections are central.

Conjecture 1.6. An irreducible subfactor planar algebra with a distributive bipro-
jection lattice is w-cyclic.

This is true if the lattice has less than 32 elements (and so, at index < 32).
Now the group-theoretic reformulation of Conjecture 1.6 for the planar algebra
P(RG

⊆ RH ), gives a dual version of Theorem 1.4.

Conjecture 1.7. If the interval of finite groups [H,G] is distributive then there
exists an irreducible complex representation V of G such that G(V H ) = H.

In general, we deduce a nontrivial upper bound for the minimal number of mini-
mal central projections generating the identity biprojection. For P(RG

⊆ R), this
gives a nontrivial upper bound for the minimal number of irreducible components
for a faithful complex representation of G. This is a bridge linking combinatorics
and representations in the theory of finite groups. This paper is a short version of
[Palcoux 2015].

2. Ore’s theorem on finite groups

2A. Basics in lattice theory. A lattice (L ,∧,∨) is a poset L in which every two
elements a, b have a unique supremum (or join) a∨b, and a unique infimum (or meet)
a∧b. Let G be a finite group. The set of subgroups K ⊆G forms a lattice, denoted by
L(G), ordered by⊆, with K1∨K2=〈K1, K2〉 and K1∧K2= K1∩K2. A sublattice
of (L ,∧,∨) is a subset L ′⊆ L such that (L ′,∧,∨) is also a lattice. Consider a, b∈ L
with a ≤ b, then the interval [a, b] is the sublattice {c ∈ L | a ≤ c ≤ b}. Any finite
lattice admits a minimum and a maximum, denoted by 0̂ and 1̂. An atom is a
minimal element in L \ {0̂} and a coatom is a maximal element in L \ {1̂}. The top
interval of a finite lattice L is the interval [t, 1̂], with t the meet of all the coatoms.
The height of a finite lattice L is the greatest length of a (strict) chain. A lattice is
distributive if the join and meet operations distribute over each other.

Remark 2.1. Distributivity is stable under taking a sublattice, reversal, direct
product and concatenation.
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A distributive lattice is called boolean if any element b admits a unique comple-
ment b{ (i.e., b∧ b{ = 0̂ and b∨ b{ = 1̂). The subset lattice of {1, 2, . . . , n}, with
union and intersection, is called the boolean lattice Bn of rank n. Any finite boolean
lattice is isomorphic to some Bn .

Lemma 2.2. The top interval of a finite distributive lattice is boolean.

Proof. See [Stanley 2012, items a–i, pages 254–255] which use Birkhoff’s represen-
tation theorem, which states a finite lattice is distributive if and only if it embeds
into some Bn . �

A lattice with a boolean top interval will be called top boolean (and its reversal,
bottom boolean). See [Stanley 2012] for more details on lattice basics.

2B. Ore’s theorem on distributive intervals of finite groups. Øystein Ore [1938,
Theorem 4, page 267] proved the following result.

Theorem 2.3. A finite group G is cyclic if and only if its subgroup lattice L(G) is
distributive.

Proof. (⇐): This is just a particular case of Theorem 2.5 with H = {e}.

(⇒): A finite cyclic group G = Z/n has exactly one subgroup of order d, de-
noted by Z/d, for every divisor d of n. Now Z/d1 ∨ Z/d2 = Z/lcm(d1, d2) and
Z/d1 ∧Z/d2 = Z/gcd(d1, d2), but the lcm and gcd distribute other each over, so
the result follows. �

Definition 2.4. An interval of finite groups [H,G] is said to be H -cyclic if there
is g ∈ G such that 〈H, g〉 = G. Note that 〈H, g〉 = 〈Hg〉.

Ore extended one side of Theorem 2.3 to the interval of finite groups [Ore 1938,
Theorem 7] for which we will give our own proof (which is a group-theoretic
reformulation of the proof of Theorem 4.26):

Theorem 2.5. A distributive interval [H,G] is H-cyclic.

Proof. The proof follows from the claims below and Lemma 2.2.

Claim: Let M be a maximal subgroup of G. Then [M,G] is M-cyclic.

Proof of claim. For g ∈ G with g 6∈ M, we have 〈M, g〉 = G by maximality. �

Claim: A boolean interval [H,G] is H -cyclic.

Proof of claim. Let M be a coatom in [H,G], and M{ be its complement. By the
previous claim and induction on the height of the lattice, we can assume [H,M]
and [H,M{] both to be H -cyclic, i.e., there are a, b ∈ G such that 〈H, a〉 = M
and 〈H, b〉 = M{. For g = ab, 〈H, a, g〉 = 〈H, g, b〉 = 〈H, a, b〉 = M ∨M{ = G,
since a = gb−1 and b = a−1g. Now, 〈H, g〉 = 〈H, g〉 ∨ H = 〈H, g〉 ∨ (M ∧M{)
but by distributivity 〈H, g〉 ∨ (M ∧ M{) = (〈H, g〉 ∨ M〉)∧ (〈H, g〉 ∨ M{〉). So
〈H, g〉 = 〈H, a, g〉 ∧ 〈H, g, b〉 = G. The result follows. �
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Claim: [H,G] is H -cyclic if its top interval [K ,G] is K -cyclic.

Proof of claim. Consider g ∈ G with 〈K , g〉 = G. For any coatom M ∈ [H,G], we
have K ⊆ M by definition, and so g 6∈ M, then a fortiori 〈H, g〉 6⊆ M. It follows
that 〈H, g〉 = G. �

3. Subfactor planar algebras and biprojections

For the notions of subfactor, subfactor planar algebra and basic properties, we refer
to [Jones and Sunder 1997; Jones 1999; Kodiyalam and Sunder 2004]. See also
[Palcoux 2015, Section 3] for a short introduction. A subfactor planar algebra is of
finite index by definition.

3A. Basics on the 2-box space. Let (N ⊆M) be a finite index irreducible subfactor.
The n-box spaces Pn,+ and Pn,− of the planar algebra P=P(N ⊆M), are N ′∩Mn−1

and M ′∩Mn . Let R(a) be the range projection of a ∈P2,+. We define the relations
a � b by R(a)≤ R(b), and a ∼ b by R(a)= R(b). Let e1 := eM

N and id := eM
M be

the Jones and the identity projections in P2,+. Note that tr(e1)= |M : N |−1
= δ−2

and tr(id) = 1. Let F : P2,± → P2,∓ be the Fourier transform (90◦ rotation),
a := F(F(a)) be the contragredient of a ∈ P2,±, and a ∗ b = F(F−1(a) ·F−1(b))
be the coproduct of a, b ∈ P2,±.

Lemma 3.1. Let a, b, c, d be positive operators of P2,+. Then

(1) a ∗ b is also positive,

(2) [a � b and c � d] ⇒ a ∗ c � b ∗ d ,

(3) a � b⇒ 〈a〉 ≤ 〈b〉,

(4) a ∼ b⇒ 〈a〉 = 〈b〉.

Proof. This is precisely [Liu 2016, Theorem 4.1 and Lemma 4.8] for (1) and (2).
Next, if a � b, then by (2), for any integer k, a∗k � b∗k, and hence for all n,

n∑
k=1

a∗k �
n∑

k=1

b∗k,

so 〈a〉 ≤ 〈b〉 by Definition 3.8. Finally, (4) is immediate from (3). �

The next lemma follows by irreducibility (i.e., P1,+ = C).

Lemma 3.2. Let p, q ∈ P2,+ be projections. Then

e1 � p ∗ q⇔ pq 6= 0.

Note that if p ∈ P2,+ is a projection then p is also a projection.

Lemma 3.3. Let a, b, c ∈ P2,+ be projections with c � a ∗ b. Then there exist
a′ � c ∗ b and b′ � a ∗ c such that a′, b′ are projections and aa′, bb′ 6= 0.
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Proof. The proof follows from Lemmas 3.1 and 3.2, and

e1 � c ∗ c � (a ∗ b) ∗ c = a ∗ (b ∗ c).

We can also apply [Liu 2016, Lemma 4.10]. �

3B. On the biprojections.

Definition 3.4 [Liu 2016, Definition 2.14]. A biprojection is a projection b ∈ P2,±

with F(b) a multiple of a projection.

Note that e1 = eM
N and id= eM

M are biprojections.

Theorem 3.5 [Bisch 1994, page 212]. A projection b is a biprojection if and only
if it is the Jones projection eM

K of an intermediate subfactor N ⊆ K ⊆ M.

Therefore the set of biprojections is a lattice of the form [e1, id].

Theorem 3.6. An operator b is a biprojection if and only if

e1 ≤ b = b2
= b? = b = λb ∗ b, with λ−1

= δ tr(b).

Proof. See [Landau 2002, items 0–3, page 191] and [Liu 2016, Theorem 4.12]. �

Lemma 3.7. Consider a1, a2, b ∈ P2,+ with b a biprojection. Then

(b · a1 · b) ∗ (b · a2 · b)= b · (a1 ∗ (b · a2 · b)) · b = b · ((b · a1 · b) ∗ a2) · b,

(b ∗ a1 ∗ b) · (b ∗ a2 ∗ b)= b ∗ (a1 · (b ∗ a2 ∗ b)) ∗ b = b ∗ ((b ∗ a1 ∗ b) · a2) ∗ b.

Proof. By exchange relations [Landau 2002] for b and F(b). �

Definition 3.8. Consider a ∈ P2,+ positive, and let pn be the range projection of∑n
k=1 a∗k. By finiteness, there exists N such that for all m ≥ N, pm = pN , which

is a biprojection [Liu 2016, Lemma 4.14], denoted 〈a〉, called the biprojection
generated by a. It is the smallest biprojection b � a. For S a finite set of positive
operators, let 〈S〉 be the biprojection

〈∑
s∈S s

〉
, it is the smallest biprojection b such

that b � s, for all s ∈ S.

3C. Intermediate planar algebras and 2-box spaces. Let N ⊆ K ⊆ M be an
intermediate subfactor. The planar algebras P(N ⊆ K ) and P(K ⊆ M) can be
derived from P(N ⊆ M), see [Bakshi 2016; Landau 1998].

Theorem 3.9. Consider the intermediate subfactors

N ⊆ P ⊆ K ⊆ Q ⊆ M.

Then there are two isomorphisms of von Neumann algebras

lK : P2,+(N ⊆ K )→ eM
K P2,+(N ⊆ M)eM

K ,

rK : P2,+(K ⊆ M)→ eM
K ∗P2,+(N ⊆ M) ∗ eM

K ,
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for the usual +, × and ()?, such that

lK (eK
P )= eM

P and rK (eM
Q )= eM

Q .

Moreover, the coproduct ∗ is also preserved by these maps, but up to a multiplicative
constant, |M : K |1/2 for lK and |K : N |−1/2 for rK . Then, for all m ∈ {l±1

K , r±1
K },

and for all ai > 0 in the domain of m, m(ai ) > 0 and

〈m(a1), . . . ,m(an)〉 = m(〈a1, . . . , an〉).

Proof. This is clear from [Bakshi 2016] or [Landau 1998], using Lemma 3.7. �

Notations 3.10. Let b1 ≤ b ≤ b2 be the biprojections eM
P ≤ eM

K ≤ eM
Q . We define

lb := lK and rb := rK ; also P(b1, b2) := P(P ⊆ Q) and

|b2 : b1| := tr(b2)/ tr(b1)= |Q : P|.

4. Ore’s theorem on subfactor planar algebras

4A. The cyclic subfactor planar algebras. In this subsection, we define the class
of cyclic subfactor planar algebras, we show that it contains plenty of examples,
and we prove that it is stable under dual, intermediate, free composition and certain
tensor products. Let P be an irreducible subfactor planar algebra.

Definition 4.1 [Teruya 1998]. A biprojection b is normal if it is bicentral (that is,
if b and F(b) are central).

Definition 4.2. An irreducible subfactor planar algebra is said to be

• distributive if its biprojection lattice is distributive,

• Dedekind if all its biprojections are normal,

• cyclic if it is both Dedekind and distributive.

Moreover, we call a subfactor cyclic if its planar algebra is cyclic.

Examples 4.3. A group subfactor is cyclic if and only if the group is cyclic; every
maximal subfactor is cyclic, in particular every 2-supertransitive subfactor, as the
Haagerup subfactor [Asaeda and Haagerup 1999; Izumi 2001; Peters 2010], is
cyclic. Up to equivalence, exactly 23279 among 34503 inclusions of groups of
index < 30, give a cyclic subfactor (more than 65%).

Definition 4.4. Let G be a finite group and H a subgroup. The core HG is the
largest normal subgroup of G contained in H. The subgroup H is called core-free if
HG = {1}; in this case the interval [H,G] is also called core-free. Two intervals of
finite groups [A, B] and [C, D] are called equivalent if there is a group isomorphism
φ : B/AB→ D/CD such that φ(A/AB)= C/CD .
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Remark 4.5. A finite group subfactor remembers the group [Jones 1980], but a finite
group-subgroup subfactor does not remember the equivalence class of the interval
in general. A counterexample was found by V. S. Sunder and V. Kodiyalam [2000],
the intervals [〈(1234)〉, S4] and [〈(12)(34)〉, S4] are not equivalent whereas their
corresponding subfactors are isomorphic; but thanks to the complete characterization
by M. Izumi [2002], it remembers the interval in the maximal case, because the inter-
section of a core-free maximal subgroup with an abelian normal subgroup is trivial.

Theorem 4.6. The free composition of irreducible finite index subfactors has no
extra intermediate.

Proof. See [Liu 2016, Theorem 2.22]. �

Corollary 4.7. The class of finite index irreducible cyclic subfactors is stable under
free composition.

Proof. By Theorem 4.6, the intermediate subfactor lattice of a free composition is
the concatenation of the lattice of the two components (see also Remark 2.1). By
Theorem 3.9 and Lemma 3.7, the biprojections remain normal. �

The following theorem was proved in the 2-supertransitive case by Y. Watatani
[1996, Proposition 5.1]. The general case was conjectured by the author, but
specified and proved after a discussion with F. Xu.

Theorem 4.8. Let (Ni ⊂ Mi ), i = 1, 2, be irreducible finite index subfactors. Then

L(N1 ⊂ M1)×L(N2 ⊂ M2)( L(N1⊗ N2 ⊂ M1⊗M2)

if and only if there are intermediate subfactors Ni ⊆ Pi ⊂ Qi ⊆ Mi , i = 1, 2, such
that (Pi ⊂ Qi ) is of depth 2 and isomorphic to (RAi ⊂ R), with A2 ' A

cop
1 being

the (very simple) Kac algebra A1 with the opposite coproduct.

Proof. Consider the intermediate subfactors

N1⊗ N2 ⊆ P1⊗ P2 ⊂ R ⊂ Q1⊗ Q2 ⊆ M1⊗M2

with R not of tensor product form, P1⊗ P2 and Q1⊗ Q2 the closest (below and
above, respectively) to R among those of tensor product form. Now using [Xu
2013, Proposition 3.5(2)], (Pi ⊆ Qi ), i = 1, 2, are of depth 2, their corresponding
Kac algebras, Ai , i = 1, 2, are very simple and A2 'A

cop
1 [Xu 2013, Definition 3.6

and Proposition 3.10]. The converse is given by [Xu 2013, Theorem 3.14]. �

Remark 4.9. By Theorem 4.8 and Remark 2.1, the class of (finite index irreducible)
cyclic subfactors is stable under certain tensor products (i.e., if there is no cop-
isomorphic intermediate of depth 2), and by Theorem 3.9 and Lemma 3.7, the
biprojections remain normal.
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Lemma 4.10. If a subfactor is cyclic then the intermediate and dual subfactors are
also cyclic.

Proof. The proof follows from Remark 2.1, Theorem 3.9 and Lemma 3.7. �

A subfactor as (R ⊆ R oG) or (RG
⊆ R) is called a “group subfactor”. Then,

the following lemma justifies the choice of the word “cyclic”.

Lemma 4.11. A cyclic “group subfactor” is a “cyclic group” subfactor.

Proof. By Galois correspondence, if a “group subfactor” is cyclic then the subgroup
lattice is distributive, and so the group is cyclic by Ore’s Theorem 2.3. The normal
biprojections of a group subfactor corresponds to the normal subgroups [Teruya
1998], but every subgroup of a cyclic group is normal. �

Problem 4.12. Is a depth 2 irreducible finite index cyclic subfactor, a cyclic group
subfactor?

The answer could be “no” because the following fusion ring (first reported in
[Palcoux 2013]), the first known to be simple integral and nontrivial, could be
the Grothendieck ring of a “maximal” Kac algebra of dimension 210 and type
(1, 5, 5, 5, 6, 7, 7).
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

0 1 0 0 0 0 0
1 1 0 1 0 1 1
0 0 1 0 1 1 1
0 1 0 0 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

0 0 1 0 0 0 0
0 0 1 0 1 1 1
1 1 1 0 0 1 1
0 0 0 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

0 0 0 1 0 0 0
0 1 0 0 1 1 1
0 0 0 1 1 1 1
1 0 1 1 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 0 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

0 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 1 2
0 1 1 1 1 2 2

0 0 0 0 0 0 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 2 2
1 1 1 1 2 2 1

4B. The w-cyclic subfactor planar algebras. Let P be an irreducible subfactor
planar algebra.

Theorem 4.13. Let p ∈ P2,+ be a minimal central projection. Then there exists a
minimal projection v ≤ p such that 〈v〉 = 〈p〉.

Proof. If p is a minimal projection, then the theorem clearly holds. Else, let
b1, . . . , bn be the coatoms of [e1, 〈p〉] (n is finite by [Watatani 1996]). If p 6�∑n

i=1 bi , then there exists u ≤ p, a minimal projection such that u 6≤ bi for all i , so
that 〈u〉 = 〈p〉. If not, p �

∑n
i=1 bi (with n > 1, otherwise p ≤ b1 and 〈p〉 ≤ b1,

a contradiction). Let Ei = range(bi ) and F = range(p), then F =
∑

i Ei ∩ F
(because p is a minimal central projection) with 1< n<∞ and Ei ∩F ( F for all i
(otherwise there exists i with p ≤ bi , a contradiction), so dim(Ei ∩ F) < dim(F)
and there exists U ⊆ F , a one-dimensional subspace such that U 6⊆ Ei ∩ F for
all i , and so a fortiori U 6⊆ Ei for all i . It follows that u = pU ≤ p is a minimal
projection such that 〈u〉 = 〈p〉. �

Thanks to Theorem 4.13, we can give the following definition:

Definition 4.14. The planar algebra P is weakly cyclic (or w-cyclic) if it satisfies
one of the following equivalent assertions:
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• There exists a minimal projection u ∈ P2,+ such that 〈u〉 = id.

• There exists a minimal central projection p ∈ P2,+ such that 〈p〉 = id.

We call a subfactor w-cyclic if its planar algebra is w-cyclic.

The following remark justifies the choice of the word “w-cyclic”.

Remark 4.15. By Corollary 6.12, a finite group subfactor (RG
⊂ R) is w-cyclic

if and only if G is linearly primitive, which is strictly weaker than cyclic (see for
example S3), nevertheless the notion of w-cyclic is a singly generated notion in the
sense that “there is a minimal projection generating the identity biprojection”. We
can also see the weakness of this assumption by the fact that the minimal projection
does not necessarily generate a basis for the set of positive operators, but just the
support of it, i.e., the identity.

Question 4.16. Is a cyclic subfactor planar algebra w-cyclic?
The answer is “yes” by Theorem 4.27.

Let P = P(N ⊆ M) be an irreducible subfactor planar algebra. Take an interme-
diate subfactor N ⊆ K ⊆ M and its biprojection b = eM

K .

Lemma 4.17. Let A be a ?-subalgebra of P2,+. Then any element x ∈A is positive
in A if and only if it is positive in P2,+.

Proof. If x is positive in A, it is of the form aa?, with a ∈A, but a ∈ P2,+ also, so
x is positive in P2,+. Conversely, if x is positive in P2,+ then

〈xy|y〉 = tr(y?xy)≥ 0,

for any y ∈P2,+, so in particular, for any y ∈A, which means x is positive in A. �

Note that Lemma 4.17 will be applied to A= bP2,+ b or b ∗P2,+ ∗ b.

Proposition 4.18. The planar algebra P(e1, b) is w-cyclic if and only if there is a
minimal projection u ∈ P2,+ such that 〈u〉 = b.

Proof. The planar algebra P(N ⊆ K ) is w-cyclic if and only if there is a minimal
projection x ∈ P2,+(N ⊆ K ) such that 〈x〉 = eK

K , if and only if lK (〈x〉)= lK (eK
K ),

if and only if 〈u〉 = eM
K (by Theorem 3.9), with u = lK (x) a minimal projection in

eM
K P2,+ eM

K and in P2,+. �

Lemma 4.19. For any minimal projection x ∈P2,+(b, id), rb(x) is positive and for
any minimal projection v � rb(x), there is λ > 0 such that b ∗ v ∗ b = λrb(x).

Proof. Firstly, x is positive, so by Theorem 3.9, rb(x) is also positive. For any
minimal projection v � rb(x), we have b ∗ v ∗ b � rb(x), because

b ∗ v ∗ b � b ∗ rb(x) ∗ b = b ∗ b ∗ u ∗ b ∗ b ∼ b ∗ u ∗ b = rb(x),
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by Lemma 3.1(2) and with u ∈ P2,+. Now by Lemma 3.1(1), b ∗ v ∗ b > 0, so
r−1

b (b ∗ v ∗ b) > 0 also, and by Theorem 3.9,

r−1
b (b ∗ v ∗ b)� x .

But x is a minimal projection, so by positivity, there exists λ > 0 such that

r−1
b (b ∗ v ∗ b)= λx .

It follows that b ∗ v ∗ b = λrb(x). �

Lemma 4.20. Consider v ∈ P2,+ positive. Then 〈b ∗ v ∗ b〉 = 〈b, v〉.

Proof. Firstly, by Definition 3.8, b ∗ v ∗ b � 〈b, v〉, so 〈b ∗ v ∗ b〉 ≤ 〈b, v〉, by
Lemma 3.1(3). Next e1 ≤ b and x ∗ e1 = e1 ∗ x = δ−1x , so

v = δ2e1 ∗ v ∗ e1 � b ∗ v ∗ b.

Moreover by Theorem 3.6, v � 〈b ∗ v ∗ b〉, but by Lemma 3.2,

v ∗ b ∗ v ∗ b � v ∗ e1 ∗ v ∗ b ∼ v ∗ v ∗ b � e1 ∗ b ∼ b.

Then b, v ≤ 〈b ∗ v ∗ b〉, so we also have 〈b, v〉 ≤ 〈b ∗ v ∗ b〉. �

Proposition 4.21. The planar algebra P(b, id) is w-cyclic if and only if there is a
minimal projection v ∈ P2,+ such that 〈b, v〉 = id and r−1

b (b ∗ v ∗ b) is a positive
multiple of a minimal projection.

Proof. The planar algebra P(K ⊆ M) is w-cyclic if and only if there is a minimal
projection x ∈ P2,+(K ⊆ M) such that 〈x〉 = eM

M , if and only if rK (〈x〉)= rK (eM
M ),

if and only if 〈rK (x)〉 = eM
M by Theorem 3.9. The result follows by Lemmas 4.19

and 4.20. �

4C. The main result. Let P be an irreducible subfactor planar algebra.

Lemma 4.22. A maximal subfactor planar algebra is w-cyclic.

Proof. By maximality 〈u〉 = id for any minimal projection u 6= e1. �

Definition 4.23. The top intermediate subfactor planar algebra is the intermediate
associated to the top interval of the biprojection lattice.

Lemma 4.24. An irreducible subfactor planar algebra is w-cyclic if its top inter-
mediate is so.

Proof. Let b1, . . . , bn be the coatoms in [e1, id] and t =
∧n

i=1 bi . By assumption
and Proposition 4.21, there is a minimal projection v ∈ P2,+ with 〈t, v〉 = id. If
there exists i such that v ≤ bi , then 〈t, v〉 ≤ bi , a contradiction. So v 6≤ bi for all i ,
and then 〈v〉 = id. �
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Definition 4.25. Let h(P) be the height of the biprojection lattice [e1, id]. Note
that h(P) <∞ because the index is finite.

Theorem 4.26. If the biprojections in P2,+ are central and form a distributive
lattice, then P is w-cyclic.

Proof. By Lemma 4.10, we can make an induction on h(P). If h(P) = 1, then
we apply Lemma 4.22. Now suppose that the theorem holds for h(P) < n, we
will prove it for h(P) = n ≥ 2. By Lemmas 2.2 and 4.24, we can assume the
biprojection lattice to be boolean. For b in the open interval (e1, id), its complement
b{ (see Section 2A) is also in (e1, id). By induction and Proposition 4.18, there
are minimal projections u, v such that b = 〈u〉 and b{ = 〈v〉. Take any minimal
projection c � u ∗ v, then

〈c〉 = 〈c〉 ∨ e1 = 〈c〉 ∨ (b∧ b{)= 〈c〉 ∨ (〈u〉 ∧ 〈v〉),

so by distributivity
〈c〉 = (〈c〉 ∨ 〈u〉)∧ (〈c〉 ∨ 〈v〉)= 〈c, u〉 ∧ 〈c, v〉.

Then by Lemma 3.3, 〈c〉 = 〈u′, c, v〉 ∧ 〈u, c, v′〉 with u′, v′ minimal projections
and uu′, vv′ 6=0, so in particular the central support Z(u′)= Z(u) and Z(v′)= Z(v).
Now by assumption, every biprojection is central, so u ≤ Z(u′) ≤ 〈u′, c, v〉 and
v ≤ Z(v′)≤ 〈u, c, v′〉, so 〈c〉 = id. �

Theorem 4.27. A cyclic subfactor planar algebra is w-cyclic.

Proof. This is immediate by Theorem 4.26 because a normal biprojection is by
definition bicentral, so a fortiori central. �

5. Extension for small distributive lattices

We extend Theorem 4.26 without assuming the biprojections to be central, but
for distributive lattices with less than 32 elements. Because the top lattice of a
distributive lattice is boolean (Lemma 2.2), we can reduce the proof to Bn with n< 5.

Definition 5.1. An irreducible subfactor planar algebra is said to be boolean (or Bn)
if its biprojection lattice is boolean (of rank n).

Proposition 5.2. An irreducible subfactor planar algebra such that the coatoms
b1, . . . , bn ∈ [e1, id] satisfy

∑
i

1
|id : bi |

≤ 1, is w-cyclic.

Proof. Firstly, by Lemmas 4.22 and 4.24, we can assume that n > 1. By definition,
|id : bi | = tr(id)/tr(bi ) so by assumption

∑
i tr(bi ) ≤ tr(id). If

∑
i bi ∼ id then∑

i bi ≥ id, but
∑

i tr(bi ) ≤ tr(id) so
∑

i bi = id. Now e1 ≤ bi for all i , therefore
ne1 ≤

∑
i bi = id, contradiction with n > 1. So

∑
i bi ≺ id, which implies the

existence of a minimal projection u 6≤ bi for all i , which means that 〈u〉 = id. �

Remark 5.3. The converse is false, (R ⊂ R oZ/30) is a counterexample, because
1
2 +

1
3 +

1
5 =

31
30 > 1.
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Corollary 5.4. An irreducible subfactor planar algebra with at most two coatoms
in [e1, id] is w-cyclic.

Proof. We have
∑

i
1
|id:bi |
≤

1
2 +

1
2 , and the result follows by Proposition 5.2. �

Examples 5.5. Every B2 subfactor planar algebra is w-cyclic.

id

b1 b2

e1

Lemma 5.6. Let u, v ∈ P2,+ be minimal projections. If v 6≤ 〈u〉 then there exist
minimal projections c � u ∗ v and w � u ∗ c such that w 6≤ 〈u〉.

Proof. Assume that for all c � u ∗ v and for all w � u ∗ c, we have w ≤ 〈u〉.
Now there are minimal projections (ci )i and (wi, j )i, j such that u ∗ v ∼

∑
i ci and

u ∗ ci ∼
∑

j wi, j . It follows that u ∗ v ∼
∑

i, j wi, j � 〈u〉, but

v ∼ e1 ∗ v � (u ∗ u) ∗ v = u ∗ (u ∗ v)� 〈u〉,

which is in contradiction with v 6≤ 〈u〉. �

For the distributive case, we can upgrade Proposition 5.2 as follows:

Theorem 5.7. A distributive subfactor planar algebra with coatoms b1, . . . , bn ∈

[e1, id] satisfying
∑

i
1
|id:bi |
≤ 2, is w-cyclic.

Proof. By Lemmas 2.2 and 4.24, we can assume the subfactor planar algebra to be
boolean. If K :=

∧
i, j,i 6= j (bi ∧b j )

⊥
6= 0, then consider u ≤ K a minimal projection,

and Z(u) its central support. If 〈Z(u)〉 = id, then we are okay. Otherwise there
exists i such that 〈u〉 = 〈Z(u)〉 = bi . But b{i is an atom in [e1, id], so there is a
minimal projection v such that b{i = 〈v〉. Recall that bi ∧ b{i = e1, so v 6≤ 〈u〉, and
by Lemma 5.6, there are minimal projections c � u ∗ v and w � u ∗ c such that
w 6� 〈u〉 (and 〈u, w〉 = id by maximality). By Lemma 3.3, there exists u′ � c ∗ u
with Z(u′) = Z(u) and u′ 6⊥ u, but u ≤ K so u′ 6≤ bi ∧ b j for all j 6= i , and now
u′≤ Z(u)≤ bi , so 〈u′〉= bi . Using distributivity (as for Theorem 4.26) we conclude

〈c〉 = 〈u, c〉 ∧ 〈c, v〉 ≥ 〈u, w〉 ∧ 〈u′, v〉 = id∧ id= id .

Otherwise K = 0, but (bi ∧ b j )
⊥
≥ b⊥j for all i , so

∧
j 6=i b⊥j = 0 for all i . Let

p1, . . . , pr be the minimal central projections. Then bi =
⊕r

s=1 pi,s with pi,s ≤ ps

and pi,1 = p1 = e1. Now b⊥i =
⊕r

s=1(ps − pi,s), so by assumption,

0=
∧
j 6=i

r⊕
s=1

(ps − p j,s)=

r⊕
s=1

∧
j 6=i

(ps − p j,s), for all i.
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It follows that ps =
∨

j 6=i p j,s for all i and s, so tr(ps) ≤
∑

j 6=i tr(p j,s). Now
if there exists s such that pi,s < ps for all i , then 〈ps〉 = id, which is okay;
otherwise for all s, there exists i with pi,s = ps , but

∑
j 6=i tr(p j,s) ≥ tr(ps), so∑

j tr(p j,s)≥ 2 tr(ps). Then∑
i

tr(bi )≥ n · tr(e1)+ 2
∑
s 6=1

tr(ps)= 2 tr(id)+ (n− 2) tr(e1).

Now |id : bi | = tr(id)/ tr(bi ), so∑
i

1
|id : bi |

≥ 2+ n−2
|id : e1|

which contradicts the assumption, because we can assume n > 2 by Corollary 5.4.
The result follows. �

Remark 5.8. The converse is false because there exist w-cyclic distributive sub-
factor planar algebras with

∑
i (1/|id : bi |) > 2. For example, the subfactor

(R o Sn
2 ⊂ R o Sn

3 ) is w-cyclic and Bn , but
∑

i (1/|id : bi |)=
n
3 .

Corollary 5.9. Every Bn subfactor planar algebra with |id : b| ≥ n
2 , for any coatom

b ∈ [e1, id], is w-cyclic. Then for all n ≤ 4, any Bn subfactor planar algebra is
w-cyclic.

Proof. By assumption (following the notations of Theorem 5.7)∑
i

1
|id : bi |

≤

∑
i

2
n
= 2.

But |id : b| ≥ 2, so any n ≤ 4 works. �

Corollary 5.10. A distributive subfactor planar algebra having less than 32 bipro-
jections (or of index < 32), is w-cyclic.

Proof. In this case, the top of [e1, id] is boolean of rank n < 5, because 32 = 25;
the result follows by Lemma 4.24 and Corollary 5.9. �

Conjecture 5.11. A distributive subfactor planar algebra is w-cyclic.

By Lemmas 2.2 and 4.24, we can reduce Conjecture 5.11 to the boolean case,
and then extend it to the top boolean case.

Remark 5.12. The converse of Conjecture 5.11 is false, because the group S3 is
linearly primitive but not cyclic (see Corollary 6.12).

Problem 5.13. What is the natural additional assumption (A) such that P is dis-
tributive if and only if it is w-cyclic and satisfies (A)?

Assuming Conjecture 5.11 and using Remark 2.1, we get:

Conjecture 5.14. For any distributive subfactor planar algebra P and any biprojec-
tion b ∈ P2,+, the planar algebras P(e1, b), P(b, id) and their duals are w-cyclic.
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Remark 5.15. The converse is false because the interval [S2, S4], proposed by
Zhengwei Liu, gives a counterexample.

Remark 5.16. A cyclic subfactor planar algebra satisfies Conjecture 5.14 (thanks
to Theorem 4.27 and Lemma 4.10).

Problem 5.17. Is a Dedekind subfactor planar algebra P distributive if and only
if for any biprojection b ∈ P2,+, the planar algebras P(e1, b), P(b, id) and their
duals are w-cyclic?

6. Applications

6A. A nontrivial upper bound. For any irreducible subfactor planar algebra P ,
we exhibit a nontrivial upper bound for the minimal number of minimal 2-box
projections generating the identity biprojection. We will use the notations of
Section 3C.

Lemma 6.1. Let b′ < b be biprojections. If P(b′, b) is w-cyclic, then there is a
minimal projection u ∈ P2,+ such that 〈b′, u〉 = b.

Proof. Consider the isomorphisms of von Neumann algebras

lb : P2,+(e1, b)→ bP2,+b

and, with a = l−1
b (b′),

ra : P2,+(b′, b)→ a ∗P2,+(e1, b) ∗ a.

Then, by assumption, the planar algebra P(b′, b) is w-cyclic, so by Proposition 4.21,
there exists a minimal projection u′ ∈ P2,+(e1, b) such that

〈a, u′〉 = l−1
b (b).

Then by applying the map lb and Theorem 3.9, we get

b = 〈lb(a), lb(u′)〉 = 〈b′, u〉

with u = lb(u′) a minimal projection in bP2,+b, so in P2,+. �

Assuming Conjecture 5.11 and using Lemma 6.1, we get a nontrivial upper bound:

Conjecture 6.2. The minimal number r of minimal projections generating the
identity biprojection (i.e., 〈u1, . . . , ur 〉 = id) is at most the minimal length ` for an
ordered chain of biprojections

e1 = b0 < b1 < · · ·< b` = id

such that [bi , bi+1] is distributive (or better, top boolean).

Remark 6.3. We can deduce some theorems from Conjecture 6.2, by adding some
assumptions to [bi , bi+1], according to Theorems 4.26 or 5.7.
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Remark 6.4. Let (N ⊂ M) be any irreducible finite index subfactor. We can
deduce a nontrivial upper bound for the minimal number of (algebraic) irreducible
sub-N-N-bimodules of M, generating M as a von Neumann algebra.

6B. Back to the finite groups theory. As applications, we get a dual version of
Theorem 2.5, and for any finite group G, we get a nontrivial upper bound for the
minimal number of irreducible components for a faithful complex representation.
The action of G on the hyperfinite II1 factor R is always assumed to be outer.

Theorem 6.5 [Burnside 1911, § 226]. A complex representation V of a finite group
G is faithful if and only if any irreducible complex representation W is equivalent
to a subrepresentation of V⊗n, for some n ≥ 0.

Definition 6.6. A group G is linearly primitive if it admits a faithful irreducible
complex representation.

Definition 6.7. Let W be a representation of a group G, K be a subgroup of G,
and X be a subspace of W. Let the fixed-point subspace be

W K
:= {w ∈W | kw = w, for all k ∈ K }

and the pointwise stabilizer subgroup

G(X) := {g ∈ G | gx = x, for all x ∈ X}.

Definition 6.8. An interval [H,G] is said to be linearly primitive if there is an
irreducible complex representation V of G with G(V H ) = H.

The group G is linearly primitive if and only if the interval [{e},G] is.

Lemma 6.9. Let H be a core-free subgroup of G. Then G is linearly primitive if
[H,G] is so.

Proof. Take V as above. Now, V H
⊂ V so G(V ) ⊂ G(V H ), but ker(πV )= G(V ), so

it follows that ker(πV )⊂ H , but H is a core-free subgroup of G, and ker(πV ) is a
normal subgroup of G, so ker(πV )= {e}, which means that V is faithful on G, i.e.,
G is linearly primitive. �

Lemma 6.10. Letting px ∈ P2,+(RG
⊆ R) be a minimal projection on the one-

dimensional subspace Cx and H a subgroup of G, then

px ≤ bH := |H |−1
∑

h∈H
πV (h)⇔ H ⊂ Gx .

Proof. If px ≤ bH then bH x = x and for every h ∈ H we have that

πV (h)x = πV (h)[bH x] = [πV (h) · bH ]x = bH x = x

which means that h ∈Gx , and so H ⊂Gx . Conversely, if H ⊂Gx (i.e., πV (h)x = x
for every h ∈ H) then bH x = x , which means that px ≤ bH . �



ORE’S THEOREM ON CYCLIC SUBFACTOR PLANAR ALGEBRAS 219

Theorem 6.11. Let [H,G] be an interval of finite groups. Then

• (R o H ⊆ R oG) is w-cyclic if and only if [H,G] is H-cyclic.

• (RG
⊆ RH ) is w-cyclic if and only if [H,G] is linearly primitive.

Proof. By Proposition 4.21, (Ro H ⊆ RoG) is w-cyclic if and only if there exists
a minimal projection u in

P2,+(R ⊆ R oG)'
⊕
g∈G

Ceg ' CG

such that 〈b, u〉 = id, with b = eRoG
RoH , and r−1

b (b ∗ u ∗ b) is a minimal projection if
and only if there exists g ∈ G such that 〈H, g〉 = G, because u is of the form eg

and Hg′H = HgH for all g′ ∈ HgH.
By Proposition 4.18, (RG

⊆ RH ) is w-cyclic if and only if there exists a minimal
projection u in

P2,+(RG
⊆ R)'

⊕
Vi irr

End(Vi )' CG

such that 〈u〉 = eR
RH , if and only if, by Lemma 6.10, H = Gx with u = px the

projection on Cx ⊆ Vi (with Z(px) = pVi ). Note that H ⊂ G(V H
i ) ⊂ Gx so

H = G(V H
i ). �

Corollary 6.12. The subfactor (RG
⊆ R) (respectively, (R ⊆ R oG)) is w-cyclic

if and only if G is linearly primitive (respectively, cyclic).

Examples 6.13. The subfactors (RS4 ⊂ RS2), its dual and (RS3 ⊂ R), are w-cyclic,
but (R ⊂ R o S3) and (RS4 ⊂ R〈(1,2)(3,4)〉) are not.

By Theorem 6.11, the group-theoretic reformulation of Conjecture 5.11 on
(RG
⊆ RH ) is the following dual version of Theorem 2.5.

Conjecture 6.14. Let [H,G] be a distributive interval of finite groups. Then there
exists an irreducible complex representation V of G such that G(V H ) = H.

If, moreover, H is core-free, then G is linearly primitive (Lemma 6.9).

Problem 6.15. Is a finite group G linearly primitive if and only if there is a core-free
subgroup H such that the interval [H,G] is bottom boolean?

By Theorem 6.5, Conjecture 6.2 on P(RG
⊆ R) reformulates as follows:

Conjecture 6.16. The minimal number of irreducible components for a faithful
complex representation of a finite group G is at most the minimal length ` for an
ordered chain of subgroups

{e} = H0 < H1 < · · ·< H` = G
such that [Hi , Hi+1] is distributive (or better, bottom boolean).

This provides a bridge linking combinatorics and representations in the theory
of finite groups.
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Remark 6.17. We can upgrade Conjecture 6.16 by taking for H0 any core-free
subgroup of H1, instead of just {e}; we can also deduce some theorems, by adding
some assumptions to [Hi , Hi+1], according to the group-theoretic reformulation of
Theorems 4.27 or 5.7. Note that a normal biprojection in P(RG

⊆ RH ) is given
by a subgroup K ∈ [H,G] with HgK = K gH for all g ∈ G, see [Teruya 1998,
Proposition 3.3].

Remark 6.18. We can also formulate results for finite quantum groups (i.e., finite-
dimensional Kac algebras), where the biprojections correspond to the left coideal
?-subalgebras, see [Izumi et al. 1998, Theorem 4.4].
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