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DIVISIBILITY OF BINOMIAL COEFFICIENTS AND
GENERATION OF ALTERNATING GROUPS

JOHN SHARESHIAN AND RUSS WOODROOFE

We examine an elementary problem on prime divisibility of binomial coeffi-
cients. Our problem is motivated by several related questions on alternating
groups.

1. Introduction

We will discuss several closely related problems. The first is an elementary problem
concerning divisibility of binomial coefficients by primes. Consider the following
condition that a positive integer n might satisfy:

(1) There exist primes p and r such that if 1 ≤ k ≤ n − 1, then the binomial
coefficient

(n
k

)
is divisible by at least one of p or r .

Question 1.1. Does Condition (1) hold for all positive integers n?

We were led to ask Question 1.1 by a problem on the alternating groups. Indeed,
we consider several related group-theoretic conditions on a positive integer n:

(2) There exist primes p and r such that if H < An is a proper subgroup, then the
index [An : H ] is divisible by at least one of p or r .

(2’) There exist primes p and r such that if P is a Sylow p-subgroup and R a
Sylow r -subgroup of An , then 〈P, R〉 = An .

(3) There exist a prime p and a conjugacy class D in An consisting of elements
of prime power order, such that if P is a Sylow p-subgroup of An and d ∈ D,
then 〈P, d〉 = An .

(4) There exist conjugacy classes C and D in An , both consisting of elements of
prime power order, such that if (c, d) ∈ C × D, then 〈c, d〉 = An .

(5) There exist conjugacy classes C and D in An , both consisting of elements of
prime order, such that if (c, d) ∈ C × D, then 〈c, d〉 = An .
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If we wish to specify one or both of the primes, then we may say that n satisfies
Condition (1) with p, or that n satisfies Condition (1) with p and r . We’ll use
similar language for the other conditions.

Conditions (2) and (2’) are equivalent, and each condition in the above list implies
the previous condition. That is, for any positive integer n the following chain of
implications holds, where the primes p and r may be held fixed.

(1-1) (5)=⇒ (4)=⇒ (3)=⇒ (2′)⇐⇒ (2)=⇒ (1).

See also Theorem 1.3 below.
All implications in (1-1) are completely trivial or immediate from the definition

of a Sylow subgroup, with the exception of the implication (2) =⇒ (1). This
implication follows since An has subgroups of index

(n
k

)
for each 0≤ k ≤ n. (The

stabilizer in An of a k-subset of [n] is such a subgroup.)
There are infinitely many positive integers n that do not satisfy Condition (5).

However, the set of such integers is rather sparse, and likely very sparse. See
Proposition 1.6 and Theorem 1.5 below. We are not aware of any integer n for
which Conditions (1)–(4) fail to hold. In addition to Question 1.1, we will consider
the following.

Questions 1.2–1.4. Do Conditions (2)–(4) hold for all positive integers n?

1A. Motivations and related questions. Question 1.1 fits into a line of inquiry
going back to Kummer [1852] on the distribution of binomial coefficients that are
divisible by a given prime. The remaining conditions and questions arose from our
work and that of others on generation of finite simple groups. Recall that the classi-
fication of finite simple groups tells us that every simple group is isomorphic to one
of the following: an alternating group An with n ≥ 5, a cyclic group of prime order,
a group of Lie type, or one of twenty six sporadic groups. Conditions analogous
to Conditions (2)–(5) are known or conjectured for sporadic and Lie type groups.

We became interested in these problems via Question 1.2. In [Shareshian and
Woodroofe 2016], we define a group G to be universally (p, r)-generated if G =
〈P, R〉 for any Sylow p-subgroup P and Sylow r-subgroup R. (Compare with
Condition (2’)!) We say G is universally (2, ∗)-generated if there is some prime p
such that G is universally (2, p)-generated. We showed the following.

Theorem 1.2 [Shareshian and Woodroofe 2016]. If G is a finite simple group that
is abelian, of Lie type, or sporadic, then G is universally (2, ∗)-generated.

We used Theorem 1.2, along with fixed-point theorems of Smith [1941] and
Oliver [1975], to show that the order complex of the coset poset of any finite group
is noncontractible.

In light of Theorem 1.2, it is natural to ask whether An is universally (2, ∗)-
generated for every n — that is, whether every n satisfies Condition (2) with 2. This
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is not the case. The first failure of universal (2, ∗)-generation is at n = 7. It may be
easier to understand the second failure, at 15, since n = 15 does not even satisfy
Condition (1) with 2. Question 1.2 naturally suggests itself. We will further discuss
the case p = 2 below in Section 1C.

We found that similar conditions had been examined earlier. The general problem
of generation by elements selected from fixed conjugacy classes has been more
broadly studied under the name of “invariable generation”. See for example [Dixon
1992; Kantor et al. 2011; Detomi and Lucchini 2015; Eberhard et al. 2017]. Dolfi,
Guralnick, Herzog and Praeger first asked Question 1.4 in [Dolfi et al. 2012, Sec-
tion 6]. These authors conjecture that the analogue of Condition (5) holds for all
but finitely many simple groups of Lie type, but point out that the corresponding
statement for alternating groups occasionally fails.

Condition (3) interpolates naturally between Conditions (2) and (4). Although
they do not ask Question 1.3, Damian and Lucchini [2007] show that an analogue
of Condition (3) holds for many sporadic simple groups and groups of Lie type.
Indeed, they show that many simple groups are generated by a Sylow 2-subgroup
P together with any element of a certain conjugacy class consisting of elements of
prime order.

1B. Results for arbitrary primes. Our first result adds an additional implication
to the list in (1-1).

Theorem 1.3. Let p and r be primes. If the positive integer n is not a prime power,
then Conditions (1) and (2) are equivalent for n with p and r.

The case where n is a prime power is not difficult.

Proposition 1.4. If n is a power of the prime p, then

(A) n satisfies Condition (3) with a Sylow 2-subgroup unless n = 7, and

(B) n satisfies Condition (4) with p.

In particular, it follows from Theorem 1.3 and Proposition 1.4 that Questions 1.1
and 1.2 are equivalent. We remark that the requirement n 6= 7 in Proposition 1.4(A)
is necessary, as n= 7 satisfies Condition (1), but not Condition (2), with the prime 2.

While Questions 1.1–1.4 are still open, we have amassed a large collection of
integers for which the answers are “yes”. The asymptotic density [Niven et al. 1991]
of a set S of positive integers is defined to be

lim inf
M→∞

|S ∩ [M]|
M

.

Dolfi, Guralnick, Herzog and Praeger [2012] remark that Condition (5) appears
likely to hold with asymptotic density 1. We show the following:
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Theorem 1.5. Let α be the asymptotic density of the set of positive integers n that
satisfy Condition (5), and let ρ denote the Dickman–de Bruijn function (see for
example [Granville 2008]). We have

(A) α ≥ 1− ρ(20) > 1− 10−28, and

(B) if either the Riemann hypothesis or the Cramér conjecture holds, then α = 1.

The authors also claim in [Dolfi et al. 2012] that Condition (5) fails for infinitely
many values of n, and that the smallest n for which Condition (5) fails is 210. We
will see that the first claim is true, but the second is not.

Proposition 1.6. For any a ≥ 3, the integer n = 2a fails to satisfy Condition (5).

Theorem 1.5 suggests a positive answer to Questions 1.1–1.4 for all but a van-
ishingly sparse set of large integers. We have also examined many small integers
with the aid of a computer, verifying the following.

Proposition 1.7. Every n ≤ 1,000,000,000 satisfies Condition (2).

The key tool in the proofs of both Theorem 1.5 and Proposition 1.7 is the
following sieve lemma.

Lemma 1.8 (sieve lemma). Let n ≥ 9 be an integer. Let p and r be primes, and let
a and b be positive integers.

(A) If n is not a prime power, pa divides n, and rb < n < rb
+ pa , then n satisfies

Condition (2) with p and r.

(B) If p divides n and r + 2 < n < r + p, then n satisfies Condition (5) with p
and r.

Theorem 1.5 follows from combining Lemma 1.8 with known results on prime
gaps and smooth numbers. We also use Lemma 1.8 to do much of the work in
verifying Proposition 1.7.

For those integers not handled by Lemma 1.8(A), Theorem 1.3 tells us that it
suffices to check divisibility of binomial coefficients. In particular, we can avoid
making any computations in large alternating groups. We do not know how to avoid
such computations for Condition (4). The slow speed of these computations is the
main obstacle to a computational verification of Condition (4) for those values of n
not addressed by Lemma 1.8.

1C. Results for p =2. We return now to the case where one of the primes in Condi-
tion (2) is 2. Theorem 1.2 suggests this case as being particularly worthy of attention,
and Proposition 1.4 gives infinitely many values of n for which Condition (2) holds
with 2.

However, there are also infinitely many positive integers n that do not even
satisfy Condition (1) with 2. By a theorem of Kummer (see Lemma 3.1 below), if
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n= 2a
−1 for some positive integer a, then

(n
k

)
is odd for all 1≤ k ≤ n−1. (Indeed,

a similar statement holds for any prime p. In the language of group-actions, this
says that any Sylow p-subgroup of Spa−1 stabilizes a set of every possible size
k with 1 < k < pa

− 1.) Kummer’s theorem also implies that there is no prime
dividing every nontrivial

(n
k

)
unless n is a prime power. There are infinitely many n

of the form 2a
− 1 that are not prime powers.

Using techniques similar to those for Proposition 1.7, we computationally verify
the following.

Proposition 1.9. About 86.7% of the positive integers n ≤ 1,000,000 satisfy Con-
dition (2) with 2.

1D. Organization. We begin in Section 2 by giving necessary background on
maximal subgroups of alternating groups. In Section 3 we state the well-known
theorem of Kummer on prime divisibility of binomial coefficients, and prove an
analogue on prime divisibility of the number of equipartitions of a set. We use these
results in Section 4 to prove Theorem 1.3, Propositions 1.4 and 1.6, and Lemma 1.8.
We also verify that Condition (4) holds for all small alternating groups. We apply
Lemma 1.8 to prove Theorem 1.5 in Section 5. We describe our computational
verification of Propositions 1.7 and 1.9 in Section 6.

2. Preliminaries

In this section we discuss necessary background on alternating and symmetric
groups. Readers familiar with basic facts about permutation groups can safely skip
this section.

In order to show that the index of every subgroup of the alternating group An is di-
visible by either p or r , it suffices to show the same for every maximal subgroup. The
maximal subgroups of An are well-understood, as we now review. Additional back-
ground can be found in [Dixon and Mortimer 1996], see also [Liebeck et al. 1987].

We say that a subgroup H ≤ An is transitive or primitive if the action of H on [n]
satisfies the same property. That is, H is transitive if for every i, j ∈ [n], there is
some σ ∈ H such that i ·σ = j . A transitive subgroup H is imprimitive if there is a
proper partition π of [n] into sets of size greater than one, such that the parts of π
are permuted by the action of H . If H is transitive and not imprimitive, then it is
primitive. Clearly, every subgroup is either intransitive, imprimitive, or primitive.
We examine maximal subgroups of An according to this trichotomy.

An intransitive subgroup H is maximal in the (sub)poset of intransitive subgroups
of An if and only if H is the stabilizer in An of some nonempty proper subset X⊂[n].
As An sits naturally in Sn , it is illuminating to also consider the stabilizer H+ in Sn

of X . Then H = H+ ∩ An . It is clear that H+ ∼= S|X |× Sn−|X |. If |X | = k, then it
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follows either from this isomorphism or the orbit-stabilizer theorem that

[An : H ] = [Sn : H+] =
n!

k! · (n− k)!
=

(n
k

)
.

Every imprimitive subgroup of An stabilizes a partition of [n]. It follows easily
that a subgroup H is maximal in the (sub)poset of imprimitive subgroups of An if
and only if H is the stabilizer of a partition of [n] into n/d parts of size d for some
nontrivial proper divisor d of n. As in the intransitive case, we also consider the
stabilizer H+ of the same partition in the action by Sn . Then H+ is isomorphic to
the wreath product Sd o Sn/d . Since H = H+ ∩ An (and H+ 6≤ An), we see that

[An : H ] = [Sn : H+] =
n!

(d!)n/d · (n/d)!
.

By either the orbit-stabilizer theorem or an elementary counting argument, [An : H ]
counts the number of partitions of [n] into n/d equal-sized parts.

The index of a primitive proper subgroup of An is typically divisible by every
prime smaller than n. See Theorem 4.1 and the discussion following for a precise
statement.

3. Kummer’s theorem and an analogue

3A. Kummer’s theorem. We make considerable use of the following result of
Kummer. The most useful case of the lemma for us will be that where a = 1. See
also [Granville 1997] for an overview of related results.

Lemma 3.1 (Kummer’s theorem [1852, pp. 115–116]). Let k and n be integers
with 0≤ k ≤ n. If a is a positive integer, then pa divides

(n
k

)
if and only if at least a

carries are needed when adding k and n− k in base p.

3B. An analogue for the number of equipartitions. Lemma 3.1 completely de-
scribes the prime divisibility of indices of intransitive maximal subgroups of An .
Lemma 3.2 below provides a weaker but similarly useful characterization regarding
indices of imprimitive subgroups. Throughout this section, if d is a nontrivial
proper divisor of the positive integer n, then we will write In,d for the number of
equipartitions of n into parts of size d . Thus,

In,d =
n!

(d!)n/d · (n/d)!
.

Lemma 3.2. Let n be a positive integer, d be a nontrivial proper divisor of n, and
p be a prime. Then p divides In,d if and only if

(1) at least one carry is necessary when adding n/d copies of d in base p, and

(2) d is not a power of p.
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Proof. It is straightforward to show by elementary arguments that

(3-1) In,d =
1

(n/d)!
·

n/d∏
j=1

(
jd
d

)
=

n/d∏
j=1

1
j

(
jd
d

)
=

n/d∏
j=1

(
jd − 1
d − 1

)
.

Our strategy is to use Lemma 3.1 to examine divisibility of the terms in these
products.

Case 1 (n/d < p). In this case p does not divide (n/d)!, and the first condition
of the hypothesis implies the second. From (3-1) we thus see that p divides In,d

if and only if p divides
( jd

d

)
for some 1 ≤ j ≤ n/d. The claim for this case then

follows from Lemma 3.1.

Case 2 (n/d ≥ p). In this case a carry is always necessary when adding n/d copies
of d , so we need only consider the second condition of the hypothesis.

If the base p expansion of d has at least 2 nonzero places, then there are at least
2 carries when adding d to pd − d, as the base p expansion of pd is obtained by
shifting that of d to the left by one place. It follows that p2 divides

(pd
d

)
, hence that

p divides
(pd−1

d−1

)
=

1
p

(pd
d

)
. By (3-1), p divides In,d .

Otherwise, we have d = kpa for some 1 ≤ k < p. Then the base p expansion
of ( jd−1)− (d−1)= ( j −1)kpa vanishes below the a-th place. Also, the base p
expansion of d−1 is (k−1)pa

+
∑a−1

i=0 (p−1)pi . As the latter vanishes above the
a-th place, this place is the only possible location for a carry in adding d − 1 and
jd−1. If k=1, then the a-th place of d−1 is 0, so no carry occurs and for no j does
p divide

( jd−1
d−1

)
. If k > 1, then a carry occurs at the a-th place for values of j such

that ( j − 1) · k ≡ p− 1 mod p. (Such a j < n/d exists since Z/pZ is a field.) �

Remark 3.3. After submission of the paper, we became aware that a slightly
different (from Lemma 3.2) characterization of prime divisibility of In,d appears as
[Thompson 1966, Lemma 2].

Corollary 3.4. Let n and b be positive integers and r be a prime, such that n/2<
rb
≤ n. If d is a nontrivial proper divisor of n which is not a power of r , then r

divides In,d .

Proof. Since rb > n/2, there is a 1 in the b-th place of the base r expansion of n. On
the other hand, d ≤ n/2. Hence, the base r expansion of d has a 0 in the b-th place.
It follows that there is at least one carry when we sum n/d copies of d . Lemma 3.2
then gives that r divides In,d unless d is a power of r . �

One can indeed extract from (3-1) the highest power of p dividing In,d , but we
will not need to do so.
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4. Proofs of the sieve lemma and other tools

In this section we prove several results that we will use as tools in the sections that
follow, including Theorem 1.3, Lemma 1.8, and Propositions 1.4 and 1.6.

4A. Proof of Theorem 1.3. Suppose n satisfies Condition (2) with p and r . As
described in Section 2, the maximal intransitive subgroups of An are stabilizers of
k-subsets of [n], and have index

(n
k

)
in An . Hence, n also satisfies Condition (1)

with p and r . See the discussion following (1-1).
Thus, in order to prove Theorem 1.3, it suffices to show that if n satisfies

Condition (1) with p and r , then the index of every primitive or imprimitive
maximal subgroup is divisible by at least one of p or r .

For the primitive case, we use the following version of a classic theorem of
permutation group theory due to Jordan.

Theorem 4.1 [Jordan 1875; Dixon and Mortimer 1996, Section 3.3]. Let n ≥ 9 and
let H be a primitive subgroup of An:

(1) If p ≤ n− 3 is a prime and H contains a p-cycle, then H = An .

(2) If H contains the product of two transpositions, then H = An .

The next lemma follows quickly.

Lemma 4.2. Let p be a prime. If n ≥ 9 and p ≤ n− 3, then p divides the index of
every primitive proper subgroup of An .

Proof. If p is odd, then every Sylow p-subgroup of An contains a p-cycle. Similarly,
every Sylow 2-subgroup of An contains an element that is the product of two
transpositions. In either case, Theorem 4.1 gives that no primitive proper subgroup
of An contains any Sylow p-subgroup of An . �

Since Lemma 4.2 only applies when n ≥ 9, we pause to handle the situation
when n < 9. The only integer less than 9 that is not a prime power is 6, and the
equivalence of Conditions (1) and (2) for n = 6 is obtained by direct inspection
(see Table 1 below).

Now assume as above that n ≥ 9 satisfies Condition (1) with p and r . Since n is
not a prime power, we see from Lemma 3.1 that p and r must be distinct, hence
one must be smaller than n−2. As n ≥ 9, it follows from Lemma 4.2 that the index
of every primitive proper subgroup is divisible by at least one of p or r , as desired.

We now handle the imprimitive case, using Lemma 3.2. Let d be a divisor of
n. We notice that if p divides

(n
d

)
, then adding n − d and d in base p requires

a carry (by Lemma 3.1). It follows immediately from Lemma 3.2 that the index
n!/((d!)n/d · (n/d)!) of an imprimitive maximal subgroup is divisible by either p
or r , except possibly if d is a power of p or r .
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Suppose that d is a power of p, and that pa is the highest power of p dividing n.
Then Lemma 3.1 shows that

( n
pa

)
is not divisible by p, hence it is divisible by r .

Adding n/pa copies of pa in base r therefore requires a carry. Since d ≤ pa , adding
n/d copies of d in base r will also require a carry. Therefore, n!/((d!)n/d · (n/d)!)
is divisible by r , as desired. The case where d is a power of r is handled similarly.

4B. Proof of Lemma 1.8(A). Kummer’s theorem (Lemma 3.1) gives us the fol-
lowing.

Lemma 4.3. Let n be a positive integer and let p and r be distinct primes. If
there are positive integers a and b such that pa

| n and rb < n < pa
+ rb, then for

0< k < n at least one of p, r divides
(n

k

)
.

Proof. Notice that since pa > n− rb, either k < pa or else k > n− rb. We assume
without loss of generality that k ≤ n/2.

Let k =
∑

ki pi and n =
∑

ni pi respectively be the base p expansions of k
and n. As pa

| n, therefore ni = 0 for i < a. When k < pa , then k j = 0 for all j ≥ a.
Since k 6= 0, there is a carry when adding k and n− k in base p. It follows from
Lemma 3.1 that p |

(n
k

)
.

When k > n− rb, we notice that k ≤ n/2< rb, and therefore both k and n− k
are between n− rb and rb. In particular, the b-th place of the base r expansion of
both k and n−k has a 0. Since n/2< rb < n, the b-th place of the base r expansion
of n has a 1. It follows that there is a carry when adding k and n − k, hence by
Lemma 3.1 that r |

(n
k

)
. �

Lemma 1.8 follows from Lemma 4.3 and Theorem 1.3.

4C. Proof of Lemma 1.8(B). Let x ∈ An have cycle type pn/p, that is, let x be
the product of n/p pairwise disjoint p-cycles. (Since p 6= 2, a p-cycle is an even
permutation.) Let y ∈ An be an r-cycle. We take C to be the conjugacy class
containing x , and D to be the conjugacy class containing y. Since we chose (x, y)
arbitrarily from C × D, it is enough to show 〈x, y〉 = An , that is, that 〈x, y〉 is not
contained in a maximal subgroup of any of the three types discussed in Section 2.

Since r < n− 2, it is immediate from Theorem 4.1 that 〈y〉 is contained in no
maximal primitive subgroup.

If p is a proper divisor of n, we see that p≤n/2 and hence that r >n− p≥n/2. It
is then immediate by Corollary 3.4 that 〈y〉 is contained in no imprimitive maximal
subgroup. Otherwise, if n = p, then An has no imprimitive maximal subgroups.

It remains to show that 〈x, y〉 is transitive in the natural action on [n]. Since y
acts transitively on an r-set Y ⊆ [n], it suffices to show that every i ∈ [n] can be
moved into Y by x . But i is permuted in a p-cycle by x , and since r + p> n, some
element of this p-cycle must be in Y , as desired.
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4D. Proof of Proposition 1.4. Direct inspection verifies the proposition for n ≤ 8.
See Table 1 below. We assume henceforth that n ≥ 9.

We first verify part (B). By the Bertrand–Chebyshev theorem [Niven et al. 1991,
Theorem 8.7] there is a prime r with n/2< r < n−2. We let x be any r -cycle, and
notice that 〈x〉 is a Sylow r -subgroup. Then r divides the index of any imprimitive
or primitive maximal subgroup by Corollary 3.4 and Lemma 4.2 respectively.

We now take y to be any n-cycle in the case where n = pa is odd, or the product
of any two disjoint 2a−1-cycles in the case where n = 2a is even. In the former
case, 〈y〉 is transitive. In the latter case, as r > 2a−1, we see that 〈x, y〉 is transitive.
In either case, 〈x, y〉 is contained in no intransitive maximal subgroup, hence

〈x, y〉 = An.

Since conjugation fixes cycle type, part (B) follows.
It remains to verify (A). In the case where n is even, it follows from part (B).

Otherwise, we take y to be any n-cycle. Then 〈y〉 is transitive, while Lemmas 3.2
and 4.2 give that no imprimitive or primitive maximal subgroup contains a Sylow
2-subgroup. It follows that

〈y, P〉 = An

for any Sylow 2-subgroup P , completing the proof of part (A).

4E. Proof of Proposition 1.6. Let C and D be as in Condition (5). We will find
(c, d) ∈ C × D such that 〈c, d〉 6= An .

Since An is transitive, if D does not consist of derangements then we may find
an element d of D fixing n. The same holds for C . If c and d both fix n, then 〈c, d〉
is intransitive, hence a proper subgroup of An . This reduces us to the situation
where one conjugacy class (without loss of generality C) consists of derangements.

Since n= 2a , derangements of prime order in An are fixed-point-free involutions.
It is straightforward to verify that the fixed-point-free involutions of An form a
single conjugacy class. Thus, C consists of all fixed-point-free involutions in An .

Since a Sylow 2-subgroup of An intersects every conjugacy class of involutions
nontrivially, we see that D must consist of elements of odd prime order p. For any
d ∈ D, every orbit of 〈d〉 is of size 1 or p. If 〈d〉 has more than two orbits, then
let O1 and O2 be orbits. Now there is some c ∈ C such that O1 ∪ O2 is the union
of the supports of 2-cycles in the disjoint cycle decomposition of c. The subgroup
〈c, d〉 is thus intransitive.

It remains only to consider the case where 〈d〉 has exactly two orbits. As n = 2a ,
so d is a p-cycle fixing exactly one point. Now n = p+ 1, and so by the Sylow
theorems the subgroups of order p in An form a single conjugacy class. Thus,
it suffices to find a proper subgroup of An that contains both a fixed-point-free
involution c and an element d of order p.
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n maximal subgroup indices Condition (4) conjugacy class representatives

5 5, 6, 10 (1 2 3), (1 2 3 4 5)
6 6, 10, 15 (1 2 3 4)(5 6), (1 2 3 4 5)
7 7, 15, 21, 35 (1 2 3 4 5), (1 2 3 4 5 6 7)
8 8, 15, 28, 35, 56 (1 2 3 4)(5 6 7 8), (1 2 3 4 5)

Table 1. Indices of maximal subgroups and generating conjugacy
class representatives for An , 5≤ n ≤ 8.

Consider the transitive action of PSL2(p) on the set S of 1-dimensional subspaces
of F2

p. Since |S| = n and PSL2(p) is simple, we obtain from the group action a
subgroup H ∼= PSL2(p) of An . Then |H | = (p · (p2

− 1))/2, and by the orbit-
stabilizer theorem, the stabilizer of any point has order (p·(p−1))/2= p·(2a−1

−1).
In particular, the subgroup H contains elements of order p and order 2, and no
element of order 2 in H fixes any point.

Remark 4.4. Powers of 2 satisfy Condition (4) by Proposition 1.4.

4F. Very small alternating groups. As Lemma 1.8 does not apply when n ≤ 8,
we examine small n separately. The solvable alternating groups (where n < 5) all
trivially satisfy Condition (5). For 5≤ n ≤ 8, we present in Table 1 the indices of
maximal subgroups of An , together with representatives for generating conjugacy
classes as in Condition (4). This list is easy to produce either by GAP [2012], or
else by hand (using well-known facts about primitive groups of small degree).

For n = 5 or 7, these representatives are of prime order, so 5 and 7 satisfy
Condition (5). Proposition 1.6 tells us that 8 fails Condition (5), and a similar
argument or GAP computation shows that 6 also fails Condition (5).

5. Asymptotic density

In this section, we use part (B) of Lemma 1.8 to prove Theorem 1.5.
Lemma 1.8 tells us that n satisfies Condition (5) unless both the largest prime

divisor p of n and the largest prime r that is less than n− 2 are small relative to n.
This allows us to apply known and conjectured results about prime gaps, which we
combine with known results about numbers without large prime divisors (“smooth
numbers”).

We will use the following notation:

• We will denote the k-th smallest prime number by pk . For example, p1 = 2
and p2 = 3.

• For a real number x > 2, we will denote by r(x) the largest prime that is no
larger than x .



234 JOHN SHARESHIAN AND RUSS WOODROOFE

• For positive real numbers x, y, we will denote by 9(x, y) the number of
positive integers no larger than x which have no prime factor larger than y.

Our strategy is to show that if p is the largest prime divisor of n, then asymptotically
r(n)+ p is frequently greater than n. We remark that r(n) ≥ n− 2 only on a set
of asymptotic density 0, so we may treat the r + 2< n condition of Lemma 1.8 as
reading r ≤ n for the purpose of asymptotic density arguments.

We will require several tools from number theory, as we will describe below. See
[Granville 2008] for further background on (5-2) and (5-3), and [Granville 1995]
for background and history on (5-4) and (5-5).

5A. Proof of Theorem 1.5(A). Jia [1996] showed that, for any ε > 0, there is
a prime on the interval [n, n + n1/20+ε

] for all n excluding a set of asymptotic
density 0. It follows by routine manipulation that

(5-1) n− r(n) < n1/20 except on a set of asymptotic density 0.

See [Harman 2007, Chapter 9] for further discussion of results of this type.
Dickman [1930] showed that

(5-2) lim
x→∞

9(x, x1/u)

x
= ρ(u) for any fixed u,

where ρ denotes the so-called Dickman–de Bruijn function, that is, the solution to
the differential equation uρ ′(u)+ ρ(u− 1)= 0.

By combining (5-1) and (5-2) with Lemma 1.8, we see that the desired asymptotic
density α satisfies

α ≥ 1− ρ(20),

as desired. Consulting the table of values for ρ in [Granville 2008, Table 2], we see
that ρ(20)∼= 2.462 · 10−29 < 10−28.

5B. Proof of Theorem 1.5(B). Rankin [1938] showed that

(5-3) lim
x→∞

9(x, logb x)
x

= 0, for any b > 1.

Taking b = 3 in (5-3), we see that the set of integers n with no prime factor larger
than log3 n has asymptotic density 0.

The Cramér conjecture [1936, (4)] says that there is a constant C such that

(5-4) pk+1− pk ≤ C log2 pk for all k.
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In the same paper, Cramér [1936, Theorem II] showed the Riemann hypothesis to
imply that

(5-5) lim
x→∞

1
x
·

∑
pk≤x,

pk+1−pk≥log3 pk

(pk+1− pk)= 0.

Thus, if either the Cramér conjecture or the Riemann hypothesis hold, then

(5-6) n− r(n)≤ log3 r(n)≤ log3 n

except on a set of asymptotic density zero. Theorem 1.5(B) follows upon combining
(5-3) with b = 3, (5-6), and Lemma 1.8.

6. Computational results

In this section we describe the verification by computer of Proposition 1.7.
Our program iterates through the integers, beginning with n = 9. We factor each

integer into primes. If n is a prime power, then n satisfies Condition (3) and hence
Condition (2) by Proposition 1.4. In this case, we store n = rb as the largest prime
power known so far in the computation. Otherwise, we find the largest prime power
pa dividing n. The program then checks whether pa

+ rb is greater than n, where
rb is the largest prime power found so far. If so, then n satisfies Condition (2) with
p and r by Lemma 1.8. This sieving method succeeds for all but 14,638 of the
integers in the interval from 9 to 1,000,000,000. For these remaining integers, the
program checks directly which indices of intransitive and imprimitive subgroups
are divisible by p (using Lemmas 3.1 and 3.2), and searches for a prime r dividing
those that are not. This second method works for all but 22 of the remaining 14,638
integers. For these 22 integers we perform a similar search, using divisors of n
other than p. See Table 2 for the results of this search.

Running this program out to n= 1,000,000,000 on a 2012 MacBook Pro with the
GAP computer algebra system [GAP 2012] takes around 2 weeks. This computation
verifies Proposition 1.7.

We approach checking which values of n satisfy Condition (2) with the prime 2 in
a similar fashion. When we apply Lemma 1.8, we look for a pair pa

+ rb > n > rb

(where pa
| n) as before, but now we require 2 ∈ {p, r}. This technique gives

a positive answer for about 45.7% of the first 1,000,000 integers n ≥ 9. The
remaining values of n require significantly more computation, and as a result we
did not examine values of n beyond 1,000,000.

Running the program to check Condition (2) with the prime 2 out to n =
1,000,000 takes around a day on a 2012 MacBook Pro. This computation verifies
Proposition 1.9. More precisely, 867,247 of the integers between 9 and 1,000,0000
satisfy Condition (2) with 2. The histogram in Figure 6.1 shows the density of
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n pa Condition (2)
prime pairs

31,416 = 23
· 3 · 7 · 11 · 17 171 (2, 7853)

46,800 = 24
· 32
· 52
· 13 52 (2, 149)

195,624 = 23
· 32
· 11 · 13 · 19 191 (2, 3)

5,504,490 = 2 · 33
· 5 · 19 · 29 · 37 371 (3, 5)

7,458,780 = 22
· 3 · 5 · 72

· 43 · 59 591 (2, 276251)
9,968,112 = 24

· 32
· 7 · 11 · 29 · 31 311 (2, 3)

12,387,600 = 24
· 33
· 52
· 31 · 37 371 (2, 3)

105,666,600 = 23
· 3 · 52

· 13 · 19 · 23 · 31 311 (2, 5)
115,690,848 = 25

· 3 · 7 · 13 · 17 · 19 · 41 411 (2, 3)
130,559,352 = 23

· 3 · 7 · 11 · 31 · 43 · 53 531 (2, 112843)
146,187,444 = 22

· 3 · 13 · 19 · 31 · 37 · 43 431 (2, 31)
225,613,050 = 2 · 3 · 52

· 13 · 37 · 53 · 59 591 (2, 516277)
275,172,996 = 22

· 3 · 7 · 29 · 37 · 43 · 71 711 (2, 567367)
282,429,840 = 24

· 3 · 5 · 7 · 11 · 17 · 29 · 31 311 (2, 29)
300,688,752 = 24

· 3 · 7 · 13 · 23 · 41 · 73 731 (2, 11)
539,509,620 = 22

· 3 · 5 · 13 · 17 · 23 · 29 · 61 611 (2, 1201)
653,426,796 = 22

· 3 · 11 · 19 · 43 · 73 · 83 831 (2, 73)
696,595,536 = 24

· 32
· 7 · 13 · 17 · 53 · 59 591 (2, 13)

784,474,592 = 25
· 11 · 29 · 31 · 37 · 67 671 (2, 29)

798,772,578 = 2 · 3 · 19 · 29 · 41 · 71 · 83 831 (2, 563)
815,224,800 = 25

· 3 · 52
· 13 · 17 · 29 · 53 531 (2, 87013)

851,716,320 = 25
· 3 · 5 · 7 · 13 · 17 · 31 · 37 371 (2, 31)

Table 2. The values of n ≤ 1,000,000,000 together with their
maximal prime power divisors pa , such that n does not satisfy
Condition (2) with p. Each such n satisfies Condition (2) with
either 2 or 3.

those n which do not satisfy Condition (2) with 2. We remark that this histogram
appears to show that the failing values are concentrated towards the values of n
slightly preceding integers that are divisible by a high power of 2.

Source code and output for all computer programs discussed in this section are
available in the online supplement as ancillary files. They are also currently available
from Woodroofe’s web page. A list of the values of n ≤ 1,000,000 such that n does
not satisfy Condition (2) with the prime 2 can be found in the same places.

Acknowledgements

We thank Andrew Granville and Bob Guralnick for their thoughtful remarks. A
comment by Ben Green led to a significant improvement in the bound given in
Theorem 1.5(A).

http://msp.org/pjm/2017/291-2/pjm-v291-n2-x01-anc.zip


DIVISIBILITY OF BINOMIALS AND GENERATION OF ALTERNATING GROUPS 237

n

700

600

500

400

300

200

100

0

0 200,000 400,000 600,000 800,000 1,000,000

Figure 6.1. A histogram, for n = 9 to 1,000,000 in bins of size
2500, showing the density of integers that do not meet Condition (2)
with the prime 2.
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