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ON RATIONAL POINTS OF
CERTAIN AFFINE HYPERSURFACES

ALEXANDER S. SIVATSKI

Let F be a field with char F 6= 2, let a1, . . . , an ∈ F∗, and let f ∈ F[ y] be
a monic polynomial of degree 2m. Let further S be an affine hypersurface
over F determined by the equation f ( y) =

∑n
i=1 ai x2

i . In the first part
of the paper we prove a certain version of Springer’s theorem. Namely,
we show that if the form ψ ' 〈1,−a1, . . . ,−an〉 is anisotropic and S has
an L-rational point for some odd-degree extension L/F, then S has an
L-rational point for some odd-degree extension L/F with [L : F] ≤ m, and
the last inequality is strict in general.

In the second part we consider the case where the polynomial f is quartic.
We show that the surface S has a rational point if and only if the quadratic
form ψ ⊥ 〈−x, g(x)〉 is isotropic over F(x), where g(x) ∈ F[x] is a cer-
tain polynomial of degree at most 3, whose coefficients are expressed in a
polynomial way via the coefficients of f.

In the third part we describe all Pfister forms that belong to the Witt
kernel W(F(C)/F), where C is the plane nonsingular curve determined by
the equation y2 = a4x4+ a2x2+ a1x+ a0. In the case where the u-invariant
of F is at most 10, we describe generators of the ideal W(F(C)/F).

Introduction

Let F be a field of characteristic different from 2. We investigate some properties
of the affine hypersurface S determined by the equation f (y)=

∑n
i=1 ai x2

i , where
ai ∈ F∗ and f is a monic polynomial of degree 2m. In Section 1, we prove a
version of Springer’s theorem for S (Proposition 1.1). In particular, we show that if
m = 2 (i.e., the polynomial f is quartic), and S has a K -rational point for some
odd-degree extension K/F, then S has an F-rational point. Sections 2 and 3 can be
considered as generalizations of some results in [Haile and Han 2007; Shick 1994].
Namely, for the affine hyperelliptic curve C with the equation f (y)= ax2 over a
field F, where a ∈ F∗ \ F∗2 and f (y) is a quartic polynomial, two questions have
been investigated in [Haile and Han 2007]. First, it has been shown that existence
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of a rational point on C is equivalent to triviality of a certain quaternion algebra
over a certain quadratic extension of the rational function field F(x). It is easy to
see that this is equivalent to isotropicity of some 4-dimensional quadratic form over
F(x). In Proposition 2.1 we obtain a similar criterion for the affine hypersurface
S : f (y) =

∑n
i=1 ai x2

i , where ai ∈ F∗, the form 〈1,−a1, . . . ,−an〉 is anisotropic,
and f is a monic quartic polynomial. This proves independently of Section 1 that
existence of a rational point over any odd-degree field extension K/F implies
existence of a rational point of S over the field F itself.

Another result in [Haile and Han 2007; Shick 1994] is a computation of the
relative Brauer group Br(F(C)/F), where C is the affine hyperelliptic curve above.
Obviously, this is equivalent to description of all 2-fold Pfister forms π over F such
that πF(C)= 0. Section 3 is devoted to investigation of the Witt kernel W (F(C)/F).
Applying an invertible change of variables, we may assume that the curve C is
determined by the equation y2

= a4x4
+a2x2

+a1x+a0, where ai ∈ F, a4 6= 0. We
will also assume that C is nonsingular, for the opposite case is trivial. Let e ∈ F. Set

d(e)=− det

 a4 0 1
2(a2−e)

0 e 1
2a1

1
2(a2−e) 1

2a1 a0

.
In Proposition 3.1 we show that if 0 6= Q ∈ Br(F(C)/F), then either Q = (a4, e),
where e 6= 0, d(e) ∈ F∗2 ∪ {0}, or a1 = 0 and Q = (a4, a2

2 − 4a0a4). Conversely,
any quaternion algebra of the types above belongs to Br(F(C)/F).

Proposition 3.1 is not new, but we give it for the convenience of the reader, and
because we need its proof a bit later in Proposition 3.2. In fact, the original proof of
Proposition 3.1, which is very similar to ours, is given in [Shick 1994]. However, in
Proposition 3.2 and Corollary 3.3 we describe all Pfister forms π (not necessarily
2-fold) over F such that πF(C) = 0. More precisely, if πF(C) = 0, then either π is
divisible by a 2-fold Pfister form ρ such that ρF(C)= 0, or there exist e, r ∈ F, e 6= 0,
r2
− d(e) 6= 0 such that 〈〈a4, e, r2

− d(e)〉〉 ⊂ π . Conversely, 〈〈a4, e, r2
− d(e)〉〉 ∈

W (F(C)/F) for any e, r ∈ F, e 6= 0, r2
− d(e) 6= 0. If the u-invariant of F is at

most 10, this is sufficient for the computation of the Witt kernel W (F(C)/F).
A few words about the notation. Throughout all the fields have characteristic

different from 2. By a form we always mean a quadratic form over a field. For
a1, . . . an ∈ F∗ we denote the Pfister form 〈1,−a1〉⊗· · ·⊗〈1,−an〉 as 〈〈a1, . . . , an〉〉

(take notice of signs!), and D(ϕ) is the set of all nonzero values of the form ϕ. If
the form ϕ is considered as an element of the Witt ring W (F), then dimϕ denotes
the dimension of the anisotropic part of ϕ.

If ϕ is a regular form over the field F, dimϕ ≥ 3, then by F(ϕ) we denote the
function field of the corresponding projective quadric.

Slightly abusing notation, we often identify a form with its symmetric matrix.
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1. A version of Springer’s theorem

The well-known Springer’s theorem claims that if K/F is an odd-degree field
extension, and a projective quadric X has a rational point over K, then it has a
rational point over F. Below we give an affine version of this theorem for certain
hypersurfaces.

Proposition 1.1. Let F be a field, let a1, . . . , an ∈ F∗, and let f ∈ F[y] be a monic
polynomial of degree 2m. Let S= S( f, a1, . . . , an) be the affine hypersurface over F
determined by the equation f (y) =

∑n
i=1 ai x2

i . Suppose that S has a K -rational
point for some odd-degree extension K/F.

(1) If the form 〈a1, . . . , an〉 is anisotropic, then S has an L-rational point for some
odd-degree extension L/F with [L : F] ≤ 2m− 1.

(2) If the form 〈1,−a1, . . . ,−an〉 is anisotropic, then S has an L-rational point
for some odd-degree extension L/F with [L : F] ≤ m, and the last inequality
is strict in general. In particular, if m = 2, i.e., f is a quartic polynomial, then
S has an F-rational point.

(3) If the form 〈a1, . . . , an〉 is isotropic, then S has an F-rational point.

Proof. (1)–(2) Assume the form 〈a1, . . . , an〉 is anisotropic, and K/F is an
odd-degree field extension. Suppose [K : F] ≥ s, where s = m + 1 if the form
〈1,−a1, . . . ,−an〉 is anisotropic, and s= 2m+1 otherwise. Let f (α)=

∑n
i=1 aiβ

2
i

for some α, βi ∈ K. It suffices to find an odd-degree field extension L/F with
[L : F] < [K : F] such that S has a rational L-point. Since [K : F(α)] is odd,
we get by Springer’s theorem, applied to the extension K/F(α), that the form
〈a1, . . . , an,− f (α)〉 is isotropic over F(α). Hence we may assume that βi ∈ F(α)
for each i . We may assume also that [F(α) : F] ≥ s, for otherwise there is
nothing to be proved. Let g be the minimal polynomial of α. In particular,
deg g= [F(α) : F] ≥ s. Let βi = pi (α), where pi ∈ F[x], deg pi ≤ deg g−1. Also
deg f = 2m ≤ 2(s− 1)≤ 2(deg g− 1). We have

n∑
i=1

ai p2
i − f =gh for some h ∈ F[x], and deg

( n∑
i=1

ai p2
i − f

)
≤2(deg g−1).

If deg
(∑n

i=1 ai p2
i − f

)
is even, then deg h is odd, and

deg h ≤ 2(deg g− 1)− deg g = deg g− 2= [F(α) : F] − 2≤ [K : F] − 2.

Hence S has an L-rational point, where L = F[x]/p(x), and p is an arbitrary
odd-degree prime divisor of h. Moreover, [L : F]< [K : F].

If deg
(∑n

i=1 ai p2
i − f

)
is odd, or h = 0, then, since f is monic of even degree,

the form 〈1,−a1, . . . ,−an〉 is isotropic. Hence s = 2m+1, and deg
(∑n

i=1 ai p2
i

)
=

deg f = 2m. Therefore, in this case h = 0, and so S has an F-rational point.
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Now let us show that in the inequality [L : F] ≤ m in the second part of
Proposition 1.1, the number m cannot be replaced by a smaller number, provided
we consider all fields F and all odd-degree extensions K/F. Consider two cases:

Case (a): m is odd. Let F be a field such that there exists an irreducible polynomial
p of degree m over F. Consider the equation

p(y)2 =
n∑

i=1

ai x2
i .

Clearly, it has a solution over the field K = F[y]/p(y) with x1 = · · · = xn = 0.
Suppose that L/F is an odd-degree extension, α, βi ∈ L , and p(α)2 =

∑n
i=1 aiβ

2
i .

Since the form 〈1,−a1, . . . ,−an〉 is anisotropic, we get by Springer’s theorem
applied to the odd-degree extension K/F that p(α)= β1 = · · · = βn = 0. Hence
m = deg p = [F(α) : F] ≤ [L : F].

Case (b): m is even. Let k be a field, let F= k((t)) be the Laurent series field, and let
the hypersurface S be determined by the equation (ym−1

+t)(ym+1
+t)=

∑n
i=1 ai x2

i .
Let L/F be an odd-degree extension, [L : F] ≤ m − 3. Obviously, the field L is
complete with respect to a discrete valuation v such that 1≤ v(t)≤m−3. It is easy
to show that (αm−1

+ t)(αm+1
+ t) ∈ L∗2 for any α ∈ L . Therefore, by Springer’s

theorem

(αm−1
+ t)(αm+1

+ t) 6=
n∑

i=1

aiβ
2
i for any βi ∈ L .

(3) This is obvious, since any element of F is a value of the form 〈a1, . . . , an〉. �

Remark 1.2. The hypothesis that the form 〈1,−a1, . . . ,−an〉 is anisotropic is
essential in the second part of Proposition 1.1, at least for m = 2. Indeed, consider
the equation y4

+2= x2 over Q. Let L = F(δ), where δ is a root of the irreducible
polynomial p(u)= 2u3

− u2
+ 2. Obviously, x = δ2

− δ, y = δ is a solution of the
equation in question over L .

Let us prove now that this equation has no solution over Q. It suffices to show that
if x, y, z∈Z, and y4

+2z4
= x2, then z=0. Assume the contrary, so we may suppose

that y4
+ 2z4

= x2, z > 0 and z is as small as possible. In particular, y and z are
coprime; hence y is odd. Over Q(

√
−2) we have (y2

+z2
√
−2)(y2

−z2
√
−2)= x2,

and it is easy to see that the numbers y2
+ z2
√
−2 and y2

− z2
√
−2 are coprime in

the Euclidean ring Z[
√
−2]. Since the group of units of the ring Z[

√
−2] consists

of 1 and −1, we get that y2
+ z2
√
−2=±(u+ v

√
−2)2 for some u, v ∈ Z, v > 0.

If y2
+ z2
√
−2 = −(u + v

√
−2)2, then y2

= 2v2
− u2, z2

= −2uv. The equality
y2
= 2v2

−u2 implies that u and v are odd. But then, clearly, the equality z2
=−2uv

is impossible.
Thus y2

+ z2
√
−2= (u+ v

√
−2)2, which means that y2

= u2
− 2v2, z2

= 2uv.
In particular, u is odd. Since (u − y)(u + y) = 2v2, and the numbers 1

2(u − y),
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1
2(u+ y) are, obviously, coprime, we may assume, changing if needed the sign of y,
that 1

2(u− y)= t2, 1
2(u+ y)= 2s2 for some coprime s, t > 0. Therefore, we have

u = 2s2
+ t2,

y = 2s2
− t2,

v = 2st;

hence z2
= 2uv = 4st (2s2

+ t2), and so s = α2, t = β2, 2s2
+ t2
= γ 2, which

implies β4
+ 2α4

= γ 2 for some positive integers α, β, γ . Moreover, obviously,

0< α =
√

s <
√
v < z,

a contradiction to the minimality of z.

In fact, there are similar counterexamples for any characteristic. Namely, let k
be a field, t indeterminate, and F = k(t). By an argument similar to the one for the
equation y4

+2= x2 over Q, one can easily show that the equation y4
− t = x2 has

no solution in F. On the other hand, x = α2
−α, y = α is a solution of the same

equation over the field F(α), where α is a root of the polynomial p(u)=2u3
−u2
−t .

However, we do not know if there exists a counterexample for each finite field,
and for each number field.

Proposition 1.3. Let F be a field, a1, . . . , an ∈ F∗, and the form 〈1,−a1, . . . ,−an〉

be isotropic. Let further f ∈ F[y] be a monic polynomial of degree 2m, where
m is not divisible by char F. Then the hypersurface S = S( f, a1, . . . , an) has an
L-rational point for some odd-degree field extension L/F with [L : F] ≤ 2m− 1.

Proof. Since 1∈ D(〈a1, . . . , an〉), we may assume that n= 1 and a1= 1. Replacing
if needed y by y+ c, where c ∈ F∗, we may assume that the coefficient a at y2m−1

of the polynomial f (y) is nonzero. Then setting x = z+ ym, one can see that the
equation f (y) = x2 is equivalent to the equation ay2m−1

+
∑2m−2

i=0 pi (z)yi
= 0,

where pi (z) ∈ F[z]. It is clear that the last equation has a required point. �

Remark 1.4. We do not know whether Proposition 1.3 remains valid if m is divisible
by char F.

Another natural question is whether the inequality [L : F]≤2m−1 in the first part
of Proposition 1.1 is strict for each m. In view of Remark 1.2 it is strict for m = 2.

2. A criterion for existence of rational points for certain affine hypersurfaces

We give a criterion in the language of quadratic forms for the existence of a
rational point for the hypersurface S in the case where m = 2 (the polynomial f is
quartic) and the form 〈1,−a1, . . . ,−an〉 is anisotropic. The main ingredient in the
sequel is the strong form of the Cassels–Pfister theorem [Pfister 1995, Chapter 1,
Generalization 2.3 of Theorem 2.2], which reads as follows:
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Theorem. Let ϕ(x1, . . . , xn) =
∑

1≤i, j≤n li j (t)xi x j be an anisotropic form over
F(t), where li j (t) ∈ F[t], and deg li j (t)≤ 1. Suppose f ∈ F[t]∩ D(ϕ). Then there
exist polynomials pi ∈ F[t] such that f = ϕ(p1, . . . , pn).

In the following statement, using the theorem above, we get a criterion for exis-
tence of rational points for the hypersurface S in the case of a quartic polynomial f .

Proposition 2.1. Let F be a field, a1, . . . , an ∈ F∗, and u1, u2, u3 ∈ F. Suppose that
the form ψ ' 〈1,−a1, . . . ,−an〉 is anisotropic. Then the following two conditions
are equivalent:

(1) −u2
3x3
+ u2x2

+ u1x + 1 ∈ D(ψ ⊥ 〈−x〉), i.e., the form

ψ ⊥ 〈−x, u2
3x3
− u2x2

− u1x − 1〉

is isotropic over F(x).

(2) The affine hypersurface S determined by the equation

y4
+ 2u1 y2

− 8u3 y+ u2
1− 4u2 =

n∑
i=1

ai x2
i

has a rational point.

Moreover, if , in contrast the form ψ is isotropic, and u3 6= 0, then both condi-
tions necessarily hold. If the form ψ is isotropic, and u3 = 0, then condition (1)
necessarily holds, but in general condition (2) does not.

Proof. (1) =⇒ (2): Obviously, the form ψ ⊥ 〈−x〉 is anisotropic. By the strong
form of the Cassels–Pfister theorem

−u2
3x3
+ u2x2

+ u1x + 1 ∈ D(ψ ⊥ 〈−x〉)
if and only if

−u2
3x3
+ u2x2

+ u1x + 1= p2
0 − a1 p2

1 − · · ·− an p2
n − xp2

n+1

for some pi ∈ F[x]. Since the form ψ is anisotropic, we get pi (x) = αi x + βi

for each i , where αi , βi ∈ F. Moreover, α2
n+1 = u2

3; hence we may assume that
αn+1 = u3. Therefore, αi , βi satisfy the equations

(∗)


α2

0 − a1α
2
1 − · · ·− anα

2
n − 2u3βn+1 = u2,

2α0β0− 2a1α1β1− · · ·− 2anαnβn −β
2
n+1 = u1,

β2
0 − a1β

2
1 − · · ·− anβ

2
n = 1.

Let u= (α0, α1, . . . , αn) and v = (β0, β1, . . . , βn). Obviously, the system (∗) is
equivalent to the system

(∗∗)


ψ(u)= u2+ 2u3βn+1,

ψ(u, v)= 1
2(u1+β

2
n+1),

ψ(v)= 1.
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If the vectors u and v are linearly dependent, then the system (∗∗) implies

det

(
u2+ 2αn+1βn+1

1
2(u1+β

2
n+1)

1
2(u1+β

2
n+1) 1

)
= u2+ 2u3βn+1−

1
4(u1+β

2
n+1)

2
= 0.

Hence S has a rational point xi = 0, y = βn+1.
If the vectors u and v are linearly independent, then the 2-dimensional form τ

with the matrix (
u2+ 2u3βn+1

1
2(u1+β

2
n+1)

1
2(u1+β

2
n+1) 1

)
is a subform of ψ with the underlying linear space generated by the vectors u and v.
Obviously,

τ '
〈
1, u2+ 2αn+1βn+1−

1
4(u1+β

2
n+1)

2〉
.

Therefore,

−u2− 2u3βn+1+
1
4(u1+β

2
n+1)

2
∈ D(〈a1, . . . , an〉),

which means that (u1+β
2
n+1)

2
−8u3βn+1−4u2 =

∑n
i=1 ai x2

i for some xi ∈ F, and
we are done.

(2) =⇒ (1): Assume that S has a rational point, say, y = βn+1, xi = ci . If
c1 = · · · = cn = 0, then u2+ 2αn+1βn+1−

1
4(u1+β

2
n+1)

2
= 0. Put

α1 = · · · = αn = 0,
α0 =

1
2(u1+β

2
n+1),

β0 = 1,
β1 = · · · = βn = 0.

Since the elements αi , βi satisfy the system (∗), we get −u2
3x3
+ u2x2

+ u1x + 1 ∈
D(ψ ⊥ 〈−x〉).

If at least one of ci is not zero, then, since the form 〈a1, . . . , an〉 is anisotropic,

− det

(
u2+ 2u3βn+1

1
2(u1+β

2
n+1)

1
2(u1+β

2
n+1) 1

)
∈ D(〈a1, . . . , an〉),

or, equivalently, the form with the matrix(
u2+ 2u3βn+1

1
2(u1+β

2
n+1)

1
2(u1+β

2
n+1) 1

)
is a subform of the form ψ . In other words, there are linearly independent vectors
u= (α0, α1, . . . , αn), v = (β0, β1, . . . , βn) such that the system (∗∗) holds. Hence
in this case we have −u2

3x3
+ u2x2

+ u1x + 1 ∈ D(ψ ⊥ 〈−x〉) as well.
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If the form ψ is isotropic, then, obviously,

−u2
3x3
+ u2x2

+ u1x + 1 ∈ D(ψ)⊂ D(ψ ⊥ 〈−x〉).

Assume u3 6=0. We may suppose a1=1, and put y=−u2/(2u3), x1=u2
2/(4u2

3)+u1,
x2 = · · · = xn = 0.

Finally, if ψ is isotropic, and u3 = 0, then Remark 1.2 shows that in general S
does not always have a rational point. �

In the following example we show how Proposition 2.1 can be applied to construct
elements from Br(F(S)/F) in the case n = 1.

Example 2.2. Let n = 1 and a ∈ F∗ \ F∗2. Proposition 2.1 claims that

−u2
3x3
+ u2x2

+ u1x + 1 ∈ D(〈1,−a,−x〉)

if and only if the equation

az2
= y4
+ 2u1 y2

− 8u3 y+ u2
1− 4u2

has a solution over F, or, equivalently, multiplying by 4a, and setting t = 2az, if
and only if the equation

t2
= 4ay4

+ 8au1 y2
− 32au3 y+ 4a(u2

1− 4u2)

has a solution over F. Let us set

a4 = 4a, a2 = 8au1, a1 =−32au3, a0 = 4a(u2
1− 4u2)

(here the meaning of the elements ai is different from the previous one). Hence we
get that the equation t2

= a4 y4
+a2 y2

+a1 y+a0 has a solution over F if and only if

−

(
a1

32a

)2

x3
+

4a(a2/(8a))2− a0

16a
x2
+

a2

8a
x + 1 ∈ D(〈1,−a,−x〉).

A straightforward computation shows that the last condition is equivalent to

z3
− 2a2z2

+ (a2
2 − 4a0a4)z+ a2

1a4 ∈ D(〈z, a4,−a4z〉),

where z =−4a4/x , which means that (a4, z)F(z)(
√

g(z)) = 0, where

g(z)= z3
− 2a2z2

+ (a2
2 − 4a0a4)z+ a2

1a4.

This is the result of [Haile and Han 2007, Propositions 5 and 17], originally obtained
by means of algebraic geometry and cohomology groups.

Further, if (a4, z)F(z)(
√

g(z)) = 0, by the evaluating argument we get (a, e)= 0 if
g(e) ∈ F∗2 and e 6= 0. Therefore, (a, e) ∈ Br(F(S)/F) for each e ∈ F∗ such that
g(e) ∈ F∗2.
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Note also that

z3
− 2a2z2

+ (a2
2 − 4a0a4)z+ a2

1a4 =−4 det

 a4 0 1
2(a2− z)

0 z 1
2a1

1
2(a2− z) 1

2a1 a0

.
Later, in Proposition 3.1 we will see why this determinant is involved here.

Example 2.3. Suppose S has the equation (y2
− b)2 =

∑n
i=1 ai x2

i , where b ∈ F∗.
Then, since the form ψ ' 〈1,−a1, . . . ,−an〉 is anisotropic, it is easy to see that the
surface S has a rational point if and only if b ∈ F∗2. On the other hand, in this case
u1 = −b, u2 = u3 = 0. Hence Proposition 2.1 claims that S has a rational point
if and only if the form 〈1,−a1, . . . ,−an,−x, bx − 1〉 is isotropic. By Brumer’s
theorem [1978] this is the case if and only if the forms 〈1,−a1, . . . ,−an, 0,−1〉
and 〈0, 0, . . . , 0,−1, b〉 have a common nontrivial zero. It is easy to verify inde-
pendently that this is equivalent to b ∈ F∗2.

In the algebraic theory of quadratic forms over fields, there are many results
concerning splitting of forms by the function field of a quadric. In the following
statements (Corollaries 2.4–2.7) we consider the similar questions for the hypersur-
face S from Proposition 2.1. In particular, we assume that a1, . . . , an ∈ F∗, and the
form 〈1,−a1, . . . ,−an〉 is anisotropic.

Let W (k) be the Witt group of a field k. It is well known, see, for example,
[Scharlau 1985], that the sequence of abelian groups

0→W (k) res
−→W (k(t))

∐
∂p
−−→

∐
p∈A1

k

W (kp)→ 0

is split exact. We consider here a point p ∈ A1
k as a monic irreducible polynomial

over k. We denote by kp = k[t]/p the corresponding residue field and by ∂p :

W (k(t))→W (kp) the residue homomorphism well defined by the rule

∂p(〈 f 〉)=
{

0 if vp( f )= 0,
〈 f p−1〉 if vp( f )= 1.

There is a splitting map W (k(t))→W (k) defined by the rule 〈 f 〉→ 〈l( f )〉, where
l( f ) is the leading coefficient of the polynomial f ∈ k[t].

Corollary 2.4. In the notation of Proposition 2.1, assume that the hypersurface S
has no F-rational point, n = 1, and ϕ is a 3-dimensional form over F. Then S has
no F(ϕ)-rational point.

Proof. Let π be the 2-fold Pfister form corresponding to ϕ. We may assume that
π 6= 0. Suppose that S determined by the equation

az2
= y4
+ 2u1 y2

− 8u3 y+ u2
1− 4u2
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has an F(ϕ)-rational point. In view of Example 2.2 we have 〈〈a, z〉〉F(π)(√g(z)) = 0,
where g(z) = z3

− 2a2z2
+ (a2

2 − 4a0a4)z + a2
1a4. Then, since S has no rational

point, i.e., 〈〈a, z〉〉F(√g(z)) 6= 0, we get 〈〈a, z〉〉= 〈〈g(z)〉〉τ+π for some τ ∈W (F(z)).
Therefore,

0= l(〈〈a, z〉〉)− l(〈〈g(z)〉〉τ)= l(π)= π,

a contradiction. �

Corollary 2.5. Assume S has no F-rational point, n = 2, and ϕ is a 4-dimensional
anisotropic form over F, discϕ = d 6= 1. The following conditions are equivalent:

(1) S has an F(ϕ)-rational point.

(2) u2
3x3
− u2x2

− u1x − 1= h(x)q(x), where h, q ∈ F[x], deg h ≤ 1, deg q = 2,
q is monic and irreducible, −a1a2x ∈ F∗q

2, disc q = d , and ϕ is similar to the
form 〈1,−a1,−a2, a1a2d〉.

Proof. (2)=⇒ (1): Consider first the case u3 6= 0. Since −a1a2x ∈ F∗q
2, we have

NFq/F (x̄) ∈ F∗2; hence q(x)= x2
+ cx + b2 for some c, b ∈ F, b 6= 0. Therefore,

h(x)= u2
3x − b−2, in particular, h ∈ D(〈−1, x〉). Hence u2

3x3
− u2x2

− u1x − 1=
h(x)q(x) ∈ D(〈−q, qx〉). It follows that

(2-1) 〈1,−a1,−a2,−x,hq〉⊂〈1,−a1,−a2,−x,−q,qx〉⊂〈1,−a1,−a2,−x〉〈〈q〉〉.

On the other hand,

(2-2) 〈1,−a1,−a2,−x〉〈〈q〉〉= 〈〈a1,a2,q〉〉+〈−a1a2,−x〉〈〈q〉〉= 〈〈a1,a2,q〉〉,

as −a1a2x ∈ F∗q
2.

Finally, ϕ〈〈q〉〉 ∼ 〈1,−a1,−a2, a1a2d〉〈〈q〉〉 = 〈〈a1, a2, q〉〉, since 〈〈d, q〉〉 = 0. We
conclude that 〈〈a1, a2, q〉〉F(x)(ϕ) = 0. In view of (2-1) and (2-2), the form

〈1,−a1,−a2,−x, hq〉F(x)(ϕ) = 〈1,−a1,−a2,−x, u2
3x3
− u2x2

− u1x − 1〉F(x)(ϕ)

is isotropic, which implies by Proposition 2.1 that S has an F(ϕ)-rational point.
The case u3 = 0 is similar. In this case

−u2x2
− u1x − 1=−u2q =−u2(x2

+ cx + b2);

hence u2 ∈ F∗2, and obviously,

〈1,−a1,−a2,−x,−u2q〉 ⊂ 〈1,−a1,−a2,−x〉〈〈q〉〉.

Now we can finish the proof as in the case u3 6= 0.

(1) =⇒ (2): Assume that S has an F(ϕ)-rational point. Then by Proposition 2.1
the form 8' 〈1,−a1,−a2,−x, u2

3x3
− u2x2

− u1x − 1〉 is anisotropic over F(x),
but isotropic over F(x)(ϕ). Consider two possible cases:
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Case (a): ind(8)= 4. Then by [Hoffmann 1995] there exists a squarefree p ∈ F[x]
such that pϕ ⊂8. Comparing the determinants we get

(2-3) 8' pϕ ⊥ 〈−a1a2 disc(ϕ)x(u2
3x3
− u2x2

− u1x − 1)〉.

Note that p is not divisible by x , for otherwise (2-3) would imply dim ∂x(8)≥ 3, a
contradiction. Comparing the residues at x of the left-hand and the right-hand parts
of (2-3), we get a1a2 disc(ϕ)=−1; hence

(2-4) 8' pϕ ⊥ 〈x(u2
3x3
− u2x2

− u1x − 1)〉.

Applying the “leading coefficient” homomorphism l :W (F(x))→W (F) to both
sides of (2-4), we get

〈1,−a1,−a2,−1, 1〉 ' l(p)ϕ ⊥ 〈1〉

if u3 6= 0, or

〈1,−a1,−a2,−1,−u2〉 ' l(p)ϕ ⊥ 〈−u2〉

if u3 = 0 (if u3 = 0, then it easily follows that u2 6= 0). Hence in any case
l(p)ϕ ' 〈1,−a1,−a2,−1〉, so ϕ is isotropic, a contradiction.

Case (b): ind(8)=2. Then8 is a Pfister neighbor of some anisotropic 3-fold Pfister
form π over F(x), say, π ' 8 ⊥ σ . Since πF(x)(ϕ) is isotropic (or, equivalently,
hyperbolic), π ' 〈〈a1, a2, P〉〉 for some squarefree P ∈ F[x]. We claim that P
does not have any odd-degree irreducible divisor p. Indeed, otherwise, taking
into account that π ' ϕ〈〈h(x)〉〉 for some h(x) ∈ F[x] [Wadsworth 1975], we
get that 〈〈a1, a2〉〉Fp = ∂p(〈〈a1, a2, P〉〉) either equals 0 or is similar to ϕFp . But
since 〈1,−a1,−a2〉 is anisotropic, disc(ϕ) 6= 1, and deg p is odd, both cases are
impossible.

Furthermore, if s 6= x is a monic irreducible divisor of P, which is not a divisor
of u2

3x3
− u2x2

− u1x − 1, then

〈〈a1, a2〉〉 ∼ ∂s(π)= ∂s(8)+ ∂s(σ )= ∂s(σ ).

Since dim ∂s(σ )≤ 3, we get 〈〈a1, a2〉〉Fs = 0; hence 〈〈a1, a2, s〉〉 = 0, and so we can
replace P by P/s.

Thus, we may assume that P divides u2
3x3
− u2x2

− u1x − 1, and P is an
irreducible quadratic polynomial. Therefore, u2

3x3
− u2x2

− u1x − 1= hq, where
h, q ∈ F[x], deg h ≤ 1 (deg h = 0 if and only if u3 = 0), deg q = 2, and q is
monic irreducible. Obviously, P = λq for some λ ∈ F∗. We have dim l(8) ≤ 3;
hence dim l(π) ≤ 3+ dim l(σ ) ≤ 6, which implies that dim l(π) = 0. Therefore,
we can replace P by q, so π ' 〈〈a1, a2, q〉〉. In particular, 〈〈a1, a2〉〉Fq 6= 0. Since
〈1,−a1,−a2,−x〉 is a subform of π , we have 〈1,−a1,−a2,−x〉〈〈R〉〉'〈〈a1, a2, q〉〉



250 ALEXANDER S. SIVATSKI

for some squarefree R ∈ F[x] [Wadsworth 1975]. In other words,

(2-5)
{
〈〈a1, a2, q〉〉 = 〈〈a1, a2, R〉〉,
〈〈−a1a2x, R〉〉 = 0.

From the first equality of (2-5) we get that q divides R, since ∂q(〈〈a1, a2, q〉〉)=
〈〈a1, a2〉〉Fq 6= 0. Therefore,

1̄= ∂q(〈〈−a1a2x, R〉〉)=−a1a2x ∈ F∗q /Fq
∗2.

Hence NFq/F (x) ∈ F∗2, and q(x)= x2
+cx+b2 for some c, b ∈ F, b 6= 0. Further,

since 〈〈a1, a2, q〉〉F(x)(ϕ)= 0, we have 〈〈a1, a2, q〉〉∼ ϕ〈〈T 〉〉 for some T ∈ F[x]. This
implies that q divides T, and ϕFq ∼ 〈〈a1, a2〉〉Fq , i.e., ϕF(

√
disc q) ∼ 〈〈a1, a2〉〉F(

√
disc q).

Therefore, discϕ = disc q = d. Finally, by [Wadsworth 1975] we get that ϕ ∼
〈1,−a1,−a2, a1a2d〉. The verification of the implication (1)=⇒ (2) is done. �

Corollary 2.6. Assume S has no F-rational point, n = 2, and ϕ is a 5-dimensional
anisotropic form over F. Then S has no F(ϕ)-rational point.

Proof. Let σ ⊂ ϕ be a 4-dimensional subform of ϕF(t), which does not satisfy
condition (2) in Corollary 2.5 (with replacement of the ground field F by F(t)).
Then S has no F(t)(σ )-rational points; hence S has no F(t)(ϕ)-rational points. �

Recall that u-invariant of the field k is the maximum of dimensions of anisotropic
forms over k.

Corollary 2.7. In the notation of Proposition 2.1, assume that the hypersurface S
has no F-rational point:

(1) If n = 1, then there exists a field extension L/F such that SL has no rational
point, L does not have an odd-degree field extension, and u(L) = 2. In
particular, cd2 L = 1.

(2) If n = 2, then there exists a field extension L/F such that SL has no rational
point, L does not have an odd-degree field extension, and u(L) = 4. In
particular, cd2 L = 2.

Proof. (1) By Proposition 1.1 and Corollary 2.4 the field L can be constructed by
subsequent splitting of all 2-fold Pfister forms and passing to a maximal odd-degree
extension; see, for instance, [Elman et al. 2008, Theorem 38.4]. Clearly, u(L)= 2.

(2) Similar to (1), the field L can be constructed by subsequent splitting of all
5-dimensional forms and passing to a maximal odd-degree extension. �

Corollary 2.8. In the notation of Proposition 2.1, the following conditions are
equivalent:

(1) The polynomial f (y)= y4
+ 2u1 y2

− 8u3 y+ u2
1− 4u2 has a root in F.

(2) Let p(x) be any monic polynomial divisor of g(x)=−u2
3x3
+ u2x2

+ u1x + 1
such that vp(−u2

3x3
+u2x2

+u1x+1) is odd. Then x̄ is a square in the field Fp.
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Proof. (1)=⇒ (2): Since the polynomial f (y) has a root α in F, the affine curve
f (y)= t x2 has a rational point, namely (0, α), over the Laurent series field F((t)).
Hence by Proposition 2.1 the form 〈1,−t,−x,−g(x)〉 is isotropic, which implies
that the form 〈1,−x,−g(x)〉 is isotropic as well. This means that the Pfister form
〈〈x, g(x)〉〉 is trivial. Then x̄ is a square in the field Fp.

(2)=⇒ (1): In view of the exact sequence for W (F(x)) the Pfister form 〈〈x, g(x)〉〉
is trivial; hence the form 〈1,−x,−g(x)〉 is isotropic. By Proposition 2.1 the affine
curve f (y)= t x2 has a rational point over F((t)), say (x0, y0). Suppose f has no
root in F. Let v be the discrete F-valuation on F((t)) such that v(t)= 1. Obviously,
v(t x2

0) is odd, but v(y4
0 + 2u1 y2

0 − 8u3 y0+ u2
1− 4u2) is even, a contradiction. �

3. On the Witt kernel W(F(C)/F) for the plane curve C with the equation
y2 = a4x4+ a2x2+ a1x+ a0

If C is a nonsingular algebraic curve over the field F with a rational point p ∈ C
and the function field F(C), then the composition of the restriction map W (F)→
W (F(C)) and the first residue map ∂p :W (F(C))→W (F) is the identity; hence
W (F(C)/F)= 0. More generally, applying Springer’s theorem, it is easy to see that
W (F(C)/F)=0 if C has a point of odd degree. In the opposite case the computation
of W (F(C)/F) can hardly be done in general. In this section we describe all Pfister
forms from the ideal W (F(C)/F), with C being the affine plane curve determined
by the equation y2

= f (x), where f (x) = a4x4
+ a2x2

+ a1x + a0 ∈ F[x] is a
squarefree quartic polynomial, a4 6= 0. Obviously, the last equation is equivalent to
the equation y4

+2u1 y2
−8u3 y+u2

1−4u2= ax2, a 6= 0, under an invertible change
of the coefficients. As a consequence, we compute W (F(C)/F) if the u-invariant
of the field F is at most 10.

The description of 2-fold Pfister forms in W (F(C)/F), or, equivalently quater-
nion algebras in Br(F(C)/F), was made in [Shick 1994; Haile and Han 2007]
correspondingly. The proof of Proposition 3.1 below, is, in fact, very similar to that
in [Shick 1994, Theorem 9], but we give it here for the sake of completeness, and
because we need it in Proposition 3.2.

Let e ∈ F. Set

M =

 a4 0 1
2(a2− e)

0 e 1
2a1

1
2(a2− e) 1

2a1 a0

,
and d(e)=− det(M).

Proposition 3.1. Assume that 0 6= Q ∈ Br(F(C)/F). Then either Q = (a4, e),
where e 6= 0, d(e) ∈ F∗2 ∪ {0}, or a1 = 0 and Q = (a4, a2

2 − 4a0a4). Conversely,
any quaternion algebra of the types above belongs to Br(F(C)/F).
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Proof. Let 0 6=Q∈Br(F(C)/F), let π be the 2-fold Pfister form corresponding to Q,
and let −ϕ be the pure subform of π , i.e., π ' 〈1〉 ⊥ −ϕ. Let V be the underlying
vector space of ϕ. Assume that QF(C) = 0. Since ϕ is anisotropic, by the Cassels–
Pfister theorem there exist v0, v1, v2 ∈ V such that ϕ(x2v2 + xv1 + v0) = f (x).
Comparing the coefficients on the left-hand and the right-hand sides of the last
equality, we get the system

(?)



ϕ(v2, v2)= a4,

ϕ(v1, v2)= 0,
ϕ(v1, v1)+ 2ϕ(v0, v2)= a2,

ϕ(v0, v1)=
1
2a1,

ϕ(v0, v0)= a0.

If d(e) 6= 0, then M is the matrix of ϕ with respect to the basis (v2, v1, v0), and so
d(e) ∈ F∗2.

If e 6=0, then 〈a4, e〉 is a regular subform of the form ϕ|〈v0,v1,v2〉. Since detϕ=−1,
we get ϕ ' 〈a4, e,−a4e〉, which implies π ' 〈〈a4, e〉〉 and Q = (a4, e). If e = 0,
then

M =

 a4 0 1
2a2

0 0 1
2a1

1
2a2

1
2a1 a0

.
If additionally a1 6= 0, then

H=

(
0 1

2a1
1
2a1 a0

)
is a regular subform of ϕ; hence Q = 0, a contradiction. If e = a1 = 0, then, since
f is squarefree, a2

2 − 4a0a4 6= 0. Hence(
a4

1
2a2

1
2a2 a0

)
is a regular subform of ϕ, so ϕ ' 〈a4,−a4(a2

2 − 4a0a4), a2
2 − 4a0a4〉, π ' 〈〈a4,

a2
2 − 4a0a4〉〉, and Q = (a4, a2

2 − 4a0a4).
Conversely, assume that d(e) ∈ F∗2, e 6= 0. Consider the form ϕ with the matrix

M =

 a4 0 1
2(a2− e)

0 e 1
2a1

1
2(a2− e) 1

2a1 a0


with respect to a certain basis v2, v1, v0. Then ϕ ' 〈a4, e,−a4e〉. Hence system (?)
implies

f = ϕ(x2v2+ xv1+ v0) ∈ D(ϕ)= D(〈a4, e,−a4e〉),
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so (a4, e)F(C) = 0. Assume now that d(e) = 0, e 6= 0. Then ϕ is degenerate,
and 〈a4, e〉 is a regular subform of ϕ; hence ϕ ' 〈a4, e, 0〉. Therefore, f ∈
D(〈a4, e, 0〉)= D(〈a4, e〉), so again (a4, e)F(C) = 0.

Finally, if a1 = 0, then

f (x)= a4x4
+ a2x2

+ a0 = a4

(
x2
+

a2

2a4

)2

+

(
a0−

a2
2

4a4

)
∈ D

〈
a4, a0−

a2
2

4a4

〉
,

so (a4, a2
2 − 4a0a4)F(C) = (a4, a0− a2

2/(4a4))F(C) = 0. �

Let n ≥ 3. Let Pn( f ) be the set of n-fold Pfister forms π over F such that
πF(C) = 0, where f and C are as in Proposition 3.1. We say that π ∈ Pn( f )
is standard if ρ ⊂ π for some ρ ∈ P2( f ). Otherwise we say that π ∈ Pn( f ) is
nonstandard.

Proposition 3.2. Assume n ≥ 3, π ∈ Pn( f ) is nonstandard, and d(e) has the same
meaning as in Proposition 3.1. Then there exist e, r ∈ F, e 6= 0, r2

−d(e) 6= 0, such
that 〈〈a4, e, r2

−d(e)〉〉 ⊂ π . Moreover, 〈〈a4, e, r2
−d(e)〉〉 ∈ P3( f ) for any e, r ∈ F,

e 6= 0, r2
− d(e) 6= 0.

Proof. Assume that π ∈ Pn( f ), or, equivalently, f ∈ D(−π ′). Then the proof of
Proposition 3.1 shows there is some e∈ F such that one of the following cases holds:

(1) e 6= 0, d(e) 6= 0,  a4 0 1
2(a2− e)

0 e 1
2a1

1
2(a2− e) 1

2a1 a0

⊂−π ′,
where π ′ is the pure subform of π .

(2) e 6= 0, d(e)= 0, 〈a4, e〉 ⊂ −π ′.

(3) a1 = 0, (
a4

1
2a2

1
2a2 a0

)
⊂−π ′.

In the second case, 〈〈a4, e〉〉⊂π and d(e)=0. In the third case 〈〈a4, a2
2−4a0a4〉〉⊂π .

In both cases, π is standard.
In the first case, 〈a4, e,−a4ed(e)〉⊂−π ′. Set τ '〈1,−a4,−e, a4ed(e)〉. Hence

τ ⊂ π , which implies πF(τ ) = 0. By [Fitzgerald 1983, Corollary 1.5] there is a
3-fold Pfister form ρ such that τ ⊂ ρ ⊂ π . In particular, by [Wadsworth 1975]
there is s ∈ F∗ such that ρ ' τ ⊗ 〈〈s〉〉. Since ρ ∈ I 3(F), we have 〈〈d(e), s〉〉 = 0;
i.e., 〈〈s〉〉 ' 〈〈r2

− d(e)〉〉 for some r ∈ F. Therefore, ρ ' 〈〈a4, e, r2
− d(e)〉〉.

Conversely, let δ'〈〈a4, e, r2
−d(e)〉〉 6= 0 for some e, r ∈ F, e 6= 0, r2

−d(e) 6= 0.
In particular, d(e) 6= 0. Then δ' τ⊗〈〈r2

−d(e)〉〉, where τ '〈1,−a4,−e, a4ed(e)〉
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as earlier. The form 〈a4, e,−a4ed(e)〉 ⊂ −δ′ is isomorphic to the form ϕ with the
matrix

Mϕ =

 a4 0 1
2(a2− e)

0 e 1
2a1

1
2(a2− e) 1

2a1 a0


with respect to a certain basis v2, v1, v0, which implies that f =ϕ(x2v2+xv1+v0)∈

D(−δ′). Therefore, δF(C) = 0, and we are done. Certainly, δ is not necessarily
nonstandard. �

Corollary 3.3. Let π ∈ Pn( f ), n ≥ 3. Then there are s1, . . . , sn−3 ∈ F∗ and
ρ ∈ P3( f ) such that π ' ρ⊗〈〈s1, . . . , sn−3〉〉.

Proof. This follows at once from the definition of standard Pfister forms and
Proposition 3.2. �

If the u-invariant of F is small enough, then one can give a complete description
of the ideal W (F(C)/F).

Proposition 3.4. Let F be a field with u(F)≤ 10 ( for instance, F is the function
field of a 3-dimensional variety over an algebraically closed field). Then any element
of W (F(C)/F) is a sum of an element from P2( f ) and an element from P3( f ).

Proof. Let ϕ ∈ W (F(C)/F). Since disc(ϕ)F(x)(
√

f (x)) = 1, a4 6= 0, and f (x) =
a4x4
+a2x2

+a1x+a0 is squarefree, we have disc(ϕ)=1. Since C(ϕ)F(x)(
√

f (x))=0,
we get that C(ϕ) is a quaternion. Let π ∈ P2( f ) be a 2-fold Pfister form associated
with C(ϕ). If π = 0, then C(ϕ)= 0. Since dim(ϕ)≤ 10, a result of Pfister implies
that ϕ ∈ I 3(F) [Scharlau 1985, Chapter 2, Theorem 14.4] (also this follows from
Merkurjev’s theorem, but we do not need this profound result here). Since u(F)≤10,
it follows that ϕ is a 3-fold Pfister form [Lam 2005, Chapter XII, Proposition 2.8].

If π 6= 0, then similarly ϕ− π ∈ I 3(F); hence ϕ = π + (ϕ− π) is a sum of a
2-fold Pfister form and a 3-fold one from W (F(C)/F). �

Open Question. Is the ideal W (F(C)/F) generated by 2-fold and 3-fold Pfister
forms in general?

A natural question arises as to whether nonstandard Pfister forms exist. The
following statement shows that this is really the case.

Proposition 3.5. Let f (x)= a4x4
+ a2x2

+ a1x + a0 be a squarefree polynomial
over a field k. Let C be the curve with the equation y2

= f (x). The following
conditions are equivalent:

(1) The curve C has no rational point over k.

(2) There exists a field extension F/k with a nonstandard 3-fold Pfister form
over F for the curve CF.
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(3) There exist a field extension K/k such that cd2 K = 1, and a nonstandard
3-fold Pfister form over the rational function field F=K (u, v) for the curve CF.
Moreover, in this example Br(F(C)/F)= 0.

Proof. (2) =⇒ (1): This is obvious, since if C had a k-rational point, then
W (F(C)/F) would be trivial for any field extension F/k.

(3)=⇒ (2): This is also obvious.

(1) =⇒ (3): In view of Corollary 2.7, there is a field extension K/k such that
cd2 K = 1 and C has no K -rational point. Set F = K (u, v) and consider the Pfister
form π ' 〈〈a4, u, v2

− d(u)〉〉 ∈W (F(C)/F). Since C has no K -rational point, we
get by Example 2.2 that ∂v2−d(u)(π) = 〈〈a4, u〉〉K (u)(√d(u)) 6= 0. Therefore, π 6= 0.
Now to check that π is nonstandard, it suffices to show that Br(F(C)/F)= 0. Since
2Br(K )= 0, this is a direct consequence of the following:

Lemma 3.6. The restriction map Br(L(C)/L)→Br(L(u)(C)/L(u)) is an isomor-
phism for any field extension L/k.

Proof. Obviously, the map in question is injective. By Proposition 3.1 any element
of Br(L(u)(C)/L(u)) equals (a4, p(u)) for some p∈ L[u]. Let q be a prime divisor
of p. We have

ā4 = ∂q(a4, p) ∈ ker(L∗q/L∗q
2
→ Lq(C)∗/Lq(C)∗

2
).

Since f (x)= a4x4
+a2x2

+a1x+a0 is squarefree, a4 ∈ L∗q
2; that is, ∂q(a4, p)= 1̄.

Therefore, (a4, p) ∈ Br(L(C)/L), so the lemma is proven, which completes also
the proof of the implication (1)=⇒ (3). �
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