Vol. 292, No. 2, 2018

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Formal confluence of quantum differential operators

Bernard Le Stum and Adolfo Quirós

Vol. 292 (2018), No. 2, 427–478
Abstract

We prove that a differential operator in the usual sense is formally the limit of quantum differential operators. For this purpose, we introduce the notion of a twisted differential operator of infinite level and prove that, formally, such an object is independent of the choice of the twist. Our method provides explicit formulas.

Keywords
$q$-difference, differential operator, confluence
Mathematical Subject Classification 2010
Primary: 12H10
Milestones
Received: 7 April 2017
Accepted: 12 June 2017
Published: 17 October 2017
Authors
Bernard Le Stum
Institut de Recherche Mathématique (IRMAR)
Universite de Rennes I
Campus de Beaulieu
35042 Rennes
France
Adolfo Quirós
Departamento de Matemáticas
Universidad Autónoma de Madrid
Ciudad Universitaria de Cantoblanco
28049 Madrid
Spain