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LOCALLY HELICAL SURFACES HAVE BOUNDED TWISTING

DAVID BACHMAN, RYAN DERBY-TALBOT AND ERIC SEDGWICK

A topologically minimal surface may be isotoped into a normal form with
respect to a fixed triangulation. If the intersection with each tetrahedron is
simply connected, then the pieces of this normal form are triangles, quadri-
laterals, and helicoids. Helical pieces can have any number of positive or
negative twists. We show here that the net twisting of the helical pieces of
any such surface in a given triangulated 3-manifold is bounded.

1. Introduction

In [Bachman 2010], the first author introduced the notion of a topologically minimal
surface, as a generalization of incompressible [Haken 1968], strongly irreducible
[Casson and Gordon 1987], and critical [Bachman 2002] surfaces. Such surfaces
have a well-defined index, where incompressible, strongly irreducible, and critical
surfaces have indices 0, 1, and 2, respectively.

The term “topologically minimal” was chosen because in many ways such
surfaces behave like geometrically minimal surfaces, i.e., surfaces that represent
critical points for the area function. Analogous properties of the two types of
surfaces were made explicit in, e.g., [Bachman 2010; 2012b]. In this paper we
show that these two types of surfaces actually look the same as well.

Certain geometrically minimal surfaces are described by the following theorem:

Theorem [Colding and Minicozzi 2006]. Any nonsimply connected embedded
minimal planar domain without small necks can be obtained from gluing together
two oppositely oriented double spiral staircases [i.e., helicoids]. Note that because
the two double spiral staircases are oppositely oriented, then one remains at the
same level if one circles both axes.
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In other words, such geometrically minimal surfaces are depicted (topologically)
by the following figure:
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Here we show that topologically minimal surfaces (also without small
necks) are generally comprised of pairs of oppositely oriented helicoids
as well.

A useful fact about topologically minimal surfaces is that they can
be isotoped into a standard normal form with respect to a triangula-
tion. This was first done by Kneser [Kne29] and Haken [Hak61] in the
index 0 case, Rubinstein [Rub95] and Stocking [Sto00] for closed index
1 surfaces, and [BDTS13] for index 1 surfaces with boundary. The gen-
eral case of arbitrary index is addressed by the first author in [Baca],
[Bacb], and [Bacc]. The following theorem summarizes these results:

Theorem 1.1. Let M be a compact, orientable, irreducible, triangu-
lated 3-manifold with incompressible boundary. Then for each n there
exists a finite, constructible set of surfaces in each tetrahedron of M
from which one can build any index n topologically minimal surface in
M (up to isotopy).

The pieces from which index n surfaces can be built by Theorem 1.1
can be quite complicated. However, in [Bacb] the first author gives a
relatively simple characterization of those components that are simply

Here we show that topologically minimal surfaces (also without small necks) are
generally comprised of pairs of oppositely oriented helicoids as well.

A useful fact about topologically minimal surfaces is that they can be isotoped
into a standard normal form with respect to a triangulation. This was first done
by Kneser [1929] and Haken [1961] in the index 0 case, Rubinstein [1997] and
Stocking [2000] for closed index 1 surfaces, and Bachman et al. [2013] for index 1
surfaces with boundary. The general case of arbitrary index was addressed by the
first author in [Bachman 2012a; 2012b; 2013]. The following theorem summarizes
these results:

Theorem 1.1. Let M be a compact, orientable, irreducible, triangulated 3-manifold
with incompressible boundary. Then for each n there exists a finite, constructible
set of surfaces in each tetrahedron of M from which one can build any index n
topologically minimal surface in M (up to isotopy).

The pieces from which index n surfaces can be built by Theorem 1.1 can be
quite complicated. However, in [Bachman 2012b] the first author gave a relatively
simple characterization of those components that are simply connected: such pieces
are either triangles or helicoids1 (see Figure 1). We say any surface built entirely
from such pieces is locally helical.

Helical pieces are classified by their axis (see Section 3) and twisting. If H∗
is a helicoid then the number of normal arcs comprising ∂H∗ is 4(n + 1), for

1We regard quadrilaterals as untwisted helicoids.
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Figure 1. A helicoid whose boundary has length 16. Note that it
meets one pair of opposite edges in single points, a second pair in
three points, and a third pair in four points. The twisting of this
helicoid is 3.

some n. The twisting of H∗, denoted t (H∗), is the number ±n, where the sign is
determined by the handedness of the helicoid and the orientation of the manifold
(see Definition 3.3). If H is a locally helical surface in a triangulated 3-manifold M ,
then the net twisting of H is the sum of the twisting of all of its helical pieces (see
Definition 3.4 for a more precise definition). The total absolute twisting is the sum
of the absolute values of the twisting of its helical pieces. Note that if a surface has
bounded total absolute twisting, then each helical piece has a bounded number of
twists. If, on the other hand, the net twisting is bounded then there may be helical
pieces with an arbitrarily large number of, say, positive twists, as long as there are
also pieces with large numbers of negative twists.

The results of [Bachman 2012a] and [Bachman 2012b], taken together, imply
the following:

Theorem 1.2. Any topologically minimal surface with index n that is isotopic to a
locally helical surface is isotopic to one with total absolute twisting at most n.

The results mentioned above give a direct generalization of Haken’s normalization
of incompressible surfaces [1968]. To see this, first note that by definition, an
incompressible surface is index 0. By Theorem 1.1 such a surface can be isotoped
to be locally topologically minimal. By incompressibility, we may assume that in
this position it is locally simply connected. Finally, by Theorem 1.2 we conclude
that the total absolute twisting must be 0, which means that it is a collection of
triangles and quadrilaterals.
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For higher index locally helical surfaces, the situation may be more complicated,
as there may be helicoids distributed across tetrahedra in M. The main result of this
paper is the following theorem, which says that the total absolute twisting outside
of some prescribed set of tetrahedra 1 constrains the net twisting inside 1.

Theorem 1.3. Let M be a closed, oriented, triangulated 3-manifold, and let 1 be
a set of tetrahedra in the triangulation of M. Let H be a locally helical surface in
M such that the total absolute twisting of H −1 is at most n. Then the net twisting
of H ∩1 is bounded, where the bound depends only on M and n.

Three corollaries of this theorem are worth noting: where1 is a single tetrahedron
of M , where 1 is exactly two tetrahedra, and where 1 is the set of all tetrahedra
in M.

Corollary 1.4. Let M be a closed, oriented, triangulated 3-manifold, and let 1 be
a tetrahedron of the triangulation. Let H be a locally helical surface in M such that
the total absolute twisting of H −1 is at most n. Then the total absolute twisting of
H is bounded, where the bound depends only on M and n.

In particular, in a given triangulated 3-manifold M , the total (absolute or net)
twisting of any locally helical surface with a single helicoid is bounded, where the
bound depends only on M. Corollary 1.4 follows from Theorem 1.3 by making the
observation that a bound on the net twisting of a surface in a single tetrahedron
serves as a bound for its absolute value.

Corollary 1.5. Let M be a closed, oriented, triangulated 3-manifold, and let
11,12 be a pair of tetrahedra in the triangulation of M. Let H be a locally helical
surface in M such that the total absolute twisting of H − (11 ∪12) is at most n.
Then t (H ∩11)=−t (H ∩12)+m, where m is bounded by a function of M and n.

In other words, if, in a sequence of surfaces with bounded total absolute twisting
outside of 11 ∪12, the number of left-handed twists in 11 is growing, then the
number of right-handed twists in 12 must be growing at the same rate (asymp-
totically). This corollary is what establishes our claim that topologically minimal
surfaces look like the geometrically minimal surfaces described by Colding and
Minicozzi, as discussed above.

The last corollary of Theorem 1.3 is when 1 is the set of all tetrahedra in M. In
this case, our result makes no mention of total absolute twisting.

Corollary 1.6. Let M be a closed, oriented, triangulated 3-manifold, and let H be
a locally helical surface in M. Then the net twisting of H is bounded, where the
bound depends only on M.

In contrast, note that one cannot prove that the total absolute twisting is bounded.
A simple example can be seen by gluing a left-handed helicoid in a tetrahedron
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to the right-handed helicoid in its mirror image, forming a closed locally helical
sphere in S3. Such spheres have unbounded total absolute twisting, and zero net
twisting.

In the next section we characterize normal curves by their type. In Section 3
we characterize helical disks by their axis. Finally, in Section 4 we define the
compatibility class of a locally helical surface. Those familiar with normal surface
theory will find several of these notions familiar. The layering of these definitions
parses the set of locally helical surfaces in (M;1) more and more finely, imposing
increasingly greater restrictions on how surfaces in the same class can intersect.
Taken all at once, these characterizations produce a finite set of consistency classes
for locally helical surfaces in (M;1), which have just the properties needed to
prove Theorem 1.3.

2. The type of a normal curve on a tetrahedron

In this section we consider the combinatorics of normal loops on the boundary of a
tetrahedron. For a basic reference on normal surface theory, we refer the reader to
[Hass 1998].

Lemma 2.1. Let σ be a tetrahedron, and α a normal loop of length at least four
on ∂σ . Let φ denote a 180-degree rotation of σ about a line connecting the midpoints
of opposite edges of σ . Then α is normally parallel to a loop that is preserved by φ.

Proof. To begin, we claim that a normal loop of length at least four meets each
pair of opposite edges of ∂σ in the same number of points. One way to see this
is by noting that the double cover of ∂σ , branched over the vertex set, is a torus
(see Figure 2). Each edge of ∂σ lifts to an essential loop on the torus, and each
pair of opposite edges lifts to two parallel loops. Now, as a loop α of length at least
four on ∂σ also lifts to two essential loops on the torus, it must be the case that α
intersects opposite edges of ∂σ in an equal number of points.

Figure 2. The torus as a double branched cover of the boundary
of a tetrahedron, and components of a lift of a length four curve in
its unfolded version.
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Figure 3. Labeling the normal arc types on the boundary of a
tetrahedron, σ.

Now note that the rotation φ preserves the two edges that its axis intersects, and
swaps the other two pairs of opposite edges. Hence, both α and φ(α) will meet each
edge in the same number of points. As these numbers completely determine the
intersection of α with each face of σ (up to normal isotopy), the result follows. �

This lemma gives us a way to classify normal curves on the boundary of a
tetrahedron. Label the normal arc types on each face of a tetrahedron σ as in
Figure 3. These labels are arranged so as to be preserved by 180-degree rotations
about axes that connect the midpoints of opposite edges. Any normal loop α of
length at least four on ∂σ meets each face in a collection of normal arcs. By
Lemma 2.1, the number of these arcs that are parallel to an arc with one label in
one face will be the same as the number that are parallel to an arc with the same
label in any other face. Hence, if we fix one face δ of σ and let a(α), b(α) and
c(α) be the number of arcs of α ∩ δ parallel to the labeled arcs a, b, and c of the
figure, then these three functions will be independent of the choice of δ.

Note furthermore that for any loop α of length at least four, at least one of the
three numbers a(α), b(α) or c(α) will be zero (otherwise α would have length three
components). This motivates the following definition.

Definition 2.2. Let σ be a tetrahedron with labeled normal arc types as in Figure 3,
and let α be a normal loop on ∂σ of length at least four. We say α is type a if
a(α)= 0. Define type b and type c similarly.

Note that normal loops of length exactly four will be of two types. The notion
of type constrains how two normal curves can intersect on the boundary of a
tetrahedron, as seen in the following two lemmas.
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Lemma 2.3. Let α and β be normal loops of length at least four on ∂σ of the same
type. Let α+β be the normal loop(s) obtained by resolving all intersection points.
Then α+β does not contain any components of length three.

Proof. Suppose α and β are type a. Then a(α) = a(β) = 0. As a(α + β) =
a(α)+ a(β) for any two normal loops, we conclude a(α+β)= 0. Thus, there is a
missing arc type around each vertex of σ (see Figure 3). We conclude α+β does
not have any components of length three. �

Definition 2.4. Let α0 and β0 be normal arcs in an oriented triangle δ. Then α0 and
β0 can be isotoped, keeping their boundaries fixed, so that they intersect transversely
in at most one point. We define the (normal) sign of the point α0∩β0, if it exists, as
follows. Orient α0 and β0 so that the ordering (α0, β0) agrees with the orientation
of δ. There are now two possibilities. If the regular exchange at α0 ∩β0 attaches
the tail of α0 to the tip of β0 then we say intersection point α0 ∩ β0 is positive.
Otherwise we say it is negative (see Figure 4).

Note that with a fixed orientation on δ, the sign of α0∩β0 is opposite the sign of
β0 ∩α0.

β0

α0

Regular Exchange

α0 ∩β0 positive α0 ∩β0 negative

Figure 4. The sign of α0 ∩β0, as determined by the regular exchange.
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β0

α′ α′′

Figure 5. Resolving intersections of opposite signs produces a
nonnormal arc.

Lemma 2.5. Let α and β be collections of normal loops on ∂σ whose non-length-
three components are all of the same type, that have been normally isotoped to
intersect minimally. Then each point of α ∩β has the same sign.

Proof. If either α or β contains a component of length three, then it will be disjoint
from the other collection. Thus, we may assume that all points of α∩β lie on loops
of length at least four. We will call such loops long. The long loops of α will all be
parallel, as will the long loops of β. Thus, if there are any intersection points at all,
then no long loop of α can be parallel to a long loop of β.

By way of contradiction, we now assume that two points of α∩β are of opposite
sign. We claim that then there is a subarc of α or β that connects two points of
α ∩ β of opposite sign. If not, then we may choose a component α+ of α with
only positive intersection points, and a component β− of β with only negative
intersection points. However, it then follows that α+ is disjoint from β−, which
cannot happen for two nonparallel long loops. We proceed, then, without loss of
generality assuming there is a subarc of β that connects points of opposite sign. It
follows that there is such a subarc, β0, which does not meet α in its interior.

There are now two cases. Suppose first that the points of ∂β0 lie on different
components α′ and α′′ and of α. As all long components of α are normally parallel,
α′ and α′′ cobound an annulus of ∂σ , with β0 a spanning arc. By making this
annulus thin, we may assume that β0 lies in a face of σ. However, resolving the
two intersections at each end of β0 then produces a nonnormal arc. (See Figure 5.)

The second case is when the points of ∂β0 lie on the same component α′ of α.
Note that α′ is a loop that divides ∂σ into two hemispheres, each intersecting the
boundary of the tetrahedron in one of three ways, as seen in Figure 6. The loop α′

cannot be as depicted in Figure 6 (left), where one of these hemispheres contains
a single vertex of ∂σ , since it is long. Thus, we may assume both hemispheres
contain two vertices of ∂σ. Let D be the hemisphere that contains β0. Note that
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α′ α′ α′

Figure 6. The three possibilities for one hemisphere of ∂σ,
bounded by α′. The black points and edges indicate vertices and
subarcs of edges of ∂σ, respectively.

β0

α′

Figure 7. Resolving the intersection points of opposite sign of α′

and β0 produces a length three curve or nonnormal arc.

β0 then divides D into two subdisks, and by the minimality of |α ∩β|, each such
subdisk will contain a vertex of σ. Resolving the intersections at each end of β0 then
produces a vertex linking loop. (See Figure 7.) We will leave it as an exercise for
the reader that such a loop will then persist after all further resolutions, producing
a length three normal loop. By Lemma 2.3, it follows that the long loops of α and
β could not have been the same type. �

3. Helicoids with the same axis

Definition 3.1. Let H∗ be a disk properly embedded in a tetrahedron, whose bound-
ary is a normal loop. If ∂H∗ meets some pair of opposite edges e, e′ in single points
then we say H∗ is a helicoid, and {e, e′} is an axis of H∗.

Note that both quadrilaterals and octagons are helicoids with two axes, and all
other helicoids have a unique axis. (See Figure 8.) However, the boundary of each
helicoid with axis {e, e′} meets e in a unique normal arc type as in Figure 3.

Definition 3.2. Given a helicoid H∗ with axis {e, e′} in a tetrahedron σ , there is
an orientation-preserving simplicial homeomorphism from σ to the tetrahedron
pictured in Figure 3 (equipped with the standard orientation on R3), where e and e′

are taken to the edges that meet arc types a and b. We say H∗ is right-handed with
respect to {e, e′} if a(∂H∗)= 0 and left-handed with respect to {e, e′} if b(∂H∗)= 0.
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e
f

f ′
e′

e
f

f ′
e′

Figure 8. Quadrilaterals and octagons are the only two locally
helical surfaces with more than one choice of axis. Note here that
the quadrilateral is left-handed and the octagon is right-handed
with respect to {e, e′}, with the opposite being the case with respect
to { f, f ′}.

Definition 3.3. Let H∗ be a helicoid with 4(n+1) normal arcs comprising ∂H∗, and
with axis {e, e′} in a tetrahedron σ. We say the twisting of H∗, t (H∗), is +n if H∗ is
right-handed with respect to {e, e′} and −n if it is left-handed with respect to {e, e′}.

Note that an octagon can be regarded as having +1 or −1 twisting, depending
on the choice of its axis. The handedness of the twisting of a quadrilateral is also
dependent on a choice of axis, but in either case the value of the twisting is zero.
Thus, a helical surface with no octagons has a well-defined net twisting. When
there are octagons present, however, the net twisting will depend on choices of axes,
motivating the following definition:

Definition 3.4. Let M be a triangulated 3-manifold containing a locally helical
surface H , and let 1 be a set of tetrahedra in the triangulation of M. We say the
net twisting of H in 1 is bounded by n if

−n ≤
∑
σ∈1

t (H ∩ σ)≤ n

for all choices of axes of the components of H ∩ σ , for each σ ∈1.

Definition 3.5. Let σ be an oriented tetrahedron. For any two normal curves α and
β on ∂σ in general position, let ησ (α ∩β) denote the difference between the total
number of positive and negative intersection points of α ∩ β on the 2-simplices
of ∂σ.

Lemma 3.6. Let H∗ and G∗ be helicoids with the same handedness with respect to
the same choice of axis. Then

ησ (∂H∗ ∩ ∂G∗)= 2(t (H∗)− t (G∗)).

Proof. As H∗ and G∗ are helicoids with the same handedness with respect to some
choice of axis, it follows that their boundaries are loops of the same type. It thus
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Figure 9. Here ∂H∗ is the black curve, with a neighborhood of
h being the dark gray band, and ∂G∗ is depicted in lighter gray.
Here, |h ∩ g| = 2, ησ (∂H∗∩ ∂G∗)= 8, t (H∗)= 6, t (G∗)= 2 and
thus t (H∗)− t (G∗)= 4.

follows immediately from Lemma 2.5 that ησ (∂H∗∩∂G∗)=±|∂H∗∩∂G∗|, where
the sign is determined by the normal intersection sign of the intersection points.
Without loss of generality, assume this sign is positive. Our goal is to show

|∂H∗ ∩ ∂G∗| = 2(t (H∗)− t (G∗)).

Notice that ∂H∗ is a loop on ∂σ dividing it into two hemispheres, where each
hemisphere contains two of the vertices of σ. Let v and w be the vertices in one
such hemisphere, and let h be an arc in this hemisphere connecting them. Note that
the arc h can be chosen so that ∂H∗ is normally parallel to a neighborhood of h.

Similarly, ∂G∗ is parallel to the boundary of a neighborhood of an arc g connect-
ing two vertices of σ. The arc g may be chosen so that at least one of its endpoints
is distinct from the endpoints of h.

There are now two cases. If both endpoints of g are distinct from the endpoints
of h then the curves can be arranged as in Figure 9. Note that ∂H∗ ∩ ∂G∗ contains
four intersection points for each crossing of h and g. Furthermore, the difference
in the twisting, t (H∗)− t (G∗), is twice the number of crossings of h and g. Thus,
the desired equation holds.

All intersection points depicted in the figure are positive, as is the twisting. Note
that switching the orientation and keeping the ordering of the curves the same
changes the sign of both the intersection points and the twisting. Alternatively,
keeping the orientation fixed but changing the ordering of the curves will also
change the sign of the intersection points, and reverse the order of the operands on
the right side of the desired equation. Thus the equation still holds.
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Figure 10. In this case, h and g share an endpoint. Here, |h∩g| = 2,
ησ (∂H∗∩∂G∗)=6, t (H∗)=6, t (G∗)=3 and thus t (H∗)−t (G∗)=3.

In the second case, h and g have an endpoint in common, as in Figure 10. In
this case |∂H∗ ∩ ∂G∗| = 4|h ∩ g| − 2 and t (H∗)− t (G∗)= 2|h ∩ g| − 1. Thus we
still obtain the desired relationship between ησ (∂H∗∩ ∂G∗) and t (H∗)− t (G∗). �

4. Compatibility classes of surfaces

The results of this section extend previous results that restrict intersections of bound-
ary curves realized by compatibility classes of surfaces, found, e.g., in [Bachman
et al. 2016; Jaco and Sedgwick 2003; Hatcher 1982].

Definition 4.1. Two surfaces in a triangulated 3-manifold are compatible if they
meet the boundary of each tetrahedron in a collection of normal curves that can be
normally isotoped to be disjoint.2

Henceforth we will assume that if α0 and β0 are contained in a 2-simplex δ⊂ ∂M ,
then the orientation on δ is induced by the orientation on M. Hence, for such curves
we may reference the sign of each point of α0∩β0 without mention of the orientation
of the 2-simplex that contains it.

In the next lemma, we show that two compatible surfaces have a symmetric
relationship between the signs of their normal intersections on the boundary of a
subcomplex, 1.

Lemma 4.2. Let M be a closed, oriented, triangulated 3-manifold. Let 1 be a set
of tetrahedra in the triangulation of M. Suppose A and B are two locally helical
surfaces in M that are compatible outside 1. Let ∂1A = ∂(A ∩1) and ∂1B =

2We are allowing pseudotriangulations; i.e., M is realized as a collection of tetrahedra with face-
pairings. Hence, for each 3-cell σ in M there is a map π :6→ σ , where 6 is a 3-simplex. Here we
consider two surfaces to be compatible if they meet ∂σ in curves whose preimages can be isotoped to
be disjoint on ∂6.
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αti−ε

β

αti+ε

β

Figure 11. Positive and negative intersections cancel as t increases
through ti .

∂(B ∩1). Suppose A and B have been normally isotoped so that |∂1A∩ ∂1B| is
minimal. Then the number of points of ∂1A∩∂1B with positive normal sign equals
the number of points with negative normal sign.

Proof. Consider a tetrahedron σ of M that is not in 1. Let α denote a component
of A ∩ ∂σ , and β a component of B ∩ ∂σ. Orient each 2-simplex of ∂σ by the
induced orientation from σ , so that each point of α ∩ β has a well-defined sign.
Since A and B intersect minimally, we may assume each normal arc of α and β
is a straight line segment. Recall from Definition 3.5 that ησ (α ∩ β) denotes the
difference between the total number of positive and negative intersection points of
α ∩β on the 2-simplices of ∂σ.

As A and B are compatible, there is an isotopy from α to a normal loop α′, also
consisting of straight normal arcs, in ∂σ that is disjoint from β. We can choose
such an isotopy, αt , so that for all t , each normal arc of αt is a straight line segment
and αt ∩β contains at most one point of the 1-skeleton. Let {ti } denote the critical
values of αt ∩β, i.e., the values of t such that αt and β do not intersect transversely
on ∂σ. It follows that for each i , αti ∩β includes a point of the 1-skeleton.

Just before (or after) ti , αt meets β as in Figure 11. Here we see two intersections,
one of each normal sign, of αt ∩β which cancel as t increases through ti . It follows
that ησ (αti−ε ∩β)= ησ (αti+ε ∩β). As α′∩β =∅, we conclude ησ (αt ∩β) is zero
for all noncritical t . In particular, it must have been the case that ησ (α ∩β)= 0.

Let ησ (A∩ B) now denote the sum, over all curves α of A∩∂σ and β of B∩∂σ
of ησ (α ∩ β). It follows from the above argument that ησ (A∩ B)= 0. Thus, the
sum over all tetrahedra σ not in 1 of ησ (A∩ B) is also zero.

Now note that if δ is an interior 2-simplex, then the normal sign of any intersection
point of A∩ δ and B ∩ δ is opposite from the perspective of the tetrahedra on either
side of δ. Hence, the sum of ησ (A∩ B), over all tetrahedra σ , must be equal to the
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difference of the number of positive and negative intersection points of ∂1A∩ ∂1B.
As we have reasoned above that this total is zero, the result follows. �

5. Main proof

We now put the three notions of axis, twisting, and compatibility together.

Definition 5.1. Let M be a closed, oriented, triangulated 3-manifold, and let 1 be
a set of tetrahedra in the triangulation of M. Two locally helical surfaces H and G
are said to be consistent in (M;1) if they are compatible outside of 1, and if for
all σ ∈1, H ∩ σ and G ∩ σ have the same handedness with respect to the same
choice of axis.

Theorem 1.3 is a consequence of the following lemma.

Lemma 5.2. Let M be a closed, oriented, triangulated 3-manifold, and let 1 be
a set of tetrahedra in the triangulation of M. If H and G are consistent, locally
helical surfaces in (M;1), then the net twisting of H ∩1 is the same as the net
twisting of G ∩1.

Proof. For each σ ∈ 1, let Hσ = H ∩ σ and Gσ = G ∩ σ. As noted in the proof
of Lemma 3.6, for each σ ∈1, ∂Hσ and ∂Gσ must be normal loops of the same
type. Thus, by Lemma 2.5, for each σ ∈1, all points of ∂Hσ ∩ ∂Gσ have the same
sign. Let 1+ be the subset of 1 where this sign is positive, and 1− the subset of
1 where it is negative. Thus, on each σ ∈1+,

ησ (∂Hσ ∩ ∂Gσ )= |∂Hσ ∩ ∂Gσ |,

and for all σ ∈1−,

ησ (∂Hσ ∩ ∂Gσ )=−|∂Hσ ∩ ∂Gσ |.

Consider the sum
∑

σ∈1 #(∂Hσ ∩∂Gσ ), where #(∂Hσ ∩∂Gσ ) denotes the signed
intersection number of ∂Hσ and ∂Gσ . Suppose σ1 and σ2 are adjacent tetrahedra
in 1, p1 ∈ ∂Hσ1 ∩ ∂Gσ1 , p2 ∈ ∂Hσ2 ∩ ∂Gσ2 , and p1 is identified with p2 in M.3

Then the sign of p1 will be opposite the sign of p2, and thus p1 and p2 will cancel in∑
σ∈1 #(∂Hσ ∩∂Gσ ). If, on the other hand, p is a point of ∂Hσ ∩∂Gσ that is on a

unique σ ∈1, then p ∈ ∂(H−1)∩∂(G−1). By hypothesis, H−1 and G−1 are
compatible surfaces; thus by Lemma 4.2 the number of positive and negative points
of ∂(H −1)∩ ∂(G−1) are equal. We conclude that

∑
σ∈1 #(∂Hσ ∩ ∂Gσ )= 0,

or equivalently, ∑
σ∈1+

|∂Hσ ∩ ∂Gσ | =

∑
σ∈1−

|∂Hσ ∩ ∂Gσ |,

3Here we are allowing σ1 to be equal to σ2 when there are self-identifications, but in this case p1
must be distinct from p2.
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and thus, ∑
σ∈1+

ησ (∂Hσ ∩ ∂Gσ )=−
∑
σ∈1−

ησ (∂Hσ ∩ ∂Gσ ).

Applying Lemma 3.6 to this equality now yields∑
σ∈1+

2(t (Hσ )− t (Gσ ))=−
∑
σ∈1−

2(t (Hσ )− t (Gσ )),

which implies

0=
∑
σ∈1+

2(t (Hσ )− t (Gσ ))+
∑
σ∈1−

2(t (Hσ )− t (Gσ ))

=

∑
σ∈1

2(t (Hσ )− t (Gσ ))

=

∑
σ∈1

t (Hσ )−
∑
σ∈1

t (Gσ ).

Therefore,
∑

σ∈1 t (Hσ )=
∑

σ∈1 t (Gσ ); i.e., the net twisting is the same for all
surfaces in the chosen consistency class. �

We are now ready to prove Theorem 1.3.

Proof. Let n be a positive integer, and consider the set of all locally helical surfaces
(up to normal isotopy) that have total absolute twisting ≤ n in M −1. The number
of compatibility classes of surfaces in M −1 is finite, since there are only a finite
number of normal loops on each tetrahedron of length ≤ 4(n + 1). Moreover,
there are only three possible axes for each tetrahedron in 1, and two choices of
handedness for each. Thus, the number of consistency classes for (M;1) is finite.
Theorem 1.3 thus immediately follows from Lemma 5.2. �
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