Pacific Journal of Mathematics

SUPERCONVERGENCE TO FREELY INFINITELY DIVISIBLE DISTRIBUTIONS

Hari Bercovici, Jiun-Chau Wang and Ping Zhong

SUPERCONVERGENCE TO FREELY INFINITELY DIVISIBLE DISTRIBUTIONS

Hari Bercovici, Jiun-Chau Wang and Ping Zhong

Abstract

We prove superconvergence results for all freely infinitely divisible distributions. Given a nondegenerate freely infinitely divisible distribution ν, let $\mu_{\boldsymbol{n}}$ be a sequence of probability measures and let k_{n} be a sequence of integers tending to infinity such that $\mu_{n}^{\boxplus k_{n}}$ converges weakly to ν. We show that the density $d \mu_{n}^{\boxplus k_{n}} / d x$ converges uniformly, as well as in all L^{p}-norms for $p>1$, to the density of \boldsymbol{v} except possibly in the neighborhood of one point. Applications include the global superconvergence to freely stable laws and that to free compound Poisson laws over the whole real line.

1. Introduction

Consider a sequence $\left\{X_{i}\right\}_{i=1}^{\infty}$ of independent identically distributed random variables with zero mean and unit variance. The classical central limit theorem states that variables

$$
S_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{\sqrt{n}}
$$

converge in distribution to the standard normal law. Note that the variables S_{n} might always be discrete, even though their limit is absolutely continuous. This means that the convergence of S_{n} to a normal law must be expressed in terms of distribution functions, rather than densities.

Assume now that, instead of being independent, the variables $\left\{X_{i}\right\}_{i=1}^{\infty}$ are freely independent in the sense of [Voiculescu et al. 1992]. We still assume them identically distributed with zero mean and unit variance. Under the additional condition that the variables are bounded, it was shown in [Bercovici and Voiculescu 1995] that the distribution of S_{n} is absolutely continuous for sufficiently large n, and these densities converge uniformly, along with all of their derivatives, to the density of the semicircle law

$$
\frac{1}{2 \pi} \sqrt{4-t^{2}}
$$

on any interval $[a, b] \subset(-2,2)$. This phenomenon was called superconvergence in that paper. In [Wang 2010], the assumption that X_{i} be bounded was removed. Even

Keywords: freely infinitely divisible law, free convolution, superconvergence.
when the variables X_{i} are not identically distributed, but are uniformly bounded, the support of S_{n} was shown by Kargin [2007] to converge to the interval [-2, 2] as $n \rightarrow \infty$. See also [Anshelevich et al. 2014] for multiplicative superconvergence results.

The purpose of this paper is to demonstrate that the phenomenon of superconvergence is not limited to convergence to the semicircle law. Consider a nondegenerate probability measure v on \mathbb{R}, which is infinitely divisible in the free sense (that is, \boxplus-infinitely divisible). It is known that its Cauchy transform,

$$
\begin{equation*}
G_{v}(z)=\int_{-\infty}^{+\infty} \frac{1}{z-t} d v(t) \tag{1-1}
\end{equation*}
$$

defined for $\mathfrak{J} z>0$, extends continuously to all points $z \in \mathbb{R}$ with at most one exception t_{v}. The measure v is absolutely continuous on $\mathbb{R} \backslash\left\{t_{v}\right\}$ and its density is locally analytic when strictly positive. To formulate our result, assume that for every positive integer n, we are given k_{n} freely independent, identically distributed random variables $X_{n 1}, X_{n 2}, \ldots, X_{n k_{n}}$ such that $\lim _{n \rightarrow \infty} k_{n}=\infty$ and the sums

$$
S_{n}=X_{n 1}+X_{n 2}+\cdots+X_{n k_{n}}
$$

converge in distribution to the measure ν. (Necessary and sufficient conditions for such a convergence to take place are found in [Bercovici and Pata 1999].) Our main result, Theorem 4.1, implies the following statement. For convenience, we denote by D_{v} the singleton $\left\{t_{v}\right\}$ if this point exists. Otherwise, $D_{v}=\varnothing$.

Theorem 1.1. Given any open set $U \supset D_{v}$, the distribution v_{n} of S_{n} is absolutely continuous on $\mathbb{R} \backslash U$ for sufficiently large n, and the density of v_{n} converges to the density of v uniformly and in L^{p}-norms for $p>1$ on $\mathbb{R} \backslash U$.

Note that U can be taken to be empty if $D_{v}=\varnothing$.
In Proposition 5.1, we provide the necessary and sufficient conditions for the existence of the singularity t_{ν}, as well as a formula to compute it when this point exists. These conditions and the formula are further used to investigate the quality of convergence to freely stable and free compound Poisson densities.

To prove this result, we first approximate v_{n} by a closely related \boxplus-infinitely divisible measure ρ_{n} and we use the fact that $G_{\rho_{n}}$ is a conformal map. Related considerations appear in the work of Chistyakov and Götze [2013].

The remainder of this paper is organized as follows. In Section 2, we review some relevant preliminaries on free convolution and freely infinitely divisible distributions. Section 3 is devoted to describing the subordination function appearing in free convolution powers. Section 4 contains the proof of our main result, and some examples and applications are given in Section 5.

2. Free convolution and freely infinitely divisible distributions

Let $\mathbb{C}^{+}=\{z \in \mathbb{C}: \Im z>0\}$ be the complex upper half-plane, and let v be a probability measure on \mathbb{R}. Recall that the Cauchy transform $G_{v}(z)$ of v is defined by (1-1) for $z \in \mathbb{C}^{+}$. The measure v can be recovered as the weak limit of the measures

$$
d \nu_{y}(x)=-\frac{1}{\pi} \Im G_{v}(x+i y) d x, \quad x \in \mathbb{R}, y>0
$$

as $y \rightarrow 0$, and the atoms of v can be calculated as follows:

$$
\begin{equation*}
\lim _{y \rightarrow 0} i y G_{\nu}(\alpha+i y)=v(\{\alpha\}), \quad \alpha \in \mathbb{R} \tag{2-1}
\end{equation*}
$$

The reciprocal $F_{\nu}=1 / G_{\nu}$ is an analytic self-map of \mathbb{C}^{+}and plays a role in the calculation of free convolution. More precisely, for any $\eta>0$ there exists a positive constant $M=M(\eta, v)$ such that the function F_{v} has an analytic right inverse F_{v}^{-1} (relative to the composition) defined in the truncated cone

$$
\Gamma_{\eta, M}=\{x+i y: y>M \text { and }|x|<\eta y\} .
$$

The Voiculescu transform φ_{v} of v is then defined as $\varphi_{\nu}(z)=F_{v}^{-1}(z)-z$, and for any probability law μ on \mathbb{R}, we have

$$
\varphi_{\mu \boxplus v}(z)=\varphi_{\mu}(z)+\varphi_{v}(z)
$$

for all z in a region of the form $\Gamma_{\eta, M}$ where all three transforms are defined (see [Bercovici and Voiculescu 1993] for the proof). In this sense, the Voiculescu transform linearizes the free convolution \boxplus.

The set of all finite Borel measures on \mathbb{R} is equipped with the topology of weak convergence from duality with continuous bounded functions. Denoting by \mathcal{M} the class of all Borel probability measures on \mathbb{R}, we can translate weak convergence of measures in \mathcal{M} into convergence properties of the corresponding Voiculescu transforms. We recall the following result from [Bercovici and Pata 1999].

Proposition 2.1. Let $\mu, \mu_{1}, \mu_{2}, \ldots$ be measures in \mathcal{M}. Then the sequence μ_{n} converges weakly to the law μ if and only if there exist $\eta, M>0$ such that the functions $\varphi_{\mu_{n}}$ are defined on $\Gamma_{\eta, M}$ for every $n, \lim _{n \rightarrow \infty} \varphi_{\mu_{n}}(i y)=\varphi_{\mu}(i y)$ for every $y>M$, and $\varphi_{\mu_{n}}(i y)=o(y)$ uniformly in n as $y \rightarrow \infty$.

A measure $v \in \mathcal{M}$ is said to be \boxplus-infinitely divisible if for every positive integer n, there exists a measure $v_{n} \in \mathcal{M}$ such that

$$
v=\underbrace{v_{n} \boxplus v_{n} \boxplus \cdots \boxplus v_{n}}_{n \text { times }} .
$$

We denote by $\mathcal{I D}(\boxplus)$ the set of all \boxplus-infinitely divisible measures in \mathcal{M}. It was shown in [Bercovici and Voiculescu 1993] that $v \in \mathcal{I D}(\boxplus)$ if and only if the function
φ_{ν} extends analytically to a map from \mathbb{C}^{+}into $\mathbb{C}^{-} \cup \mathbb{R}$, in which case there exist a real constant γ and a finite Borel measure σ on \mathbb{R} such that φ_{ν} has the following free Lévy-Khintchine representation:

$$
\varphi_{v}(z)=\gamma+\int_{\mathbb{R}} \frac{1+t z}{z-t} d \sigma(t)
$$

The pair (γ, σ) is uniquely determined. Conversely, given such a pair (γ, σ), there exists a unique probability law $v=v_{\boxplus}^{\gamma, \sigma} \in \mathcal{I D}(\boxplus)$ satisfying the above integral formula. We shall call the pair (γ, σ) the free generating pair for $\nu_{\boxplus}^{\gamma, \sigma}$. Weak convergence of \boxplus-infinitely divisible laws can be characterized in terms of their free generating pairs; namely, $\nu_{\boxplus}^{\gamma_{n}, \sigma_{n}} \rightarrow \nu_{\boxplus}^{\gamma, \sigma}$ weakly if and only if $\gamma_{n} \rightarrow \gamma$ and $\sigma_{n} \rightarrow \sigma$ weakly [Barndorff-Nielsen et al. 2006, Theorem 5.13].

We review some useful results related to the F-transforms of freely infinitely divisible distributions, which were proved in [Belinschi and Bercovici 2005; Huang 2015], and are closely related to Biane's work [1997]. Given $v=v_{\boxplus}^{\gamma, \sigma}$ in $\mathcal{I D}(\boxplus)$, the function F_{ν} is a conformal map, and its inverse is the function

$$
H_{\nu}(z)=z+\varphi_{\nu}(z)=z+\gamma+\int_{\mathbb{R}} \frac{1+t z}{z-t} d \sigma(t), \quad z \in \mathbb{C}^{+}
$$

This means that $H_{v}\left(F_{v}(z)\right)=z$ for all $z \in \mathbb{C}^{+}$. Note that $H_{v}: \mathbb{C}^{+} \rightarrow \mathbb{C}$ is an analytic function satisfying $\mathfrak{J} H_{v}(z) \leq \mathfrak{J} z$ for all $z \in \mathbb{C}^{+}$. The following result is a consequence of [Belinschi and Bercovici 2005, Theorem 4.6].

Proposition 2.2. The function F_{v} has a one-to-one continuous extension to $\mathbb{C}^{+} \cup \mathbb{R}$, and it satisfies

$$
\begin{equation*}
\left|F_{v}\left(z_{1}\right)-F_{\nu}\left(z_{2}\right)\right| \geq \frac{1}{2}\left|z_{1}-z_{2}\right|, \quad z_{1}, z_{2} \in \mathbb{C}^{+} \cup \mathbb{R} \tag{2-2}
\end{equation*}
$$

If $\alpha \in \mathbb{R}$ is a point such that $\Im F_{\nu}(\alpha)>0$, then F_{v} can be continued analytically to a neighborhood of α.

The inequality (2-2) implies that

$$
\left|H_{v}\left(z_{1}\right)-H_{v}\left(z_{2}\right)\right| \leq 2\left|z_{1}-z_{2}\right|, \quad z_{1}, z_{2} \in \Omega_{v}
$$

where $\Omega_{v}=F_{v}\left(\mathbb{C}^{+}\right)$. The function H_{v} has a one-to-one continuous extension to the closure $\bar{\Omega}_{v}$. This extension is still denoted H_{v}. Thus, we have the following inversion relationships:

$$
H_{\nu}\left(F_{\nu}(z)\right)=z, \quad z \in \mathbb{C}^{+} \cup \mathbb{R}, \quad \text { and } \quad F_{\nu}\left(H_{v}(z)\right)=z, \quad z \in \bar{\Omega}_{v}
$$

We describe now the boundary set $\partial \Omega_{v}$. Given $x \in \mathbb{R}$ and $y>0$, observe

$$
\Im H_{\nu}(x+i y)=y\left(1-\int_{\mathbb{R}} \frac{1+t^{2}}{(t-x)^{2}+y^{2}} d \sigma(t)\right)
$$

It follows that

$$
\Im H_{v}(x+i y)=0
$$

if and only if

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{1+t^{2}}{(t-x)^{2}+y^{2}} d \sigma(t)=1 \tag{2-3}
\end{equation*}
$$

On the other hand, note that for any $x \in \mathbb{R}$, the positive function

$$
y \mapsto \int_{\mathbb{R}} \frac{1+t^{2}}{(t-x)^{2}+y^{2}} d \sigma(t)
$$

is continuous and strictly decreasing in y, provided that $\sigma \neq 0$; the case $\sigma=0$ corresponds to a measure v which is a point mass. Thus, for any $x \in \mathbb{R}$, there exists at most one value $y>0$ satisfying (2-3). It is natural to introduce two sets

$$
A_{v}=\{x \in \mathbb{R}: g(x)>1\}
$$

and

$$
B_{\nu}=\mathbb{R} \backslash A_{\nu}=\{x \in \mathbb{R}: g(x) \leq 1\},
$$

where the function

$$
g(x)=\int_{\mathbb{R}} \frac{1+t^{2}}{(t-x)^{2}} d \sigma(t)=\sup _{y>0} \int_{\mathbb{R}} \frac{1+t^{2}}{(t-x)^{2}+y^{2}} d \sigma(t), \quad x \in \mathbb{R}
$$

is a lower semicontinuous function of x, so that A_{v} is an open set. For $x \in A_{v}$, define $u_{v}(x)$ to be the unique y in $(0, \infty)$ satisfying (2-3); for $x \in B_{v}$, set $u_{v}(x)=0$.

Proposition 2.3 [Huang 2015]. The function F_{ν} maps \mathbb{R} bicontinuously to the graph γ_{v} of the function u_{v}, that is,

$$
F_{v}(\mathbb{R})=\gamma_{v}=\left\{x+i u_{v}(x): x \in \mathbb{R}\right\}
$$

In particular, the function u_{ν} is continuous on \mathbb{R}.
We note for further reference that the set A_{ν} is merely the collection of all $x \in \mathbb{R}$ such that $u_{\nu}(x)>0$. Moreover, for any $t \in \mathbb{R}$, we have $\Im F_{\nu}(t)>0$ if and only if $\Re F_{v}(t) \in A_{\nu}$. The graph γ_{v} is precisely the boundary set $\partial \Omega_{v}$, and one has $\Omega_{v}=\left\{z \in \mathbb{C}^{+}: H_{v}(z) \in \mathbb{C}^{+}\right\}$. The following result now follows easily from these facts; see also [Biane 1997; Huang 2015].
Proposition 2.4. The function $t \mapsto \Re F_{\nu}(t)$ is a strictly increasing homeomorphism from \mathbb{R} to \mathbb{R}.

As shown in [Bercovici and Voiculescu 1993], the measure v has at most one atom. From (2-1), we see that α is an atom of v if and only if $F_{\nu}(\alpha)=0$ (which gives us the uniqueness of the atom by Proposition 2.2) and the Julia-Carathéodory derivative $F_{\nu}^{\prime}(\alpha)$ is finite. (See [Shapiro 1993] for the definition, existence, and
properties of the Julia-Carathéodory derivative.) The value of this derivative is given by

$$
F_{v}^{\prime}(\alpha)=\frac{1}{v(\{\alpha\})}
$$

By the Stieltjes inversion formula, the density of v (relative to Lebesgue measure) is given by

$$
\frac{d v}{d x}(t)=-\frac{1}{\pi} \Im G_{v}(t)=\frac{1}{\pi} \frac{\Im F_{v}(t)}{\left|F_{v}(t)\right|^{2}}
$$

at points other than the possible atom α. (This uses the continuous extension of F_{v} to \mathbb{R}.)
Lemma 2.5. Consider a measure $v \in \mathcal{I D}(\boxplus)$, and denote by s_{v} the density of the absolutely continuous part of ν. We have $\lim _{|t| \rightarrow \infty} s_{v}(t)=0$.
Proof. Inequality (2-2) implies that

$$
\left|F_{v}(t)-F_{v}(i)\right| \geq \frac{1}{2}|t-i|>\frac{1}{2}|t|, \quad t \in \mathbb{R}
$$

so that $\left|F_{v}(t)\right|>\frac{1}{3}|t|$ for $|t|>6\left|F_{v}(i)\right|$. Then the value of density s_{v} at such t can be estimated as follows:

$$
\begin{equation*}
s_{v}(t)=\frac{1}{\pi} \frac{\mathfrak{\Im} F_{v}(t)}{\left|F_{v}(t)\right|^{2}} \leq \frac{1}{\pi} \frac{1}{\left|F_{v}(t)\right|}<\frac{1}{\pi} \frac{3}{|t|}, \quad|t|>6\left|F_{v}(i)\right| . \tag{2-4}
\end{equation*}
$$

The conclusion follows.
The preceding result shows that if $F_{v}\left(t_{v}\right)=0$, then we must have $\left|t_{v}\right| \leq 6\left|F_{v}(i)\right|$. Moreover, for any $p>1$ and any neighborhood U of the point t_{ν}, the estimate (2-4) implies that the p-th power $\left|s_{v}\right|^{p}$ is continuous and integrable over $\mathbb{R} \backslash U$. If such a zero t_{v} does not exist, then the density s_{v} is a continuous function which belongs to the space $L^{p}(\mathbb{R}, d x)$ for all $p>1$.

The next result follows from the proof of Theorem 4.6 in [Belinschi and Bercovici 2005]. Here we offer a more direct argument.
Lemma 2.6. The derivative of H_{v} is nonzero at $z=x+i u_{v}(x)$, for any $x \in A_{\nu}$.
Proof. We have

$$
H_{v}^{\prime}(z)=1-\int_{\mathbb{R}} \frac{1+t^{2}}{(z-t)^{2}} d \sigma(t), \quad z \in \mathbb{C}^{+}
$$

When $x \in A_{v}$ and $z=x+i u_{v}(x)$, a straightforward calculation and the definition of u_{v} lead to

$$
\begin{aligned}
\left|\int_{\mathbb{R}} \frac{1+t^{2}}{(z-t)^{2}} d \sigma(t)\right| & <\int_{\mathbb{R}} \frac{1+t^{2}}{|z-t|^{2}} d \sigma(t) \\
& =\int_{\mathbb{R}} \frac{1+t^{2}}{(t-x)^{2}+u_{v}(x)^{2}} d \sigma(t)=1
\end{aligned}
$$

which implies the desired conclusion.

Lemma 2.7. Consider measures $v, v_{n} \in \mathcal{I D}(\boxplus), n \in \mathbb{N}$, such that $v_{n} \rightarrow v$ weakly as $n \rightarrow \infty$, and let $I \subset \mathbb{R}$ be a compact interval such that the limiting density $d \nu / d x$ is bounded away from zero on I. Then the density $d v_{n} / d x$ converges uniformly on I to $d \nu / d x$ as $n \rightarrow \infty$.
Proof. Let $(\gamma, \sigma),\left(\gamma_{n}, \sigma_{n}\right)$ be the free generating pairs of v and v_{n}, respectively. As seen earlier, $\gamma_{n} \rightarrow \gamma$ and $\sigma_{n} \rightarrow \sigma$ weakly as $n \rightarrow \infty$. Thus, the sequence $H_{\nu_{n}}$ converges to the function H_{v} uniformly on compact subsets of \mathbb{C}^{+}.

It is clear that $\Re F_{v}(I) \subset A_{v}$. Thus, by Lemma 2.6, $H_{v}^{\prime}(z) \neq 0$ for $z \in F_{v}(I)$, and its inverse function F_{ν} has a conformal continuation to a neighborhood of I. Expressing inverse functions using the Cauchy integral formula, we conclude that, for large $n, F_{v_{n}}$ also has a conformal continuation to a neighborhood of I. Moreover, these continuations converge uniformly on I to the continuation of F_{v}. Since $0 \notin F_{\nu}(I)$, the lemma follows from the Stieltjes inversion formula.

3. Free convolution powers and subordination functions

Given two probability measures μ_{1} and μ_{2} on \mathbb{R}, there exist two unique analytic functions $\omega_{1}, \omega_{2}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$such that $F_{\mu_{1} \boxplus \mu_{2}}(z)=F_{\mu_{1}}\left(\omega_{1}(z)\right)=F_{\mu_{2}}\left(\omega_{2}(z)\right)$ and

$$
F_{\mu_{1} \boxplus \mu_{2}}(z)=\omega_{1}(z)+\omega_{2}(z)-z
$$

for all $z \in \mathbb{C}^{+}$(see [Voiculescu 1993; Biane 1998; Bercovici and Voiculescu 1998]).
Consider now a sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ in \mathcal{M} and positive integers $k_{n} \geq 2$, and denote by $\mu_{n}^{\boxplus k_{n}}$ the k_{n}-fold free convolution power of μ_{n}. Belinschi and Bercovici [2005] showed that $\mu_{n}^{\boxplus k_{n}}$ has at most one atom and otherwise $\mu_{n}^{\boxplus k_{n}}$ is absolutely continuous, and they studied the analytic subordination for these free convolution powers. Thus, let $\omega_{n}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$be the subordination function of $F_{\mu_{n} \mathrm{k}_{n}}$ with respect to $F_{\mu_{n}}$, that is,

$$
F_{\mu_{n}^{\boxplus k_{n}}}(z)=F_{\mu_{n}}\left(\omega_{n}(z)\right)
$$

Then we have

$$
\begin{equation*}
F_{\mu_{n}^{\boxplus k_{n}}}(z)=F_{\mu_{n}}\left(\omega_{n}(z)\right)=\omega_{n}(z)+\frac{1}{k_{n}-1}\left(\omega_{n}(z)-z\right), \quad z \in \mathbb{C}^{+} \tag{3-1}
\end{equation*}
$$

Equation (3-1) implies that the inverse function

$$
\omega_{n}^{-1}(z)=z+\left(k_{n}-1\right)\left(z-F_{\mu_{n}}(z)\right)
$$

for $z \in \Gamma_{\eta, M}$, where η, M are positive constants. On the other hand, the function ω_{n} can be regarded as the F-transform of a unique probability measure on \mathbb{R} by the characterization of F-transforms (see [Bercovici and Voiculescu 1993, Proposition 5.2]). Let ρ_{n} be the probability measure on \mathbb{R} such that $\omega_{n}(z)=F_{\rho_{n}}(z)$, so

$$
\begin{equation*}
\varphi_{\rho_{n}}(z)=\left(k_{n}-1\right)\left(z-F_{\mu_{n}}(z)\right) \tag{3-2}
\end{equation*}
$$

This implies that the measure ρ_{n} is \boxplus-infinitely divisible. In particular, the function ω_{n} extends continuously to $\mathbb{C}^{+} \cup \mathbb{R}$ and so, too, does the function $F_{\mu_{n} \boxplus k_{n}}$ by (3-1).

Denote by $E_{\mu}(z)=z-F_{\mu}(z)$ the self-energy of μ. Given two measures $\mu_{1}, \mu_{2} \in \mathcal{M}$, their Boolean convolution $\mu_{1} \uplus \mu_{2}$, introduced in [Speicher and Woroudi 1997], is the unique probability measure on \mathbb{R} satisfying

$$
E_{\mu_{1} \uplus \mu_{2}}(z)=E_{\mu_{1}}(z)+E_{\mu_{2}}(z), \quad z \in \mathbb{C}^{+} .
$$

Every probability measure on \mathbb{R} is \uplus-infinitely divisible. Given a measure $v \in \mathcal{M}$, the function E_{v} is a map from \mathbb{C}^{+}to $\mathbb{C}^{-} \cup \mathbb{R}$ and satisfies $E_{v}(i y) / i y \rightarrow 0$ as $y \rightarrow \infty$. (The latter limit actually holds uniformly for v in any tight family of probability measures [Bercovici and Voiculescu 1993].) Thus, E_{v} admits a unique Nevanlinna representation:

$$
E_{v}(z)=\gamma+\int_{\mathbb{R}} \frac{1+t z}{z-t} d \sigma(t), \quad z \in \mathbb{C}^{+}
$$

Conversely, every such formula defines an analytic function which is of the form E_{ν} for a unique probability measure ν. We will write $\nu=\nu_{\uplus}^{\gamma, \sigma}$ to indicate this correspondence. Note $E_{\nu_{\uplus}^{\gamma, \sigma}}(z)=\varphi_{\nu_{\boxplus}^{\gamma, \sigma}}(z)$, and that the map $\nu_{\boxplus}^{\gamma, \sigma} \rightarrow \nu_{\uplus}^{\gamma, \sigma}$ is a bijective map from the set $\mathcal{I D}(\boxplus)$ into the set \mathcal{M}. Finally, it is easy to verify that if a sequence v_{n} converges weakly to a law v in \mathcal{M}, then the $\operatorname{limit}_{\lim _{n \rightarrow \infty}} E_{v_{n}}(z)=$ $E_{v}(z)$ holds for $z \in \mathbb{C}^{+}$.

We record for further use the following result from [Bercovici and Pata 1999, Theorem 6.3].
Theorem 3.1. Fix a free generating pair (γ, σ), a sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ in \mathcal{M}, and a sequence $\left\{k_{n}\right\}_{n=1}^{\infty}$ of unbounded positive integers. Then the sequence $\mu_{n}^{\boxplus k_{n}}$ converges weakly to $\nu_{\boxplus}^{\gamma, \sigma}$ if and only if the sequence $\mu_{n}^{\uplus k_{n}}$ converges weakly to $\nu_{\uplus}^{\gamma, \sigma}$.

Boolean limit theorems are used in the proof of the following result.
Proposition 3.2. Let $\left\{\mu_{n}\right\}_{n=1}^{\infty} \subset \mathcal{M}$ and let $\left\{k_{n}\right\}_{n=1}^{\infty} \subset \mathbb{N}$ such that $\lim _{n \rightarrow \infty} k_{n}=\infty$. Suppose $\mu_{n}^{\boxplus k_{n}}$ converges weakly to a law $\nu \in \mathcal{I D}(\boxplus)$. For each n, choose $\rho_{n} \in$ $\mathcal{I D}(\boxplus)$, such that

$$
F_{\mu_{n}^{\boxplus k_{n}}}(z)=F_{\mu_{n}}\left(F_{\rho_{n}}(z)\right), \quad z \in \mathbb{C}^{+}
$$

Then $\rho_{n} \rightarrow v$ weakly.
Proof. Assume that (γ, σ) is the free generating pair of ν. By Proposition 2.1, the weak convergence $\mu_{n}^{\boxplus k_{n}} \rightarrow \nu_{\boxplus}^{\gamma, \sigma}$ implies the existence of $M>0$ such that

$$
\lim _{n \rightarrow \infty} k_{n} \varphi_{\mu_{n}}(i y)=\varphi_{\nu_{\boxplus}^{\nu, \sigma}}^{\gamma, \sigma}(i y)
$$

for all $y>M$, and $k_{n} \varphi_{\mu_{n}}(i y)=o(y)$ uniformly in n as $y \rightarrow \infty$. In particular, it follows that the sequence μ_{n} converges weakly to the unit point mass at 0 . On the other hand, Theorem 3.1 shows that $\mu_{n}^{\uplus k_{n}} \rightarrow \nu_{\uplus}^{\gamma, \sigma}$ weakly.

By (3-2), we have

$$
\varphi_{\rho_{n}}(z)=E_{\mu_{n}^{\uplus k_{n}}}(z)-E_{\mu_{n}}(z), \quad z \in \mathbb{C}^{+}
$$

Since the two sequences $\left\{\mu_{n}^{\uplus k_{n}}\right\}_{n=1}^{\infty}$ and $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ are both tight, the last formula implies that $\varphi_{\rho_{n}}(i y)=o(y)$ uniformly in n as $y \rightarrow \infty$. To determine the limit of $\left\{\rho_{n}\right\}_{n=1}^{\infty}$, we calculate

$$
\lim _{n \rightarrow \infty} \varphi_{\rho_{n}}(i y)=\lim _{n \rightarrow \infty}\left[E_{\mu_{n}^{\uplus k_{n}}}(i y)-E_{\mu_{n}}(i y)\right]=E_{\nu_{\uplus}^{\gamma, \sigma}}(i y)=\varphi_{\nu_{\boxplus}^{\gamma, \sigma}}(i y)
$$

for every $y>M$. The desired conclusion follows from Proposition 2.1.

4. The main result

In the following statement, F_{ν} is viewed as a continuous function defined on $\mathbb{C}^{+} \cup \mathbb{R}$.
Theorem 4.1. Consider a nondegenerate \boxplus-infinitely divisible distribution v on \mathbb{R}, a sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ of probability measures on \mathbb{R}, and a sequence $\left\{k_{n}\right\}_{n=1}^{\infty}$ of positive integers tending to infinity such that the measures $\mu_{n}^{\boxplus k_{n}}$ converge weakly to v.
(1) If $0 \notin F_{v}(\mathbb{R})$, then the measure v has no atom and there exists $N>0$ such that the measure $\mu_{n}^{\boxplus k_{n}}$ is Lebesgue absolutely continuous with a continuous density on \mathbb{R} for every $n \geq N$. Moreover, the density of the measure $\mu_{n}^{\boxplus k_{n}}$ converges uniformly on \mathbb{R} to the density of the measure v.
(2) If $0 \in F_{\nu}(\mathbb{R})$, and $U \subset \mathbb{R}$ is an open interval containing the singleton $F_{v}^{-1}(\{0\})$, then there exists $N>0$ such that the restriction of the measure $\mu_{n}^{\boxplus k_{n}}$ to $\mathbb{R} \backslash U$ is absolutely continuous with a continuous density on $\mathbb{R} \backslash U$ for $n \geq N$. Moreover, the density of the measure $\mu_{n}^{\boxplus k_{n}}$ converges uniformly on $\mathbb{R} \backslash U$ to the density of the measure v.
(3) In all cases, the limit

$$
\lim _{n \rightarrow \infty}\left\|\frac{d \mu_{n}^{\boxplus k_{n}}}{d x}-\frac{d \nu}{d x}\right\|_{L^{p}(\mathbb{R} \backslash U)}=0
$$

holds for $p>1$, with $U=\varnothing$ in case (1).
Remark. The condition that $0 \in F_{v}(\mathbb{R})$ is necessary for v to have an atom, but it is not sufficient (see Proposition 5.1). If $F_{\nu}\left(t_{\nu}\right)=0$, then the function G_{ν} extends continuously to all points $t \in \mathbb{R} \backslash\left\{t_{\nu}\right\}$. Theorem 1.1 follows from Theorem 4.1 and this observation.

Proof. As seen earlier, there exist measures $\rho_{n} \in \mathcal{I D}(\boxplus)$ satisfying

$$
F_{\mu_{n}^{\boxplus \boxplus k_{n}}}(z)=F_{\mu_{n}}\left(F_{\rho_{n}}(z)\right), \quad z \in \mathbb{C}^{+}
$$

To each n, denote by s_{n} and s the density of the absolutely continuous part of $\mu_{n}^{\boxplus k_{n}}$ and that of v, respectively. Relation (3-1) shows that $\left|F_{\mu_{n} \mathrm{~m}_{n}}-F_{\rho_{n}}\right|$ is small relative to $\left|F_{\rho_{n}}\right|$. Thus, it suffices to focus on the asymptotic behavior of $F_{\rho_{n}}$.

Given $\varepsilon>0$, we first prove that there exists $M>0$ such that $\left|s_{n}(t)-s(t)\right|<\varepsilon$ for $|t|>M$ and for sufficiently large n. Since the measures ρ_{n} converge weakly to v by Proposition 3.2, we have $\left|F_{\rho_{n}}(i)\right| \rightarrow\left|F_{v}(i)\right|$ as $n \rightarrow \infty$. In the sequel, we shall only consider the integers n which satisfy the following two conditions:

$$
k_{n}>13 \quad \text { and } \quad 9\left|F_{v}(i)\right|>6\left|F_{\rho_{n}}(i)\right| .
$$

Applying the estimate (2-4) to ρ_{n}, we get $\left|F_{\rho_{n}}(t)\right|>\frac{1}{3}|t|$ for all such n and for $|t|>9\left|F_{\nu}(i)\right|$. It follows from (3-1) that $\left|F_{\mu_{n}^{\boxplus k_{n}}}(t)\right|>\frac{1}{4}|t|$ for the same n and t. Combining this with another application of (2-4) to the density s, we get

$$
\begin{equation*}
\left|s_{n}(t)-s(t)\right|<\frac{7}{\pi} \frac{1}{|t|}, \quad|t|>9\left|F_{\nu}(i)\right| \tag{4-1}
\end{equation*}
$$

for these large n. Therefore, the desired cutoff constant M can be chosen as

$$
M=\max \left\{9\left|F_{\nu}(i)\right|, \frac{7}{\varepsilon \pi}\right\} .
$$

We conclude that it suffices to prove the uniform convergence of s_{n} to s on a set of the form $I \backslash U$, where $I=[-M, M]$. To this purpose, fix $I=[-M, M]$ with $M>0$, and let $\delta>0$ be arbitrary but fixed. Recall that the map

$$
t \mapsto \Re F_{v}(t)
$$

is an increasing homeomorphism of \mathbb{R}. Thus, the set

$$
J=\Re F_{v}(I)=\left\{x \in \mathbb{R}: \Re F_{v}(-M) \leq x \leq \Re F_{v}(M)\right\}
$$

is a compact interval. Set

$$
\Gamma=\left\{x \in J: u_{v}(x) \geq \delta\right\}
$$

and

$$
\Delta=\left\{x \in J: u_{\nu}(x)>\frac{\delta}{2}\right\}
$$

We have $\Gamma \subset \Delta \subset J$, where Γ is closed, and Δ is relatively open in J. We conclude that Γ is contained in the union of finitely many connected components of Δ. Taking the closure of those components, we find a finite family $J_{1}, J_{2}, \ldots, J_{K}$ of pairwise disjoint, closed intervals such that

$$
\Gamma \subset \bigcup_{1 \leq \ell \leq K} J_{\ell} \subset \bar{\Delta}
$$

We have $u_{v} \geq \delta / 2$ on the union $\bigcup_{1 \leq \ell \leq K} J_{\ell}$ and $u_{v} \leq \delta$ on the complement $J^{\prime}=$ $J \backslash\left(\bigcup_{1 \leq \ell \leq K} J_{\ell}\right)$.

Denote $I_{\ell}=\left\{t \in I: \Re F_{v}(t) \in J_{\ell}\right\}$ for each $1 \leq \ell \leq K$. Note that

$$
\mathfrak{\Im} F_{\nu}(t) \geq \delta / 2
$$

for each $t \in \bigcup_{1 \leq \ell \leq K} I_{\ell}$. Thus, the density of v is bounded away from zero on $\bigcup_{1 \leq \ell \leq K} I_{\ell}$. From Lemma 2.7, we see that the functions F_{ν} and $F_{\rho_{n}}$ both extend
analytically to a neighborhood of the set $\bigcup_{1 \leq \ell \leq K} I_{\ell}$ for sufficiently large n. These extensions are injective. Moreover, the convergence $F_{\rho_{n}} \rightarrow F_{\nu}$ holds uniformly in that neighborhood. By virtue of (3-1), we conclude that the functions $F_{\mu_{n}^{\boxplus k_{n}}}$ will have the same behavior on the set $\bigcup_{1 \leq \ell \leq K} I_{\ell}$ as $n \rightarrow \infty$. It follows that the measure $\mu_{n}^{\boxplus k_{n}}$ has no atom in the union $\bigcup_{1 \leq \ell \leq K} I_{\ell}$ for large n and $s_{n} \rightarrow s$ uniformly on this set by the Stieltjes inversion formula.

We prove next the uniform convergence on the set I^{\prime} (or on $I^{\prime} \backslash U$), where

$$
\begin{equation*}
I^{\prime}=\left\{t \in I: \Re F_{\nu}(t) \in J^{\prime}\right\}=I \backslash\left(\bigcup_{1 \leq \ell \leq K} I_{\ell}\right) \tag{4-2}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\sup _{x \in J^{\prime}} u_{\rho_{n}}(x) \leq 2 \delta \tag{4-3}
\end{equation*}
$$

for sufficiently large n. Assume, to get a contradiction, that there exist positive integers $n_{1}<n_{2}<\cdots \rightarrow \infty$ and points $x_{1}, x_{2}, \ldots \in J^{\prime}$ such that $u_{\rho_{n_{k}}}\left(x_{k}\right)>2 \delta$. By the definition of $u_{\rho_{n}}$ given in Section 2, we have

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{1+t^{2}}{\left(t-x_{k}\right)^{2}+u_{\rho_{n_{k}}}\left(x_{k}\right)^{2}} d \sigma_{n_{k}}(t)=1, \quad k \geq 1 \tag{4-4}
\end{equation*}
$$

where $\sigma_{n_{k}}$ is the free generating measure of $\rho_{n_{k}}$. By passing to a subsequence if necessary, we assume that $x_{k} \rightarrow x_{0} \in \overline{J^{\prime}}$ as $k \rightarrow \infty$. Then, denoting $\nu_{\boxplus}^{\gamma, \sigma}$ by ν, the identity (4-4) and the fact that $\sigma_{n} \rightarrow \sigma$ weakly imply

$$
1 \leq \int_{\mathbb{R}} \frac{1+t^{2}}{\left(t-x_{k}\right)^{2}+(2 \delta)^{2}} d \sigma_{n_{k}}(t) \rightarrow \int_{\mathbb{R}} \frac{1+t^{2}}{\left(t-x_{0}\right)^{2}+(2 \delta)^{2}} d \sigma(t)
$$

as $k \rightarrow \infty$. We conclude that $u_{v}\left(x_{0}\right) \geq 2 \delta$, which is in contradiction to the fact that $x_{0} \in \overline{J^{\prime}}$. Thus, the estimate (4-3) is proved.

The rest of the proof is divided into two cases according to whether $U=\varnothing$ or $U \neq \varnothing$. By translating the measure v if necessary, we may assume that $\Re F_{\nu}(0)=0$. Case (1): $0 \notin F_{\nu}(\mathbb{R})$ and $U=\varnothing$. In this case, $u_{v}(0)>0$ and thus $0 \in A_{\nu}$. Since the set A_{ν} is open, there exists a small number $a>0$ such that the interval [$-4 a, 4 a$] is contained in A_{ν}. By considering a smaller δ if necessary, we may assume further that

$$
\begin{equation*}
[-4 a, 4 a] \subset \bigcup_{1 \leq \ell \leq K} J_{\ell} \tag{4-5}
\end{equation*}
$$

Since the map $t \mapsto \Re F_{\nu}(t)$ is an increasing homeomorphism of \mathbb{R}, the uniform convergence of $F_{\rho_{n}} \rightarrow F_{\nu}$ on $\bigcup_{1 \leq \ell \leq K} I_{\ell}$ implies that there exists some integer $N>0$ such that

$$
[-2 a, 2 a] \subset\left\{\Re F_{\rho_{n}}(t): t \in \bigcup_{1 \leq \ell \leq K} I_{\ell}\right\}, \quad n \geq N
$$

Since the map $t \mapsto \mathfrak{R} F_{\rho_{n}}(t)$ is also a homeomorphism of the same nature, we have

$$
\inf _{t \in I^{\prime}}\left|\Re F_{\rho_{n}}(t)\right| \geq 2 a, \quad n \geq N
$$

by recalling the definition (4-2) of the complement I^{\prime}. Using (3-1) and enlarging N if necessary, we conclude that

$$
\begin{equation*}
\inf _{t \in I^{\prime}}\left|\Re F_{\mu_{n}^{\boxplus k_{n}}}(t)\right| \geq a, \quad n \geq N \tag{4-6}
\end{equation*}
$$

Further enlarging N, the inequality (4-3) and the relation (3-1) imply that

$$
\begin{equation*}
\mathfrak{J} F_{\mu_{n}^{\boxplus k_{n}}}(t) \leq 3 \delta, \quad t \in I^{\prime}, n \geq N \tag{4-7}
\end{equation*}
$$

From (4-6) and (4-7), we see that

$$
0 \leq s_{n}(t) \leq \frac{3 \delta}{a^{2} \pi}
$$

for $t \in I^{\prime}$ and $n \geq N$. On the other hand, the relation (4-5) and the fact that $u_{\nu} \leq \delta$ on J^{\prime} yield

$$
0 \leq s(t) \leq \frac{\delta}{16 a^{2} \pi}
$$

for $t \in I^{\prime}$. As the parameter δ can be arbitrarily small, we have proved the uniform convergence of $s_{n} \rightarrow s$ on I^{\prime}. This finishes the proof of Theorem 4.1(1).
Case (2): $0 \in F_{\nu}(\mathbb{R})$. In this case, $u_{\nu}(0)=0$ and $F_{\nu}(0)=0=H_{\nu}(0)$ by our normalization. Let a_{n} be the unique real number such that $\mathfrak{R} F_{\rho_{n}}\left(a_{n}\right)=0$ (and hence $\left.F_{\rho_{n}}\left(a_{n}\right)=i u_{\rho_{n}}(0)\right)$. We first show that a_{n} is small for large n. To this end, we write $U=(-2 b, 2 b)$ where $b>0$ and set $c=b / 5$. Observe that $H_{v}(i c) \in \mathbb{C}^{+}$, and that the Lipschitz property of H_{v} yields

$$
\left|H_{v}(i c)\right|=\left|H_{v}(i c)-H_{v}(0)\right| \leq 2 c
$$

Since $\lim _{n \rightarrow \infty} H_{\rho_{n}}(i c)=H_{v}(i c)$, there exists an integer $N>0$ such that $H_{\rho_{n}}(i c) \in$ \mathbb{C}^{+}for all $n \geq N$. Consequently, we have $u_{\rho_{n}}(0)<c$ for such n; for if $u_{\rho_{n}}(0) \geq c>0$, we will get

$$
\begin{aligned}
1=\int_{\mathbb{R}} \frac{1+t^{2}}{t^{2}+u_{\rho_{n}}(0)^{2}} d \sigma_{n}(t) & \leq \int_{\mathbb{R}} \frac{1+t^{2}}{t^{2}+c^{2}} d \sigma_{n}(t) \\
& =1-\frac{1}{c} \Im H_{\rho_{n}}(i c)<1
\end{aligned}
$$

a contradiction. Note further that

$$
\left|H_{\rho_{n}}(i c)-a_{n}\right|=\left|H_{\rho_{n}}(i c)-H_{\rho_{n}}\left(i u_{\rho_{n}}(0)\right)\right| \leq 2\left(c-u_{\rho_{n}}(0)\right) \leq 2 c
$$

for all $n \geq N$. (We have used the inversion relationship $a_{n}=H_{\rho_{n}}\left(F_{\rho_{n}}\left(a_{n}\right)\right)$ here.) Therefore, by enlarging N if necessary, we conclude that $\left|a_{n}\right|<5 c=b$ for $n \geq N$.

Now, (2-2) shows that for any $t \in I^{\prime} \backslash U$ and $n \geq N$, we have

$$
\left|F_{\rho_{n}}(t)-F_{\rho_{n}}\left(a_{n}\right)\right| \geq \frac{1}{2}\left|t-a_{n}\right|>\frac{b}{2} .
$$

This implies further that

$$
\left|F_{\rho_{n}}(t)\right|>\frac{b}{2}-\left|F_{\rho_{n}}\left(a_{n}\right)\right|=\frac{b}{2}-\left|u_{\rho_{n}}(0)\right|>\frac{b}{4}, \quad t \in I^{\prime} \backslash U, n \geq N .
$$

In other words, for such values of t and $n,\left|F_{\rho_{n}}(t)\right|$ is always bounded away from zero. Then an argument similar to the proof of Case (1) yields the absolute continuity of the free convolution $\mu_{n}^{\boxplus k_{n}}$ and the uniform convergence $s_{n} \rightarrow s$ on $I^{\prime} \backslash U$, finishing the proof of Theorem 4.1(2).

Finally, the L^{p}-convergence result in Theorem 4.1(3) follows from the estimate (4-1) and the dominated convergence theorem.

Remark (Local analyticity and approximation). An important feature of superconvergence are the analyticity properties of the distributions in the limiting process. Indeed, under the weak convergence assumption of Theorem 4.1, if I is a finite interval on which the limit density $d \nu / d x$ is bounded away from zero (and hence it admits an analytic continuation to a neighborhood of I), then the restriction of the free convolution $\mu_{n}^{\boxplus k_{n}}$ on I becomes absolutely continuous in finite time and its density continues analytically to a neighborhood of I. Moreover, these extensions can be approximated uniformly by the analytic continuation of $d \nu / d x$ on I, thanks to Lemma 2.7 and the identity (3-1).

5. Applications

In this section, we apply our main result to some of the most important limit theorems in free probability. We begin by examining the geometric condition: $0 \in F_{\nu}(\mathbb{R})$. Note that the singular integral in the following result takes values in $(0, \infty]$.
Proposition 5.1. Let $v=v_{\boxplus}^{\gamma, \sigma}$ be a nondegenerate law in $\mathcal{I D}(\boxplus)$. We have:
(1) $0 \in F_{v}(\mathbb{R})$ if and only if

$$
\begin{equation*}
L=\sup _{\varepsilon>0} \frac{-\Im \varphi_{v}(i \varepsilon)}{\varepsilon}=\int_{\mathbb{R}} \frac{1+t^{2}}{t^{2}} d \sigma(t) \leq 1 \tag{5-1}
\end{equation*}
$$

In this case, the value of the unique zero t_{v} of F_{v} is given by

$$
t_{v}=\gamma-\int_{\mathbb{R}} \frac{1}{t} d \sigma(t)
$$

(2) $v\left(\left\{t_{\nu}\right\}\right)>0$ if and only if $L<1$, and we have $v\left(\left\{t_{\nu}\right\}\right)=1-L$ in this case.

Proof. The identity

$$
\sup _{\varepsilon>0}\left(-\Im \varphi_{\nu}(i \varepsilon)\right) / \varepsilon=\int_{\mathbb{R}} \frac{1+t^{2}}{t^{2}} d \sigma(t)
$$

follows from the free Lévy-Khintchine formula

$$
-\Im \varphi_{\nu}(i \varepsilon)=\varepsilon \int_{\mathbb{R}} \frac{1+t^{2}}{\varepsilon^{2}+t^{2}} d \sigma(t)
$$

and the monotone convergence theorem, and we see that the supremum here is in fact a genuine limit:

$$
\sup _{\varepsilon>0}\left(-\Im \varphi_{\nu}(i \varepsilon)\right) / \varepsilon=\lim _{\varepsilon \rightarrow 0^{+}}\left(-\Im \varphi_{\nu}(i \varepsilon)\right) / \varepsilon .
$$

Next, recall from [Belinschi and Bercovici 2005, Proposition 4.7] that $0 \in F_{v}(\mathbb{R})$ if and only if the limit

$$
t_{v}=H_{v}(0)=\lim _{\varepsilon \rightarrow 0^{+}} H_{v}(i \varepsilon)
$$

exists, $t_{v} \in \mathbb{R}$, and the Julia-Carathéodory derivative $H_{v}^{\prime}(0) \geq 0$. Note that if the limit t_{v} exists and is real, then the derivative

$$
\begin{equation*}
H_{v}^{\prime}(0)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{\Im H_{v}(i \varepsilon)}{\varepsilon} \tag{5-2}
\end{equation*}
$$

always exists and belongs to the interval $[-\infty, 1)$. Moreover, if $0 \in F_{\nu}(\mathbb{R})$ and $H_{v}^{\prime}(0)>0$ then we have the Julia-Carathéodory derivative $F_{v}^{\prime}\left(t_{v}\right)=1 / H_{v}^{\prime}(0)$.

Now, if $0 \in F_{\nu}(\mathbb{R})$, then we know the limit $t_{v} \in \mathbb{R}$. Hence, (5-2) implies $H_{v}^{\prime}(0)=1-L$. Since $H_{v}^{\prime}(0) \geq 0$ in this case, we conclude that $1 \geq L$. On the other hand, since $F_{v}(\mathbb{R})=\partial \Omega_{v}$, the inversion formula shows that

$$
F_{v}\left(t_{v}\right)=F_{v}\left(H_{v}(0)\right)=0
$$

Conversely, if the singular integral L converges and $1 \geq L$, then we have $\Im H_{\nu}(i \varepsilon) \rightarrow 0 \cdot(1-L)=0$ as $\varepsilon \rightarrow 0^{+}$. On the other hand, the estimate

$$
\frac{|t|}{\varepsilon^{2}+t^{2}} \leq \frac{1+t^{2}}{\varepsilon^{2}+t^{2}} \leq \frac{1+t^{2}}{t^{2}} \in L^{1}(\sigma), \quad t \in \mathbb{R}, \varepsilon>0
$$

and the dominated convergence theorem imply that the function $t \mapsto 1 / t$ belongs to $L^{1}(\sigma)$ and

$$
\mathfrak{R} H_{\nu}(i \varepsilon)=\gamma+\left(\varepsilon^{2}-1\right) \int_{\mathbb{R}} \frac{t}{\varepsilon^{2}+t^{2}} d \sigma(t) \rightarrow \gamma-\int_{\mathbb{R}} \frac{1}{t} d \sigma(t)
$$

as $\varepsilon \rightarrow 0^{+}$. It follows that the vertical limit t_{v} is equal to

$$
\gamma-\int_{\mathbb{R}} \frac{1}{t} d \sigma(t) \in \mathbb{R}
$$

As seen earlier, this fact and the formula (5-2) imply that $H_{v}^{\prime}(0)=1-L$. Therefore, we have $H_{\nu}^{\prime}(0) \geq 0$, and the proof of (1) is finished.

The statement (2) follows from the fact that the derivative $F_{v}^{\prime}\left(t_{v}\right)=1 / v\left(\left\{t_{v}\right\}\right)$.

We remark that the results in [Belinschi and Bercovici 2005] were proved using Denjoy-Wolff analysis for boundary fixed points of analytic self-maps on \mathbb{C}^{+}. A different approach to the same results has been used in [Huang and Wang 2015], which yields a more general description for the points on the boundary set $\partial \Omega_{\nu}$.

Stable approximation. Recall that two measures $\mu, \nu \in \mathcal{M}$ are said to have the same type (and we write $\mu \sim \nu$) if there exist constants $a>0$ and $b \in \mathbb{R}$ such that $\mu(E)=v(a E+b)$ for all Borel sets $E \subset \mathbb{R}$. The relation \sim is an equivalence relationship among all probability laws, and hence the set \mathcal{M} is partitioned into a union of distributions with inequivalent types. A nondegenerate distribution $v \in \mathcal{M}$ is said to be \boxplus-stable if $v \sim \nu_{1} \boxplus \nu_{2}$ whenever $\nu_{1} \sim v \sim \nu_{2}$. Clearly, within one type either all distributions are stable or else none of them is stable.

Each \boxplus-stable law v is associated with a unique stability index $\alpha \in(0,2]$, so that if X and Y are free random variables drawn from the same law v and $a, b>0$, then the distribution of the sum $a X+b Y$ is a translate of the distribution of the scaled variable $\left(a^{\alpha}+b^{\alpha}\right)^{1 / \alpha} X$. Stable laws of the same type share the same index.

Freely stable laws are \boxplus-infinitely divisible and absolutely continuous, and they can be classified using the stability index α. Following [Bercovici and Voiculescu 1993], every \boxplus-stable law has the same type as a unique distribution whose Voiculescu transform falls into the following list:
(1) $\varphi(z)=1 / z$ for $\alpha=2$.
(2) $\varphi(z)=b z^{1-\alpha}$ for $1<\alpha<2$, where $|b|=1$ and $\arg b \in[(\alpha-2) \pi, 0]$.
(3) $\varphi(z)=b z^{1-\alpha}$ for $0<\alpha<1$, where $|b|=1$ and $\arg b \in[\pi,(1+\alpha) \pi]$.
(4) $\varphi(z)=-2 b i+[2(2 b-1) / \pi] \log z$ for $\alpha=1$, where $b \in[0,1]$.

Here, the complex power and logarithmic functions are given by their principal value in \mathbb{C}^{+}. One can also find a formula for the density of the \boxplus-stable laws in [Bercovici and Pata 1999]. Above all, we mention that the case $\alpha=2$ corresponds to the stable type of the standard semicircular law.

The interest in the class of freely stable laws arises from the fact that a measure v is \boxplus-stable if and only if there exist a sequence $\left\{X_{i}\right\}_{i=1}^{\infty}$ of identically distributed free random variables and constants $a_{n}>0$ and $b_{n} \in \mathbb{R}$ such that the distribution of the normalized sum $S_{n}=\sum_{i=1}^{n}\left(X_{i}-b_{n}\right) / a_{n}$ converges weakly to the law v. In this case, the common distribution of the sequence X_{i} is said to belong to the free domain of attraction of the stable law v. Thus, up to a change of scale and location, the distributional behavior of a large free convolution $\mu^{\boxplus n}$ for a measure μ in a free domain of attraction can be estimated using the corresponding freely stable law.

Free domains of attraction for \boxplus-stable laws are determined in [Bercovici and Pata 1999], showing that these domains of attraction coincide with their classical counterparts relative to the classical convolution. In the semicircular case, the free
domain of attraction consists of all nondegenerate measures $\mu \in \mathcal{M}$ such that the truncated variance function

$$
H_{\mu}(x)=\int_{-x}^{x} t^{2} d \mu(t), \quad x>0
$$

satisfies $\lim _{x \rightarrow \infty} H_{\mu}(c x) / H_{\mu}(x)=1$ for any given $c>0$. This is in parallel to the classical theory of central limit theorems, that is, convergence to a Gaussian law.

With that being said, the following result shows that the quality of freely stable approximation is in fact much better than its classical counterpart. This result is stated in the general framework of triangular arrays with identical rows.

Proposition 5.2. Let v be a \boxplus-stable law for which the weak approximation $\mu_{n}^{\boxplus k_{n}} \rightarrow \nu$ holds. Then the measure $\mu_{n}^{\boxplus k_{n}}$ superconverges to the law v on \mathbb{R}.

Proof. This is a direct consequence of Theorem 4.1 and the criterion (5-1). Indeed, one has $L=\infty$ in all cases of the index α, which implies that $0 \notin F_{\nu}(\mathbb{R})$.

In particular, the preceding result generalizes the superconvergence for measures with finite variance in [Wang 2010] to the entire free domain of attraction of the semicircular law.

Notice that stable approximation to the free sum S_{n} could fail for any choice of constants a_{n} and b_{n} if the common distribution μ of the summands X_{i} does not belong to any free domain of attraction, but even in this case one may still have weak convergence along some subsequence $S_{k_{n}}$. The limit v in this situation is necessarily \boxplus-infinitely divisible, and hence Theorem 4.1 still applies to this case. The law μ in this case is said to belong to the free domain of partial attraction of the law v. In fact, a probability distribution is \boxplus-infinitely divisible if and only if its free domain of partial attraction is nonempty. It is also well known that the domain of partial attraction of a stable law is strictly larger than its domain of attraction in both free and classical theories. We refer to [Bercovici and Pata 1999] for the details of these results.

Poisson approximation. Here we study an example of freely infinitely divisible approximation relative to Poisson type limit theorems. Let μ be an arbitrary probability measure on $\mathbb{R}, \mu \neq \delta_{0}$, and let $\lambda>0$ be a given parameter. Recall that the compound free Poisson distribution $\nu_{\lambda, \mu}$ with rate λ and jump distribution μ is the weak limit of

$$
\left[(1-\lambda / n) \delta_{0}+(\lambda / n) \mu\right]^{\boxplus n}
$$

as $n \rightarrow \infty$ [Voiculescu et al. 1992]. The law $\nu_{\lambda, \mu}$ is \boxplus-infinitely divisible, and its free generating pair is given by

$$
\gamma=\lambda \int_{\mathbb{R}} \frac{t}{1+t^{2}} d \mu(t), \quad d \sigma(t)=\lambda \frac{t^{2}}{1+t^{2}} d \mu(t)
$$

Thus, we see immediately that $L=\lambda$ and $t_{\nu_{\lambda, \mu}}=0$ in this case, which leads further to the following result:

Proposition 5.3. The origin is an atom of mass $1-\lambda$ for the law $\nu_{\lambda, \mu}$ if and only if the parameter λ is less than 1 . If $\lambda>1$, then the superconvergence phenomenon in any weak approximation $\mu_{n}^{\boxplus k_{n}} \rightarrow \nu_{\lambda, \mu}$ holds globally on \mathbb{R}.

Note the case $\mu=\delta_{1}$ corresponds to the approximation by Marčenko-Pastur law:

$$
d \nu_{\lambda, \delta_{1}}(t)= \begin{cases}\frac{1}{2 \pi t} \sqrt{4 \lambda-(t-1-\lambda)^{2}} \chi(t) d t & \text { if } \lambda \geq 1 \\ (1-\lambda) \delta_{0}+\frac{1}{2 \pi t} \sqrt{4 \lambda-(t-1-\lambda)^{2}} \chi(t) d t & \text { if } 0<\lambda<1\end{cases}
$$

where χ stands for the indicator function of the open interval $\left((1-\sqrt{\lambda})^{2},(1+\sqrt{\lambda})^{2}\right)$. Clearly, the measure $\nu_{1, \delta_{1}}$ has no atom and yet $F_{\nu_{1, \delta_{1}}}(0)=0$.

Acknowledgements

Bercovici was supported in part by a grant of the National Science Foundation. Wang was supported by the NSERC Canada Discovery Grant RGPIN-2016-03796. Zhong acknowledges support provided by a Leverhulme Trust Research Project Grant when he was a postdoctoral fellow at Lancaster University where part of this work was done. He was also supported in part by NSFC (no. 11501423, no. 71301164), China Postdoctoral Science Foundation (no. 2015M570662) and Fundamental Research Funds for the Central Universities (no. 201410500069). The authors would like to thank an anonymous referee for providing comments and suggestions which improve the quality of this paper.

References

[Anshelevich et al. 2014] M. Anshelevich, J.-C. Wang, and P. Zhong, "Local limit theorems for multiplicative free convolutions", J. Funct. Anal. 267:9 (2014), 3469-3499. MR Zbl
[Barndorff-Nielsen et al. 2006] O. E. Barndorff-Nielsen, U. Franz, R. Gohm, B. Kümmerer, and S. Thorbjørnsen, Quantum independent increment processes, II, edited by M. Schüermann and U. Franz, Lecture Notes in Mathematics 1866, Springer, Berlin, 2006. MR Zbl
[Belinschi and Bercovici 2005] S. T. Belinschi and H. Bercovici, "Partially defined semigroups relative to multiplicative free convolution", Int. Math. Res. Not. 2005:2 (2005), 65-101. MR Zbl
[Bercovici and Pata 1999] H. Bercovici and V. Pata, "Stable laws and domains of attraction in free probability theory", Ann. of Math. (2) 149:3 (1999), 1023-1060. MR Zbl
[Bercovici and Voiculescu 1993] H. Bercovici and D. Voiculescu, "Free convolution of measures with unbounded support", Indiana Univ. Math. J. 42:3 (1993), 733-773. MR Zbl
[Bercovici and Voiculescu 1995] H. Bercovici and D. Voiculescu, "Superconvergence to the central limit and failure of the Cramér theorem for free random variables", Probab. Theory Related Fields 103:2 (1995), 215-222. MR Zbl
[Bercovici and Voiculescu 1998] H. Bercovici and D. Voiculescu, "Regularity questions for free convolution", pp. 37-47 in Nonselfadjoint operator algebras, operator theory, and related topics, edited by H. Bercovici and C. Foias, Oper. Theory Adv. Appl. 104, Birkhäuser, Basel, 1998. MR Zbl
[Biane 1997] P. Biane, "On the free convolution with a semi-circular distribution", Indiana Univ. Math. J. 46:3 (1997), 705-718. MR Zbl
[Biane 1998] P. Biane, "Processes with free increments", Math. Z. 227:1 (1998), 143-174. MR Zbl
[Chistyakov and Götze 2013] G. Chistyakov and F. Götze, "Free infinitely divisible approximations of n-fold free convolutions", pp. 225-237 in Prokhorov and contemporary probability theory, edited by A. N. Shiryaev et al., Springer Proc. Math. Stat. 33, Springer, Heidelberg, 2013. MR Zbl
[Huang 2015] H.-W. Huang, "Supports of measures in a free additive convolution semigroup", Int. Math. Res. Not. 2015:12 (2015), 4269-4292. MR Zbl
[Huang and Wang 2015] H.-W. Huang and J.-C. Wang, "Regularization by free Lévy process", preprint, 2015.
[Kargin 2007] V. Kargin, "On superconvergence of sums of free random variables", Ann. Probab. 35:5 (2007), 1931-1949. MR Zbl
[Shapiro 1993] J. H. Shapiro, Composition operators and classical function theory, Springer, New York, 1993. MR Zbl
[Speicher and Woroudi 1997] R. Speicher and R. Woroudi, "Boolean convolution", pp. 267-279 in Free probability theory (Waterloo, ON, 1995), edited by D. Voiculescu, Fields Inst. Commun. 12, American Mathematical Society, Providence, RI, 1997. MR Zbl
[Voiculescu 1993] D. Voiculescu, "The analogues of entropy and of Fisher's information measure in free probability theory, I", Comm. Math. Phys. 155:1 (1993), 71-92. MR Zbl
[Voiculescu et al. 1992] D. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, CRM Monograph Series 1, American Mathematical Society, Providence, RI, 1992. MR Zbl
[Wang 2010] J.-C. Wang, "Local limit theorems in free probability theory", Ann. Probab. 38:4 (2010), 1492-1506. MR Zbl

Received October 9, 2015. Revised July 1, 2017.

Hari Bercovici

Department of Mathematics
Rawles Hall
Indiana University
Bloomington, Indiana 47405
United States
bercovic@indiana.edu

Jiun-Chau Wang
Department of Mathematics and Statistics
University of Saskatchewan
Saskatoon, S7N 5E6
CANADA
jcwang@math.usask.ca

Ping Zhong
Department of Pure Mathematics
University of Waterloo
Waterloo Ontario N2L 3G1
Canada
and
School of Mathematics and Statistics
Wuhan University
Hubei
China 430072
ping.zhong@uwaterloo.ca

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm
EDITORS
Don Blasius (Managing Editor)
Department of Mathematics University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Jie Qing

Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135 chari@math.ucr.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Daryl Cooper
Department of Mathematics
University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu

Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu

Paul Yang

Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA UNIV. OF CALIFORNIA, BERKELEY UNIV. OF CALIFORNIA, DAVIS UNIV. OF CALIFORNIA, LOS ANGELES UNIV. OF CALIFORNIA, RIVERSIDE UNIV. OF CALIFORNIA, SAN DIEGO UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2018 is US $\$ 475 /$ year for the electronic version, and $\$ 640 /$ year for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

- mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 292 No. 2 February 2018
Locally helical surfaces have bounded twisting 257
David Bachman, Ryan Derby-Talbot and Eric Sedgwick
Superconvergence to freely infinitely divisible distributions 273
Hari Bercovici, Jiun-Chau Wang and Ping Zhong
Norm constants in cases of the Caffarelli-Kohn-Nirenberg inequality 293
Akshay L. Chanillo, Sagun Chanillo and Ali MaAlaoui
Noncommutative geometry of homogenized quantum $\mathfrak{s l}(2, \mathbb{C})$ 305
Alex Chirvasitu, S. Paul Smith and Liang Ze Wong
A generalization of "Existence and behavior of the radial limits of a 355
bounded capillary surface at a corner"Julie N. Crenshaw, Alexandra K. Echart and Kirk E.LANCASTER
Norms in central simple algebras 373
Daniel Goldstein and Murray Schacher
Global existence and blowup of smooth solutions of 3-D potential 389
equations with time-dependent damping
Fei Hou, Ingo Witt and Huicheng Yin
Formal confluence of quantum differential operators 427
Bernard Le Stum and Adolfo Quirós
Rigidity of Hawking mass for surfaces in three manifolds 479
Jiacheng Sun
Addendum to "A strong multiplicity one theorem for SL_{2} " 505
Qing Zhang

0030-8730(201802)292:2;1-X

