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SUPERCONVERGENCE TO
FREELY INFINITELY DIVISIBLE DISTRIBUTIONS

HARI BERCOVICI, JIUN-CHAU WANG AND PING ZHONG

We prove superconvergence results for all freely infinitely divisible distribu-
tions. Given a nondegenerate freely infinitely divisible distribution ν, let µn

be a sequence of probability measures and let kn be a sequence of integers
tending to infinity such that µ�kn

n converges weakly to ν. We show that
the density dµ�kn

n /dx converges uniformly, as well as in all L p-norms for
p > 1, to the density of ν except possibly in the neighborhood of one point.
Applications include the global superconvergence to freely stable laws and
that to free compound Poisson laws over the whole real line.

1. Introduction

Consider a sequence {X i }
∞

i=1 of independent identically distributed random variables
with zero mean and unit variance. The classical central limit theorem states that
variables

Sn =
X1+X2+· · ·+Xn

√
n

converge in distribution to the standard normal law. Note that the variables Sn

might always be discrete, even though their limit is absolutely continuous. This
means that the convergence of Sn to a normal law must be expressed in terms of
distribution functions, rather than densities.

Assume now that, instead of being independent, the variables {X i }
∞

i=1 are freely
independent in the sense of [Voiculescu et al. 1992]. We still assume them identically
distributed with zero mean and unit variance. Under the additional condition that
the variables are bounded, it was shown in [Bercovici and Voiculescu 1995] that
the distribution of Sn is absolutely continuous for sufficiently large n, and these
densities converge uniformly, along with all of their derivatives, to the density of
the semicircle law

1
2π

√
4− t2

on any interval [a, b] ⊂ (−2, 2). This phenomenon was called superconvergence in
that paper. In [Wang 2010], the assumption that X i be bounded was removed. Even
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when the variables X i are not identically distributed, but are uniformly bounded,
the support of Sn was shown by Kargin [2007] to converge to the interval [−2, 2]
as n→∞. See also [Anshelevich et al. 2014] for multiplicative superconvergence
results.

The purpose of this paper is to demonstrate that the phenomenon of superconver-
gence is not limited to convergence to the semicircle law. Consider a nondegenerate
probability measure ν on R, which is infinitely divisible in the free sense (that is,
�-infinitely divisible). It is known that its Cauchy transform,

(1-1) Gν(z)=
∫
+∞

−∞

1
z− t

dν(t),

defined for =z > 0, extends continuously to all points z ∈ R with at most one
exception tν . The measure ν is absolutely continuous on R \ {tν} and its density
is locally analytic when strictly positive. To formulate our result, assume that for
every positive integer n, we are given kn freely independent, identically distributed
random variables Xn1, Xn2, . . . , Xnkn such that limn→∞ kn =∞ and the sums

Sn = Xn1+ Xn2+ · · ·+ Xnkn

converge in distribution to the measure ν. (Necessary and sufficient conditions for
such a convergence to take place are found in [Bercovici and Pata 1999].) Our main
result, Theorem 4.1, implies the following statement. For convenience, we denote
by Dν the singleton {tν} if this point exists. Otherwise, Dν =∅.

Theorem 1.1. Given any open set U ⊃ Dν , the distribution νn of Sn is absolutely
continuous on R \U for sufficiently large n, and the density of νn converges to the
density of ν uniformly and in L p-norms for p > 1 on R \U.

Note that U can be taken to be empty if Dν =∅.
In Proposition 5.1, we provide the necessary and sufficient conditions for the

existence of the singularity tν , as well as a formula to compute it when this point
exists. These conditions and the formula are further used to investigate the quality
of convergence to freely stable and free compound Poisson densities.

To prove this result, we first approximate νn by a closely related �-infinitely
divisible measure ρn and we use the fact that Gρn is a conformal map. Related
considerations appear in the work of Chistyakov and Götze [2013].

The remainder of this paper is organized as follows. In Section 2, we review some
relevant preliminaries on free convolution and freely infinitely divisible distributions.
Section 3 is devoted to describing the subordination function appearing in free
convolution powers. Section 4 contains the proof of our main result, and some
examples and applications are given in Section 5.
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2. Free convolution and freely infinitely divisible distributions

Let C+={z ∈C : =z> 0} be the complex upper half-plane, and let ν be a probability
measure on R. Recall that the Cauchy transform Gν(z) of ν is defined by (1-1) for
z ∈ C+. The measure ν can be recovered as the weak limit of the measures

dνy(x)=−
1
π
=Gν(x + iy) dx, x ∈ R, y > 0,

as y→ 0, and the atoms of ν can be calculated as follows:

(2-1) lim
y→0

iyGν(α+ iy)= ν({α}), α ∈ R.

The reciprocal Fν = 1/Gν is an analytic self-map of C+ and plays a role in the
calculation of free convolution. More precisely, for any η > 0 there exists a positive
constant M = M(η, ν) such that the function Fν has an analytic right inverse F−1

ν

(relative to the composition) defined in the truncated cone

0η,M = {x + iy : y > M and |x |< ηy}.

The Voiculescu transform ϕν of ν is then defined as ϕν(z) = F−1
ν (z)− z, and for

any probability law µ on R, we have

ϕµ�ν(z)= ϕµ(z)+ϕν(z)

for all z in a region of the form 0η,M where all three transforms are defined (see
[Bercovici and Voiculescu 1993] for the proof). In this sense, the Voiculescu
transform linearizes the free convolution �.

The set of all finite Borel measures on R is equipped with the topology of weak
convergence from duality with continuous bounded functions. Denoting by M the
class of all Borel probability measures on R, we can translate weak convergence
of measures in M into convergence properties of the corresponding Voiculescu
transforms. We recall the following result from [Bercovici and Pata 1999].

Proposition 2.1. Let µ,µ1, µ2, . . . be measures in M. Then the sequence µn

converges weakly to the law µ if and only if there exist η,M > 0 such that the
functions ϕµn are defined on 0η,M for every n, limn→∞ ϕµn (iy)= ϕµ(iy) for every
y > M, and ϕµn (iy)= o(y) uniformly in n as y→∞.

A measure ν ∈M is said to be �-infinitely divisible if for every positive integer n,
there exists a measure νn ∈M such that

ν = νn � νn � · · ·� νn︸ ︷︷ ︸
n times

.

We denote by ID(�) the set of all �-infinitely divisible measures in M. It was
shown in [Bercovici and Voiculescu 1993] that ν ∈ ID(�) if and only if the function
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ϕν extends analytically to a map from C+ into C− ∪R, in which case there exist a
real constant γ and a finite Borel measure σ on R such that ϕν has the following
free Lévy–Khintchine representation:

ϕν(z)= γ +
∫

R

1+ t z
z− t

dσ(t).

The pair (γ, σ ) is uniquely determined. Conversely, given such a pair (γ, σ ), there
exists a unique probability law ν = ν

γ,σ

� ∈ ID(�) satisfying the above integral
formula. We shall call the pair (γ, σ ) the free generating pair for νγ,σ� . Weak
convergence of �-infinitely divisible laws can be characterized in terms of their free
generating pairs; namely, νγn,σn

� → ν
γ,σ

� weakly if and only if γn→ γ and σn→ σ

weakly [Barndorff-Nielsen et al. 2006, Theorem 5.13].
We review some useful results related to the F-transforms of freely infinitely

divisible distributions, which were proved in [Belinschi and Bercovici 2005; Huang
2015], and are closely related to Biane’s work [1997]. Given ν = νγ,σ� in ID(�),
the function Fν is a conformal map, and its inverse is the function

Hν(z)= z+ϕν(z)= z+ γ +
∫

R

1+ t z
z− t

dσ(t), z ∈ C+.

This means that Hν(Fν(z)) = z for all z ∈ C+. Note that Hν : C+ → C is an
analytic function satisfying =Hν(z)≤ =z for all z ∈ C+. The following result is a
consequence of [Belinschi and Bercovici 2005, Theorem 4.6].

Proposition 2.2. The function Fν has a one-to-one continuous extension to C+∪R,
and it satisfies

(2-2) |Fν(z1)− Fν(z2)| ≥
1
2 |z1− z2|, z1, z2 ∈ C+ ∪R.

If α ∈ R is a point such that =Fν(α) > 0, then Fν can be continued analytically to a
neighborhood of α.

The inequality (2-2) implies that

|Hν(z1)− Hν(z2)| ≤ 2|z1− z2|, z1, z2 ∈�ν,

where �ν = Fν(C+). The function Hν has a one-to-one continuous extension to
the closure �ν . This extension is still denoted Hν . Thus, we have the following
inversion relationships:

Hν(Fν(z))= z, z ∈ C+ ∪R, and Fν(Hν(z))= z, z ∈�ν .

We describe now the boundary set ∂�ν . Given x ∈ R and y > 0, observe

=Hν(x + iy)= y
(

1−
∫

R

1+ t2

(t − x)2+ y2 dσ(t)
)
.
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It follows that
=Hν(x + iy)= 0

if and only if

(2-3)
∫

R

1+ t2

(t − x)2+ y2 dσ(t)= 1.

On the other hand, note that for any x ∈ R, the positive function

y 7→
∫

R

1+ t2

(t − x)2+ y2 dσ(t)

is continuous and strictly decreasing in y, provided that σ 6= 0; the case σ = 0
corresponds to a measure ν which is a point mass. Thus, for any x ∈ R, there exists
at most one value y > 0 satisfying (2-3). It is natural to introduce two sets

Aν = {x ∈ R : g(x) > 1}

and
Bν = R \ Aν = {x ∈ R : g(x)≤ 1},

where the function

g(x)=
∫

R

1+ t2

(t − x)2
dσ(t)= sup

y>0

∫
R

1+ t2

(t − x)2+ y2 dσ(t), x ∈ R,

is a lower semicontinuous function of x , so that Aν is an open set. For x ∈ Aν ,
define uν(x) to be the unique y in (0,∞) satisfying (2-3); for x ∈ Bν , set uν(x)= 0.

Proposition 2.3 [Huang 2015]. The function Fν maps R bicontinuously to the
graph γν of the function uν , that is,

Fν(R)= γν = {x + iuν(x) : x ∈ R}.

In particular, the function uν is continuous on R.

We note for further reference that the set Aν is merely the collection of all x ∈ R

such that uν(x) > 0. Moreover, for any t ∈ R, we have =Fν(t) > 0 if and only
if <Fν(t) ∈ Aν . The graph γν is precisely the boundary set ∂�ν , and one has
�ν = {z ∈ C+ : Hν(z) ∈ C+}. The following result now follows easily from these
facts; see also [Biane 1997; Huang 2015].

Proposition 2.4. The function t 7→ <Fν(t) is a strictly increasing homeomorphism
from R to R.

As shown in [Bercovici and Voiculescu 1993], the measure ν has at most one
atom. From (2-1), we see that α is an atom of ν if and only if Fν(α)= 0 (which
gives us the uniqueness of the atom by Proposition 2.2) and the Julia–Carathéodory
derivative F ′ν(α) is finite. (See [Shapiro 1993] for the definition, existence, and
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properties of the Julia–Carathéodory derivative.) The value of this derivative is
given by

F ′ν(α)=
1

ν({α})
.

By the Stieltjes inversion formula, the density of ν (relative to Lebesgue measure)
is given by

dν
dx
(t)=− 1

π
=Gν(t)=

1
π

=Fν(t)
|Fν(t)|2

,

at points other than the possible atom α. (This uses the continuous extension of Fν
to R.)

Lemma 2.5. Consider a measure ν ∈ ID(�), and denote by sν the density of the
absolutely continuous part of ν. We have lim|t |→∞ sν(t)= 0.

Proof. Inequality (2-2) implies that

|Fν(t)− Fν(i)| ≥ 1
2 |t − i |> 1

2 |t |, t ∈ R,

so that |Fν(t)|> 1
3 |t | for |t |> 6|Fν(i)|. Then the value of density sν at such t can

be estimated as follows:

(2-4) sν(t)=
1
π

=Fν(t)
|Fν(t)|2

≤
1
π

1
|Fν(t)|

<
1
π

3
|t |
, |t |> 6|Fν(i)|.

The conclusion follows. �

The preceding result shows that if Fν(tν)= 0, then we must have |tν | ≤ 6|Fν(i)|.
Moreover, for any p> 1 and any neighborhood U of the point tν , the estimate (2-4)
implies that the p-th power |sν |p is continuous and integrable over R \U. If such a
zero tν does not exist, then the density sν is a continuous function which belongs to
the space L p(R, dx) for all p > 1.

The next result follows from the proof of Theorem 4.6 in [Belinschi and Bercovici
2005]. Here we offer a more direct argument.

Lemma 2.6. The derivative of Hν is nonzero at z = x + iuν(x), for any x ∈ Aν .

Proof. We have

H ′ν(z)= 1−
∫

R

1+ t2

(z− t)2
dσ(t), z ∈ C+.

When x ∈ Aν and z = x + iuν(x), a straightforward calculation and the definition
of uν lead to ∣∣∣∣∫

R

1+ t2

(z− t)2
dσ(t)

∣∣∣∣< ∫
R

1+ t2

|z− t |2
dσ(t)

=

∫
R

1+ t2

(t − x)2+ uν(x)2
dσ(t)= 1,

which implies the desired conclusion. �
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Lemma 2.7. Consider measures ν, νn ∈ ID(�), n ∈ N, such that νn→ ν weakly
as n→∞, and let I ⊂R be a compact interval such that the limiting density dν/dx
is bounded away from zero on I. Then the density dνn/dx converges uniformly on I
to dν/dx as n→∞.

Proof. Let (γ, σ ), (γn, σn) be the free generating pairs of ν and νn , respectively.
As seen earlier, γn→ γ and σn→ σ weakly as n→∞. Thus, the sequence Hνn

converges to the function Hν uniformly on compact subsets of C+.
It is clear that <Fν(I ) ⊂ Aν . Thus, by Lemma 2.6, H ′ν(z) 6= 0 for z ∈ Fν(I ),

and its inverse function Fν has a conformal continuation to a neighborhood of I.
Expressing inverse functions using the Cauchy integral formula, we conclude
that, for large n, Fνn also has a conformal continuation to a neighborhood of I.
Moreover, these continuations converge uniformly on I to the continuation of Fν .
Since 0 /∈ Fν(I ), the lemma follows from the Stieltjes inversion formula. �

3. Free convolution powers and subordination functions

Given two probability measures µ1 and µ2 on R, there exist two unique analytic
functions ω1, ω2 : C

+
→ C+ such that Fµ1�µ2(z)= Fµ1(ω1(z))= Fµ2(ω2(z)) and

Fµ1�µ2(z)= ω1(z)+ω2(z)− z

for all z ∈C+ (see [Voiculescu 1993; Biane 1998; Bercovici and Voiculescu 1998]).
Consider now a sequence {µn}

∞

n=1 in M and positive integers kn ≥ 2, and denote
by µ� kn

n the kn-fold free convolution power of µn . Belinschi and Bercovici [2005]
showed thatµ� kn

n has at most one atom and otherwiseµ� kn
n is absolutely continuous,

and they studied the analytic subordination for these free convolution powers. Thus,
let ωn :C

+
→C+ be the subordination function of F

µ
� kn
n

with respect to Fµn , that is,

F
µ
� kn
n
(z)= Fµn (ωn(z)).

Then we have

(3-1) F
µ
� kn
n
(z)= Fµn (ωn(z))= ωn(z)+

1
kn − 1

(ωn(z)− z), z ∈ C+.

Equation (3-1) implies that the inverse function

ω−1
n (z)= z+ (kn − 1)(z− Fµn (z))

for z ∈0η,M , where η,M are positive constants. On the other hand, the function ωn

can be regarded as the F-transform of a unique probability measure on R by the char-
acterization of F-transforms (see [Bercovici and Voiculescu 1993, Proposition 5.2]).
Let ρn be the probability measure on R such that ωn(z)= Fρn (z), so

(3-2) ϕρn (z)= (kn − 1)(z− Fµn (z)).
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This implies that the measure ρn is �-infinitely divisible. In particular, the function
ωn extends continuously to C+ ∪R and so, too, does the function F

µ
� kn
n

by (3-1).
Denote by Eµ(z) = z − Fµ(z) the self-energy of µ. Given two measures

µ1, µ2 ∈ M, their Boolean convolution µ1 ] µ2, introduced in [Speicher and
Woroudi 1997], is the unique probability measure on R satisfying

Eµ1]µ2(z)= Eµ1(z)+ Eµ2(z), z ∈ C+.

Every probability measure on R is ]-infinitely divisible. Given a measure ν ∈M,
the function Eν is a map from C+ to C−∪R and satisfies Eν(iy)/ iy→ 0 as y→∞.
(The latter limit actually holds uniformly for ν in any tight family of probability
measures [Bercovici and Voiculescu 1993].) Thus, Eν admits a unique Nevanlinna
representation:

Eν(z)= γ +
∫

R

1+t z
z−t

dσ(t), z ∈ C+.

Conversely, every such formula defines an analytic function which is of the form
Eν for a unique probability measure ν. We will write ν = νγ,σ] to indicate this
correspondence. Note Eνγ,σ

]
(z)= ϕνγ,σ�

(z), and that the map νγ,σ� → ν
γ,σ
] is a

bijective map from the set ID(�) into the set M. Finally, it is easy to verify that if
a sequence νn converges weakly to a law ν in M, then the limit limn→∞ Eνn (z)=
Eν(z) holds for z ∈ C+.

We record for further use the following result from [Bercovici and Pata 1999,
Theorem 6.3].

Theorem 3.1. Fix a free generating pair (γ, σ ), a sequence {µn}
∞

n=1 in M, and
a sequence {kn}

∞

n=1 of unbounded positive integers. Then the sequence µ� kn
n con-

verges weakly to νγ ,σ� if and only if the sequence µ]kn
n converges weakly to νγ,σ] .

Boolean limit theorems are used in the proof of the following result.

Proposition 3.2. Let {µn}
∞

n=1 ⊂M and let {kn}
∞

n=1 ⊂N such that limn→∞ kn =∞.
Suppose µ� kn

n converges weakly to a law ν ∈ ID(�). For each n, choose ρn ∈

ID(�), such that
F
µ
� kn
n
(z)= Fµn (Fρn (z)), z ∈ C+.

Then ρn→ ν weakly.

Proof. Assume that (γ, σ ) is the free generating pair of ν. By Proposition 2.1,
the weak convergence µ� kn

n → ν
γ,σ

� implies the existence of M > 0 such that

lim
n→∞

knϕµn (iy)= ϕνγ,σ�
(iy)

for all y > M, and knϕµn (iy) = o(y) uniformly in n as y→∞. In particular, it
follows that the sequence µn converges weakly to the unit point mass at 0. On the
other hand, Theorem 3.1 shows that µ]kn

n → ν
γ,σ
] weakly.
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By (3-2), we have
ϕρn (z)= E

µ
]kn
n
(z)− Eµn (z), z ∈ C+.

Since the two sequences {µ]kn
n }
∞

n=1 and {µn}
∞

n=1 are both tight, the last formula
implies that ϕρn (iy) = o(y) uniformly in n as y→∞. To determine the limit of
{ρn}

∞

n=1, we calculate

lim
n→∞

ϕρn (iy)= lim
n→∞
[E

µ
]kn
n
(iy)− Eµn (iy)] = Eνγ,σ

]
(iy)= ϕνγ,σ�

(iy)

for every y > M. The desired conclusion follows from Proposition 2.1. �

4. The main result

In the following statement, Fν is viewed as a continuous function defined on C+∪R.

Theorem 4.1. Consider a nondegenerate �-infinitely divisible distribution ν on R,
a sequence {µn}

∞

n=1 of probability measures on R, and a sequence {kn}
∞

n=1 of
positive integers tending to infinity such that the measures µ� kn

n converge weakly
to ν.

(1) If 0 /∈ Fν(R), then the measure ν has no atom and there exists N > 0 such that
the measure µ� kn

n is Lebesgue absolutely continuous with a continuous density
on R for every n ≥ N. Moreover, the density of the measure µ� kn

n converges
uniformly on R to the density of the measure ν.

(2) If 0∈ Fν(R), and U ⊂R is an open interval containing the singleton F−1
ν ({0}),

then there exists N > 0 such that the restriction of the measure µ� kn
n to R\U is

absolutely continuous with a continuous density on R\U for n ≥ N. Moreover,
the density of the measure µ� kn

n converges uniformly on R\U to the density of
the measure ν.

(3) In all cases, the limit

lim
n→∞

∥∥∥∥dµ� kn
n

dx
−

dν
dx

∥∥∥∥
L p(R\U )

= 0

holds for p > 1, with U =∅ in case (1).

Remark. The condition that 0 ∈ Fν(R) is necessary for ν to have an atom, but it
is not sufficient (see Proposition 5.1). If Fν(tν)= 0, then the function Gν extends
continuously to all points t ∈ R \ {tν}. Theorem 1.1 follows from Theorem 4.1 and
this observation.

Proof. As seen earlier, there exist measures ρn ∈ ID(�) satisfying

F
µ
� kn
n
(z)= Fµn (Fρn (z)), z ∈ C+.

To each n, denote by sn and s the density of the absolutely continuous part of µ� kn
n

and that of ν, respectively. Relation (3-1) shows that |F
µ
� kn
n
− Fρn | is small relative

to |Fρn |. Thus, it suffices to focus on the asymptotic behavior of Fρn .
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Given ε > 0, we first prove that there exists M > 0 such that |sn(t)− s(t)|< ε
for |t | > M and for sufficiently large n. Since the measures ρn converge weakly
to ν by Proposition 3.2, we have |Fρn (i)| → |Fν(i)| as n→∞. In the sequel, we
shall only consider the integers n which satisfy the following two conditions:

kn > 13 and 9|Fν(i)|> 6|Fρn (i)|.

Applying the estimate (2-4) to ρn , we get |Fρn (t)|>
1
3 |t | for all such n and for

|t | > 9|Fν(i)|. It follows from (3-1) that |F
µ
� kn
n
(t)| > 1

4 |t | for the same n and t .
Combining this with another application of (2-4) to the density s, we get

(4-1) |sn(t)− s(t)|< 7
π

1
|t |
, |t |> 9|Fν(i)|,

for these large n. Therefore, the desired cutoff constant M can be chosen as

M =max
{

9|Fν(i)|,
7
επ

}
.

We conclude that it suffices to prove the uniform convergence of sn to s on a set
of the form I \U, where I = [−M,M]. To this purpose, fix I = [−M,M] with
M > 0, and let δ > 0 be arbitrary but fixed. Recall that the map

t 7→ <Fν(t)

is an increasing homeomorphism of R. Thus, the set

J =<Fν(I )= {x ∈ R : <Fν(−M)≤ x ≤<Fν(M)}

is a compact interval. Set

0 = {x ∈ J : uν(x)≥ δ}

and
1=

{
x ∈ J : uν(x) >

δ
2

}
.

We have 0 ⊂1⊂ J, where 0 is closed, and 1 is relatively open in J. We conclude
that 0 is contained in the union of finitely many connected components of1. Taking
the closure of those components, we find a finite family J1, J2, . . . , JK of pairwise
disjoint, closed intervals such that

0 ⊂
⋃

1≤`≤K

J` ⊂1.

We have uν ≥ δ/2 on the union
⋃

1≤`≤K J` and uν ≤ δ on the complement J ′ =
J \
(⋃

1≤`≤K J`
)
.

Denote I` = {t ∈ I : <Fν(t) ∈ J`} for each 1≤ `≤ K. Note that

=Fν(t)≥ δ/2

for each t ∈
⋃

1≤`≤K I`. Thus, the density of ν is bounded away from zero on⋃
1≤`≤K I`. From Lemma 2.7, we see that the functions Fν and Fρn both extend
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analytically to a neighborhood of the set
⋃

1≤`≤K I` for sufficiently large n. These
extensions are injective. Moreover, the convergence Fρn → Fν holds uniformly in
that neighborhood. By virtue of (3-1), we conclude that the functions F

µ
� kn
n

will
have the same behavior on the set

⋃
1≤`≤K I` as n→∞. It follows that the measure

µ
� kn
n has no atom in the union

⋃
1≤`≤K I` for large n and sn→ s uniformly on this

set by the Stieltjes inversion formula.
We prove next the uniform convergence on the set I ′ (or on I ′ \U ), where

(4-2) I ′ = {t ∈ I : <Fν(t) ∈ J ′} = I \
(⋃

1≤`≤K
I`
)
.

We claim that

(4-3) supx∈J ′ uρn (x)≤ 2δ

for sufficiently large n. Assume, to get a contradiction, that there exist positive
integers n1 < n2 < · · ·→∞ and points x1, x2, . . . ∈ J ′ such that uρnk

(xk) > 2δ. By
the definition of uρn given in Section 2, we have

(4-4)
∫

R

1+ t2

(t − xk)2+ uρnk
(xk)2

dσnk (t)= 1, k ≥ 1,

where σnk is the free generating measure of ρnk . By passing to a subsequence if
necessary, we assume that xk→ x0 ∈ J ′ as k→∞. Then, denoting νγ,σ� by ν, the
identity (4-4) and the fact that σn→ σ weakly imply

1≤
∫

R

1+ t2

(t − xk)2+ (2δ)2
dσnk (t)→

∫
R

1+ t2

(t − x0)2+ (2δ)2
dσ(t)

as k→∞. We conclude that uν(x0)≥ 2δ, which is in contradiction to the fact that
x0 ∈ J ′. Thus, the estimate (4-3) is proved.

The rest of the proof is divided into two cases according to whether U =∅ or
U 6=∅. By translating the measure ν if necessary, we may assume that <Fν(0)= 0.

Case (1): 0 /∈ Fν(R) and U =∅. In this case, uν(0) > 0 and thus 0 ∈ Aν . Since the
set Aν is open, there exists a small number a > 0 such that the interval [−4a, 4a] is
contained in Aν . By considering a smaller δ if necessary, we may assume further that

(4-5) [−4a, 4a] ⊂
⋃

1≤`≤K

J`.

Since the map t 7→ <Fν(t) is an increasing homeomorphism of R, the uniform
convergence of Fρn → Fν on

⋃
1≤`≤K I` implies that there exists some integer

N > 0 such that

[−2a, 2a] ⊂
{
<Fρn (t) : t ∈

⋃
1≤`≤K

I`
}
, n ≥ N .
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Since the map t 7→ <Fρn (t) is also a homeomorphism of the same nature, we have

inf
t∈I ′
|<Fρn (t)| ≥ 2a, n ≥ N ,

by recalling the definition (4-2) of the complement I ′. Using (3-1) and enlarging
N if necessary, we conclude that

(4-6) inf
t∈I ′
|<F

µ
� kn
n
(t)| ≥ a, n ≥ N .

Further enlarging N, the inequality (4-3) and the relation (3-1) imply that

(4-7) =F
µ
� kn
n
(t)≤ 3δ, t ∈ I ′, n ≥ N .

From (4-6) and (4-7), we see that

0≤ sn(t)≤
3δ

a2π

for t ∈ I ′ and n ≥ N. On the other hand, the relation (4-5) and the fact that uν ≤ δ
on J ′ yield

0≤ s(t)≤ δ

16a2π

for t ∈ I ′. As the parameter δ can be arbitrarily small, we have proved the uniform
convergence of sn→ s on I ′. This finishes the proof of Theorem 4.1(1).

Case (2): 0 ∈ Fν(R). In this case, uν(0) = 0 and Fν(0) = 0 = Hν(0) by our
normalization. Let an be the unique real number such that <Fρn (an)= 0 (and hence
Fρn (an)= iuρn (0)). We first show that an is small for large n. To this end, we write
U = (−2b, 2b) where b > 0 and set c = b/5. Observe that Hν(ic) ∈ C+, and that
the Lipschitz property of Hν yields

|Hν(ic)| = |Hν(ic)− Hν(0)| ≤ 2c.

Since limn→∞ Hρn (ic)= Hν(ic), there exists an integer N > 0 such that Hρn (ic) ∈
C+ for all n≥ N. Consequently, we have uρn (0)< c for such n; for if uρn (0)≥ c> 0,
we will get

1=
∫

R

1+ t2

t2+ uρn (0)2
dσn(t)≤

∫
R

1+ t2

t2+ c2 dσn(t)

= 1− 1
c=Hρn (ic) < 1,

a contradiction. Note further that

|Hρn (ic)− an| = |Hρn (ic)− Hρn (iuρn (0))| ≤ 2(c− uρn (0))≤ 2c

for all n ≥ N. (We have used the inversion relationship an = Hρn (Fρn (an)) here.)
Therefore, by enlarging N if necessary, we conclude that |an|< 5c = b for n ≥ N.
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Now, (2-2) shows that for any t ∈ I ′ \U and n ≥ N, we have

|Fρn (t)− Fρn (an)| ≥
1
2
|t − an|>

b
2
.

This implies further that

|Fρn (t)|>
b
2
− |Fρn (an)| =

b
2
− |uρn (0)|>

b
4
, t ∈ I ′ \U, n ≥ N .

In other words, for such values of t and n, |Fρn (t)| is always bounded away from
zero. Then an argument similar to the proof of Case (1) yields the absolute continuity
of the free convolution µ� kn

n and the uniform convergence sn→ s on I ′\U, finishing
the proof of Theorem 4.1(2).

Finally, the L p-convergence result in Theorem 4.1(3) follows from the estimate
(4-1) and the dominated convergence theorem. �

Remark (Local analyticity and approximation). An important feature of supercon-
vergence are the analyticity properties of the distributions in the limiting process.
Indeed, under the weak convergence assumption of Theorem 4.1, if I is a finite
interval on which the limit density dν/dx is bounded away from zero (and hence it
admits an analytic continuation to a neighborhood of I ), then the restriction of the
free convolution µ� kn

n on I becomes absolutely continuous in finite time and its
density continues analytically to a neighborhood of I. Moreover, these extensions
can be approximated uniformly by the analytic continuation of dν/dx on I, thanks
to Lemma 2.7 and the identity (3-1).

5. Applications

In this section, we apply our main result to some of the most important limit theorems
in free probability. We begin by examining the geometric condition: 0 ∈ Fν(R).
Note that the singular integral in the following result takes values in (0,∞].

Proposition 5.1. Let ν = νγ,σ� be a nondegenerate law in ID(�). We have:

(1) 0 ∈ Fν(R) if and only if

(5-1) L = sup
ε>0

−=ϕν(iε)
ε

=

∫
R

1+ t2

t2 dσ(t)≤ 1.

In this case, the value of the unique zero tν of Fν is given by

tν = γ −
∫

R

1
t dσ(t).

(2) ν({tν}) > 0 if and only if L < 1, and we have ν({tν})= 1− L in this case.

Proof. The identity

sup
ε>0
(−=ϕν(iε))/ε =

∫
R

1+ t2

t2 dσ(t)
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follows from the free Lévy–Khintchine formula

−=ϕν(iε)= ε
∫

R

1+ t2

ε2+ t2 dσ(t)

and the monotone convergence theorem, and we see that the supremum here is in
fact a genuine limit:

sup
ε>0
(−=ϕν(iε))/ε = lim

ε→0+
(−=ϕν(iε))/ε.

Next, recall from [Belinschi and Bercovici 2005, Proposition 4.7] that 0 ∈ Fν(R)
if and only if the limit

tν = Hν(0)= lim
ε→0+

Hν(iε)

exists, tν ∈ R, and the Julia–Carathéodory derivative H ′ν(0) ≥ 0. Note that if the
limit tν exists and is real, then the derivative

(5-2) H ′ν(0)= lim
ε→0+

=Hν(iε)
ε

always exists and belongs to the interval [−∞, 1). Moreover, if 0 ∈ Fν(R) and
H ′ν(0) > 0 then we have the Julia–Carathéodory derivative F ′ν(tν)= 1/H ′ν(0).

Now, if 0 ∈ Fν(R), then we know the limit tν ∈ R. Hence, (5-2) implies
H ′ν(0) = 1 − L . Since H ′ν(0) ≥ 0 in this case, we conclude that 1 ≥ L . On
the other hand, since Fν(R)= ∂�ν , the inversion formula shows that

Fν(tν)= Fν(Hν(0))= 0.

Conversely, if the singular integral L converges and 1 ≥ L , then we have
=Hν(iε)→ 0 · (1− L)= 0 as ε→ 0+. On the other hand, the estimate

|t |
ε2+ t2 ≤

1+ t2

ε2+ t2 ≤
1+ t2

t2 ∈ L1(σ ), t ∈ R, ε > 0,

and the dominated convergence theorem imply that the function t 7→ 1/t belongs
to L1(σ ) and

<Hν(iε)= γ + (ε2
− 1)

∫
R

t
ε2+ t2 dσ(t)→ γ −

∫
R

1
t dσ(t)

as ε→ 0+. It follows that the vertical limit tν is equal to

γ −

∫
R

1
t dσ(t) ∈ R.

As seen earlier, this fact and the formula (5-2) imply that H ′ν(0)= 1− L . Therefore,
we have H ′ν(0)≥ 0, and the proof of (1) is finished.

The statement (2) follows from the fact that the derivative F ′ν(tν)= 1/ν({tν}). �
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We remark that the results in [Belinschi and Bercovici 2005] were proved using
Denjoy–Wolff analysis for boundary fixed points of analytic self-maps on C+. A
different approach to the same results has been used in [Huang and Wang 2015],
which yields a more general description for the points on the boundary set ∂�ν .

Stable approximation. Recall that two measures µ, ν ∈M are said to have the
same type (and we write µ∼ ν) if there exist constants a > 0 and b ∈ R such that
µ(E) = ν(aE + b) for all Borel sets E ⊂ R. The relation ∼ is an equivalence
relationship among all probability laws, and hence the set M is partitioned into a
union of distributions with inequivalent types. A nondegenerate distribution ν ∈M
is said to be �-stable if ν ∼ ν1 � ν2 whenever ν1 ∼ ν ∼ ν2. Clearly, within one
type either all distributions are stable or else none of them is stable.

Each �-stable law ν is associated with a unique stability index α ∈ (0, 2], so that
if X and Y are free random variables drawn from the same law ν and a, b> 0, then
the distribution of the sum aX + bY is a translate of the distribution of the scaled
variable (aα + bα)1/αX. Stable laws of the same type share the same index.

Freely stable laws are �-infinitely divisible and absolutely continuous, and
they can be classified using the stability index α. Following [Bercovici and
Voiculescu 1993], every �-stable law has the same type as a unique distribution
whose Voiculescu transform falls into the following list:

(1) ϕ(z)= 1/z for α = 2.

(2) ϕ(z)= bz1−α for 1< α < 2, where |b| = 1 and arg b ∈ [(α− 2)π, 0].

(3) ϕ(z)= bz1−α for 0< α < 1, where |b| = 1 and arg b ∈ [π, (1+α)π ].

(4) ϕ(z)=−2bi + [2(2b− 1)/π ] log z for α = 1, where b ∈ [0, 1].

Here, the complex power and logarithmic functions are given by their principal
value in C+. One can also find a formula for the density of the �-stable laws in
[Bercovici and Pata 1999]. Above all, we mention that the case α = 2 corresponds
to the stable type of the standard semicircular law.

The interest in the class of freely stable laws arises from the fact that a measure
ν is �-stable if and only if there exist a sequence {X i }

∞

i=1 of identically distributed
free random variables and constants an > 0 and bn ∈ R such that the distribution
of the normalized sum Sn =

∑n
i=1(X i − bn)/an converges weakly to the law ν. In

this case, the common distribution of the sequence X i is said to belong to the free
domain of attraction of the stable law ν. Thus, up to a change of scale and location,
the distributional behavior of a large free convolution µ� n for a measure µ in a free
domain of attraction can be estimated using the corresponding freely stable law.

Free domains of attraction for �-stable laws are determined in [Bercovici and
Pata 1999], showing that these domains of attraction coincide with their classical
counterparts relative to the classical convolution. In the semicircular case, the free
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domain of attraction consists of all nondegenerate measures µ ∈M such that the
truncated variance function

Hµ(x)=
∫ x

−x
t2 dµ(t), x > 0,

satisfies limx→∞ Hµ(cx)/Hµ(x)= 1 for any given c > 0. This is in parallel to the
classical theory of central limit theorems, that is, convergence to a Gaussian law.

With that being said, the following result shows that the quality of freely stable
approximation is in fact much better than its classical counterpart. This result is
stated in the general framework of triangular arrays with identical rows.

Proposition 5.2. Let ν be a �-stable law for which the weak approximation
µ
� kn
n → ν holds. Then the measure µ� kn

n superconverges to the law ν on R.

Proof. This is a direct consequence of Theorem 4.1 and the criterion (5-1). Indeed,
one has L =∞ in all cases of the index α, which implies that 0 /∈ Fν(R). �

In particular, the preceding result generalizes the superconvergence for measures
with finite variance in [Wang 2010] to the entire free domain of attraction of the
semicircular law.

Notice that stable approximation to the free sum Sn could fail for any choice of
constants an and bn if the common distribution µ of the summands X i does not
belong to any free domain of attraction, but even in this case one may still have
weak convergence along some subsequence Skn . The limit ν in this situation is
necessarily �-infinitely divisible, and hence Theorem 4.1 still applies to this case.
The law µ in this case is said to belong to the free domain of partial attraction of
the law ν. In fact, a probability distribution is �-infinitely divisible if and only if its
free domain of partial attraction is nonempty. It is also well known that the domain
of partial attraction of a stable law is strictly larger than its domain of attraction
in both free and classical theories. We refer to [Bercovici and Pata 1999] for the
details of these results.

Poisson approximation. Here we study an example of freely infinitely divisible
approximation relative to Poisson type limit theorems. Let µ be an arbitrary
probability measure on R, µ 6= δ0, and let λ > 0 be a given parameter. Recall that
the compound free Poisson distribution νλ,µ with rate λ and jump distribution µ is
the weak limit of

[(1− λ/n)δ0+ (λ/n)µ]� n

as n→∞ [Voiculescu et al. 1992]. The law νλ,µ is �-infinitely divisible, and its
free generating pair is given by

γ = λ

∫
R

t
1+ t2 dµ(t), dσ(t)= λ t2

1+ t2 dµ(t).
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Thus, we see immediately that L = λ and tνλ,µ = 0 in this case, which leads further
to the following result:

Proposition 5.3. The origin is an atom of mass 1−λ for the law νλ,µ if and only if
the parameter λ is less than 1. If λ > 1, then the superconvergence phenomenon in
any weak approximation µ� kn

n → νλ,µ holds globally on R.

Note the case µ= δ1 corresponds to the approximation by Marčenko–Pastur law:

dνλ,δ1(t)=


1

2π t

√
4λ− (t − 1− λ)2 χ(t) dt if λ≥ 1;

(1− λ)δ0+
1

2π t

√
4λ− (t − 1− λ)2 χ(t) dt if 0< λ < 1,

where χ stands for the indicator function of the open interval ((1−
√
λ)2, (1+

√
λ)2).

Clearly, the measure ν1,δ1 has no atom and yet Fν1,δ1
(0)= 0.
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