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We examine the relationship between certain noncommutative analogues of
projective 3-space, P3, and the quantized enveloping algebras Uq(sl2). The
relationship is mediated by certain noncommutative graded algebras S, one
for each q ∈ C×, having a degree-two central element c such that S[c−1]0 ∼=

Uq(sl2). The noncommutative analogues of P3 are the spaces Projnc(S). We
show how the points, fat points, lines, and quadrics, in Projnc(S), and their
incidence relations, correspond to finite-dimensional irreducible represen-
tations of Uq(sl2), Verma modules, annihilators of Verma modules, and
homomorphisms between them.
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1. Introduction

This paper concerns the interplay between the geometry of some noncommutative
analogues of P3 and the representation theory of the quantized enveloping algebras,
Uq(sl2), of sl(2,C). We always assume that q is not a root of unity.

1A. Projnc(S) and Uq(sl2). In Section 2D, we define a family of noncommutative
graded algebras S=C[E, F, K , K ′] depending on a parameter q ∈C−{0,±1,±i}
that have the same Hilbert series and the “same” homological properties as the
polynomial ring in four variables. For these reasons the noncommutative spaces
Projnc(S) have much in common with P3. The element K K ′ belongs to the center
of S and S[(K K ′)−1

]0 ∼=Uq(sl2). Thus, Uq(sl2) is the coordinate ring of the “open
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complement” to the union of the “hyperplanes” {K = 0} and {K ′ = 0} in Projnc(S).
This analogy can be formalized: there is an abelian category QCOH( · ), defined
below, that plays the role of the category of quasicoherent sheaves and an adjoint
pair of functors

(1-1) QCOH(Projnc(S))
j∗
−−→

j∗
←−−Mod(Uq(sl2))

that behave like the inverse and direct image functors for an open immersion
j : P3

−{two planes} → P3.

1A1. By definition, QCOH(Projnc(S)) is the quotient category

QGr(S) :=
Gr(S)

Fdim(S)
,

where Gr(S) denotes the category of Z-graded left S-modules and Fdim(S) denotes
the full subcategory of Gr(S) consisting of those modules that are the sum of their
finite-dimensional submodules. If S were the polynomial ring on four variables,
then the category QGr(S) would be equivalent to QCOH(P3), the category of quasi-
coherent sheaves on P3, and this equivalence would send a graded module M to
the OP3-module that Hartshorne denotes by M̃ .

1A2. There is an exact functor π∗ :Gr(S)→QGr(S) that sends a graded S-module
M to M viewed as an object in QGr(S). The composition

(1-2) Gr(S) π∗
−−→QGr(S)= QCOH(Projnc(S))

j∗
−−→Mod(Uq(sl2))

sends a graded S-module M to M[(K K ′)−1
]0.

1A3. The main theme of this paper is the interaction between noncommutative
geometry (where QGr(S) belongs) and representation theory (where Mod(Uq(sl2))

belongs). We show how the points, fat points, lines, and quadrics, in Projnc(S), and
their incidence relations, correspond to finite-dimensional irreducible representa-
tions of Uq(sl2), Verma modules, annihilators of Verma modules, and homomor-
phisms between them.

Just as passing from affine to projective geometry provides a more elegant
picture that unifies seemingly different objects (affine vs. projective conic sections,
for example), passing from the “affine” category Mod(Uq(sl2)) to the “projective”
category QCOH(Projnc(S)) results in a more complete picture of Mod(Uq(sl2)).

1B. Lines and Verma modules, fat points and finite-dimensional irreducible rep-
resentations. The most important Uq(sl2)-modules are its finite-dimensional irre-
ducible representations and its Verma modules. In Section 5, we show that for each
Verma module V ∈Mod(Uq(sl2)) there is a graded S-module M such that
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(1) V ∼= j∗π∗M ;

(2) M ∼= S/S`⊥, where `⊥ ⊆ S1 is a codimension-two subspace;

(3) dim(Mi ) = i + 1 for all i ≥ 0, i.e., M has the same Hilbert series as the
polynomial ring on two variables;

(4) M is a line module for S;

(5) M is a Cohen–Macaulay S-module.

In Section 5, we also show that for each finite-dimensional irreducible representation
L of Uq(sl2) there is a graded S-module F such that

(1) L ∼= j∗π∗F ;

(2) dim(Fi )= dim(L) for all i ≥ 0 and dim(Fi )= 0 for all i < 0;

(3) every proper quotient of F is finite-dimensional, whence F is a simple object
in QCOH(Projnc(S));

(4) F is a fat point module for S;

(5) F is a Cohen–Macaulay S-module.

Items (4) are, essentially, definitions; see Section 2B.

1B1. Point modules and line modules. Let R be the polynomial ring on four vari-
ables with its standard grading. The points in P3

= Proj(R) are in bijection with
the graded modules R/I such that dim(Ri/Ii ) = 1 for all i ≥ 0. The lines in P3

are in bijection with the modules R/I such that dim(Ri/Ii )= i + 1 for all i ≥ 0.
If S is one of the algebras in Section 2D, a graded S-module M is called a point

module, resp. a line module, if it is isomorphic to S/I for some left ideal I such
that dim(Si/Ii )= 1, resp. dim(Si/Ii )= i + 1, for all i ≥ 0.

There are fine moduli spaces that parametrize the point modules and line modules
for S. These fine moduli spaces are called the point scheme and line scheme
respectively. The point scheme for S is a closed subscheme of P3

= P(S∗1 ) and the
line scheme for S is a closed subscheme of the Grassmannian G(1, 3) consisting of
the lines in P3.

In Section 4, we determine the line modules and the point modules for S.

1B2. The point modules for S. The point scheme, PS , for S is C ∪ C ′ ∪ L ∪
{p1, p2} ⊆ P(S∗1 )= P3, the union of two plane conics, C and C ′, meeting at two
points, the line L through those two points, and two additional points (Theorem 4.2).
If Mp = S/Sp⊥ is the point module corresponding to p ∈ PS , then (Mp)≥1 is a
shifted point module; i.e., (Mp)≥1(1) is a point module and therefore isomorphic
to Mp′ for some point p′ ∈ PS . General results show there is an automorphism
σ : PS → PS such that p′ = σ−1 p. Thus, (Mp)≥1 ∼= Mσ−1 p(−1). We determine
PS and σ in Section 4.
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1B3. The line modules for S. Theorem 4.5 says that the lines ` ⊆ P3
= P(S∗1 )

for which S/S`⊥ is a line module are precisely those lines that meet C ∪C ′ with
multiplicity two; i.e., the secant lines to C ∪C ′. These are exactly the lines lying
on a certain pencil of quadrics Q(λ)⊆ P3, λ ∈ P1. This should remind the reader
of the analogous result for the 4-dimensional Sklyanin algebras in which the lines
in P3 that correspond to line modules are exactly the secant lines to the quartic
elliptic curve E .

The labeling of the line modules is such that the Verma module M(λ) is isomor-
phic to j∗π∗(S/S`⊥) for a unique line `⊆ Q(λ).

1B4. Incidence relations. If (p)+ (p′) is a degree-two divisor on C ∪C ′, we write
Mp,p′ for the line module S/S`⊥, where `⊥ is the subspace of S1 that vanishes
on the line ` ⊆ P3

= P(S∗1 ) whose scheme-theoretic intersection with C ∪C ′ is
(p)+ (p′). Proposition 4.8 shows there is an exact sequence

0→ Mσ p,σ−1 p′(−1)→ Mp,p′→ Mp→ 0.

Proposition 4.9 shows that if the line ` just referred to meets the line {K = K ′= 0}⊆
PS at a point p′′, there is an exact sequence

0→ Mσ−1 p,σ−1 p′(−1)→ Mp,p′→ Mp′′→ 0.

1B5. Finite-dimensional simple modules. Let n ∈ N. If q is not a root of unity
there are two simple Uq(sl2)-modules of dimension n+ 1. We label them L(n,±)
in such a way that there are exact sequences

(1-3) 0→ M(±q−n−2)→ M(±q)→ L(n,±)→ 0

in which M(λ) denotes the Verma module of highest weight λ.
In Section 5 we show there are S-modules V (n,±) that are also S[(K K ′)−1

]-
modules, and hence modules over S[(K K ′)−1

]0 ∼=Uq(sl2) and, as such, V (n,±)∼=
L(n,±). We define graded S-modules F(n,±) such that F(n,±)[(K K ′)−1

]0 ∼=

L(n,±); i.e., if we view F(n,±) as an object in QGr(S), then

j∗F(n,±)∼= L(n,±).

Furthermore, we show there are exact sequences

(1-4) 0→ M`′±
(−n− 1)→ M`±→ F(n,±)→ 0

in QCOH(Projnc(S)) and that (1-3) is obtained from (1-4) by applying the functor j∗,
i.e., by restricting the exact sequence (1-4) in QCOH(Projnc(S)) to the “open affine
subscheme” {K K ′ 6= 0}. Here M`± denotes the line module S/S`⊥

±
corresponding

to a line `± ⊆ P(S∗1 )= P3.
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1B6. Heretical Verma modules. The connections we establish between Verma
modules and line modules highlights one way in which the q-deformation Uq(sl2)

is “more rigid” or “less symmetric” than the enveloping algebra U (sl2): there is a P1-
family of Borel subalgebras of sl2, but there are only two reasonable candidates for
the role of the quantized enveloping algebra of a “Borel subalgebra” of quantum sl2.

Fix one of the two “Borel subalgebras”, Uq(b)⊆Uq(sl2). It gives rise by induction
to Verma modules Mb(λ) = Uq(sl2)⊗Uq (b) Cλ, λ ∈ C×. Thus, one obtains two
1-parameter families of Verma modules for Uq(sl2). In sharp contrast, by varying
both the Borel subalgebra and the highest weight one obtains a 2-parameter family
of Verma modules for U (sl2). Our perspective on Uq(sl2) as a noncommutative
open subscheme of a noncommutative P3 allows us to fit the two 1-parameter
families of Verma modules for Uq(sl2) into a single 2-parameter family of modules,
thus undoing the rigidification phenomenon alluded to in the previous paragraph. It
is these additional Verma-like modules that we call “heretical” in the title of this
subsection.

For simplicity of discussion, fix a finite-dimensional simple module L(n,+)
and the corresponding fat point module F(n,+) for which j∗F(n,+)∼= L(n,+).
The module L(n,+) appears in exactly two sequences of the form (1-3), one for
each “Borel subalgebra” of Uq(sl2); in contrast, F(n,+) appears in a 1-parameter
family of sequences of the form (1-4), one for each line in one of the rulings on the
quadric Q(qn). Likewise, a fixed finite-dimensional simple U (sl2)-module fits into
a 1-parameter family of sequences of the form (1-3). If we broadened the definition
of a Verma module for Uq(sl2) so as to include j∗M` for all line modules M` one
would then obtain a 1-parameter family of sequences of the form (1-3).

1B7. Annihilators of Verma modules and quadrics in Projnc(S). When q is not a
root of unity, the center of Uq(sl2) is generated by a single central element C called
the Casimir element. A Verma module is annihilated by C − ν for a unique ν ∈ C

and given ν there are, usually, four Verma modules annihilated by C − ν.
There is a nonzero central element � ∈ S2 such that C = �(K K ′)−1 under

the isomorphism Uq(sl2) ∼= S[(K K ′)−1
]0. A line module for S is annihilated by

�−νK K ′ for a unique ν ∈C∪{∞} and given ν there are, usually, two 1-parameter
families of line modules annihilated by �− νK K ′. There is an isomorphism

S
(�− νK K ′)

[(K K ′)−1
]0 ∼=

Uq(sl2)

(C − ν)

and an adjoint pair of functors

(1-5) QCOH

(
Projnc

(
S

(�− νK K ′)

))
j∗
−−→

j∗
←−−Mod

(
Uq(sl2)

(C − ν)

)
.



310 ALEX CHIRVASITU, S. PAUL SMITH AND LIANG ZE WONG

We think of Projnc(S/(�− νK K ′)) as a noncommutative quadric hypersurface in
Projnc(S) and think of Uq(sl2)/(C−ν) as the coordinate ring of a noncommutative
affine quadric. Noncommutative quadrics in noncommutative analogues of P3 were
examined in [Smith and Van den Bergh 2013]. The results there apply to the present
situation. The line modules for S that are annihilated by �−νK K ′ provide rulings
on the noncommutative quadric and the noncommutative quadric is smooth if and
only if it has two rulings. We note that Projnc(S/(�− νK K ′)) is smooth if and
only if Uq(sl2)/(C − ν) has finite global dimension.

In Section 1B2, we mentioned the pencil of quadrics Q(λ)⊆ P3, λ ∈ P1, that
contain C ∪C ′. The Q(λ)’s are commutative quadrics and should not be confused
with the noncommutative ones in the previous paragraph. If ` is a line on Q(λ), then
M` = S/S`⊥ is a line module so is annihilated by �− νK K ′ for some ν ∈ C∪∞.

1B8. What happens for U(sl2)? Le Bruyn and Smith [1993] considered a graded
algebra H(sl2) that has a central element t in H1 such that H [t−1

]0 is isomorphic
to the enveloping algebra U (sl2). They call H(sl2) a homogenization of U (sl2),

Since the Hilbert series of H equals that of the polynomial ring in four variables
with its standard grading, and since H has “all” the good homological properties
the polynomial ring does, they view H as a homogeneous coordinate ring of a
noncommutative analogue of P3, denoted Projnc(H). Because H [t−1

]0 ∼=U (sl2),
there is an adjoint pair of functors j∗ and j∗ fitting into diagrams like those in (1-1)
and (1-2). Because t has degree one, j∗ and j∗ behave like the inverse and direct
image functors associated to the open complement to the hyperplane at infinity
in P3. Le Bruyn and Smith examined the point and line modules for H and showed
that these modules are related to the finite-dimensional irreducible representations
and Verma modules for sl2. The situation for U (sl2) is simpler than that for Uq(sl2).

1B9. Richard Chandler’s results. We are not the first to compute the point modules
and line modules for S. Richard Chandler did this in his Ph.D. thesis [Chandler
2016]. His approach differs from ours. Following a method introduced by Shelton
and Vancliff [2002b], he used Mathematica to compute a system of 45 quadratic
polynomials in the Plücker coordinates on the Grassmannian G(1, 3), the common
zero locus of which is the line scheme for S. In contrast, we use the results on central
extensions in [Le Bruyn et al. 1996] to determine which lines in P3 correspond to
line modules. The two approaches are complementary.

1C. The structure of the paper. In Section 2, we define the algebra S, the cen-
tral focus of our paper, and discuss its position as a degenerate version of the
4-dimensional Sklyanin algebra and a homogenization of Uq(sl2). We introduce
the category QGr(S) and its noncommutative geometry. We focus on point, line,
and fat point modules.
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Gr(S) Projnc(S) Mod(Uq(sl2))

Point modules Points Finite-dimensional irreducible modules
Line modules Lines Verma modules

Table 1. Relation to Uq(sl2)-modules.

In Section 3, we examine a Zhang twist D of S. It has the property that Gr(D)≡
Gr(S). Moreover, D has a central element z ∈ D1 such that A = D/(z) is a
3-dimensional Artin–Schelter regular algebra, thereby making D a central extension
of A. This allows us to use the results in [Le Bruyn et al. 1996] to determine the
point and line modules of D in terms of those for A.

In Section 4, we use the equivalence Gr(D)≡ Gr(S) to transfer the results about
D back to S.

In Section 5, we relate our results about point and line modules for S to results
about the finite-dimensional irreducible representations and Verma modules of
Uq(sl2). Table 1 summarizes some of these relations.

In Section 6, we show that some of our results can be obtained as “degenerations”
of results in [Smith and Stafford 1992; Chirvasitu and Smith 2017; Smith and
Staniszkis 1993] about the 4-dimensional Sklyanin algebra.

Figure 1 summarizes the algebras in this paper and their relationships to S.

4-dim Sklyanin alg. QCOH(Projnc)

H(sl(2,C)) S D

C[e, f, h] S/K ′ A

U (sl(2,C)) Uq(sl2) Module Category

degenerate

quantize

quantize

quantize

Zhang twist

Zhang twist

t = 0 K ′ = 0 central
extension K ′ = 0

dehomogenize/localizet 6= 0 K K ′ 6= 0

Figure 1. Algebras in this paper, their relationship to S, and their
associated categories.



312 ALEX CHIRVASITU, S. PAUL SMITH AND LIANG ZE WONG

2. Preliminary notions

2A. The category QGr. Let k be a field and R a Z-graded k-algebra. The category
QGr(R) is defined to be the quotient category

QGr(R) :=
Gr(R)

Fdim(R)
,

where Gr(R) denotes the category of Z-graded left R-modules with degree-preserving
homomorphisms and Fdim(R) denotes the full subcategory of Gr(R) consisting of
those modules that are the sum of their finite-dimensional submodules.

The categories QGr(R) and Gr(R) have the same objects but different morphisms.
There is an exact functor π∗ : Gr(R)→ QGr(R) that is the identity on objects. In
the situations considered in this paper π∗ has a right adjoint π∗. A morphism
f : M→ M ′ becomes an isomorphism in QGr(R), i.e., π∗ f is an isomorphism, if
and only if ker( f ) and coker( f ) are in Fdim(R). In particular, a graded R-module
is isomorphic to 0 in QGr(R) if and only if it is the sum of its finite-dimensional
modules. Two modules in Gr(R) are equivalent if they are isomorphic in QGr(R).

If M ∈ Gr(R) and n ∈ Z we write M(n) for the graded R-module that is M
as a left R-module but with new homogeneous components, M(n)i = Mn+i . The
rule M  M(n) extends to an autoequivalence of Gr(R). Because it sends finite-
dimensional modules to finite-dimensional modules, it induces an autoequivalence
of QGr(R) that we denote by M M(n).

If M ∈ Gr(R) we define M≥n := Mn +Mn+1+ · · · . If R = R≥0, then M≥n is a
submodule of M .

2B. Linear modules. The importance of linear modules for noncommutative ana-
logues of Pn was first recognized by Artin, Tate, and Van den Bergh. We recall a
few notions from their papers [Artin et al. 1990; 1991]. Let M ∈ Gr(R). If Mn = 0
for n� 0 and dim Mn <∞ for all n, the Hilbert series of M is the formal Laurent
series

HM(t)=
∑

n

(dim Mn)tn.

We are particularly interested in cyclic modules M with Hilbert series having the
form

HM(t)=
n

(1− t)d

for some n, d ∈ N. The Gelfand–Kirillov (GK) dimension of such a module is
d(M)= d and its multiplicity is n. If d(M)= d and d(M/N ) < d for all nonzero
submodules N , then M is called d-critical. Equivalent modules (in the sense of
Section 2A) have the same GK dimension, and also have the same multiplicity if
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they are not equivalent to 0, so the notions of GK dimension and multiplicity carry
over to QGr(R) as well.

We call M a linear module if it is cyclic and its Hilbert series is (1− t)−d . The
cases d = 1 and d = 2 play a key role: we call a linear module M a

• point module if it is cyclic, 1-critical, and HM(t)= (1− t)−1;

• line module if it is cyclic, 2-critical, and HM(t)= (1− t)−2.

We are also interested in modules of higher multiplicity: we call M a

• fat point module if it is 1-critical, generated by M0, and HM(t)= n(1− t)−1

for some n > 1.

Point modules and fat point modules are important because, as objects in QGr(R),
they are simple (or irreducible): all proper quotient modules of a 1-critical module
are finite-dimensional and therefore zero in QGr(R). The following result illustrates
the relationship between finite-dimensional simple modules and fat point modules.

Lemma 2.1. Let V be a simple left R-module of dimension n <∞. Let C[z] be the
polynomial ring generated by a degree-one indeterminate, z. Let V ⊗C[z] be the
graded left R-module whose degree- j component is V ⊗ z j with a ∈ Ri acting as
a(v⊗ z j ) := (av)⊗ zi+ j . Let π : V ⊗C[z] → V be the R-module homomorphism
v⊗ z j

7→ v.

(1) V ⊗C[z] is a fat point module of multiplicity n.

(2) If M is a graded left R-module such that M = M≥0 and ψ : M → V is a
homomorphism in Mod(R), then there is a unique homomorphism ψ̃ : M→
V ⊗C[z] in Gr(R) such that ψ = πψ , namely ψ̃(m)=ψ(m)⊗ zn for m ∈ Mn .

2C. Geometry in Projnc(R). The “noncommutative scheme” Projnc(R) is defined
implicitly by declaring that the category of “quasicoherent sheaves” on it is QGr(R),

QCOH(Projnc(R)) := QGr(R).

The isomorphism class of a (fat) point module in QGr(R) is called a (fat) point of
Projnc(R). Likewise, the isomorphism class of a line module in QGr(R) is called a
line in Projnc(R).

2C1. Origin of the terminology. Let k be an algebraically closed field, and let
R = k[x0, . . . , xn] be the commutative polynomial ring with its standard grading,
deg(x j )= 1 for all j . Then Proj(R) is Pn , projective n-space, and there is a bijection
between closed points in Pn and isomorphism classes of point modules for R: a
point module is isomorphic to R/I for a unique ideal I , and I is generated by a
codimension-1 subspace of Cx0+ · · ·+Cxn; conversely, if I is such an ideal, then
R/I is a point module. Under the equivalence QGr(R)−→∼ QCOH(Pn), M 7→ M̃ ,
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the point module R/I corresponds to the skyscraper sheaf Op at the point p ∈ Pn

where I vanishes. Similarly, if M is a line module for R, then M ∼= R/I for an ideal
I that is generated by a codimension-2 subspace of Cx0+ · · ·+Cxn and the zero
locus of I is a line in Pn , and this sets up a bijection between the lines in Pn and
the isomorphism classes of line modules. Indeed, there is a bijection between linear
subspaces of Pn and isomorphism classes of linear modules over the polynomial
ring R.

Theorem 2.2 [Levasseur and Smith 1993, Theorem 1.13]. Let R = k[x0, . . . , xn]

be a polynomial ring in n+1 variables, graded by setting deg(x j )= 1 for all j . Let
M be a finitely generated graded R-module. The following conditions on a graded
R-module M are equivalent:

(1) M is cyclic with Hilbert series (1− t)−d ;

(2) M ∼= R/R`⊥ for some codimension-d subspace ` ⊆ R1 or, equivalently, for
some (d−1)-dimensional linear subspace `⊆ P(R∗1);

(3) M is a Cohen–Macaulay R-module having GK dimension d and multiplicity 1.

Thus, linear modules of GK dimension d correspond to linear subspaces of Pn

having dimension d − 1.

2C2. Points, fat points, and lines in Projnc(R). For the noncommutative graded
algebras R in this paper, the points and lines in Projnc(R) are parametrized by
genuine (commutative) varieties [Artin et al. 1990; 1991].

Let R be any N-graded k-algebra such that R0 = k and R is generated by
R1 as a k-algebra. Let P(R∗1) denote the projective space whose points are the
1-dimensional subspaces of R∗1 = Homk(R1, k).

For V a linear subspace of R∗1 , define V⊥ := {x ∈ R1 | ξ(x)= 0 for all ξ ∈ V }.
Let

PR := {p ∈ P(R∗1) | R/Rp⊥ is a point module},

LR := {lines ` in P(R∗1) | R/R`⊥ is a line module}.

For the algebras in this paper there are moduli problems for which PR and LR are
fine moduli spaces; see [Artin et al. 1990, Corollary 3.13] and [Shelton and Vancliff
2002a, Corollary 1.5]. We call PR and LR the point scheme and line scheme for R.

Clearly, a line module R/R`⊥ surjects onto a point module R/Rp⊥ if and only
if p lies on the line `. Thus, the incidence relations between points and lines in
Projnc(R) coincides with the incidence relations between certain points and lines
in P(R∗1). In such a situation the phrase “p lies on `” is a statement about points
and lines in P(R∗1) and also a statement about points and lines in Projnc(R). If a
line module R/R`⊥ surjects onto a fat point module F in QGr(R) we say that the
corresponding fat point lies on the line ` and understand this as a statement about
the geometry of Projnc(R).
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Proposition 2.3 [Levasseur and Smith 1993]. The kernel of a surjective homomor-
phism ψ : M`→ Mp in Gr(S) from a line module to a point module is isomorphic
to a shifted line module M`′(−1).

Proof. There are elements u, v, w ∈ S1 for which there is a commutative diagram

M`

ψ

��

// S/Su+ Sv

ψ ′

��

Mp // S/Su+ Sv+ Sw

in which the horizontal arrows are isomorphisms and ψ ′ is the obvious map. The
kernel of ψ ′ is isomorphic to the submodule Sw= Su+Sv+Sw/Su+Sv. Because
M` is a critical Cohen–Macaulay module of GK dimension 2 and multiplicity 1, and
Mp has GK dimension 1, the kernel is a Cohen–Macaulay module of GK dimension
2 and multiplicity 1. By [Levasseur and Smith 1993, Proposition 2.12], the kernel
of ψ ′ is isomorphic to a shifted line module. �

The associated exact sequence 0→ M`′(−1)→ M`→ Mp→ 0 is the analogue
of an exact sequence 0→ M(λ′)→ M(λ)→ L → 0 in which M(λ′) and M(λ)
are Verma modules.

2C3. Noncommutative analogues of quadrics and P3. Let S be one of the algebras
in Section 2D. The Hilbert series of S is (1−t)−4, the same as that of the polynomial
ring on four variables. Furthermore, S has the “same” homological properties as
that polynomial ring and, as a consequence, it is a domain [Artin et al. 1991,
Theorem 3.9]. For these reasons we think of Projnc(S) as a noncommutative
analogue of P3.

If � is a homogeneous, degree-two, central element in S we call Projnc(S/(�)) a
quadric hypersurface in Projnc(S) and sometimes denote it by the symbols {�= 0}.
A line module S/S`⊥ is annihilated by � if and only if there is a surjective map
S/(�)→ S/S`⊥. If so we say that “the line ` lies on the quadric {� = 0}” and
interpret this as a statement about the geometry of Projnc(S).

2D. The algebras S. The algebras of interest to us are the noncommutative C-
algebras S with generators x0, x1, x2, x3 subject to the relations

(2-1)

[x0, x1] = 0, {x0, x1} = 2x0x1 = [x2, x3],

[x0, x2] = b2
{x1, x3}, {x0, x2} = [x3, x1],

[x0, x3] = −b2
{x1, x2}, {x0, x3} = [x1, x2],

where {x, x ′} = xx ′+ x ′x , [x, x ′] = xx ′− x ′x , and b ∈ C−{0,±i}.
The algebras S occupy an interesting position between the nondegenerate 4-

dimensional Sklyanin algebras and the quantized enveloping algebras Uq(sl2). We
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now introduce these algebras and, in Proposition 2.4 below, describe their relation
to S.

2D1. S is a degenerate Sklyanin algebra. A nondegenerate Sklyanin algebra is a
C-algebra S(α, β, γ ) with generators x0, x1, x2, x3 subject to the relations

(2-2)

[x0, x1] = α{x2, x3}, {x0, x1} = [x2, x3],

[x0, x2] = β{x1, x3}, {x0, x2} = [x3, x1],

[x0, x3] = γ {x1, x2}, {x0, x3} = [x1, x2],

where α, β, γ ∈ C are such that α + β + γ + αβγ = 0, and further satisfy the
nondegeneracy condition

(2-3) {α, β, γ } ∩ {0, 1,−1} =∅.

With this notation, S = S(0, b2,−b2), and is degenerate.
For the rest of the paper, S will denote S(0, b2,−b2) and S(α, β, γ ) will denote

a nondegenerate Sklyanin algebra.
The noncommutative space Projnc(S(α, β, γ )) is well understood. Its point

scheme was computed in [Smith and Stafford 1992], its lines and the incidence
relations between its points and lines were determined in [Levasseur and Smith
1993], and its fat points and the incidence relations between fat points and lines
were determined in [Smith and Staniszkis 1993]. A short account of these and
related results can be found in the survey article [Smith 1994]. In this paper we
carry out the same computations for S and compare them to what has been obtained
for nondegenerate S(α, β, γ ). This is the subject of Section 6.

2D2. S as a homogenization of Uq(sl(2,C)). The quantized enveloping algebra
Uq(sl2) is the C-algebra with generators e, f, k± subject to the relations

(2-4) ke= q2ek, k f = q−2 f k, kk−1
= k−1k= 1, and [e, f ] =

k− k−1

q − q−1 ,

where q 6= 0,±1,±i .
The representation theory of Uq(sl2) is the subject of books by Brown and

Goodearl [2002], Jantzen [1996], Kassel [1995], Klimyk and Schmüdgen [1997],
and others.1

1A slightly different algebra was studied by Jimbo [1985] and by Lusztig [1988]: they replace the
last of the above relations by [e, f ] = (k− k−1)/(q2

− q−2). Lusztig [1990] replaced that relation
by the one in (2-4) and that seems to have become the “official” quantized enveloping algebra of
sl(2,C) used by subsequent authors. We call the algebra studied in [Jimbo 1985] and [Lusztig 1988]
the “unofficial” quantized enveloping algebra of sl(2,C). That unofficial version is a quotient of the
algebra S in Proposition 2.4.
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Before showing that S is a homogenization of Uq(sl2), we introduce notation
that will be used throughout the paper:

(2-5)
q =

1− ib
1+ ib

, E =
i
2
(1− ib)(x2+ i x3), K = x0+ bx1,

κ =
1

q−1− q
, F =

i
2
(1+ ib)(x2− i x3), K ′ = x0− bx1.

Proposition 2.4. The algebra S is the C-algebra generated by E, F, K , K ′ modulo
the relations

(2-6)
K E = q E K , K F = q−1 F K , K K ′ = K ′K ,

K ′E = q−1 E K ′, K ′F = q F K ′, [E, F] =
K 2
− K ′ 2

q − q−1 .

Further, S[(K K ′)−1
]0 is isomorphic to Uq(sl2) via

(2-7) E K−1
7→
√

qe, F(K ′)−1
7→
√

q f, K (K ′)−1
7→ k,

where
√

q is a fixed square root of q.

Proof. A few tedious but straightforward calculations show that E, F, K , K ′ satisfy
the relations in (2-6). For example, K E = q E K because

(1+ ib)K E − (1− ib)E K

= [K , E] + ib{K , E}

=
i
2
(1− ib)

(
[x0, x2] + i[x0, x3] + b[x1, x2] + ib[x1, x3]

+ ib{x0, x2}− b{x0, x3}+ ib2
{x1, x2}− b2

{x1, x3}
)

=
i
2
(1− ib)

(
[x0, x2] − b2

{x3, x1}+ i[x0, x3] + ib2
{x1, x2}

+ ib{x0, x2}− ib[x3, x1] − b{x0, x3}+ b[x1, x2]
)

= 0.

Similar calculations show K F = q−1 F K , K ′E = q−1 E K ′ and K ′F = q F K ′.
Since K 2

− K ′ 2 = 4bx0x1 = 2b{x0, x1} and i
2(1− ib) · i

2(1+ ib)=−1
4(1+ b2),

we have

−
4

1+ b2 [E, F] + ib−1(K 2
− K ′ 2)= 2i[x3, x2] + 2i{x0, x1} = 0.

However,

q − q−1
=

1− ib
1+ ib

−
1+ ib
1− ib

=−
4ib

1+ b2 ,

so

[E, F] = −
1+ b2

4ib
(K 2
− K ′ 2)=

K 2
− K ′ 2

q − q−1 .
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For the second part of the proposition, it is clear that S[(K K ′)−1
]0 is generated

by

e := 1
√

q
E K−1, f := 1

√
q

F(K ′)−1, k := K (K ′)−1, and k−1.

Similar straightforward calculations then show that these elements satisfy the
relations in (2-4). Hence S[(K K ′)−1

]0 ∼=Uq(sl2). �

Since S is an Artin–Schelter regular algebra of global dimension 4 and has Hilbert
series (1−t)−4 we think of it as a homogeneous coordinate ring of a noncommutative
analogue of P3. Since SK = K S and SK ′ = K ′S we think of S/(K ) and S/(K ′)
as homogeneous coordinate rings of noncommutative analogues of P2.

Further, we think of S[(K K ′)−1
]0, i.e., Uq(sl2), as the coordinate ring of the

noncommutative affine scheme that is the “open complement” of the “union” of the
“hyperplanes” {K = 0} and {K ′ = 0}. These “hyperplanes” are effective divisors
in the sense of Van den Bergh [2001, §3.6]. From this perspective, Uq(sl2) can be
considered an “affine piece” of S. As explained in Section 1A2, this point of view
can be formalized in terms of an adjoint pair of functors j∗ a j∗.

The left adjoint j∗ :QGr(S)→Mod(S[(K K ′)−1
]0) sends a graded S-module, X ,

viewed as an object in QGr(S) to X [(K K ′)−1
]0∈Mod(S[(K K ′)−1

]0). The action of
j∗ on a morphism f :M→ N in QGr(S) is defined by choosing a lift of f to a mor-
phism φ in Gr(S), then applying the localization functor X 7→ X [(K K ′)−1

]0 to φ.

3. Point and line modules for D, a Zhang twist of S

In this section, we replace S by a Zhang twist of itself [Zhang 1996]. The appropriate
Zhang twist is an algebra D that has a central element z ∈ D1 such that D/(z) a
3-dimensional Artin–Schelter regular algebra. In the terminology of [Le Bruyn
et al. 1996], this makes D a central extension of D/(z). We use the results in that
paper to determine the point and line modules for D. The point and line modules
for D/(z) are already understood due to [Artin et al. 1990; 1991].

In Section 4 we use Zhang’s fundamental equivalence Gr(D)≡ Gr(S) [Zhang
1996] to transfer the results about the point and line modules for D to S.

3A. The Zhang twist. Let S be a graded k-algebra and φ a degree-preserving
k-algebra automorphism of S. Define D to be the k-algebra that is equal to S as a
graded k-vector space, but endowed with the new multiplication

c ∗ d := φn(c)d

for c ∈ D = S and d ∈ Dn = Sn . We call D a Zhang twist of S. Zhang [1996]
showed that there is an equivalence of categories 8 : Gr(S)→ Gr(D) defined as
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follows: if M is a graded left S-module, then 8M is M as a graded k-vector space,
but endowed with the D-action

c ∗m := φn(c)m

for c ∈ D = S and m ∈ (8M)n = Mn .
On morphisms 8 is the “identity”: if f ∈ HomGr(S)(M,M ′), then 8( f ) = f

considered now as a morphism 8M → 8M ′. Note that f is a morphism of
graded D-modules because if c ∈ D and m ∈ Mn , then f (c ∗m)= f (φn(c)m)=
φn(c) f (m)= c ∗ f (m).

We use the graded algebra automorphism φ : S→ S defined by

(3-1) φ(s) := K ′s(K ′)−1.

This is a homomorphism because K ′S = SK ′, and is an automorphism because S
is a 4-dimensional Artin–Schelter regular algebra and therefore a domain [Artin
et al. 1991, Theorem 3.9].

Proposition 3.1. Let D be the Zhang twist of S with respect to φ (3-1). Then D is
isomorphic to C〈E, F, K , K ′〉 modulo the relations

[K ′, E] = [K ′, F] = [K ′, K ] = 0,

K E = q2 E K , K F = q−2 F K , q E F − q−1 F E =
K 2
− K ′ 2

q − q−1 .

In particular, K ′ belongs to the center of D.

Proof. Since φ(E)= q−1 E , φ(F)= q F , φ(K )= K , and φ(K ′)= K ′,

K ′ ∗ E = φ(K ′)E = K ′E = q−1 E K ′ = φ(E)K ′ = E ∗ K ′,

K ′ ∗ F = φ(K ′)F = K ′F = q F K ′ = φ(F)K ′ = F ∗ K ′,

K ∗ E = φ(K )E = K E = q E K = q2φ(E)K = q2 E ∗ K ,

K ∗ F = φ(K )F = K F = q−1 F K = q−2φ(F)K = q−2 F ∗ K ,
and

q E ∗ F − q−1 F ∗ E = E F − F E =
K 2
− K ′ 2

q − q−1 .

By the very definition of φ, K ′ belongs to the center of D. �

Corollary 3.2. Let A be C〈E, F, K 〉 modulo the relations

K E = q2 E K , K F = q−2 F K , q E F − q−1 F E =
K 2

q − q−1 .

Then A∼= D/(K ′) and D is a central extension of A in the sense of [Le Bruyn et al.
1996, Definition 3.1.1].
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3B. Applying the results in [Le Bruyn et al. 1996]. In the notation of [Le Bruyn
et al. 1996], our (E, F, K , K ′) is their (x1, x2, x3, z). Following the notation of
equation (3.1) and Section 4.2 in that paper, if A = C〈x1, x2, x3〉/( f1, f2, f3), then
the defining relations for a central extension D of A can be written as2

zxi − xi z = 0, j = 1, 2, 3,

g j := f j + zlj +αj z2
= 0, j = 1, 2, 3,

for some lj ∈ A1 and αj ∈ C. For our D,

(3-2)

f :=

 f1

f2

f3

=
 −q3K F + q F K

q−3K E − q−1 E K
q E F − q−1 F E + κK 2

 , l :=

l1

l2

l3

=
0

0
0

 ,
α :=

α1

α2

α3

=
 0

0
−κ

 .
Thus

(3-3) g :=

g1

g2

g3

=
 −q3K F + q F K

q−3K E − q−1 E K
q E F − q−1 F E + κK 2

− κK ′ 2

 .
The relations of A are said to be in standard form [Artin et al. 1990, p. 34] if, in the
notation of [Le Bruyn et al. 1996, p. 181], there is a 3× 3 matrix M , and a matrix
Q ∈ GL(3), such that f = M x and xTM = (Q f )T, where f T

= ( f1, f2, f3) and
A is generated as an algebra by the entries of the column vector x.

Proposition 3.3. The relations f for A in (3-2) are in standard form, where

(3-4)
x = (E, F, K )T,

Q = diag(q−4, q4, 1),

and

(3-5) M =

 0 −q3K q F
q−3K 0 −q−1 E
−q−1 F q E κK

 .
Proof. It is easy to check that f = M x. On the other hand,

xTM= (E,F,K )M= (q−3FK−q−1K F,−q3EK+q K E, q EF−q−1FE+κK 2),

2In the notation of [Le Bruyn et al. 1996, Theorem 3.1.3], γ j = 0 for all j .
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so

(xTM)T =

 q−3 F K − q−1K F
−q3 E K + q K E

q E F − q−1 F E + κK 2

=
q−4 0 0

0 q4 0
0 0 1

 f .

Thus xTM = (Q f )T as claimed. �

We use (E, F, K ) as homogeneous coordinates on the plane P(A∗1) ∼= P2 and
identify this plane with the hyperplane {K ′ = 0} in P(D∗1).

Proposition 3.4. The point scheme (PA, σA) for A is the cubic divisor on {K ′ =
0} = P(A∗1) consisting of the line K = 0 and the conic κ2K 2

+ E F = 0. The line
meets the conic at the points (1, 0, 0) and (0, 1, 0).

(1) If (ξ1, ξ2, ξ3) lies on the conic κ2K 2
+ E F = 0, then

σA(ξ1, ξ2, ξ3)= (q2ξ1, q−2ξ2, ξ3).

(2) If (ξ1, ξ2, ξ3) lies on the line K = 0; i.e., ξ3 = 0, then

σA(ξ1, ξ2, 0)= (qξ1, q−1ξ2, 0).

Proof. By [Artin et al. 1990], the subscheme of P(A∗1) parametrizing the left point
modules for A is given by the equation

det

 0 −q2K F
q−2K 0 −E
−q−1 F q E κK

= 0.

The vanishing locus of this determinant is the union of the line K = 0 and the
smooth conic κ2K 2

+ E F = 0. The line meets the conic at the points (1, 0, 0) and
(0, 1, 0).

We denote this cubic curve by PA. The point module corresponding to a point
p ∈ PA is Mp := A/Ap⊥, where p⊥ is the subspace of A1 consisting of the linear
forms that vanish at p.

If Mp is a point module for A so is (Mp)≥1(1). In keeping with the notation in
[Le Bruyn et al. 1996], we write σA (in this proof we will use σ for brevity) for the
automorphism of PA such that

(3-6) Mσ−1(p)
∼= (Mp)≥1(1).

To determine σ explicitly, let p ∈ PA and suppose that p = (ξ ′1, ξ
′

2, ξ
′

3) and
σ−1(p) = (ξ1, ξ2, ξ3) with respect to the homogeneous coordinates (E, F, K ).
Then Mp has a homogeneous basis e0, e1, . . . , where deg(en)= n, and

Ee0 = ξ
′

1e1, Fe0 = ξ
′

2e1, K e0 = ξ
′

3e1,
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and
Ee1 = ξ1e2, Fe1 = ξ2e2, K e1 = ξ3e2.

Since K E − q2 E K = 0 in A, (K E − q2 E K )e0 = 0; i.e., ξ3ξ
′

1 − q2ξ1ξ
′

3 = 0.
The other two relations for A in Corollary 3.2 imply ξ3ξ

′

2 − q−2ξ2ξ
′

3 = 0 and
qξ1ξ

′

2 − q−1ξ2ξ
′

1 + κξ3ξ
′

3 = 0. These equalities can be expressed as the single
equality  0 ξ3 −q−2ξ2

ξ3 0 −q2ξ1

−q−1ξ2 qξ1 κξ3

ξ ′1ξ ′2
ξ ′3

= 0.

Since σ(ξ1, ξ2, ξ3)= (ξ
′

1, ξ
′

2, ξ
′

3), we can now determine σ .
If (ξ1, ξ2, ξ3) lies on the line K = 0; i.e., ξ3 = 0, then 0 0 −q−2ξ2

0 0 −q2ξ1

−q−1ξ2 qξ1 0

ξ ′1ξ ′2
ξ ′3

= 0,

so σ(ξ1, ξ2, 0)= (qξ1, q−1ξ2, 0). If (ξ1, ξ2, ξ3) lies on the conic κ2K 2
+ E F = 0,

then  0 ξ3 −q−2ξ2

ξ3 0 −q2ξ1

−q−1ξ2 qξ1 κξ3

 q2ξ1

q−2ξ2

ξ3

= 0,

so σ(ξ1, ξ2, ξ3)= (q2ξ1, q−2ξ2, ξ3). �

The algebra A is of Type S′1 in the terminology of [Artin et al. 1990, Proposition
4.13, p. 54]. See also [Le Bruyn et al. 1996, p. 187], where it is stated that D is the
unique central extension of A that is not a polynomial extension, up to the notion
of equivalence at [Le Bruyn et al. 1996, §3.1, p. 180].

In the next result, which is similar to Proposition 3.4, we use (E, F, K ′) as
homogeneous coordinate functions on the plane K = 0 in P(D∗1).

Proposition 3.5. Let A′ = D/(K ). The point scheme (PA′, σA′) for A′ is the cubic
divisor on the plane K = 0 consisting of the line K ′ = 0 and the smooth conic
E F + κ2K ′ 2 = 0. The line meets the conic at the points (1, 0, 0) and (0, 1, 0).

(1) If (ξ1, ξ2, ξ4) lies on the conic κ2K ′ 2+ E F = 0, then

σA′(ξ1, ξ2, ξ4)= (ξ1, ξ2, ξ4).

(2) If (ξ1, ξ2, ξ4) lies on the line K = 0; i.e., ξ4 = 0, then

σA′(ξ1, ξ2, 0)= (qξ2, q−1ξ1, 0).
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Proof. Since [E, K ′] = [F, K ′] = q E F−q−1 F E−κK ′ 2= 0 are defining relations
for A′ = C[E, F, K ′], the left point modules for A′ are naturally parametrized by
the scheme-theoretic zero locus of

det

 0 K ′ −F
K ′ 0 −E
−q−1 F q E −κK ′


in P(A′ ∗1 ), namely the union of the line K ′ = 0 and the smooth conic κ2K ′2 +
E F = 0.

We denote this cubic curve by PA′ and define σA′ : PA′→ PA′ (in this proof we
will use σ for brevity) by the requirement that Mσ−1(p)

∼= (Mp)≥1(1) for all p ∈PA′ .
Calculations like those in Proposition 3.4 show that σ is the identity on the conic
and is given by σ(ξ1, ξ2, 0)= (qξ2, q−1ξ1, 0) on the line K ′ = 0. �

3C. The point scheme for D. By [Le Bruyn et al. 1996, Theorem 4.2.2] the point
scheme (PD, σD) for D exists. That result also gives an explicit description of PD .
It is also pointed out there that the restriction of σD to PD −PA is the identity.

Warning: The g1, g2, g3 in (3-3) belong to the tensor algebra T (D1). The
g1, g2, g3 in the next result are the images of the g1, g2, g3 in (3-3) in the polynomial
ring generated by the indeterminates E, F, K , K ′.

Proposition 3.6 [Le Bruyn et al. 1996, Lemma 4.2.1 and Theorem 4.2.2]. Let
x1 = E , x2 = F , and x3 = K . The equations for PD are

(1) g1 = g2 = g3 = 0 on PD ∩ {K ′ 6= 0}, whereg1

g2

g3

=
 (q − q3)F K

(q−3
− q−1)E K

−κ−1 E F + κK 2
− κK ′ 2

= κ−1

 q2 F K
q−2 E K

−E F + κ2(K 2
− K ′ 2)

 ,
(2) K ′g1 = K ′g2 = K ′g3 = hi = 0 on PD ∩ {xi 6= 0}, whereh1

h2

h3

= κ−1K

 E(E F + κ2K 2
− κ2q2K ′ 2)

F(E F + κ2K 2
− κ2q−2K ′ 2)

K (E F + κ2K 2
− κ2K ′ 2)

 .
Proof. The polynomials h1, h2, and h3 are defined in [Le Bruyn et al. 1996, Lemma
4.2.1].

Denote the columns of M by M1, M2, M3, so that M = [M1 M2 M3], and note
that

det(M)= (κK 2
+ κ−1 E F)K .
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In this case, since l = 0, the definitions of h1, h2, and h3, in [Le Bruyn et al.
1996, Lemma 4.2.1] become

h1 = E det(M)+ z2 det[α M2 M3],

h2 = F det(M)+ z2 det[M1 α M3],

h3 = K det(M)+ z2 det[M1 M2 α].

Since α = (0, 0,−κ)T,

h1 = E K (κK 2
+ κ−1 E F)− κq2K ′ 2 E K ,

h2 = F K (κK 2
+ κ−1 E F)− κq−2K ′ 2 F K ,

h3 = K 2(κK 2
+ κ−1 E F)− κK ′ 2K 2.

Hence the result. �

Theorem 3.7. The point scheme PD is reduced and is the union of

(1) the conics E F + κ2K 2
= K ′ = 0 and E F + κ2K ′ 2 = K = 0,

(2) the line K = K ′ = 0, and

(3) the points (0, 0, 1,±1).

Let p ∈ PD .

(4) If p = (ξ1, ξ2, ξ3, 0) is on the conic E F + κ2K 2
= K ′ = 0, then σD(p) =

(q2ξ1, q−2ξ2, ξ3, 0).

(5) If p = (ξ1, ξ2, 0, ξ4) is on the conic E F + κ2K ′ 2 = K = 0, then σD(p)= p.

(6) If p= (ξ1, ξ2, 0, 0) is on the line K = K ′= 0, then σD(p)= (qξ1, q−1ξ2, 0, 0).

(7) If p = (0, 0, 1,±1), then σD(p)= p.

Proof. By [Le Bruyn et al. 1996, Theorem 4.2.2], (PD)red=(PA)red∪V (g1,g2,g3)red,
where V (g1, g2, g3) is the scheme-theoretic zero locus of the ideal (E K , F K ,
E F − κ2(K ′ 2− K 2)). Certainly PA is reduced. Straightforward computations on
the open affine pieces E 6= 0, F 6= 0, K 6= 0, and K ′ 6= 0, show that V (g1, g2, g3)

is reduced. Hence PD is reduced.
If p = (0, 0, 1,±1), then Mp = D/Dp⊥ = D/DE + DF + D(K ∓ K ′). But

DE+DF+D(K∓K ′) is a two-sided ideal and the quotient by it is the polynomial
ring in one variable. Hence σD(p)= p. �

3D. The line modules for D. We now use the results in [Le Bruyn et al. 1996, §5]
to characterize the line modules for D. Recall from Section 2C2 that

LD = {lines ` in P(D∗1) | D/D`⊥ is a line module}.
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For each point p ∈ PA, let

Lp := {` ∈ LD | p ∈ `}.
Then

LD = {lines on the plane K ′ = 0} ∪
⋃

p∈PA

Lp.

Proposition 3.8. Let M be a line module for D.

(1) There is a unique line ` in P(D∗1) such that M ∼= D/D`⊥.

(2) If K ′M = 0, then `⊆ {K ′ = 0} and M is a line module for A = D/(K ′).

(3) The line modules for A are, up to isomorphism, A/A`⊥, where `⊆ {K ′ = 0}.

(4) If K ′M 6= 0, then M/K ′M is a point module for A and isomorphic to A/Ap⊥,
where {p} = `∩ {K ′ = 0}.

Proof. (1) This is a consequence of [Levasseur and Smith 1993, Proposition 2.8],
which says that if A is a noetherian, Auslander regular, graded k-algebra having
Hilbert series (1− t)−4, and is generated by A1, and satisfies the Cohen–Macaulay
property, then there is a bijection

{lines u= v= 0 in P(A∗1) | there is a rank 2 relation a⊗ u− b⊗ v}←→ A
Au+Av

between certain lines in P(A∗1) and the set of isomorphism classes of line modules
for A.

(2) This is obvious.

(3) Since A is a 3-dimensional Artin–Schelter regular algebra, by [Artin et al. 1990],
the isoclasses of the line modules for A are the modules A/A`⊥, where ` ranges
over all lines in P(A∗1)= {K

′
= 0}.

(4) See the discussion at [Le Bruyn et al. 1996, p. 204]. �

3D1. The quadrics Q p. By [Le Bruyn et al. 1996, Theorem 5.1.6], if p ∈PA there
is a quadric Q p containing p such that

Lp =
{
lines `⊆ {K ′ = 0} such that p ∈ `

}
∪
{
lines `⊆ Q p such that p ∈ `

}
.

By [Le Bruyn et al. 1996, Proposition 5.1.7], if σD(p) = (ζ1, ζ2, ζ3, 0), then Q p

is given by the equation ζTQ g = 0, where ζ = (ζ1, ζ2, ζ3)
T, Q is the matrix in

Proposition 3.3, g = (g1, g2, g3)
T
= f +αK ′ 2, f is the image in the polynomial

ring C[E, F, K ] of the column vector f introduced in the proof of Proposition 3.3,
and α = (0, 0,−κ)T. Thus, Q p is given by the equation

(ζ1, ζ2, ζ3)

q−4 0 0
0 q4 0
0 0 1

κ−1

 q2 F K
q−2 E K

−E F + κ2K 2
− κ2K ′ 2

= 0
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or, equivalently, by

κ−1(ζ1, ζ2, ζ3)

 q−2 F K
q2 E K

−E F + κ2K 2
− κ2K ′ 2

= 0.

The next result determines Lp for each p ∈PA. We take coordinates with respect
to the coordinate functions (E, F, K , K ′).

Proposition 3.9. Suppose p = (ξ1, ξ2, ξ3, 0) ∈ PA.

(1) If p = (1, 0, 0, 0), then

Lp =
{
lines `⊆ {F = 0} ∪ {K = 0} ∪ {K ′ = 0} such that p ∈ `

}
.

(2) If p = (0, 1, 0, 0), then

Lp =
{
lines `⊆ {E = 0} ∪ {K = 0} ∪ {K ′ = 0} such that p ∈ `

}
.

(3) If ξ3 = 0 and ξ1ξ2 6= 0, then

Lp =
{
lines `⊆ {K = 0} ∪ {K ′ = 0} such that p ∈ `

}
.

(4) If ξ3 6= 0, then Q p is the cone with vertex p given by the equation

ξ1 F K + ξ2 E K + ξ3(−E F + κ2K 2
− κ2K ′ 2)= 0,

and
Lp =

{
lines `⊆ Q p ∪ {K ′ = 0} such that p ∈ `

}
.

Proof. (1)–(3) Suppose ξ3 = 0. Then p is on the line {K = K ′ = 0} whence
σD(p)= (ξ1, ξ2, 0, 0) and Q p is given by the equation

κ−1(ξ1q−2 F + ξ2q2 E)K = 0.

Thus, ` either lies on the pair of planes {K K ′=0} or the plane {ξ1q−2 F+ξ2q2 E=0}.
Suppose ` 6⊆ {K K ′ = 0}. We are assuming that q4

+ 1 6= 0 so, if p is neither
(1, 0, 0, 0) nor (0, 1, 0, 0), then ξ1q−2 F+ξ2q2 E does not vanish at p whence there
are no lines through p that lie on the plane {ξ1q−2 F + ξ2q2 E = 0}.

Suppose p = (1, 0, 0, 0). Then Q p = {F K = 0} and Lp consists of the lines
through p that are contained in {F = 0} ∪ {K = 0}. Similarly, if p = (0, 1, 0, 0),
then Lp consists of the lines through p that are contained in {E = 0} ∪ {K = 0}.

(4) Suppose ξ3 6= 0. Then p lies on the conic κ2K 2
+ E F = K ′ = 0 so σA(p)=

(q2ξ1, q−2ξ2, ξ3, 0). Thus, Q p is given by the equation

κ−1(q2ξ1, q−2ξ2, ξ3)

 q−2 F K
q2 E K

−E F + κ2K 2
− κ2K ′ 2

= 0;
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i.e., by the equation ξ1 F K + ξ2 E K + ξ3(−E F+κ2K 2
−κ2K ′ 2)= 0. The quadric

Q p is singular at p (and is therefore a cone) because the partial derivatives at the
point p = (ξ1, ξ2, ξ3, 0) are

∂E : (ξ2K − ξ3 F)|p = 0,

∂F : (ξ1K − ξ3 E)|p = 0,

∂K : (ξ1 F + ξ2 E + 2ξ3κ
2K )|p = 0,

∂K ′ : 2ξ3κ
2K ′|p = 0.

It follows that every line contained in Q p passes through p, and hence all such lines
correspond to line modules by [Le Bruyn et al. 1996, Theorem 5.1.6], as recalled
above in Section 3D1. �

Let C denote the conic K ′ = κ2K 2
+ E F = 0 and C ′ the conic K = κ2K ′ 2+

E F = 0. The two isolated points in PD , namely (0, 0, 1,±1), lie on Q p for every
p ∈ {K ′ = κ2K 2

+ E F = 0} so there is a pencil of lines (or two pencils) through
each of these points that correspond to line modules.

Since Q p is singular at p, [Le Bruyn et al. 1996, Lemma 5.1.10] implies that
p= p∨ in the notation defined on page 204 of loc. cit. Thus, according to [Le Bruyn
et al. 1996, Definition 5.1.9], p is of the third kind. Thus, we are in the last case of
[Le Bruyn et al. 1996, Table 1].

4. Points, lines, and quadrics in Projnc(S)

We now transfer the results in Section 3 from D to S. Recall that the automorphism
φ : S→ S defined in (3-1) induces an equivalence of categories 8 :Gr(S)→Gr(D).
We first note how φ and 8 act on linear modules.

4A. Left ideals and linear modules over S and D. If W is a graded subspace of
S = D, then Dm ∗Wj = φ

j (Sm)Wj = Sm Wj so, dropping the ∗, DW = SW , i.e.,
the left ideal of D generated by W is equal to the left ideal of S generated by W .
In particular, if I is a graded left ideal of S, then I = SI = DI so I is also a left
ideal of D. Likewise, if J is graded left ideal of D, then J = D J = S J so J is also
a left ideal of S.

In summary, D and S have exactly the same left ideals.
Let I be a graded left ideal of S. The equality S/I = D/I is an equality

in the category of graded vector spaces. In fact, more is true: 8(S/I ) = D/I
in the category Gr(D). To see this, observe, first, that the result of applying 8
to the exact sequence 0→ I → S → S/I → 0 in Gr(S) is the exact sequence
0→ I → D→8(S/I )→ 0 in Gr(D), where I → S and I → D are the inclusion
maps, then use the fact that 8(S/I )= S/I = D/I as graded vector spaces.
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Now let M be a d-linear S-module. Then M ∼= S/I for a unique graded left ideal
I in S. Hence 8M ∼=8(S/I )= D/I . In particular, 8(M) is a d-linear D-module.
Hence

{left ideals I in S | S/I is d-linear} = {left ideals I in D | D/I is d-linear}.

Similarly, if S0 = k, then

{subspaces W⊂ S1 | S/SW is d-linear}={subspaces W⊂D1 |D/DW is d-linear}.

Lemma 4.1. (1) PS = PD and LS = LD .

(2) If σS : PS → PS is a bijection such that (Mp)≥1(1) ∼= Mσ−1
S p for all p ∈ PS ,

then there is a bijection σD : PD→ PD such that (Mp)≥1(1)∼= Mσ−1
D p for all

p ∈ PD , namely σD = σSφ.

Proof. (1) This follows from the discussion prior to the lemma.

(2) Let p ∈ PS . Suppose that p = (ξ ′0, . . . , ξ
′
n) and σ−1

S (p)= (ξ0, . . . , ξn) with re-
spect to an ordered basis x1, . . . , xn for S1. There is a homogeneous basis e0, e1, . . . ,
where deg(en)= n, for the S-module Mp such that xi e0 = ξ

′

i e1 and xi e1 = ξi e2 for
all i . Hence (ξi x j − ξ j xi )e1 = 0 for all 1≤ i, j ≤ n.

Since
σ−1

D (p)⊥ = {x ∈ D1 | x ∗ e1 = 0}

= {x ∈ D1 | φ(x)e1 = 0}

= {φ−1(x) ∈ D1 | xe1 = 0}

= φ−1({x ∈ D1 = S1 | xe1 = 0})

= φ−1(σ−1
S (p)⊥)

= φ−1(σ−1
S (p))⊥,

σ−1
D = φ

−1σ−1
S and σD = σSφ. �

4B. Points in Projnc(S), the point scheme of S, and point modules. We restate
Lemma 4.1(1) explicitly in the following theorem.

Theorem 4.2. The point scheme PS is reduced. It is the union of

(1) the conics E F + κ2K 2
= K ′ = 0 and E F + κ2K ′ 2 = K = 0,

(2) the line K = K ′ = 0, and

(3) the points (0, 0, 1,±1).

Furthermore,

(4) if p = (ξ1, ξ2, ξ3, 0) is on the conic E F + κ2K 2
= K ′ = 0, then σS(p) =

(qξ1, q−1ξ2, ξ3, 0);
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(5) if p = (ξ1, ξ2, 0, ξ4) is on the conic E F + κ2K ′ 2 = K = 0, then σS(p) =
(q−1ξ1, qξ2, 0, ξ4);

(6) if p = (ξ1, ξ2, 0, 0) is on the line K = K ′ = 0, then σS(p)= p;

(7) if p = (0, 0, 1,±1), then σS(p)= p.

Proof. By Lemma 4.1, PS = PD. However, PD is reduced so PS is reduced. By
Theorem 3.7, the irreducible components of PD are the varieties in parts (1), (2)
and (3) of this theorem. Hence the same is true of PS .

Now suppose there is an ordered basis x1, . . . , xn for S1 and scalars λ1, . . . , λn

such that φ(xi )=λi xi for all i . Let p= (ξ1, . . . , ξn)∈P(S∗1 ), where the coordinates
are written with respect to the ordered basis x1, . . . , xn . Let ξ be the point in S∗1
with coordinates (ξ1, . . . , ξn); i.e., xi (ξ) = ξi or, equivalently, ξ(xi ) = ξi . Since
φ(ξ)(xi )= ξ(φ

−1xi )= ξ(λ
−1
i xi ), φ(ξ)= (λ−1

1 ξ1, . . . , λ
−1
n ξn). Hence

φ(p)= (λ−1
1 ξ1, . . . , λ

−1
n ξn).

Note that E , F , K , and K ′ in S are eigenvectors for φ with eigenvalues q−1,
q, 1, and 1, respectively. Thus if p = (ξ1, ξ2, ξ3, ξ4) ∈ P(S∗1 ) with respect to
the ordered basis E, F, K , K ′, then φ(p) = (qξ1, q−1ξ2, ξ3, ξ4) and φ−1(p) =
(q−1ξ1, qξ2, ξ3, ξ4).

We now use the description of σD in Theorem 3.7 to obtain:

(1) If p=(ξ1, ξ2, ξ3, 0)∈{E F+κ2K 2
=K ′=0}, then σD(p)=(q2ξ1,q−2ξ2,ξ3,0)

so σS(p)= σDφ
−1(p)= (qξ1, q−1ξ2, ξ3, 0).

(2) If p = (ξ1, ξ2, 0, ξ4) ∈ {E F + κ2K ′ 2 = K = 0}, then σD(p)= p so σS(p)=
σDφ

−1(p)= (q−1ξ1, qξ2, ξ3, 0).

(3) If p = (ξ1, ξ2, 0, 0) ∈ {K = K ′ = 0}, then σD(p) = (qξ1, q−1ξ2, 0, 0) so
σS(p)= φ−1(p)= (ξ1, ξ2, 0, 0).

(4) If p = (0, 0, 1,±1), then σD(p)= p so σS(p)= φ−1(p)= p. �

The algebra D is less symmetric than S: the fact that σD is the identity on one
of the conics but not on the other indicates a certain asymmetry about D. The
asymmetry is a result of the fact that we favored K ′ over K when we formed the
Zhang twist of S which made K ′, but not K , a central element. Theorem 4.2 shows
that the symmetry is restored when the results for PD are transferred to PS .

4C. Lines and quadrics in Projnc(S). Proposition 3.9 classified the line modules
for D, and therefore the line modules for S. Theorem 4.5 below gives a new
description of the line modules for S: it says that the line modules correspond
to the lines lying on a certain pencil of quadrics. This is analogous to the de-
scription in [Le Bruyn and Smith 1993, Theorem 2] of the line modules for the
homogenized enveloping algebra of sl2 and the description in [Levasseur and Smith
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1993, Theorem 4.5] of the line modules for the 4-dimensional Sklyanin algebra
S(α, β, γ ).

The new description provides a unifying picture. The pencil of quadrics becomes
more degenerate as one passes from the S(α, β, γ )’s to the homogenizations of
the various Uq(sl2) and more degenerate still for H(sl2). The pencil for H(sl2)
contains a double plane t2

= 0, that for S contains the pair of planes {K K ′ = 0},
and that for S(α, β, γ ) contains 4 cones and the other quadrics in the pencil are
smooth.

The vertices of the cones in each pencil play a special role: for H(sl2) there is
only one cone and its vertex corresponds to the trivial representation of U (sl2);
for S there are two cones and their vertices correspond to the two 1-dimensional
representations of Uq(sl2); for S(α, β, γ ) the vertices of the four cones “correspond”
to the four special 1-dimensional representations.

4C1. The line through two points (ξ1, ξ2, ξ3, 0) and (η1, η2, 0, η4) in P(S∗1 ) is given
by the equations

(4-1) ξ3η4 E − ξ1η4K − ξ3η1K ′ = ξ3η4 F − ξ2η4K − ξ3η2K ′ = 0.

4C2. The pencil of quadrics Q(λ)⊆ P(S∗1 ). For each λ ∈ P1, let Q(λ)⊆ P(D∗1)
be the quadric where

gλ := κ−2 E F + K 2
− (λ+ λ−1)K K ′+ K ′ 2

vanishes. The points on the conics

C ′ : κ2K ′ 2+ E F = K = 0,

C : κ2K 2
+ E F = K ′ = 0

correspond to point modules for S. If λ 6= 0,∞, then

C ′ = Q(λ)∩ {K = 0} and C = Q(λ)∩ {K ′ = 0}.

Proposition 4.3. (1) The base locus of the pencil Q(λ) is C ∪C ′.

(2) The Q(λ)’s are the only quadrics that contain C ∪C ′.

(3) The singular quadrics in the pencil are the cones Q(±1) with vertices at
(0, 0, 1,±1) respectively, and Q(0)= Q(∞)= {K K ′ = 0}.

(4) The lines on Q(1) are κ−1 E − s(K − K ′)= sκ−1 F + (K − K ′)= 0, s ∈ P1,
and the lines on Q(−1) are κ−1 E − s(K + K ′) = sκ−1 F + (K + K ′) = 0,
s ∈ P1.
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(5) Suppose λ /∈ {0,±1,∞}. The two rulings on Q(λ) are

κ−1 E − s(K − λK ′)= sκ−1 F + (K − λ−1K ′)= 0, s ∈ P1,(4-2)

κ−1 E − s(K − λ−1K ′)= sκ−1 F + (K − λK ′)= 0, s ∈ P1.(4-3)

Proof. (1) The base locus is, by definition, the intersection of all Q(µ) so is given
by the equations K K ′ = κ−2 E F+K 2

+K ′ 2 = 0 so is {K ′ = κ−2 E F+K 2
= 0}∪

{K = κ−2 E F + K ′ 2 = 0}.

(2), (3) The proofs are straightforward. To prove (3) observe that the determinant
of the symmetric matrix representing the gλ has zeroes at λ = ±1 and a zero at
λ= 0,∞.

(4), (5) Let ` be the line defined by (4-2). Suppose s /∈ {0,∞}. Then κ−1 E =
s(K−λK ′) and sκ−1F=−(K−λ−1K ′) on `, so sκ−2EF=−s(K−λK ′)(K−λ−1K ′)
on `. Canceling s, this says that κ−2 E F + (K − λK ′)(K − λ−1K ′) vanishes on `.
Since the equation for Q(λ) can be written as κ−2 E F+(K−λK ′)(K−λ−1K ′)= 0,
` ⊆ Q(λ). If s = 0, then ` is the line E = K − λ−1K ′ = 0 which is on Q(λ). If
s =∞, then ` is the line K + λ−1K ′ = F = 0 which is on Q(λ). The other case,
(4-3), is similar. �

4C3. There are exactly four singular quadrics in a generic pencil of quadrics
in P3. The point modules for the 4-dimensional Sklyanin algebras S(α, β, γ ) are
parametrized by a quartic elliptic curve E ⊆ P3 and 4 isolated points that are the
vertices of the singular quadrics that contain E . The point modules corresponding to
those isolated points correspond to the four 1-parameter families of 1-dimensional
representations of a 4-dimensional Sklyanin algebra.

4C4. The vertices of the cones Q(±1) are the points (0, 0, 1,±1). These are
the isolated points in the point scheme PS (see Theorem 4.2). Later, we will see
that the points (0, 0, 1,±1) correspond to the two 1-dimensional Uq(sl2)-modules.
More precisely, if p is one of those points, then Mp[(K K ′)−1

]0 is a 1-dimensional
Uq(sl2)-module.

4C5. The lines on Q(1) meet C ′ and C at points of the form (ξ1, ξ2, ξ3, 0) and
(ξ1, ξ2, 0,−ξ3) respectively. The lines on Q(−1) meet C ′ and C at points of the
form (ξ1, ξ2, ξ3, 0) and (ξ1, ξ2, 0, ξ3) respectively.

Theorem 4.4. Let ` be a line in P(S∗1 ). Then S/S`⊥ is a line module if and only if
`⊆ Q(λ) for some λ ∈ P1.

Proof. (⇒) Suppose S/S`⊥ is a line module. By Section 4A, D/D`⊥ is a line
module for D.

The result is true if ` ⊆ {K K ′ = 0} = Q(∞) so, from now on, suppose ` 6⊆
{K K ′ = 0}.
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Let p = (ξ1, ξ2, ξ3, 0) be the point where ` meets {K ′ = 0}. By the discussion
at the beginning of Section 3D, A/Ap⊥ is a point module for A = D/(K ′) so
p ∈ C ∪ {K = K ′ = 0}.

Suppose p= (1, 0, 0, 0). By Proposition 3.9(1), ` is on the plane {F = 0}. Since
p ∈ ` it follows that `= {F = K−λK ′= 0} for some λ∈P1. Since ` 6⊆ {K K ′= 0},
λ 6= 0,∞. Thus ` is the line in (4-2) corresponding to the point s =∞∈P1. Hence
`⊆ Q(λ).

If p = (0, 1, 0, 0), a similar argument shows that ` lies on some Q(λ).
Now suppose that p /∈ {(1, 0, 0, 0), (0, 1, 0, 0)}. Since ` 6⊆ {K K ′ = 0}, it follows

from Proposition 3.9(3) that ξ3 6= 0. Hence by Proposition 3.9(4), ` lies on the
quadric

ξ1 F K + ξ2 E K + ξ3(−E F + κ2K − κ2K ′ 2)= 0.

The conic C ′ = {K = E F+κ2K ′ 2 = 0} also lies on this quadric so C ′∩ ` 6=∅. by
a result analogous to Proposition 3.9(3), η4 6= 0. Let (η1, η2, 0, η4) ∈ C ′ ∩ `. Then
` is given by the equations in (4-1) so lies on the surface cut out by the equation

ξ 2
3η

2
4 E F = (ξ1η4K + ξ3η1K ′)(ξ2η4K + ξ3η2K ′)

= ξ1ξ2η
2
4 K 2
+ ξ3η4(ξ1η2+ ξ2η1)K K ′+ ξ 2

3η1η2K ′ 2

=−κ2ξ 2
3η

2
4 K 2
+ ξ3η4(ξ1η2+ ξ2η1)K K ′− κ2ξ 2

3η
2
4 K ′ 2,

which can be rewritten as ξ 2
3η

2
4(κ
−2 E F+K 2

+K ′ 2)− ξ3η4(ξ1η2+ ξ2η1)K K ′ = 0.
Thus, ` lies on some Q(λ).

(⇐) Let ` be a line on Q(λ). If ` ⊆ {K ′ = 0}, then D/D`⊥ = A/A`⊥ is a line
module. From now on suppose that ` 6⊆ {K ′ = 0}.

To show that D/D`⊥, and hence S/S`⊥, is a line module we must show there is
a point, p say, in `∩C such that `⊆ Q p, where Q p is the quadric in Section 3D1.

Suppose `⊆ Q(1). By Proposition 4.3(4), ` is given by

κ−1 E − s(K − K ′)= sκ−1 F + (K − K ′)= 0

for some s ∈ P1. Since the point p = (−s2, 1,−sκ−1, 0) belongs to `∩C , S/S`⊥

is a line module if and only if `⊆ Q p. Since Q p is given by the equation

−s2 F K + E K − sκ−1(−E F + κ2K 2
− κ2K ′ 2)= 0,

the point (−s2, 1, 0, sκ−1) is in `∩ Q p. Thus, ` passes through the vertex of the
cone Q p and through a second point on Q p, whence `⊆ Q p. Therefore S/S`⊥ is
a line module.

The case `⊆ Q(−1) is similar.
Suppose λ /∈ {0,±1,∞}. Since `⊆ Q(λ) we suppose, without loss of generality,

that ` belongs to the ruling (4-3) on Q(λ). Thus ` = {κ−1 E − s(K − λK ′) =
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sκ−1 F + (K − λ−1K ′) = 0} for some s ∈ P1. The point p = (−κs2, κ,−s, 0),
which is the vertex of the cone Q p, is in `∩C . Thus ` passes through the vertex of
Q p and the point (−κs2ν2, κ, 0, sν) which is also on Q p, `⊆ Q p. Hence S/S`⊥

is a line module. �

Theorem 4.5. Let ` be a line in P(S∗1 ). Then S/S`⊥ is a line module if and only if
` meets C ∪C ′ with multiplicity 2; i.e., if and only if ` is a secant line to C ∪C ′.

Proof. (⇒) Since S/S`⊥ is a line module for S, D/D`⊥ is a line module for D.
Let λ be such that `⊆ Q(λ).

Suppose Q(λ) is smooth. The Picard group of Q(λ) is isomorphic to Z×Z and
equal to Z[L] ⊕ Z[L ′], where [L] is the class of the line in (4-2) corresponding
to s = 0 and [L ′] is the class of the line in (4-3) corresponding to s = 0. Since
L = {E = K − λ−1K ′ = 0}, the scheme-theoretic intersection L ∩ (C ∪C ′) is the
zero locus of the ideal

(E, K − λ−1K ′)+ (K K ′, gλ)

= (E, K − λ−1K ′, K K ′, κ−2 E F + (K − λK ′)(K − λ−1K ′))

= (E, K − λ−1K ′, K K ′).

Hence L ∩ (C ∪C ′) is a finite scheme of length 2. Therefore [L] · [C ∪C ′] = 2. A
similar calculation shows that [L ′] · [C ∪C ′] = 2. Hence [C ∪C ′] = 2[L]+ 2[L ′].
It follows that [`] · [C ∪C ′] = 2.

Suppose ` lies on the cone Q(1). Then ` is the line κ−1 E − s(K + K ′) =
sκ−1 F+(K+K ′)= 0 for some s ∈P1. Therefore the scheme-theoretic intersection
`∩ (C ∪C ′) is the zero locus of the ideal

(4-4) (κ−1 E − s(K − K ′), sκ−1 F + (K − K ′))+ (K K ′, g1).

Since `⊂Q(1), g1 belongs to the ideal vanishing on `. The ideal in (4-4) is therefore
equal to (κ−1 E − s(K − K ′), sκ−1 F + (K − K ′), K K ′). Thus `∩ (C ∪C ′) is a
finite scheme of length 2.

If `⊆ Q(−1), a similar argument shows that `∩ (C ∪C ′) is a finite scheme of
length 2.

Suppose ` ⊆ Q(∞) = {K K ′ = 0}. Without loss of generality we can, and do,
assume that `⊆ {K ′ = 0}. By Bézout’s theorem, ` meets C with multiplicity two.
Thus, if `∩C ′ =∅, then ` meets C ∪C ′ with multiplicity two. Now suppose that
` meets C with multiplicity two and C ′ with multiplicity ≥ 1. If ` meets C at two
distinct points, then ` is transversal to some Q(λ′) so meets Q(λ′), and hence C∪C ′,
with multiplicity two. It remains to deal with the case where ` is tangent to C and
meets C ′. We now assume that is the case. Since C ∩C ′ = {(1, 0, 0, 0), (0, 1, 0, 0)
it follows that ` is tangent to C at (1, 0, 0, 0) or at (0, 1, 0, 0). Since the two
cases are similar we assume that ` is tangent to C at (1, 0, 0, 0). It follows that



334 ALEX CHIRVASITU, S. PAUL SMITH AND LIANG ZE WONG

`= {K ′ = F = 0}. The scheme-theoretic intersection `∩ (C ∪C ′) is the zero locus
of the ideal

(K , F)+ (K K ′, g1)= (K , F, K K ′, κ−2 E F + K 2
+ K ′ 2)= (K , F, K ′ 2).

Hence `∩ (C ∪C ′) is a finite scheme of length 2.

(⇐) Suppose ` is a line that meets C ∪C ′ with multiplicity 2.
If ` lies on the plane {K ′ = 0}, then K ′ ∈ `⊥ so the ideal (K ′) of D is contained

in D`⊥ and D/D`⊥ is a module over A = D/(K ′). However, the dual of the map
D1→ A1 embeds P(A∗1) in P(D∗1) and the image of this embedding is {K ′ = 0}.
In short, ` is a line in P(A∗1). This implies that A/A`⊥ is a line module for A and
hence a line module for D. But A/A`⊥ = D/D`⊥ so D/D`⊥ is a line module
for D. Therefore S/S`⊥ is a line module for S. A similar argument shows that if `
lies on the plane {K = 0}, then S/S`⊥ is a line module.

For the remainder of the proof we assume that ` 6⊆ {K K ′ = 0}.
A line that meets C with multiplicity two lies in the plane K ′ = 0, so ` meets C

and C ′ with multiplicity one. Let p = (ξ1, ξ2, ξ3, 0) be the point where ` meets C
and p = (η1, η2, 0, η4) be the point where ` meets C ′. Since p is the vertex of Q p

and C ′ ⊆ Q p, ` passes through the vertex of Q p and another point on Q p. Hence
`⊆ Q p. �

4C6. Lemmas 4.4 and 4.5 are analogous to results for the 4-dimensional Sklyanin
algebras: the line modules correspond to the lines in P3 that lie on the quadrics
that contain the quartic elliptic curve E , and those are exactly the lines in P3 that
meet E with multiplicity two, i.e., the secant lines to E . Similar results hold for
the homogenization of sl2 [Le Bruyn and Smith 1993].

4C7. Notation for line modules. By Theorem 4.5, the lines that correspond to line
modules for S are the secant lines to C ∪C ′. If (p)+ (p′) is a degree-two divisor
on C ∪C ′ we write Mp,p′ for the line module M` = S/S`⊥, where ` is the unique
line that meets C ∪C ′ at (p)+ (p′). Thus, up to isomorphism, the line modules for
S are

{Mp,p′ | p, p′ ∈ C ∪C ′}.

4D. Incidence relations between lines and points in Projnc(S). Let (p)+(p′) be
a degree-two divisor on C ∪C ′. There is a surjective map Mp,p′ � Mp in Gr(S)
and, by [Levasseur and Smith 1993, Lemma 5.3], the kernel of that homomorphism
is isomorphic to M`′(−1) for some `′. Our next goal is to determine `′. We do that
in Proposition 4.8 below.

First we need the rather nice observation in the next lemma.
We call a degree-three divisor on a plane cubic curve linear if it is the scheme-

theoretic intersection of that curve and a line.
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Lemma 4.6. Let C be a nondegenerate conic in P2, σ an automorphism of C
that fixes two points, and L the line through those two points. Let p, p′ ∈ C
and p′′ ∈ L. The divisor (p)+ (p′)+ (p′′) ∈ Div(C ∪ L) is linear if and only if
(σ p)+ (σ−1 p′)+ (p′′) is.

Proof. By symmetry, it suffices to show that if (p)+ (p′)+ (p′′) is linear so is
(σ p)+ (σ−1 p′)+ (p′′). That is what we will prove. So, assume (p)+ (p′)+ (p′′)
is linear.

If τ is an automorphism of P1 that fixes two points, there are nonzero scalars λ
and µ and a choice of coordinates such that τ(s, t) = (λs, µt) for all (s, t) ∈ P1.
We assume, without loss of generality, that (C, σ ) is the image of (P1, τ ) under
the 2-Veronese embedding. Thus, we can assume that C is the curve xy− z2

= 0
and σ(α, β, γ ) = (λ2α,µ2β, λµγ ). The line L is the line through (1, 0, 0) and
(0, 1, 0).

Let p = (α, β, γ ), p′ = (α′, β ′, γ ′), and p′′ = (a, b, 0). By hypothesis, these
three points are collinear. Therefore

det

 a b 0
α β γ

α′ β ′ γ ′

= 0.

I.e., a(βγ ′−β ′γ )− b(αγ ′−α′γ )= 0.
To show that (σ p)+ (σ−1 p′)+ (p′′) is linear we must show that the points

σ p= (λ2α,µ2β, λµγ ), σ−1 p′ = (λ−2α′, µ−2β ′, λ−1µ−1γ ′), and p′′, are collinear.
This is the case if and only if

det

 a b 0
λ2α µ2β λµγ

λ−2α′ µ−2β ′ λ−1µ−1γ ′

= 0.

This determinant is a(λ−1µβγ ′− λµ−1β ′γ )− b(λµ−1αγ ′− λ−1µα′γ ). It is zero
if and only if

(αγ ′−α′γ )(λ−1µβγ ′− λµ−1β ′γ )− (βγ ′−β ′γ )(λµ−1αγ ′− λ−1µα′γ )= 0.

This expression is equal to

λ−1µ(αβγ ′ 2−α′β ′γ 2)+ λµ−1(α′β ′γ 2
−αβγ 2).

But αβ − γ 2
= α′β ′− γ ′ 2 = 0 so αβγ ′ 2− α′β ′γ 2

= 0. Thus, the determinant is
zero and we conclude that σ−1 p′, σ p, and p′′, are collinear. �

Remark 4.7. For an alternative approach to Lemma 4.6, note first that the statement
can be recast as the claim that if η is the involution of C obtained by “reflection
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across p′′” meaning that

η(p)= the second intersection of the line pp′′ with C,

then π = η ◦ σ is an involution.
In turn, the involutivity of π follows from the fact that it interchanges the points

p and p′, and any automorphism of P1 that interchanges two points is, after a
coordinate change identifying said points with 0,∞, of the form z 7→ t z−1 for some
constant t . �

The next result is analogous to [Levasseur and Smith 1993, Theorem 5.5], which
shows for the 4-dimensional Sklyanin algebras that if (p)+ (p′) is a degree-two
divisor on the quartic elliptic curve E , then there is an exact sequence

0→ Mp+τ,p′−τ (−1)→ Mp,p′→ Mp→ 0,

where τ is the point on E such that σ p = p+ τ for all p ∈ E .

Proposition 4.8. If (p)+ (p′) is a degree-two divisor on C ∪C ′, there is an exact
sequence

0→ Mσ p,σ−1 p′(−1)→ Mp,p′→ Mp→ 0.

Proof. Let ` be the unique line in P3
= P(S∗1 ) such that `∩C = (p)+ (p′); i.e.,

Mp,p′=M`. By [Levasseur and Smith 1993, Lemma 5.3], there is an exact sequence
0→ M`′(−1)→ M`→ Mp→ 0 for some line module M`′ . We complete the proof
by showing that `′ ∩C = (σ p)+ (σ−1 p′); i.e., M`′ = Mσ p,σ−1 p′ . There are several
cases depending on the location of p and p′.

Case 0. Suppose `= L . Then K M`= K ′M`= 0 so M`, and consequently M`′ , is a
module over S/(K , K ′). Since S/(K , K ′) is a commutative polynomial ring on two
indeterminates it has a unique line module up to isomorphism, itself. In particular,
`′= `. Hence there is an exact sequence 0→Mp,p′(−1)→Mp,p′→Mp→ 0. But
σ is the identity on L by Theorem 4.2, so Mp,p′ = Mσ p,σ−1 p′ . Thus, the previous
exact sequence is exactly the sequence in the statement of this proposition.

Case 1. Suppose p, p′ ∈ C . Then ` meets C with multiplicity two and therefore
the plane {K ′ = 0} with multiplicity ≥ 2. Hence `⊆ {K ′ = 0}. It follows that M`

and M`′ are modules over S/(K ′). Given Case 0 treated above, for the remainder
of Case 1 we can, and do, assume that ` 6= L .

Since ` 6= L , `∩(C+L)= (p)+(p′)+(p′′), where p′′ is the point where ` and L
meet. Since S/(K ′) is a 3-dimensional Artin–Schelter regular algebra, [Artin et al.
1991, Proposition 6.24] tells us that `′ is the unique line such that `′∩(C+L) contains
the divisor (σ−1 p′)+ (σ−1 p′′).3 By Theorem 4.2, σ p′′ = p′′ so `′ is the unique

3Since [Artin et al. 1991, Proposition 6.24] is for right modules and we are working with left
modules we replaced σ by σ−1 in the conclusion of that result.
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line in {K ′ = 0} such that `′ ∩ (C + L) contains (σ−1 p′)+ (p′′). By Lemma 4.6,
σ p, σ−1 p′, and p′′, are collinear. Therefore `′∩ (C+ L)= (σ p)+ (σ−1 p′)+ (p′′).

Case 2. If p, p′ ∈ C ′, the “same” argument as in Case 1 proves the proposition.

Case 3. Suppose p ∈ C − C ′ and p′ ∈ C ′ − C . Let p = (ξ1, ξ2, ξ3, 0) and p′ =
(η1, η2, 0, η4). Since p /∈ C ′, ξ3 6= 0. Since p′ /∈ C , η4 6= 0.

By (4-1), ` is given by the equations

X := ξ3η4 E − ξ1η4K − ξ3η1K ′ = 0,

Y := ξ3η4 F − ξ2η4K − ξ3η2K ′ = 0.

The corresponding linear modules are

M` = Mp,p′ =
S

SX+SY
,

Mp =
S

SK ′+SX+SY
,

Mp′ =
S

SK+SX+SY
.

By (4-1), the line through the points σ p = (qξ1, q−1ξ2, ξ3, 0) and σ−1 p′ =
(qη1, q−1η2, 0, η4) is {X ′ = Y ′ = 0}, where

X ′ := ξ3η4 E − qξ1η4K − qξ3η1K ′,

Y ′ := ξ3η4 F − q−1ξ2η4K − q−1ξ3η2K ′.

The corresponding line module is Mσ p,σ−1 p′ = S/SX ′+ SY ′.
The image of K ′ in M` generates the kernel of M`→ Mp. Since X ′K ′ = q K ′X

and Y ′K ′ = q−1K ′Y , X ′ and Y ′ annihilate the image of K ′ in M`. It follows that
there is a map from Mσ p,σ−1 p′(−1) onto the kernel of M`→Mp. Thus, the kernel of
M`→ Mp is isomorphic to a quotient of Mσ p,σ−1 p′ . But every nonzero submodule
of a line modules has GK dimension 2, and every proper quotient of a line module
has GK dimension 1, so every nonzero homomorphism map Mσ p,σ−1 p′(−1)→M` is
injective. This shows that the kernel of M`→ Mp is isomorphic to Mσ p,σ−1 p′(−1).

Case 4. If p′ ∈ C −C ′ and p ∈ C ′−C , the “same” argument as in Case 3 proves
the proposition. �

We continue to write L for the line {K = K ′ = 0}.

Proposition 4.9. Let ` be a line in Projnc(S)
4 and suppose p′′ ∈ `∩ L.

(1) There are points p, p′ ∈ C ∪C ′ such that the scheme-theoretic intersection
`∩ (C ∪ L) contains the divisor (p)+ (p′)+ (p′′).

4This means that M` := S/S`⊥ is a line module.
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(2) There is an exact sequence

0→ Mσ−1 p,σ−1 p′(−1)→ Mp,p′→ Mp′′→ 0.

Proof. Since M` is a line module, ` meets C ∪C ′ with multiplicity two. It therefore
meets either C∪L or C ′∪L with multiplicity ≥ 2. We can, and do, assume without
loss of generality that ` meets C∪ L with multiplicity ≥ 2. Hence ` meets the plane
{K ′ = 0} with multiplicity ≥ 2. Therefore `⊆ {K ′ = 0}. By Bézout’s theorem, ` is
either equal to L or meets C ∪ L with multiplicity 3.

Suppose ` = L . Then M` is a module over the commutative polynomial ring
S/(K , K ′) and there is an exact sequence 0→ M`(−1)→ M`→ Mp′′→ 0. Let p
and p′ be the points where L meets C ∪C ′. Then M` = ML = Mp,p′ and, since σ
is the identity on L , M` = Mσ p,σ−1 p′ . Thus, (1) and (2) hold when `= L .

Suppose ` 6= L . Let p and p′ be the points in `∩C ; i.e., `∩C = (p)+ (p′). By
[Artin et al. 1991, Proposition 6.24], there is an exact sequence 0→ M`′(−1)→
M` = Mp,p′ → Mp′′ → 0, where `′ is the unique line whose scheme-theoretic
intersection with C ∪ L is ≥ (σ−1 p)+ (σ−1 p′). Hence M`′ = Mσ−1 p,σ−1 p′ . �

5. Relation to Uq(sl2)-modules

In this section, we relate our results about fat point and line modules for S to
classical results about the finite-dimensional irreducible representations and Verma
modules of Uq(sl2). Briefly, fat points in Projnc(S) correspond to finite-dimensional
irreducible Uq(sl2)-modules and lines in Projnc(S) correspond to Verma modules.

5A. Facts about Uq(sl2). First, we recall a few facts about Uq(sl2) that can be
found in [Jantzen 1996, Chapter 2].

5A1. Verma modules. For each λ ∈ C, we call

M(λ) :=
Uq(sl2)

Uq(sl2)e+Uq(sl2)(k− λ)

a Verma module for Uq(sl2), and λ its highest weight.

5A2. Casimir element. The Casimir element

(5-1) C := e f +
q−1k+ qk−1

(q − q−1)2
= f e+

qk+ q−1k−1

(q − q−1)2

is in the center of Uq(sl2) and acts on M(λ) as multiplication by

qλ+ q−1λ−1

(q − q−1)2
.
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5A3. Finite-dimensional simple modules. For each n ≥ 1, there are exactly two
simple Uq(sl2)-modules of dimension n + 1. They can be labeled L(n,+) and
L(n,−) in such a way that there are exact sequences

(5-2) 0→ M(±q−n−2)→ M(±qn)→ L(n,±)→ 0.

The module L(n,±) has basis m0, . . . ,mn with action

(5-3)

kmi =±qn−2i mi ,

f mi =

{
mi+1 if i < n,
0 if i = n,

emi =

{
±[i][n+ 1− i]mi−1 if i > 0,
0 if i = 0,

where we have made use of the quantum integers

[m] :=
qm
− q−m

q − q−1 .

5B. Lines in Projnc(S) ←→ Verma modules for Uq(sl2). First, we show that
Verma modules are “affine pieces” of line modules.

Proposition 5.1. Let λ ∈ C∪ {∞} = P1 and let ` be the line E = K − λK ′ = 0.

(1) ` lies on the quadric Q(λ).

(2) S/S`⊥ is a line module.

(3) If λ /∈ {0,∞}, then (S/S`⊥)[(K K ′)−1
]0 ∼= M(λ).

Proof. A simple calculation proves (1), and then (2) follows from Theorem 4.4.

(3) The functor j∗π∗ : Gr(S)→Mod(Uq(sl2) defined by j∗π∗M = M[(K K ′)−1
]0

is exact, so (S/S`⊥)[(K K ′)−1
]0 is isomorphic to S(K K ′)−1

]0/(S`⊥)[(K K ′)−1
]0.

Using the isomorphism given by (2-7), it is clear that (S`⊥)[(K K ′)−1
]0 is the left

ideal of Uq(sl2) generated by e and k− λ. �

5B1. “Heretical” Verma modules. Proposition 5.1 illustrates the importance of
line modules for Artin–Schelter regular algebras with Hilbert series (1− t)−4. Line
modules are just like Verma modules. Indeed, Verma modules for U (sl2) and
Uq(sl2) are “affine pieces” of line modules.

From the point of view of noncommutative projective algebraic geometry, the
line modules that correspond to Verma modules are no more special than other line
modules. One is tempted to declare that if ` is any line on any Q(λ), λ 6= 0,∞,
then (S/S`⊥)[(K K ′)−1

]0 should be considered as a Verma module.
Doing that would place Uq(sl2) on a more equal footing with U (sl2): if one varies

both the Borel subalgebra and the highest weight, then U (sl2) has a 2-parameter
family of Verma modules; if were to define Verma modules for Uq(sl2) as “affine
pieces” of line modules, then Uq(sl2) would also have a 2-parameter family of
Verma modules.
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5B2. Central (Casimir) elements. We define �(0)=�(∞)= K K ′ and, for each
λ ∈ C−{0,∞}, we define

�(λ) :=E F +
q−1K 2

+ q K ′ 2

(q − q−1)2
−

qλ+ q−1λ−1

(q − q−1)2
K K ′

=E F + κ2(q−1K − qλK ′)(K − λ−1K ′)

=F E + κ2(q K − q−1λ−1K ′)(K − λK ′).

The elements �(λ), λ ∈ P1, belong to the center of S and span a 2-dimensional
subspace of S2.

We take note that �(λ)=�(q−2λ−1) and �(µ) 6=�(λ) if µ /∈ {λ, q−2λ−1
}.

Under the isomorphism S[(K K ′)−1
]0 ∼=Uq(sl2) given in (2-7), we have

�(λ)(K K ′)−1
= C −

qλ+ q−1λ−1

(q − q−1)2
,

where C is the Casimir element defined in (5-1).
The reader will notice similarities between the pencil of central subspaces

C�(λ)⊆ S2 and the pencil of quadrics Q(λ)⊆ P(S∗1 ). For example, exactly one
�(λ) is a product of two degree-1 elements, namely �(0)=�(∞)= K K ′, and
exactly one Q(λ) that is a union of two planes, namely Q(0)= Q(∞)={K K ′= 0}.
In a similar vein, we expect that S/(�(λ)) is a prime ring if and only if λ is not
0 or∞. The precise relation between the �(λ)’s and the Q(λ)’s is established in
Proposition 5.3.

Lemma 5.2. Let λ ∈ C×. The central element �(λ) annihilates M` for all lines `
of the form

E − κs(K − λK ′)= s F + κ(K − λ−1K ′)= 0, s ∈ P1.

Proof. Let s be any point on P1. Since �(λ) equals

F E +
1

(q − q−1)2
(q K − q−1λ−1K ′)(K − λK ′)

= F(E − κs(K − λ−1K ′))+ κ(q K − q−1λ−1K ′)(s F + κ(K − λK ′)),

it belongs to the left ideal generated by E−κs(K −λ−1K ′) and s F+κ(K −λK ′).
That left ideal is S`⊥ so, since �(λ) is in the center of S, it annihilates S/S`⊥. �

Proposition 5.3. Let M` be a line module. If λ ∈ C×, then �(λ) annihilates M` if
and only if either

(1) `⊆ Q(λ) and is in the same ruling as the line E = K − λK ′ = 0, or

(2) `⊆ Q(q−2λ−1) and is in the same ruling as the line E = K − q−2λ−1K ′ = 0.
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Furthermore, �(0) = �(∞) annihilates M` if and only if ` ⊆ Q(0) = Q(∞) =
{K K ′ = 0}.

Proof. It is easy to see that the last sentence in the statement of the proposition
is true so we will assume that ` 6⊆ {K K ′ = 0}. Since M` is a line module, ` lies
on Q(µ) = Q(µ−1) for some µ ∈ C×. We fix such a λ. Since ` 6⊆ {K K ′ = 0},
µ 6= 0,∞.

(⇒) Fix λ ∈ C× and suppose that �(λ) annihilates M`. The lines on Q(µ) are
given by (4-2) and (4-3). Replacing µ by µ−1 if necessary, we can assume that `
belongs to the same ruling on Q(µ) as E = K −µK ′ = 0. Hence M` is annihilated
by �(µ). If �(µ) 6= �(λ), then M` is annihilated by K K ′. That is not the case,
so �(µ)=�(λ). Hence µ ∈ {λ, q−2λ−1

}. Hence either (1) or (2) holds.

(⇐) This implication follows from Lemma 5.2. If `⊆Q(λ) and is in the same ruling
as the line E = K − λK ′ = 0, then M` is annihilated by �(λ). If `⊆ Q(q−2λ−1)

and is in the same ruling as the line E = K −q−2λ−1K ′= 0, then M` is annihilated
by �(q−2λ−1)=�(λ). �

We only care about the ideal generated by�(λ) and the matter of which modules
are annihilated by which �(λ)’s. Thus, we only care about �(λ) up to nonzero
scalar multiples. For this reason it is often better to think of�(λ) as an element in P1.

5C. Fat points in Projnc(S) ←→ finite-dimensional simple Uq(sl2)-modules.
As the title suggests, this subsection establishes a connection between the finite-
dimensional simple Uq(sl2)-modules L(n,±) discussed in Section 5A3 and certain
fat points F(n,±) of the noncommutative scheme Projnc(S) that are defined below.
Proposition 5.6 makes this connection explicit. We have not addressed the question
of whether the F(n,±)’s are all the fat points.

5C1. Some finite-dimensional simple S-modules. We fix a square root,
√

q, of
q and adopt the convention that qn/2−i

= (
√

q)n−2i and q i−n/2
= (
√

q)2i−n . Let
V (n,±) be the vector space with basis v0, . . . , vn and define

Kvi =
√
±1 qn/2−ivi , K ′vi =±

√
±1 q i−n/2vi ,

Fvi =

{
[n− i]vi+1 if i < n,
0 if i = n,

Evi =

{
±[i]vi−1 if i > 0,
0 if i = 0.

5C2. Automorphisms of S and autoequivalences of Gr(S). Let θ : S→ S be the
algebra automorphism defined by θ(K )=−K , θ(K ′)= K ′, θ(E)= E , θ(F)= F .

If ε ∈C× let φε : S→ S be the algebra automorphism φε(a)= εna for all a ∈ Sn .
Let φ be a degree-preserving algebra automorphism of S. The functor φ∗ :

Gr(S)→ Gr(S) is defined as follows: if M ∈ Gr(S), then φ∗(M) is M as a graded
vector space and if a ∈ S and m ∈ M∗, then a ·m = φ(a)m. The functor φ∗ is an
autoequivalence.
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Proposition 5.4. Let ε =−
√
−1.

(1) V (n,±) is a simple S-module of dimension n+ 1.

(2) V (n,±) is a S[(K K ′)−1
]-module with (K K ′)−1 acting as the identity.

(3) Identifying Uq(sl2)with S[(K K ′)−1
]0 as in Proposition 2.4, V (n,±)∼= L(n,±)

as a Uq(sl2)-module.

(4) �(±qn) annihilates V (n,±).

(5) V (n,−)∼= φ∗ε θ
∗V (n,+).

Proof. (1) First we check that the action makes V (n,±) a left S-module. If v−1= 0,
then E Kvi =±

√
±1 qn/2−i

[i]vi−1 and K Evi =±
√
±1 qn/2−i+1

[i]vi−1= q E Kvi .
Hence K E − q E K acts on V (n,±) as 0. With the understanding that vn+1 = 0,
F Kvi =

√
±1 qn/2−i

[n−i]vi−1 and K Fvi =
√
±1 qn/2−i−1

[n−i]vi+1=q−1 F Kvi ,
so K F − q−1 F K acts on V (n,±) as 0. Similar calculations show that K ′E −
q−1 E K ′ and K ′F − q F K ′ act on V (n,±) as 0 also. Furthermore,

[E, F]vi =±
(
[n− i]Evi+1− [i]Fvi−1

)
=±

(
[n− i][i + 1][i][n− i + 1

)
vi

=±[n− 2i]vi

=
K 2
− K ′ 2

q − q−1 vi ,

so V (n,±) really is a left S-module.
To see it is simple, first observe that the vi are eigenvectors for K with pairwise

distinct eigenvalues. It follows that if V (n,±) is not simple, then there it has a
proper submodule that contains some vi . However, looking at the actions of E and
F on the vj , a submodule that contains one vi contains all vi . Hence V (n,±) is
simple.

(2) Since K K ′ acts on V (n,±) as multiplication by 1, the module-action of S on
V (n,±) extends to a module-action of S[(K K ′)−1

].

(3) Since e = 1
√

q
E K−1, f = 1

√
q

F(K ′)−1, and k = K (K ′)−1,

kvi =−qn−2ivi ,

f vi =


1
√
±q

qn/2−i
[n− i]vi+1 if i < n,

0 if i = n,
evi =


±1
√
±q

q i−n/2
[i]vi−1 if i > 0,

0 if i = 0.

Choose nonzero scalars λ0, . . . , λn such that

λi−1/λi =
√
±q qn/2−i

[n+ 1− i].
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The linear isomorphism φ : V (n,±) → L(n,±) defined by φ(vi ) = λi mi is a
Uq(sl2)-module isomorphism because φ(kvi )= kφ(vi ),

φ(evi )=
±1
√
±q

q i−n/2
[i]λi−1mi−1 =±[i][n+ 1− i]λi mi−1 = eφ(vi ),

and

φ( f vi )=
1
√
±q

qn/2−i
[n− i]λi+1vi+1 = λi mi+1 = f φ(vi ).

Hence V (n,±)∼= L(n,±) as claimed.

(4) By Schur’s lemma, �(λ) acts on V (n,±) as multiplication by a scalar. There-
fore, if �(λ) annihilates v0 it annihilates V (n,±). Since Ev0 = 0, �(λ)v0 =

κ2(q K − q−1λ−1K ′)(K − λK ′)v0. The result follows from (K ∓ qn K ′)v0 = 0.

(5) Let v0, . . . , vn be the basis for V (n,+) in Section 5C1 and, to avoid confusion,
write v′i for the basis element vi in V (n,−). Thus, Kv′i =−εq

n/2−iv′i .
Define ψ : φ∗ε θ

∗V (n,+)→ V (n,−) by ψ(vi ) := (−1)iεiv′i . To show ψ is an
S-module isomorphism it suffices to show it is an S-module homomorphism. To
this end, consider vi as an element in φ∗ε θ

∗V (n,+). Because θφε(K ) = −εK ,
Kvi =−εqn/2−ivi . Hence

ψ(Kvi )= ψ(−εqn/2−ivi )=−εqn/2−i (−1)iεiv′i = (−1)iεi Kv′i = Kψ(vi ).

Similarly, because θφε(K ′)= εK ′ and K ′v′i = εq
i−n/2v′i ,

ψ(K ′vi )= ψ(εq i−n/2vi )= εq i−n/2(−1)iεiv′i = (−1)iεi K ′v′i = K ′ψ(vi ).

We also have

ψ(Fvi )= ψ(ε[n− i]vi+1)= ε[n− i](−1)i+1εi+1v′i+1 = (−1)iεi Fv′i = Fψ(vi )

and

ψ(Evi )= ψ(ε[i]vi−1)= ε[i](−1)i−1εi−1v′i−1 = (−1)iεi Ev′i = Eψ(vi ). �

5C3. Fat points and fat point modules. For each n ∈ N we define

F(n,±) := V (n,±)⊗C[z]

and make this a graded left S-module according to the recipe in Lemma 2.1. It is a
fat point module. Proposition 5.6 makes the statement that the fat point (module)
F(n,±) corresponds to the finite-dimensional simple Uq(sl2)-module L(n,±)
precise.

Lemma 5.5. If θ is the automorphism in Section 5C2, then θ∗F(n,±)∼= F(n,∓).
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Proof. If V is any left S-module and φε the automorphism in Section 5C2 associated
to ε ∈ k×, then the map 8 : V ⊗ k[z] → (φ∗εV )⊗ k[z], 8(v⊗ zi ) = v⊗ (εz)i , is
an isomorphism in Gr(S). Hence

F(n,−)= φ∗ε θ
∗V (n,+)⊗ k[z] ∼= θ∗V (n,+)⊗ k[z]

∼= θ
∗(V (n,+)⊗ k[z])= θ∗F(n,+). �

Proposition 5.6. If π∗ : Gr(S) → QGr(S) and j∗ : QGr(S) → Uq(sl2) are the
functors in Section 1A2, then j∗π∗F(n,±)∼= L(n,±); i.e., there is an isomorphism
of Uq(sl2)-modules

F(n,±)[(K K ′)−1
]0 ∼= L(n,±).

Proof. The functor j∗π∗ sends M ∈ Gr(S) to M[(K K ′)−1
]0, where the latter

is made into a Uq(sl2)-module via the isomorphism Uq(sl2)→ S[(K K ′)−1
]0 in

Proposition 2.4.
Since K K ′ acts on V (n,±) as the identity, it acts on F(n,±)= V (n,±)⊗ k[z]

as multiplication by z2. Hence, F(n,±)[(K K ′)−1
]0 = V (n,±)⊗ k[z, z−2

]0 =

V (n,±)⊗ 1.
Let Ŝ = S[(K K ′)−1

]. Applying the functor Ŝ⊗S − to the surjective S-module
homomorphism F(n,±)→ V (n,±), v⊗ zi

7→ v, produces a surjective homomor-
phism

ψ : F[(K K ′)−1
] = Ŝ⊗S F(n,±)→ Ŝ⊗S V (n,±)

of Ŝ-modules. Of course, ψ is a homomorphism of Ŝ0-modules. Every homoge-
neous component of F(n,±)[(K K ′)−1

] is an Ŝ0-submodule of F(n,±)[(K K ′)−1
]

so ψ restricts to a homomorphism F(n,±)[(K K ′)−1
]0 → Ŝ ⊗S V (n,±) of Ŝ0-

modules. But Ŝ⊗SV (n,±) is isomorphic to L(n,±) as an Ŝ0-module by Proposition
5.4(3) and, by the previous paragraph, dim(F(n,±)[(K K ′)−1

]0)=dim(V (n,±))=
n+ 1= dim(L(n,±)) so the restriction of ψ to F(n,±)[(K K ′)−1

]0 is an isomor-
phism of Ŝ0-modules. �

Proposition 5.7. Let n ≥ 0. Let `± be any line on Q(±qn) that is in the same
ruling as the line E = K ∓ qn K ′ = 0.

(1) There is a surjective S-module homomorphism M`±→ V (n,±).

(2) There is a homomorphism M`±→ F(n,±) in Gr(S) that becomes an epimor-
phism in QGr(S).

(3) In Projnc(S), the fat point F(n,±) lies on the line `±.

Proof. Let s ∈ P1 be such that `± is the line

κ(K ∓ qn K ′)− s−1 E = κ(K ∓ q−n K ′)+ s F = 0.
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Thus,

M`±
∼=

S
SX±+SY±

,

where X± = κ(K ∓ q−n K ′)− s−1 E and Y± = κ(K ∓ qn K ′)+ s F .

(1) Since V (n,±) is a simple S-module it suffices to show there is a nonzero
homomorphism M`± → V (n,±). For this, it suffices to show there is a nonzero
element in V (n,±) annihilated by both X± and Y±.

If s=0, and v±=v0∈V (n,±), then X±v±= Ev0=0 and Y±v±= (K∓qn K ′)v±
= 0. If s = ∞ and v± = vn ∈ V (n,±), then X±v± = (K ∓ q−n K ′)vn = 0 and
Y±v± = Fvn = 0. Thus, (1) is true if s equals 0 or∞.

From now on, assume that s 6= 0,∞. Let λ0, . . . , λn ∈ k× be such that

λi+1/λi =±
√
±1
[n− i]
[i + 1]

sq−n/2

for all i . If

v± =

n∑
i=0

λivi ∈ V (n,±),

then

X±v± =
n∑

i=0

(
κ
√
±1(qn/2−i

∓ q−nq i−n/2)λivi − s−1(±1)[i]λivi−1
)

=

n∑
i=0

(
−q−n/2

√
±1 [n− i]λi ∓ s−1

[i + 1]λi+1
)
vi

= 0
and

Y±v± =
n∑

i=0

(
κ
√
±1(qn/2−i

∓ qnq i−n/2)λivi + s[n− i]λivi+1
)

=

n∑
i=0

(
−qn/2

√
±1 [i]λi + s[n− i + 1]λi−1

)
vi

= 0.

(2) By Lemma 2.1, the existence of a nonzero homomorphism M`± → V (n,±)
implies the existence of a nonzero homomorphism M`± → F(n,±) in Gr(S).
However, as an object in QGr(S), F(n,±) is irreducible so (2) follows.

(3) This is just terminology. �

If one of the lines `±={X±=Y±=0} in Proposition 5.7 meets C at (ξ1, ξ2, ξ3, 0),
then it meets C ′ at (q−nξ1, qnξ2, 0,±ξ3). Combining this with Theorem 4.2(5)
gives the following result.
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Corollary 5.8. Let p = (ξ1, ξ2, ξ3, 0) ∈ C and define p± = (ξ1, ξ2, 0,±ξ3). Let `±
be the secant line to C ∪C ′ passing through p and σ n

S (p±). There is a surjective
homomorphism M`±→ V (n,±) in Mod(S) and an epimorphism M`±→ F(n,±)
in QGr(S).

The analogue of (5-2) requires results from the next section, and can be found in
Theorem 6.2.

6. Relation to the nondegenerate Sklyanin algebras

We remind the reader that S(α, β, γ ) denotes one of the nondegenerate Sklyanin
algebras defined in (2-2).

In this section, we show that some of our results about S can be obtained as
“degenerations” of results in [Smith and Stafford 1992; Chirvasitu and Smith 2017;
Smith and Staniszkis 1993] about S(α, β, γ ). We also complete the characterization
of those line modules that surject onto fat point modules that we alluded to in the
last section.

6A. The point scheme of a nondegenerate Sklyanin algebra. We follow [Smith
and Stafford 1992]. The point scheme of S(α, β, γ ) embedded in P3 with coordi-
nates x0, x1, x2, x3 is

(6-1) E ′ = E ∪ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},

where E is the elliptic curve defined by

(6-2) x2
0 + x2

1 + x2
2 + x2

3 = 0= x2
3 +

1− γ
1+α

x2
1 +

1+ γ
1−β

x2
2 .

Equivalently, E is the intersection of any two of the following quadrics:

(6-3)

x2
0 + x2

1 + x2
2 + x2

3 = 0,

x2
0 −βγ x2

1 − γ x2
2 +βx2

3 = 0,

x2
0 + γ x2

1 −αγ x2
2 −αx2

3 = 0,

x2
0 −βx2

1 +αx2
2 −αx2

3 = 0.

There is an automorphism σ of E ′ that fixes the four isolated points and on E is
given by the formula

(6-4) σ :


x0

x1

x2

x3

 7→

−2αβγ x1x2x3 − x0(−x2

0 +βγ x2
1 +αγ x2

2 +αβx2
3)

2α x0x2x3 + x1(x2
0 −βγ x2

1 +αγ x2
2 +αβx2

3)

2β x0x1x3 + x2(x2
0 +βγ x2

1 −αγ x2
2 +αβx2

3)

2γ x0x1x2 + x3(x2
0 +βγ x2

1 +αγ x2
2 −αβx2

3)

 .
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6B. Degenerate point scheme. In the degenerate case, substituting (α, β, γ ) =
(0, b2,−b2) into equations (6-1) through (6-4) yields the following results.

We will compare the point scheme of S = S(0, b2,−b2) to

(6-5) E ′deg := Edeg ∪ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},

where the curve Edeg is defined by

(6-6) x2
0 + x2

1 + x2
2 + x2

3 = 0= x2
3 + (1+ b2)x2

1 + x2
2 ,

or as the intersection of any two of the quadrics

(6-7)

x2
0 + x2

1 + x2
2 + x2

3 = 0,

x2
0 + b4x2

1 + b2x2
2 + b2x2

3 = 0,

x2
0 − b2x2

1 = 0,

x2
0 − b2x2

1 = 0.

The automorphism on E ′deg fixes the four isolated points and is defined on Edeg by

(6-8) σdeg :


x0

x1

x2

x3

 7→


x0(x2
0 + b4x2

1)

x1(x2
0 + b4x2

1)

2b2x0x1x3+ x2(x2
0 − b4x2

1)

−2b2x0x1x2+ x3(x2
0 − b4x2

1)


6C. Comparison with our results. We now compare (E ′deg, σdeg) with (PS, σS)

from Theorem 4.2. Recall our definitions of E, F, K , K ′ from (2-5):

(6-9)
E = i

2
(1− ib)(x2+ i x3), F = i

2
(1+ ib)(x2− i x3),

K = x0+ bx1, K ′ = x0− bx1.

With respect to the homogeneous coordinates E , F , K , and K ′,

PS = C ∪C ′ ∪ L ∪ {(0, 0, 1,±1)},

where C,C ′ and L are given by

C ′ : E F + κ2K ′ 2 = K = 0,

C : E F + κ2K 2
= K ′ = 0,

L : K = K ′ = 0.

The conics C and C ′ lie on the planes K ′ = 0 and K = 0, respectively, and the
line L is the intersection of those two planes. With respect to the homogeneous
coordinates E , F , K , and K ′, (6-5) becomes

E ′deg = Edeg ∪ {(0, 0, 1, 1), (0, 0, 1,−1), (q, 1, 0, 0), (−q, 1, 0, 0)}.
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The isolated points (1, 0, 0, 0) and (0, 1, 0, 0) in (6-5) remain isolated after degen-
eration, but the points (0, 0, 1, 0) and (0, 0, 0, 1) in (6-5), which are (q, 1, 0, 0) and
(−q, 1, 0, 0) in the E, F, K , K ′ coordinates, become points on the line L in PS

after degeneration.
Next, we compare Edeg with C ∪C ′ ∪ L . The equation (6-6) yields

x2
0 − b2x2

1 = (x0− bx1)(x0+ bx1)= K K ′ = 0.

Hence Edeg ⊆ {K = 0} ∪ {K ′ = 0}.
On the plane K ′ = 0, x0 = bx1 so both sides of (6-6) for Edeg become

(1+ b2)x2
1 + x2

2 + x2
3 = 0.

On the other hand, C ′ is given by

0= E F + κ2K ′ 2 =− 1
4(1+ b2)(x2

2 + x2
3)+ 4κ2b2x2

1

=−
1
4(1+ b2)(x2

2 + x2
3)−

1
4(1+ b2)2x2

1

=−
1
4(1+ b2)(x2

2 + x2
3 + (1+ b2)x2

1).

Hence Edeg ∩ {K ′ = 0} = C ′. A similar calculation yields the analogous result for
the plane K = 0. We thus conclude that

Edeg = C ∪C ′.

Finally, we compare σdeg and σS . On the plane K = 0,

σdeg :


x0

x1

x2

x3

 7→


(b2
+ b4)x2

1 x0

(b2
+ b4)x3

1
2b4x2

1 x3+ (b2
− b4)x2

1 x2

−2b4x2
1 x2+ (b2

− b4)x2
1 x3

=


(1+ b2)x0

(1+ b2)x1

(1− b2)x2+ 2b2x3

(1− b2)x3− 2b2x2

 .
Changing coordinates,

σdeg :


x2+ i x3

x2− i x3

x0+ bx1

0

 7→

(1− ib)2(x2+ i x3)

(1+ ib)2(x2− i x3)

(1+ b2)(x0+ bx1)

0

=


q(x2+ i x3)

q−1(x2− i x3)

(x0+ bx1)

0

 .
Therefore, in the E, F, K , K ′ coordinates, σdeg(ξ1, ξ2, ξ3, 0)= (qξ1, q−1ξ2, ξ3, 0)=
σS(ξ1, ξ2, ξ3, 0). Similar calculations on the plane K ′= 0 and on the isolated points
yield σdeg = σS .

6D. Degenerations of Heisenberg automorphisms. Recall (e.g., from [Chirvasitu
and Smith 2017, Proposition 2.6]) that the Heisenberg group of order 43 acts on the
Sklyanin algebra S(α, β, γ ) as follows.
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x0 x1 x2 x3

φ1 bcx1 −i x0 −ibx3 −cx2

φ2 acx2 −ax3 −i x0 −icx1

φ3 abx3 −iax2 −bx1 −i x0

Table 2. Automorphisms of S(α, β, γ ).

E F K K ′

φ1 bq F −bq−1 E −ibK ′ ibK

φ2
1
2(1− ib)K ′ 1

2(1+ ib)K 0 0

φ3
i
2(1− ib)K ′ − i

2(1+ ib)K 0 0

Table 3. Endomorphisms of S(0, β,−β).

First, fix square roots a, b and c of α, β and γ respectively. We define automor-
phisms φi of S(α, β, γ ) via Table 2.

Now fix ν1, ν2, ν3 ∈ k× such that aν2
1 = bν2

2 = cν2
3 = −iabc, and define ε1 =

ν−1
1 φ1, ε2 = ν

−1
2 φ2, ε3 = ν

−1
3 φ3, and δ = i . The subgroup 〈ε1, ε2, ε3, δ〉 ⊆Aut(S)

is isomorphic to the Heisenberg group of order 43, defined by generators and
relations as

H4 := 〈ε1, ε2, δ | ε
4
1 = ε

4
2 = δ

4
= 1, δε1 = ε1δ, ε2δ = δε2, ε1ε2 = δε2ε1〉.

The algebras we are considering are of the form S(0, β,−β). We define c = ib.
The map φ1 still extends to an algebra automorphism but φ2 and φ3 degenerate to
endomorphisms. In terms of E , F , K , and K ′, the endomorphisms φi act as in
Table 3.

Although φ2 and φ3 are not isomorphisms, there are associated endofunctors φ∗2
and φ∗3 of Gr(S). The application of φ∗2 and φ∗3 to the point modules M(0,0,1,±1) ∈

Gr(S) produces point modules. Indeed,

φ2(S)= φ3(S)= C[K , K ′] ⊆ S,

and the two point modules referred to above are cyclic C[K , K ′]-modules. With
this in hand, the next result describes how the φi act on the four S(0, β,−β)-points
obtained by degeneration from S(α, β, γ ). The proof is a direct application of the
formulas in Table 2 above.

Proposition 6.1. The endomorphisms φi of S move the four special point modules
of S as follows.

(1) φ∗1 interchanges M(0,0,1,±1) and interchanges M(±q,1,0,0);
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(2) φ∗2 M(0,0,1,±1) ∼= M(±q,1,0,0);

(3) φ∗3 M(0,0,1,±1) ∼= M(∓q,1,0,0).

6E. Degenerations of fat point–line incidences. In this section we describe reso-
lutions of fat points by line modules by degenerating the analogous statements in
[Smith and Staniszkis 1993] for the algebras S(α, β, γ ).

If `⊂ P3 is the line passing through p, p′ ∈ C ∪C ′, we will sometimes denote
the line module M` by Mp,p′ for clarity. We will also use the following notation:
if p = (ξ1, ξ2, ξ3, 0) ∈ C , then p± = (ξ1, ξ2, 0,±ξ3) ∈ C ′ is the point for which
Mp,p± surjects onto F(0,±). Similarly, in order to keep the notation symmetric, if
p ∈ C ′ then p± is the point on C for which Mp,p± surjects onto F(0,±).

Finally, we denote by σ = σS : (C ∪C ′)2→ (C ∪C ′)2 the diagonal action of
σ = σS on (C ∪C ′)2, and by ψ the automorphism

ψ := (id, σ ) : (C ∪C ′)2→ (C ∪C ′)2.

By a slight abuse of notation, we use the same symbols to refer to the induced
automorphisms on the variety of lines through pairs of points on C ∪C ′.

Theorem 6.2. Let n be a nonnegative integer, `± a line through p, p± ∈ C ∪C ′,
and `±n the line ψn(`±). In QGr(S), there is an exact sequence

(6-10) 0→ Mσ−(n+1)(`±n)
(−n− 1)→ M`±→ F(n,±)→ 0.

Proof. We will prove this for `+. To that end, let ` be the line through p and p+.
The relation {(p, p±)} on C∪C ′ is the fiber over (0, b2,−b2) of a family of rela-

tions over the space of parameters (α, β, γ ) for the Sklyanin algebras. Specifically,
let us write

(x0, x1, x2, x3) 7→ (−x0, x1, x2, x3)

for the − maps on the elliptic curves E = E(α, β, γ ) and let

(x0, x1, x2, x3) 7→ (x0, x1,−x2,−x3)

be addition by the 2-torsion point ω ∈ E .

Claim. {(p, p+)} is the limit of the graphs of the maps p 7→ ω− p.

Proof of claim. In terms of the xi coordinates, the map p 7→ ω − p amounts
to changing the sign of x0. On the other hand, the discussion at the beginning
of Section 6E shows that in (E, F, K , K ′)-coordinates the map p 7→ p+ simply
interchanges K and K ′. Since C∪C ′ is the degeneration of the family (6-2) of elliptic
curves, the truth of the claim follows from the coordinate change formulas (6-9). �

The claim implies that the resolutions

0→ Mσ(p),σ (ω−p)(−1)→ Mp,ω−p→•→ 0



NONCOMMUTATIVE GEOMETRY OF HOMOGENIZED QUANTUM sl(2,C) 351

of the point modules associated to (x0, x1, x2, x3) = (1, 0, 0, 0) (e.g., from [Lev-
asseur and Smith 1993, Theorem 5.7]) degenerate to (6-10) for n = 0 in the +
case.

Similarly, for larger n we have, in the nondegenerate case, resolutions

0→ Mσ−(n+1)(p),σ−1(ω−p)(−n− 1)→ Mp,σ n(ω−p)→•→ 0

of 1-critical fat points of multiplicity n+ 1 as explained in [Smith and Staniszkis
1993, Proposition 4.4(b)]. These degenerate to a resolution of the form (6-10) of a
certain fat S-point module of multiplicity n+ 1 (denoted momentarily by the same
symbol •):

(6-11) 0→ Mσ−(n+1)(`n)
(−n− 1)→ M`n →•→ 0,

where ` is the line through p and p+ and `n = ψ
n(`); note that • is the same fat

point (up to isomorphism in QGr(S)) for all choices of p.
Finally, to argue that • ∼= F(n,+) in the present case, simply specialize to the

line ` for which (6-11) is the homogenized version of the standard BGG resolution
(5-2) of the simple Uq(sl2)-module L(n,+).

There is a similar argument for F(n,−), or one can use the observation in
Lemma 5.5 that F(n,−)∼= θ∗F(n,+). �

Remark 6.3. Incidentally, one can give a proof of Proposition 4.8 in the same spirit
as that of Theorem 6.2 by degenerating the exact sequences

0→ Mσ p,σ−1 p′(−1)→ Mp,p′→ Mp→ 0

from [Levasseur and Smith 1993, Theorem 5.5] for the Sklyanin algebras S(α, β, γ ),
where p, p′ belong to the elliptic curve component E = E(α, β, γ ) of the point
scheme of S(α, β, γ ) and σ is the translation automorphism of E . The result
then follows from the observation made above that E(α, β, γ ), together with its
translation automorphism, degenerates to C ∪C ′ equipped with our automorphism
(also denoted by σ throughout) when α→ 0. �

The next result completes the description of the fat point–line incidences.

Proposition 6.4. For n ≥ 0 the line modules M`n from Theorem 6.2 are the only
ones having F(n,±) as a quotient in QGr(S).

Proof. The only central element �(λ) annihilating F(n,±) is �(±qn). In turn,
Proposition 5.3 tells us that the only line modules annihilated by �(±qn) are the
lines M`n in question and the lines Mσ−(n+1)(`n)

appearing as the leftmost terms in
(6-10). In conclusion, it suffices to show that there are no surjections

(6-12) Mσ−(n+1)(p),σ−1(p±)→ F(n,±)

in QGr(S).
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Let us specialize to F(n,+), to fix notation. Upon localizing to S[(K K ′)−1
]0 ∼=

U =Uq(sl(2)), (6-12) becomes a surjection

(6-13) U
U X+UY

→ L(n,+),

where X =κ(1−qn+2k−1)−s−1q−1/2e and Y =κ(k−q−(n+2))+sq−1/2 f for some
s ∈ P1. If s = 0 or∞ then the left-hand side of (6-13) is the simple Verma module
of highest weight q−(n+2) (respectively lowest weight qn+2), thus contradicting
the existence of such a surjection. On the other hand, if s ∈ C×, then we obtain
surjections (6-13) for all s ∈ C× by applying the Gm-action on U given by

k 7→ k, e 7→ s−1e, f 7→ s f for s ∈ C×.

By continuity in s ∈ P1, we then get such surjections for s = 0,∞ as well, and the
previous argument applies. �

We end with the following remark on certain modules over U = Uq(sl2). In
the proof of Proposition 6.4 we showed that the modules (6-13) of the form
U/(U X±+UY±) do not surject onto the simple modules L(n,±) for

(6-14)
X± = κ(1∓ qn+2k−1)− s−1q−1/2e,

Y± = κ(k∓ q−(n+2))+ sq−1/2 f,

where s ∈ P1. In fact, we can do somewhat more:

Proposition 6.5. For X± and Y± as in (6-14) the module U/(U X± + UY±) is
simple.

Proof. As in the proof of Proposition 6.4, we focus on X = X+ and Y = Y+ to fix
notation.

Assume otherwise. Then, using the equivalence between the category of modules
over U ∼= S[(K K ′)−1

]0 and a full subcategory of QGr(S), this assumption implies
that the line module

M = Mσ−(n+1)(p),σ−1(p±)

from (6-12) has a nonobvious subobject in QGr(S). The criticality of line modules
then implies that such a subobject would be a shifted line module, and hence there
would be a surjection from M to a nonzero fat point. Localizing back to U this
would give a surjection of U/(U X +UY ) onto a nonzero finite-dimensional U -
module, which would be a contradiction as in the proof of Proposition 6.4. �

The significance of Proposition 6.5 is that it fits the simple Verma modules
of highest and lowest weights q−(n+2) and respectively qn+2 into “continuous”
P1-families of simple modules.
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