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“EXISTENCE AND BEHAVIOR OF THE RADIAL LIMITS OF

A BOUNDED CAPILLARY SURFACE AT A CORNER”

JULIE N. CRENSHAW, ALEXANDRA K. ECHART AND KIRK E. LANCASTER

The principal existence theorem (i.e., Theorem 1) of “Existence and behav-
ior of the radial limits of a bounded capillary surface at a corner” (Pacific
J. Math. 176:1 (1996), 165–194) is extended to the case of a contact angle γ
which is not bounded away from 0 and π (and depends on position in a
bounded domain � ∈ R2 with a convex corner at O = (0, 0)). The lower
bound on the size of “side fans” (i.e., Theorem 2 in the above paper) is ex-
tended to the case of such contact angles for convex and nonconvex corners.

1. Introduction and theorems

Consider the capillary problem

N f = κ f + λ in �,(1)

T f · ν = cos γ on ∂�,(2)

where � is a region in R2 with a corner at O, O ∈ ∂�, N f = ∇ · T f , T f =
∇ f/

√
1+ |∇ f |2, κ and λ are constants, ν is the exterior unit normal on ∂�, and

γ = γ (s) is a function of position on ∂�, 0≤ γ (s)≤ π . The surface z = f (x, y)
describes the shape of the static liquid–gas interface in a vertical cylindrical tube of
cross-section �; see [Finn 1986; Lancaster and Siegel 1996] for background.

We are interested in the behavior of solutions to (1) and (2) in a neighborhood
of a corner point of the boundary. We take the corner point to be O = (0, 0). Let
�∗ =�∩ Bδ∗(O), where Bδ∗(O) is the ball of radius δ∗ about O. Polar coordinates
relative to O will be denoted by r and θ . We assume that ∂� is piecewise smooth
and that ∂�∩ Bδ∗(O) consists of two arcs ∂+�∗ and ∂−�∗, whose tangent lines
approach the lines L+ : θ = α and L− : θ = −α, respectively, as the point O is
approached. The points where ∂Bδ∗(O) intersect ∂� are labeled A and B; also,
0∗ = ∂Bδ∗(O)∩�. Set

�∞ = {(r cos(θ), r sin(θ)) : r > 0,−α < θ < α}.
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Let (x+(s), y+(s)) be an arclength parametrization of ∂+�∗ and (x−(s), y−(s))
be an arclength parametrization of ∂−�∗, each measured from the corner at O,
so that (x±(0), y±(0)) = (0, 0). Let (x+

∗
(s), y+

∗
(s)) be an arclength parametriza-

tion of ∂+�∞ = {(r cos(α), r sin(α)) : r ≥ 0} and (x−
∗
(s), y−

∗
(s)) be an arclength

parametrization of ∂−�∞ = {(r cos(−α), r sin(−α)) : r ≥ 0}, each measured from
the corner at O. Define

γ+(s)= γ (x+(s), y+(s)) and γ−(s)= γ (x−(s), y−(s)).

For 0≤ α ≤ π
2 , the corner will be said to be convex and for π

2 < α ≤ π , the corner
will be said to be nonconvex.

In [Lancaster and Siegel 1996], the existence of radial limits of a bounded solution
f to (1) that satisfies (2) on the smooth portions of ∂� is proven provided that γ

was bounded away from 0 and π , and for a convex corner an additional condition
is satisfied coupling γ+ and γ−. In this paper, we eliminate the requirement that γ
is bounded away from 0 and π ; an additional condition must still be satisfied at a
convex corner. The radial limits of f will be denoted by

R f (θ)= lim
r→0+

f (r cos θ, r sin θ), −α < θ < α,

and R f (±α)= lim∂±�∗3x→O f (x), x= (x, y), which are the limits of the boundary
values of f on the two sides of the corner if these exist.

Theorem 1. Let f be a bounded solution to (1) satisfying (2) on ∂±�∗ \{O}, which
is discontinuous at O.

(a) If α > π
2 then R f (θ) exists for all θ ∈ (−α, α).

(b) If α ≤ π
2 and there exist constants γ±, γ ±, 0≤ γ± ≤ γ ± ≤ π satisfying

π − 2α < γ++ γ− ≤ γ ++ γ −< π + 2α

such that γ± ≤ γ±(s) ≤ γ ± for all s ∈ (0, s0), for some s0 > 0, then R f (θ)
exists for all θ ∈ (−α, α).

Furthermore, in either case, R f (θ) is a continuous function on (−α, α) which
behaves in one of the following ways:

(i) R f (θ) is a constant function of θ and f has a nontangential limit at O.

(ii) There exist α1 and α2 so that−α≤α1<α2≤α and R f is constant on (−α, α1]

and [α2, α) and strictly increasing or strictly decreasing on [α1, α2]∩ (−α, α).
Label these case (I) and case (D), respectively.

(iii) There exist α1, αL , αR, α2 so that−α≤ α1 <αL <αR <α2 ≤ α, αR = αL+π ,
and R f is constant on (−α, α1], [αL , αR], and [α2, α) and either increasing
on [α1, αL ] ∩ (−α, α) and decreasing on [αR, α2] ∩ (−α, α) or decreasing on
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[α1, αL ]∩(−α, α) and increasing on [αR, α2]∩(−α, α). Label these case (ID)
and case (DI), respectively.

In Theorem 1 of [Lancaster and Siegel 1996] and Theorem 1 above, the existence
of two intervals (−α, α1] and [α2, α) on which R f (·) is constant (i.e., “side fans”)
is established but the relationship between the sizes of these side fans and the
contact angle is unclear. Theorem 2 of [Lancaster and Siegel 1996] establishes
lower bounds on these sizes when the

lim
∂+�3(x,y)→O

γ (x, y)= γ+0 and lim
∂−�3(x,y)→O

γ (x, y)= γ−0

are assumed to exist. (In [Lancaster 2010; 2012], these lower bounds were shown
to be the actual sizes of the side fans.) What happens if the limits of γ at O do not
exist? Theorem 2 and Corollary 3 provide lower bounds in this situation.

For 0< b < 1, define

A±I (b)= lim inf
ε↓0

1
ε

∫ bε

0
cos(γ±(t)) dt and A±S (b)= lim sup

ε↓0

1
ε

∫ bε

0
cos(γ±(t)) dt.

Notice that b cos(lim supt↓0 γ
±(t))≤ A±I (b)≤ A±S (b)≤ b cos(lim inft↓0 γ

±(t)).

Theorem 2. Let f be a bounded solution to (1) satisfying (2) on ∂±�∗ \{O}, which
is discontinuous at O. Assume R f (θ) exists for all θ ∈ (−α, α). Then:

(a) R f (θ) is a continuous function on (−α, α) which behaves as described in (i),
(ii) or (iii) of Theorem 1.

(b) There exist fans of constant radial limits adjacent to each tangent direction
at O and lower bounds on the sizes of these side fans exist.

In terms of the cases labeled in Theorem 1, the sizes of the side fans β− = α1+α

and β+ = α−α2 satisfy the following conditions:

(1) A+I

(
sin(λ−β+)

sin(λ)

)
+

sin(β+)
sin(λ)

≥ 1 for all λ ∈ (β+, π) for (I) and (DI).

(2) A−I

(
sin(λ−β−)

sin(λ)

)
+

sin(β−)
sin(λ)

≥ 1 for all λ ∈ (β−, π) for (D) and (DI).

(3) 1+ A−S

(
sin(λ−β−)

sin(λ)

)
≤

sin(β−)
sin(λ)

for all λ ∈ (β−, π) for (I) and (ID).

(4) 1+ A+S

(
sin(λ−β+)

sin(λ)

)
≤

sin(β+)
sin(λ)

for all λ ∈ (β+, π) for (D) and (ID).

2. Proofs of Theorems 1 and 2

The proof of Theorem 1 follows that established in [Lancaster 1985] and [Elcrat
and Lancaster 1986] in which (i) the graph of the solution in �×R is represented
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in isothermal coordinates, (ii) comparison arguments are used to prove that the
component functions of the isothermal parametrization of the graph are uniformly
continuous and so extend to be continuous on the closure of the parameter domain,
(iii) boundary regularity theory (e.g., [Heinz 1970]) is used to prove that radial
limits exist for almost every direction, (iv) cusp solutions are excluded (e.g., [Echart
and Lancaster 2017]) and (v) the behavior of the radial limit function is determined.
The only step which does not follow from previous work is (ii) and so the proof of
Theorem 1 comes down to establishing (ii). The proof of Theorem 2 follows from
standard “blow up” arguments.

2.1. Proof of Theorem 1. When α> π
2 , Theorem 1 is a consequence of [Entekhabi

and Lancaster 2016]. Suppose now that α ≤ π
2 . Since f is bounded and the

prescribed mean curvature is H(x, y, z) = κz + λ, there exist M1 ∈ (0,∞) and
M2 ∈ [0,∞) such that

(3) sup
(x,y)∈�

| f (x, y)| ≤ M1 and sup
(x,y)∈�

|H(x, y, f (x, y))| ≤ M2.

In §2.1 of [Entekhabi and Lancaster 2017], a specific torus is constructed which
depends solely on M2 and which is used as a comparison surface; one should
compare this with, for example, [Lancaster and Siegel 1996], where several types
of comparison surfaces are used, or [Entekhabi and Lancaster 2016], where an
unduloid is used as a comparison surface. We shall use this torus as our comparison
surface here. We will denote by q the modulus of continuity of the function h−

whose graph is the set T which is the inner half of a torus with axis of symmetry
{(2, y, 0) : y ∈ R2

}, major radius R0 = 2, and minor radius r0; here

(4) r0 =

1 if M2 = 0,

1
M2
+ 1−

√( 1
M2

)2
+ 1 if M2 > 0.

Then q is also the modulus of continuity of functions (i.e., h+, h−β , h+β ) whose
graphs are obtained by rotations and translations in the horizontal plane of T (see
[Entekhabi and Lancaster 2017, p. 59]).

Let S0 = gra( f )= {(x, y, f (x, y)) : (x, y) ∈�∗} and allow S to be the closure
of S0 in R3. As in §2.2 of [Entekhabi and Lancaster 2017], there exists an isothermal
parametrization Y : E→ R3 given by

Y (u, v)= (a(u, v), b(u, v), c(u, v))

such that Y (E)=S , Y (E)=S0, and (a1)–(a5) of [Entekhabi and Lancaster 2017]
hold, where E = B1(O) = {(u, v) : u2

+ v2 < 1}. By (a2) of that paper, if we let
G(u, v) = (a(u, v), b(u, v)) for (u, v) ∈ E , then G ∈ C0(E). From (a3) of that
paper, there exists a connected arc σ ⊂ ∂E that Y maps strictly monotonically onto
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{(x, y, f (x, y)) : (x, y) ∈ ∂�∗ \ {O}}. Let the endpoints of σ be denoted o1 and o2.
There exists points a,b ∈ σ such that G(a) = A, G(b) = B, G maps the arc o2a
onto ∂−� and G maps the arc o1b onto ∂+�. We must consider the two cases:

(A) o1 = o2,

(B) o1 6= o2.

Assume first that (A) holds. Set o= o1= o2. We wish to prove that c is uniformly
continuous on E and hence c extends to be continuous on E . If so, then the existence
and behavior of the radial limits of f follows as in [Entekhabi and Lancaster 2017;
Lancaster and Siegel 1996]. There are three possible cases:

(i) γ− > 0 and γ− < π ,

(ii) γ+ > 0 and γ+ < π ,

(iii) (γ− = 0 or γ− = π) and (γ+ = 0 or γ+ = π).

Case (i). Let λ1= γ
+, λ2= γ

+, γ2= γ
−. We observe that λ2= γ

+<π+2α−γ−,
λ1 = γ

+ >π −2α−γ−, and so λ2−λ1 < 4α. We wish to use the argument in the
proof of Theorem 2 of [Entekhabi and Lancaster 2017]. Since π − 2α−λ1 < γ2 <

π + 2α− λ2, we can choose τ1, τ2 ∈ (0, π) such that τ1 ∈ (π − 2α− λ1, γ2) and
τ2 ∈ (γ2, π + 2α−λ2). Set β1 =

π
2 − τ1 and β2 = τ2−

π
2 . With these choices of β1

and β2, notice that

T (h− ◦ Tβ1)(x1, 0) · (0,−1)= cos(τ1) > cos(γ2) for 0< x1 < 2− r0

and

T (h+ ◦ Tβ2)(x1, 0) · (0,−1)= cos(τ2) < cos(γ2) for 0< x1 < 2− r0

(see [Entekhabi and Lancaster 2017, p. 59]). This implies that for δ1= δ1(β1, β2)>0
small enough and x ∈ ∂−� with |x|< δ1, we have

(5) T (h−β1
)(x) · Eν(x) > cos(γ (x)) and T (h+β2

)(x) · Eν(x) < cos(γ (x)).

Since β1, β2 6= ±
π
2 , there exists R = R(β1, β2) > 0 such that BR(O) ∩ �∗ ⊂

1β1 ∩1β2 , where 1β is as in §2.1 of [Entekhabi and Lancaster 2017]. For each
δ ∈ (0, 1), allow

(6) p(δ)=

√
8πM0

ln(1/δ)

where M0 is the area of S0.
Let ε > 0. Choose δ > 0 such that

√
δ <min{‖o− a‖, ‖o−b‖},

p(δ) < δ1(β1, β2), p(δ) < R(β1, β2), p(δ)+ q(p(δ)) < ε

2
.
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Let w0 = (u0, v0) ∈ E . From the Courant–Lebesgue lemma, there exists a ρ(δ) ∈
(δ,
√
δ) such that the arclength lρ(δ) of C ′ρ(δ) is less than p(δ), where Cδ = {w ∈ E :

‖w−w0‖= δ} and C ′δ = Y (Cδ). Set Bδ = {w ∈ E : ‖w−w0‖< δ} and B ′δ = Y (Bδ).
Then, for w ∈ C ′ρ(δ), there exist functions

b+(x, y)= f (w)+ p(δ)+ h−β1
(x, y) for (x, y) ∈1β1,(7)

b−(x, y)= f (w)− p(δ)− h+β2
(x, y) for (x, y) ∈1β2(8)

where β1 =
π
2 − τ1 and β2 = τ2−

π
2 . From (10) of [Entekhabi and Lancaster 2017],

we have that div(b+) ≤ −M2 in 1β1 and div(b−) ≥ M2 in 1β2 . So in � ∩1β1 ,
div(T b+) ≤ div(T f ). On ∂−� ∩ Bδ1(O), T b+ · ν ≥ T f · ν. As in the proof of
Theorem 2 of that paper,

(9) f (x, y) < b+(x, y) for (x, y) ∈1β1 ∩ B ′ρ(δ),

where B ′ρ(δ) = Y (Bρ(δ)). This follows since T b+ · ν ≥ T f · ν on ∂+�∩ Bδ2(O) by
(15) of that paper if τ1+ 2α ≤ π and no boundary condition on ∂+� is required if
τ1+ 2α > π .

Repeat the same argument with λ1 = γ
+, λ2 = γ

+ and γ2 = γ
−. In the same

way as above, there exist functions

b+
∗
(x, y)= f (w)+ p(δ)+ h−β1

(x, y) for (x, y) ∈1β1,(10)

b−
∗
(x, y)= f (w)− p(δ)− h+β2

(x, y) for (x, y) ∈1β2(11)

such that

(12) b−
∗
(x, y) < f (x, y)

for (x, y) ∈1β2 ∩ B ′ρ(δ) where B ′ρ(δ) = Y (Bρ(δ)). Then combining (9) and (12) we
get

(13) b−
∗
(x, y) < f (x, y) < b+(x, y)

for (x, y) ∈1β1 ∩1β2 ∩ B ′ρ(δ). As in [Entekhabi and Lancaster 2017], it follows
that c(u, v) is uniformly continuous on E .

Case (ii). Case (ii) is simply case (i) reflected about the xz-plane and the proof
follows as above.

Case (iii). Notice that

0≤ π − 2α < γ++ γ− ≤ γ++ γ− < π + 2α ≤ π

and so γ− = 0 and γ+ = 0 cannot both occur and γ+ = π and γ− = π cannot
both occur. The result follows from this, using the arguments in cases 1 and 2. In
particular, if γ− > 0, then we obtain a supersolution b+ as in case (i) (see Figure 1)
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Figure 1. The domain of a supersolution in case (i).

Figure 2. The domain of a supersolution in case (ii).

and if γ−= 0, we obtain a supersolution b+ as in case (ii) (see Figure 2); if γ−<π ,
we obtain a subsolution b−

∗
as in case (i) and if γ− = π , we obtain a subsolution as

in case (ii).

Now assume (B) holds. Let B = {(x, y) ∈R2
:
√

x2+ y2 < 1, y ≥ 0} and let B be
the closure of B in R2. Let g : B→ E be a conformal or anticonformal map taking
{(u, 0) : −1 ≤ u ≤ 1} onto ∂E \ σ such that the map X = Y ◦ g : B→ R3 has a
downward orientation (i.e., the normal Xu×Xv to S0 gives a downward orientation).
Writing X (u, v)= (x(u, v), y(u, v), z(u, v)) and K (u, v)= (x(u, v), y(u, v)), we
have K ∈C0(B) and K (u, 0)= (0, 0)while X (u, 0)= (0, 0, z(u, 0)) for u∈[−1, 1].
Then the argument follows from [Lancaster and Siegel 1996] and the previous
argument here, as explained in [Entekhabi and Lancaster 2017]. �

2.2. Proof of Theorem 2. We first note that if δ1, δ2 ∈ (−α, α) with δ1 < δ2 and
R f (δ1) and R f (δ2) both exist, then it follows from [Elcrat and Lancaster 1986]
that R f (θ) exists for all θ ∈ [δ1, δ2] and R f (θ) is a continuous function of θ on
[δ1, δ2] which behaves as described in (i), (ii) or (iii) of Theorem 1. The first part
of Theorem 2 (i.e., (a)) follows from this.

Suppose {εj } is a decreasing sequence with lim j→∞ εj = 0. Let I = (−1, 1) and
set

γ j (s)=
{
γ+(εj s) if 0< s < 1,
γ−(−εj s) if − 1< s < 0

for j ∈N; then {cos(γ j ) : j ∈N} is a subset of the unit ball in L∞(I )= (L1(I ))∗. By
the Banach–Alaoglu theorem, there exist a subsequence {εjk } of {εj } and a function
h = h{εjk }

∈ L∞(I ) such that cos(γ jk ) converges weak-star to h; that is, for each
m ∈ L1(I ),

lim
k→∞

∫ 1

−1
cos(γ jk (s))m(s) ds =

∫ 1

−1
h(s)m(s) ds.
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Let us define γ ∗ = γ ∗
{εjk }
= cos−1(h) (almost everywhere on (−1, 1)). For any

b ∈ (0, 1), by choosing m to be the characteristic function of the interval (0, b) we
see that∫ b

0
h(s) ds = lim

k→∞

∫ b

0
cos(γ jk (s)) ds = lim

k→∞

1
εjk

∫ bεjk

0
cos(γ+(t)) dt

and, by choosing m to be the characteristic function of the interval (−b, 0),∫ 0

−b
h(s) ds = lim

k→∞

∫ 0

−b
cos(γ jk (s)) ds = lim

k→∞

1
εjk

∫ bεjk

0
cos(γ−(t)) dt;

hence∫ b

0
cos(γ ∗(s)) ds = lim

k→∞

1
εjk

∫ bεjk

0
cos(γ+(t)) dt ≥ lim inf

ε→0

1
ε

∫ εb

0
cos(γ+(t)) dt

and∫ 0

−b
cos(γ ∗(s)) ds = lim

k→∞

1
εjk

∫ bεjk

0
cos(γ−(t)) dt ≥ lim inf

ε→0

1
ε

∫ εb

0
cos(γ−(t)) dt.

Thus

(14) lim inf
ε→0

1
ε

∫ εb

0
cos(γ±(t)) dt ≤ lim inf

j→∞

∫ b

0
cos(γ±(εj s)) ds.

Choose a sequence {εj } with lim j→∞ εj = 0 such that

lim
j→∞

1
εj

∫ bεj

0
cos(γ+(t)) dt = lim inf

ε→0

1
ε

∫ εb

0
cos(γ+(t)) dt;

as above, there exist a subsequence {εjk } of {εj } and γ∗ ∈ L∞(I ) such that cos(γ jk )

converges weak-star to cos(γ∗). Then

lim inf
ε→0

1
ε

∫ εb

0
cos(γ+(t)) dt = lim

k→∞

1
εjk

∫ bεjk

0
cos(γ+(t)) dt

= lim
k→∞

∫ b

0
cos(γ jk (s)) ds =

∫ b

0
cos(γ∗(s)) ds.

Case 1. Suppose case (I) or (DI) of Theorem 1 holds and α2 = α− β
+. Let us

assume there exists λ ∈ (β+, π) such that

(15) A+I

(
sin(λ−β+)

sin(λ)

)
+

sin(β+)
sin(λ)

< 1;

we shall show that this leads to a contradiction. Set

b =
sin(λ−β+)

sin(λ)
.
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Choose a sequence {εj } with lim j→∞ εj = 0 such that

(16) lim
j→∞

1
εj

∫ bεj

0
cos(γ+(t)) dt = lim inf

ε→0

1
ε

∫ εb

0
cos(γ+(t)) dt;

as before, there exist a subsequence {εjk } of {εj } and γ∗ ∈ L∞(I ) such that cos(γ jk )

converges weak-star to cos(γ∗). Then

lim inf
ε→0

1
ε

∫ εb

0
cos(γ+(t)) dt = lim

k→∞

1
εjk

∫ bεjk

0
cos(γ+(t)) dt

= lim
k→∞

∫ b

0
cos(γ jk (s)) ds =

∫ b

0
cos(γ∗(s)) ds.

Let θ0 ∈ (σ, α2), where σ = α1 if case (I) holds and σ = αR if case (DI) holds, and
z0 = R f (θ0). Set �k = {(x, y) ∈ R2

: (εjk x, εjk y) ∈�} and define fk ∈ C∞(�k) by

fk(x, y)= 1
εjk
( f (εjk x, εjk y)− z0)

for (x, y) ∈�k . Let γk be defined on ∂�k \ {O} by

γk(x, y)= γ (εjk x, εjk y)

and let νk = νk(x, y) denote the outward unit normal to ∂�k . Then fk satisfies the
capillary problem

N fk(x, y)= εjkκ f (εjk x, εjk y)+ εjkλ, (x, y) ∈�k,

T fk · νk = cos(γk) on ∂�k \ {O}.

Since R f (θ)< z0 if σ <θ <θ0 and R f (θ)> z0 if θ0<θ <α, we see (e.g., [Lancaster
2010; 2012; Simon 1980]; also see [Tam 1984; 1986]) that { fk} converges locally
to the generalized solution f∞ (in the sense of Miranda [1977] and Giusti [1980;
1984]) of the functional

F∞(g)=
∫∫
�∞

√
1+ |Dg|2 dx −

∫
∂�∞

cos(γ∗(s))g ds,

where

f∞(r cos(θ), r sin(θ))=
{
−∞ if −α < θ < θ0,

∞ if θ0 < θ < α

if case (I) holds or case (DI) holds and z0 > R f (θ) for all θ ∈ (−α, αL) and

f∞(r cos(θ), r sin(θ))=


∞ if −α < θ < θh,

−∞ if θh < θ < θ0,

∞ if θ0 < θ < α

with R f (θh)= z0 and θh < αL otherwise.



364 JULIE N. CRENSHAW, ALEXANDRA K. ECHART AND KIRK E. LANCASTER

Figure 3. The yellow region represents 6θ0 .

Let us now define the sets

P = {(x, y) ∈�∞ : f∞(x, y)=∞} and N = {(x, y) ∈�∞ : f∞(x, y)=−∞}.

These sets have a special structure which follows from the fact that P minimizes
the functional

8(A)=
∫∫
�∞

|DχA| −

∫
∂�∞

cos(γ∗)χA d H 1

and N minimizes the functional

9(A)=
∫∫
�∞

|DχA| +

∫
∂�∞

cos(γ∗)χA d H 1

in the appropriate sense (e.g., [Giusti 1980; Lancaster and Siegel 1996; Miranda
1977]). Let 6θ0 denote the (open) triangular region whose boundary is the triangle
with vertices (0, 0), B = (b cos(α), b sin(α)) and C = (cos(θ0), sin(θ0)) and set
A=P\6θ0 (see Figure 3). Simple trigonometric computations with R>2 show that

(17) 8
(
B(O, R)∩P

)
−8

(
B(O, R)∩P \6θ0

)
=
(
1− A+I (b)

)
−

(
sin(α− θ0)

sin(ω)

)
,

where π −ω is the angle 6 OBC . This holds for all θ0 < α2 = α−β
+; taking the

limit as θ0 ↑ α−β
+ and noticing that ω→ λ as θ0 ↑ α−β

+, we see that

8
(
B(O, R)∩P

)
−8

(
B(O, R)∩P \6α2

)
=
(
1− A+I (b)

)
−

(
sin(β+)
sin(λ)

)
> 0

or
8
(
B(O, R)∩P

)
>8

(
B(O, R)∩P \6α2

)
;

this contradicts the fact that P (locally) minimizes 8. Therefore (15) is false. This
completes case 1.
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Case 2. Suppose case (D) or (DI) of Theorem 1 holds and α1 =−α+β
−. Let us

assume there exists λ ∈ (β−, π) such that

(18) A−I

(
sin(λ−β−)

sin(λ)

)
+

sin(β−)
sin(λ)

< 1.

Using an argument similar to that in case 1, we reach a contradiction.

Case 3. Suppose case (I) or (ID) of Theorem 1 holds and α1 =−α+β
−. Let us

assume there exists λ ∈ (β−, π) such that

(19) 1+ A−S

(
sin(λ−β−)

sin(λ)

)
>

sin(β−)
sin(λ)

.

Set

b =
sin(λ−β−)

sin(λ)
.

Arguing as in case 1, we see that the set N = {(x, y) ∈ �∞ : f∞(x, y) = −∞}
minimizes the functional

9(A)=
∫∫
�∞

|DχA| +

∫
∂�∞

cos(γ∗)χA d H 1

in the appropriate sense (e.g., [Giusti 1980; Lancaster and Siegel 1996; Miranda
1977]). Let 6θ0 denote the (open) triangular region whose boundary is the triangle
with vertices (0, 0), B = (b cos(−α), b sin(−α)) and C = (cos(θ0), sin(θ0)) and
set A = N \6θ0 (see Figure 3). Simple trigonometric computations with R > 2
show that

9
(
B(O, R)∩N

)
−9

(
B(O, R)∩N \6θ0

)
=
(
1+ A−S (b)

)
−

(
sin(α+ θ0)

sin(ω)

)
,

where ω is the angle 6 OBC . This holds for all θ0 > α1 = −α + β
−; taking the

limit as θ0 ↓ −α+β
− and noticing that ω→ λ as θ0 ↓ −α+β

−, we see that

9
(
B(O, R)∩N

)
−9

(
B(O, R)∩N \6α1

)
=
(
1+ A−S (b)

)
−

(
sin(β−)
sin(λ)

)
> 0

or

9
(
B(O, R)∩N

)
>9

(
B(O, R)∩N \6α1

)
;

this contradicts the fact that N (locally) minimizes 9. Therefore (19) is false. This
completes case 3.
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Case 4. Suppose case (D) or (ID) of Theorem 1 holds and α2 = α− β
+. Let us

assume there exists λ ∈ (β+, π) such that

(20) 1+ A+S

(
sin(λ−β+)

sin(λ)

)
>

sin(β+)
sin(λ)

.

Using an argument similar to that in case 3, we reach a contradiction. The proof of
Theorem 2 is then complete. �

3. Corollaries and examples

Corollary 3. Suppose m ∈ [−1, 1]; set σ = cos−1(m) ∈ [0, π].

(a) If A+I (b)≤ mb and case (I) or (DI) holds, then β+ ≥ σ .

(b) If A−I (b)≤ mb and case (D) or (DI) holds, then β− ≥ σ .

(c) If A−S (b)≥ mb and case (I) or (ID) holds, then β− ≥ π − σ .

(d) If A+S (b)≥ mb and case (D) or (ID) holds, then β+ ≥ π − σ .

Proof. (a) Suppose case (I) or (DI) of Theorem 1 holds, σ ∈ [0, π], cos(σ )= m,
and β+ < σ . By Theorem 2(a), we know that

sin(σ )
(

sin(λ−β+)
sin(λ)

)
+

sin(β+)
sin(λ)

≥ A+I

(
sin(λ−β+)

sin(λ)

)
+

sin(β+)
sin(λ)

≥ 1

or
cos(σ ) sin(λ−β+)+ sin(β+)

sin(λ)
≥ 1

for all λ ∈ (β+, π). Since σ > β+, we may set λ= σ and obtain

cos(σ −β+)=
cos(σ ) sin(σ −β+)+ sin(β+)

sin(σ )
≥ 1,

which is a contradiction since σ −β+ 6= 0. Thus β+ ≥ σ .

(b) This is essentially the same as (a).

(c) Suppose case (I) or (ID) of Theorem 1 holds, σ ∈ [0, π], cos(σ ) = m, and
β− < π − σ . By Theorem 2(c), we know that

1+ sin(σ )
(

sin(λ−β−)
sin(λ)

)
≤ 1+ A−S

(
sin(λ−β−)

sin(λ)

)
≤

sin(β−)
sin(λ)

or
sin(λ)+ cos(σ ) sin(λ−β−)− sin(β−)

sin(λ)
≤ 0

for all λ ∈ (β−, π). Since β− < π − σ , we may set λ= π − σ and obtain

1+ cos(σ +β−)=
sin(σ )+ cos(σ ) sin(σ +β−)− sin(β−)

sin(σ )
≤ 0,
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which is a contradiction since σ +β− < π . Thus β− ≥ π − σ .

(d) This is essentially the same as (c). �

Example 4. Let α ∈ (0, π] and γ±1 , γ
±

2 ∈ [0, π] with γ+1 ≤ γ
+

2 and γ−1 ≤ γ
−

2 . Set

�= {(r cos(θ), r sin(θ)) : 0< r < 1,−α < θ < α}.

For each n ∈ N, let An = (2−n2
, 2−n(n−1)

] and Bn = (2−n(n+1), 2−n2
]. Define

γ (s)=
∞∑

n=1

(
γ+1 IAn (s)+ γ

+

2 IBn (s)+ γ
−

1 IAn (−s)+ γ−2 IBn (−s)
)
,

so that γ is defined on ∂�∩ B(O, 1) by

γ (r cos(θ), r sin(θ))=


γ+1 if θ = α, 2−n2

< r ≤ 2−n(n−1) for some n ∈ N,

γ+2 if θ = α, 2−n(n+1) < r ≤ 2−n2
for some n ∈ N,

γ−1 if θ =−α, 2−n2
< r ≤ 2−n(n−1) for some n ∈ N,

γ−2 if θ =−α, 2−n(n+1) < r ≤ 2−n2
for some n ∈ N.

Set

cj =

2−
j
2

(
j
2+1

)
if j is even,

2−
(

j+1
2

)2

if j is odd.

Let b ∈ (0, 1) be fixed for now. Set εj = c2 j/b ( j ∈ N); notice that c2 j+1/c2 j =

2−( j+1). Then

b cos(γ±1 )≥ A±S (b)

≥ lim
j→∞

1
εj

∫ εj b

0
cos(γ±(t)) dt

= lim
j→∞

b
∫ 1

0
cos(γ±j (sb)) ds

= lim
j→∞

b
∫ 1

0
cos(γ±(c2 j s)) ds

= lim
j→∞

b
(∫ 1

c2 j+1
c2 j

cos(γ±(c2 j s)) ds+
∫ c2 j+1

c2 j

0
cos(γ±(c2 j s)) ds

)

= lim
j→∞

b
(

cos(γ±1 )(1− 2−( j+1))+

∫ 2−( j+1)

0
cos(γ±(c2 j s)) ds

)
= b cos(γ±1 ).

Using a similar argument for A±I (b) with εj = c2 j+1/b, j ∈ N, we see that

(21) A±I (b)= b cos(γ±2 ) and A±S (b)= b cos(γ±1 ).
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Example 5. Let α ∈ (0, π] and γ±1 , γ
±

2 ∈ [0, π] with γ+1 ≤ γ
+

2 and γ−1 ≤ γ
−

2 . Set

�= {(r cos(θ), r sin(θ)) : 0< r < 1,−α < θ < α}.

For each n ∈ N, let An =

(
2
4n
,

4
4n

)
, Bn =

(
1
4n
,

2
4n

)
, and Cn =

{
4
4n

}
. Define

γ (s)=
∞∑

n=1

(
γ+1 IAn(s)+γ

+

2 IBn(s)+π ICn(s)+γ
−

1 IAn(−s)+γ−2 IBn(−s)+π ICn(−s)
)
,

so that γ is defined on ∂�∩ B(O, 1) by

γ (r cos(θ), r sin(θ))=



γ+1 if θ = α, 2/4n < r < 4/4n for some n ∈ N,

γ+2 if θ = α, 1/4n < r < 2/4n for some n ∈ N,

π if θ = α, r = 4/4n for some n ∈ N,

0 if θ = α, r = 2/4n for some n ∈ N,

γ−1 if θ =−α, 2/4n < r < 4/4n for some n ∈ N,

γ−2 if θ =−α, 1/4n < r < 2/4n for some n ∈ N,

π if θ =−α, r = 4/4n for some n ∈ N,

0 if θ =−α, r = 2/4n for some n ∈ N.

Then
lim inf

r→0
γ
(
r cos(±α), r sin(±α)

)
= 0,

lim sup
r→0

γ
(
r cos(±α), r sin(±α)

)
= π,

ess lim inf
r→0

γ
(
r cos(±α), r sin(±α)

)
= γ±1 ,

ess lim sup
r→0

γ
(
r cos(±α), r sin(±α)

)
= γ±2 .

Thus A±I (b)≥ b cos(γ±2 ) and A±S (b)≤ b cos(γ±1 ).
Let b∈ (0, 1) be fixed for now. If we set εj =1/(b4 j ) ( j ∈N), then γ j (s)=γ (s/b)

and so

A+S (b)≥ lim
j→∞

∫ b

0
cos(γ j (s)) ds= b

∫ 1

0
cos(γ (s)) ds= b

( 2
3 cos(γ+1 )+

1
3 cos(γ+2 )

)
,

and, if we set εj = 2/(b4 j ) ( j ∈ N), then γ j (s)= γ (s/(2b)) and so

A+I (b)≤ lim
j→∞

∫ b

0
cos(γ j (s)) ds=2b

∫ 1
2

0
cos(γ (s)) ds=b

( 1
3 cos(γ+1 )+

2
3 cos(γ+2 )

)
;

similar estimates hold on ∂−�. Now suppose (η j ) is any decreasing sequence
in (0, 1) converging to zero. For each j ∈ N, there exists a k ∈ N such that
1
4 ≤ 4k−1η j b < 1 and, since γ is piecewise constant, a direct calculation shows
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that
∫ b

0 cos(γ±(η j s)) ds = b
∫ 1

0 cos(γ±(η j bs)) ds equals
b
(

1
6 · 4k−1η j b

cos γ±1 +
(

1−
1

6 · 4k−1η j b

)
cos γ±2

)
if 1

4 ≤ 4k−1η j b < 1
2 ,

b
((

1−
1

3 · 4k−1η j b

)
cos γ±1 +

1
3 · 4k−1η j b

cos γ±2

)
if 1

2 ≤ 4k−1η j b < 1.

The minimum occurs when 4k−1η j b= 1
2 and the minimum of

∫ b
0 cos(γ±(η j s)) ds is

b
( 1

3 cos(γ±1 )+
2
3 cos(γ±2 )

)
. The maximum occurs when 4k−1η j b = 1

4 and the max-
imum of

∫ b
0 cos(γ±(η j s)) ds is b

( 2
3 cos(γ±1 )+

1
3 cos(γ±2 )

)
. Thus

(22) A±I (b)= b
( 1

3 cos(γ±1 )+
2
3 cos(γ±2 )

)
and

(23) A±S (b)= b
( 2

3 cos(γ±1 )+
1
3 cos(γ±2 )

)
.

In these examples, we have the same essential limits inferior and superior at
O and yet A±I and A±S behave differently. In Example 4, we have the “extreme
values” (21); the “effective” contact angles in (a) and (b) of Corollary 3 are γ±2 and
in (c) and (d) of Corollary 3 are γ±1 . On the other hand, in Example 5, we have the
“intermediate values” (22) and (23). For Example 5, the “effective” contact angles
in (a) and (b) of Corollary 3 are σ±2 and in (c) and (d) of Corollary 3 are σ±1 , where
σ±1 , σ

±

2 ∈ [0, π] satisfy

cos σ±1 =
2
3 cos γ±1 +

1
3 cos γ±2 and cos σ±2 =

1
3 cos γ±1 +

2
3 cos γ±2 .

If f is a bounded solution of (1) satisfying (2) on ∂±�∗\{O} which is discontinuous
at O and R f (θ) exists for all θ ∈ (−α, α), then bounds on the sizes β+ and β− of
side fans can be computed using Corollary 3; the lower bounds on the sizes of these
side fans differ between these two examples.

4. Comments and extensions

The last section of [Lancaster and Siegel 1996] dealt with extensions of (1) to
equations of prescribed mean curvature. Consider the prescribed mean curvature
contact angle problem

N f = 2H( · , f ) in �,(24)

T f · ν = cos γ a.e. on ∂�.(25)

Suppose f ∈C2(�) satisfies (24) and (25) and also suppose the following conditions
hold:

(i) supx∈� | f (x)|<∞ and supx∈� |H(x, f (x))|<∞.

(ii) H(x, y, t) is weakly increasing in t for each (x, y) ∈�.
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Using [Echart and Lancaster 2017], we see that Theorems 1 and 2 continue to hold
for solutions f as above; the argument is the same as that in [Lancaster and Siegel
1996].

One might ask if the case considered in Theorem 2 is of “physical interest.” Is
it possible for the contact angle to fail to have a limit at the corner O? In a sense
this is a silly question since, at a small enough scale, the macroscopic description
of a capillary surface becomes meaningless. On the other hand, one sometimes
uses devices (e.g., homogenization) to obtain useful macroscopic information from
knowledge of “small scale” properties. An experiment which might be of some
interest would be to form a vertical wedge consisting of two planes of glass which
have been coated in increasing narrow vertical strips with a nonwetting substance
(e.g., paraffin) as the edge at which the two planes meet is approached; this would
approximate the situation considered in Theorem 2 and one wonders if there is a
“effective” contact angle at the corner which is larger than that for glass and smaller
than that for paraffin.
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