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Let A be a central simple algebra over a number field K . We study the ques-
tion of which integers of K are reduced norms of integers of A. We prove that
if K contains an integer that is the reduced norm of an element of A but not
the reduced norm of an integer of A, then A is a totally definite quaternion
algebra over a totally real field (i.e., A fails the Eichler condition).

1. Introduction

Let A be a central simple algebra over a number field K. Write Norm( · ) for the
reduced norm from A to K. If x is an integer in A, then clearly Norm(x) lies in R,
the ring of integers of K. It is also clear that x must be positive at the real primes
of K at which A is ramified. Suppose that m ∈ R satisfies this property, and so m
is a norm from A (see Theorem 2). If m is not the reduced norm of an integer of A,
we call m an outlier for A (this terminology is not standard).

The main result of this paper (combining Theorem A and Lemmas 6 and 7) is that
if K contains an outlier for A, then K is totally real, A is a quaternion algebra over
K, and A is totally definite. (One says in this case that A fails the Eichler condition).

We also prove a theorem of Deligne in Section 8 (because we couldn’t find a
proof in the literature), which states that if n ≥ 2 is an integer, and E1, . . . , En and
F1, . . . , Fn are supersingular elliptic curves defined over an algebraic closure of
the finite field GF(p), the field of p elements, then

E1× · · ·× En ∼= F1× · · ·× Fn.

The main ingredient is Eichler’s theorem on the uniqueness of a maximal order
in a central simple algebra in which Eichler’s condition holds. We also exploit
the known fact that the endomorphism algebra of such an Ei is a maximal order
in the quaternion algebra Ap over the rational field Q ramified at p and ∞ and
unramified everywhere else (and every maximal order arises in this context). Using
this connection also allows one to interpret outliers in Q for Ap as positive integers
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m for which no supersingular elliptic curve defined over the algebraic closure of
GF(p) has an endomorphism of degree m.

2. Notation and terminology

Throughout this paper, K is a number field, R its ring of integers, and A is a central
simple algebra over K. By definition, A is a finite-dimensional algebra over K,
the center of A is equal to K, and A has no nonzero 2-sided ideals. Equivalently,
A⊗K K is isomorphic to the matrix algebra Mn(K ), where K denotes an algebraic
closure of K. For basic facts about central simple algebras, see [Pierce 1982].

The positive integer n is the degree of A. A central division algebra D is a
central simple algebra, as is Mk(D) for any k, and conversely every central simple
algebra over K is of this form by Wedderburn’s Theorem [Weil 1967, Chapter IX,
§1, Proposition 2].

A division algebra of degree n = 2 is called a quaternion algebra.
If L is a field extension of K, then A⊗K L is a central simple algebra over L . If

A⊗K L is isomorphic to Mn(L) then L is said to split A.
Let M denote the set of places of the number field K. For each place v ∈ M,

Av := A⊗K Kv is a central simple algebra over the completion Kv . By Wedderburn’s
theorem, it is a ring of matrices over a local division ring Dv central over Kv. We
set nv = degree(Dv); nv is called the local degree. A is said to be split at v if Kv

splits A (nv = 1); otherwise it is ramified at v (nv > 1). A key fact is that a central
simple algebra over K splits at all but finitely many places v of K.

We have the following splitting criterion:

Lemma 1 [Reiner 1975]. Let A be a central simple algebra over the number field
K. A finite extension L of K splits A if and only if , for each place v of K and for
each extension w of v to L , the local dimension [Lw : Kv] is a multiple of the local
degree nv.

Note that to determine, using Lemma 1, whether a given finite extension L
over K splits A, it is enough to check the stated condition at the finite set of places
v of K where A is ramified.

The notion of reduced norms in a central simple algebra A is bound up with the
two notions of subfields and splitting fields. A field extension L of K is a subfield
of A if L embeds in A; a maximal subfield of A is a maximal such. All maximal
subfields of A have dimension n = degree(A) over K. A maximal subfield of A
is a splitting field for A, and conversely every n-dimensional splitting field for A
embeds in A as a maximal subfield [Reiner 1975, Chapter 1, Section 7]. When A is
a quaternion algebra, this translates as: maximal subfields of A are quadratic over K,
and quadratic splitting fields of A embed in A. We will use this association later.
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If A is a central simple algebra over K, L a maximal subfield of A, and x ∈ L ,
then the reduced norm Norm(x) is the ordinary field norm from L to K. This notion
is independent of the choice of L , or of the embedding of L into A. By norm we
will always mean reduced norm, and the notation will be Norm(x). In particular, for
a∈K, Norm(a)=an. The usual property holds: Norm(xy)=Norm(x)Norm(y) for
x, y ∈ A, whether or not x and y commute. It follows that Norm(ax)= an Norm(x)
for a ∈ K.

An element a ∈ A is an integer if the monic irreducible polynomial of a over K
has coefficients in R. Sums and products of commuting integers are integers, but,
as we shall see later, products of integers need not be integers.

Suppose A is central simple over K of degree n. Which elements of K are
reduced norms of elements of A? The answer is given by the theorem of Hasse,
Maass and Schilling; see [Reiner 1975, p. 289]:

Theorem 2 (Hasse–Maass–Schilling). An element m of K is a reduced norm of
an element of A if and only if m is positive at every real place of K at which A is
ramified.

For convenience we will call this the HMS theorem. Note that there is no
condition at the complex places of K, at the finite places of K, or at the real places
of K where A does not ramify.

Suppose m ∈ R and m is a norm in A. It need not happen that m is the norm of
an integer of A. We will call m ∈ R an outlier if m is a norm in A but not the norm
of an integer. Equivalently, m is not the norm of an element of any maximal order.
We will be concerned with the existence of, and properties of, outliers.

If K is a number field, we say K is totally real if Kv is real at all the infinite
places v of K. If K is totally real, m in K is totally positive if the real number mv

is > 0 at all the infinite places v of K. The m in K for which mv > 0 at the real
places of A that ramify are, by Theorem 2, the reduced norms of elements of A,
and conversely.

We recast the identification of outliers in terms of Lemma 1. Suppose A is central
simple over K of degree n, R the ring of integers of K.

Lemma 3. Suppose m ∈ R is a norm in A. Then m is not an outlier if and only if
there is a monic irreducible polynomial f (t) ∈ R[t] such that

(1) We have f (0)= (−1)nm.

(2) For each place v of K, let f (t) =
∏

fi (t) be the factorization of f (t) into
irreducible monic factors in Kv[t]. Then each di = degree( fi ) is a multiple of
the local degree nv(A).

Proof. Let L = K (α) be the root field of f . Then [L : K ] = n since f is irreducible,
and α is an integer since f ∈ R[t] is monic. The first condition says that the norm of
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α is m. The second condition, by Lemma 1, says that L splits A, and so L embeds
in A since its dimension is n. Then the reduced norm of α is m. The other direction
of Lemma 3 is clear. �

Corollary 4. Suppose A and B are central simple algebras over K of the same
degree n, and that the local degree nv(A) divides the local degree nv(B) for all
places v of K. Then any outlier m of A is a priori also an outlier of B. In particular,
if B has no outliers then A has no outliers.

Proof. The polynomial requirements of Lemma 3 for B are more restrictive than
those for A. �

In Section 3 we review maximal orders in the central simple algebra A and recall
Eichler’s condition. In Section 4 we prove that when Eichler’s condition is satisfied,
then there are no outliers. In other words, if A has outliers then A is a quaternion
algebra over a totally real number field K, and all real places of K are ramified
in A. However, this condition is sufficient but not necessary: there are definite
quaternion algebras over totally real number fields that have no outliers. We remark
that there is no logical relation between having outliers and having a unique (up
to conjugacy) maximal order; neither condition implies the other. In Section 5 we
study quaternion algebras over the field of rational numbers Q. We particularly
study definite quaternion algebras ramified at a single finite prime. We write Ar for
the definite quaternion algebra over Q unramified away from the places∞ and r .
We show, for example, that if Ar has an outlier then it has an outlier less than an
explicit bound (r2/16).

We give heuristic evidence that for infinitely many r , Ar has no outliers, as well
as examples when chosen square-free integers are outliers.

We are grateful to Joel Rosenberg for many discussions about the contents of
this paper, and for posing the questions which started us on this research.

3. Maximal orders

Let K be a number field, R its ring of integers, and A a central simple algebra
over K. A subring O of R that contains 1, is finitely generated as an R module, and
that contains a basis of A over K is called an order of A. Any order O of A is a
projective R-module of rank equal to n, the degree of A over K. A maximal order
of A is an order which is maximal with respect to containment. Maximal orders are
isomorphic if and only if they are conjugate, so we will speak of conjugacy classes
of maximal orders. All elements of a maximal order are integral over R, and every
integral element of A is contained in some maximal order.

It is known that the number of maximal orders of A, up to conjugacy by an
element of A, is finite. Let {O1, . . . , Ot } be a set of representatives.
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For any given maximal order O of A, let I (O) be the group of two-sided frac-
tional ideals of O modulo principal two-sided fractional ideals. Set i(O)= |O(I )|.
It is known that each i(O) is finite although the cardinalities i(O1), . . . , i(Ot) may
be distinct. Their sum c := i(O1)+· · ·+ i(Ot) turns out to be equal to the number
of fractional left ideals of O modulo principal fractional left ideals for any maximal
order O .

The terminology is that t is called the type number and c is called the class
number. We have just seen that the type number is at most the class number.

Let A be a CSA over a number field K. Consider the following three conditions:

(1) A is a quaternion algebra.

(2) The field K is totally real.

(3) A is ramified at every infinite place of K.

It is customary to say that A fails the Eichler condition when all three conditions
hold. For example, the quaternion algebra Ap over Q ramified at p and∞, and
unramified away from those places, fails the Eichler condition.

This description can be refined if the Eichler condition holds. Assume now that
A satisfies the Eichler condition. Then the i(O1), . . . , i(Ot) are all equal. In fact
each I (Oi ) can be identified with an abelian group I = I (A), as do the types T
and the classes C. These three abelian groups fit into an exact sequence

0→ T → C→ I → 0.

These three groups are related, via the reduced norm map to certain generalizations
of the class group of the center K of A, by results of Eichler.

The group C is isomorphic to the group C ′ of fractional ideals of K modulo
principal fractional ideals that can be generated by an invertible element a ∈ K that
is positive at all infinite places of K that ramify in A.

Let n be as usual the square root of dimK (A). If p is a prime ideal of K that
is ramified in A, then at the corresponding finite place v of K , A⊗ Kv = Mr D′

for some division algebra D′ over Kv and for some r dividing n. The group T is
isomorphic to the subgroup T ′ of C generated by nC and the class of pr for each
finite prime p (and note that this gives nothing new for the unramified primes since
r = n).

I is isomorphic to the (abelian, finite) quotient group C ′/T ′.

4. Higher degree central simple algebras

Let A be a central simple algebra of degree n over the number field K. The main
result of this section is:

Theorem A. If n > 2 then A has no outliers.
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We need first a review of the proof of the HMS theorem in order to build a variant
that works for integers. A first ingredient is:

Krasner’s Lemma. Let v be a place of K, and f (t) = tn
+ a1tn−1

+ · · · + an a
separable irreducible polynomial in Kv[t]. If g(t) ∈ Kv[t] is close enough to f (t),
then g is separable irreducible and Kv[a] = Kv[b], where a is a root of f (t) and b
is a root of g(t).

Eichler’s proof of the HMS theorem goes as follows. Let R be the integers of K,
and m ∈ R satisfy the required condition: m is positive at all places v of K which
are real and ramified in A. Let S be the set of infinite places of K at which A
ramifies. Let S′ be a finite set of finite primes of K, including those that ramify in A.
We insist that S′ be nonempty; if necessary, we include an irrelevant extra prime
where A is unramified but where the polynomial constructed below is irreducible.
We construct a polynomial

(5) f (t)= tn
+ c1tn−1

+ · · ·+ (−1)nm ∈ K [t]

so that:

• For each v ∈ S′, ci is close enough to an irreducible polynomial fv(t) =
tn
+ a1tn−1

+ · · · + (−1)nm ∈ Rv[t] to guarantee f is irreducible in Kv[t].
There is such a polynomial [Weil 1967, XI, §3, Lemma 2] but we don’t show
that here.

• For each v ∈ S, f is close to fv(t)= tn
+ (−1)nm, i.e., each ci is positive and

close to 0. (Note that if any such v exists, then n is necessarily even). This
guarantees fv has no real roots. If A is not ramified at any infinite place of K,
then this condition is vacuous.

Since S′ is nonempty, f is irreducible in K [t]. Let L = K (α) where α is a root
of f ; [L : K ] = n. The first condition on f says that L splits A at the finite primes,
and the second condition guarantees that L splits A at the ramified infinite places,
since the root field of f must be complex. The sign (−1)n guarantees that the norm
from L to K of α is m. Finally, since L is a splitting field of degree n, then L
embeds in A as a maximal subfield, and the reduced norm of α is m.

This is the proof rendered by Eichler, and is the one presented in [Reiner 1975],
[Vignéras 1980], and [Weil 1967]. Note that it made crucial use of the weak
approximation theorem.

To go further, we use the strong approximation theorem [Weil 1967, Corollary
2, page 70], which better suits our purposes. Let w be a place of K at which A is
unramified. Then we can insist that the ci are in Rv for all v 6= w. We call this the
strong proof of the HMS theorem. We conclude any m ∈ R which is positive at all
real places of K that ramify in A is the reduced norm of an element α of A that is
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integral at all places v of K not equal to w. So if K has a complex place, or a real
place that is not ramified in A, then, taking this for w shows that A has no outliers.

Lemma 6. If A has an outlier then, K is totally real, A is totally definite, i.e., A is
ramified at all the real infinite places of K.

Proof. Let m ∈ R be a norm in A. If the conditions are not satisfied, then A must
have an infinite place w at which A is unramified. We use this extra place in the
strong proof of the HMS theorem. Then the polynomial f is in R[t], α is an integer,
and m is the norm of an integer. �

Lemma 7. If A has an outlier then there is a finite place of K that ramifies in A.

Proof. Suppose A is unramified at all finite places. By Lemma 6 , we may assume
n is even. Let m ∈ R be totally positive. The polynomial tn

+m does the trick in
the strong proof of HMS. �

We finish the proof of Theorem A. By Lemma 6 we may assume that K is totally
real, A is ramified at all real places, n > 2 is even, and m is positive at all infinite
places. First we treat the finite places. By [Weil 1967, Ch. XI,§3,Lemma 2], for
each finite place v, for any n, and for any nonzero m in K there exists a monic
degree-n irreducible polynomial f (t) ∈ Kv[t] with coefficients in Rv such that
f (0)= (−1)nm.

Let M f denote the set of finite places of K that ramify in A. Note that M f is
finite, and for each v in M f we have fv(t) as required by Lemma 3, but we have
not yet treated the infinite places.

For each 1≤ k ≤ n, apply the Chinese remainder theorem to the coefficient of tk

in fv to get a monic polynomial g(t)∈ K [t] with g(0)=m and integral coefficients
so that each localization gv(t) at each Kv is close enough to fv to be irreducible by
Krasner’s Lemma. We have lifted the required polynomials at the finite primes, but
the infinite places are still at bay; there is yet no reason why g(t) has only complex
embeddings.

Each v ∈ M f lies over some rational prime pv. Let N =
∏
v∈M f

pv be their
product.

Let Minf be the set of real places of K that ramify in A. For any v ∈ Minf we
have a real polynomial gv which is positive at −∞, ∞ and 0 by construction.
Therefore, there is some integer multiple Mv of N so that gv(t)+Mvt2 is positive
everywhere. Let M be the largest of the Mv. Furthermore by replacing M by
N k M for a sufficiently large k, we can insure by Krasner’s Lemma again that
gv(t)+ N k Mt2 is irreducible at each v ∈ M f .

The polynomial f (t)= g(t)+N k Mt2
∈ K [t] does the trick: it is monic of degree

n, has no real roots, and for each place of K that ramifies in A, each irreducible
factor of fv has degree a multiple of nv(A). This finishes the proof of Theorem A. �
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Note that the coefficient of t2 was available for modification only because n > 2.
For quaternion algebras, the coefficient of t2 is constant equal to 1. We get to that
case next.

5. Quaternion algebras

We write Q for the field of rational numbers and Z for the ring of integers.
We consider definite quaternion algebras over Q with special attention to Ar =

the definite quaternion algebra ramified at the prime r and unramified at all other
finite primes. Of course Ar is also ramified at∞, and so at all infinite places. The
simplification here is that the integers which are norms in Ar are exactly the set of
positive integers, and so the only issue is whether they are norms of integers. We
now investigate how this could happen.

Let m be a positive integer. Let f (t)= t2
+ bt +m with b ∈ Z. Let L =Q(α)

with f (α)= 0. Then L splits Ar if and only if:

• f is r -adically irreducible,

• f has degree 2 at∞, i.e., d = b2
− 4m < 0.

When either of the conditions above hold, then f is irreducible and [L :Q] = 2.
When they both hold, L embeds in Ar by Lemma 1, Norm(α) = m, and so m is
the norm of an integer in Ar . Moreover, m is the norm of an integer if and only if
this search succeeds for some b ∈ Z. There are a finite number of eligible b by the
last condition; |b|<

√
4m. Furthermore, b can be assumed to be positive; if α is a

root of t2
+ bt +m then −α is a root of t2

− bt +m. Of course b = 0 is legitimate
as a possibility. We record this in:

Lemma 8. The positive integer m is the norm of an integer in Ar if and only if there
is a polynomial f (t) = t2

+ bt +m satisfying the two conditions above for some
b ∈ Z. It is sufficient to search only in the range 0≤ b <

√
4m.

For polynomials of the right shape, they are irreducible r -adically if and only if
they are irreducible mod r . So when is m = 2 an outlier in Ar ? We illustrate the
search below, where we assume r > 2:

(9)

b = 0 d =−8

b = 1 d =−7

b = 2 d =−4

Of course −8 is an r-adic square if and only if −2 is, and this happens if and
only if the Legendre symbol

(
−2
r

)
= 1. Similarly, −4 is a square if and only if

−1 is. For each of the three conditions in (9), a random prime r satisfies it with
probability 1

2 . We conclude:
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Theorem 10. The integer 2 is an outlier in Ar if and only if

(11)
(
−2
r

)
=

(
−7
r

)
=

(
−1
r

)
= 1.

By considering the value of r mod 56, it follows from the Dirichlet density
theorem [Serre 1973, Chapter VI, §4, Theorem 2] that the set of primes r for which
this holds has density 1

8 . In particular it is infinite.
We do this once more to determine when 3 is an outlier. The data gives the

following list:

(12)

b = 0 d =−12

b = 1 d =−11

b = 2 d =−8

b = 3 d =−3

There is a redundancy; −12 is a square if and only if −3 is. We conclude, for r > 3:

Theorem 13. The integer 3 is an outlier in Ar if and only if

(14)
(
−3
r

)
=

(
−11

r

)
=

(
−2
r

)
= 1.

The set of primes r for which this holds is infinite and has density 1
8 .

By similar analysis we get, for r > 6:

Theorem 15. The integer 6 is an outlier in Ar if and only if

(16)
(
−2
r

)
=

(
−3
r

)
=

(
−5
r

)
=

(
−23

r

)
= 1

The set of primes r for which this holds is infinite and has density 1
16

Suppose 6 is an outlier for Ar . It does not follow that 2 and 3 are outliers.
There may be integral α and β with Norm(α) = 2 and Norm(β) = 3, and then
Norm(α · β) = 6. It might happen that for all such occurrences α and β are in
different maximal orders, and α ·β is not integral. When 6 is minimal as an outlier,
this is what had to happen. This can be quantified; we state without proof:

Theorem 17. Ar has the property that 2 and 3 are not outliers and 6 is an outlier
if and only if −2,−3,−5,−23 are squares mod r and either

(18)
(
−1
r

)
=−1 or −1 is a square mod r and 11, 7 are nonsquares mod r

The set of primes r for which this holds is infinite and has density 5
128 =

( 1
16

)(1
2+

1
8

)
.
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We have not yet determined all outliers in Ar , nor have we answered whether
they are infinite when nonempty. We need two results to prepare for this. We take
on the second issue first. Since the next result holds more generally than for the Ar ,
we state it in full generality. In all of the following, the symbol (a, b) stands for
the quaternion algebra over some ground field generated by i and j where i2

= a,
j2
= b, i j =− j i .

Theorem 19. Let A be a definite quaternion algebra over Q ramified at the finite
prime r. If m is a positive integer, then m is an outlier for A if and only if mr2 is
also.

Proof. For the easy direction: if Norm(α) = m with α an integral element of A,
then Norm(r ·α)= mr2. We need to show conversely that when mr2 is the norm
of an integer, so is m.

Let O be any maximal order of A. It is enough to show that whenever mr2 is a
norm of an element α of O , then α/r ∈ O . The completion of O at r is the norm
form of the unique quaternion algebra D over Qr . By [Serre 1979], D has the form
(a, r) where a is an appropriate nonresidue mod r . When r is odd, any nonresidue
will do, whereas when r = 2, a = −3 will do (in all cases,

√
a determines the

unique unramified quadratic extension). The norm form for this algebra is:

(20) F = x2
− ay2

− r(z2
− aw2)

Assume that F(x, y, z, w)=mr2. It follows that x2
−ay2

≡ 0 (mod r). As a is a
nonresidue, this forces x and y to be ≡ 0 (mod r). But then x2

−ay2
≡ 0 (mod r2),

and so r(z2
−aw2) is 0 mod r2. It follows that z2

−aw2
≡ 0 (mod r), so that z and

w are 0 mod r . Now all four coefficients x, y, z, w of α are divisible by r . Thus
α/r is in O and has norm m. We conclude that whenever Norm(α) is mr2 with α
in O , then α/r is in O and has norm m. Since this holds for all maximal orders,
the lemma is established. �

Corollary 21. With A as in Theorem 19, if the set of outliers for A is nonempty,
then it is infinite; if m is an outlier for A, then so is mr2n for any positive integer n.

Remark 22. Corollary 21 allows division by r2, but not by r . In fact, if m is an
outlier for Ar and relatively prime to r , then mr is not an outlier. The polynomial
t2
+mr is irreducible at r by Eisenstein’s criterion, and also irreducible at infinity;

it satisfies the requirements of Lemma 3.

We need a bound up to which we can check for outliers not governed by
Theorem 19. We do this for Ar ; the generalizations to definite quaternion algebras
will be clear. One more preliminary is necessary.

Lemma 23. Let p > 2 be a prime and m in GF(p) nonzero. Then there exists b in
GF(p) such that b2

− 4m is a nonsquare mod p.
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Proof. Suppose not. Then, for every b, b2
−4m is a square. But then (b2

−4m)−4m
is a square and by induction b2

− 4mj is a square for all j. By our hypotheses 4m
is invertible in GF(p) so all elements of GF(p) are squares, contradiction. �

We can now establish a bound for Ar .

Theorem 24. Suppose r > 2 is prime and m is a positive integer coprime to r . Set
C(r)= r2/16. If m > C(r), then m is not an outlier for Ar .

Proof. By Lemma 23, we choose an integer b such that b2
− 4m is a nonsquare

mod r . We are free to assume of course that b < r/2. Set f = t2
+ bt +m, and

d = b2
− 4m. One checks that the bounds on b and m say that d < 0, so f is

irreducible at infinity. Since d is a nonresidue at r , f is also irreducible in Qr [t].
Then f satisfies the requirements of Lemma 3, and so m is the norm of an integer. �

Remark 25. Theorem 24 gives an effective strategy for finding all outliers in Ar .
One checks all m in the interval [0,C(r)] using Lemma 3. For m > C(r): m is not
an outlier if m is not divisible by r . If m is divisible by r to the first power, then m is
not an outlier by Remark 22. If m is divisible by higher powers of r , then successive
uses of Theorem 19 gets us to the case of first power or the range [0,C(r)].

Here is one case where all outliers can be determined:

Corollary 26. If r = 67, then the only outliers for Ar are of form 3 · r2n, n =
1, 2, 3, . . . .

Proof. One checks in the range [0,C(r)] that the only outlier is 3 using Lemma 3
for each possible m. Then Remark 25 does the rest. �

Remark 27. Note that this corollary says that division by r2 is not always possible
when r is not a ramified prime. In A67, 12= 3 · 22 is the norm of an integer, but 3
is not, so division by the square of the unramified prime 2 is not possible.

An effective bound for more general definite quaternion algebras is not difficult.
Suppose A is a quaternion algebra central over Q ramified at infinity and the finite
primes comprising a set S. Let C be the product of the finite ramified primes of A,
and M = C2/16. Then

Theorem 28. M is an effective bound for determining all the outliers for A.

Proof. The proof is exactly as in Theorem 24 and Remark 25. �

The symbol B = (−58,−17) over Q is ramified at infinity and the finite primes
S = {2, 17, 29}. Using Theorem 28 one can show:

Corollary 29. The outliers for B are the set

{10r2n
: n = 1, 2, 3, . . . ; r a product of elements of S}.
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The minimal outlier of B is 10. Therefore, there are integers α and β in B with
Norm(α) = 2 and Norm(β) = 5. Whenever this happens, the product αβ is not
integral.

The appearance of 6 and 10 in this context is general, as seen in the next theorem.

Theorem 30. Let m be a positive integer that is not a square. Then there are
infinitely many primes r such that {m · r2n

: n ≥ 1} are outliers for Ar .

Proof. For b in the range [0,C], C =
√

4m, and d = b2
− 4m, we must have the

Legendre symbol
(d

r

)
equal to 1; the Chebotarev density theorem says there are

infinitely many such primes r . In fact their density is 1/2s for some appropriate
integer s. �

6. Open questions

We begin with:

Are there infinitely many rational primes r such that Ar has no outliers?

Heuristically, the answer is yes. Computer searches for small bounds show that
Ar has no outliers a little more than half the time.

We have seen that the set of primes r for which m = 2 is an outlier for Ar has
density 1

8 . Similarly, the set of primes for which m = 3 is an outlier for Ar has
density 1

8 . Adding together these probabilities for small m appears to give something
like density 0.7; this is roughly the probability that neither 2 nor 3 is an outlier.
However for large m, the density of primes r for which m is an outlier in Ar should
be something like 2−c

√
4m , since we are asking that the floor of

√
4m+ 1 numbers

are all squares r-adically and some constant c is required because these numbers
may not be linearly independent in Q∗/(Q∗)2. However the sum

∑
m>0 2−c

√
4m

converges. Therefore we cannot distinguish whether our set is finite or infinite.
Another interesting question concerns totally definite quaternion algebras over

totally real number fields. Do they have outliers? Sometimes? Often?
We have worked out only one example. Let B = (−1,−7)K where K is the real

subfield of seventh roots of unity. Then B has no outliers. The argument is technical,
so we will not reproduce it here; it requires a detailed study of units, totally positive
units, class number, and the establishment of a bound as in Theorem 24; the bound
is 1792. However, when K =Q(

√
2), the same algebra tensored up to K does have

outliers. Thus, restriction maps may or may not preserve the property of having no
outliers.

On the other hand, let A be the algebra (−1,−67) over Q; by Corollary 26, 3
is an outlier for A. If K =Q(

√
67), then A⊗Q K is ramified at only the infinite

places of K, and so by Lemma 7 has no outliers. Thus the restriction map may also
fail to preserve the property of having outliers.
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The last remark can be generalized. From Lemma 7, if A is a quaternion algebra
over Q, then there is a real quadratic field K such that:

• A⊗Q K is a division ring,

• A⊗Q K has no outliers.

7. Application to supersingular elliptic curves and surfaces

We review the connection between supersingular elliptic curves in characteristic r
and maximal orders in Ar , where Ar , is the definite quaternion algebra ramified at
∞ and r and unramified away from these places.

Let E be a supersingular elliptic curve defined over an algebraic closure �
of GF(r), and write End(E) for its endomorphism ring. Then End(E)⊗Z Q is
isomorphic to Ar . Under this isomorphism, End(E) is a maximal order in Ar , and,
conversely, any maximal order M of Ar is isomorphic to End(E) for some E .

Furthermore the norm of an endomorphism φ : E→ E is, under this isomorphism,
equal to the reduced norm of the corresponding m ∈ M.

The statement “m is an outlier for Ar ” translates to: no supersingular elliptic
curve defined over � has an endomorphism of degree m.

So we see, for example, that for every integer m > 1 there are infinitely many
primes p such that no supersingular elliptic curve defined over � has an endomor-
phism of degree m.

Next we turn to products of supersingular elliptic curves.

Corollary 31. Let E be a supersingular elliptic curve defined over an algebraic
closure of GF(p), and set A = Eg for g ≥ 2 an integer. Then the abelian variety A
has an endomorphism of degree m for every positive integer m.

Remark 32. Here we are considering all endomorphisms of A, not just those that
preserve the obvious principal polarization.

Proof 1. End(A) (which happens to equal S =Matg(M)) is a maximal order in the
central simple algebra Matg(Ar ) of dimension 4g2 over Q. Eichler’s methods, as
outlined in Section 3, imply that S is the unique maximal order up to conjugacy since
g > 1. Therefore, by Theorem A, m is a reduced norm of an element α ∈ End(S).
However, reduced norm is in this case equal to the degree of the map α. �

Our second proof of Corollary 31 uses a well-known theorem of Deligne, which
we state below. As we have not found an adequate proof in the literature, for the
reader’s convenience we include one in the next section.

Theorem 33 (Deligne). Let p be a prime and let n ≥ 2 be an integer. If E1, . . . , En

and F1, . . . , Fn are supersingular elliptic curves defined over an algebraic closure
of GF(p), then

E1× · · ·× En ∼= F1× · · ·× Fn
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Proof 2 of Corollary 31. It turns out it is enough, using Deligne’s result, to show
that for each rational prime ` that A = En has an endomorphism of degree `.

There does exist for each ` an isogeny of supersingular elliptic curves φ : E→ E ′

of degree ` (for `= p, the Frobenius has degree p and for ` 6= p mod out by any
subgroup H of order `). However, Deligne’s theorem gives an isomorphism

ψ : En ∼= E ′× En−1.

Thus the composite ψ−1
◦ (φ × idn−1) furnishes the desired endomorphism of

degree `. �

We are grateful to Bruce Jordan for suggesting the second proof of Corollary 31.

8. Proof of Deligne’s theorem

In this section we prove Theorem 33. For p a prime, let � denote an algebraic
closure of GF(p).

Remark 34. (1) It would suffice by induction to prove the theorem for n = 2
(although we will not use this remark).

(2) It will suffice to show (by transitivity of isomorphism) that F1×· · ·× Fn ∼= En

for some particular supersingular elliptic curve E defined over �.

The remainder of this section is devoted to the proof of Theorem 33.
Note that1=End(E) is a maximal order in the quaternion algebra Ap=1⊗Z Q.

The left 1-module Hom(F1×· · ·× Fn, E) being a projective module of rank n ≥ 2
is free by [Reiner 1975][Corollary 35.11 (iv)] (by the results of Section 3 since the
Eichler condition holds for Mn(1), and since visibly any ray class field over Q is
trivial). This is the key point in the proof.

Let φ1, . . . , φn be a basis. The freeness means that any homomorphism ψ from
F1× · · ·× Fn to E is uniquely a sum

ψ = δ1 ◦φ1+ · · ·+ δn ◦φn

for some δ1, . . . , δn in 1, noting that the 1-action on Hom(A, E), is composition
of functions. Setting 8= (φ1, . . . , φn), we have constructed a homomorphism

8 : F1× · · ·× Fn→ En,

and to finish the proof of the theorem it will suffice to prove that8 is an isomorphism.
Let K be the kernel of 8. If 8 is not an isomorphism, then K is nontrivial,

and therefore some projection πi (K ) is nontrivial in Fi . Let ρ : Fi → E be a
homomorphism, and set ψ : F1× · · · × Fn → E to be ψ(x1, . . . , xn) = ρ(xi ). It
follows that ρ and therefore any homomorphism from Fi to E must kill πi (K ).

Lemma 35. There is a supersingular elliptic curve E0 defined over GF(p).
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Proof. Let E be a supersingular elliptic curve defined over �. Then there is only
one isogeny of order p from E to another elliptic curve, namely the Frobenius
isogeny Fr : E→ E (p). It follows that E has an endomorphism of degree p if and
only if E is defined over GF(p).

Consider now the element
√
−p in the quadratic number field L =Q(

√
−p). It

has norm p and is integral. As L splits Ap, it embeds in Ap. So Z[
√
−p] a fortiori

embeds and thus is contained in a maximal order O of Ap. The usual norm on
Z[
√
−p] is equal to the restriction of the reduced norm under the embedding. In

the correspondence between maximal orders of Ap and supersingular elliptic curves
over �, the elliptic curve corresponding to O is thus defined over GF(p). �

The proof of Deligne’s theorem will be completed by the following lemma.

Lemma 36. Let E and F be supersingular elliptic curves over �. Then the inter-
section, as subgroup schemes of ker(φ) as φ ranges over Hom(E, F), is trivial.

Remark 37. (1) It will suffice to find a collection of isogenies from E to F whose
degrees are coprime.

(2) It will suffice to prove the lemma for a fixed elliptic curve E0 (and F varying),
then precomposing with the dual isogenies from E0 to E coming from (1).

Proof.
First of all we know that Hom(E, F) is nonzero. If O = End(E) is the maximal

order of End(E)⊗Z Q corresponding to E , then O has an ideal whose right order is
equal to the maximal order corresponding to F and this furnishes a nonzero isogeny.
So Hom(E, F) is a finitely generated projective left module over O (and not the
zero module). Let K denote the intersection (as subgroup schemes) of ker(φ) as φ
ranges over Hom(E, F). We have just showed that K is finite. Among all isogenies
from E to F, let φ be one of least degree. Let ` be a prime dividing deg(φ), hence
also the order of K. We first treat the somewhat easier case ` 6= p. If φ(E[`])= 0
then (1/`)φ is a nonzero isogeny from E to F of smaller degree, a contradiction.
Thus W = ker(φ)∩ E[`] is one-dimensional. However, End(E) acts transitively
on the one-dimensional subspaces of E[`]. Thus there is a σ in End(E) that does
not fix W. Then φ+φ ◦ σ is an isogeny from E to F of order prime to `.

We finish the proof of the lemma in the case `= p.
It is enough by transitivity to assume (by Lemma 35) that E = E0 is defined over

GF(p). Assume that every isogeny from E0 to E has degree divisible by p. Let
φ : E0→ E be the nonzero isogeny of least degree. If φ has degree divisible by p
then φ factors through the Frobenius isogeny: φ = ψ ◦ Fr for some ψ : E (p)0 → E .
But since E (p)0 = E0, ψ : E0→ E is an isogeny of degree smaller than deg(φ). �

This finishes the proof of Lemma 36 and of Theorem 33.
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