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GLOBAL EXISTENCE AND BLOWUP OF
SMOOTH SOLUTIONS OF 3-D POTENTIAL EQUATIONS

WITH TIME-DEPENDENT DAMPING

FEI HOU, INGO WITT AND HUICHENG YIN

In this paper, we are concerned with the global existence and blowup of
smooth solutions of the 3-D irrotational compressible Euler equation with
time-dependent damping

∂tρ+div(ρu)= 0,
∂t(ρu)+div(ρu⊗ u+ pI3)=−α(t)ρu,
ρ(0, x)= ρ̄+ ερ0(x), u(0, x)= εu0(x),

where x ∈R3, the frictional coefficient α(t)=µ/(1+ t)λ with µ>0 and λ≥0,
ρ̄ >0 is a constant, ρ0, u0∈C∞0 (R

3), (ρ0, u0) 6≡0, ρ(0, x)>0, curl u0≡0, and
ε > 0 is sufficiently small. For 0 ≤ λ ≤ 1, we show that there exists a global
C∞([0,∞) × R3)-smooth solution (ρ, u) by introducing and establishing
some uniform time-weighted energy estimates of (ρ, u), while for λ > 1, in
general, the smooth solution (ρ, u) blows up in finite time. Therefore, λ= 1
appears to be the critical value for the global existence of small amplitude
smooth solution (ρ, u).

1. Introduction

In this paper, we are concerned with the global existence and blowup of smooth
solutions of the three-dimensional irrotational compressible Euler equations with
time-dependent damping

(1-1)


∂tρ+ div(ρu)= 0,
∂t(ρu)+ div(ρu⊗ u+ pI3)=−α(t)ρu,
ρ(0, x)= ρ̄+ ερ0(x), u(0, x)= εu0(x),
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where x = (x1, x2, x3), ρ, u = (u1, u2, u3), and p stand for the density, velocity,
and pressure, respectively, I3 is the 3× 3 identity matrix, the frictional coefficient
α(t)= µ/(1+ t)λ with µ > 0 and λ≥ 0, and u0 = (u1,0, u2,0, u3,0),

curl u0 = (∂2u3,0− ∂3u2,0, ∂3u1,0− ∂1u3,0, ∂1u2,0− ∂2u1,0)≡ 0.

The equation of state of the gases is assumed to be p(ρ) = Aργ , where A > 0
and γ > 1 are constants. Furthermore, ρ̄ > 0 is a constant, ρ0, u0 ∈ C∞0 (R

3),
(ρ0, u0) 6≡ 0, ρ(0, x) > 0, and ε > 0 is sufficiently small. With respect to the
physical background of (1-1), it can be found in [Dafermos 1995].

For µ= 0 in α(t), (1-1) is the standard compressible Euler equation. It is well
known that C∞-smooth solution (ρ, u) of (1-1) will in general blow up in finite
time. For the extensive literature on blowup results and the blowup mechanism for
(ρ, u), see [Alinhac 1999a; 1999b; 1993; Christodoulou 2007; Christodoulou and
Miao 2014; Christodoulou and Lisibach 2016; Ding et al. 2016; Hörmander 1997;
Sideris 1997; 1985; Speck 2016; Yin and Qiu 1999; Yin 2004] and so on.

For λ = 0 in α(t), it has been shown that (1-1) admits a global C∞-smooth
solution (ρ, u) and the large time behavior of (ρ, u) is governed by a parabolic
equation derived by using Darcy’s law; see [Dafermos 1995; Hsiao and Serre 1996;
Hsiao and Liu 1992; Kawashima and Yong 2004; Nishihara 1997; Pan and Zhao
2009; Sideris et al. 2003; Tan and Guochun 2012; Wang and Yang 2001].

For µ> 0 and λ> 0 in α(t), an interesting problem arises: does the C∞-smooth
solution (ρ, u) of (1-1) blow up in finite time or does it exist globally? In this paper,
we will systematically study this problem under the assumption of curl u0 ≡ 0.
In this case it is not hard to see that curl u(t, · ) ≡ 0 for all t ≥ 0 as long as the
smooth solution (ρ, u) of (1-1) exists. Then one can introduce a potential function
ϕ = ϕ(t, x) such that u = ∇ϕ (here and below, ∇ = ∇x ), where the C∞ scalar
function ϕ has a compact support in x (as u(t, · ) has a compact support for any
fixed t ≥ 0 in view of u0 ∈ C∞0 (R

3) and admits a finite propagation speed which
holds for hyperbolic systems). Substituting u = ∇ϕ into the second equation of
(1-1), we obtain

(1-2) ∂tϕ+
1
2 |∇ϕ|

2
+ h(ρ)+

µ

(1+ t)λ
ϕ = 0,

where h′(ρ)= c2(ρ)/ρ with c(ρ)=
√

p′(ρ) and h(ρ̄)= 0.
From h′(ρ) > 0 for ρ > 0 we have that

(1-3) ρ = h−1
(
−

(
∂tϕ+

1
2 |∇ϕ|

2
+

µ

(1+ t)λ
ϕ

))
,

where ρ̄ = h−1(0) and h−1 is the inverse function of h = h(ρ).
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Substituting (1-3) into the first equation of (1-1) yields

(1-4) ∂2
t ϕ− c2(ρ)1ϕ+ 2

3∑
k=1

(∂kϕ)∂
2
tkϕ+

3∑
i,k=1

(∂iϕ)(∂kϕ)∂
2
ikϕ

+
µ

(1+ t)λ
|∇ϕ|2+ ∂t

(
µ

(1+ t)λ
ϕ

)
= 0.

As for the initial data ϕ(0, x) and ∂tϕ(0, x) for (1-4): Obviously, ϕ(0, x) =
εϕ0(x), where

ϕ0(x)=
∫ x1

−∞

u1,0(s, x2, x3) ds.

Note that ϕ0 ∈ C∞0 (R
3) in view of curl u0 ≡ 0 and u0 ∈ C∞0 (R

3). Furthermore,
from (1-2) we infer that ∂tϕ(0, x)= εϕ1(x)+ ε2g(x, ε), where

ϕ1 =−

(
µϕ0+

c2(ρ̄)

ρ̄
ρ0

)
and

g(x, ε)=−ρ2
0(x)

∫ 1

0

(
c2(ρ)

ρ

)′∣∣∣∣
ρ=ρ̄+θερ0(x)

dθ − 1
2

3∑
i=1

u2
i,0(x).

Notice that g(x, ε) is smooth in (x, ε) and has compact support in x . Conse-
quently, studying problem (1-1) under the assumption curl u0 ≡ 0 is equivalent to
investigating the problem

(1-5)


∂2

t ϕ− c2(ρ)1ϕ+ 2
3∑

k=1

(∂kϕ)∂
2
tkϕ+

3∑
i,k=1

(∂iϕ)(∂kϕ)∂
2
ikϕ

+
µ

(1+ t)λ
|∇ϕ|2+ ∂t

(
µ

(1+ t)λ
ϕ

)
= 0,

ϕ(0, x)= εϕ0(x), ∂tϕ(0, x)= εϕ1(x)+ ε2g(x, ε).

Here we mention that

c2(ρ)= c2(ρ̄)− (γ − 1)
(
∂tϕ+

1
2 |∇ϕ|

2
+

µ

(1+ t)λ
ϕ

)
which follows by direct computation.

We now state the first main result of this paper.

Theorem 1.1 (global existence for 0≤λ≤1). Suppose that curl u0≡0. Ifµ>0 and
0≤ λ≤ 1, then, for ε > 0 small enough, (1-5) admits a global C∞-smooth solution
ϕ. As a consequence, (1-1) has a global C∞-smooth solution (ρ, u) which fulfills
ρ > 0 and which is uniformly bounded for t ≥ 0 together with all its derivatives.
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Remark. The principal part of the linearization of the equation in (1-5) about
(ρ, ϕ)= (ρ̄, 0) is

(1-6) L(ϕ̇)≡ ∂2
t ϕ̇− c2(ρ̄)1ϕ̇+

µ

(1+ t)λ
∂t ϕ̇−

µλ

(1+ t)λ+1 ϕ̇.

For the linear operator L0 with

L0(ϕ̇)≡ ∂
2
t ϕ̇− c2(ρ̄)1ϕ̇+

µ

(1+ t)λ
∂t ϕ̇,

which appears as part of (1-6), it is shown in [Wirth 2006; 2007] that the large-term
behavior of solutions ϕ̇ of L0(ϕ̇) = 0 depends on the value of λ. For 0 ≤ λ < 1
it is the same as the large-term behavior of solutions of the linear heat equation
∂t ϕ̇ − c2(ρ̄)1ϕ̇ = 0, while for λ > 1 it is the same as the large-term behavior of
solutions of the linear wave equation ∂2

t ϕ̇ − c2(ρ̄)1ϕ̇ = 0. In addition, precise
microlocal large-term decay properties of solutions ϕ̇ of L(ϕ̇) = 0 have been
established in [do Nascimento and Wirth 2015] for a special range of values of
λ and µ. It seems to be difficult, however, to apply these microlocal estimates
to attack the quasilinear problem (1-5). (In general, those microlocal estimates
are useful when treating semilinear damped wave equations; see [D’Abbicco and
Reissig 2014; D’Abbicco et al. 2015].)

Remark. For the 1-D Burgers equation with time-dependent damping term

(1-7)

∂tw+w∂xw =−
µ

(1+ t)λ
w, (t, x) ∈ R+×R,

w(0, x)= εw0(x),

where µ> 0 and λ≥ 0 are constants, w0 ∈C∞0 (R), w0 6≡ 0, and ε > 0 is sufficiently
small, one concludes by the method of characteristics that{

Tε =∞ if 0≤ λ < 1 or λ= 1, µ > 1,
Tε <∞ if λ > 1 or λ= 1, 0≤ µ≤ 1,

where Tε is the lifespan of the C∞-smooth solution w of (1-7). Therefore, λ= 1
again appears to be the critical value for the global existence of smooth solutions w
of (1-7) in the presence of the damping term

µ

(1+ t)λ
w.

Remark. The smallness of ε > 0 in Theorem 1.1 is necessary in order to guarantee
the global existence of smooth solution (ρ, u). Indeed, as in [Sideris et al. 2003],
large amplitude smooth solution of (1-1) may blow up in finite time even for
0≤ λ≤ 1. See also Theorem 4.1.
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Next we concentrate on the case of λ > 1. As in [Sideris 1985], introduce the
two functions

q0(l)=
∫
|x |>l

(|x | − l)2

|x |
(ρ(0, x)− ρ̄) dx,

q1(l)=
∫
|x |>l

|x |2− l2

|x |3
x · (ρu)(0, x) dx .

Before stating our blowup result for problem (1-1) with λ > 1, we require to
introduce a special hypergeometric function 9(a, b, c; z), where the constants a
and b satisfy a+ b = 1 and ab = 1

2µλ, c ∈ R+, the variable z ∈ R, and

9(a, b, c; z)=
+∞∑
n=0

(a)n(b)n
n!(c)n

zn

with (a)n = a(a+ 1) · · · (a+ n− 1) and (a)0 = 1. It is known from [Erdélyi et al.
1953] that 9(a, b, c; z) is an analytic function of z in (−1, 1) and 9(a, b, c; 0)=
9(a+1, b+1, c; 0)= 1. Therefore, there exists a small constant δ0 > 0 depending
on a and b (i.e., µ and λ) such that for − 1

2δ0 ≤ z ≤ 0,

(1-8) 1
2 ≤9(a, b, 1; z),9(a+ 1, b+ 1, 2; z)≤ 3

2 .

Theorem 1.2 (blowup for λ > 1). Suppose supp ρ0, supp u0 ⊆ {x : |x | ≤ M} and
let

q0(l) > 0,(1-9)

q1(l)≥ 0(1-10)

hold for all l ∈ (M̃,M), where M̃ is some fixed constant satisfying 0 ≤ M̃ < M.
Moreover, we assume that there exist two constants M0 ≥ M̃ and 3 ≥ 3

2µλ such
that

(1-11) q1(l)≥3q0(l),

holds for all l ∈ (M0,M), where M − M0 < δ0 and δ0 is given in (1-8). If µ > 0
and λ > 1, then there exists an ε0 > 0 such that, for 0< ε ≤ ε0, the lifespan Tε of
C∞-smooth solution (ρ, u) of (1-1) is finite.

Remark. It is not hard to find a large number of initial data (ρ, u)(0, x) such that
(1-9)–(1-11) are satisfied. For instance, choosing ρ0(x)>0 and u0(x)= xρ0(x)3/ρ̄,
then we get (1-9)–(1-11).

Remark. Sideris [1985] showed the formation of singularities in three-dimensional
compressible equations under the assumptions of (1-9)–(1-10). However, in order to
prove the blowup result of smooth solution (ρ, u) to problem (1.1) and overcome the
difficulty arisen by the time-dependent frictional coefficient µ/(1+ t)λ with µ > 0
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and λ > 1, we pose an extra assumption (1-11) except (1-9)–(1-10), which leads to
the nonnegativity of P(t, l) in (3-7) so that an ordinary typed blowup inequalities
(3-23)–(3-24) can be established. One can see more details in Section 3.

Let us indicate the proofs of Theorems 1.1 and 1.2. To prove Theorem 1.1,
we first introduce the function ψ = ϕ/(1+ t)λ which fulfills the second-order
quasilinear wave equation

∂2
t ψ −1ψ +

µ

(1+ t)λ
∂tψ +

2λ
1+ t

∂tψ −
λ(1− λ)
(1+ t)2

ψ = Q(ψ, ∂ψ, ∂2ψ),

where Q(ψ, ∂ψ, ∂2ψ) stands for an error term which is of the second order in
(ψ, ∂ψ, ∂2ψ); ∂ = (∂t ,∇). Then, in order to establish the global existence of ψ ,
we introduce the time-weighted energy

EN (ψ)(t)=
∑

0≤|a|≤N

∫
R3
((1+ t)2λ|∂0aψ |2+ |0aψ |2) dx,

where N ≥ 8 is a fixed number, 0 = (00, 01, . . . , 07) = (∂,�, S) with � =
(�1, �2, �3) = x ∧ ∇, S = t∂t +

∑3
k=1 xk∂k , and 0a

= 0
a0
0 0

a1
1 . . . 0

a7
7 . Note

that the vector fields 0 which appear in the definition of the energy EN (ψ)(t)
only comprise part of the standard Klainerman vector fields {∂,�, S, H}, where
H = (H1, H2, H3)= (x1∂t+ t∂1, x2∂t+ t∂2, x3∂t+ t∂3). This is due to the fact that
the equation in (1-5) is not invariant under the Lorentz transformations H in view
of the presence of the time-dependent damping. By a rather technical and involved
analysis of the resulting equation forψ , we eventually show that EN (ψ)(t)≤ 1

2 K 2ε2

when EN (ψ)(t) ≤ K 2ε2 is assumed for some suitably large constant K > 0 and
small ε > 0. Here we emphasize that the condition of 0≤ λ≤ 1 plays an essential
role in the process of deriving the uniform boundedness of EN (ψ)(t) (see Lemmas
2.3–2.5). This, together with the continuous induction argument, yields the global
existence of ψ and further completes the proof of Theorem 1.1 for 0≤ λ≤ 1. To
prove the blowup result of Theorem 1.2 for λ > 1, as in [Sideris 1985], we derive a
related second-order ordinary differential inequality. From this and assumptions
(1-9)–(1-11), an upper bound of the lifespan Tε is derived by making essential use of
λ> 1. In this way the proof of Theorem 1.2 is completed. In Theorem 4.1, we show
that for large data smooth solution (ρ, u) of (1-1), even in case 0≤ λ≤ 1, (ρ, u)
will in general blow up in finite time. In addition, the proof on the nonnegativity of
P(t, l), which is introduced in (3-1), is given in the Appendix.

Throughout, we shall use the following notation and conventions:

• ∇ stands for ∇x ;

• r = |x | =
√

x2
1 + x2

2 + x2
3 ;

• 〈r − t〉 =
(
1+ (r − t)2

)
1/2;
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• ‖u(t, x)‖ =
(∫

R3 |u(t, x)|2 dx
)1/2 and ‖u(t, x)‖L∞ = supx∈R3 |u(t, x)|;

• 0 denotes one of the vector fields {∂, S, �} on R+×R3, where ∂ = (∂t ,∇),
S = t∂t +

∑3
k=1 xk∂k , �= (�1, �2, �3)= x ∧∇;

• β is the solution of β ′(t)= µ

(1+t)λ
β(t) for t ≥ 0, β(0)= 1, i.e.,

(1-12) β(t)≡

{
e
µ

1−λ [(1+t)1−λ−1]
, λ≥ 0, λ 6= 1,

(1+ t)µ, λ= 1;

• c(ρ̄)= 1 will be assumed throughout (introduce X = x/c(ρ̄) as a new space
coordinate if necessary).

2. Global existence for small amplitude in case 0≤ λ≤ 1

Throughout this section, C > 0 stands for a generic constant which is independent
of K , ε, and t .

We start by recalling a Sobolev-type inequality (see [Klainerman 1987]).

Lemma 2.1. Let u = u(t, x) be a smooth function of (t, x) ∈ [0,∞)×R3. Then

(2-1) |u(t, x)| ≤ C(1+ r)−1
∑
|a|≤2

‖0au(t, x)‖.

Moreover, we shall make use of the following inequalities (see [Klainerman and
Sideris 1996, Lemma 3.1 and Theorem 5.1]).

Lemma 2.2. For u ∈ C2([0,∞)×R3),

‖〈r − t〉∇∂u(t, x)‖ ≤ C
(∑
|b|≤1

‖∂0bu(t, x)‖+ t‖�u(t, x)‖
)
,(2-2)

(1+ r)〈r − t〉|∇∂u(t, x)| ≤ C
(∑
|b|≤3

‖∂0bu(t, x)‖+ t‖�u(t, x)‖
)
,(2-3)

where �= ∂2
t −1= ∂

2
t −

∑3
k=1 ∂

2
k .

We now reformulate problem (1-5). Let ψ =ϕ/(1+ t)λ. From (1-5) and c(ρ̄)=1
we then have

(2-4) �ψ +
µ

(1+ t)λ
∂tψ +

2λ
1+ t

∂tψ −
λ(1− λ)
(1+ t)2

ψ = Q(ψ, ∂ψ, ∂2ψ),

where

Q(ψ, ∂ψ, ∂2ψ)= (c2(ρ)−1)1ψ−2(1+t)λ∂t∇ψ ·∇ψ−2λ(1+t)λ−1
|∇ψ |2

−µ|∇ψ |2−(1+t)2λ
∑

1≤i, j≤3

(∂iψ)(∂ jψ)∂
2
i jψ.
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We define a time-weighted energy for (2-4),

EN (ψ(t))=
∑

0≤|a|≤N

∫
R3

(
(1+ t)2λ|∂0aψ |2+ |0aψ |2

)
dx,

where N ≥ 8 is a fixed number. Moreover, we assume that for any t ≥ 0,

(2-5) EN (ψ(t))≤ K 2ε2,

where K > 0 is a suitably large constant. It follows from (2-1) and (2-5) that, for
all |a| ≤ N − 2,

(2-6) |∂0aψ | ≤ C(1+ r)−1
∑
|b|≤2

‖0b∂0aψ(t, x)‖

≤ C(1+ r)−1
∑
|b|≤N

‖∂0bψ(t, x)‖

≤ C(1+ r)−1(1+ t)−λ
√

EN (ψ(t))

≤ C K ε(1+ r)−1(1+ t)−λ

and

(2-7) |0aψ | ≤ C(1+ r)−1
∑
|b|≤N

‖0bψ(t, x)‖ ≤ C K ε(1+ r)−1.

In view of Lemma 2.2 and (2-5), we have

Lemma 2.3. Let ψ be a solution of (2-4). Then, for all |a| ≤ N − 3 and 0≤ λ≤ 1,
we have the pointwise estimate

(2-8) ‖∇∂0aψ‖L∞ ≤ C K ε(1+ t)−2λ.

Moreover, for 0≤ l ≤ N − 1, the weighted L2 estimate

(2-9)
∑
|b|≤l

‖〈r − t〉∇∂0bψ(t, x)‖

≤ C
∑
|c|≤l+1

‖∂0cψ(t, x)‖+C(1+ t)1−λ
∑
|c|≤l

‖∇0cψ(t, x)‖

+C(1− λ)(1+ t)−1
∑
|c|≤l

‖0cψ(t, x)‖

holds.
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Proof. It follows from (2-3)–(2-4) and (2-6)–(2-7) that

(1+ t)
∑
|a|≤N−3

|∇∂0aψ |

≤ C
∑
|a|≤N−3

(1+ r)〈r − t〉|∇∂0aψ |

≤ C
∑
|c|≤N

‖∂0cψ‖+Ct
∑
|a|≤N−3

‖�0aψ‖

≤ C K ε(1+ t)−λ+C(1+ t)1−λ
∑
|a|≤N−3

‖∂t0
aψ‖+C(1+ t)−1

∑
|a|≤N−3

‖0aψ‖

+C(1+ t)
∑

|b|+|c|≤N−3

‖∇∂0bψ0cψ‖+C(1+ t)1+λ
∑
|a|≤N−3

‖0a(∂t∇ψ · ∇ψ)‖

≤ C K ε(1+ t)1−2λ
+C K ε(1+ t)

∑
|a|≤N−3

‖∇∂0aψ‖L∞,

which derives (2-7) in view of the smallness of ε > 0.
By (2-2), (2-6)–(2-8) and (2-4), we have that, for l ≤ N − 1,

(2-10)∑
|b|≤l

‖〈r− t〉∇∂0bψ‖

≤ C
∑
|c|≤l+1

‖∂0cψ‖+Ct
∑
|b|≤l

‖0b�ψ‖

≤ C
∑
|c|≤l+1

‖∂0cψ‖+C(1+ t)1−λ
∑
|c|≤l

‖∇0cψ‖+C(1−λ)(1+ t)−1
∑
|c|≤l

‖0cψ‖

+C(1+ t)1+λ
∑
|b|≤l

‖0b(∂t∇ψ ·∇ψ)‖

+C(1+ t)
∑

|c|≤N−3,
|b|≤l−|c|

‖〈r− t〉−10cψ‖L∞‖〈r− t〉∇∂0bψ‖

+C(1+ t)
∑

2−N≤|c|≤l,
|b|≤l+2−N

‖(1+r)∇∂0bψ‖L∞‖(1+r)−10cψ‖

≤ C
∑
|c|≤l+1

‖∂0cψ‖+C(1+ t)1−λ
∑
|c|≤l

‖∇0cψ‖+C(1−λ)(1+ t)−1
∑
|c|≤l

‖0cψ‖

+C K ε
∑
|b|≤l

‖〈r− t〉∇∂0bψ‖+C K ε(1+ t)1−λ
∑

2−N≤|c|≤l

‖(1+r)−10cψ‖.
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Note that 0cψ(t, x) is supported in {x : |x | ≤ t +M}. Then it follows from Hardy
inequality that

(2-11) ‖(1+ r)−10cψ‖ ≤ C‖∇0cψ‖.

Substituting (2-11) into (2-10) and applying the smallness of ε, we derive (2-9). �

Next we derive the time-weighted energy estimate for the solution ψ of (2-4).

Lemma 2.4. Let µ > 0 and λ ∈ (0, 1]. Under assumption (2-5), for all t > 0 and
N ≥ 8, it holds that

(2-12)
∑

0≤|a|≤N

∫
R3

(
(1+t)2λ|∂∂aψ |2+ψ2) dx+C

∑
0≤|a|≤N

∫ t

0

∫
R3
(1+τ)λ|∂∂aψ |2 dx dτ

≤ Cε2
+C(1+ K ε)

∫ t

0
A(τ )

∑
0≤|a|≤N

∫
R3

(
(1+ τ)2λ|∂∂aψ |2+ψ2) dx dτ,

where A( · ) stands for a generic nonnegative function such that A ∈ L1((0,∞)),
and ‖A‖L1 is independent of K but dependent on µ and λ.

Proof. First we show (2-12) in case |a| = 0. Multiplying (2-4) by m(1+ t)2λ∂tψ +

(1+ t)2λ−1ψ yields by a direct computation

(2-13) 1
2∂t
[
m(1+t)2λ|∂ψ |2+2(1+t)2λ−1ψ∂tψ+(µ(1+t)λ−1

+2λ(1+t)2λ−2)ψ2]
+ div

(
· · ·
)
+
(
µm(1+ t)λ+ (λm− 1)(1+ t)2λ−1)(∂tψ)

2

+ (1− λm)(1+ t)2λ−1
|∇ψ |2+

µ

2
(1− λ)(1+ t)λ−2ψ2

+C1(λ− 1)(1+ t)2λ−2ψ∂tψ +C2(λ− 1)(1+ t)2λ−3ψ2

=
(
m(1+ t)2λ∂tψ + (1+ t)2λ−1ψ

)
Q(ψ, ∂ψ, ∂2ψ),

where the constant m > 0 will be determined later and Ci (i = 1, 2) are suitable
constants. Note that in the square bracket of the first line in (2-13),

(2-14) m(1+ t)2λ|∂ψ |2+ 2(1+ t)2λ−1ψ∂tψ + (µ(1+ t)λ−1
+ 2λ(1+ t)2λ−2)ψ2

=m(1+t)2λ
(1

3 |∂tψ |
2
+|∇ψ |2

)
+

(
µ(1+t)λ−1

+

(
2λ− 3

2m

)
(1+t)2λ−2

)
ψ2

+

(√
2m
3
(1+ t)λ∂tψ +

√
3

2m
(1+ t)λ−1ψ

)2

.

We choose m > 0 to fulfill

λ <
1
m
<min{µ+ λ, 2λ};

together with λ≤ 1 (i.e., 2λ−2≤ λ−1≤ 0), this yields that (2-14) is equivalent to

(1+ t)2λ|∂ψ |2+ (1+ t)λ−1ψ2.
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On the other hand, the coefficients

µm(1+ t)λ+ (λm− 1)(1+ t)2λ−1

and

(1− λm)(1+ t)2λ−1

of (∂tψ)
2 and |∇ψ |2 in the left-hand side of (2-13) are both positive.

Then integrating (2-13) over [0, t]×R3 yields

(2-15)
∫

R3

(
(1+ t)2λ|∂ψ |2+ (1+ t)λ−1ψ2) dx

+C
∫ t

0

∫
R3

(
(1+ τ)λ(∂tψ)

2
+ (1+ τ)2λ−1

|∇ψ |2+ (1+ τ)λ−2ψ2) dx dτ

≤ Cε2
+

∫ t

0
A(τ )

∫
R3
(1+ τ)λ−1ψ2 dx dτ

+C
∣∣∣∣∫ t

0

∫
R3

(
m(1+τ)2λ∂tψ+(1+τ)2λ−1ψ

)
Q(ψ, ∂ψ, ∂2ψ) dx dτ

∣∣∣∣.
Next we improve the time-weighted estimate of ψ in the left-hand side of (2-15).
Multiplying both sides of (2-4) by (1+ t)λψ yields by direct computation

∂t

(
(1+ t)λψ∂tψ +

µ

2
ψ2
)
+ div

(
· · ·
)
− (1+ t)λ(∂tψ)

2
− λ(1+ t)λ−1ψ∂tψ

+ (1+ t)λ|∇ψ |2+ 2λ(1+ t)λ−1ψ∂tψ + λ(λ− 1)(1+ t)λ−2ψ2

= (1+ t)λψQ(ψ, ∂ψ, ∂2ψ).

From this and (2-15), we can choose the multiplier

m(1+ t)2λ∂tψ + (1+ t)2λ−1ψ + κ(1+ t)λψ

for (2-4) with a small κ > 0 and then obtain

(2-16)
∫

R3

(
(1+ t)2λ|∂ψ |2+ψ2) dx +C

∫ t

0

∫
R3
(1+ τ)λ|∂ψ |2 dx dτ

≤ Cε2
+

∫ t

0
A(τ )

∫
R3
ψ2 dx dτ

+C
∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂tψ)Q(ψ, ∂ψ, ∂2ψ) dx dτ

∣∣∣∣
+C

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λψQ(ψ, ∂ψ, ∂2ψ) dx dτ

∣∣∣∣.
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Next we derive the time-weighted estimates of ∂aψ with 1≤ |a| ≤ N . Taking
∂a on both sides of (2-4) yields

�∂aψ +
µ

(1+ t)λ
∂t∂

aψ +
2λ

1+ t
∂t∂

aψ

= ∂a Q(ψ, ∂ψ, ∂2ψ)+
∑

1≤|b|≤|a|

1
(1+ t)λ

(
1+ O((1+ t)λ−1)

)
∂bψ

− λ(λ− 1)∂a
(

1
(1+ t)2

)
ψ.

Exactly as for (2-16), multiplying this by

m(1+ t)2λ∂t∂
aψ + (1+ t)2λ−1∂aψ + κ(1+ t)λ∂aψ,

we obtain

(2-17)
∑

0≤|a|≤N

∫
R3

(
(1+t)2λ|∂∂aψ |2+ψ2)dx+C

∑
0≤|a|≤N

∫ t

0

∫
R3
(1+τ)λ|∂∂aψ |2 dx dτ

≤ Cε2
+

∫ t

0
A(τ )

∫
R3
ψ2 dx dτ

+C
∑

0≤|a|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t∂

aψ)∂a Q(ψ, ∂ψ, ∂2ψ) dx dτ
∣∣∣∣

+C
∑

0≤|a|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(∂aψ)∂a Q(ψ, ∂ψ, ∂2ψ) dx dτ

∣∣∣∣.
We now deal with the last two terms in the right-hand side of (2-17). We first
analyze the integrand (1+ t)2λ(∂t∂

aψ)∂a Q(ψ, ∂ψ, ∂2ψ) of the penultimate term.
Direct computation yields

∂a Q(ψ, ∂ψ, ∂2ψ)

= (c2(ρ)−1)1∂aψ−2(1+t)λ∇∂t∂
aψ ·∇ψ−(1+t)2λ(∂iψ)(∂ jψ)∂

2
i j∂

aψ+l.o.t.

and

(2-18) (1+ t)2λ(∂t∂
aψ)∂a Q(ψ, ∂ψ, ∂2ψ)

=div
(
(1+t)2λ(c2(ρ)−1)(∂t∂

aψ)∇∂aψ
)
−div

(
(1+t)3λ|∂t∂

aψ |2∇ψ
)

−
1
2∂t
(
(1+ t)2λ(c2(ρ)− 1)|∇∂aψ |2

)
+ (1+ t)3λ|∂t∂

aψ |21ψ + λ(1+ t)2λ−1(c2(ρ)− 1)|∇∂aψ |2

+
1
2(1+ t)2λ(c2(ρ))′∂tρ|∇∂

aψ |2

− (1+ t)4λ(∂iψ)(∂ jψ)(∂
2
i j∂

aψ)∂t∂
aψ + l.o.t.,
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where here and below l.o.t. designates lower-order terms which are of the form

(∂b1ψ)(∂b2ψ) . . . (∂blψ)

(multiplied by ∂∂aψ or ∂aψ) with l ≥ 2 and 1 ≤ |b1| + · · · + |bl | ≤ |a| + 1.
Here we are concerned with the top-order derivatives only. Note that the term
(1+ t)4λ(∂iψ)(∂ jψ)(∂

2
i j∂

aψ)∂t∂
aψ in (2-18) can be expressed as

(2-19) (1+ t)4λ(∂iψ)(∂ jψ)(∂
2
i j∂

aψ)∂t∂
aψ

=
1
2

{
∂i
(
(1+ t)4λ(∂iψ)(∂ jψ)(∂ j∂

aψ)∂t∂
aψ
)

+ ∂ j
(
(1+ t)4λ(∂iψ)(∂ jψ)(∂i∂

aψ)∂t∂
aψ
)

− ∂t
(
(1+ t)4λ(∂iψ)(∂ jψ)(∂i∂

aψ)∂ j∂
aψ
)

+ ∂t
(
(1+ t)4λ(∂iψ)∂ jψ

)
(∂i∂

aψ)∂ j∂
aψ + l.o.t.

}
.

Similarly, for the integrand of∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(∂aψ)∂a Q(ψ, ∂ψ, ∂2ψ) dx dτ

∣∣∣∣,
one has

(2-20) (1+ t)λ∂aψ∂a Q(ψ, ∂ψ, ∂2ψ)

=div
(
(1+t)λ(c2(ρ)−1)∇(∂aψ)∂aψ

)
−

1
2∂i
(
(1+t)3λ(∂iψ)∂

a(|∇ψ |2)∂aψ
)

− ∂t
(
(1+ t)λ∂a(|∇ψ |2)∂aψ

)
− (1+ t)λ(c2(ρ)− 1)|∇∂aψ |2

− (1+ t)λ(c2(ρ))′∇ρ · ∇(∂aψ)∂aψ + λ(1+ t)λ−1∂a(|∇ψ |2)∂aψ

+ (1+ t)λ∂a(|∇ψ |2)∂t∂
aψ + 1

2(1+ t)3λ(1ψ)∂a(|∇ψ |2)∂aψ

+
1
2(1+ t)3λ∇ψ · ∇(∂aψ)∂a(|∇ψ |2)+ l.o.t.

From the expression (∂b1ψ)(∂b2ψ) . . . (∂blψ) (l≥ 2, 1≤|b1|+· · ·+|bl |≤ N+1) of
the lower-order terms one readily obtains that there exists at most one b j (1≤ j ≤ l)
such that [

N + 3
2

]
< |b j | ≤ N + 1.

Moreover,
[ N+3

2

]
≤ N − 2 by N ≥ 8. Thus, applying (2-5)–(2-7) and subsequently

substituting (2-18)–(2-20) into (2-17) completes the proof of Lemma 2.4. �

Next we focus on the general time-weighted energy estimate of ∂0aψ with
0≤ |a| ≤ N and N ≥ 8.
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Lemma 2.5 (time-weighted energy estimate of ∂0aψ for |a| ≤ N ). Let µ > 0 and
λ ∈ (0, 1]. Under assumption (2-5), we have that, for t > 0,

(2-21)
∑

0≤|a|≤N

∫
R3

(
(1+ t)2λ|∂0aψ |2+ |0aψ |2

)
dx

+C
∑

0≤|α|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0aψ |2 dx dτ

≤Cε2
+C(1+K ε)

∫ t

0
A(τ )

∑
0≤|a|≤N

∫
R3

(
(1+τ)2λ|∂0aψ |2+ψ2) dx dτ,

where the function A has been defined in Lemma 2.4.

Proof. Writing 0a
= 0̃b∂c with 0̃ ∈ {�, S}, we will use induction on |b| to prove

(2-21). In view of Lemma 2.4, it is enough to assume that |c| = 0.
Suppose that (2-21) holds for |b| ≤ l − 1, where 1≤ l ≤ N . We then intend to

establish (2-21) for |b| = l.
Acting with 0̃a (where a = b and |b| = l) on both sides of (2-4) yields

(2-22) �0̃aψ +
µ

(1+ t)λ
∂t 0̃

aψ +
2λ

1+ t
∂t 0̃

aψ

=

∑
|b1|<|b|

0̃b1∂c�ψ + 0̃a Q(ψ, ∂ψ, ∂2ψ)

−

[
0̃a,

µ

(1+ t)λ
∂t

]
ψ −

[
0̃a,

2λ
1+ t

∂t

]
ψ + 0̃a((λ− 1)(1+ t)−2ψ

)
.

Starting from (2-22), as in the proof of Lemma 2.4, we can choose the multiplier

m(1+ t)2λ∂t 0̃
aψ + (1+ t)2λ−10̃aψ + κ(1+ t)λ0̃aψ

to derive (2-21). For the commutators, we see from (2-4) that∣∣∣∣∫ t

0

∫
R3

[
0̃a,

µ

(1+t)λ
∂t

]
ψ(1+t)λ0̃aψ dx dτ

∣∣∣∣(2-23)

≤C
∑
|a1|<|a|

∣∣∣∣∫ t

0

∫
R3
(1+τ)λ�0̃a1ψ0̃aψ dx dτ

∣∣∣∣
+C

∑
|a1|<|a|

∣∣∣∣∫ t

0

∫
R3
(1+τ)λ0̃a1 Q(ψ, ∂ψ, ∂2ψ)0̃aψ dx dτ

∣∣∣∣
+C

∑
|a1|<|a|

∣∣∣∣∫ t

0

∫
R3
(1+τ)λ−10̃aψ

(
∂t 0̃

a1ψ+(1−λ)(1+τ)−10̃a1ψ
)

dx dτ
∣∣∣∣
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≤Cε2
+C

∑
|a1|<|a|

∣∣∣∣∫
R3
(1+t)λ∂t 0̃

a1ψ0̃aψ dx
∣∣∣∣

+C
∑
|a1|<|a|

∣∣∣∣∫ t

0

∫
R3
(1+τ)λ0̃a1 Q(ψ, ∂ψ, ∂2ψ)0̃aψ dx dτ

∣∣∣∣
+C

∑
|a1|<|a|

∣∣∣∣∫ t

0

∫
R3
(1+τ)λ−10̃aψ

(
∂t 0̃

a1ψ+(1−λ)(1+τ)−10̃a1ψ
)

dx dτ
∣∣∣∣

+C
∑
|a1|<|a|

∣∣∣∣∫ t

0

∫
R3
(1+τ)λ∂0̃a1ψ∂0̃aψ dx dτ

∣∣∣∣.
By the finite propagation speed, we have for a > 0

(2-24) |0̃aψ | ≤ C(1+ t)
∑
|a1|<|a|

|∂0̃a1ψ |.

It follows from (2-23)–(2-24) and a direct computation that

(2-25)∑
|b|=l,
|c|≤N−l

∫
R3

(
(1+ t)2λ|∂0̃b∂cψ |2+|0̃b∂cψ |2

)
dx

+C
∑
|b|=l,
|c|≤N−l

∫ t

0

∫
R3
(1+τ)λ|∂0̃b∂cψ |2 dx dτ

≤ Cε2
+C El−1(ψ(t))+C

∑
|b1|<l,

|c1|≤N−|b1|

∫ t

0

∫
R3
(1+τ)λ|∂0̃b1∂c1ψ |2 dx dτ

+C(1+K ε)
∫ t

0
A(τ )

∑
|b1|≤l,

|c1|≤N−|b1|

∫
R3

(
(1+τ)2λ|∂0̃b1∂c1ψ |2+|0̃b1∂c1ψ |2

)
dx dτ

+C
∑
|b1|≤l,

|c1|≤N−|b1|

∣∣∣∣∫ t

0

∫
R3
(1+τ)2λ(∂t 0̃

aψ)0̃b1∂c1 Q(ψ, ∂ψ, ∂2ψ) dx dτ
∣∣∣∣

+C
∑
|b1|≤l,

|c1|≤N−|b1|

∣∣∣∣∫ t

0

∫
R3
(1+τ)λ(0̃aψ)0̃b1∂c1 Q(ψ, ∂ψ, ∂2ψ) dx dτ

∣∣∣∣.
Next we deal with the last two terms in the right-hand side of (2-25). Note that

c2(ρ)− 1=−G(ψ, ∂ψ)
∫ 1

0
(c2)′(−sG(ψ, ∂ψ)) ds,
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where G(ψ, ∂ψ)= (1+ t)λ∂tψ+(1+ t)λ−1ψ+(1+ t)2λ|∇ψ |2/2+µψ . From this,
it is readily seen that the typical terms in Q(ψ, ∂ψ, ∂2ψ) are of the form ψ1ψ ,
(1+ t)λ∂t∇ψ · ∇ψ , and (1+ t)2λ(∂iψ)(∂ jψ)∂i jψ . We analyze them separately.
Without loss of generality, we assume |c1| = 0 in the last two terms of (2-25); the
treatment of the other cases is easier.

Part A: Estimates of

∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t 0̃

aψ)0̃b1(ψ1ψ) dx dτ
∣∣∣∣

and ∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(0̃aψ)0̃b1(ψ1ψ) dx dτ

∣∣∣∣.
Note that

0̃b1(ψ1ψ)= I1+ I2+ I3,

where
I1 = ψ10̃

b1ψ,

I2 =
∑

|b1|=|b2|+|b3|,
1≤|b2|≤N−2

(0̃b2ψ)10̃b3ψ,

I3 =
∑

|b1|=|b2|+|b3|,
N−1≤|b2|≤l

(0̃b2ψ)10̃b3ψ.

In view of b1 = a and

(1+ t)2λ(∂t 0̃
aψ)ψ10̃aψ

= div
(
(1+ t)2λ(∂t 0̃

aψ)ψ∇0̃aψ
)
+

1
2∂t
(
(1+ t)2λ|∇0̃aψ |2ψ

)
−(1+t)2λ(∂t 0̃

aψ)∇ψ ·∇0̃aψ−λ(1+t)λ−1
|∇0̃aψ |2ψ− 1

2(1+t)2λ|∇0̃aψ |2∂tψ,

we have by an integration by parts and (2-6)–(2-7)

(2-26)
∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t 0̃

aψ)I1 dx dτ
∣∣∣∣

≤ Cε2
+C K ε

∑
0≤|a|≤N

∫
R3
(1+ t)2λ|∂0̃aψ |2 dx

+C K ε
∑

0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ.
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Moreover, it follows from (2-7) and (2-9) that

(2-27)
∫

R3

∣∣(1+ t)2λ(∂t 0̃
aψ)I2

∣∣ dx

≤ (1+ t)2λ‖〈r − t〉−10̃b2ψ‖L∞ · ‖∂t 0̃
aψ‖ · ‖〈r − t〉10̃b3ψ‖

≤C K ε(1+t)λ‖∂t 0̃
aψ‖

∑
|b4|≤|b3|+1

(
‖∇0̃b4ψ‖+(1−λ)(1+t)−1

‖0̃b4ψ‖
)

≤ C K ε(1+ t)λ‖∂t 0̃
aψ‖

∑
|b4|≤|b3|+1

‖∇0̃b4ψ‖+C K ε(1+ t)λ‖∂t 0̃
aψ‖2

+C K ε(1− λ)(1+ t)λ−2
∑

|b4|≤|b3|+1

‖0̃b4ψ‖2.

On the other hand, we have that by (2-6) and Hardy’s inequality

(2-28)
∫

R3

∣∣(1+ t)2λ(∂t 0̃
aψ)I3

∣∣ dx

≤ (1+ t)2λ‖(1+ r)10̃b3ψ‖L∞ · ‖∂t 0̃
aψ‖‖(1+ r)−10̃b2ψ‖

≤ C K ε(1+ t)λ‖∂t 0̃
aψ‖

∑
|b4|≤|b2|

‖∇0̃b4ψ‖.

Combining (2-26)–(2-28) together with 0 ≤ λ ≤ 1 (this means that the coeffi-
cient C K ε(1− λ)(1+ t)λ−2 of

∑
|b4|≤|b3|+1 ‖0̃

b4ψ‖2 in the last line of (2-27) is
nonnegative and in L1(0,∞)) yields

(2-29)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t0

aψ)0b1(ψ1ψ) dx dτ
∣∣∣∣

≤ Cε2
+C K ε

∑
0≤|a|≤N

∫
R3
(1+ t)2λ|∂0̃aψ |2 dx

+C K ε
∑

0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ

+C K ε
∑
|b4|≤N

∫ t

0
A(τ )

∫
R3
|0̃b4ψ |2 dx dτ.

Note that

(1+t)λ(0̃aψ)0̃b1(ψ1ψ)=
∑

|b2|+|b3|=|b1|

(1+t)λ(0̃aψ)(0̃b2ψ)10̃b3ψ

= div
( ∑
|b2|+|b3|=|b1|

(1+t)λ(0̃aψ)(0̃b2ψ)∇0̃b3ψ

)
+

5∑
i=4

Ii ,
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where

I4 =−
∑

|b2|≤N−2,
|b2|+|b3|=|b1|

(1+ t)λ(0̃b2ψ)(∇0̃aψ) · (∇0̃b3ψ),

I5 =−
∑

N−1≤|b2|≤l−1,
|b2|+|b3|=|b1|

(1+ t)λ(0̃b2ψ)(∇0̃aψ) · (∇0̃b3ψ)

−

∑
|b2|+|b3|=|b1|

(1+ t)λ(0̃aψ)(∇0̃b2ψ) · (∇0̃b3ψ).

Therefore, by (2-7) and Hardy’s inequality, we have∫
R3
|I4| dx ≤ C K ε(1+ t)λ‖∇0̃aψ‖

∑
|b1|+3−N≤|b3|≤N

‖∇0̃b3ψ‖

and ∫
R3
|I5| dx ≤ C K ε‖(1+ r)−10̃b2ψ∇0̃aψ‖L1 ≤ C K ε‖∇0̃b2ψ‖‖∇0̃aψ‖.

This yields

(2-30)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(0̃aψ)0̃b1(ψ1ψ) dx dτ

∣∣∣∣
≤ C K ε

∑
0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ.

Part B: Estimates of∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t 0̃

aψ)0̃b1
(
(1+ τ)λ∂t∇ψ · ∇ψ

)
dx dτ

∣∣∣∣
and ∑

|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(0̃aψ)0̃b1

(
(1+ τ)λ∂t∇ψ · ∇ψ

)
dx dτ

∣∣∣∣.
One has

0̃b1
(
(1+ t)λ∂t∇ψ · ∇ψ

)
= (1+ t)λ∂t∇0̃

b1ψ · ∇ψ +
∑

N−2≤|b2|≤l−1

(1+ t)λ(∂t∇0̃
b2ψ)∇0̃b3ψ

+

∑
|b2|≤N−3

(1+ t)λ(∂t∇0̃
b2ψ)∇0̃b3ψ

= II1+ II2+ II3.
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By (2-8), we have

(2-31)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t 0̃

aψ)II1 dx dτ
∣∣∣∣

≤ C K ε
∑

0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ.

In addition, it follows from (2-6), (2-9) and a direct computation that

(2-32) (1+ t)2λ‖(∂t0
aψ)II2‖L1

≤ (1+ t)3λ
∑

|b2|≤N−4

‖〈r− t〉−1
∇0b3ψ‖L∞ ·‖∂t0

aψ‖·‖〈r− t〉∂t∇0
b2ψ‖

≤ C K ε(1+ t)λ‖∂t0
aψ‖

∑
|c|≤|b2|+1

(
‖∇0cψ‖+ (1− λ)(1+ t)−1

‖0cψ‖
)

≤ C K ε(1+ t)λ‖∂t 0̃
aψ‖

∑
|b4|≤|b3|+1

‖∇0̃b4ψ‖+C K ε(1+ t)λ‖∂t 0̃
aψ‖2

+C K ε(1− λ)(1+ t)λ−2
∑

|b4|≤|b3|+1

‖0̃b4ψ‖2.

Treating II3, we obtain by (2-8)

(2-33)
∣∣∣∣∫ t

0

∫
R3
(1+τ)2λ(∂t 0̃

aψ)II3 dx dτ
∣∣∣∣≤C K ε

∫ t

0

∫
R3
(1+τ)λ|∂0̃aψ |2 dx dτ.

Collecting (2-31)–(2-33) together with 0≤ λ≤ 1 (this means that the coefficient
C K ε(1−λ)(1+ t)λ−2 of

∑
|b4|≤|b3|+1 ‖0̃

b4ψ‖2 in the last line of (2-32) is nonneg-
ative and in L1(0,∞)) yields

(2-34)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t0

aψ)0b1
(
(1+ t)λ∂t∇ψ · ∇ψ

)
dx dτ

∣∣∣∣
≤ C K ε

∑
0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ

+C K ε
∑
|b4|≤N

∫ t

0
A(τ )

∫
R3
|0̃b4ψ |2 dx dτ.

In addition, one notes that

2(1+ t)2λ(0̃aψ)0̃a(∂t∇ψ · ∇ψ)

=

∑
|c|≤|a|

∂t
(
(1+ t)2λ0̃aψ0c(|∇ψ |2)

)
− 2λ(1+ t)2λ−1(0̃aψ)0̃c(|∇ψ |2)− (1+ t)2λ(∂t 0̃

aψ)0̃c(|∇ψ |2).
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From this, (2-6) and Hardy’s inequality, we have

(2-35)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(0̃aψ)0̃b1

(
(1+ τ)λ∂t∇ψ · ∇ψ

)
dx dτ

∣∣∣∣
≤ Cε2

+C K ε
∑

0≤|a|≤N

∫
R3
(1+ t)2λ|∂0̃aψ |2 dx

+C K ε
∑

0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ.

Part C: Estimates of∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t 0̃

aψ)0̃b1
(
(1+ τ)2λ(∂iψ)(∂ jψ)∂i jψ

)
dx dτ

∣∣∣∣
and ∑

|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(0̃aψ)0̃b1

(
(1+ τ)2λ(∂iψ)(∂ jψ)∂i jψ

)
dx dτ

∣∣∣∣.
A direct computation yields

0̃b1((∂iψ)(∂ jψ)∂i jψ)

= ∂iψ∂ jψ∂i j 0̃
b1ψ +

∑
N−2≤|b2|≤|b1|−1

(∇20̃b2ψ)(∇0̃b3ψ)∇0̃b4ψ

+

∑
|b2|≤N−3

(∇20̃b2ψ)(∇0̃b3ψ)∇0̃b4ψ

= III1+ III2+ III3.

As in the treatment of II1 in Part B, we have

(2-36)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t 0̃

aψ)III1 dx dτ
∣∣∣∣

≤ Cε2
+C K ε

∑
0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ.

By (2-6) and (2-9), for the term III2, we have

(2-37) (1+t)4λ‖(∂t 0̃
aψ)(∇20̃b2ψ)(∇0̃b3ψ)∇0̃b4ψ‖L1

≤ (1+t)4λ‖〈r−t〉−1(∇0̃b3ψ)∇0̃b4ψ‖L∞ ·‖∂t 0̃
aψ‖·‖〈r−t〉∇20̃b2ψ‖

≤ C K ε(1+t)λ‖∂t 0̃
aψ‖

∑
|b4|≤|b3|+1

‖∇0̃b4ψ‖+C K ε(1+t)λ‖∂t 0̃
aψ‖2

+C K ε(1−λ)(1+t)λ−2
∑

|b4|≤|b3|+1

‖0̃b4ψ‖2.
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By (2-6) and (2-8), for the term III3, one has

(2-38) (1+ t)4λ‖(∂t 0̃
aψ)(∇20̃b2ψ)(∇0̃b3ψ)∇0̃b4ψ‖L1

≤ C K ε(1+ t)λ‖∂t 0̃
aψ‖

∑
|c|≤|b1|

‖∇0̃cψ‖.

Collecting (2-36)–(2-38) together with 0≤ λ≤ 1 (this means that the coefficient
C K ε(1−λ)(1+ t)λ−2 of

∑
|b4|≤|b3|+1 ‖0̃

b4ψ‖2 in the last line of (2-37) is nonneg-
ative and in L1(0,∞)) yields

(2-39)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t 0̃

aψ)0̃b1
(
(1+ τ)2λ(∂iψ)(∂ jψ)∂i jψ

)
dx dτ

∣∣∣∣
≤ C K ε

∑
0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ

+C K ε
∑
|b4|≤N

∫ t

0
A(τ )

∫
R3
|0̃b4ψ |2 dx dτ.

In addition,

2(1+ t)3λ(0aψ)0b1
(
(∂iψ)(∂ jψ)∂i jψ

)
= div

(
(1+ t)3λ(0aψ)(∇ψ)0b1(|∇ψ |2)

)
−(1+ t)3λ(∇0aψ)(∇ψ)0b1(|∇ψ |2)

− (1+ t)3λ(0aψ)(1ψ)0b1(|∇ψ |2)

+

∑
|b2|≤|b1|−1

(1+ t)3λ(0aψ)(∇20b2ψ)(∇0b3ψ)∇0b4(|ψ |2).

Together with (2-6) and Hardy’s inequality this yields

(2-40)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(0aψ)0b1

(
(1+ τ)2λ(∂iψ)(∂ jψ)∂i jψ

)
dx dτ

∣∣∣∣
≤ C K ε

∑
|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0aψ |2 dx dτ.

Therefore, substituting (2-29)–(2-30), (2-34)–(2-35), and (2-39)–(2-40) into (2-25)
and utilizing the smallness of ε > 0 gives (2-21). �

Based on Lemmas 2.4 and 2.5, we now prove Theorem 1.1.

Proof of Theorem 1.1. By Lemmas 2.4 and 2.5, one has that, for fixed N ≥ 8,

EN (t)≤ Cε2
+C(1+ K ε)

∫ t

0
A(t ′)EN (t ′) dt ′.
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Choosing the constants K > 0 large and ε > 0 small, by Gronwall’s inequality one
gets that, for any t ≥ 0,

EN (t)≤ eC(1+K ε)‖A(t)‖L1 EN (0)≤ 1
2 K 2ε2.

Thus, Theorem 1.1 is proved by the assumption that EN (t)≤ K 2ε2 and a continuous
induction argument. �

3. Blowup for small data in case λ > 1

In this section, we shall prove the blowup result of Theorem 1.2 which is valid in
case λ > 1.

Proof of Theorem 1.2. We divide the proof into two cases.

Case 1: γ = 2. Let (ρ, u) be a smooth solution of (1-1). For l > 0, we define

(3-1) P(t, l)=
∫
|x |>l

η(x, l)(ρ(t, x)− ρ̄) dx,

where

η(x, l)= |x |−1(|x | − l)2.

Employing the first equation in (1-1) and an integration by parts, we see that

∂t P(t, l)=
∫
|x |>l

η(x, l)∂t(ρ(t, x)− ρ̄) dx =−
∫
|x |>l

η(x, l) div(ρu)(t, x) dx

=

∫
|x |>l

(∇xη)(x, l) · (ρu)(t, x) dx,

where we have used the fact that η(x, l) = 0 on |x | = l and that u(t, x) = 0 for
|x | ≥ t +M .

By differentiating ∂t P(t, l) again and using the second equation in (1-1), we find
that

(3-2) ∂2
t P(t, l)=

∫
|x |>l

(∇xη)(x, l)·∂t(ρu)(t, x)dx

=−

∑
i, j

∫
|x |>l
(∂xiη)∂x j (ρui u j )dx−

∫
|x |>l
(∇xη)(x, l)·∇(p− p̄)dx

−
µ

(1+t)λ

∫
|x |>l

(∇xη)(x, l)·(ρu)(t, x)dx,
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where ∇xη(x, l)= |x |−3(|x |2− l2)x vanishes on |x | = l and p̄ = p(ρ̄). Integration
by parts implies that

(3-3) ∂2
t P(t, l)+

µ

(1+ t)λ
∂t P(t, l)

=

∑
i, j

∫
|x |>l

(∂2
xi x j
η)ρui u j dx +

∫
|x |>l

(1η)(p− p̄) dx

≡ J1(t, l)+ J2(t, l),

where we have used that p− p̄ vanishes for |x | ≥ t +M . A direct computation of
∂2

xi x j
η shows that

(3-4) J1(t, l)=
∫
|x |>l

2l2

|x |3
ρ

(
x
|x |
·u
)2

dx

−

∫
|x |>l

|x |2−l2

|x |3
ρ

(
x
|x |
·u
)2

dx+
∫
|x |>l

|x |2−l2

|x |3
ρ|u|2 dx ≥ 0.

On the other hand, notice that

(3-5) ∂2
l η(x, l)= 2|x |−1

=1xη(x, l).

Then

(3-6) J2(t, l)=
∫
|x |>l

∂2
l η(x, l)(p(t, x)− p̄) dx = ∂2

l

∫
|x |>l

η(x, l)(p(t, x)− p̄) dx,

where we have used the fact that η and ∂lη vanish on |x |= l. Combining (3-3)–(3-6),
we arrive at
(3-7)

∂2
t P(t, l)− ∂2

l P(t, l)+
µ

(1+ t)λ
∂t P(t, l)= f (t, l)≡ J1(t, l)+G(t, l)≥ G(t, l),

where
(3-8)

G(t, l)= ∂2
l

∫
|x |>l

η(x, l)(p− p̄−(ρ− ρ̄)) dx =
∫
|x |>l

2|x |−1(p− p̄−(ρ− ρ̄)) dx .

Thanks to γ = 2 and the sound speed c̄ =
√

2Aρ̄ = 1, we have

(3-9) p− p̄− (ρ− ρ̄)= A(ρ2
− ρ̄2
− 2ρ̄(ρ− ρ̄))= A(ρ− ρ̄)2.

Substituting (3-9) into (3-8) gives

G(t, l)≥ 0.

For M0 satisfying the condition (1-11), let6≡{(t, l) : t ≥ 0, t+M0≤ l ≤ t+M} be
the strip domain. By applying Riemann’s representation (see [Courant and Hilbert
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1962, §5.5]) with the assumptions (1-9)–(1-11), we see that the solution P(t, l) to
(3-7) is nonnegative in 6. We put its proof in the Appendix. Rewrite (3-7) as

∂2
t P(t, l)−∂2

l P(t, l)+
µ

(1+ t)λ
(
∂t P(t, l)−∂l P(t, l)

)
= f (t, l)−

µ

(1+ t)λ
∂l P(t, l).

By the method of characteristics we have

P(t, l)= 1
2 P(0, l+ t)+

1
2β(t)

P(0, l− t)+ 1
2

∫ t

0

1
β(τ)

µ

(1+τ)λ
P(0, l+ t−2τ) dτ

+

∫ t

0

1
β(τ)

∂t P(0, l+ t−2τ) dτ+ 1
2

∫ t

0

∫ l+t−τ

l−t+τ

β(τ)

β
( l+t+τ−y

2

) f (τ, y) dy dτ

+
1
2

∫ t

0

β(τ)

β(t)
µ

(1+τ)λ
P(τ, l− t+τ) dτ

+
1
2

∫ t

0

∫ t

τ

β(τ)

β(s)
µ2

(1+τ)λ(1+s)λ
P(τ, l+ t−2s+τ) ds dτ

−
1
2

∫ t

0

µ

(1+τ)λ
P(τ, l+ t−τ) dτ ;

see (1-12). Together with assumptions (1-9)–(1-10) and P(t, l)≥ 0 in 6 this yields,
for l ≥ t +M0,

(3-10) P(t, l)≥
1

2β(t)
q0(l − t)+ 1

2

∫ t

0

∫ l+t−τ

l−t+τ

β(τ)

β
( l+t+τ−y

2

)G(τ, y) dy dτ

−
1
2

∫ t

0

µ

(1+ τ)λ
P(τ, l + t − τ) dτ.

Define the function

(3-11) F(t)≡
∫ t

0
(t − τ)

∫ τ+M

τ+M0

P(τ, l)
dl
l

dτ.

Then, by (3-10), we have that
(3-12)

F ′′(t)=
∫ t+M

t+M0

P(t, l)
dl
l

≥
1

2β(t)

∫ t+M

t+M0

q0(l− t)
dl
l
+

1
2

∫ t+M

t+M0

∫ t

0

∫ l+t−τ

l−t+τ

β(τ)

β
( l+t+τ−y

2

)G(τ, y)dy dτ
dl
l

−
1
2

∫ t+M

t+M0

∫ t

0

µ

(1+τ)λ
P(τ, l+ t−τ)dτ

dl
l

≡ J3+ J4− J5.
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From λ > 1 and assumption (1-9), we see that

(3-13) J3 ≥
c1

t +M

∫ t+M

t+M0

q0(l − t) dl =
c1

t +M

∫ M

M0

q0(l) dl =
c2ε

t +M
,

where c1, c2 > 0 are constants independent of ε. Note that P(τ, y) is supported in
{y : y≤ τ+M} and nonnegative in6. Hence, there exists a constant C1>0 such that

(3-14) J5 ≤
C1

(1+ t)λ

∫ t

0

∫ τ+M

τ+M0

P(τ, y)
dy
y

dτ =
C1

(1+ t)λ
F ′(t).

Substituting (3-14) into (3-12) gives

(3-15) F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ J3+ J4.

To bound J4 from below, we write

(3-16) J4 =
1
2

∫ t−M1

0

∫ τ+M

τ+M0

G(τ, y)
∫ y+t−τ

t+M0

β(τ)

β
( l+t+τ−y

2

) dl
l

dy dτ

+
1
2

∫ t

t−M1

∫ 2t−τ+M0

τ+M0

G(τ, y)
∫ y+t−τ

t+M0

β(τ)

β
( l+t+τ−y

2

) dl
l

dy dτ

+
1
2

∫ t

t−M1

∫ τ+M

2t−τ+M0

G(τ, y)
∫ y+t−τ

y−t+τ

β(τ)

β
( l+t+τ−y

2

) dl
l

dy dτ

≡ J4,1+ J4,2+ J4,3,

where M1= (M−M0)/2. For t <M1, t−M1 in the limits of integration is replaced
by 0. By λ > 1, for the integrand in J4,1 we have that

(3-17)
∫ y+t−τ

t+M0

β(τ)

β
( l+t+τ−y

2

) dl
l
≥ c

y− τ −M0

t +M
≥ c

(t − τ)(y− τ −M0)
2

(t +M)2
.

Analogously, for the integrands in J4,2 and J4,3 we have that

(3-18)
∫ y+t−τ

t+M0

β(τ)

β
( l+t+τ−y

2

) dl
l
≥ c

(t − τ)(y− τ −M0)
2

(t +M)2

and

(3-19)
∫ y+t−τ

y−t+τ

β(τ)

β
( l+t+τ−y

2

) dl
l
≥ c

t − τ
t +M

≥ c
(t − τ)(y− τ −M0)

2

(t +M)2
,

where c > 0 is a constant. Substituting (3-17)–(3-19) into (3-16) yields

J4 ≥
c

(t +M)2

∫ t

0
(t − τ)

∫ τ+M

τ+M0

(y− τ −M0)
2∂2

y G̃(τ, y) dy dτ,
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where G̃(t, l)=
∫
|x |>l η(x, l)(p− p̄−(ρ−ρ̄)) dx . Note that G̃(τ, y)=∂yG̃(τ, y)=0

for y = τ +M . Thus, it follows from the integration by parts together with (3-8)–
(3-9) that

(3-20) J4 ≥
c

(t +M)2

∫ t

0
(t − τ)

∫ τ+M

τ+M0

G̃(τ, y) dy dτ

≥
c

(t +M)2

∫ t

0
(t − τ)

∫ τ+M

τ+M0

∫
|x |>y

η(x, y)(ρ(τ, x)− ρ̄)2 dx dy dτ

≡
c

(t +M)2
J6.

By applying the Cauchy–Schwartz inequality to F(t) defined by (3-11), we arrive at

(3-21) F2(t)≤ J6

∫ t

0
(t − τ)

∫ τ+M

τ+M0

∫
y<|x |<τ+M

η(x, y) dx
dy
y2 dτ ≡ J6 J7.

We estimate J7 as

(3-22) J7 =

∫ t

0
(t − τ)

∫ τ+M

τ+M0

∫
y<|x |<τ+M

(|x | − y)2

|x |
dx

dy
y2 dτ

=

∫ t

0
(t − τ)

∫ τ+M

τ+M0

∫ τ+M

y
4πl(l − y)2 dl

dy
y2 dτ

≤ C
∫ t

0
(t − τ)

∫ τ+M

τ+M0

(τ +M)(τ +M − y)3
dy
y2 dτ

≤ C
∫ t

0
(t − τ)(τ +M)

∫ τ+M

τ+M0

dy
y2 dτ

≤ C
∫ t

0

t − τ
τ +M

dτ ≤ C(t +M) log(t/M + 1).

Combining (3-13), (3-15) and (3-20)–(3-22) gives the ordinary differential inequal-
ities

F ′′(t)+
C1

(1+ t)λ
F ′(t)≥

c2ε

t +M
, t ≥ 0,(3-23)

F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ C

[
(t +M)3 log(t/M + 1)

]−1 F2(t), t ≥ 0.(3-24)

Next, we apply (3-23)–(3-24) to prove that the lifespan Tε of smooth solution F(t) is
finite for all 0<ε≤ ε0. The fact that F(0)= F ′(0)= 0, together with (3-23), yields

F ′(t)≥ Cε log(t/M + 1), t ≥ 0,(3-25)

F(t)≥ Cε(t +M) log(t/M + 1), t ≥ t1 ≡ Me2,(3-26)
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where the constant C > 0 is independent of ε. Substituting (3-26) into (3-24) derives

F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ Cε2(t +M)−1 log(t/M + 1), t ≥ t1,

which leads to the improvement

(3-27) F(t)≥ Cε2(t +M) log2(t/M + 1), t ≥ t2 ≡ Me3 > t1.

Substituting this into (3-24) derives

(3-28) F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ Cε2(t +M)−2 log(t/M + 1)F(t), t ≥ t2.

It follows from (3-25) that F ′(t)≥ 0 for t ≥ 0. Then multiplying (3-28) by F ′(t)
and integrating from t3 (which will be chosen later) to t yield

F ′(t)2 ≥ C2 F ′(t3)2+C3ε
2
∫ t

t3
(s+M)−2 log(s/M + 1)[F(s)2]′ ds.

Integrating by parts yields

(3-29)

F ′(t)2 ≥ C2 F ′(t3)2

+C3ε
2((t+M)−2 log(t/M+1)F(t)2−(t3+M)−2 log(t3/M+1)F(t3)2

)
−

∫ t

t3

(
log(s/M+1)
(s+M)2

)′
F(s)2 ds, t ≥ t3,

where (
log(s/M + 1)
(s+M)2

)′
≤ 0

for t ≥ t3 ≥ t2. On the other hand, (3-23) implies(
e−

C1
λ−1 [(1+t)1−λ−1]F ′(t)

)′
≥ 0, t ≥ 0,

which yields for 0≤ t ≤ τ

(3-30) F ′(t)≤ e
C1
λ−1 [(1+t)1−λ−(1+τ)1−λ]F ′(τ ).

Together with F(0)= 0, this yields

(3-31) F(t)=
∫ t

0
F ′(s) ds ≤ C4t F ′(t), t > 0.

Choose

(3-32) t3 = M
(
e

C2
2C3C4ε

2
− 1

)
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which satisfies 2C3C4 log(t3/M + 1)ε2
= C2. Together with (3-29) and (3-31), this

yields

(3-33) F ′(t)≥
√

C3ε(t +M)−1 log
1
2 (t/M + 1)F(t), t ≥ t3.

By integrating (3-33) from t3 to t , we arrive at

log
F(t)
F(t3)

≥ Cε log
3
2

(
t +M
t3+M

)
, t ≥ t3.

If t ≥ t4 ≡ Ct2
3 , we then have

log
F(t)
F(t3)

≥ 8 log(t/M + 1).

Together with (3-27) for F(t3), this yields

(3-34) F(t)≥ Cε2(t +M)8, t ≥ t4.

Substituting this into (3-24) derives

F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ CεF(t)

3
2 , t ≥ t4.

Multiplying this differential inequality by F ′(t) and integrating from t4 to t yields

F ′(t)2 ≥ Cε
(
F(t)

5
2 − F(t4)

5
2
)
.

On the other hand, (3-30) and (3-31) imply that, for t ≥ t4,

F(t)= F ′(ξ)(t − t4)+ F(t4)≥ C F ′(t4)(t − t4)≥ C F(t4)
t − t4

t4
,

where t4 ≤ ξ ≤ t . If t ≥ t5 ≡ Ct4, then we have

F(t)
5
2 − F(t4)

5
2 ≥

1
2 F(t)

5
2 .

Thus

(3-35) F ′(t)≥ C
√
εF(t)

5
4 , t ≥ t5.

If Tε > 2t5, then integrating (3-35) from t5 to Tε derives

F(t5)−
1
4 − F(Tε)−

1
4 ≥ C

√
εTε.

We see from (3-34) and t5 = Ct2
3 that

F(t5)≥ Cε2eC/ε2
,

which together with F(Tε) > 0 is a contradiction. Thus, Tε ≤ 2t5 = Ct2
3 . From the

choice of t3 in (3-32), we see that Tε ≤ eC/ε2
.
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Case 2: γ > 1 and γ 6= 2. Recall that the sound speed is c̄ =
√
γ Aρ̄γ−1 = 1.

Instead of (3-9) we have

p− p̄− (ρ− ρ̄)= A
(
ργ − ρ̄γ − γ ρ̄γ−1(ρ− ρ̄)

)
≡ Aψ(ρ, ρ̄).

The convexity of ργ for γ > 1 implies that ψ(ρ, ρ̄) is positive for ρ 6= ρ̄. Applying
Taylor’s theorem, we have

ψ(ρ, ρ̄)≥ C(γ, ρ̄)8γ (ρ, ρ̄),

where C(γ, ρ̄) is a positive constant and 8γ is given by

8γ (ρ, ρ̄)=


(ρ̄− ρ)γ , ρ < 1

2 ρ̄,

(ρ− ρ̄)2, 1
2 ρ̄ ≤ ρ ≤ 2ρ̄,

(ρ− ρ̄)γ , ρ > 2ρ̄.

For γ > 2, we have that (ρ̄ − ρ)γ = (ρ̄ − ρ)2(ρ̄ − ρ)γ−2
≥ C(γ, ρ̄)(ρ − ρ̄)2 for

2ρ < ρ̄ and (ρ− ρ̄)γ = (ρ− ρ̄)2(ρ− ρ̄)γ−2
≥ C(γ, ρ̄)(ρ− ρ̄)2 for ρ > 2ρ̄. Thus,

ψ(ρ, ρ̄) ≥ C(γ, ρ̄)(ρ− ρ̄)2. In this case, Theorem 1.2 can be shown completely
analogously to Case 1.

Next we treat the case 1< γ < 2. We define F(t) as in (3-11),

F(t)=
∫ t

0

∫ τ+M

τ+M0

1
l

∫
|x |>l

(|x | − l)2

|x |
(ρ(τ, x)− ρ̄) dx dl dτ.

Similarly to the case of γ = 2, we have

(3-36) F ′′(t)≥ J3+ J4− J5,

where

J3 ≥
Cε

t +M
,

J4 ≥ C(t +M)−2 J̃6,

J5 ≤
C1

(1+ t)λ
F ′(t),

and

J̃6 =

∫ t

0
(t − τ)

∫ τ+M

τ+M0

∫
|x |>y

(|x | − y)2

|x |
8γ (ρ(τ, x)− ρ̄) dx dy dτ.

Denote �1 = {(τ, x) : ρ̄ ≤ ρ(τ, x) ≤ 2ρ̄}, �2 = {(τ, x) : ρ(τ, x) > 2ρ̄}, and
�3 = {(τ, x) : ρ(τ, x) < ρ̄}. Divide F(t) into a sum of the three integrals over the
domains �i (1≤ i ≤ 3)

F(t)= F1(t)+ F2(t)+ F3(t)≡
∫
�1

· · · +

∫
�2

· · · +

∫
�3

· · · .
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Corresponding to the three parts of F(t), we define J̃6 ≡ J̃6,1+ J̃6,2+ J̃6,3. In view
of F(t)≥ 0 and F3(t)≤ 0, we have

F(t)≤ F1(t)+ F2(t).

Applying Hölder’s inequality for the domains �1 and �2, we obtain that

F(t)≤ J̃
1
2

6,1

(∫ t

0
(t − τ)

∫ τ+M

τ+M0

1
y2

∫
y<|x |≤τ+M

(|x | − y)2

|x |
dx dy dτ

)1
2

+ J̃
1
γ

6,2

(∫ t

0
(t − τ)

∫ τ+M

τ+M0

1

y
γ
γ−1

∫
y<|x |≤τ+M

(|x | − y)2

|x |
dx dy dτ

)γ−1
γ

≤ J̃
1
2

6 (t +M)
1
2 log

1
2 (t/M + 1)+ J̃

1
γ

6 (t +M)
γ−1
γ

=
(
J̃6(t +M)−1) 1

2 (t +M) log
1
2 (t/M + 1)+

(
J̃6(t +M)−1) 1

γ (t +M).

In view of 1< γ < 2, we have 1
2γ <

1
2 <

1
γ

. Applying Young’s inequality yields

F(t)≤
((

J̃6(t+M)−1) 1
2γ +

(
J̃6(t+M)−1) 1

γ
)
(t+M) log

1
2 (t/M+1), t ≥ t̃1≡Me.

Together with the fact that F(t)≥ Cε(t +M) log(t/M + 1), this yields

J̃6 ≥ C F(t)γ (t +M)1−γ log−
γ
2 (t/M + 1), t ≥ t̃1.

Substituting this into (3-36) yields

F ′′(t)+
C1

(1+t)λ
F ′(t)≥

Cε
t+M

, t ≥ 0,(3-37)

F ′′(t)+
C1

(1+t)λ
F ′(t)≥ C F(t)γ (t+M)−1−γ log−

γ
2 (t/M+1), t ≥ t̃1.(3-38)

Substituting F(t)≥ Cε(t +M) log(t/M + 1) into (3-38) yields

F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ Cεγ (t +M)−1 log

γ
2 (t/M + 1).

Integrating this yields

F(t)≥ Cεγ (t +M) log
γ+2

2 (t/M + 1).

Substituting this into (3-38) again gives

F ′′(t)+
C1

(1+ t)λ
F ′(t)

≥ Cεγ
2
(t +M)−1 log

γ (γ+1)
2 (t/M + 1)= Cεγ

2
(t +M)−1 log

γ (γ 2
−1)

2(γ−1) (t/M + 1).
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Repeating this process n times, we see that

(3-39) F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ Cεγ

n
(t +M)−1 log

γ (γ n
−1)

2(γ−1) (t/M + 1),

where n = [logγ 2]. Solving (3-39) yields

F(t)≥ Cεγ
n
(t +M) log

γ (γ n
−1)

2(γ−1) +1
(t/M + 1), t ≥ t̃2,

where t̃2> 0 is a constant only depending on γ . Substituting this into (3-38) derives

(3-40) F ′′(t)+
C1

(1+ t)λ
F ′(t)

≥ C F(t)εγ
n(γ−1)(t +M)−2 log

γ n+1
−2

2 (t/M + 1), t ≥ t̃2,

where 1
2(γ

n+1
− 2) > 0 by the choice of n = [logγ 2]. Since (3-40) is analogous

to (3-28), as in Case 1, we can choose

t̃3 = O
(

eCε
−

2γ n (γ−1)
γ n+1−2

)
such that

F ′(t)≥ Cε
γ n (γ−1)

2 (t +M)−1 log
γ n+1

−2
4 (t/M + 1)F(t), t ≥ t̃3,

which is similar to (3-33) and yields

(3-41) F(t)≥ CεCγ (t +M)
2(γ+2)
γ−1 , t ≥ t̃4 ≡ Ct̃2

3 ,

where Cγ > 0 is a constant depending on γ. Substituting (3-41) into (3-38) yields

(3-42) F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ CεCγ F(t)

γ+1
2 , t ≥ t̃4.

Multiplying (3-42) by F ′(t) and integrating over the variable t as in Case 1, we have

F ′(t)≥ CεCγ F(t)
γ+3

4 , t ≥ t̃5 ≡ Ct̃4.

Together with γ > 1 and the choice of t̃3, this yields Tε <∞.
Both Case 1 and Case 2 complete the proof of Theorem 1.2. �

4. Blowup for large data

In this section, we establish a blowup result for large amplitude smooth solutions
of (1-1) which is valid for all λ≥ 0. More precisely, instead of (1-1) we consider
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the Cauchy problem

(4-1)


∂tρ+ div(ρu)= 0,

∂t(ρu)+ div(ρu⊗ u+ pI3)=−
µ

(1+ t)λ
ρu,

ρ(0, x)= ρ̄+ ρ̃0(x), u(0, x)= ũ0(x),

where ρ̃0, ũ0∈C∞0 (R
3), supp ρ̃0, supp ρ̃0⊆ B(0,M)≡{x : |x |≤M}, and ρ(0, · )>0.

Motivated by the treatment of the special case of λ= 0 in [Sideris et al. 2003], we
introduce the functions

H(t)≡
∫

R3
x · (ρu)(t, x) dx, L(t)≡

∫
R3
(ρ(t, x)− ρ̄) dx,

γ (t)≡ (t +M)2
(

L(0)+
4π2ρ̄

3
(t +M)3

)
,

and also remind the reader of the definition of the function β in (1-12).
Then we have the following result:

Theorem 4.1. Suppose that L(0)≥ 0 and

(4-2) H(0)
∫ T ∗

0

dτ
γ (τ )β(τ)

> 1.

for some T ∗ > 0. Then T < T ∗ holds for any solution (ρ, u) ∈ C1([0, T ]×R3) of
(4-1).

Proof. From the first equation of (4-1), we see that

L ′(t)=−
∫

R3
div(ρu) dx = 0,

which implies L(t)= L(0). Applying the second equation of (4-1), we find that

H ′(t)=
∫

R3
x · ∂t(ρu)(t, x) dx =

∫
R3

x ·
[
− div(ρu⊗ u)−∇ p−

µ

(1+ t)λ
ρu
]

dx .

An integration by parts gives

(4-3) H ′(t)+
µ

(1+ t)λ
H(t)=

∫
R3

(
ρ|u|2+ 3

(
p(ρ)− p(ρ̄)

))
dx .

Note that the convexity of p = Aργ for γ > 1 and c(ρ̄)= 1 imply that

(4-4)
∫

R3

(
p(ρ)− p(ρ̄)

)
dx ≥

∫
R3

Aγ ρ̄γ−1(ρ− ρ̄) dx = L(0).
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Furthermore, by applying the Cauchy–Schwartz inequality to H(t) and taking into
account supp u(t, · )⊆ B(0,M + t) for any fixed t ≥ 0, we have

(4-5) H(t)2 ≤
(∫

R3
ρ|u|2 dx

)(∫
|x |≤t+M

ρ|x |2 dx
)

≤ (t +M)2
(

L(0)+
4π2ρ̄

3
(t +M)3

)∫
R3
ρ|u|2 dx

= γ (t)
∫

R3
ρ|u|2 dx .

Substituting (4-4)–(4-5) into (4-3) yields

(4-6) H ′(t)+
µ

(1+ t)λ
H(t)≥

H(t)2

γ (t)
+ 3L(0).

Together with L(0)≥ 0 and H(0) > 0 due to (4-2), this shows that H(t) > 0 for all
t ∈ [0, T ]. Denoting G(t)≡ β(t)H(t), from (1-12) and (4-6) we then get that

(4-7) G ′(t)≥
G2(t)
γ (t)β(t)

.

Now suppose that T ≥ T ∗. Then integrating (4-7) from 0 to T yields

1
H(0)

−
1

G(T )
≥

∫ T

0

dτ
γ (τ )β(τ)

≥

∫ T ∗

0

dτ
γ (τ )β(τ)

,

which is a contradiction in view of G(T ) > 0 and (4-2). �

Appendix: Proof of the nonnegativity of P(t, l) in
6 ≡ {(t, l) : t ≥ 0, t +M0 ≤ l ≤ t +M}

We fixed a point A = (tA, lA) ∈6. In the characteristic coordinates ξ = 1+ t − l
and ζ = 1+ t + l, (3-7) can be written as

(A-1) L P̄ ≡ ∂2
ξζ P̄ +

2λ−2µ

(ξ + ζ )λ
(∂ξ P̄ + ∂ζ P̄)=

f̄
4
,

where P̄(ξ, ζ )≡ P
(
ζ+ξ

2 − 1, ζ−ξ2

)
. The adjoint operator L ∗ of L has the form

(A-2) L ∗R≡ ∂2
ξζR−

2λ−2µ

(ξ + ζ )λ
(∂ξR+ ∂ζR)+

2λ−1µλ

(ξ + ζ )λ+1R.

For the point A = (ξA, ζA) with ξA+ ζA = 2(1+ tA) ≥ 2, write B = (2− ζA, ζA)

and C = (ξA, 2− ξA), and let D the domain surrounded by the triangle ABC (see
Figure 1 below).
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B

C

D

A(ξA, ζA)

ζ

ξ

Figure 1. (ξ, ζ )-plane.

Let the numbers a and b satisfy a+ b = 1 and ab = 1
2µλ. We define

(A-3) z ≡−
(ξA− ξ)(ζA− ζ )

(ξA+ ζA)(ξ + ζ )

and

(A-4) R(ξ, ζ ; ξA, ζA)≡

[
β(ξ + ζ − 1)
β(ξA+ ζA− 1)

]2λ−2

9(a, b, 1; z);

here the definition of function β is given in (1-12) and 9 is the hypergeometric
function. From this and direct calculation, we infer

(A-5) L ∗R=
[

2λ−2µλ

(ξ + ζ )λ+1 −
µλ

2(ξ + ζ )2
−

4λ−2µ2

(ξ + ζ )2λ

]
R.

On the other hand, from (A-1)–(A-2) we arrive at

RL P̄ − P̄L ∗R= ∂ζ
(
R∂ξ P̄ +

2λ−2µ

(ξ + ζ )λ
RP̄

)
− ∂ξ

(
P̄∂ζR−

2λ−2µ

(ξ + ζ )λ
RP̄

)
.

Integrating this over D yields

(A-6) P̄(A)= 1
2R(C; A)P̄(C)+1

2R(B; A)P̄(B)

+

∫∫
D

(RL P̄−P̄L ∗R)dξ dζ+
∫

BC

(
1
2R∂ξ P̄− 1

2 P̄∂ξR+
µ

4
RP̄

)
dξ

+

(
1
2 P̄∂ζR− 1

2R∂ζ P̄−µ
4
RP̄

)
dζ.
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t

ξ ζ
6

A

M0 C M B l

D

Figure 2. (t, l)-plane.

Returning to the variable (t, l) (see Figure 2), we find in the second line of (A-6)
that

(A-7)
∫

BC
· · · =

∫ C

B

[
1
4R(∂t − ∂l)P − 1

4 P(∂t − ∂l)R+
µ

4
RP

]
(−dl)

+

[
1
4 P(∂t + ∂l)R− 1

4R(∂t + ∂l)P −
µ

4
RP

]
dl

=

∫ lA+tA

lA−tA

[
µ

2
RP + 1

2R∂t P − 1
2 P∂tR

]∣∣∣
t=0

dl

=

∫ lA+tA

lA−tA

β(tA)
−

1
2
[
9(a, b, 1; z|t=0)

(
µ

4
q0(l)+ 1

2q1(l)
)

−
µλ

4
9(a+ 1, b+ 1, 2; z|t=0)q0(l)zt |t=0

]
dl,

where we have used the formula 9 ′(a, b, c; z)= ab
c 9(a+ 1, b+ 1, c+ 1; z) (see

[Erdélyi et al. 1953, page 58]). From the definition (A-3), we arrive at

z =−
(tA− lA− t + l)(tA+ lA− t − l)

4(1+ tA)(1+ t)

and

(A-8) zt |t=0 =
tA

2(1+ tA)
− z|t=0.

If (t, l) ∈6 ∩D , we infer

(A-9) 0≥ z ≥− 1
2(M −M0)≥−

1
2δ0,

which implies that (1-8) holds. This, together with (A-7)–(A-9) and the assumption
(1-11) of3≥ 3

2µλ, yields that the integral in the second line of (A-6) is nonnegative.
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Next we prove that P(t, l)≥ 0 for all (t, l) ∈6. Define

t̄ ≡ inf{t : ∃ l ∈ (t +M0, t +M) such that P(t, l) < 0}.

From assumption (1-9), we get t̄ > 0. If t̄ < +∞, we see that there exists l̄ ∈
(t̄ + M0, t̄ + M) such that P(t̄, l̄) = 0. Moreover, we have P(t, l) ≥ 0 for t < t̄ .
Choose A= (tA, lA)= (t̄, l̄) in (A-6). From (A-4)–(A-5) and (1-8) we infer L ∗R≤0
for λ > 1 and (t, l) ∈6 ∩D . It follows from f (t, l)≥ 0 in (3-7), (1-8), (1-9), and
(A-6) that

P(t̄, l̄)≥ 1
2R(C; A)P(0, l̄− t̄)+

∫∫
6∩D

(RL P̄− P̄L ∗R) dξ dζ ≥ 1
4q0(l̄− t̄) > 0,

which is a contradiction with P(t̄, l̄)= 0. Consequently, we conclude that t̄ =+∞
and P(t, l)≥ 0 for all (t, l) ∈6.
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