
Pacific
Journal of
Mathematics

RIGIDITY OF HAWKING MASS
FOR SURFACES IN THREE MANIFOLDS

JIACHENG SUN

Volume 292 No. 2 February 2018



PACIFIC JOURNAL OF MATHEMATICS
Vol. 292, No. 2, 2018

dx.doi.org/10.2140/pjm.2018.292.479
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JIACHENG SUN

It is well known that Hawking mass is nonnegative for a stable sphere of
constant mean curvature (CMC) in a three-manifold of nonnegative scalar
curvature. R. Bartnik proposed the rigidity problem of the Hawking mass
of stable CMC spheres. We show partial rigidity results of Hawking mass
for stable CMC spheres in asymptotic flat (AF) manifolds with nonnegative
scalar curvature. If the Hawking mass of a nearly round stable CMC sur-
face vanishes, then the surface must be the standard sphere in R3 and the
interior of the surface is flat. Similar results also hold for asymptotic hy-
perbolic manifolds. A complete AF manifold having small or large isoperi-
metric surface with zero Hawking mass must be flat. We use the mean field
equation and monotonicity of Hawking mass as well as rigidity results of
Y. Shi in our proof.

1. Introduction

One of the most important tasks in general relativity is to understand the mass of
spacetime. The first attempt on this topic is the positive mass theorem, which says
that the mass of an asymptotic flat manifold is nonnegative if the scalar curvature
is nonnegative, and the mass vanishes if and only if the manifold is isometric to
standard Euclidean space. Another important attempt is the Penrose inequality,
which tells us that the mass is no less than

√
A/16π when there is a horizon, where

A is the area of the outmost minimal surface, and the equality holds if and only if
the manifold is isometric to Schwarzschild space. From the Penrose inequality we
see the impact of boundary behavior is also remarkable. This motivates us to study
quasilocal mass for a compact manifold with boundary.

Brown–York mass is a well defined quasilocal mass for a domain with convex
boundary, which characterizes the deviation of mean curvature compared with a
Euclidean metric, whose positivity and rigidity is proved by [Shi and Tam 2002].
Another important quasilocal mass is Hawking mass, which played a key role in
proving the Penrose inequality in [Bray 1997] and [Huisken and Ilmanen 2001].
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Because the Willmore functional of a surface can be arbitrarily large, we cannot
expect positivity for an arbitrary surface. But for a stable CMC sphere in a nonneg-
ative scalar curvature manifold, the Hawking mass is nonnegative [Christodoulou
and Yau 1988].

Bartnik [2002, p. 235] proposed the rigidity problem of Hawking mass, i.e.,
what can we say about the ambient manifold when the Hawking mass vanishes for
some surface. This paper is devoted to a partial result for the rigidity problem if the
surface is nearly round. We study the eigenvalue and eigenfunctions of the Jacobi
operator for a stable CMC surface with zero Hawking mass, then transfer the rigidity
problem to a mean field type equation with respect to the second eigenvalue 6 of
the standard S2 under some restriction. If the equation has only the zero solution,
then the rigidity of Hawking mass holds. We get the local uniqueness by studying
the spherical harmonics on S2 carefully and also iteration methods. If the solution
is small in some sense, we can get the power decay of both the kernel part of 1+6
and also the orthogonal part. But we believe that the equation has only the zero
solution with the integral restriction.

The main term in Hawking mass is the Willmore functional. In R3 the Willmore
functional is constant 4π if and only if the surface is round sphere. So we can
detect the curvature of ambient space by the Willmore functional. For this reason,
we expect that manifolds with zero Hawking mass surface may have some flatness
properties.

Theorem 1. Let (M, g) be a complete Riemannian three-manifold with scalar
curvature R(g) ≥ 0 and � ⊂ M be a domain with boundary 6 = ∂�. If 6 is
a nearly round stable CMC sphere in M with mH (6) = 0, then � isometric to a
Euclidean ball in R3. In particular, 6 is isometric to the standard S2 in R3. In this
paper, nearly round is in the sense that Gauss curvature satisfies

(1-1)
∣∣∣∣ |6|4π

K6 − 1
∣∣∣∣
C0
< ε0

for some universal constant ε0� 1.

The hyperbolic case of the above rigidity is the following:

Theorem 2. Let (M, g) be a complete Riemannian three-manifold with scalar
curvature R(g) ≥ −6 and � ⊂ M be a domain with boundary 6 = ∂�. If 6 is
a nearly round stable CMC sphere in M with mH (6) = 0, then � isometric to a
hyperbolic ball in H3.

By the examples of A. Carlotto and R. Schoen [2016] there are manifolds with
nonnegative scalar curvature which are flat in a half space of R3, so we can only
expect flatness inside the surface with zero Hawking mass for stable CMC surfaces.
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But we can get global flatness for isoperimetric surfaces of sphere type:

Theorem 3. Let (M, g) be a complete AF three-manifold with scalar curvature
R(g) ≥ 0. If there exists a nearly round isoperimetric sphere 6 with mH (6)= 0,
then (M, g) is isometric to (R3, δ).

This theorem also has a hyperbolic version:

Theorem 4. Let (M, g) be a complete AH three-manifold with scalar curvature
R(g)≥−6. If there exists a nearly round isoperimetric sphere 6 with mH (6)= 0,
then (M, g) is isometric to (H3, gH).

We already know from [Chodosh et al. 2016] that large surfaces of the canonical
stable CMC foliation in [Huisken and Yau 1996; Qing and Tian 2007] are isoperi-
metric and close to the coordinate spheres. So we can get the rigidity result for
large isoperimetric surfaces. For rigidity of small isoperimetric surfaces, we use
the monotonicity of Hawking mass and also a rigidity result of Y. Shi.

Theorem 5. Let (M, g) be a complete AF three-manifold with scalar curvature
R(g) ≥ 0 which has no compact minimal surface. If there is an small enough
isoperimetric surface6 with m+H (6)= 0 (see definition in Section 5.3), then (M, g)
is isometric to R3.

Structure of this paper. In Section 2, we give the basic definitions. In Section 3,
we prove the rigidity of Hawking mass for nearly round stable CMC spheres. We
transform the rigidity problem to a mean field-type equation, and prove the local
uniqueness of the zero solution. By doing so, we get that a surface with zero
Hawking mass must be the standard S2 and then use the rigidity of [Shi and Tam
2002; 2007] to finish the proof. In Section 4, we prove the global properties of
manifolds with nearly round isoperimetric surfaces having zero Hawking mass. This
directly implies the rigidity for large isoperimetric surfaces in the canonical stable
CMC foliation by Huisken and Yau [1996] and Qing and Tian [2007]. In Section 5,
we prove the rigidity for small isoperimetric surfaces by using the monotonicity of
Hawking mass. This relies on the fact that the topology of a small isoperimetric
surface must be a sphere. In Appendix A.1 we give the spherical harmonics and
computations for the square of second order spherical harmonics. In Appendix A.2
we sketch a proof of the existence of isoperimetric surfaces for all volumes in AF
three-manifolds. In Appendix A.3 we sketch the proof of continuity of isoperimetric
profile for AF manifolds which is important to prove the right continuity of I ′

+
.

2. Preliminaries

We give some basic notations to present our result. Let 6 ⊂ (M, g) be a surface
with unit normal vector field n, second fundamental form A and mean curvature H.
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Definition. The Willmore functional of 6 is defined by:

(2-1) W (6)=
1
4

∫
6

H 2,

when R(g)≥ 0 and

(2-2) W (6)=
1
4

∫
6

(H 2
− 4).

when R(g)≥−6.

The Willmore functional appears in various areas, such as bending energy of
elastic membranes. It appears naturally in general relativity in the form of the
Hawking mass of a surface:

Definition. The Hawking mass of 6 is defined by

(2-3) mH (6)=
|6|1/2

(16π)3/2

(
16π −

∫
6

H 2
)
,

when R(g)≥ 0 and

(2-4) mH (6)=
|6|1/2

(16π)3/2

(
16π −

∫
6

(H 2
− 4)

)
.

when R(g)≥−6.

Definition. If H is constant along 6, we say 6 is a CMC surface; the Jacobi
operator of a CMC surface 6 is the second variation of area:

(2-5) L6 =−16 − (|A|2+Ric(n, n)).

A CMC surface 6 is stable if the first eigenvalue of L6 on mean-zero functions
is nonnegative:

(2-6) 31(L6)= inf
{∫

6

f L6 f :
∫
6

f = 0,
∫
6

f 2
= 1

}
≥ 0,

i.e., it satisfies the following stability condition:

(2-7)
∫
6

(|A|2+Ric(n, n)) f 2
≤

∫
6

|∇ f |2

for all f ∈ C∞c (6) and
∫
6

f = 0.

Remark. The above definition of eigenvalue in mean-zero functions is different
from the eigenvalue defined in the ordinary way by min-max construction:

(2-8) λ1(L6)= inf
{∫

6

f L6 f :
∫
6

f u0 = 0,
∫
6

f 2
= 1

}
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where u0 is the zeroth eigenfunction of L6 . By definition we have

(2-9) 31(L6)≤ λ1(L6).

We also want to study isoperimetric surfaces in AF (resp. AH) three-manifolds.
We will always use the bracket to denote the asymptotic hyperbolic case after related
asymptotic flat situations.

Definition. A complete connected three-manifold (M, g) is called AF (resp. AH),
if there exists a constant C>0 and a compact set K such that M\K is diffeomorphic
to R3

\ BR(0) for some R > 0, and in standard coordinates the metric g has the
following properties:

(2-10) g = δ+ h (resp. g = gH+ h)

and

(2-11) |hi j | + r |∂hi j | + r2
|∂2hi j | ≤ Cr−τ

τ ∈
( 1

2 , 1
]

(resp. τ = 3), where r and ∂ denote the Euclidean distance and standard
derivative operator on R3 respectively. The region M \ K is called the end of M.
The standard hyperbolic space (H3, gH) is

(2-12) gH =
1

1+r2 dr2
+ r2gS2 .

We also need the following definition of isoperimetric surface:

Definition. Given a complete Riemannian 3-manifold (M, g), its isoperimetric
profile with volume V is defined as

(2-13) I (V )= inf
{
H2(∂∗�) :

�⊂ M is a Borel set with finite perimeter
and H3

g(�)= V

}
,

where H2 is a 2-dimensional Hausdorff measure for the reduced boundary of �
denoted by ∂∗�. A Borel set �⊂ M of finite perimeter such that H3

g(�)= V and
I (V ) = H2(∂∗�) is called an isoperimetric region of (M, g) of volume V . The
surface ∂� is called an isoperimetric surface.

3. Rigidity of Hawking mass for nearly round stable CMC surfaces

It was shown in [Christodoulou and Yau 1988] that the Hawking mass is nonnegative
for a stable CMC sphere. It is proved by using a Hersch-type test function in the
stability condition and the nonnegativity of scalar curvature. Since we need to study
the equality case, we prove it here for completeness.

Lemma 6 [Christodoulou and Yau 1988]. Let (M,g) be a Riemannian three-
manifold with scalar curvature R(g) ≥ 0, if 6 is a stable CMC sphere in M,
then mH (6)≥ 0.
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Proof. By [Li and Yau 1982] there exists a conformal ϕ : 6 → S2
⊆ R3 with∫

6
ϕ = 0. We can plug these test functions in stability condition, and using that

(3-1)
∫
6

|∇ϕi |
2
≥

∫
6

(|A|2+Ric(n, n))ϕ2
i

for a surface conformal to S2
⊆ R3,

(3-2)
∫
6

|∇ϕi |
2 dµ6 =

∫
S2
|∇xi |

2 dµS2 =−

∫
S2

xi1xi dµS2 = 2
∫

S2
x2

i dµS2 =
8
3π.

Thus we can get

(3-3) 8π ≥
∫
6

|A|2+Ric(n, n).

By Gauss’s equation

(3-4) K6 =
R
2
−Ric(n, n)+ 1

2
(H 2
− |A|2).

So we have

(3-5) |A|2+Ric(n, n)= R
2
−K6+

1
2
(H 2
+|A|2)= 1

2
(R+|A0

|
2)+

3
4

H 2
−K6,

where we have used that |A|2 = |A0
|
2
+

1
2 H 2. We get

(3-6) 8π ≥
1
2

∫
6

(R+ |A0
|
2)+

3
4

∫
6

H 2
−

∫
6

K6,

so we obtain

(3-7) 16π −
∫
6

H 2
≥

2
3

∫
6

(R+ |A0
|
2)≥ 0 �

We can get an analogous result for the hyperbolic case; see also [Chodosh 2016]:

Lemma 7. Let (M, g) be a Riemannian three-manifold with scalar curvature
R(g)≥−6. If 6 is a stable CMC sphere in M, then mH (6)≥ 0.

Now we start to study stable CMC surfaces with zero Hawking mass. First
we can get a spectral characterization of them. We need the following lemma in
[El Soufi and Ilias 1992], which gives a optimal estimate of the second eigenvalue of
the Schrödinger operator. It also gives part of the rigidity of the second eigenvalue
which is the case for a Jacobi operator on a stable CMC sphere.

Lemma 8 [El Soufi and Ilias 1992]. For any continuous function q on surface 6,

(3-8) λ1(−16 + q)|6| ≤ 2Ac(6)+

∫
6

q.
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The equality holds if and only if 6 admits a conformal map into the standard S2

whose components are the first eigenfunctions. If 6 is of genus zero, then the
equality implies that 6 is conformal to the standard S2 in R3 and q is given by the
energy density of a Möbius transform, where λ1 is the first eigenvalue of −16 + q
in the sense of (2-8), Ac(6) is the conformal volume in [Li and Yau 1982] and for
a sphere, Ac(6)= 4π .

By the above lemma we have the following characterization of zero-Hawking
mass stable CMC spheres.

Proposition 9. Let (M, g) be a complete Riemannian three-manifold with scalar
curvature R(g)≥0 (resp. R(g)≥−6). If6 is a stable CMC sphere with mH (6)=0
and area |6| = 4π , then the second eigenvalue λ1(−16 + K6) = 3, with three
eigenfunctions ϕ1, ϕ2, ϕ3,

∫
6
ϕi = 0, and

∑3
i=1 ϕi

2
= 1. In particular, |∇ϕ|2 =

3− K6 , which is independent of eigenfunctions.

Proof. From the above proof of Lemma 6 we can see if mH (6)= 0 on 6, we have∫
6

H 2
= 16π (resp.

∫
6
(H 2
−4)= 16π ), R = 0 (resp. R =−6), A0

= 0 on 6. The
area |6| = 4π , then H = 2 (resp. H = 2

√
2), the Jacobi operator becomes

(3-9) L6 =−16 + K6 − 3.

By the stability of 6 and Lemma 8, we have

(3-10) 0≤ 4π31(L6)≤ 4πλ1(L6)≤ 8π +
∫
6

(K6 − 3)= 0,

so all the equalities hold, in particular

(3-11) λ1(−16 + K6)= 3,

with three eigenfunctions ϕ1, ϕ2, ϕ3,
∫
6
ϕi = 0, and

∑3
i=1 ϕi

2
= 1, so

(3-12) −16ϕ+ K6ϕ− 3ϕ = 0.

By |ϕ|2 =
∑3

i=1 ϕi
2
= 1, we have

(3-13) 0=16|ϕ|2 = 2ϕ16ϕ+ 2|∇.ϕ|2

Taking inner product of ϕ with (3-12), we get

(3-14) |∇ϕ|2 = 3− K6. �

Remark. We see from the above lemma that the first eigenvalue and eigenfunctions
of the Schrödinger operator −16 + K6 equal those of the standard S2. We expect
that the metric is isometric to the standard metric on S2.



486 JIACHENG SUN

In the following, we will always use 6 to denote a stable CMC surface with zero
Hawking mass. Let ϕ :6→ S2

⊆ R3 be the conformal map in Proposition 9 with∫
6
ϕ = 0. Denote the metric on 6 by g = eug0, with g0 the standard metric on S2.

By definition of the conformal map ϕ,

(3-15) e−u
=

1
2 |∇ϕ|

2.

The standard formula for Gauss curvature under a conformal change of metric gives

(3-16) K6 = e−u(1− 1
21g0u

)
.

So (3-14) gives

(3-17) 1g0u = 6− 6eu .

Also the volume-preserving variation implies

(3-18)
∫

S2
xi eu
= 0.

So for this stable CMC surface with zero Hawking mass 6,

(3-19) K6 − 1= e−u(1− 3+ 3eu)− 1= 2(1− e−u).

This means that if u is C0 close to 0, then K6 is C0 close to 1, which implies 6 is
nearly round. If we can prove (3-17), (3-18) admit only the zero solution, then the
stable CMC surface with vanishing Hawking mass is isometric to the standard S2.

Equations of the same type as (3-17) have been studied in various aspects, such
as prescribed Gaussian curvature [Kazdan and Warner 1974], the mean field model
and the Chern–Simons–Higgs model. This kind of equation may have bifurcation
when approaching the eigenvalues of S2, so it may lose compactness. Ding, Jost, Li
and Wang [Ding et al. 1997; 1998] have studied the equation at the first eigenvalue.
Li [1999] has initiated the study of the existence of solutions by computing the
Leray–Schauder topological degree. Lin [2000] computed the degree on S2 and
surface of any genus [Chen and Lin 2003], but there is little work on the uniqueness
of this kind of equation at second eigenvalue of S2. In fact, because the bifurcation
occurs after the first eigenvalue, it is hard to guarantee the uniqueness globally,
but we can get local uniqueness of the constant solution for (3-17). That’s why
we put the nearly round condition in our results. We use the Lyapunov–Schmidt
decomposition as in [Neves and Tian 2009] to estimate the kernel of 1g0 + 6 and
the orthogonal part separately.

Lemma 10. Let u satisfy

(3-20) 1g0u = 6(1− eu)

on standard S2. There exists a universal constant δ0 > 0 such that if sup |u| < δ0,
then u ≡ 0.
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Proof. In the following, the constant C is universal, and may differ from line to line.
Denote E2= ker{1g0+6}, which is the second eigenspace of −1g0 on the standard
S2. It is well known that E2 = span{Y2,−2, Y2,−1, Y2,0, Y2,1, Y2,2} (see appendix
below). Let P2 be the projection operator on E2. Consider the decomposition
u = u1+ u2, where u1 ∈ E⊥2 , and u2 ∈ E2. Then

1g0u1+ 6u1 = 6(1+ u− eu),(3-21)

1g0u2+ 6u2 = 0.(3-22)

As (1g0 + 6)−1 is bounded from L2 to W 2,2 on E⊥2 , we have

(3-23) |u1|W 2,2 ≤ C |1+ u− eu
|L2 .

We can assume

(3-24) sup |u| ≤ δ < 1.

Then from (3-23) and the Sobolev embedding, we have

(3-25) |u1|L∞ ≤ C |u2
|L2 ≤ Cδ2.

Also from equation (3-17), we know

(3-26) |1g0u+ 6u+ 3u2
|L2 = 6|1+ u+ 1

2 u2
− eu
|L2 ≤ C |u3

|L2 ≤ Cδ3.

By (3-25), we can get
|u2

1|L2 ≤ Cδ4.

By the decomposition of u2 = u− u1 we have

(3-27) |1g0u+ 6u+ 3u2
2|L2 ≤ 2|u3

|L2 + 6|u1u|L2 + 3|u2
1|L2 ≤ Cδ3.

In order to get the estimate of u2, we project the above equation to E2. Then

(3-28) |P2u2
2|L2 ≤ Cδ3.

By Lemma 11 below and (3-28) we have

(3-29) |u2|L∞ ≤ C |u2|L2 ≤ Cδ3/2

Combining (3-25) and (3-29), we improve the initial assumption (3-24):

(3-30) sup |u| ≤ C |u|L2 < Cδ3/2.

Taking δ0 =
1
2C−2 and iterate the procedure, we get

(3-31) sup |u| ≤ C0|u|L2 < C−2(C2δ0)
(3/2)k

= C−2( 1
2

)(3/2)k
,

and let k→∞, we get the desired result. �
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Lemma 11. For all u2 ∈ E2,

(3-32) |P2u2
2|L2 =

1
7

√
5
π
|u2|

2
L2 .

Proof. Let

(3-33) u2 =

2∑
i=−2

λi Y2,i ,

where Y2,i are the second-order spherical harmonics (see Appendix A.1). By
computations and projecting u2

2 to E2, we have

(3-34) P2u2
2 =

1
14

√
5
π
[2(λ2

0− λ
2
−2− λ

2
2)+ λ

2
1+ λ

2
−1]Y2,0

+
1
7

√
5
π

(√
3λ−1λ1− 2λ−2λ0

)
Y2,−2

+
1

14

√
5
π
[
√

3(λ2
1− λ

2
−1)− 4λ0λ2]Y2,2

+
1
7

√
5
π
[λ−1λ0+

√
3(λ−2λ1− λ−1λ2)]Y2,−1

+
1
7

√
5
π
[λ0λ1+

√
3(λ−2λ−1+ λ1λ2)]Y2,1.

Thus

(3-35)

|P2u2
2|

2
L2 =

( 1
7

√
5
π

)2{ 1
4(2λ

2
0− 2λ2

−2− 2λ2
2+ λ

2
−1+ λ

2
1)

2

+ (
√

3λ−1λ1− 2λ−2λ0)
2
+

1
4 [
√

3(λ2
1− λ

2
−1)− 4λ0λ2]

2

+ [λ−1λ0+
√

3(λ−2λ1− λ−1λ2)]
2

+ [λ0λ1+
√

3(λ−2λ−1+ λ1λ2)]
2}

=
( 1

7

√
5
π

)2
( 2∑

i=−2

λ2
i

)2

=
( 1

7

√
5
π

)2
|u2|

2
L2 . �

The following rigidity result is a kind of positive mass theorem in the compact
case (see [Miao 2002], [Shi and Tam 2002], and [Hang and Wang 2006]):

Lemma 12. Let (M, g) be a compact, orientable Riemannian 3-manifold with
scalar curvature R(g) ≥ 0 and ∂M isometric to a round S2 with mean curvature
H = 2. Then (M, g) is isometric to the unit ball in (R3, δ).

To prove Theorem 2 we need a rigidity result for the hyperbolic case of the
sphere; see Theorem 3.8 in [Shi and Tam 2007].

Lemma 13. Let (M, g) be a compact orientable Riemannian 3-manifold with
scalar curvature R(g)≥−6 and ∂M isometric to a round S2 with mean curvature
H = 2

√
2. Then (M, g) is isometric to the unit ball in hyperbolic space H3.
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After Lemmas 10, 12 and 13, now we are in the position to prove Theorems 1
and 2.

Proof of Theorems 1 and 2. If mH (6)= 0 on a nearly round stable CMC surface 6,
without loss of generality, assume |6| = 4π , and then H = 2 (resp. H = 2

√
2)

L6 =−16 + K − 3.

By Lemma 10 we get the nearly round stable CMC surface 6 is the standard S2

in R3. Then by Lemma 12 (resp. Lemma 13), we conclude that � isometric to a
unit ball in R3(H3

−1). �

Theorem 1 (resp. Theorem 2) and Lemma 6 (resp. Lemma 7) can help us to
understand the Willmore functional in manifolds with scalar curvature R(g)≥ 0
(resp. R(g)≥−6).

Corollary 14. Let (M, g) be a complete Riemannian three-manifold with scalar
curvature R(g) ≥ 0 (resp. R(g) ≥ −6), 6 = ∂� a stable CMC sphere. Then
W (6) ≤ 4π . If 6 is nearly round, then equality holds if and only if 6 is the
standard S2 and � isometric to unit ball in R3 (resp. H3).

4. Rigidity of Hawking mass for nearly round isoperimetric surfaces

Theorem 1 can be used to prove rigidity of isoperimetric surfaces in AF manifolds.
By the manifold constructed by A. Carlotto and R. Schoen [2016]; see also [Chodosh
et al. 2016]:

Example. There is an asymptotically flat Riemannian metric g on R3 with nonneg-
ative scalar curvature and positive mass and such that g = δ on R2

× (0,+∞).

We can only expect flatness inside the surface with zero Hawking mass for stable
CMC surface. In order to prove Theorem 3 we need the following isoperimetric
inequality of [Shi 2016], which also plays a key role in proving the existence of
isoperimetric surfaces for all volumes in AF three-manifolds. It says that if there
exists a Euclidean ball in an AF manifold with nonnegative scalar curvature, then
the AF manifold must be R3.

Lemma 15 [Shi 2016]. Suppose (M, g) is an AF manifold with scalar curvature
R(g)≥ 0. Then for any V > 0,

(4-1) I (V )≤ (36π)1/3V 2/3.

There is a V0 > 0 with

(4-2) I (V0)= (36π)1/3V 2/3
0

if and only if (M, g) is isometric to R3.
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Also there is an analogous result for an isoperimetric profile on AH manifolds;
see Proposition 3.3 in [Ji et al. 2016].

Lemma 16 [Ji et al. 2016]. Suppose (M, g) is an AH manifold with scalar curvature
R(g)≥−6. Then for any V > 0,

(4-3) I (V )≤ IH(V ).

There is a V0 > 0 with

(4-4) I (V0)= IH(V0)

if and only if (M, g) is isometric to (H3, gH).

Now we can prove the rigidity of nearly round isoperimetric surfaces:

Proof of Theorems 3 and 4. If there is an nearly round isoperimetric surface 6 with
mH (6)= 0, and we assume |6|= 4π , then H = 2. By Theorem 1, the isoperimetric
region is a Euclidean ball of volume 4

3π . So we have

(4-5) 4π = I
( 4

3π
)
= (36π)1/3

( 4
3π
)2/3

.

By the rigidity part of Lemma 15, we conclude that (M, g) is isometric to R3.
Theorem 4 follows similarly from Theorem 2 and Lemma 16. �

In fact, large surfaces of the canonical stable CMC foliation in [Huisken and Yau
1996; Qing and Tian 2007] are isoperimetric and close to the coordinate spheres.

Corollary 17. Let (M, g) be an AF three-manifold with scalar curvature R(g)≥ 0.
Then the Hawking mass of all the large enough surfaces in the canonical stable
CMC foliation in [Huisken and Yau 1996; Qing and Tian 2007] are positive unless
(M, g) is isometric to R3.

5. Rigidity of Hawking mass for small isoperimetric surfaces

For rigidity of small isoperimetric surfaces, we need to prove that such a surface is
a sphere when the volume is small enough.

5.1. Topology of small isoperimetric surface. It is shown in [Ros 2005] that for
a compact manifold without boundary, the isoperimetric surface is a topological
sphere when the enclosing volume is small enough to be contained in a geodesic
ball. For AF manifolds we still have this property; the proof follows that of the
compact case in that work and relies on the behavior at infinity.

Lemma 18. If (M, g) is a complete AF three-manifold without boundary, then
there exits a δ0 > 0, such that for all volume V ≤ δ0 the isoperimetric region is
convex and contained in a small neighborhood of some point of M. In particular,

(5-1) I (V )∼ (36π)1/3V 2/3 when V → 0.



RIGIDITY OF HAWKING MASS FOR SURFACES IN THREE MANIFOLDS 491

Proof. Let {6n} be a sequence of isoperimetric surfaces with second fundamental
form An and volume Vn→ 0. There are two possibilities:

Case 1: {|An|} is unbounded. Assume rn = max |An| = |An|(xn); by scaling
6n homothetically to 6′n = rn6n with metric gn = r2

n g, also rn →∞, xn ∈ 6
′
n ,

second fundamental form of 6′n satisfies max |A′n| = |A
′
n(xn)| = 1. We have

(M, xn, gn)→ (R3, 0, δ) smoothly; the limit manifold is standard R3 because the
manifold is AF. Thus 6′n is a sequence of stable CMC surfaces with bounded
curvature, and locally 6′n consists of a certain number of sheets as in Figure 13 of
[Ros 2005]. Each one of the sheets is a graph over a bounded planar domain with
bounded derivatives.

If two of the sheets become arbitrarily close near some point when n →∞,
then we can modify the surface to get a new one with smaller area and the same
volume. For details, see page 196 of [Ros 2005]. More precisely, if the two sheets
of the surface become arbitrarily close near some point, we can reduce area without
modifying the enclosed volume, which contradicts the minimizing property of 6n .
There are three cases:

(1) if there is a thin slab, then we can cut part of the volume to one end and reduce
the area;

(2) if there is a thin defect of the region, then we can fill part of the defect with
volume gained from deforming a far-away portion of the boundary to reduce
area;

(3) if there are two close thin defects in the region, then we can reduce the area
by moving the part between two defects to one of the defects.

Hence by compactness results [Pérez and Ros 2002], up to a subsequence,
6′n→6′ smoothly with multiplicity one and 6′⊂R3 is a surface of constant mean
curvature H6′ properly embedded in R3 endowed with a standard metric δ, 0 ∈6′,
|A′(0)|2 = 1. The fact that 6n are isoperimetric surfaces implies that 6′ is a stable
CMC surface. By [da Silveira 1987] and the stability condition, we can conclude
that 6′ is either a union of planes or a sphere. That the curvature at the origin is
one implies 6′ is a unit sphere. Going back to 6n , for n large enough, the mean
curvature H6n of 6n is large enough, such that

(5-2) 1
2 H 2

6n
+Ric(n, n) > 0.

If 6n is not connected, since the mean curvature of the isoperimetric surface 6n

is the same (see Appendix A.4) for each component 6i
n , as |Ai

n|
2
≥

1
2 H 2

6i
n
,

(5-3) |Ai
n|

2
+Ric(n, n) > 0
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on every component 6i
n . On the other hand, we can construct a variation fi on 6i

n
which is constant and

∑
i

∫
6i

n
fi = 0 in the stability condition of the isoperimetric

inequality. This gives

(5-4) 0≥
∑

i

f 2
i

∫
6i

n

|An|
2
+Ric(n, n),

a contradiction. So for large n, we know 6n is connected and thus a sphere.

Case 2: {|An|} is bounded. Scale 6n to enclose volume 1. By the above argument
we get the limit consists of pairwise disjoint planes enclosing volume 1, a contra-
diction. So the lemma follows. �

By the above lemma, the rigidity follows from Theorem 3. But it can also be
proved by the monotonicity of Hawking mass with respect to the volume of the
connected isoperimetric surface. This method relies on the connectedness of isoperi-
metric surface which was used by Bray [1997]. Bray needed the connectedness of
isoperimetric surface when proving monotonicity of Hawking mass.

5.2. Properties of I . The isoperimetric profile I contains important geometric
information of the manifold. It is nondecreasing in the outside of horizon. It
is concave if the manifold has nonnegative Ricci curvature. The existence and
regularity properties of isoperimetric regions for all volumes for AF is proved by
combining [Shi 2016] with [Carlotto et al. 2016]; we sketch the proof in Appendix
A.2 for completeness.

The continuity and differentiability of I for AF manifold is proved as in [Flores
and Nardulli 2014] for manifolds with bounded geometry (Ricci curvature and
volume of unit geodesic ball bounded below):

Lemma 19. Given (M, g) is an AF manifold and V ∈ (0,∞), let � ⊂ M be an
isoperimetric region with vol(�) = V and denote ∂� by 6. The isoperimetric
profile has the following regularity:

(a) It is continuous and has left and right derivatives at V, I ′
+
(V )≤ H6 ≤ I ′

−
(V )

and I ′
+
(V ) and I ′

−
(V ) are right and left continuous respectively.

(b) The inequality I ′′(V )I (V )2+
∫
6
(Ric(n, n)+ |A6|2)≤ 0 holds in the sense of

comparison functions, i.e., for every V0≥0, there is a smooth function IV0(V )≥
I (V ), IV0(V0)= I (V0) and I ′′V0

(V )IV0(V )
2
+
∫
6
(Ric(n,n)+ |A6|2)≤ 0.

Proof. The continuity of I is proved in Appendix A.3 by adding and subtracting
a small geodesic ball to the isoperimetric regions under the condition of bounded
geometry. We only prove (b) which implies the differentiability of I. For every
V0 > 0, assume �0 is the isoperimetric region with volume V0 and 60 = ∂�0 is
the isoperimetric surface with unit outer normal n0, second fundamental form A0

and mean curvature H0. In order to get an upper bound of I ′′ we do a unit normal
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variation on 60. Let 6t denote the surface by flowing 60 out with unit speed along
the normal n0 for time t. Since 60 is a smooth embedded surface, there exits a
δ > 0 such that 6t exists for any t ∈ (−δ, δ). Let IV0(t) = area(6t). By the first
and second variational formula for area we have:

I ′V0
(t)=

∫
6t

H dµ,(5-5)

V ′(t)= IV0(t),(5-6)

H ′(t)=−|A|2−Ric(n, n).(5-7)

We can also parametrize this isoperimetric surface by its volume as 6(V ), and
IV0(V )=area(6(V )). By definition of6(V0), IV0(V )≥ I (V ), IV0(V0)= I (V0), so

(5-8) I ′V0
(V )=

∫
6(V )H dµ

IV0(V )
= H.

The second derivative of IV0 is

(5-9)

I ′′V0
(V )=

∫
6(V )(H

2
− |A|2−Ric(n, n)) dµ

I 2
V0
(V )

−
H

I 2
V0
(V )

∫
6t

H dµ

=−

∫
6(V )|A|

2
+Ric(n, n) dµ

I 2
V0
(V )

.

For an AF three-manifold, Ricci curvature is bounded blow. Thus there exists k ∈ R
such that Ric≥ kg, and it follows that

(5-10) I ′′V0
(V )≤− k

IV0(V )
.

If k ≥ 0, then IV0(V ) is concave, and by Lemma 20 below we can get the
concaveness of I (V ), and then the conclusion follows. In particular, I ′

+
, I ′
−

are
both nonincreasing functions, they are right and left continuous respectively and
I ′′ exists almost everywhere.

If k<0, let λ=λ(k, a, b) :=k/(2δ(a, b)), where δ(a, b)=min{I (V ) :V ∈[a, b]}
is strictly positive by continuity of I. For every V0 ∈ [a, b],

IV0(V )+ λV 2
≥ I (V )+ λV 2,

so we get IV0(V ) + λV 2 is concave. We can argue as above to get the same
conclusion. �

In the proof above, we used the following properties of concave functions:

Lemma 20. (a) [Morgan and Johnson 2000] Let f : (a, b)→ R be a continuous
function. Then f is concave if and only if for every x0 ∈ (a, b) there exists an
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open interval Ix0 ⊆ (a, b) of x0 and a concave smooth function gx0 : Ix0 → R
such that gx0(x0)= f (x0) and gx0(x)≥ f (x) for every x0 ∈ Ix0 .

(b) If f : (a, b)→ R is a concave function, then f ′
+

and f ′
−

are monotonic nonin-
creasing functions and also right and left continuous respectively. Moreover,
f ′′ exists almost everywhere.

Proof. (a) If f is concave, just take g to be linear. If f is not concave, then there
exists ε > 0, such that fε(x) = f (x)− εx2 is not concave. So we can choose
x1, x3 ∈ (a, b), such that the graph of fε(x) lies below line l(x) from (x1, fε(x1))

to (x3, fε(x3)). Assume fε(x)− l(x) attains its minimum at x2 ∈ (x1, x3).
By hypothesis, there is a concave smooth gx2(x)≥ f (x), and gx2(x2)= f (x2).

Then gε(x)= gx2(x)− εx2
≥ fε(x), gε(x2)= fε(x2), so we have that gε(x)− l(x)

also attain its minimum at x2 ∈ (x1, x3), which implies g′′ε (x2) ≥ 0, but g′′ε (x2) =

g′′x2
(x2)− 2ε ≤−2ε, a contradiction.

(b) It is well known that f ′
+

and f ′
−

are monotonic nonincreasing and f ′′ exists
almost everywhere, so we just prove the right continuity of f ′

+
, and left continuity

of f ′
−

follows similarly. For any x0 ∈ (a, b), by monotonicity of f ′
+

have

(5-11) lim
x→x+0

f ′
+
(x)≤ f ′

+
(x0).

On the other hand,

(5-12) f ′
+
(x0)= lim

x→x+0

f (x)− f (x0)

x − x0
= lim

x→x+0

∫ x
x0

f ′
+
(t) dt

x − x0

where we have used the stronger versions of the fundamental theorem of calculus
[Walker 1977]

(5-13) f (x)− f (x0)=

∫ x

x0

f ′
+
(t) dt

whenever f is continuous and f ′
+
∈ L1. Again by the monotonicity we have

(5-14) f ′
+
(t)≤ lim

x→x+0
f ′
+
(x).

Combining with (5-12) and (5-14), we get

(5-15) f ′
+
(x0)≤ lim

x→x+0

∫ x
x0

lim
x→x+0

f ′
+
(x) dt

x − x0
= lim

x→x+0
f ′
+
(x).

Then (5-11) and (5-15) give the right continuity of f ′
+

. �
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5.3. Monotonicity of m+

H . For differentiable points of I we have H(V )= I ′(V ),
so we can replace H with I ′ in Hawking mass in order to simplify Hawking mass
to be a function of only volume. But I may not be differentiable for every volume,
and there is a jump for H from I ′

+
to I ′
−

at volumes which are not differentiable.
By the compactness of isoperimetric surfaces, see [Meeks et al. 2014], there is a
surface which achieves the minimal (maximal) mean curvature enclosing the same
volume. So we can define the maximal Hawking mass as:

Definition. Let (M, g) be an AF three-manifold with nonnegative scalar curvature,
6 ⊂ M be a isoperimetric surface of volume V . Then the maximal Hawking mass
is m+H (V )=

√
I (V )(16π − I (V )I ′

+
(V )2).

When I is not differentiable, m+H is the maximal Hawking mass, and it reduces to
the ordinary Hawking mass at the differentiable points of I. We have the following
result on the monotonicity of m+H :

Lemma 21 [Bray 1997]. Let (M, g) be an AF three-manifold with nonnegative
scalar curvature. Assume for every V > 0 there is a connected isoperimetric surface
enclosing volume V, and also I (V ) is increasing. Then m+H (V ) is nondecreasing.

Proof. By Gauss’s equation,

(5-16) K = R
2
−Ric(n, n)+ 1

2
(H 2
− |A|2).

So we have

(5-17) |A|2+Ric(n, n)= R
2
− K + 1

2
(H 2
+ |A|2)

by |A|2 = |A0
|
2
+

1
2 H 2, and R ≥ 0, so we have

(5-18) I ′′V0
(V )=−

∫
6(V )|A|

2
+Ric(n, n) dµ

I 2
V0
(V )

≤

∫
6(V )K −

3
4 H 2 dµ

I 2
V0
(V )

.

By the connectedness of 6(V ), we have

(5-19)
∫
6(V )

K dµ= 2πχ(6(V ))≤ 4π.

Then

(5-20) I ′′V0
(V )≤

16π − 3I ′V0
(V )2 IV0(V )

4I 2
V0
(V )

.

As we have proved that I ′
+
(V ) is right continuous, so is maximal Hawking mass.

Thus it is sufficient to prove m+H (V ) is weak nondecreasing, i.e., for any [a, b] ∈
(0,∞),

∫ b
a m+H (V )φ

′(V ) dV ≤ 0 for all smooth nonnegative φ ∈ C∞c (a, b), φ ≥ 0.
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The reason to do so is that m+H (V ) has only countable jump points. Let the difference
quotient be defined by

1h F(V )= 1
h
(F(V + h)− F(V )).

Then

(5-21)
∫ b

a
m+H (V )φ

′(V ) dV

=

∫ b

a

√
I (V )(16π − I (V )I ′

+
(V )2)φ′(V ) dV

= lim
h→0+

∫ b

a

√
I (V )(16π − I (V )1h I (V )

2
)1hφ(V ) dV

=− lim
h→0+

∫ b

a
1−h
{

√
I (V )(16π − I (V )1h I (V )

2
)}φ(V ) dV

= lim
h→0+

∫ b

a

{
φ I 3/2

{
1−h(1h I )2− I ′ 16π−3I ′2 I

2I 2

}}
dV,

where we use the fact that I ′
+
= I ′
−

almost everywhere.
Since IV0(V0) = I (V0), and IV0(V ) ≥ I (V ), also I (V ) is increasing, we get

1−h(1h I )2(V0)≤1
−h(1h IV0)

2(V0), and I ′V0
≥ 0, so

(5-22)
∫ b

a
m+H (V )φ

′(V ) dV

≤ lim
h→0+

∫ b

a

{
φ I 3/2

V0
{1−h(1h IV0)

2
− I ′V0
}
16π − 3I ′2V0

IV0

2I 2
V0

}
dVV0

=

∫ b

a
2φ I 3/2

V0
I ′V0

{
I ′′V0
−

16π − 3I ′2V0
IV0

4I 2
V0

}
dVV0 ≤ 0,

where we used (5-20) and Fatou’s lemma for the last equality. Hence, m+H (V ) is
nondecreasing. �

Remark. (1) Hawking mass is also monotonic along the stable CMC foliation as
long as the area is nondecreasing; the proof is the same as above.

(2) We can see that the monotonicity of maximal Hawking mass relies heavily on
the connectedness of the isoperimetric surface. If the isoperimetric surface has
more than one components, Bray [1997] considers the sum of three halves of
the area of the components

F(V )= inf
{∑

i

area(6i )
3/2
: {6i } enclose volume V outside the horizons

}
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under the condition the components are disjoint with each other. Then he
proved the mass

m+(V )= F(V )1/3(36π − F ′
+

2
)/144π3/2

is nondecreasing. In fact, for F he got the estimate

(5-23) F ′′(V )≤ 36π−F ′(V )2

6F(V )
,

and then the proof follows as above. The minimizing surfaces are CMC
generally with different mean curvatures on each component. When the
minimizer of F has only one component it must be an isoperimetric surface. We
already know that for large enough volume in AF manifolds the isoperimetric
surfaces are spheres close to coordinate spheres and m+(V )= m+H (V ); their
limits are the ADM mass of the manifold when volume goes to infinity.

Now we are in a position to prove the rigidity of small isoperimetric surfaces:

Proof of Theorem 5. First we claim that

(5-24) lim
V→0

m+H (V )= 0.

In fact, by Lemma 18 we know the isoperimetric surface is of sphere type when the
volume is small enough. Combined with Lemma 6, we get

(5-25) lim
V→0

m+H (V )≥ 0.

By definition,

(5-26) m+H (V )=
√

I (V )(16π − I (V )I ′
+
(V )2)≤ 16π

√
I (V ),

which implies

(5-27) lim
V→0

m+H (V )≤ 0.

Thus the claim follows by (5-25) and (5-27).
If there exists an isoperimetric surface 6 with volume 0 < V0 ≤ δ0, such that

m+H (V0)= 0, then by monotonicity of Lemma 21 for m+H and (5-24), we get

(5-28) m+H (V )≡ 0, for any V ∈ [0, V0].

Thus

(5-29) I (V )I ′
+
(V )2 ≡ 16π on [0, V0].

Since I is continuous by Lemma 19, we get

(5-30) I ′
+
(V )= I ′(V ) on [0, V0].
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Since there are no compact minimal surfaces, I is increasing, and

(5-31) I ′ =

√
16π

I
.

Since I (0)= 0, we have

(5-32) I (V )= (36π)1/3V 2/3 on [0, V0].

Then by Lemma 15 above we conclude that (M, g) is isometric to R3. �

Appendix

A.1. Spherical harmonics on S2. Write

1S2 =
1

sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2 .

The eigenvalues of −1S2 are λ= l(l + 1), l = 0, 1, 2, . . . ; the eigenfunctions are

Y m
l (θ, ϕ)=

√
2l + 1

4π
(l − |m|)!
(l + |m|)!

sin|m| θ P |m|l (cos θ)eimϕ,

where m = −l, . . . , l, and the Pl(x) are the Legendre polynomials, P0(x) = 1,
P1(x)= x , P2(x)= 1

2(3x2
− 1). The reduction formula is

(n+ 1)Pn+1(x)= (2n+ 1)x Pn(x)− n Pn−1(x)

The real form of spherical harmonics are

l = 0

Y0,0 =
1
2

√
1
π
,

l = 1

Y1,0 =
√

3
4π cos θ, Y1,−1 =

√
3

4π sin θ sinϕ, Y1,1 =
√

3
4π sin θ cosϕ,

l = 2

Y2,−2 =
1
4

√
15
π

sin2θ sin2ϕ, Y2,−1 =
1
4

√
15
π

sin2θ sinϕ, Y2,0=
1
4

√
5
π
(3cos2θ − 1),

Y2,1 =
1
4

√
15
π

sin2θ cosϕ, Y2,2 =
1
4

√
15
π

sin2θ cos2ϕ,
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l = 4

Y4,−4 =
3

16

√
35
π

sin4θ sin4ϕ, Y4,−3 =
3
4

√
35
2π sin3θ cosθ sin3ϕ,

Y4,−2 =
3
8

√
5
π

sin2θ(7cos2θ−1)sin2ϕ, Y4,−1 =
3
8

√
10
π

sinθ cosθ(7cos2θ−3)sinϕ,

Y4,0 =
3

16

√
1
π
(35cos4θ−30cos2θ+3), Y4,1 =

3
8

√
10
π

sinθ cosθ(7cos2θ−3)cosϕ,

Y4,2 =
3
8

√
5
π

sin2θ(7cos2θ−1)cos2ϕ, Y4,3 =
3
4

√
35
2π sin3θ cosθ cos3ϕ,

Y4,4 =
3

16

√
35
π

sin4θ cos4ϕ.

To compute u2
2, we need to decompose the following terms into different order

spherical harmonics:

Y 2
2,0 =

3
7

√
1
π

Y4,0+
1
7

√
5
π

Y2,0+
1

4π ,

Y 2
2,−2 =−

1
2

√
5

7π Y4,4+
1

14

√
1
π

Y4,0−
1
7

√
5
π

Y2,0+
1

4π ,

Y 2
2,2 =

1
2

√
5

7π Y4,4+
1
14

√
1
π

Y4,0−
1
7

√
5
π

Y2,0+
1

4π ,

Y 2
2,−1 =−

1
7

√
5
π

Y4,2−
2
7

√
1
π

Y4,0−
1
14

√
15
π

Y2,2+
1
14

√
5
π

Y2,0+
1

4π ,

Y 2
2,1 =

1
7

√
5
π

Y4,2−
2
7

√
1
π

Y4,0+
1
14

√
15
π

Y2,2+
1
14

√
5
π

Y2,0+
1

4π ,

Y2,−2Y2,2 =
1
2

√
5

7π Y4,−4, Y2,−2Y2,0 =
1
14

√
15
π

Y4,−2−
1
7

√
5
π

Y2,−2,

Y2,2Y2,0 =
1
14

√
15
π

Y4,2−
1
7

√
5
π

Y2,2, Y2,−1Y2,0 =
1
7

√
15
2π Y4,−1+

1
14

√
5
π

Y2,−1,

Y2,1Y2,0 =
1
7

√
15
2π Y4,1+

1
14

√
5
π

Y2,1, Y2,−1Y2,1 =
1
7

√
5
π

Y4,−2+
1

14

√
15
π

Y2,−2,

Y2,−2Y2,−1 =−
1
2

√
5

14π Y4,3−
1
14

√
5

2π Y4,1+
1
14

√
15
π

Y2,1,

Y2,2Y2,1 =
1
2

√
5

14π Y4,3−
1
14

√
5

2π Y4,1+
1
14

√
15
π

Y2,1,

Y2,−2Y2,1 =
1
2

√
5

14π Y4,−3−
1
14

√
5

2π Y4,−1+
1

14

√
15
π

Y2,−1,

Y2,2Y2,−1 =
1
2

√
5

14π Y4,−3+
1
14

√
5

2π Y4,−1+
1

14

√
15
π

Y2,−1.

A.2. Existence of isoperimetric surface for all volumes.

Lemma 22 [Carlotto et al. 2016]. Let (M, g) be a three-manifold with nonnegative
scalar curvature, maybe with horizon. Then the isoperimetric surface for all volumes
exists.
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Proof. By Theorem 2.1 of [Ritoré and Rosales 2004], we can prove this in the
same way as in [Eichmair and Metzger 2013]; for every V > 0, there exists an
isoperimetric region � and a radius r ≥ 0 such that

(A-1) |�|g +
4
3πr3

= V, |∂�|g + 4πr2
= I (V ).

By the isoperimetric inequality of Shi [2016] on nonnegative scalar curvature
manifolds, we get for every r > 0 that there is a bounded region �′ with finite
perimeter |∂�′|g lying arbitrary far out in the asymptotic flat region of (M, g) such
that

(A-2) |∂�′|g = 4πr2, |�′|g >
4
3πr3.

If r > 0 in (A-1), then there is an �′ that satisfies (A-2). We consider the region
�∪�′. Then

(A-3) |�|g + |�
′
|g > V, |∂�|g + |∂�′|g = I (V ).

But by the definition of I and the above equality we get

(A-4) I (|�|g + |�′|g)≤ |∂�|g + |∂�′|g = I (V ).

By the fact that I is strictly increasing [Chodosh 2016], we have

(A-5) I (|�|g + |�′|g) > I (V ),

a contradiction. Thus r = 0, which implies that � is the isoperimetric region of
volume V. �

A.3. Continuity of I .

Lemma 23. I is continuous on AF three-manifold.

Proof. The proof is from [Flores and Nardulli 2014] for bounded geometry, where
they don’t have existence of isoperimetric surfaces. We need to prove the upper
semicontinuity and lower semicontinuity for I, i.e., for any V0 > 0,

lim sup
V→V+0

I (V )≤ I (V0), lim sup
V→V−0

I (V )≤ I (V0),(A-6)

I (V0)≤ lim inf
V→V+0

I (V ), I (V0)≤ lim inf
V→V−0

I (V ).(A-7)

Upper semicontinuity of I : Given V0 > 0, there is isoperimetric region �0 such
that vol(�0) = V0, area(∂�0) = I (V0). For any V ↑ V0, we can subtract a small
geodesic ball Br (p) such that vol(Br (p))= V0− V, vol(�0\Br (p))= V. Thus

(A-8) I (V )≤ area(∂�0)+ area(∂Br (p))= I (V0)+ area(∂Br (p)).
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This implies

(A-9) lim sup
V→V+0

I (V )≤ area(∂�0)+ lim
V→V+0

area(∂Br (p))= I (V0).

For any V ↓ V0, we can add a small geodesic ball Br (p), such that vol(Br (p))=
V − V0, vol(�0

⋃
Br (p))= V. Thus

(A-10) I (V )≤ area(∂�0)+ area(∂Br (p))= I (V0)+ area(∂Br (p)).

This implies

(A-11) lim sup
V→V−0

I (V )≤ area(∂�0)+ lim
V→V−0

area(∂Br (p))= I (V0).

So we get the upper semicontinuity of I from (A-9) and (A-11).

Lower semicontinuity of I : for V ↑V0, there exists an isoperimetric region� such
that vol(�)=V. Adding a small geodesic ball Br (p) such that vol(Br (p))=V0−V,

(A-12) I (V0)≤ area(∂�)+ area(∂Br (p))= I (V )+ area(∂Br (p)).

This implies

(A-13) I (V0)≤ lim inf
V→V−0

I (V )+ lim
V→V−0

area(∂Br (p))≤ lim inf
V→V−0

I (V ).

For V ↓ V0, subtract a small geodesic ball Br (p) such that vol(Br (p))= V − V0,
so that

(A-14) I (V0)≤ area(∂�)+ area(∂Br (p))= I (V )+ area(∂Br (p)).

This implies

(A-15) I (V0)≤ lim inf
V→V−0

I (V )+ lim
V→V−0

area(∂Br (p))≤ lim inf
V→V−0

I (V ).

The lower semicontinuity follows from (A-13) and (A-15). �

A.4. Mean curvature of isoperimetric surface.

Lemma 24. The mean curvatures of all the components for an isoperimetric surface
are the same.

Proof. We know that an isoperimetric surface is stable CMC and the mean curvature
is same on each component. This follows by the stability condition when choosing a
piecewise constant variation function on each component. Assume 6 =61

⋃
62 is

an isoperimetric surface with disjoint components 61 and 62. If the mean curvature
of 61 and 62 are constants H1 and H2, respectively, let

(A-16) f =
{
−|62| on 61

|61| on 62.
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As 6 is an isoperimetric surface, so the first variation formula

(A-17)

0=
∫
6

f H =
∫
61
⋃
62

f H

=−|62|H1|61| + |61|H2|62| = |61||62|(H2− H1).

So H1 = H2, which implies mean curvature on each component is the same. �
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