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LOCALLY HELICAL SURFACES HAVE BOUNDED TWISTING

DAVID BACHMAN, RYAN DERBY-TALBOT AND ERIC SEDGWICK

A topologically minimal surface may be isotoped into a normal form with
respect to a fixed triangulation. If the intersection with each tetrahedron is
simply connected, then the pieces of this normal form are triangles, quadri-
laterals, and helicoids. Helical pieces can have any number of positive or
negative twists. We show here that the net twisting of the helical pieces of
any such surface in a given triangulated 3-manifold is bounded.

1. Introduction

In [Bachman 2010], the first author introduced the notion of a topologically minimal
surface, as a generalization of incompressible [Haken 1968], strongly irreducible
[Casson and Gordon 1987], and critical [Bachman 2002] surfaces. Such surfaces
have a well-defined index, where incompressible, strongly irreducible, and critical
surfaces have indices 0, 1, and 2, respectively.

The term “topologically minimal” was chosen because in many ways such
surfaces behave like geometrically minimal surfaces, i.e., surfaces that represent
critical points for the area function. Analogous properties of the two types of
surfaces were made explicit in, e.g., [Bachman 2010; 2012b]. In this paper we
show that these two types of surfaces actually look the same as well.

Certain geometrically minimal surfaces are described by the following theorem:

Theorem [Colding and Minicozzi 2006]. Any nonsimply connected embedded
minimal planar domain without small necks can be obtained from gluing together
two oppositely oriented double spiral staircases [i.e., helicoids]. Note that because
the two double spiral staircases are oppositely oriented, then one remains at the
same level if one circles both axes.

MSC2010: primary 57M99; secondary 53A10.
Keywords: normal surface, minimal surface, topologically minimal surface.
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In other words, such geometrically minimal surfaces are depicted (topologically)
by the following figure:

2 DAVID BACHMAN, RYAN DERBY-TALBOT, AND ERIC SEDGWICK

Here we show that topologically minimal surfaces (also without small
necks) are generally comprised of pairs of oppositely oriented helicoids
as well.

A useful fact about topologically minimal surfaces is that they can
be isotoped into a standard normal form with respect to a triangula-
tion. This was first done by Kneser [Kne29] and Haken [Hak61] in the
index 0 case, Rubinstein [Rub95] and Stocking [Sto00] for closed index
1 surfaces, and [BDTS13] for index 1 surfaces with boundary. The gen-
eral case of arbitrary index is addressed by the first author in [Baca],
[Bacb], and [Bacc]. The following theorem summarizes these results:

Theorem 1.1. Let M be a compact, orientable, irreducible, triangu-
lated 3-manifold with incompressible boundary. Then for each n there
exists a finite, constructible set of surfaces in each tetrahedron of M
from which one can build any index n topologically minimal surface in
M (up to isotopy).

The pieces from which index n surfaces can be built by Theorem 1.1
can be quite complicated. However, in [Bacb] the first author gives a
relatively simple characterization of those components that are simply

Here we show that topologically minimal surfaces (also without small necks) are
generally comprised of pairs of oppositely oriented helicoids as well.

A useful fact about topologically minimal surfaces is that they can be isotoped
into a standard normal form with respect to a triangulation. This was first done
by Kneser [1929] and Haken [1961] in the index 0 case, Rubinstein [1997] and
Stocking [2000] for closed index 1 surfaces, and Bachman et al. [2013] for index 1
surfaces with boundary. The general case of arbitrary index was addressed by the
first author in [Bachman 2012a; 2012b; 2013]. The following theorem summarizes
these results:

Theorem 1.1. Let M be a compact, orientable, irreducible, triangulated 3-manifold
with incompressible boundary. Then for each n there exists a finite, constructible
set of surfaces in each tetrahedron of M from which one can build any index n
topologically minimal surface in M (up to isotopy).

The pieces from which index n surfaces can be built by Theorem 1.1 can be
quite complicated. However, in [Bachman 2012b] the first author gave a relatively
simple characterization of those components that are simply connected: such pieces
are either triangles or helicoids1 (see Figure 1). We say any surface built entirely
from such pieces is locally helical.

Helical pieces are classified by their axis (see Section 3) and twisting. If H∗
is a helicoid then the number of normal arcs comprising ∂H∗ is 4(n + 1), for

1We regard quadrilaterals as untwisted helicoids.
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Figure 1. A helicoid whose boundary has length 16. Note that it
meets one pair of opposite edges in single points, a second pair in
three points, and a third pair in four points. The twisting of this
helicoid is 3.

some n. The twisting of H∗, denoted t (H∗), is the number ±n, where the sign is
determined by the handedness of the helicoid and the orientation of the manifold
(see Definition 3.3). If H is a locally helical surface in a triangulated 3-manifold M ,
then the net twisting of H is the sum of the twisting of all of its helical pieces (see
Definition 3.4 for a more precise definition). The total absolute twisting is the sum
of the absolute values of the twisting of its helical pieces. Note that if a surface has
bounded total absolute twisting, then each helical piece has a bounded number of
twists. If, on the other hand, the net twisting is bounded then there may be helical
pieces with an arbitrarily large number of, say, positive twists, as long as there are
also pieces with large numbers of negative twists.

The results of [Bachman 2012a] and [Bachman 2012b], taken together, imply
the following:

Theorem 1.2. Any topologically minimal surface with index n that is isotopic to a
locally helical surface is isotopic to one with total absolute twisting at most n.

The results mentioned above give a direct generalization of Haken’s normalization
of incompressible surfaces [1968]. To see this, first note that by definition, an
incompressible surface is index 0. By Theorem 1.1 such a surface can be isotoped
to be locally topologically minimal. By incompressibility, we may assume that in
this position it is locally simply connected. Finally, by Theorem 1.2 we conclude
that the total absolute twisting must be 0, which means that it is a collection of
triangles and quadrilaterals.
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For higher index locally helical surfaces, the situation may be more complicated,
as there may be helicoids distributed across tetrahedra in M. The main result of this
paper is the following theorem, which says that the total absolute twisting outside
of some prescribed set of tetrahedra 1 constrains the net twisting inside 1.

Theorem 1.3. Let M be a closed, oriented, triangulated 3-manifold, and let 1 be
a set of tetrahedra in the triangulation of M. Let H be a locally helical surface in
M such that the total absolute twisting of H −1 is at most n. Then the net twisting
of H ∩1 is bounded, where the bound depends only on M and n.

Three corollaries of this theorem are worth noting: where1 is a single tetrahedron
of M , where 1 is exactly two tetrahedra, and where 1 is the set of all tetrahedra
in M.

Corollary 1.4. Let M be a closed, oriented, triangulated 3-manifold, and let 1 be
a tetrahedron of the triangulation. Let H be a locally helical surface in M such that
the total absolute twisting of H −1 is at most n. Then the total absolute twisting of
H is bounded, where the bound depends only on M and n.

In particular, in a given triangulated 3-manifold M , the total (absolute or net)
twisting of any locally helical surface with a single helicoid is bounded, where the
bound depends only on M. Corollary 1.4 follows from Theorem 1.3 by making the
observation that a bound on the net twisting of a surface in a single tetrahedron
serves as a bound for its absolute value.

Corollary 1.5. Let M be a closed, oriented, triangulated 3-manifold, and let
11,12 be a pair of tetrahedra in the triangulation of M. Let H be a locally helical
surface in M such that the total absolute twisting of H − (11 ∪12) is at most n.
Then t (H ∩11)=−t (H ∩12)+m, where m is bounded by a function of M and n.

In other words, if, in a sequence of surfaces with bounded total absolute twisting
outside of 11 ∪12, the number of left-handed twists in 11 is growing, then the
number of right-handed twists in 12 must be growing at the same rate (asymp-
totically). This corollary is what establishes our claim that topologically minimal
surfaces look like the geometrically minimal surfaces described by Colding and
Minicozzi, as discussed above.

The last corollary of Theorem 1.3 is when 1 is the set of all tetrahedra in M. In
this case, our result makes no mention of total absolute twisting.

Corollary 1.6. Let M be a closed, oriented, triangulated 3-manifold, and let H be
a locally helical surface in M. Then the net twisting of H is bounded, where the
bound depends only on M.

In contrast, note that one cannot prove that the total absolute twisting is bounded.
A simple example can be seen by gluing a left-handed helicoid in a tetrahedron
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to the right-handed helicoid in its mirror image, forming a closed locally helical
sphere in S3. Such spheres have unbounded total absolute twisting, and zero net
twisting.

In the next section we characterize normal curves by their type. In Section 3
we characterize helical disks by their axis. Finally, in Section 4 we define the
compatibility class of a locally helical surface. Those familiar with normal surface
theory will find several of these notions familiar. The layering of these definitions
parses the set of locally helical surfaces in (M;1) more and more finely, imposing
increasingly greater restrictions on how surfaces in the same class can intersect.
Taken all at once, these characterizations produce a finite set of consistency classes
for locally helical surfaces in (M;1), which have just the properties needed to
prove Theorem 1.3.

2. The type of a normal curve on a tetrahedron

In this section we consider the combinatorics of normal loops on the boundary of a
tetrahedron. For a basic reference on normal surface theory, we refer the reader to
[Hass 1998].

Lemma 2.1. Let σ be a tetrahedron, and α a normal loop of length at least four
on ∂σ . Let φ denote a 180-degree rotation of σ about a line connecting the midpoints
of opposite edges of σ . Then α is normally parallel to a loop that is preserved by φ.

Proof. To begin, we claim that a normal loop of length at least four meets each
pair of opposite edges of ∂σ in the same number of points. One way to see this
is by noting that the double cover of ∂σ , branched over the vertex set, is a torus
(see Figure 2). Each edge of ∂σ lifts to an essential loop on the torus, and each
pair of opposite edges lifts to two parallel loops. Now, as a loop α of length at least
four on ∂σ also lifts to two essential loops on the torus, it must be the case that α
intersects opposite edges of ∂σ in an equal number of points.

Figure 2. The torus as a double branched cover of the boundary
of a tetrahedron, and components of a lift of a length four curve in
its unfolded version.
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c
a b

a

c
b b

c

a
a

b
c

Figure 3. Labeling the normal arc types on the boundary of a
tetrahedron, σ.

Now note that the rotation φ preserves the two edges that its axis intersects, and
swaps the other two pairs of opposite edges. Hence, both α and φ(α) will meet each
edge in the same number of points. As these numbers completely determine the
intersection of α with each face of σ (up to normal isotopy), the result follows. �

This lemma gives us a way to classify normal curves on the boundary of a
tetrahedron. Label the normal arc types on each face of a tetrahedron σ as in
Figure 3. These labels are arranged so as to be preserved by 180-degree rotations
about axes that connect the midpoints of opposite edges. Any normal loop α of
length at least four on ∂σ meets each face in a collection of normal arcs. By
Lemma 2.1, the number of these arcs that are parallel to an arc with one label in
one face will be the same as the number that are parallel to an arc with the same
label in any other face. Hence, if we fix one face δ of σ and let a(α), b(α) and
c(α) be the number of arcs of α ∩ δ parallel to the labeled arcs a, b, and c of the
figure, then these three functions will be independent of the choice of δ.

Note furthermore that for any loop α of length at least four, at least one of the
three numbers a(α), b(α) or c(α) will be zero (otherwise α would have length three
components). This motivates the following definition.

Definition 2.2. Let σ be a tetrahedron with labeled normal arc types as in Figure 3,
and let α be a normal loop on ∂σ of length at least four. We say α is type a if
a(α)= 0. Define type b and type c similarly.

Note that normal loops of length exactly four will be of two types. The notion
of type constrains how two normal curves can intersect on the boundary of a
tetrahedron, as seen in the following two lemmas.
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Lemma 2.3. Let α and β be normal loops of length at least four on ∂σ of the same
type. Let α+β be the normal loop(s) obtained by resolving all intersection points.
Then α+β does not contain any components of length three.

Proof. Suppose α and β are type a. Then a(α) = a(β) = 0. As a(α + β) =
a(α)+ a(β) for any two normal loops, we conclude a(α+β)= 0. Thus, there is a
missing arc type around each vertex of σ (see Figure 3). We conclude α+β does
not have any components of length three. �

Definition 2.4. Let α0 and β0 be normal arcs in an oriented triangle δ. Then α0 and
β0 can be isotoped, keeping their boundaries fixed, so that they intersect transversely
in at most one point. We define the (normal) sign of the point α0∩β0, if it exists, as
follows. Orient α0 and β0 so that the ordering (α0, β0) agrees with the orientation
of δ. There are now two possibilities. If the regular exchange at α0 ∩β0 attaches
the tail of α0 to the tip of β0 then we say intersection point α0 ∩ β0 is positive.
Otherwise we say it is negative (see Figure 4).

Note that with a fixed orientation on δ, the sign of α0∩β0 is opposite the sign of
β0 ∩α0.

β0

α0

Regular Exchange

α0 ∩β0 positive α0 ∩β0 negative

Figure 4. The sign of α0 ∩β0, as determined by the regular exchange.
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β0

α′ α′′

Figure 5. Resolving intersections of opposite signs produces a
nonnormal arc.

Lemma 2.5. Let α and β be collections of normal loops on ∂σ whose non-length-
three components are all of the same type, that have been normally isotoped to
intersect minimally. Then each point of α ∩β has the same sign.

Proof. If either α or β contains a component of length three, then it will be disjoint
from the other collection. Thus, we may assume that all points of α∩β lie on loops
of length at least four. We will call such loops long. The long loops of α will all be
parallel, as will the long loops of β. Thus, if there are any intersection points at all,
then no long loop of α can be parallel to a long loop of β.

By way of contradiction, we now assume that two points of α∩β are of opposite
sign. We claim that then there is a subarc of α or β that connects two points of
α ∩ β of opposite sign. If not, then we may choose a component α+ of α with
only positive intersection points, and a component β− of β with only negative
intersection points. However, it then follows that α+ is disjoint from β−, which
cannot happen for two nonparallel long loops. We proceed, then, without loss of
generality assuming there is a subarc of β that connects points of opposite sign. It
follows that there is such a subarc, β0, which does not meet α in its interior.

There are now two cases. Suppose first that the points of ∂β0 lie on different
components α′ and α′′ and of α. As all long components of α are normally parallel,
α′ and α′′ cobound an annulus of ∂σ , with β0 a spanning arc. By making this
annulus thin, we may assume that β0 lies in a face of σ. However, resolving the
two intersections at each end of β0 then produces a nonnormal arc. (See Figure 5.)

The second case is when the points of ∂β0 lie on the same component α′ of α.
Note that α′ is a loop that divides ∂σ into two hemispheres, each intersecting the
boundary of the tetrahedron in one of three ways, as seen in Figure 6. The loop α′

cannot be as depicted in Figure 6 (left), where one of these hemispheres contains
a single vertex of ∂σ , since it is long. Thus, we may assume both hemispheres
contain two vertices of ∂σ. Let D be the hemisphere that contains β0. Note that
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α′ α′ α′

Figure 6. The three possibilities for one hemisphere of ∂σ,
bounded by α′. The black points and edges indicate vertices and
subarcs of edges of ∂σ, respectively.

β0

α′

Figure 7. Resolving the intersection points of opposite sign of α′

and β0 produces a length three curve or nonnormal arc.

β0 then divides D into two subdisks, and by the minimality of |α ∩β|, each such
subdisk will contain a vertex of σ. Resolving the intersections at each end of β0 then
produces a vertex linking loop. (See Figure 7.) We will leave it as an exercise for
the reader that such a loop will then persist after all further resolutions, producing
a length three normal loop. By Lemma 2.3, it follows that the long loops of α and
β could not have been the same type. �

3. Helicoids with the same axis

Definition 3.1. Let H∗ be a disk properly embedded in a tetrahedron, whose bound-
ary is a normal loop. If ∂H∗ meets some pair of opposite edges e, e′ in single points
then we say H∗ is a helicoid, and {e, e′} is an axis of H∗.

Note that both quadrilaterals and octagons are helicoids with two axes, and all
other helicoids have a unique axis. (See Figure 8.) However, the boundary of each
helicoid with axis {e, e′} meets e in a unique normal arc type as in Figure 3.

Definition 3.2. Given a helicoid H∗ with axis {e, e′} in a tetrahedron σ , there is
an orientation-preserving simplicial homeomorphism from σ to the tetrahedron
pictured in Figure 3 (equipped with the standard orientation on R3), where e and e′

are taken to the edges that meet arc types a and b. We say H∗ is right-handed with
respect to {e, e′} if a(∂H∗)= 0 and left-handed with respect to {e, e′} if b(∂H∗)= 0.
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e
f

f ′
e′

e
f

f ′
e′

Figure 8. Quadrilaterals and octagons are the only two locally
helical surfaces with more than one choice of axis. Note here that
the quadrilateral is left-handed and the octagon is right-handed
with respect to {e, e′}, with the opposite being the case with respect
to { f, f ′}.

Definition 3.3. Let H∗ be a helicoid with 4(n+1) normal arcs comprising ∂H∗, and
with axis {e, e′} in a tetrahedron σ. We say the twisting of H∗, t (H∗), is +n if H∗ is
right-handed with respect to {e, e′} and −n if it is left-handed with respect to {e, e′}.

Note that an octagon can be regarded as having +1 or −1 twisting, depending
on the choice of its axis. The handedness of the twisting of a quadrilateral is also
dependent on a choice of axis, but in either case the value of the twisting is zero.
Thus, a helical surface with no octagons has a well-defined net twisting. When
there are octagons present, however, the net twisting will depend on choices of axes,
motivating the following definition:

Definition 3.4. Let M be a triangulated 3-manifold containing a locally helical
surface H , and let 1 be a set of tetrahedra in the triangulation of M. We say the
net twisting of H in 1 is bounded by n if

−n ≤
∑
σ∈1

t (H ∩ σ)≤ n

for all choices of axes of the components of H ∩ σ , for each σ ∈1.

Definition 3.5. Let σ be an oriented tetrahedron. For any two normal curves α and
β on ∂σ in general position, let ησ (α ∩β) denote the difference between the total
number of positive and negative intersection points of α ∩ β on the 2-simplices
of ∂σ.

Lemma 3.6. Let H∗ and G∗ be helicoids with the same handedness with respect to
the same choice of axis. Then

ησ (∂H∗ ∩ ∂G∗)= 2(t (H∗)− t (G∗)).

Proof. As H∗ and G∗ are helicoids with the same handedness with respect to some
choice of axis, it follows that their boundaries are loops of the same type. It thus
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Figure 9. Here ∂H∗ is the black curve, with a neighborhood of
h being the dark gray band, and ∂G∗ is depicted in lighter gray.
Here, |h ∩ g| = 2, ησ (∂H∗∩ ∂G∗)= 8, t (H∗)= 6, t (G∗)= 2 and
thus t (H∗)− t (G∗)= 4.

follows immediately from Lemma 2.5 that ησ (∂H∗∩∂G∗)=±|∂H∗∩∂G∗|, where
the sign is determined by the normal intersection sign of the intersection points.
Without loss of generality, assume this sign is positive. Our goal is to show

|∂H∗ ∩ ∂G∗| = 2(t (H∗)− t (G∗)).

Notice that ∂H∗ is a loop on ∂σ dividing it into two hemispheres, where each
hemisphere contains two of the vertices of σ. Let v and w be the vertices in one
such hemisphere, and let h be an arc in this hemisphere connecting them. Note that
the arc h can be chosen so that ∂H∗ is normally parallel to a neighborhood of h.

Similarly, ∂G∗ is parallel to the boundary of a neighborhood of an arc g connect-
ing two vertices of σ. The arc g may be chosen so that at least one of its endpoints
is distinct from the endpoints of h.

There are now two cases. If both endpoints of g are distinct from the endpoints
of h then the curves can be arranged as in Figure 9. Note that ∂H∗ ∩ ∂G∗ contains
four intersection points for each crossing of h and g. Furthermore, the difference
in the twisting, t (H∗)− t (G∗), is twice the number of crossings of h and g. Thus,
the desired equation holds.

All intersection points depicted in the figure are positive, as is the twisting. Note
that switching the orientation and keeping the ordering of the curves the same
changes the sign of both the intersection points and the twisting. Alternatively,
keeping the orientation fixed but changing the ordering of the curves will also
change the sign of the intersection points, and reverse the order of the operands on
the right side of the desired equation. Thus the equation still holds.
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Figure 10. In this case, h and g share an endpoint. Here, |h∩g| = 2,
ησ (∂H∗∩∂G∗)=6, t (H∗)=6, t (G∗)=3 and thus t (H∗)−t (G∗)=3.

In the second case, h and g have an endpoint in common, as in Figure 10. In
this case |∂H∗ ∩ ∂G∗| = 4|h ∩ g| − 2 and t (H∗)− t (G∗)= 2|h ∩ g| − 1. Thus we
still obtain the desired relationship between ησ (∂H∗∩ ∂G∗) and t (H∗)− t (G∗). �

4. Compatibility classes of surfaces

The results of this section extend previous results that restrict intersections of bound-
ary curves realized by compatibility classes of surfaces, found, e.g., in [Bachman
et al. 2016; Jaco and Sedgwick 2003; Hatcher 1982].

Definition 4.1. Two surfaces in a triangulated 3-manifold are compatible if they
meet the boundary of each tetrahedron in a collection of normal curves that can be
normally isotoped to be disjoint.2

Henceforth we will assume that if α0 and β0 are contained in a 2-simplex δ⊂ ∂M ,
then the orientation on δ is induced by the orientation on M. Hence, for such curves
we may reference the sign of each point of α0∩β0 without mention of the orientation
of the 2-simplex that contains it.

In the next lemma, we show that two compatible surfaces have a symmetric
relationship between the signs of their normal intersections on the boundary of a
subcomplex, 1.

Lemma 4.2. Let M be a closed, oriented, triangulated 3-manifold. Let 1 be a set
of tetrahedra in the triangulation of M. Suppose A and B are two locally helical
surfaces in M that are compatible outside 1. Let ∂1A = ∂(A ∩1) and ∂1B =

2We are allowing pseudotriangulations; i.e., M is realized as a collection of tetrahedra with face-
pairings. Hence, for each 3-cell σ in M there is a map π :6→ σ , where 6 is a 3-simplex. Here we
consider two surfaces to be compatible if they meet ∂σ in curves whose preimages can be isotoped to
be disjoint on ∂6.
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αti−ε

β

αti+ε

β

Figure 11. Positive and negative intersections cancel as t increases
through ti .

∂(B ∩1). Suppose A and B have been normally isotoped so that |∂1A∩ ∂1B| is
minimal. Then the number of points of ∂1A∩∂1B with positive normal sign equals
the number of points with negative normal sign.

Proof. Consider a tetrahedron σ of M that is not in 1. Let α denote a component
of A ∩ ∂σ , and β a component of B ∩ ∂σ. Orient each 2-simplex of ∂σ by the
induced orientation from σ , so that each point of α ∩ β has a well-defined sign.
Since A and B intersect minimally, we may assume each normal arc of α and β
is a straight line segment. Recall from Definition 3.5 that ησ (α ∩ β) denotes the
difference between the total number of positive and negative intersection points of
α ∩β on the 2-simplices of ∂σ.

As A and B are compatible, there is an isotopy from α to a normal loop α′, also
consisting of straight normal arcs, in ∂σ that is disjoint from β. We can choose
such an isotopy, αt , so that for all t , each normal arc of αt is a straight line segment
and αt ∩β contains at most one point of the 1-skeleton. Let {ti } denote the critical
values of αt ∩β, i.e., the values of t such that αt and β do not intersect transversely
on ∂σ. It follows that for each i , αti ∩β includes a point of the 1-skeleton.

Just before (or after) ti , αt meets β as in Figure 11. Here we see two intersections,
one of each normal sign, of αt ∩β which cancel as t increases through ti . It follows
that ησ (αti−ε ∩β)= ησ (αti+ε ∩β). As α′∩β =∅, we conclude ησ (αt ∩β) is zero
for all noncritical t . In particular, it must have been the case that ησ (α ∩β)= 0.

Let ησ (A∩ B) now denote the sum, over all curves α of A∩∂σ and β of B∩∂σ
of ησ (α ∩ β). It follows from the above argument that ησ (A∩ B)= 0. Thus, the
sum over all tetrahedra σ not in 1 of ησ (A∩ B) is also zero.

Now note that if δ is an interior 2-simplex, then the normal sign of any intersection
point of A∩ δ and B ∩ δ is opposite from the perspective of the tetrahedra on either
side of δ. Hence, the sum of ησ (A∩ B), over all tetrahedra σ , must be equal to the
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difference of the number of positive and negative intersection points of ∂1A∩ ∂1B.
As we have reasoned above that this total is zero, the result follows. �

5. Main proof

We now put the three notions of axis, twisting, and compatibility together.

Definition 5.1. Let M be a closed, oriented, triangulated 3-manifold, and let 1 be
a set of tetrahedra in the triangulation of M. Two locally helical surfaces H and G
are said to be consistent in (M;1) if they are compatible outside of 1, and if for
all σ ∈1, H ∩ σ and G ∩ σ have the same handedness with respect to the same
choice of axis.

Theorem 1.3 is a consequence of the following lemma.

Lemma 5.2. Let M be a closed, oriented, triangulated 3-manifold, and let 1 be
a set of tetrahedra in the triangulation of M. If H and G are consistent, locally
helical surfaces in (M;1), then the net twisting of H ∩1 is the same as the net
twisting of G ∩1.

Proof. For each σ ∈ 1, let Hσ = H ∩ σ and Gσ = G ∩ σ. As noted in the proof
of Lemma 3.6, for each σ ∈1, ∂Hσ and ∂Gσ must be normal loops of the same
type. Thus, by Lemma 2.5, for each σ ∈1, all points of ∂Hσ ∩ ∂Gσ have the same
sign. Let 1+ be the subset of 1 where this sign is positive, and 1− the subset of
1 where it is negative. Thus, on each σ ∈1+,

ησ (∂Hσ ∩ ∂Gσ )= |∂Hσ ∩ ∂Gσ |,

and for all σ ∈1−,

ησ (∂Hσ ∩ ∂Gσ )=−|∂Hσ ∩ ∂Gσ |.

Consider the sum
∑

σ∈1 #(∂Hσ ∩∂Gσ ), where #(∂Hσ ∩∂Gσ ) denotes the signed
intersection number of ∂Hσ and ∂Gσ . Suppose σ1 and σ2 are adjacent tetrahedra
in 1, p1 ∈ ∂Hσ1 ∩ ∂Gσ1 , p2 ∈ ∂Hσ2 ∩ ∂Gσ2 , and p1 is identified with p2 in M.3

Then the sign of p1 will be opposite the sign of p2, and thus p1 and p2 will cancel in∑
σ∈1 #(∂Hσ ∩∂Gσ ). If, on the other hand, p is a point of ∂Hσ ∩∂Gσ that is on a

unique σ ∈1, then p ∈ ∂(H−1)∩∂(G−1). By hypothesis, H−1 and G−1 are
compatible surfaces; thus by Lemma 4.2 the number of positive and negative points
of ∂(H −1)∩ ∂(G−1) are equal. We conclude that

∑
σ∈1 #(∂Hσ ∩ ∂Gσ )= 0,

or equivalently, ∑
σ∈1+

|∂Hσ ∩ ∂Gσ | =

∑
σ∈1−

|∂Hσ ∩ ∂Gσ |,

3Here we are allowing σ1 to be equal to σ2 when there are self-identifications, but in this case p1
must be distinct from p2.



LOCALLY HELICAL SURFACES HAVE BOUNDED TWISTING 271

and thus, ∑
σ∈1+

ησ (∂Hσ ∩ ∂Gσ )=−
∑
σ∈1−

ησ (∂Hσ ∩ ∂Gσ ).

Applying Lemma 3.6 to this equality now yields∑
σ∈1+

2(t (Hσ )− t (Gσ ))=−
∑
σ∈1−

2(t (Hσ )− t (Gσ )),

which implies

0=
∑
σ∈1+

2(t (Hσ )− t (Gσ ))+
∑
σ∈1−

2(t (Hσ )− t (Gσ ))

=

∑
σ∈1

2(t (Hσ )− t (Gσ ))

=

∑
σ∈1

t (Hσ )−
∑
σ∈1

t (Gσ ).

Therefore,
∑

σ∈1 t (Hσ )=
∑

σ∈1 t (Gσ ); i.e., the net twisting is the same for all
surfaces in the chosen consistency class. �

We are now ready to prove Theorem 1.3.

Proof. Let n be a positive integer, and consider the set of all locally helical surfaces
(up to normal isotopy) that have total absolute twisting ≤ n in M −1. The number
of compatibility classes of surfaces in M −1 is finite, since there are only a finite
number of normal loops on each tetrahedron of length ≤ 4(n + 1). Moreover,
there are only three possible axes for each tetrahedron in 1, and two choices of
handedness for each. Thus, the number of consistency classes for (M;1) is finite.
Theorem 1.3 thus immediately follows from Lemma 5.2. �
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SUPERCONVERGENCE TO
FREELY INFINITELY DIVISIBLE DISTRIBUTIONS

HARI BERCOVICI, JIUN-CHAU WANG AND PING ZHONG

We prove superconvergence results for all freely infinitely divisible distribu-
tions. Given a nondegenerate freely infinitely divisible distribution ν, let µn

be a sequence of probability measures and let kn be a sequence of integers
tending to infinity such that µ�kn

n converges weakly to ν. We show that
the density dµ�kn

n /dx converges uniformly, as well as in all L p-norms for
p > 1, to the density of ν except possibly in the neighborhood of one point.
Applications include the global superconvergence to freely stable laws and
that to free compound Poisson laws over the whole real line.

1. Introduction

Consider a sequence {X i }
∞

i=1 of independent identically distributed random variables
with zero mean and unit variance. The classical central limit theorem states that
variables

Sn =
X1+X2+· · ·+Xn

√
n

converge in distribution to the standard normal law. Note that the variables Sn

might always be discrete, even though their limit is absolutely continuous. This
means that the convergence of Sn to a normal law must be expressed in terms of
distribution functions, rather than densities.

Assume now that, instead of being independent, the variables {X i }
∞

i=1 are freely
independent in the sense of [Voiculescu et al. 1992]. We still assume them identically
distributed with zero mean and unit variance. Under the additional condition that
the variables are bounded, it was shown in [Bercovici and Voiculescu 1995] that
the distribution of Sn is absolutely continuous for sufficiently large n, and these
densities converge uniformly, along with all of their derivatives, to the density of
the semicircle law

1
2π

√
4− t2

on any interval [a, b] ⊂ (−2, 2). This phenomenon was called superconvergence in
that paper. In [Wang 2010], the assumption that X i be bounded was removed. Even
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when the variables X i are not identically distributed, but are uniformly bounded,
the support of Sn was shown by Kargin [2007] to converge to the interval [−2, 2]
as n→∞. See also [Anshelevich et al. 2014] for multiplicative superconvergence
results.

The purpose of this paper is to demonstrate that the phenomenon of superconver-
gence is not limited to convergence to the semicircle law. Consider a nondegenerate
probability measure ν on R, which is infinitely divisible in the free sense (that is,
�-infinitely divisible). It is known that its Cauchy transform,

(1-1) Gν(z)=
∫
+∞

−∞

1
z− t

dν(t),

defined for =z > 0, extends continuously to all points z ∈ R with at most one
exception tν . The measure ν is absolutely continuous on R \ {tν} and its density
is locally analytic when strictly positive. To formulate our result, assume that for
every positive integer n, we are given kn freely independent, identically distributed
random variables Xn1, Xn2, . . . , Xnkn such that limn→∞ kn =∞ and the sums

Sn = Xn1+ Xn2+ · · ·+ Xnkn

converge in distribution to the measure ν. (Necessary and sufficient conditions for
such a convergence to take place are found in [Bercovici and Pata 1999].) Our main
result, Theorem 4.1, implies the following statement. For convenience, we denote
by Dν the singleton {tν} if this point exists. Otherwise, Dν =∅.

Theorem 1.1. Given any open set U ⊃ Dν , the distribution νn of Sn is absolutely
continuous on R \U for sufficiently large n, and the density of νn converges to the
density of ν uniformly and in L p-norms for p > 1 on R \U.

Note that U can be taken to be empty if Dν =∅.
In Proposition 5.1, we provide the necessary and sufficient conditions for the

existence of the singularity tν , as well as a formula to compute it when this point
exists. These conditions and the formula are further used to investigate the quality
of convergence to freely stable and free compound Poisson densities.

To prove this result, we first approximate νn by a closely related �-infinitely
divisible measure ρn and we use the fact that Gρn is a conformal map. Related
considerations appear in the work of Chistyakov and Götze [2013].

The remainder of this paper is organized as follows. In Section 2, we review some
relevant preliminaries on free convolution and freely infinitely divisible distributions.
Section 3 is devoted to describing the subordination function appearing in free
convolution powers. Section 4 contains the proof of our main result, and some
examples and applications are given in Section 5.
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2. Free convolution and freely infinitely divisible distributions

Let C+={z ∈C : =z> 0} be the complex upper half-plane, and let ν be a probability
measure on R. Recall that the Cauchy transform Gν(z) of ν is defined by (1-1) for
z ∈ C+. The measure ν can be recovered as the weak limit of the measures

dνy(x)=−
1
π
=Gν(x + iy) dx, x ∈ R, y > 0,

as y→ 0, and the atoms of ν can be calculated as follows:

(2-1) lim
y→0

iyGν(α+ iy)= ν({α}), α ∈ R.

The reciprocal Fν = 1/Gν is an analytic self-map of C+ and plays a role in the
calculation of free convolution. More precisely, for any η > 0 there exists a positive
constant M = M(η, ν) such that the function Fν has an analytic right inverse F−1

ν

(relative to the composition) defined in the truncated cone

0η,M = {x + iy : y > M and |x |< ηy}.

The Voiculescu transform ϕν of ν is then defined as ϕν(z) = F−1
ν (z)− z, and for

any probability law µ on R, we have

ϕµ�ν(z)= ϕµ(z)+ϕν(z)

for all z in a region of the form 0η,M where all three transforms are defined (see
[Bercovici and Voiculescu 1993] for the proof). In this sense, the Voiculescu
transform linearizes the free convolution �.

The set of all finite Borel measures on R is equipped with the topology of weak
convergence from duality with continuous bounded functions. Denoting by M the
class of all Borel probability measures on R, we can translate weak convergence
of measures in M into convergence properties of the corresponding Voiculescu
transforms. We recall the following result from [Bercovici and Pata 1999].

Proposition 2.1. Let µ,µ1, µ2, . . . be measures in M. Then the sequence µn

converges weakly to the law µ if and only if there exist η,M > 0 such that the
functions ϕµn are defined on 0η,M for every n, limn→∞ ϕµn (iy)= ϕµ(iy) for every
y > M, and ϕµn (iy)= o(y) uniformly in n as y→∞.

A measure ν ∈M is said to be �-infinitely divisible if for every positive integer n,
there exists a measure νn ∈M such that

ν = νn � νn � · · ·� νn︸ ︷︷ ︸
n times

.

We denote by ID(�) the set of all �-infinitely divisible measures in M. It was
shown in [Bercovici and Voiculescu 1993] that ν ∈ ID(�) if and only if the function
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ϕν extends analytically to a map from C+ into C− ∪R, in which case there exist a
real constant γ and a finite Borel measure σ on R such that ϕν has the following
free Lévy–Khintchine representation:

ϕν(z)= γ +
∫

R

1+ t z
z− t

dσ(t).

The pair (γ, σ ) is uniquely determined. Conversely, given such a pair (γ, σ ), there
exists a unique probability law ν = ν

γ,σ

� ∈ ID(�) satisfying the above integral
formula. We shall call the pair (γ, σ ) the free generating pair for νγ,σ� . Weak
convergence of �-infinitely divisible laws can be characterized in terms of their free
generating pairs; namely, νγn,σn

� → ν
γ,σ

� weakly if and only if γn→ γ and σn→ σ

weakly [Barndorff-Nielsen et al. 2006, Theorem 5.13].
We review some useful results related to the F-transforms of freely infinitely

divisible distributions, which were proved in [Belinschi and Bercovici 2005; Huang
2015], and are closely related to Biane’s work [1997]. Given ν = νγ,σ� in ID(�),
the function Fν is a conformal map, and its inverse is the function

Hν(z)= z+ϕν(z)= z+ γ +
∫

R

1+ t z
z− t

dσ(t), z ∈ C+.

This means that Hν(Fν(z)) = z for all z ∈ C+. Note that Hν : C+ → C is an
analytic function satisfying =Hν(z)≤ =z for all z ∈ C+. The following result is a
consequence of [Belinschi and Bercovici 2005, Theorem 4.6].

Proposition 2.2. The function Fν has a one-to-one continuous extension to C+∪R,
and it satisfies

(2-2) |Fν(z1)− Fν(z2)| ≥
1
2 |z1− z2|, z1, z2 ∈ C+ ∪R.

If α ∈ R is a point such that =Fν(α) > 0, then Fν can be continued analytically to a
neighborhood of α.

The inequality (2-2) implies that

|Hν(z1)− Hν(z2)| ≤ 2|z1− z2|, z1, z2 ∈�ν,

where �ν = Fν(C+). The function Hν has a one-to-one continuous extension to
the closure �ν . This extension is still denoted Hν . Thus, we have the following
inversion relationships:

Hν(Fν(z))= z, z ∈ C+ ∪R, and Fν(Hν(z))= z, z ∈�ν .

We describe now the boundary set ∂�ν . Given x ∈ R and y > 0, observe

=Hν(x + iy)= y
(

1−
∫

R

1+ t2

(t − x)2+ y2 dσ(t)
)
.
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It follows that
=Hν(x + iy)= 0

if and only if

(2-3)
∫

R

1+ t2

(t − x)2+ y2 dσ(t)= 1.

On the other hand, note that for any x ∈ R, the positive function

y 7→
∫

R

1+ t2

(t − x)2+ y2 dσ(t)

is continuous and strictly decreasing in y, provided that σ 6= 0; the case σ = 0
corresponds to a measure ν which is a point mass. Thus, for any x ∈ R, there exists
at most one value y > 0 satisfying (2-3). It is natural to introduce two sets

Aν = {x ∈ R : g(x) > 1}

and
Bν = R \ Aν = {x ∈ R : g(x)≤ 1},

where the function

g(x)=
∫

R

1+ t2

(t − x)2
dσ(t)= sup

y>0

∫
R

1+ t2

(t − x)2+ y2 dσ(t), x ∈ R,

is a lower semicontinuous function of x , so that Aν is an open set. For x ∈ Aν ,
define uν(x) to be the unique y in (0,∞) satisfying (2-3); for x ∈ Bν , set uν(x)= 0.

Proposition 2.3 [Huang 2015]. The function Fν maps R bicontinuously to the
graph γν of the function uν , that is,

Fν(R)= γν = {x + iuν(x) : x ∈ R}.

In particular, the function uν is continuous on R.

We note for further reference that the set Aν is merely the collection of all x ∈ R

such that uν(x) > 0. Moreover, for any t ∈ R, we have =Fν(t) > 0 if and only
if <Fν(t) ∈ Aν . The graph γν is precisely the boundary set ∂�ν , and one has
�ν = {z ∈ C+ : Hν(z) ∈ C+}. The following result now follows easily from these
facts; see also [Biane 1997; Huang 2015].

Proposition 2.4. The function t 7→ <Fν(t) is a strictly increasing homeomorphism
from R to R.

As shown in [Bercovici and Voiculescu 1993], the measure ν has at most one
atom. From (2-1), we see that α is an atom of ν if and only if Fν(α)= 0 (which
gives us the uniqueness of the atom by Proposition 2.2) and the Julia–Carathéodory
derivative F ′ν(α) is finite. (See [Shapiro 1993] for the definition, existence, and
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properties of the Julia–Carathéodory derivative.) The value of this derivative is
given by

F ′ν(α)=
1

ν({α})
.

By the Stieltjes inversion formula, the density of ν (relative to Lebesgue measure)
is given by

dν
dx
(t)=− 1

π
=Gν(t)=

1
π

=Fν(t)
|Fν(t)|2

,

at points other than the possible atom α. (This uses the continuous extension of Fν
to R.)

Lemma 2.5. Consider a measure ν ∈ ID(�), and denote by sν the density of the
absolutely continuous part of ν. We have lim|t |→∞ sν(t)= 0.

Proof. Inequality (2-2) implies that

|Fν(t)− Fν(i)| ≥ 1
2 |t − i |> 1

2 |t |, t ∈ R,

so that |Fν(t)|> 1
3 |t | for |t |> 6|Fν(i)|. Then the value of density sν at such t can

be estimated as follows:

(2-4) sν(t)=
1
π

=Fν(t)
|Fν(t)|2

≤
1
π

1
|Fν(t)|

<
1
π

3
|t |
, |t |> 6|Fν(i)|.

The conclusion follows. �

The preceding result shows that if Fν(tν)= 0, then we must have |tν | ≤ 6|Fν(i)|.
Moreover, for any p> 1 and any neighborhood U of the point tν , the estimate (2-4)
implies that the p-th power |sν |p is continuous and integrable over R \U. If such a
zero tν does not exist, then the density sν is a continuous function which belongs to
the space L p(R, dx) for all p > 1.

The next result follows from the proof of Theorem 4.6 in [Belinschi and Bercovici
2005]. Here we offer a more direct argument.

Lemma 2.6. The derivative of Hν is nonzero at z = x + iuν(x), for any x ∈ Aν .

Proof. We have

H ′ν(z)= 1−
∫

R

1+ t2

(z− t)2
dσ(t), z ∈ C+.

When x ∈ Aν and z = x + iuν(x), a straightforward calculation and the definition
of uν lead to ∣∣∣∣∫

R

1+ t2

(z− t)2
dσ(t)

∣∣∣∣< ∫
R

1+ t2

|z− t |2
dσ(t)

=

∫
R

1+ t2

(t − x)2+ uν(x)2
dσ(t)= 1,

which implies the desired conclusion. �
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Lemma 2.7. Consider measures ν, νn ∈ ID(�), n ∈ N, such that νn→ ν weakly
as n→∞, and let I ⊂R be a compact interval such that the limiting density dν/dx
is bounded away from zero on I. Then the density dνn/dx converges uniformly on I
to dν/dx as n→∞.

Proof. Let (γ, σ ), (γn, σn) be the free generating pairs of ν and νn , respectively.
As seen earlier, γn→ γ and σn→ σ weakly as n→∞. Thus, the sequence Hνn

converges to the function Hν uniformly on compact subsets of C+.
It is clear that <Fν(I ) ⊂ Aν . Thus, by Lemma 2.6, H ′ν(z) 6= 0 for z ∈ Fν(I ),

and its inverse function Fν has a conformal continuation to a neighborhood of I.
Expressing inverse functions using the Cauchy integral formula, we conclude
that, for large n, Fνn also has a conformal continuation to a neighborhood of I.
Moreover, these continuations converge uniformly on I to the continuation of Fν .
Since 0 /∈ Fν(I ), the lemma follows from the Stieltjes inversion formula. �

3. Free convolution powers and subordination functions

Given two probability measures µ1 and µ2 on R, there exist two unique analytic
functions ω1, ω2 : C

+
→ C+ such that Fµ1�µ2(z)= Fµ1(ω1(z))= Fµ2(ω2(z)) and

Fµ1�µ2(z)= ω1(z)+ω2(z)− z

for all z ∈C+ (see [Voiculescu 1993; Biane 1998; Bercovici and Voiculescu 1998]).
Consider now a sequence {µn}

∞

n=1 in M and positive integers kn ≥ 2, and denote
by µ� kn

n the kn-fold free convolution power of µn . Belinschi and Bercovici [2005]
showed thatµ� kn

n has at most one atom and otherwiseµ� kn
n is absolutely continuous,

and they studied the analytic subordination for these free convolution powers. Thus,
let ωn :C

+
→C+ be the subordination function of F

µ
� kn
n

with respect to Fµn , that is,

F
µ
� kn
n
(z)= Fµn (ωn(z)).

Then we have

(3-1) F
µ
� kn
n
(z)= Fµn (ωn(z))= ωn(z)+

1
kn − 1

(ωn(z)− z), z ∈ C+.

Equation (3-1) implies that the inverse function

ω−1
n (z)= z+ (kn − 1)(z− Fµn (z))

for z ∈0η,M , where η,M are positive constants. On the other hand, the function ωn

can be regarded as the F-transform of a unique probability measure on R by the char-
acterization of F-transforms (see [Bercovici and Voiculescu 1993, Proposition 5.2]).
Let ρn be the probability measure on R such that ωn(z)= Fρn (z), so

(3-2) ϕρn (z)= (kn − 1)(z− Fµn (z)).
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This implies that the measure ρn is �-infinitely divisible. In particular, the function
ωn extends continuously to C+ ∪R and so, too, does the function F

µ
� kn
n

by (3-1).
Denote by Eµ(z) = z − Fµ(z) the self-energy of µ. Given two measures

µ1, µ2 ∈ M, their Boolean convolution µ1 ] µ2, introduced in [Speicher and
Woroudi 1997], is the unique probability measure on R satisfying

Eµ1]µ2(z)= Eµ1(z)+ Eµ2(z), z ∈ C+.

Every probability measure on R is ]-infinitely divisible. Given a measure ν ∈M,
the function Eν is a map from C+ to C−∪R and satisfies Eν(iy)/ iy→ 0 as y→∞.
(The latter limit actually holds uniformly for ν in any tight family of probability
measures [Bercovici and Voiculescu 1993].) Thus, Eν admits a unique Nevanlinna
representation:

Eν(z)= γ +
∫

R

1+t z
z−t

dσ(t), z ∈ C+.

Conversely, every such formula defines an analytic function which is of the form
Eν for a unique probability measure ν. We will write ν = νγ,σ] to indicate this
correspondence. Note Eνγ,σ

]
(z)= ϕνγ,σ�

(z), and that the map νγ,σ� → ν
γ,σ
] is a

bijective map from the set ID(�) into the set M. Finally, it is easy to verify that if
a sequence νn converges weakly to a law ν in M, then the limit limn→∞ Eνn (z)=
Eν(z) holds for z ∈ C+.

We record for further use the following result from [Bercovici and Pata 1999,
Theorem 6.3].

Theorem 3.1. Fix a free generating pair (γ, σ ), a sequence {µn}
∞

n=1 in M, and
a sequence {kn}

∞

n=1 of unbounded positive integers. Then the sequence µ� kn
n con-

verges weakly to νγ ,σ� if and only if the sequence µ]kn
n converges weakly to νγ,σ] .

Boolean limit theorems are used in the proof of the following result.

Proposition 3.2. Let {µn}
∞

n=1 ⊂M and let {kn}
∞

n=1 ⊂N such that limn→∞ kn =∞.
Suppose µ� kn

n converges weakly to a law ν ∈ ID(�). For each n, choose ρn ∈

ID(�), such that
F
µ
� kn
n
(z)= Fµn (Fρn (z)), z ∈ C+.

Then ρn→ ν weakly.

Proof. Assume that (γ, σ ) is the free generating pair of ν. By Proposition 2.1,
the weak convergence µ� kn

n → ν
γ,σ

� implies the existence of M > 0 such that

lim
n→∞

knϕµn (iy)= ϕνγ,σ�
(iy)

for all y > M, and knϕµn (iy) = o(y) uniformly in n as y→∞. In particular, it
follows that the sequence µn converges weakly to the unit point mass at 0. On the
other hand, Theorem 3.1 shows that µ]kn

n → ν
γ,σ
] weakly.
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By (3-2), we have
ϕρn (z)= E

µ
]kn
n
(z)− Eµn (z), z ∈ C+.

Since the two sequences {µ]kn
n }
∞

n=1 and {µn}
∞

n=1 are both tight, the last formula
implies that ϕρn (iy) = o(y) uniformly in n as y→∞. To determine the limit of
{ρn}

∞

n=1, we calculate

lim
n→∞

ϕρn (iy)= lim
n→∞
[E

µ
]kn
n
(iy)− Eµn (iy)] = Eνγ,σ

]
(iy)= ϕνγ,σ�

(iy)

for every y > M. The desired conclusion follows from Proposition 2.1. �

4. The main result

In the following statement, Fν is viewed as a continuous function defined on C+∪R.

Theorem 4.1. Consider a nondegenerate �-infinitely divisible distribution ν on R,
a sequence {µn}

∞

n=1 of probability measures on R, and a sequence {kn}
∞

n=1 of
positive integers tending to infinity such that the measures µ� kn

n converge weakly
to ν.

(1) If 0 /∈ Fν(R), then the measure ν has no atom and there exists N > 0 such that
the measure µ� kn

n is Lebesgue absolutely continuous with a continuous density
on R for every n ≥ N. Moreover, the density of the measure µ� kn

n converges
uniformly on R to the density of the measure ν.

(2) If 0∈ Fν(R), and U ⊂R is an open interval containing the singleton F−1
ν ({0}),

then there exists N > 0 such that the restriction of the measure µ� kn
n to R\U is

absolutely continuous with a continuous density on R\U for n ≥ N. Moreover,
the density of the measure µ� kn

n converges uniformly on R\U to the density of
the measure ν.

(3) In all cases, the limit

lim
n→∞

∥∥∥∥dµ� kn
n

dx
−

dν
dx

∥∥∥∥
L p(R\U )

= 0

holds for p > 1, with U =∅ in case (1).

Remark. The condition that 0 ∈ Fν(R) is necessary for ν to have an atom, but it
is not sufficient (see Proposition 5.1). If Fν(tν)= 0, then the function Gν extends
continuously to all points t ∈ R \ {tν}. Theorem 1.1 follows from Theorem 4.1 and
this observation.

Proof. As seen earlier, there exist measures ρn ∈ ID(�) satisfying

F
µ
� kn
n
(z)= Fµn (Fρn (z)), z ∈ C+.

To each n, denote by sn and s the density of the absolutely continuous part of µ� kn
n

and that of ν, respectively. Relation (3-1) shows that |F
µ
� kn
n
− Fρn | is small relative

to |Fρn |. Thus, it suffices to focus on the asymptotic behavior of Fρn .
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Given ε > 0, we first prove that there exists M > 0 such that |sn(t)− s(t)|< ε
for |t | > M and for sufficiently large n. Since the measures ρn converge weakly
to ν by Proposition 3.2, we have |Fρn (i)| → |Fν(i)| as n→∞. In the sequel, we
shall only consider the integers n which satisfy the following two conditions:

kn > 13 and 9|Fν(i)|> 6|Fρn (i)|.

Applying the estimate (2-4) to ρn , we get |Fρn (t)|>
1
3 |t | for all such n and for

|t | > 9|Fν(i)|. It follows from (3-1) that |F
µ
� kn
n
(t)| > 1

4 |t | for the same n and t .
Combining this with another application of (2-4) to the density s, we get

(4-1) |sn(t)− s(t)|< 7
π

1
|t |
, |t |> 9|Fν(i)|,

for these large n. Therefore, the desired cutoff constant M can be chosen as

M =max
{

9|Fν(i)|,
7
επ

}
.

We conclude that it suffices to prove the uniform convergence of sn to s on a set
of the form I \U, where I = [−M,M]. To this purpose, fix I = [−M,M] with
M > 0, and let δ > 0 be arbitrary but fixed. Recall that the map

t 7→ <Fν(t)

is an increasing homeomorphism of R. Thus, the set

J =<Fν(I )= {x ∈ R : <Fν(−M)≤ x ≤<Fν(M)}

is a compact interval. Set

0 = {x ∈ J : uν(x)≥ δ}

and
1=

{
x ∈ J : uν(x) >

δ
2

}
.

We have 0 ⊂1⊂ J, where 0 is closed, and 1 is relatively open in J. We conclude
that 0 is contained in the union of finitely many connected components of1. Taking
the closure of those components, we find a finite family J1, J2, . . . , JK of pairwise
disjoint, closed intervals such that

0 ⊂
⋃

1≤`≤K

J` ⊂1.

We have uν ≥ δ/2 on the union
⋃

1≤`≤K J` and uν ≤ δ on the complement J ′ =
J \
(⋃

1≤`≤K J`
)
.

Denote I` = {t ∈ I : <Fν(t) ∈ J`} for each 1≤ `≤ K. Note that

=Fν(t)≥ δ/2

for each t ∈
⋃

1≤`≤K I`. Thus, the density of ν is bounded away from zero on⋃
1≤`≤K I`. From Lemma 2.7, we see that the functions Fν and Fρn both extend
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analytically to a neighborhood of the set
⋃

1≤`≤K I` for sufficiently large n. These
extensions are injective. Moreover, the convergence Fρn → Fν holds uniformly in
that neighborhood. By virtue of (3-1), we conclude that the functions F

µ
� kn
n

will
have the same behavior on the set

⋃
1≤`≤K I` as n→∞. It follows that the measure

µ
� kn
n has no atom in the union

⋃
1≤`≤K I` for large n and sn→ s uniformly on this

set by the Stieltjes inversion formula.
We prove next the uniform convergence on the set I ′ (or on I ′ \U ), where

(4-2) I ′ = {t ∈ I : <Fν(t) ∈ J ′} = I \
(⋃

1≤`≤K
I`
)
.

We claim that

(4-3) supx∈J ′ uρn (x)≤ 2δ

for sufficiently large n. Assume, to get a contradiction, that there exist positive
integers n1 < n2 < · · ·→∞ and points x1, x2, . . . ∈ J ′ such that uρnk

(xk) > 2δ. By
the definition of uρn given in Section 2, we have

(4-4)
∫

R

1+ t2

(t − xk)2+ uρnk
(xk)2

dσnk (t)= 1, k ≥ 1,

where σnk is the free generating measure of ρnk . By passing to a subsequence if
necessary, we assume that xk→ x0 ∈ J ′ as k→∞. Then, denoting νγ,σ� by ν, the
identity (4-4) and the fact that σn→ σ weakly imply

1≤
∫

R

1+ t2

(t − xk)2+ (2δ)2
dσnk (t)→

∫
R

1+ t2

(t − x0)2+ (2δ)2
dσ(t)

as k→∞. We conclude that uν(x0)≥ 2δ, which is in contradiction to the fact that
x0 ∈ J ′. Thus, the estimate (4-3) is proved.

The rest of the proof is divided into two cases according to whether U =∅ or
U 6=∅. By translating the measure ν if necessary, we may assume that <Fν(0)= 0.

Case (1): 0 /∈ Fν(R) and U =∅. In this case, uν(0) > 0 and thus 0 ∈ Aν . Since the
set Aν is open, there exists a small number a > 0 such that the interval [−4a, 4a] is
contained in Aν . By considering a smaller δ if necessary, we may assume further that

(4-5) [−4a, 4a] ⊂
⋃

1≤`≤K

J`.

Since the map t 7→ <Fν(t) is an increasing homeomorphism of R, the uniform
convergence of Fρn → Fν on

⋃
1≤`≤K I` implies that there exists some integer

N > 0 such that

[−2a, 2a] ⊂
{
<Fρn (t) : t ∈

⋃
1≤`≤K

I`
}
, n ≥ N .
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Since the map t 7→ <Fρn (t) is also a homeomorphism of the same nature, we have

inf
t∈I ′
|<Fρn (t)| ≥ 2a, n ≥ N ,

by recalling the definition (4-2) of the complement I ′. Using (3-1) and enlarging
N if necessary, we conclude that

(4-6) inf
t∈I ′
|<F

µ
� kn
n
(t)| ≥ a, n ≥ N .

Further enlarging N, the inequality (4-3) and the relation (3-1) imply that

(4-7) =F
µ
� kn
n
(t)≤ 3δ, t ∈ I ′, n ≥ N .

From (4-6) and (4-7), we see that

0≤ sn(t)≤
3δ

a2π

for t ∈ I ′ and n ≥ N. On the other hand, the relation (4-5) and the fact that uν ≤ δ
on J ′ yield

0≤ s(t)≤ δ

16a2π

for t ∈ I ′. As the parameter δ can be arbitrarily small, we have proved the uniform
convergence of sn→ s on I ′. This finishes the proof of Theorem 4.1(1).

Case (2): 0 ∈ Fν(R). In this case, uν(0) = 0 and Fν(0) = 0 = Hν(0) by our
normalization. Let an be the unique real number such that <Fρn (an)= 0 (and hence
Fρn (an)= iuρn (0)). We first show that an is small for large n. To this end, we write
U = (−2b, 2b) where b > 0 and set c = b/5. Observe that Hν(ic) ∈ C+, and that
the Lipschitz property of Hν yields

|Hν(ic)| = |Hν(ic)− Hν(0)| ≤ 2c.

Since limn→∞ Hρn (ic)= Hν(ic), there exists an integer N > 0 such that Hρn (ic) ∈
C+ for all n≥ N. Consequently, we have uρn (0)< c for such n; for if uρn (0)≥ c> 0,
we will get

1=
∫

R

1+ t2

t2+ uρn (0)2
dσn(t)≤

∫
R

1+ t2

t2+ c2 dσn(t)

= 1− 1
c=Hρn (ic) < 1,

a contradiction. Note further that

|Hρn (ic)− an| = |Hρn (ic)− Hρn (iuρn (0))| ≤ 2(c− uρn (0))≤ 2c

for all n ≥ N. (We have used the inversion relationship an = Hρn (Fρn (an)) here.)
Therefore, by enlarging N if necessary, we conclude that |an|< 5c = b for n ≥ N.
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Now, (2-2) shows that for any t ∈ I ′ \U and n ≥ N, we have

|Fρn (t)− Fρn (an)| ≥
1
2
|t − an|>

b
2
.

This implies further that

|Fρn (t)|>
b
2
− |Fρn (an)| =

b
2
− |uρn (0)|>

b
4
, t ∈ I ′ \U, n ≥ N .

In other words, for such values of t and n, |Fρn (t)| is always bounded away from
zero. Then an argument similar to the proof of Case (1) yields the absolute continuity
of the free convolution µ� kn

n and the uniform convergence sn→ s on I ′\U, finishing
the proof of Theorem 4.1(2).

Finally, the L p-convergence result in Theorem 4.1(3) follows from the estimate
(4-1) and the dominated convergence theorem. �

Remark (Local analyticity and approximation). An important feature of supercon-
vergence are the analyticity properties of the distributions in the limiting process.
Indeed, under the weak convergence assumption of Theorem 4.1, if I is a finite
interval on which the limit density dν/dx is bounded away from zero (and hence it
admits an analytic continuation to a neighborhood of I ), then the restriction of the
free convolution µ� kn

n on I becomes absolutely continuous in finite time and its
density continues analytically to a neighborhood of I. Moreover, these extensions
can be approximated uniformly by the analytic continuation of dν/dx on I, thanks
to Lemma 2.7 and the identity (3-1).

5. Applications

In this section, we apply our main result to some of the most important limit theorems
in free probability. We begin by examining the geometric condition: 0 ∈ Fν(R).
Note that the singular integral in the following result takes values in (0,∞].

Proposition 5.1. Let ν = νγ,σ� be a nondegenerate law in ID(�). We have:

(1) 0 ∈ Fν(R) if and only if

(5-1) L = sup
ε>0

−=ϕν(iε)
ε

=

∫
R

1+ t2

t2 dσ(t)≤ 1.

In this case, the value of the unique zero tν of Fν is given by

tν = γ −
∫

R

1
t dσ(t).

(2) ν({tν}) > 0 if and only if L < 1, and we have ν({tν})= 1− L in this case.

Proof. The identity

sup
ε>0
(−=ϕν(iε))/ε =

∫
R

1+ t2

t2 dσ(t)



286 HARI BERCOVICI, JIUN-CHAU WANG AND PING ZHONG

follows from the free Lévy–Khintchine formula

−=ϕν(iε)= ε
∫

R

1+ t2

ε2+ t2 dσ(t)

and the monotone convergence theorem, and we see that the supremum here is in
fact a genuine limit:

sup
ε>0
(−=ϕν(iε))/ε = lim

ε→0+
(−=ϕν(iε))/ε.

Next, recall from [Belinschi and Bercovici 2005, Proposition 4.7] that 0 ∈ Fν(R)
if and only if the limit

tν = Hν(0)= lim
ε→0+

Hν(iε)

exists, tν ∈ R, and the Julia–Carathéodory derivative H ′ν(0) ≥ 0. Note that if the
limit tν exists and is real, then the derivative

(5-2) H ′ν(0)= lim
ε→0+

=Hν(iε)
ε

always exists and belongs to the interval [−∞, 1). Moreover, if 0 ∈ Fν(R) and
H ′ν(0) > 0 then we have the Julia–Carathéodory derivative F ′ν(tν)= 1/H ′ν(0).

Now, if 0 ∈ Fν(R), then we know the limit tν ∈ R. Hence, (5-2) implies
H ′ν(0) = 1 − L . Since H ′ν(0) ≥ 0 in this case, we conclude that 1 ≥ L . On
the other hand, since Fν(R)= ∂�ν , the inversion formula shows that

Fν(tν)= Fν(Hν(0))= 0.

Conversely, if the singular integral L converges and 1 ≥ L , then we have
=Hν(iε)→ 0 · (1− L)= 0 as ε→ 0+. On the other hand, the estimate

|t |
ε2+ t2 ≤

1+ t2

ε2+ t2 ≤
1+ t2

t2 ∈ L1(σ ), t ∈ R, ε > 0,

and the dominated convergence theorem imply that the function t 7→ 1/t belongs
to L1(σ ) and

<Hν(iε)= γ + (ε2
− 1)

∫
R

t
ε2+ t2 dσ(t)→ γ −

∫
R

1
t dσ(t)

as ε→ 0+. It follows that the vertical limit tν is equal to

γ −

∫
R

1
t dσ(t) ∈ R.

As seen earlier, this fact and the formula (5-2) imply that H ′ν(0)= 1− L . Therefore,
we have H ′ν(0)≥ 0, and the proof of (1) is finished.

The statement (2) follows from the fact that the derivative F ′ν(tν)= 1/ν({tν}). �
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We remark that the results in [Belinschi and Bercovici 2005] were proved using
Denjoy–Wolff analysis for boundary fixed points of analytic self-maps on C+. A
different approach to the same results has been used in [Huang and Wang 2015],
which yields a more general description for the points on the boundary set ∂�ν .

Stable approximation. Recall that two measures µ, ν ∈M are said to have the
same type (and we write µ∼ ν) if there exist constants a > 0 and b ∈ R such that
µ(E) = ν(aE + b) for all Borel sets E ⊂ R. The relation ∼ is an equivalence
relationship among all probability laws, and hence the set M is partitioned into a
union of distributions with inequivalent types. A nondegenerate distribution ν ∈M
is said to be �-stable if ν ∼ ν1 � ν2 whenever ν1 ∼ ν ∼ ν2. Clearly, within one
type either all distributions are stable or else none of them is stable.

Each �-stable law ν is associated with a unique stability index α ∈ (0, 2], so that
if X and Y are free random variables drawn from the same law ν and a, b> 0, then
the distribution of the sum aX + bY is a translate of the distribution of the scaled
variable (aα + bα)1/αX. Stable laws of the same type share the same index.

Freely stable laws are �-infinitely divisible and absolutely continuous, and
they can be classified using the stability index α. Following [Bercovici and
Voiculescu 1993], every �-stable law has the same type as a unique distribution
whose Voiculescu transform falls into the following list:

(1) ϕ(z)= 1/z for α = 2.

(2) ϕ(z)= bz1−α for 1< α < 2, where |b| = 1 and arg b ∈ [(α− 2)π, 0].

(3) ϕ(z)= bz1−α for 0< α < 1, where |b| = 1 and arg b ∈ [π, (1+α)π ].

(4) ϕ(z)=−2bi + [2(2b− 1)/π ] log z for α = 1, where b ∈ [0, 1].

Here, the complex power and logarithmic functions are given by their principal
value in C+. One can also find a formula for the density of the �-stable laws in
[Bercovici and Pata 1999]. Above all, we mention that the case α = 2 corresponds
to the stable type of the standard semicircular law.

The interest in the class of freely stable laws arises from the fact that a measure
ν is �-stable if and only if there exist a sequence {X i }

∞

i=1 of identically distributed
free random variables and constants an > 0 and bn ∈ R such that the distribution
of the normalized sum Sn =

∑n
i=1(X i − bn)/an converges weakly to the law ν. In

this case, the common distribution of the sequence X i is said to belong to the free
domain of attraction of the stable law ν. Thus, up to a change of scale and location,
the distributional behavior of a large free convolution µ� n for a measure µ in a free
domain of attraction can be estimated using the corresponding freely stable law.

Free domains of attraction for �-stable laws are determined in [Bercovici and
Pata 1999], showing that these domains of attraction coincide with their classical
counterparts relative to the classical convolution. In the semicircular case, the free
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domain of attraction consists of all nondegenerate measures µ ∈M such that the
truncated variance function

Hµ(x)=
∫ x

−x
t2 dµ(t), x > 0,

satisfies limx→∞ Hµ(cx)/Hµ(x)= 1 for any given c > 0. This is in parallel to the
classical theory of central limit theorems, that is, convergence to a Gaussian law.

With that being said, the following result shows that the quality of freely stable
approximation is in fact much better than its classical counterpart. This result is
stated in the general framework of triangular arrays with identical rows.

Proposition 5.2. Let ν be a �-stable law for which the weak approximation
µ
� kn
n → ν holds. Then the measure µ� kn

n superconverges to the law ν on R.

Proof. This is a direct consequence of Theorem 4.1 and the criterion (5-1). Indeed,
one has L =∞ in all cases of the index α, which implies that 0 /∈ Fν(R). �

In particular, the preceding result generalizes the superconvergence for measures
with finite variance in [Wang 2010] to the entire free domain of attraction of the
semicircular law.

Notice that stable approximation to the free sum Sn could fail for any choice of
constants an and bn if the common distribution µ of the summands X i does not
belong to any free domain of attraction, but even in this case one may still have
weak convergence along some subsequence Skn . The limit ν in this situation is
necessarily �-infinitely divisible, and hence Theorem 4.1 still applies to this case.
The law µ in this case is said to belong to the free domain of partial attraction of
the law ν. In fact, a probability distribution is �-infinitely divisible if and only if its
free domain of partial attraction is nonempty. It is also well known that the domain
of partial attraction of a stable law is strictly larger than its domain of attraction
in both free and classical theories. We refer to [Bercovici and Pata 1999] for the
details of these results.

Poisson approximation. Here we study an example of freely infinitely divisible
approximation relative to Poisson type limit theorems. Let µ be an arbitrary
probability measure on R, µ 6= δ0, and let λ > 0 be a given parameter. Recall that
the compound free Poisson distribution νλ,µ with rate λ and jump distribution µ is
the weak limit of

[(1− λ/n)δ0+ (λ/n)µ]� n

as n→∞ [Voiculescu et al. 1992]. The law νλ,µ is �-infinitely divisible, and its
free generating pair is given by

γ = λ

∫
R

t
1+ t2 dµ(t), dσ(t)= λ t2

1+ t2 dµ(t).
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Thus, we see immediately that L = λ and tνλ,µ = 0 in this case, which leads further
to the following result:

Proposition 5.3. The origin is an atom of mass 1−λ for the law νλ,µ if and only if
the parameter λ is less than 1. If λ > 1, then the superconvergence phenomenon in
any weak approximation µ� kn

n → νλ,µ holds globally on R.

Note the case µ= δ1 corresponds to the approximation by Marčenko–Pastur law:

dνλ,δ1(t)=


1

2π t

√
4λ− (t − 1− λ)2 χ(t) dt if λ≥ 1;

(1− λ)δ0+
1

2π t

√
4λ− (t − 1− λ)2 χ(t) dt if 0< λ < 1,

where χ stands for the indicator function of the open interval ((1−
√
λ)2, (1+

√
λ)2).

Clearly, the measure ν1,δ1 has no atom and yet Fν1,δ1
(0)= 0.
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NORM CONSTANTS IN CASES OF
THE CAFFARELLI–KOHN–NIRENBERG INEQUALITY

AKSHAY L. CHANILLO, SAGUN CHANILLO AND ALI MAALAOUI

Based on elementary linear algebra, we provide radically simplified proofs
using quasiconformal changes of variables to obtain sharp constants and
optimizers in cases of the Caffarelli–Kohn–Nirenberg inequality. Some of
our results were obtained earlier by Lam and Lu.

1. Introduction

The aim of this elementary note is to obtain sharp constants and also the minimizer
for special cases of the Caffarelli–Kohn–Nirenberg (CKN) inequality via change of
variables employing a suitable quasiconformal map. We start by recalling the main
inequality that we are interested in, proved first in [Caffarelli et al. 1984]:

(1-1)
(∫

Rn
| f (x)|r |x |αn dx

)1/r

≤ C
(∫

Rn
| f (x)|s |x |αn dx

)(1−t)/s(∫
Rn
|∇ f (x)|p|x |α(n−p) dx

)t/p

,

where 1≤ p < n and 1/r = (1− t)/s+ t (n− p)/(np) with 0≤ t ≤ 1 and a >−1.
In our investigation of the best constant C for which inequality (1-1) holds, we

will use the constant M(s, r, p), for s, r and p as above, appearing in the inequality

(1-2) ‖ f ‖r ≤ M(s, r, p)‖ f ‖1−t
s ‖∇ f ‖tp.

The constant and optimizers of this last inequality are the subjects of this result:

Theorem 1.1 [del Pino and Dolbeault 2013]. Let 1 < p ≤ n and r > 1 such that
r ≤ p(n− 1)/(n− p), and s = p(r − 1)/(p− 1). There exists a positive constant
M(s, r, p) such that for every f ∈ Lr (Rn) with ∇ f ∈ L p(Rn), we have{

‖ f ‖r ≤ M(s, r, p)‖ f ‖1−t
s ‖∇ f ‖tp if r > p,

‖ f ‖s ≤ M(s, r, p)‖ f ‖1−t
r ‖∇ f ‖tp if r < p,

MSC2010: 46E35.
Keywords: Caffarelli–Kohn–Nirenberg inequality, weighted Sobolev inequality, quasiconformal

maps, sharp constants, optimizers.
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where t is taken as above. Moreover the best constant is achieved by the function:

(1-3) f0(x)= A(1+ B|x − x0|
p/(p−1))−(p−1)/(r−p),

with A and B ∈ R, x0 ∈ Rn and B has the sign of a− p.

The proof of (1-2) follows by noticing that

‖ f ‖r ≤ ‖ f ‖1−t
s ‖ f ‖tnp/(n−p).

We then apply the Sobolev inequality to the second term on the right

‖ f ‖np/(n−p) ≤ Cp‖∇ f ‖p,

to conclude. In this paper, we show that the optimization problem for the best
constant of (1-1) exhibit different behavior for the two cases α > 0 and 0>α >−1.
In the case 0 > α > −1, we compute the best constant and we show that the
optimizer is radial. In the case α > 0, we also compute the best constant and we
show that in this case there is a break in the symmetry of the optimizers, since the
best constant cannot be obtained by radial functions anymore. More importantly we
establish that there is no optimizer. We mainly rely on a study of the eigenvectors
and eigenvalues of the differential of the quasiconformal change of variable that we
will use. In the sequel we set φ(x)= x |x |α . The results of this paper can be stated
as follows:

Theorem 1.2. The sharp constant in the CKN inequality (1-1) for −1< α < 0 and
any function f , radial or otherwise, is given by

(1+α)t/n−t M(s, r, p),

where M(s, r, p) is the constant in (1-2). Moreover the optimizer of (1-1) is then a
radial function and can be taken to be f ◦φ, where f can be taken to be the radial
optimizers in the cases investigated in [del Pino and Dolbeault 2013], namely (1-3).

The result in Theorem 1.2 was established earlier by Nguyen Lam and Guozhen
Lu [2017] using the quasiconformal map that we use in our work. Our proof in part
is a radically simplified approach. A very comprehensive list of references on this
topic is found in [Lam and Lu 2017]. In [Dolbeault et al. 2016], the authors also
investigate the symmetry and symmetry breaking of the optimizers of the CKN, in
the case p = 2 and t = 1 using a nonlinear flow approach. In the case t 6= 1 and
p = 2, the best constants of the CKN inequality were investigated in [Dolbeault
and Esteban 2012]. In addition to Theorem 1.2 we prove a symmetry breaking
phenomenon for the case α > 0:

Theorem 1.3. The sharp constant for the CKN inequality for α > 0 is given by

(1+α)t/n M(s, r, p).
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Moreover, there is no optimizer for the inequality and this constant is strictly bigger
than the one obtained for radial functions.

Our proofs also show the following theorem for radial functions for all α >−1:

Theorem 1.4. The sharp constant for inequality (1-1) restricted to radial functions
for α >−1 is given by

(1+α)t/n−t M(s, r, p).

2. Proofs of the theorems

Our aim is now to make quasiconformal changes of variables in (1-2) with explicit
information on the Jacobian and eigenvalues of the quasiconformal changes of vari-
ables. To this end, the eigenvalues and Jacobians can be calculated explicitly using
a linear algebra trick in [Chanillo and Torchinsky 1986, Lemma 2.23, p. 14]. This
method was introduced there to calculate the Hessian that appears in stationary phase
calculations, but the linear algebra idea goes back to the calculation of what are called
permanents and bordered matrices and may be found in classical books on algebra.

If we set y = φ(x) in (1-2), then

Dy = Dφ(x)

and so if we set A = Dφ and use the chain rule, (1-2) becomes

(2-1)
(∫

Rn
| f ◦φ(x)|r |Jφ(x)|dx

)1/r

≤M(s,r, p)
(∫

Rn
| f ◦φ(x)|s |Jφ(x)|dx

)(1−t)/s

×

(∫
Rn
|(A−1)?∇( f ◦φ)|p|Jφ(x)|dx

)t/p

.

Here Jφ is the Jacobian of the map y = φ(x), that is |Jφ(x)| = | det Dφ(x)| and B?

denotes the transpose of the matrix B. To obtain the Caffarelli–Kohn–Nirenberg
inequalities in some cases we simply choose the explicit quasiconformal map (see
also [Chanillo and Wheeden 1992]):

(2-2) φ(x)= x |x |α, α >−1.

Thus the goal is to calculate explicitly the eigenvalues of the differential of (2-2) and
thus we have full information of the matrix A above and in particular the Jacobian
of (2-2).

Remark. We remark that using [del Pino and Dolbeault 2013] we can also consider
the case of p = n and the Onofri inequality and Moser–Trudinger type inequalities.

Lemma 2.1. Given the map φ(x) as in (2-2), the differential A=Dφ(x) is unitarily
diagonalizable and the eigenvalues of A are given by

λ1 = (1+α)|x |α, λ2 = · · · = λn = |x |α.
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Thus as a corollary we obtain that the Jacobian Jφ(x) is

|Jφ(x)| = (1+α)|x |αn.

Proof. The proof of Lemma 2.1 involves implementing the elementary proof of
Lemma 2.23, in [Chanillo and Torchinsky 1986] in this special situation. Since
Dφ is a symmetric matrix, Dφ is unitarily diagonalizable, that is one can write
A = Q RQt , where Q is a rotation matrix and R a diagonal matrix. It is enough to
compute the eigenvalues for Dφ; the Jacobian formula follows by multiplying the
eigenvalues. First note

Dφ(x)= A =

|x |
α
+αx2

1 |x |
α−2
· · · αx1x j |x |α−2

· · · αx1xn|x |α−2

...
...

...

αx1xn|x |α−2
· · · αxnx j |x |α−2

· · · |x |α +αx2
n |x |

α−2

 .
Next

A−λI =

|x |
α
+αx2

1 |x |
α−2
− λ · · · αx1x j |x |α−2

· · · αx1xn|x |α−2

...
...

...

αx1xn|x |α−2
· · · αxnx j |x |α−2

· · · |x |α +αx2
n |x |

α−2
− λ

 .
It follows that

det(A− λI )= |x |n(α−2) det C,

where

C =

|x |
2
+αx2

1 − λ|x |
2−α
· · · αx1x j · · · αx1xn

...
...

...

αx1xn · · · αxnx j · · · |x |2+αx2
n − λ|x |

2−α

 .
To compute the characteristic polynomial of Dφ we simply compute det C. It is
now that we use the trick in [Chanillo and Torchinsky 1986]. We simply add an
extra row and column to C such that the new matrix now with n+1 rows and n+1
columns has the same determinant as C. Thus we form the matrix D given by

D =


1 x1 · · · x j · · · xn

0 |x |2+αx2
1 − λ|x |

2−α
· · · αx1x j · · · αx1xn

...
...

...
...

...

0 αx1xn · · · αxnx j · · · |x |2+αx2
n − λ|x |

2−α

 .
Note det C = det D. Now we perform elementary row operations in D that preserve
the determinant. We replace row R j , j ≥ 2 by R j − αx j−1 R1 where R1 is row 1.
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The new matrix we get is

E =



1 x1 · · · x j · · · xn

−αx1 |x |2− λ|x |2−α · · · 0 · · · 0
...

...
...

...

−αx j 0 · · · |x |2− λ|x |2−α · · · 0
...

...
...

...

−αxn 0 · · · 0 · · · |x |2− λ|x |2−α


.

Note det D= det E and the matrix we get if we remove the first row and first column
of E is a diagonal matrix with |x |2−λ|x |2−α on the diagonal. To compute det E we
simply expand for the determinant using the first row of E and then expanding by
the j -th row of the subsequent cofactor matrices we get for the entry a1, j+1. We get

det E = (|x |2− λ|x |2−α)n +α(|x |2−α|x |2−α)n−1
n∑

j=1

x2
j ,

which is

(|x |2− λ|x |2−α)n +α(|x |2−α|x |2−α)n−1
|x |2.

The expression above obviously factors as

(2-3) (|x |2− λ|x |2−α)n−1((1+α)|x |2− λ|x |2−α).

From (2-3) the conclusion of our Lemma follows because

det(A− λI )= 0= (|x |2− λ|x |2−α)n−1((1+α)|x |2− λ|x |2−α). �

First note that A = Dφ is a symmetric matrix and thus there exist rotation
matrices Q such that,

A−1
= (A−1)? = Q D̂Qt ,

where D̂ is diagonal. Using the eigenvalues of A computed from Lemma 2.1 above
we may write

D̂ = |x |−αD,

where

D = diag((1+α)−1, 1, 1, . . . , 1).

Thus, by Lemma 2.1,∫
Rn
|(A−1)?∇ f |p|Jφ(x)| dx = (1+α)

∫
Rn
|Q DQt(∇ f )|p|x |α(n−p) dx .
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We now apply Lemma 2.1 to (2-1) and we get with M(s, r, p) the constant that
occurs in (1-2),

(2-4)
(∫

Rn
| f (x)|r |x |αn dx

)1/r

≤(1+α)t/nAαM(s, r, p)
(∫

Rn
| f (x)|s |x |αn dx

)(1−t)/s

×

(∫
Rn
|∇ f (x)|p|x |α(n−p) dx

)t/p

,

where we define

Aα = sup
f

[∫
Rn |Q DQt(∇ f )(x)|p|x |α(n−p) dx∫

Rn |∇ f (x)|p|x |α(n−p) dx

]t/p

.

The supremum is taken over those functions f where the denominator in the
definition above is finite.

Lemma 2.2. For α >−1,

Bα ≤ Aα ≤ Cα =
{

1 , α ≥ 0,
(1+α)−t , −1< α < 0,

with

Bα =

[∫
Sn−1

([ 1
(1+α)2 − 1

]
cos2 ψ(σ)+ 1

)p/2 dσ∫
Sn−1 dσ

]t/p

,

where
cosψ(σ)= 〈σ, v〉,

where v is a unit eigenvector for the eigenvalue 1/(1+α) at σ ∈ Sn−1. Moreover,
on radial functions f we may take Aα = Bα for any α >−1 and the ratio defining
Aα is identically Bα for all radial functions without the supremum.

Proof. We now verify the assertions made about Aα. We note that pointwise

|Q DQt(∇ f )(x)| = |DQt
∇ f (x)| ≤ C1/t

α |∇ f (x)|.

This establishes Aα ≤ Cα.
Next we establish the lower bound on Aα . Here we assume f is radial. Now note

(2-5) |x |−αA = Q D−1 Qt .

The coefficients of A are homogeneous of degree α and thus the coefficients of the
left side of (2-5) are homogeneous of degree 0. Since D is a constant matrix, it
follows that the coefficients of Q, Qt are functions of σ ∈ Sn−1. We now wish to
consider for f radial the expression∫

Rn |Q DQt(∇ f )|p|x |α(n−p) dx∫
Rn |∇ f |p|x |α(n−p) dx

.
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Using the fact that the coefficients of Q depend only on σ we see when f is radial,
the expression above when converted to polar coordinates is identical to

(2-6)

∫
Sn−1 |Q(σ )DQt(σ )∇r |p dσ∫

Sn−1 dσ
.

Now let {ei (σ )}
n
i=1 be an orthonormal basis of eigenvectors for Q DQt. Then since

∇r = σ , we see that

|Q DQt
∇r |2 =

1
(1+α)2

〈e1, σ 〉
2
+

n∑
j=2

〈σ, e j 〉
2.

The expression above can be rearranged as(
1

(1+α)2
− 1

)
cos2 ψ + 1.

Substituting this expression into (2-6) we readily establish that Bα ≤ Aα . Since we
have equality at every step in the computation above, we also obtain that Aα = Bα
when f is radial. �

Lemma 2.3. For α >−1, we have,

Bα = (1+α)−t .

Proof. From the formula for A = Dφ, the eigenvalue equation for A− (1+α)I is

(2-7) (σ 2
j − 1)y j +

∑
k 6= j

σkσ j yk = 0, j = 1, 2, . . . , n,

where the eigenvector is v= y= (y1,y2,...,yn). Now we set y=σ = (σ1,σ2,...,σn)

and we get the left side of (2-7) is

σ j (σ
2
j − 1)+ σ j

∑
k 6= j

σ 2
k = σ j (σ

2
j − 1)+ σ j (1− σ 2

j )= 0.

Thus σ is the unit eigenvector for the eigenvalue (1+α), which we already know
has a 1-dimensional eigenspace. Thus,

cosψ = 〈σ, σ 〉 = 1,

and it follows from the expression for Bα in the statement of Lemma 2.2 that for
any α >−1,

Bα = (1+α)−t . �

This lemma shows in particular that if we restrict (1-1) to radial functions, then
the sharp constant is (1+α)t/n−t M(s, r, p), as stated in Theorem 1.4.
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Corollary 2.4. When −1< α < 0, then

Bα = Aα = Cα = (1+α)−t .

Proof. The proof follows in an obvious manner by combining the conclusions of
Lemmas 2.2 and 2.3, which yields Bα = Cα when −1< α < 0. �

Thus the sharp constant in (2-4) is established when −1< α < 0.

3. The case α > 0

For the case α > 0, so far we have the upper and lower bounds for the sharp constant
that is (1+α)−t

≤ Aα ≤ 1, in (2-4). Also if we restrict to radial functions then

Aα(radial)= (1+α)−t .

Now if we check closely the computations in Lemma 2.3, we obtain

|Q DQt(∇ f )(x)|2 =
[(

1
(1+α)2

− 1
)

cos2 ψ + 1
]
|∇ f (x)|2,

where cosψ = 〈v,w〉, v is a unit vector in the direction of the eigenvector for
(1+α) and w the unit vector in the direction of ∇ f . In particular v is radial at all
points x ∈ Rn. But now for α > 0, (1+α)−2

− 1< 0, and so it is advantageous to
arrange cosψ = 0 as opposed to α < 0 when (1+α)−2

− 1> 0 and so there it is
advantageous to have cosψ = 1 or functions to be radial. So the idea of proving
Theorem 1.3 is to choose a function gradient having a big angular component that
dominates the radial component. If one wants an optimizer for the case α > 0, ∇ f
needs to be orthogonal to v, that is tangent to the sphere at all points. Notice the
tangential directions to the sphere are eigenvectors to the eigenvalue 1 for A = Dφ.
But in particular in 3D, ∇ ×∇ f = 0; no such functions exist, or if f has some
smoothness the vector field ∇ f on S2 will be smooth and tangential to S2 which
cannot happen by the hairy ball theorem. In fact, we show the following:

Lemma 3.1. If α > 0, then Aα = 1.

Proof. Indeed, based on the computations above, we have that the matrix Ã=Q DQt

has two eigenvalues. The first one is 1/(1+α) < 1, corresponding to the radial
direction ∇r and the second eigenvalue is 1 with multiplicity (n−1) corresponding
to the angular directions (tangential to Sn−1). We would like to estimate the quantity

F( f )=

∫
Rn | Ã∇ f |p|x |α(n−p) dx∫

Rn |∇ f |p|x |α(n−p) dx

for some choice of function f knowing that Aα = sup f F( f ). We use spherical
coordinates (r, φ1, . . . , φn−1), and we form

fk(r, φ1, . . . , φn−1)= h(r) sin(φ1) · · · sin(φn−2) cos(kφn−1),
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where h : [0,∞)→ R is smooth and h(t)= 0 for t < 1 and t > 4 and k ∈ N. For
the sake of simplicity, we do the computation in n = 3; the higher dimensional case
is similar.

So fk = h(r) sinφ cos(kθ), and thus

∇ fk = h′(r) sinφ cos(kθ)ur +
h(r)

r
cos(φ) cos(kθ)uφ −

h(r)
r

k sin(kθ)uθ ,

where (ur , uφ, uθ ) is the standard orthonormal base defining the spherical coordi-
nate system. Thus

Ã∇ fk =
h′(r) sinφ cos(kθ)

(1+α)
ur +

h(r)
r

cos(φ) cos(kθ)uφ −
h(r)

r
k sin(kθ)uθ .

We compute then

| Ã∇ fk |
p
=

[
h′(r)2 sin2 φ cos2(kθ)

(1+α)2

+

(
h(r)

r

)2

cos2 φ cos2(kθ)+
(

h(r)
r

)2

k2 sin2(kθ)
] p

2

=

[
cos2(kθ)

(
h′(r)2 sin2 φ

(1+α)2
+

(
h(r)

r

)2

cos2 φ

)
+k2

(
h(r)

r

)2

sin2(kθ)
] p

2
.

Hence,∫
R3
| Ã∇ fk |

p
|x |α(n−p) dx

=

∫ 4

1

∫ π
2

0

∫ 2π

0

[
cos2(kθ)

(
h′(r)2 sin2 φ

(1+α)2
+

(
h(r)

r

)2

cos2 φ

)

+ k2
(

h(r)
r

)2

sin2(kθ)
] p

2
rα(n−p)+2 sinφ dθ dφ dr

= k p
∫ 4

1

∫ π
2

0

∫ 2π

0

[
cos2(kθ)

k2

(
h′(r)2 sin2 φ

(1+α)2
+

(
h(r)

r

)2

cos2 φ

)

+

(
h(r)

r

)2

sin2(kθ)
] p

2
rα(n−p)+2 sinφ dθ dφ dr

= k p
∫ 4

1

∫ π
2

0

∫ 2π

0

[
cos2(u)

k2

(
h′(r)2 sin2 φ

(1+α)2
+

(
h(r)

r

)2

cos2 φ

)

+

(
h(r)

r

)2

sin2(u)
] p

2
rα(n−p)+2 sinφ du dθ dr.
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Therefore we have∫
R3
| Ã∇ fk |

p
|x |α(n−p) dx

= k p
[∫ 4

1

∫ π
2

0

∫ 2π

0

[
h(r)

r
sin(u)

]p

rα(n−p)+2 sinφ du dφ dr + o(1)
]
.

A similar computation yields∫
R3
|∇ fk |

p
|x |α(n−p) dx

= k p
[∫ 4

1

∫ π
2

0

∫ 2π

0

[
h(r)

r
sin(u)

]p

rα(n−p)+2 sinφ du dφ dr + o(1)
]
.

Therefore
F( fk)= 1+ o(1), as k→∞.

Combining this last estimate with Lemma 2.2, we get the conclusion. �

Notice that with this lemma, we have the proof of Theorem 1.3.

Remark. One can see that this sequence of functions fk always satisfies

F( fk)→ 1 as k→∞

for all α >−1, but if α < 0, we have that Aα = (1+α)−t > 1, thus the sequence
fk in the case α < 0 is not optimizing and as we saw earlier, the optimizer is
radially symmetric. The sequence fk gains importance in the case α > 0 since
(α+ 1)−t < 1. Hence there is a symmetry breaking phenomenon and the radially
symmetric functions cannot be optimizers anymore.

On the other hand, by the Riemann–Lebesgue lemma, fk ⇀ 0 as k→∞, hence
we do not obtain an optimizer in this case.
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NONCOMMUTATIVE GEOMETRY OF
HOMOGENIZED QUANTUM sl(2,C)

ALEX CHIRVASITU, S. PAUL SMITH AND LIANG ZE WONG

We examine the relationship between certain noncommutative analogues of
projective 3-space, P3, and the quantized enveloping algebras Uq(sl2). The
relationship is mediated by certain noncommutative graded algebras S, one
for each q ∈ C×, having a degree-two central element c such that S[c−1]0 ∼=

Uq(sl2). The noncommutative analogues of P3 are the spaces Projnc(S). We
show how the points, fat points, lines, and quadrics, in Projnc(S), and their
incidence relations, correspond to finite-dimensional irreducible represen-
tations of Uq(sl2), Verma modules, annihilators of Verma modules, and
homomorphisms between them.
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1. Introduction

This paper concerns the interplay between the geometry of some noncommutative
analogues of P3 and the representation theory of the quantized enveloping algebras,
Uq(sl2), of sl(2,C). We always assume that q is not a root of unity.

1A. Projnc(S) and Uq(sl2). In Section 2D, we define a family of noncommutative
graded algebras S=C[E, F, K , K ′] depending on a parameter q ∈C−{0,±1,±i}
that have the same Hilbert series and the “same” homological properties as the
polynomial ring in four variables. For these reasons the noncommutative spaces
Projnc(S) have much in common with P3. The element K K ′ belongs to the center
of S and S[(K K ′)−1

]0 ∼=Uq(sl2). Thus, Uq(sl2) is the coordinate ring of the “open

MSC2010: 14A22, 16S38, 16W50, 17B37.
Keywords: noncommutative algebraic geometry, quantum groups, quantum sl2 .
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complement” to the union of the “hyperplanes” {K = 0} and {K ′ = 0} in Projnc(S).
This analogy can be formalized: there is an abelian category QCOH( · ), defined
below, that plays the role of the category of quasicoherent sheaves and an adjoint
pair of functors

(1-1) QCOH(Projnc(S))
j∗
−−→

j∗
←−−Mod(Uq(sl2))

that behave like the inverse and direct image functors for an open immersion
j : P3

−{two planes} → P3.

1A1. By definition, QCOH(Projnc(S)) is the quotient category

QGr(S) :=
Gr(S)

Fdim(S)
,

where Gr(S) denotes the category of Z-graded left S-modules and Fdim(S) denotes
the full subcategory of Gr(S) consisting of those modules that are the sum of their
finite-dimensional submodules. If S were the polynomial ring on four variables,
then the category QGr(S) would be equivalent to QCOH(P3), the category of quasi-
coherent sheaves on P3, and this equivalence would send a graded module M to
the OP3-module that Hartshorne denotes by M̃ .

1A2. There is an exact functor π∗ :Gr(S)→QGr(S) that sends a graded S-module
M to M viewed as an object in QGr(S). The composition

(1-2) Gr(S) π∗
−−→QGr(S)= QCOH(Projnc(S))

j∗
−−→Mod(Uq(sl2))

sends a graded S-module M to M[(K K ′)−1
]0.

1A3. The main theme of this paper is the interaction between noncommutative
geometry (where QGr(S) belongs) and representation theory (where Mod(Uq(sl2))

belongs). We show how the points, fat points, lines, and quadrics, in Projnc(S), and
their incidence relations, correspond to finite-dimensional irreducible representa-
tions of Uq(sl2), Verma modules, annihilators of Verma modules, and homomor-
phisms between them.

Just as passing from affine to projective geometry provides a more elegant
picture that unifies seemingly different objects (affine vs. projective conic sections,
for example), passing from the “affine” category Mod(Uq(sl2)) to the “projective”
category QCOH(Projnc(S)) results in a more complete picture of Mod(Uq(sl2)).

1B. Lines and Verma modules, fat points and finite-dimensional irreducible rep-
resentations. The most important Uq(sl2)-modules are its finite-dimensional irre-
ducible representations and its Verma modules. In Section 5, we show that for each
Verma module V ∈Mod(Uq(sl2)) there is a graded S-module M such that
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(1) V ∼= j∗π∗M ;

(2) M ∼= S/S`⊥, where `⊥ ⊆ S1 is a codimension-two subspace;

(3) dim(Mi ) = i + 1 for all i ≥ 0, i.e., M has the same Hilbert series as the
polynomial ring on two variables;

(4) M is a line module for S;

(5) M is a Cohen–Macaulay S-module.

In Section 5, we also show that for each finite-dimensional irreducible representation
L of Uq(sl2) there is a graded S-module F such that

(1) L ∼= j∗π∗F ;

(2) dim(Fi )= dim(L) for all i ≥ 0 and dim(Fi )= 0 for all i < 0;

(3) every proper quotient of F is finite-dimensional, whence F is a simple object
in QCOH(Projnc(S));

(4) F is a fat point module for S;

(5) F is a Cohen–Macaulay S-module.

Items (4) are, essentially, definitions; see Section 2B.

1B1. Point modules and line modules. Let R be the polynomial ring on four vari-
ables with its standard grading. The points in P3

= Proj(R) are in bijection with
the graded modules R/I such that dim(Ri/Ii ) = 1 for all i ≥ 0. The lines in P3

are in bijection with the modules R/I such that dim(Ri/Ii )= i + 1 for all i ≥ 0.
If S is one of the algebras in Section 2D, a graded S-module M is called a point

module, resp. a line module, if it is isomorphic to S/I for some left ideal I such
that dim(Si/Ii )= 1, resp. dim(Si/Ii )= i + 1, for all i ≥ 0.

There are fine moduli spaces that parametrize the point modules and line modules
for S. These fine moduli spaces are called the point scheme and line scheme
respectively. The point scheme for S is a closed subscheme of P3

= P(S∗1 ) and the
line scheme for S is a closed subscheme of the Grassmannian G(1, 3) consisting of
the lines in P3.

In Section 4, we determine the line modules and the point modules for S.

1B2. The point modules for S. The point scheme, PS , for S is C ∪ C ′ ∪ L ∪
{p1, p2} ⊆ P(S∗1 )= P3, the union of two plane conics, C and C ′, meeting at two
points, the line L through those two points, and two additional points (Theorem 4.2).
If Mp = S/Sp⊥ is the point module corresponding to p ∈ PS , then (Mp)≥1 is a
shifted point module; i.e., (Mp)≥1(1) is a point module and therefore isomorphic
to Mp′ for some point p′ ∈ PS . General results show there is an automorphism
σ : PS → PS such that p′ = σ−1 p. Thus, (Mp)≥1 ∼= Mσ−1 p(−1). We determine
PS and σ in Section 4.
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1B3. The line modules for S. Theorem 4.5 says that the lines ` ⊆ P3
= P(S∗1 )

for which S/S`⊥ is a line module are precisely those lines that meet C ∪C ′ with
multiplicity two; i.e., the secant lines to C ∪C ′. These are exactly the lines lying
on a certain pencil of quadrics Q(λ)⊆ P3, λ ∈ P1. This should remind the reader
of the analogous result for the 4-dimensional Sklyanin algebras in which the lines
in P3 that correspond to line modules are exactly the secant lines to the quartic
elliptic curve E .

The labeling of the line modules is such that the Verma module M(λ) is isomor-
phic to j∗π∗(S/S`⊥) for a unique line `⊆ Q(λ).

1B4. Incidence relations. If (p)+ (p′) is a degree-two divisor on C ∪C ′, we write
Mp,p′ for the line module S/S`⊥, where `⊥ is the subspace of S1 that vanishes
on the line ` ⊆ P3

= P(S∗1 ) whose scheme-theoretic intersection with C ∪C ′ is
(p)+ (p′). Proposition 4.8 shows there is an exact sequence

0→ Mσ p,σ−1 p′(−1)→ Mp,p′→ Mp→ 0.

Proposition 4.9 shows that if the line ` just referred to meets the line {K = K ′= 0}⊆
PS at a point p′′, there is an exact sequence

0→ Mσ−1 p,σ−1 p′(−1)→ Mp,p′→ Mp′′→ 0.

1B5. Finite-dimensional simple modules. Let n ∈ N. If q is not a root of unity
there are two simple Uq(sl2)-modules of dimension n+ 1. We label them L(n,±)
in such a way that there are exact sequences

(1-3) 0→ M(±q−n−2)→ M(±q)→ L(n,±)→ 0

in which M(λ) denotes the Verma module of highest weight λ.
In Section 5 we show there are S-modules V (n,±) that are also S[(K K ′)−1

]-
modules, and hence modules over S[(K K ′)−1

]0 ∼=Uq(sl2) and, as such, V (n,±)∼=
L(n,±). We define graded S-modules F(n,±) such that F(n,±)[(K K ′)−1

]0 ∼=

L(n,±); i.e., if we view F(n,±) as an object in QGr(S), then

j∗F(n,±)∼= L(n,±).

Furthermore, we show there are exact sequences

(1-4) 0→ M`′±
(−n− 1)→ M`±→ F(n,±)→ 0

in QCOH(Projnc(S)) and that (1-3) is obtained from (1-4) by applying the functor j∗,
i.e., by restricting the exact sequence (1-4) in QCOH(Projnc(S)) to the “open affine
subscheme” {K K ′ 6= 0}. Here M`± denotes the line module S/S`⊥

±
corresponding

to a line `± ⊆ P(S∗1 )= P3.
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1B6. Heretical Verma modules. The connections we establish between Verma
modules and line modules highlights one way in which the q-deformation Uq(sl2)

is “more rigid” or “less symmetric” than the enveloping algebra U (sl2): there is a P1-
family of Borel subalgebras of sl2, but there are only two reasonable candidates for
the role of the quantized enveloping algebra of a “Borel subalgebra” of quantum sl2.

Fix one of the two “Borel subalgebras”, Uq(b)⊆Uq(sl2). It gives rise by induction
to Verma modules Mb(λ) = Uq(sl2)⊗Uq (b) Cλ, λ ∈ C×. Thus, one obtains two
1-parameter families of Verma modules for Uq(sl2). In sharp contrast, by varying
both the Borel subalgebra and the highest weight one obtains a 2-parameter family
of Verma modules for U (sl2). Our perspective on Uq(sl2) as a noncommutative
open subscheme of a noncommutative P3 allows us to fit the two 1-parameter
families of Verma modules for Uq(sl2) into a single 2-parameter family of modules,
thus undoing the rigidification phenomenon alluded to in the previous paragraph. It
is these additional Verma-like modules that we call “heretical” in the title of this
subsection.

For simplicity of discussion, fix a finite-dimensional simple module L(n,+)
and the corresponding fat point module F(n,+) for which j∗F(n,+)∼= L(n,+).
The module L(n,+) appears in exactly two sequences of the form (1-3), one for
each “Borel subalgebra” of Uq(sl2); in contrast, F(n,+) appears in a 1-parameter
family of sequences of the form (1-4), one for each line in one of the rulings on the
quadric Q(qn). Likewise, a fixed finite-dimensional simple U (sl2)-module fits into
a 1-parameter family of sequences of the form (1-3). If we broadened the definition
of a Verma module for Uq(sl2) so as to include j∗M` for all line modules M` one
would then obtain a 1-parameter family of sequences of the form (1-3).

1B7. Annihilators of Verma modules and quadrics in Projnc(S). When q is not a
root of unity, the center of Uq(sl2) is generated by a single central element C called
the Casimir element. A Verma module is annihilated by C − ν for a unique ν ∈ C

and given ν there are, usually, four Verma modules annihilated by C − ν.
There is a nonzero central element � ∈ S2 such that C = �(K K ′)−1 under

the isomorphism Uq(sl2) ∼= S[(K K ′)−1
]0. A line module for S is annihilated by

�−νK K ′ for a unique ν ∈C∪{∞} and given ν there are, usually, two 1-parameter
families of line modules annihilated by �− νK K ′. There is an isomorphism

S
(�− νK K ′)

[(K K ′)−1
]0 ∼=

Uq(sl2)

(C − ν)

and an adjoint pair of functors

(1-5) QCOH

(
Projnc

(
S

(�− νK K ′)

))
j∗
−−→

j∗
←−−Mod

(
Uq(sl2)

(C − ν)

)
.
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We think of Projnc(S/(�− νK K ′)) as a noncommutative quadric hypersurface in
Projnc(S) and think of Uq(sl2)/(C−ν) as the coordinate ring of a noncommutative
affine quadric. Noncommutative quadrics in noncommutative analogues of P3 were
examined in [Smith and Van den Bergh 2013]. The results there apply to the present
situation. The line modules for S that are annihilated by �−νK K ′ provide rulings
on the noncommutative quadric and the noncommutative quadric is smooth if and
only if it has two rulings. We note that Projnc(S/(�− νK K ′)) is smooth if and
only if Uq(sl2)/(C − ν) has finite global dimension.

In Section 1B2, we mentioned the pencil of quadrics Q(λ)⊆ P3, λ ∈ P1, that
contain C ∪C ′. The Q(λ)’s are commutative quadrics and should not be confused
with the noncommutative ones in the previous paragraph. If ` is a line on Q(λ), then
M` = S/S`⊥ is a line module so is annihilated by �− νK K ′ for some ν ∈ C∪∞.

1B8. What happens for U(sl2)? Le Bruyn and Smith [1993] considered a graded
algebra H(sl2) that has a central element t in H1 such that H [t−1

]0 is isomorphic
to the enveloping algebra U (sl2). They call H(sl2) a homogenization of U (sl2),

Since the Hilbert series of H equals that of the polynomial ring in four variables
with its standard grading, and since H has “all” the good homological properties
the polynomial ring does, they view H as a homogeneous coordinate ring of a
noncommutative analogue of P3, denoted Projnc(H). Because H [t−1

]0 ∼=U (sl2),
there is an adjoint pair of functors j∗ and j∗ fitting into diagrams like those in (1-1)
and (1-2). Because t has degree one, j∗ and j∗ behave like the inverse and direct
image functors associated to the open complement to the hyperplane at infinity
in P3. Le Bruyn and Smith examined the point and line modules for H and showed
that these modules are related to the finite-dimensional irreducible representations
and Verma modules for sl2. The situation for U (sl2) is simpler than that for Uq(sl2).

1B9. Richard Chandler’s results. We are not the first to compute the point modules
and line modules for S. Richard Chandler did this in his Ph.D. thesis [Chandler
2016]. His approach differs from ours. Following a method introduced by Shelton
and Vancliff [2002b], he used Mathematica to compute a system of 45 quadratic
polynomials in the Plücker coordinates on the Grassmannian G(1, 3), the common
zero locus of which is the line scheme for S. In contrast, we use the results on central
extensions in [Le Bruyn et al. 1996] to determine which lines in P3 correspond to
line modules. The two approaches are complementary.

1C. The structure of the paper. In Section 2, we define the algebra S, the cen-
tral focus of our paper, and discuss its position as a degenerate version of the
4-dimensional Sklyanin algebra and a homogenization of Uq(sl2). We introduce
the category QGr(S) and its noncommutative geometry. We focus on point, line,
and fat point modules.
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Gr(S) Projnc(S) Mod(Uq(sl2))

Point modules Points Finite-dimensional irreducible modules
Line modules Lines Verma modules

Table 1. Relation to Uq(sl2)-modules.

In Section 3, we examine a Zhang twist D of S. It has the property that Gr(D)≡
Gr(S). Moreover, D has a central element z ∈ D1 such that A = D/(z) is a
3-dimensional Artin–Schelter regular algebra, thereby making D a central extension
of A. This allows us to use the results in [Le Bruyn et al. 1996] to determine the
point and line modules of D in terms of those for A.

In Section 4, we use the equivalence Gr(D)≡ Gr(S) to transfer the results about
D back to S.

In Section 5, we relate our results about point and line modules for S to results
about the finite-dimensional irreducible representations and Verma modules of
Uq(sl2). Table 1 summarizes some of these relations.

In Section 6, we show that some of our results can be obtained as “degenerations”
of results in [Smith and Stafford 1992; Chirvasitu and Smith 2017; Smith and
Staniszkis 1993] about the 4-dimensional Sklyanin algebra.

Figure 1 summarizes the algebras in this paper and their relationships to S.

4-dim Sklyanin alg. QCOH(Projnc)

H(sl(2,C)) S D

C[e, f, h] S/K ′ A

U (sl(2,C)) Uq(sl2) Module Category

degenerate

quantize

quantize

quantize

Zhang twist

Zhang twist

t = 0 K ′ = 0 central
extension K ′ = 0

dehomogenize/localizet 6= 0 K K ′ 6= 0

Figure 1. Algebras in this paper, their relationship to S, and their
associated categories.
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2. Preliminary notions

2A. The category QGr. Let k be a field and R a Z-graded k-algebra. The category
QGr(R) is defined to be the quotient category

QGr(R) :=
Gr(R)

Fdim(R)
,

where Gr(R) denotes the category of Z-graded left R-modules with degree-preserving
homomorphisms and Fdim(R) denotes the full subcategory of Gr(R) consisting of
those modules that are the sum of their finite-dimensional submodules.

The categories QGr(R) and Gr(R) have the same objects but different morphisms.
There is an exact functor π∗ : Gr(R)→ QGr(R) that is the identity on objects. In
the situations considered in this paper π∗ has a right adjoint π∗. A morphism
f : M→ M ′ becomes an isomorphism in QGr(R), i.e., π∗ f is an isomorphism, if
and only if ker( f ) and coker( f ) are in Fdim(R). In particular, a graded R-module
is isomorphic to 0 in QGr(R) if and only if it is the sum of its finite-dimensional
modules. Two modules in Gr(R) are equivalent if they are isomorphic in QGr(R).

If M ∈ Gr(R) and n ∈ Z we write M(n) for the graded R-module that is M
as a left R-module but with new homogeneous components, M(n)i = Mn+i . The
rule M  M(n) extends to an autoequivalence of Gr(R). Because it sends finite-
dimensional modules to finite-dimensional modules, it induces an autoequivalence
of QGr(R) that we denote by M M(n).

If M ∈ Gr(R) we define M≥n := Mn +Mn+1+ · · · . If R = R≥0, then M≥n is a
submodule of M .

2B. Linear modules. The importance of linear modules for noncommutative ana-
logues of Pn was first recognized by Artin, Tate, and Van den Bergh. We recall a
few notions from their papers [Artin et al. 1990; 1991]. Let M ∈ Gr(R). If Mn = 0
for n� 0 and dim Mn <∞ for all n, the Hilbert series of M is the formal Laurent
series

HM(t)=
∑

n

(dim Mn)tn.

We are particularly interested in cyclic modules M with Hilbert series having the
form

HM(t)=
n

(1− t)d

for some n, d ∈ N. The Gelfand–Kirillov (GK) dimension of such a module is
d(M)= d and its multiplicity is n. If d(M)= d and d(M/N ) < d for all nonzero
submodules N , then M is called d-critical. Equivalent modules (in the sense of
Section 2A) have the same GK dimension, and also have the same multiplicity if



NONCOMMUTATIVE GEOMETRY OF HOMOGENIZED QUANTUM sl(2,C) 313

they are not equivalent to 0, so the notions of GK dimension and multiplicity carry
over to QGr(R) as well.

We call M a linear module if it is cyclic and its Hilbert series is (1− t)−d . The
cases d = 1 and d = 2 play a key role: we call a linear module M a

• point module if it is cyclic, 1-critical, and HM(t)= (1− t)−1;

• line module if it is cyclic, 2-critical, and HM(t)= (1− t)−2.

We are also interested in modules of higher multiplicity: we call M a

• fat point module if it is 1-critical, generated by M0, and HM(t)= n(1− t)−1

for some n > 1.

Point modules and fat point modules are important because, as objects in QGr(R),
they are simple (or irreducible): all proper quotient modules of a 1-critical module
are finite-dimensional and therefore zero in QGr(R). The following result illustrates
the relationship between finite-dimensional simple modules and fat point modules.

Lemma 2.1. Let V be a simple left R-module of dimension n <∞. Let C[z] be the
polynomial ring generated by a degree-one indeterminate, z. Let V ⊗C[z] be the
graded left R-module whose degree- j component is V ⊗ z j with a ∈ Ri acting as
a(v⊗ z j ) := (av)⊗ zi+ j . Let π : V ⊗C[z] → V be the R-module homomorphism
v⊗ z j

7→ v.

(1) V ⊗C[z] is a fat point module of multiplicity n.

(2) If M is a graded left R-module such that M = M≥0 and ψ : M → V is a
homomorphism in Mod(R), then there is a unique homomorphism ψ̃ : M→
V ⊗C[z] in Gr(R) such that ψ = πψ , namely ψ̃(m)=ψ(m)⊗ zn for m ∈ Mn .

2C. Geometry in Projnc(R). The “noncommutative scheme” Projnc(R) is defined
implicitly by declaring that the category of “quasicoherent sheaves” on it is QGr(R),

QCOH(Projnc(R)) := QGr(R).

The isomorphism class of a (fat) point module in QGr(R) is called a (fat) point of
Projnc(R). Likewise, the isomorphism class of a line module in QGr(R) is called a
line in Projnc(R).

2C1. Origin of the terminology. Let k be an algebraically closed field, and let
R = k[x0, . . . , xn] be the commutative polynomial ring with its standard grading,
deg(x j )= 1 for all j . Then Proj(R) is Pn , projective n-space, and there is a bijection
between closed points in Pn and isomorphism classes of point modules for R: a
point module is isomorphic to R/I for a unique ideal I , and I is generated by a
codimension-1 subspace of Cx0+ · · ·+Cxn; conversely, if I is such an ideal, then
R/I is a point module. Under the equivalence QGr(R)−→∼ QCOH(Pn), M 7→ M̃ ,
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the point module R/I corresponds to the skyscraper sheaf Op at the point p ∈ Pn

where I vanishes. Similarly, if M is a line module for R, then M ∼= R/I for an ideal
I that is generated by a codimension-2 subspace of Cx0+ · · ·+Cxn and the zero
locus of I is a line in Pn , and this sets up a bijection between the lines in Pn and
the isomorphism classes of line modules. Indeed, there is a bijection between linear
subspaces of Pn and isomorphism classes of linear modules over the polynomial
ring R.

Theorem 2.2 [Levasseur and Smith 1993, Theorem 1.13]. Let R = k[x0, . . . , xn]

be a polynomial ring in n+1 variables, graded by setting deg(x j )= 1 for all j . Let
M be a finitely generated graded R-module. The following conditions on a graded
R-module M are equivalent:

(1) M is cyclic with Hilbert series (1− t)−d ;

(2) M ∼= R/R`⊥ for some codimension-d subspace ` ⊆ R1 or, equivalently, for
some (d−1)-dimensional linear subspace `⊆ P(R∗1);

(3) M is a Cohen–Macaulay R-module having GK dimension d and multiplicity 1.

Thus, linear modules of GK dimension d correspond to linear subspaces of Pn

having dimension d − 1.

2C2. Points, fat points, and lines in Projnc(R). For the noncommutative graded
algebras R in this paper, the points and lines in Projnc(R) are parametrized by
genuine (commutative) varieties [Artin et al. 1990; 1991].

Let R be any N-graded k-algebra such that R0 = k and R is generated by
R1 as a k-algebra. Let P(R∗1) denote the projective space whose points are the
1-dimensional subspaces of R∗1 = Homk(R1, k).

For V a linear subspace of R∗1 , define V⊥ := {x ∈ R1 | ξ(x)= 0 for all ξ ∈ V }.
Let

PR := {p ∈ P(R∗1) | R/Rp⊥ is a point module},

LR := {lines ` in P(R∗1) | R/R`⊥ is a line module}.

For the algebras in this paper there are moduli problems for which PR and LR are
fine moduli spaces; see [Artin et al. 1990, Corollary 3.13] and [Shelton and Vancliff
2002a, Corollary 1.5]. We call PR and LR the point scheme and line scheme for R.

Clearly, a line module R/R`⊥ surjects onto a point module R/Rp⊥ if and only
if p lies on the line `. Thus, the incidence relations between points and lines in
Projnc(R) coincides with the incidence relations between certain points and lines
in P(R∗1). In such a situation the phrase “p lies on `” is a statement about points
and lines in P(R∗1) and also a statement about points and lines in Projnc(R). If a
line module R/R`⊥ surjects onto a fat point module F in QGr(R) we say that the
corresponding fat point lies on the line ` and understand this as a statement about
the geometry of Projnc(R).
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Proposition 2.3 [Levasseur and Smith 1993]. The kernel of a surjective homomor-
phism ψ : M`→ Mp in Gr(S) from a line module to a point module is isomorphic
to a shifted line module M`′(−1).

Proof. There are elements u, v, w ∈ S1 for which there is a commutative diagram

M`

ψ

��

// S/Su+ Sv

ψ ′

��

Mp // S/Su+ Sv+ Sw

in which the horizontal arrows are isomorphisms and ψ ′ is the obvious map. The
kernel of ψ ′ is isomorphic to the submodule Sw= Su+Sv+Sw/Su+Sv. Because
M` is a critical Cohen–Macaulay module of GK dimension 2 and multiplicity 1, and
Mp has GK dimension 1, the kernel is a Cohen–Macaulay module of GK dimension
2 and multiplicity 1. By [Levasseur and Smith 1993, Proposition 2.12], the kernel
of ψ ′ is isomorphic to a shifted line module. �

The associated exact sequence 0→ M`′(−1)→ M`→ Mp→ 0 is the analogue
of an exact sequence 0→ M(λ′)→ M(λ)→ L → 0 in which M(λ′) and M(λ)
are Verma modules.

2C3. Noncommutative analogues of quadrics and P3. Let S be one of the algebras
in Section 2D. The Hilbert series of S is (1−t)−4, the same as that of the polynomial
ring on four variables. Furthermore, S has the “same” homological properties as
that polynomial ring and, as a consequence, it is a domain [Artin et al. 1991,
Theorem 3.9]. For these reasons we think of Projnc(S) as a noncommutative
analogue of P3.

If � is a homogeneous, degree-two, central element in S we call Projnc(S/(�)) a
quadric hypersurface in Projnc(S) and sometimes denote it by the symbols {�= 0}.
A line module S/S`⊥ is annihilated by � if and only if there is a surjective map
S/(�)→ S/S`⊥. If so we say that “the line ` lies on the quadric {� = 0}” and
interpret this as a statement about the geometry of Projnc(S).

2D. The algebras S. The algebras of interest to us are the noncommutative C-
algebras S with generators x0, x1, x2, x3 subject to the relations

(2-1)

[x0, x1] = 0, {x0, x1} = 2x0x1 = [x2, x3],

[x0, x2] = b2
{x1, x3}, {x0, x2} = [x3, x1],

[x0, x3] = −b2
{x1, x2}, {x0, x3} = [x1, x2],

where {x, x ′} = xx ′+ x ′x , [x, x ′] = xx ′− x ′x , and b ∈ C−{0,±i}.
The algebras S occupy an interesting position between the nondegenerate 4-

dimensional Sklyanin algebras and the quantized enveloping algebras Uq(sl2). We
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now introduce these algebras and, in Proposition 2.4 below, describe their relation
to S.

2D1. S is a degenerate Sklyanin algebra. A nondegenerate Sklyanin algebra is a
C-algebra S(α, β, γ ) with generators x0, x1, x2, x3 subject to the relations

(2-2)

[x0, x1] = α{x2, x3}, {x0, x1} = [x2, x3],

[x0, x2] = β{x1, x3}, {x0, x2} = [x3, x1],

[x0, x3] = γ {x1, x2}, {x0, x3} = [x1, x2],

where α, β, γ ∈ C are such that α + β + γ + αβγ = 0, and further satisfy the
nondegeneracy condition

(2-3) {α, β, γ } ∩ {0, 1,−1} =∅.

With this notation, S = S(0, b2,−b2), and is degenerate.
For the rest of the paper, S will denote S(0, b2,−b2) and S(α, β, γ ) will denote

a nondegenerate Sklyanin algebra.
The noncommutative space Projnc(S(α, β, γ )) is well understood. Its point

scheme was computed in [Smith and Stafford 1992], its lines and the incidence
relations between its points and lines were determined in [Levasseur and Smith
1993], and its fat points and the incidence relations between fat points and lines
were determined in [Smith and Staniszkis 1993]. A short account of these and
related results can be found in the survey article [Smith 1994]. In this paper we
carry out the same computations for S and compare them to what has been obtained
for nondegenerate S(α, β, γ ). This is the subject of Section 6.

2D2. S as a homogenization of Uq(sl(2,C)). The quantized enveloping algebra
Uq(sl2) is the C-algebra with generators e, f, k± subject to the relations

(2-4) ke= q2ek, k f = q−2 f k, kk−1
= k−1k= 1, and [e, f ] =

k− k−1

q − q−1 ,

where q 6= 0,±1,±i .
The representation theory of Uq(sl2) is the subject of books by Brown and

Goodearl [2002], Jantzen [1996], Kassel [1995], Klimyk and Schmüdgen [1997],
and others.1

1A slightly different algebra was studied by Jimbo [1985] and by Lusztig [1988]: they replace the
last of the above relations by [e, f ] = (k− k−1)/(q2

− q−2). Lusztig [1990] replaced that relation
by the one in (2-4) and that seems to have become the “official” quantized enveloping algebra of
sl(2,C) used by subsequent authors. We call the algebra studied in [Jimbo 1985] and [Lusztig 1988]
the “unofficial” quantized enveloping algebra of sl(2,C). That unofficial version is a quotient of the
algebra S in Proposition 2.4.
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Before showing that S is a homogenization of Uq(sl2), we introduce notation
that will be used throughout the paper:

(2-5)
q =

1− ib
1+ ib

, E =
i
2
(1− ib)(x2+ i x3), K = x0+ bx1,

κ =
1

q−1− q
, F =

i
2
(1+ ib)(x2− i x3), K ′ = x0− bx1.

Proposition 2.4. The algebra S is the C-algebra generated by E, F, K , K ′ modulo
the relations

(2-6)
K E = q E K , K F = q−1 F K , K K ′ = K ′K ,

K ′E = q−1 E K ′, K ′F = q F K ′, [E, F] =
K 2
− K ′ 2

q − q−1 .

Further, S[(K K ′)−1
]0 is isomorphic to Uq(sl2) via

(2-7) E K−1
7→
√

qe, F(K ′)−1
7→
√

q f, K (K ′)−1
7→ k,

where
√

q is a fixed square root of q.

Proof. A few tedious but straightforward calculations show that E, F, K , K ′ satisfy
the relations in (2-6). For example, K E = q E K because

(1+ ib)K E − (1− ib)E K

= [K , E] + ib{K , E}

=
i
2
(1− ib)

(
[x0, x2] + i[x0, x3] + b[x1, x2] + ib[x1, x3]

+ ib{x0, x2}− b{x0, x3}+ ib2
{x1, x2}− b2

{x1, x3}
)

=
i
2
(1− ib)

(
[x0, x2] − b2

{x3, x1}+ i[x0, x3] + ib2
{x1, x2}

+ ib{x0, x2}− ib[x3, x1] − b{x0, x3}+ b[x1, x2]
)

= 0.

Similar calculations show K F = q−1 F K , K ′E = q−1 E K ′ and K ′F = q F K ′.
Since K 2

− K ′ 2 = 4bx0x1 = 2b{x0, x1} and i
2(1− ib) · i

2(1+ ib)=−1
4(1+ b2),

we have

−
4

1+ b2 [E, F] + ib−1(K 2
− K ′ 2)= 2i[x3, x2] + 2i{x0, x1} = 0.

However,

q − q−1
=

1− ib
1+ ib

−
1+ ib
1− ib

=−
4ib

1+ b2 ,

so

[E, F] = −
1+ b2

4ib
(K 2
− K ′ 2)=

K 2
− K ′ 2

q − q−1 .
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For the second part of the proposition, it is clear that S[(K K ′)−1
]0 is generated

by

e := 1
√

q
E K−1, f := 1

√
q

F(K ′)−1, k := K (K ′)−1, and k−1.

Similar straightforward calculations then show that these elements satisfy the
relations in (2-4). Hence S[(K K ′)−1

]0 ∼=Uq(sl2). �

Since S is an Artin–Schelter regular algebra of global dimension 4 and has Hilbert
series (1−t)−4 we think of it as a homogeneous coordinate ring of a noncommutative
analogue of P3. Since SK = K S and SK ′ = K ′S we think of S/(K ) and S/(K ′)
as homogeneous coordinate rings of noncommutative analogues of P2.

Further, we think of S[(K K ′)−1
]0, i.e., Uq(sl2), as the coordinate ring of the

noncommutative affine scheme that is the “open complement” of the “union” of the
“hyperplanes” {K = 0} and {K ′ = 0}. These “hyperplanes” are effective divisors
in the sense of Van den Bergh [2001, §3.6]. From this perspective, Uq(sl2) can be
considered an “affine piece” of S. As explained in Section 1A2, this point of view
can be formalized in terms of an adjoint pair of functors j∗ a j∗.

The left adjoint j∗ :QGr(S)→Mod(S[(K K ′)−1
]0) sends a graded S-module, X ,

viewed as an object in QGr(S) to X [(K K ′)−1
]0∈Mod(S[(K K ′)−1

]0). The action of
j∗ on a morphism f :M→ N in QGr(S) is defined by choosing a lift of f to a mor-
phism φ in Gr(S), then applying the localization functor X 7→ X [(K K ′)−1

]0 to φ.

3. Point and line modules for D, a Zhang twist of S

In this section, we replace S by a Zhang twist of itself [Zhang 1996]. The appropriate
Zhang twist is an algebra D that has a central element z ∈ D1 such that D/(z) a
3-dimensional Artin–Schelter regular algebra. In the terminology of [Le Bruyn
et al. 1996], this makes D a central extension of D/(z). We use the results in that
paper to determine the point and line modules for D. The point and line modules
for D/(z) are already understood due to [Artin et al. 1990; 1991].

In Section 4 we use Zhang’s fundamental equivalence Gr(D)≡ Gr(S) [Zhang
1996] to transfer the results about the point and line modules for D to S.

3A. The Zhang twist. Let S be a graded k-algebra and φ a degree-preserving
k-algebra automorphism of S. Define D to be the k-algebra that is equal to S as a
graded k-vector space, but endowed with the new multiplication

c ∗ d := φn(c)d

for c ∈ D = S and d ∈ Dn = Sn . We call D a Zhang twist of S. Zhang [1996]
showed that there is an equivalence of categories 8 : Gr(S)→ Gr(D) defined as
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follows: if M is a graded left S-module, then 8M is M as a graded k-vector space,
but endowed with the D-action

c ∗m := φn(c)m

for c ∈ D = S and m ∈ (8M)n = Mn .
On morphisms 8 is the “identity”: if f ∈ HomGr(S)(M,M ′), then 8( f ) = f

considered now as a morphism 8M → 8M ′. Note that f is a morphism of
graded D-modules because if c ∈ D and m ∈ Mn , then f (c ∗m)= f (φn(c)m)=
φn(c) f (m)= c ∗ f (m).

We use the graded algebra automorphism φ : S→ S defined by

(3-1) φ(s) := K ′s(K ′)−1.

This is a homomorphism because K ′S = SK ′, and is an automorphism because S
is a 4-dimensional Artin–Schelter regular algebra and therefore a domain [Artin
et al. 1991, Theorem 3.9].

Proposition 3.1. Let D be the Zhang twist of S with respect to φ (3-1). Then D is
isomorphic to C〈E, F, K , K ′〉 modulo the relations

[K ′, E] = [K ′, F] = [K ′, K ] = 0,

K E = q2 E K , K F = q−2 F K , q E F − q−1 F E =
K 2
− K ′ 2

q − q−1 .

In particular, K ′ belongs to the center of D.

Proof. Since φ(E)= q−1 E , φ(F)= q F , φ(K )= K , and φ(K ′)= K ′,

K ′ ∗ E = φ(K ′)E = K ′E = q−1 E K ′ = φ(E)K ′ = E ∗ K ′,

K ′ ∗ F = φ(K ′)F = K ′F = q F K ′ = φ(F)K ′ = F ∗ K ′,

K ∗ E = φ(K )E = K E = q E K = q2φ(E)K = q2 E ∗ K ,

K ∗ F = φ(K )F = K F = q−1 F K = q−2φ(F)K = q−2 F ∗ K ,
and

q E ∗ F − q−1 F ∗ E = E F − F E =
K 2
− K ′ 2

q − q−1 .

By the very definition of φ, K ′ belongs to the center of D. �

Corollary 3.2. Let A be C〈E, F, K 〉 modulo the relations

K E = q2 E K , K F = q−2 F K , q E F − q−1 F E =
K 2

q − q−1 .

Then A∼= D/(K ′) and D is a central extension of A in the sense of [Le Bruyn et al.
1996, Definition 3.1.1].
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3B. Applying the results in [Le Bruyn et al. 1996]. In the notation of [Le Bruyn
et al. 1996], our (E, F, K , K ′) is their (x1, x2, x3, z). Following the notation of
equation (3.1) and Section 4.2 in that paper, if A = C〈x1, x2, x3〉/( f1, f2, f3), then
the defining relations for a central extension D of A can be written as2

zxi − xi z = 0, j = 1, 2, 3,

g j := f j + zlj +αj z2
= 0, j = 1, 2, 3,

for some lj ∈ A1 and αj ∈ C. For our D,

(3-2)

f :=

 f1

f2

f3

=
 −q3K F + q F K

q−3K E − q−1 E K
q E F − q−1 F E + κK 2

 , l :=

l1

l2

l3

=
0

0
0

 ,
α :=

α1

α2

α3

=
 0

0
−κ

 .
Thus

(3-3) g :=

g1

g2

g3

=
 −q3K F + q F K

q−3K E − q−1 E K
q E F − q−1 F E + κK 2

− κK ′ 2

 .
The relations of A are said to be in standard form [Artin et al. 1990, p. 34] if, in the
notation of [Le Bruyn et al. 1996, p. 181], there is a 3× 3 matrix M , and a matrix
Q ∈ GL(3), such that f = M x and xTM = (Q f )T, where f T

= ( f1, f2, f3) and
A is generated as an algebra by the entries of the column vector x.

Proposition 3.3. The relations f for A in (3-2) are in standard form, where

(3-4)
x = (E, F, K )T,

Q = diag(q−4, q4, 1),

and

(3-5) M =

 0 −q3K q F
q−3K 0 −q−1 E
−q−1 F q E κK

 .
Proof. It is easy to check that f = M x. On the other hand,

xTM= (E,F,K )M= (q−3FK−q−1K F,−q3EK+q K E, q EF−q−1FE+κK 2),

2In the notation of [Le Bruyn et al. 1996, Theorem 3.1.3], γ j = 0 for all j .
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so

(xTM)T =

 q−3 F K − q−1K F
−q3 E K + q K E

q E F − q−1 F E + κK 2

=
q−4 0 0

0 q4 0
0 0 1

 f .

Thus xTM = (Q f )T as claimed. �

We use (E, F, K ) as homogeneous coordinates on the plane P(A∗1) ∼= P2 and
identify this plane with the hyperplane {K ′ = 0} in P(D∗1).

Proposition 3.4. The point scheme (PA, σA) for A is the cubic divisor on {K ′ =
0} = P(A∗1) consisting of the line K = 0 and the conic κ2K 2

+ E F = 0. The line
meets the conic at the points (1, 0, 0) and (0, 1, 0).

(1) If (ξ1, ξ2, ξ3) lies on the conic κ2K 2
+ E F = 0, then

σA(ξ1, ξ2, ξ3)= (q2ξ1, q−2ξ2, ξ3).

(2) If (ξ1, ξ2, ξ3) lies on the line K = 0; i.e., ξ3 = 0, then

σA(ξ1, ξ2, 0)= (qξ1, q−1ξ2, 0).

Proof. By [Artin et al. 1990], the subscheme of P(A∗1) parametrizing the left point
modules for A is given by the equation

det

 0 −q2K F
q−2K 0 −E
−q−1 F q E κK

= 0.

The vanishing locus of this determinant is the union of the line K = 0 and the
smooth conic κ2K 2

+ E F = 0. The line meets the conic at the points (1, 0, 0) and
(0, 1, 0).

We denote this cubic curve by PA. The point module corresponding to a point
p ∈ PA is Mp := A/Ap⊥, where p⊥ is the subspace of A1 consisting of the linear
forms that vanish at p.

If Mp is a point module for A so is (Mp)≥1(1). In keeping with the notation in
[Le Bruyn et al. 1996], we write σA (in this proof we will use σ for brevity) for the
automorphism of PA such that

(3-6) Mσ−1(p)
∼= (Mp)≥1(1).

To determine σ explicitly, let p ∈ PA and suppose that p = (ξ ′1, ξ
′

2, ξ
′

3) and
σ−1(p) = (ξ1, ξ2, ξ3) with respect to the homogeneous coordinates (E, F, K ).
Then Mp has a homogeneous basis e0, e1, . . . , where deg(en)= n, and

Ee0 = ξ
′

1e1, Fe0 = ξ
′

2e1, K e0 = ξ
′

3e1,
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and
Ee1 = ξ1e2, Fe1 = ξ2e2, K e1 = ξ3e2.

Since K E − q2 E K = 0 in A, (K E − q2 E K )e0 = 0; i.e., ξ3ξ
′

1 − q2ξ1ξ
′

3 = 0.
The other two relations for A in Corollary 3.2 imply ξ3ξ

′

2 − q−2ξ2ξ
′

3 = 0 and
qξ1ξ

′

2 − q−1ξ2ξ
′

1 + κξ3ξ
′

3 = 0. These equalities can be expressed as the single
equality  0 ξ3 −q−2ξ2

ξ3 0 −q2ξ1

−q−1ξ2 qξ1 κξ3

ξ ′1ξ ′2
ξ ′3

= 0.

Since σ(ξ1, ξ2, ξ3)= (ξ
′

1, ξ
′

2, ξ
′

3), we can now determine σ .
If (ξ1, ξ2, ξ3) lies on the line K = 0; i.e., ξ3 = 0, then 0 0 −q−2ξ2

0 0 −q2ξ1

−q−1ξ2 qξ1 0

ξ ′1ξ ′2
ξ ′3

= 0,

so σ(ξ1, ξ2, 0)= (qξ1, q−1ξ2, 0). If (ξ1, ξ2, ξ3) lies on the conic κ2K 2
+ E F = 0,

then  0 ξ3 −q−2ξ2

ξ3 0 −q2ξ1

−q−1ξ2 qξ1 κξ3

 q2ξ1

q−2ξ2

ξ3

= 0,

so σ(ξ1, ξ2, ξ3)= (q2ξ1, q−2ξ2, ξ3). �

The algebra A is of Type S′1 in the terminology of [Artin et al. 1990, Proposition
4.13, p. 54]. See also [Le Bruyn et al. 1996, p. 187], where it is stated that D is the
unique central extension of A that is not a polynomial extension, up to the notion
of equivalence at [Le Bruyn et al. 1996, §3.1, p. 180].

In the next result, which is similar to Proposition 3.4, we use (E, F, K ′) as
homogeneous coordinate functions on the plane K = 0 in P(D∗1).

Proposition 3.5. Let A′ = D/(K ). The point scheme (PA′, σA′) for A′ is the cubic
divisor on the plane K = 0 consisting of the line K ′ = 0 and the smooth conic
E F + κ2K ′ 2 = 0. The line meets the conic at the points (1, 0, 0) and (0, 1, 0).

(1) If (ξ1, ξ2, ξ4) lies on the conic κ2K ′ 2+ E F = 0, then

σA′(ξ1, ξ2, ξ4)= (ξ1, ξ2, ξ4).

(2) If (ξ1, ξ2, ξ4) lies on the line K = 0; i.e., ξ4 = 0, then

σA′(ξ1, ξ2, 0)= (qξ2, q−1ξ1, 0).
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Proof. Since [E, K ′] = [F, K ′] = q E F−q−1 F E−κK ′ 2= 0 are defining relations
for A′ = C[E, F, K ′], the left point modules for A′ are naturally parametrized by
the scheme-theoretic zero locus of

det

 0 K ′ −F
K ′ 0 −E
−q−1 F q E −κK ′


in P(A′ ∗1 ), namely the union of the line K ′ = 0 and the smooth conic κ2K ′2 +
E F = 0.

We denote this cubic curve by PA′ and define σA′ : PA′→ PA′ (in this proof we
will use σ for brevity) by the requirement that Mσ−1(p)

∼= (Mp)≥1(1) for all p ∈PA′ .
Calculations like those in Proposition 3.4 show that σ is the identity on the conic
and is given by σ(ξ1, ξ2, 0)= (qξ2, q−1ξ1, 0) on the line K ′ = 0. �

3C. The point scheme for D. By [Le Bruyn et al. 1996, Theorem 4.2.2] the point
scheme (PD, σD) for D exists. That result also gives an explicit description of PD .
It is also pointed out there that the restriction of σD to PD −PA is the identity.

Warning: The g1, g2, g3 in (3-3) belong to the tensor algebra T (D1). The
g1, g2, g3 in the next result are the images of the g1, g2, g3 in (3-3) in the polynomial
ring generated by the indeterminates E, F, K , K ′.

Proposition 3.6 [Le Bruyn et al. 1996, Lemma 4.2.1 and Theorem 4.2.2]. Let
x1 = E , x2 = F , and x3 = K . The equations for PD are

(1) g1 = g2 = g3 = 0 on PD ∩ {K ′ 6= 0}, whereg1

g2

g3

=
 (q − q3)F K

(q−3
− q−1)E K

−κ−1 E F + κK 2
− κK ′ 2

= κ−1

 q2 F K
q−2 E K

−E F + κ2(K 2
− K ′ 2)

 ,
(2) K ′g1 = K ′g2 = K ′g3 = hi = 0 on PD ∩ {xi 6= 0}, whereh1

h2

h3

= κ−1K

 E(E F + κ2K 2
− κ2q2K ′ 2)

F(E F + κ2K 2
− κ2q−2K ′ 2)

K (E F + κ2K 2
− κ2K ′ 2)

 .
Proof. The polynomials h1, h2, and h3 are defined in [Le Bruyn et al. 1996, Lemma
4.2.1].

Denote the columns of M by M1, M2, M3, so that M = [M1 M2 M3], and note
that

det(M)= (κK 2
+ κ−1 E F)K .
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In this case, since l = 0, the definitions of h1, h2, and h3, in [Le Bruyn et al.
1996, Lemma 4.2.1] become

h1 = E det(M)+ z2 det[α M2 M3],

h2 = F det(M)+ z2 det[M1 α M3],

h3 = K det(M)+ z2 det[M1 M2 α].

Since α = (0, 0,−κ)T,

h1 = E K (κK 2
+ κ−1 E F)− κq2K ′ 2 E K ,

h2 = F K (κK 2
+ κ−1 E F)− κq−2K ′ 2 F K ,

h3 = K 2(κK 2
+ κ−1 E F)− κK ′ 2K 2.

Hence the result. �

Theorem 3.7. The point scheme PD is reduced and is the union of

(1) the conics E F + κ2K 2
= K ′ = 0 and E F + κ2K ′ 2 = K = 0,

(2) the line K = K ′ = 0, and

(3) the points (0, 0, 1,±1).

Let p ∈ PD .

(4) If p = (ξ1, ξ2, ξ3, 0) is on the conic E F + κ2K 2
= K ′ = 0, then σD(p) =

(q2ξ1, q−2ξ2, ξ3, 0).

(5) If p = (ξ1, ξ2, 0, ξ4) is on the conic E F + κ2K ′ 2 = K = 0, then σD(p)= p.

(6) If p= (ξ1, ξ2, 0, 0) is on the line K = K ′= 0, then σD(p)= (qξ1, q−1ξ2, 0, 0).

(7) If p = (0, 0, 1,±1), then σD(p)= p.

Proof. By [Le Bruyn et al. 1996, Theorem 4.2.2], (PD)red=(PA)red∪V (g1,g2,g3)red,
where V (g1, g2, g3) is the scheme-theoretic zero locus of the ideal (E K , F K ,
E F − κ2(K ′ 2− K 2)). Certainly PA is reduced. Straightforward computations on
the open affine pieces E 6= 0, F 6= 0, K 6= 0, and K ′ 6= 0, show that V (g1, g2, g3)

is reduced. Hence PD is reduced.
If p = (0, 0, 1,±1), then Mp = D/Dp⊥ = D/DE + DF + D(K ∓ K ′). But

DE+DF+D(K∓K ′) is a two-sided ideal and the quotient by it is the polynomial
ring in one variable. Hence σD(p)= p. �

3D. The line modules for D. We now use the results in [Le Bruyn et al. 1996, §5]
to characterize the line modules for D. Recall from Section 2C2 that

LD = {lines ` in P(D∗1) | D/D`⊥ is a line module}.
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For each point p ∈ PA, let

Lp := {` ∈ LD | p ∈ `}.
Then

LD = {lines on the plane K ′ = 0} ∪
⋃

p∈PA

Lp.

Proposition 3.8. Let M be a line module for D.

(1) There is a unique line ` in P(D∗1) such that M ∼= D/D`⊥.

(2) If K ′M = 0, then `⊆ {K ′ = 0} and M is a line module for A = D/(K ′).

(3) The line modules for A are, up to isomorphism, A/A`⊥, where `⊆ {K ′ = 0}.

(4) If K ′M 6= 0, then M/K ′M is a point module for A and isomorphic to A/Ap⊥,
where {p} = `∩ {K ′ = 0}.

Proof. (1) This is a consequence of [Levasseur and Smith 1993, Proposition 2.8],
which says that if A is a noetherian, Auslander regular, graded k-algebra having
Hilbert series (1− t)−4, and is generated by A1, and satisfies the Cohen–Macaulay
property, then there is a bijection

{lines u= v= 0 in P(A∗1) | there is a rank 2 relation a⊗ u− b⊗ v}←→ A
Au+Av

between certain lines in P(A∗1) and the set of isomorphism classes of line modules
for A.

(2) This is obvious.

(3) Since A is a 3-dimensional Artin–Schelter regular algebra, by [Artin et al. 1990],
the isoclasses of the line modules for A are the modules A/A`⊥, where ` ranges
over all lines in P(A∗1)= {K

′
= 0}.

(4) See the discussion at [Le Bruyn et al. 1996, p. 204]. �

3D1. The quadrics Q p. By [Le Bruyn et al. 1996, Theorem 5.1.6], if p ∈PA there
is a quadric Q p containing p such that

Lp =
{
lines `⊆ {K ′ = 0} such that p ∈ `

}
∪
{
lines `⊆ Q p such that p ∈ `

}
.

By [Le Bruyn et al. 1996, Proposition 5.1.7], if σD(p) = (ζ1, ζ2, ζ3, 0), then Q p

is given by the equation ζTQ g = 0, where ζ = (ζ1, ζ2, ζ3)
T, Q is the matrix in

Proposition 3.3, g = (g1, g2, g3)
T
= f +αK ′ 2, f is the image in the polynomial

ring C[E, F, K ] of the column vector f introduced in the proof of Proposition 3.3,
and α = (0, 0,−κ)T. Thus, Q p is given by the equation

(ζ1, ζ2, ζ3)

q−4 0 0
0 q4 0
0 0 1

κ−1

 q2 F K
q−2 E K

−E F + κ2K 2
− κ2K ′ 2

= 0
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or, equivalently, by

κ−1(ζ1, ζ2, ζ3)

 q−2 F K
q2 E K

−E F + κ2K 2
− κ2K ′ 2

= 0.

The next result determines Lp for each p ∈PA. We take coordinates with respect
to the coordinate functions (E, F, K , K ′).

Proposition 3.9. Suppose p = (ξ1, ξ2, ξ3, 0) ∈ PA.

(1) If p = (1, 0, 0, 0), then

Lp =
{
lines `⊆ {F = 0} ∪ {K = 0} ∪ {K ′ = 0} such that p ∈ `

}
.

(2) If p = (0, 1, 0, 0), then

Lp =
{
lines `⊆ {E = 0} ∪ {K = 0} ∪ {K ′ = 0} such that p ∈ `

}
.

(3) If ξ3 = 0 and ξ1ξ2 6= 0, then

Lp =
{
lines `⊆ {K = 0} ∪ {K ′ = 0} such that p ∈ `

}
.

(4) If ξ3 6= 0, then Q p is the cone with vertex p given by the equation

ξ1 F K + ξ2 E K + ξ3(−E F + κ2K 2
− κ2K ′ 2)= 0,

and
Lp =

{
lines `⊆ Q p ∪ {K ′ = 0} such that p ∈ `

}
.

Proof. (1)–(3) Suppose ξ3 = 0. Then p is on the line {K = K ′ = 0} whence
σD(p)= (ξ1, ξ2, 0, 0) and Q p is given by the equation

κ−1(ξ1q−2 F + ξ2q2 E)K = 0.

Thus, ` either lies on the pair of planes {K K ′=0} or the plane {ξ1q−2 F+ξ2q2 E=0}.
Suppose ` 6⊆ {K K ′ = 0}. We are assuming that q4

+ 1 6= 0 so, if p is neither
(1, 0, 0, 0) nor (0, 1, 0, 0), then ξ1q−2 F+ξ2q2 E does not vanish at p whence there
are no lines through p that lie on the plane {ξ1q−2 F + ξ2q2 E = 0}.

Suppose p = (1, 0, 0, 0). Then Q p = {F K = 0} and Lp consists of the lines
through p that are contained in {F = 0} ∪ {K = 0}. Similarly, if p = (0, 1, 0, 0),
then Lp consists of the lines through p that are contained in {E = 0} ∪ {K = 0}.

(4) Suppose ξ3 6= 0. Then p lies on the conic κ2K 2
+ E F = K ′ = 0 so σA(p)=

(q2ξ1, q−2ξ2, ξ3, 0). Thus, Q p is given by the equation

κ−1(q2ξ1, q−2ξ2, ξ3)

 q−2 F K
q2 E K

−E F + κ2K 2
− κ2K ′ 2

= 0;
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i.e., by the equation ξ1 F K + ξ2 E K + ξ3(−E F+κ2K 2
−κ2K ′ 2)= 0. The quadric

Q p is singular at p (and is therefore a cone) because the partial derivatives at the
point p = (ξ1, ξ2, ξ3, 0) are

∂E : (ξ2K − ξ3 F)|p = 0,

∂F : (ξ1K − ξ3 E)|p = 0,

∂K : (ξ1 F + ξ2 E + 2ξ3κ
2K )|p = 0,

∂K ′ : 2ξ3κ
2K ′|p = 0.

It follows that every line contained in Q p passes through p, and hence all such lines
correspond to line modules by [Le Bruyn et al. 1996, Theorem 5.1.6], as recalled
above in Section 3D1. �

Let C denote the conic K ′ = κ2K 2
+ E F = 0 and C ′ the conic K = κ2K ′ 2+

E F = 0. The two isolated points in PD , namely (0, 0, 1,±1), lie on Q p for every
p ∈ {K ′ = κ2K 2

+ E F = 0} so there is a pencil of lines (or two pencils) through
each of these points that correspond to line modules.

Since Q p is singular at p, [Le Bruyn et al. 1996, Lemma 5.1.10] implies that
p= p∨ in the notation defined on page 204 of loc. cit. Thus, according to [Le Bruyn
et al. 1996, Definition 5.1.9], p is of the third kind. Thus, we are in the last case of
[Le Bruyn et al. 1996, Table 1].

4. Points, lines, and quadrics in Projnc(S)

We now transfer the results in Section 3 from D to S. Recall that the automorphism
φ : S→ S defined in (3-1) induces an equivalence of categories 8 :Gr(S)→Gr(D).
We first note how φ and 8 act on linear modules.

4A. Left ideals and linear modules over S and D. If W is a graded subspace of
S = D, then Dm ∗Wj = φ

j (Sm)Wj = Sm Wj so, dropping the ∗, DW = SW , i.e.,
the left ideal of D generated by W is equal to the left ideal of S generated by W .
In particular, if I is a graded left ideal of S, then I = SI = DI so I is also a left
ideal of D. Likewise, if J is graded left ideal of D, then J = D J = S J so J is also
a left ideal of S.

In summary, D and S have exactly the same left ideals.
Let I be a graded left ideal of S. The equality S/I = D/I is an equality

in the category of graded vector spaces. In fact, more is true: 8(S/I ) = D/I
in the category Gr(D). To see this, observe, first, that the result of applying 8
to the exact sequence 0→ I → S → S/I → 0 in Gr(S) is the exact sequence
0→ I → D→8(S/I )→ 0 in Gr(D), where I → S and I → D are the inclusion
maps, then use the fact that 8(S/I )= S/I = D/I as graded vector spaces.
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Now let M be a d-linear S-module. Then M ∼= S/I for a unique graded left ideal
I in S. Hence 8M ∼=8(S/I )= D/I . In particular, 8(M) is a d-linear D-module.
Hence

{left ideals I in S | S/I is d-linear} = {left ideals I in D | D/I is d-linear}.

Similarly, if S0 = k, then

{subspaces W⊂ S1 | S/SW is d-linear}={subspaces W⊂D1 |D/DW is d-linear}.

Lemma 4.1. (1) PS = PD and LS = LD .

(2) If σS : PS → PS is a bijection such that (Mp)≥1(1) ∼= Mσ−1
S p for all p ∈ PS ,

then there is a bijection σD : PD→ PD such that (Mp)≥1(1)∼= Mσ−1
D p for all

p ∈ PD , namely σD = σSφ.

Proof. (1) This follows from the discussion prior to the lemma.

(2) Let p ∈ PS . Suppose that p = (ξ ′0, . . . , ξ
′
n) and σ−1

S (p)= (ξ0, . . . , ξn) with re-
spect to an ordered basis x1, . . . , xn for S1. There is a homogeneous basis e0, e1, . . . ,
where deg(en)= n, for the S-module Mp such that xi e0 = ξ

′

i e1 and xi e1 = ξi e2 for
all i . Hence (ξi x j − ξ j xi )e1 = 0 for all 1≤ i, j ≤ n.

Since
σ−1

D (p)⊥ = {x ∈ D1 | x ∗ e1 = 0}

= {x ∈ D1 | φ(x)e1 = 0}

= {φ−1(x) ∈ D1 | xe1 = 0}

= φ−1({x ∈ D1 = S1 | xe1 = 0})

= φ−1(σ−1
S (p)⊥)

= φ−1(σ−1
S (p))⊥,

σ−1
D = φ

−1σ−1
S and σD = σSφ. �

4B. Points in Projnc(S), the point scheme of S, and point modules. We restate
Lemma 4.1(1) explicitly in the following theorem.

Theorem 4.2. The point scheme PS is reduced. It is the union of

(1) the conics E F + κ2K 2
= K ′ = 0 and E F + κ2K ′ 2 = K = 0,

(2) the line K = K ′ = 0, and

(3) the points (0, 0, 1,±1).

Furthermore,

(4) if p = (ξ1, ξ2, ξ3, 0) is on the conic E F + κ2K 2
= K ′ = 0, then σS(p) =

(qξ1, q−1ξ2, ξ3, 0);
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(5) if p = (ξ1, ξ2, 0, ξ4) is on the conic E F + κ2K ′ 2 = K = 0, then σS(p) =
(q−1ξ1, qξ2, 0, ξ4);

(6) if p = (ξ1, ξ2, 0, 0) is on the line K = K ′ = 0, then σS(p)= p;

(7) if p = (0, 0, 1,±1), then σS(p)= p.

Proof. By Lemma 4.1, PS = PD. However, PD is reduced so PS is reduced. By
Theorem 3.7, the irreducible components of PD are the varieties in parts (1), (2)
and (3) of this theorem. Hence the same is true of PS .

Now suppose there is an ordered basis x1, . . . , xn for S1 and scalars λ1, . . . , λn

such that φ(xi )=λi xi for all i . Let p= (ξ1, . . . , ξn)∈P(S∗1 ), where the coordinates
are written with respect to the ordered basis x1, . . . , xn . Let ξ be the point in S∗1
with coordinates (ξ1, . . . , ξn); i.e., xi (ξ) = ξi or, equivalently, ξ(xi ) = ξi . Since
φ(ξ)(xi )= ξ(φ

−1xi )= ξ(λ
−1
i xi ), φ(ξ)= (λ−1

1 ξ1, . . . , λ
−1
n ξn). Hence

φ(p)= (λ−1
1 ξ1, . . . , λ

−1
n ξn).

Note that E , F , K , and K ′ in S are eigenvectors for φ with eigenvalues q−1,
q, 1, and 1, respectively. Thus if p = (ξ1, ξ2, ξ3, ξ4) ∈ P(S∗1 ) with respect to
the ordered basis E, F, K , K ′, then φ(p) = (qξ1, q−1ξ2, ξ3, ξ4) and φ−1(p) =
(q−1ξ1, qξ2, ξ3, ξ4).

We now use the description of σD in Theorem 3.7 to obtain:

(1) If p=(ξ1, ξ2, ξ3, 0)∈{E F+κ2K 2
=K ′=0}, then σD(p)=(q2ξ1,q−2ξ2,ξ3,0)

so σS(p)= σDφ
−1(p)= (qξ1, q−1ξ2, ξ3, 0).

(2) If p = (ξ1, ξ2, 0, ξ4) ∈ {E F + κ2K ′ 2 = K = 0}, then σD(p)= p so σS(p)=
σDφ

−1(p)= (q−1ξ1, qξ2, ξ3, 0).

(3) If p = (ξ1, ξ2, 0, 0) ∈ {K = K ′ = 0}, then σD(p) = (qξ1, q−1ξ2, 0, 0) so
σS(p)= φ−1(p)= (ξ1, ξ2, 0, 0).

(4) If p = (0, 0, 1,±1), then σD(p)= p so σS(p)= φ−1(p)= p. �

The algebra D is less symmetric than S: the fact that σD is the identity on one
of the conics but not on the other indicates a certain asymmetry about D. The
asymmetry is a result of the fact that we favored K ′ over K when we formed the
Zhang twist of S which made K ′, but not K , a central element. Theorem 4.2 shows
that the symmetry is restored when the results for PD are transferred to PS .

4C. Lines and quadrics in Projnc(S). Proposition 3.9 classified the line modules
for D, and therefore the line modules for S. Theorem 4.5 below gives a new
description of the line modules for S: it says that the line modules correspond
to the lines lying on a certain pencil of quadrics. This is analogous to the de-
scription in [Le Bruyn and Smith 1993, Theorem 2] of the line modules for the
homogenized enveloping algebra of sl2 and the description in [Levasseur and Smith
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1993, Theorem 4.5] of the line modules for the 4-dimensional Sklyanin algebra
S(α, β, γ ).

The new description provides a unifying picture. The pencil of quadrics becomes
more degenerate as one passes from the S(α, β, γ )’s to the homogenizations of
the various Uq(sl2) and more degenerate still for H(sl2). The pencil for H(sl2)
contains a double plane t2

= 0, that for S contains the pair of planes {K K ′ = 0},
and that for S(α, β, γ ) contains 4 cones and the other quadrics in the pencil are
smooth.

The vertices of the cones in each pencil play a special role: for H(sl2) there is
only one cone and its vertex corresponds to the trivial representation of U (sl2);
for S there are two cones and their vertices correspond to the two 1-dimensional
representations of Uq(sl2); for S(α, β, γ ) the vertices of the four cones “correspond”
to the four special 1-dimensional representations.

4C1. The line through two points (ξ1, ξ2, ξ3, 0) and (η1, η2, 0, η4) in P(S∗1 ) is given
by the equations

(4-1) ξ3η4 E − ξ1η4K − ξ3η1K ′ = ξ3η4 F − ξ2η4K − ξ3η2K ′ = 0.

4C2. The pencil of quadrics Q(λ)⊆ P(S∗1 ). For each λ ∈ P1, let Q(λ)⊆ P(D∗1)
be the quadric where

gλ := κ−2 E F + K 2
− (λ+ λ−1)K K ′+ K ′ 2

vanishes. The points on the conics

C ′ : κ2K ′ 2+ E F = K = 0,

C : κ2K 2
+ E F = K ′ = 0

correspond to point modules for S. If λ 6= 0,∞, then

C ′ = Q(λ)∩ {K = 0} and C = Q(λ)∩ {K ′ = 0}.

Proposition 4.3. (1) The base locus of the pencil Q(λ) is C ∪C ′.

(2) The Q(λ)’s are the only quadrics that contain C ∪C ′.

(3) The singular quadrics in the pencil are the cones Q(±1) with vertices at
(0, 0, 1,±1) respectively, and Q(0)= Q(∞)= {K K ′ = 0}.

(4) The lines on Q(1) are κ−1 E − s(K − K ′)= sκ−1 F + (K − K ′)= 0, s ∈ P1,
and the lines on Q(−1) are κ−1 E − s(K + K ′) = sκ−1 F + (K + K ′) = 0,
s ∈ P1.
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(5) Suppose λ /∈ {0,±1,∞}. The two rulings on Q(λ) are

κ−1 E − s(K − λK ′)= sκ−1 F + (K − λ−1K ′)= 0, s ∈ P1,(4-2)

κ−1 E − s(K − λ−1K ′)= sκ−1 F + (K − λK ′)= 0, s ∈ P1.(4-3)

Proof. (1) The base locus is, by definition, the intersection of all Q(µ) so is given
by the equations K K ′ = κ−2 E F+K 2

+K ′ 2 = 0 so is {K ′ = κ−2 E F+K 2
= 0}∪

{K = κ−2 E F + K ′ 2 = 0}.

(2), (3) The proofs are straightforward. To prove (3) observe that the determinant
of the symmetric matrix representing the gλ has zeroes at λ = ±1 and a zero at
λ= 0,∞.

(4), (5) Let ` be the line defined by (4-2). Suppose s /∈ {0,∞}. Then κ−1 E =
s(K−λK ′) and sκ−1F=−(K−λ−1K ′) on `, so sκ−2EF=−s(K−λK ′)(K−λ−1K ′)
on `. Canceling s, this says that κ−2 E F + (K − λK ′)(K − λ−1K ′) vanishes on `.
Since the equation for Q(λ) can be written as κ−2 E F+(K−λK ′)(K−λ−1K ′)= 0,
` ⊆ Q(λ). If s = 0, then ` is the line E = K − λ−1K ′ = 0 which is on Q(λ). If
s =∞, then ` is the line K + λ−1K ′ = F = 0 which is on Q(λ). The other case,
(4-3), is similar. �

4C3. There are exactly four singular quadrics in a generic pencil of quadrics
in P3. The point modules for the 4-dimensional Sklyanin algebras S(α, β, γ ) are
parametrized by a quartic elliptic curve E ⊆ P3 and 4 isolated points that are the
vertices of the singular quadrics that contain E . The point modules corresponding to
those isolated points correspond to the four 1-parameter families of 1-dimensional
representations of a 4-dimensional Sklyanin algebra.

4C4. The vertices of the cones Q(±1) are the points (0, 0, 1,±1). These are
the isolated points in the point scheme PS (see Theorem 4.2). Later, we will see
that the points (0, 0, 1,±1) correspond to the two 1-dimensional Uq(sl2)-modules.
More precisely, if p is one of those points, then Mp[(K K ′)−1

]0 is a 1-dimensional
Uq(sl2)-module.

4C5. The lines on Q(1) meet C ′ and C at points of the form (ξ1, ξ2, ξ3, 0) and
(ξ1, ξ2, 0,−ξ3) respectively. The lines on Q(−1) meet C ′ and C at points of the
form (ξ1, ξ2, ξ3, 0) and (ξ1, ξ2, 0, ξ3) respectively.

Theorem 4.4. Let ` be a line in P(S∗1 ). Then S/S`⊥ is a line module if and only if
`⊆ Q(λ) for some λ ∈ P1.

Proof. (⇒) Suppose S/S`⊥ is a line module. By Section 4A, D/D`⊥ is a line
module for D.

The result is true if ` ⊆ {K K ′ = 0} = Q(∞) so, from now on, suppose ` 6⊆
{K K ′ = 0}.
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Let p = (ξ1, ξ2, ξ3, 0) be the point where ` meets {K ′ = 0}. By the discussion
at the beginning of Section 3D, A/Ap⊥ is a point module for A = D/(K ′) so
p ∈ C ∪ {K = K ′ = 0}.

Suppose p= (1, 0, 0, 0). By Proposition 3.9(1), ` is on the plane {F = 0}. Since
p ∈ ` it follows that `= {F = K−λK ′= 0} for some λ∈P1. Since ` 6⊆ {K K ′= 0},
λ 6= 0,∞. Thus ` is the line in (4-2) corresponding to the point s =∞∈P1. Hence
`⊆ Q(λ).

If p = (0, 1, 0, 0), a similar argument shows that ` lies on some Q(λ).
Now suppose that p /∈ {(1, 0, 0, 0), (0, 1, 0, 0)}. Since ` 6⊆ {K K ′ = 0}, it follows

from Proposition 3.9(3) that ξ3 6= 0. Hence by Proposition 3.9(4), ` lies on the
quadric

ξ1 F K + ξ2 E K + ξ3(−E F + κ2K − κ2K ′ 2)= 0.

The conic C ′ = {K = E F+κ2K ′ 2 = 0} also lies on this quadric so C ′∩ ` 6=∅. by
a result analogous to Proposition 3.9(3), η4 6= 0. Let (η1, η2, 0, η4) ∈ C ′ ∩ `. Then
` is given by the equations in (4-1) so lies on the surface cut out by the equation

ξ 2
3η

2
4 E F = (ξ1η4K + ξ3η1K ′)(ξ2η4K + ξ3η2K ′)

= ξ1ξ2η
2
4 K 2
+ ξ3η4(ξ1η2+ ξ2η1)K K ′+ ξ 2

3η1η2K ′ 2

=−κ2ξ 2
3η

2
4 K 2
+ ξ3η4(ξ1η2+ ξ2η1)K K ′− κ2ξ 2

3η
2
4 K ′ 2,

which can be rewritten as ξ 2
3η

2
4(κ
−2 E F+K 2

+K ′ 2)− ξ3η4(ξ1η2+ ξ2η1)K K ′ = 0.
Thus, ` lies on some Q(λ).

(⇐) Let ` be a line on Q(λ). If ` ⊆ {K ′ = 0}, then D/D`⊥ = A/A`⊥ is a line
module. From now on suppose that ` 6⊆ {K ′ = 0}.

To show that D/D`⊥, and hence S/S`⊥, is a line module we must show there is
a point, p say, in `∩C such that `⊆ Q p, where Q p is the quadric in Section 3D1.

Suppose `⊆ Q(1). By Proposition 4.3(4), ` is given by

κ−1 E − s(K − K ′)= sκ−1 F + (K − K ′)= 0

for some s ∈ P1. Since the point p = (−s2, 1,−sκ−1, 0) belongs to `∩C , S/S`⊥

is a line module if and only if `⊆ Q p. Since Q p is given by the equation

−s2 F K + E K − sκ−1(−E F + κ2K 2
− κ2K ′ 2)= 0,

the point (−s2, 1, 0, sκ−1) is in `∩ Q p. Thus, ` passes through the vertex of the
cone Q p and through a second point on Q p, whence `⊆ Q p. Therefore S/S`⊥ is
a line module.

The case `⊆ Q(−1) is similar.
Suppose λ /∈ {0,±1,∞}. Since `⊆ Q(λ) we suppose, without loss of generality,

that ` belongs to the ruling (4-3) on Q(λ). Thus ` = {κ−1 E − s(K − λK ′) =
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sκ−1 F + (K − λ−1K ′) = 0} for some s ∈ P1. The point p = (−κs2, κ,−s, 0),
which is the vertex of the cone Q p, is in `∩C . Thus ` passes through the vertex of
Q p and the point (−κs2ν2, κ, 0, sν) which is also on Q p, `⊆ Q p. Hence S/S`⊥

is a line module. �

Theorem 4.5. Let ` be a line in P(S∗1 ). Then S/S`⊥ is a line module if and only if
` meets C ∪C ′ with multiplicity 2; i.e., if and only if ` is a secant line to C ∪C ′.

Proof. (⇒) Since S/S`⊥ is a line module for S, D/D`⊥ is a line module for D.
Let λ be such that `⊆ Q(λ).

Suppose Q(λ) is smooth. The Picard group of Q(λ) is isomorphic to Z×Z and
equal to Z[L] ⊕ Z[L ′], where [L] is the class of the line in (4-2) corresponding
to s = 0 and [L ′] is the class of the line in (4-3) corresponding to s = 0. Since
L = {E = K − λ−1K ′ = 0}, the scheme-theoretic intersection L ∩ (C ∪C ′) is the
zero locus of the ideal

(E, K − λ−1K ′)+ (K K ′, gλ)

= (E, K − λ−1K ′, K K ′, κ−2 E F + (K − λK ′)(K − λ−1K ′))

= (E, K − λ−1K ′, K K ′).

Hence L ∩ (C ∪C ′) is a finite scheme of length 2. Therefore [L] · [C ∪C ′] = 2. A
similar calculation shows that [L ′] · [C ∪C ′] = 2. Hence [C ∪C ′] = 2[L]+ 2[L ′].
It follows that [`] · [C ∪C ′] = 2.

Suppose ` lies on the cone Q(1). Then ` is the line κ−1 E − s(K + K ′) =
sκ−1 F+(K+K ′)= 0 for some s ∈P1. Therefore the scheme-theoretic intersection
`∩ (C ∪C ′) is the zero locus of the ideal

(4-4) (κ−1 E − s(K − K ′), sκ−1 F + (K − K ′))+ (K K ′, g1).

Since `⊂Q(1), g1 belongs to the ideal vanishing on `. The ideal in (4-4) is therefore
equal to (κ−1 E − s(K − K ′), sκ−1 F + (K − K ′), K K ′). Thus `∩ (C ∪C ′) is a
finite scheme of length 2.

If `⊆ Q(−1), a similar argument shows that `∩ (C ∪C ′) is a finite scheme of
length 2.

Suppose ` ⊆ Q(∞) = {K K ′ = 0}. Without loss of generality we can, and do,
assume that `⊆ {K ′ = 0}. By Bézout’s theorem, ` meets C with multiplicity two.
Thus, if `∩C ′ =∅, then ` meets C ∪C ′ with multiplicity two. Now suppose that
` meets C with multiplicity two and C ′ with multiplicity ≥ 1. If ` meets C at two
distinct points, then ` is transversal to some Q(λ′) so meets Q(λ′), and hence C∪C ′,
with multiplicity two. It remains to deal with the case where ` is tangent to C and
meets C ′. We now assume that is the case. Since C ∩C ′ = {(1, 0, 0, 0), (0, 1, 0, 0)
it follows that ` is tangent to C at (1, 0, 0, 0) or at (0, 1, 0, 0). Since the two
cases are similar we assume that ` is tangent to C at (1, 0, 0, 0). It follows that
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`= {K ′ = F = 0}. The scheme-theoretic intersection `∩ (C ∪C ′) is the zero locus
of the ideal

(K , F)+ (K K ′, g1)= (K , F, K K ′, κ−2 E F + K 2
+ K ′ 2)= (K , F, K ′ 2).

Hence `∩ (C ∪C ′) is a finite scheme of length 2.

(⇐) Suppose ` is a line that meets C ∪C ′ with multiplicity 2.
If ` lies on the plane {K ′ = 0}, then K ′ ∈ `⊥ so the ideal (K ′) of D is contained

in D`⊥ and D/D`⊥ is a module over A = D/(K ′). However, the dual of the map
D1→ A1 embeds P(A∗1) in P(D∗1) and the image of this embedding is {K ′ = 0}.
In short, ` is a line in P(A∗1). This implies that A/A`⊥ is a line module for A and
hence a line module for D. But A/A`⊥ = D/D`⊥ so D/D`⊥ is a line module
for D. Therefore S/S`⊥ is a line module for S. A similar argument shows that if `
lies on the plane {K = 0}, then S/S`⊥ is a line module.

For the remainder of the proof we assume that ` 6⊆ {K K ′ = 0}.
A line that meets C with multiplicity two lies in the plane K ′ = 0, so ` meets C

and C ′ with multiplicity one. Let p = (ξ1, ξ2, ξ3, 0) be the point where ` meets C
and p = (η1, η2, 0, η4) be the point where ` meets C ′. Since p is the vertex of Q p

and C ′ ⊆ Q p, ` passes through the vertex of Q p and another point on Q p. Hence
`⊆ Q p. �

4C6. Lemmas 4.4 and 4.5 are analogous to results for the 4-dimensional Sklyanin
algebras: the line modules correspond to the lines in P3 that lie on the quadrics
that contain the quartic elliptic curve E , and those are exactly the lines in P3 that
meet E with multiplicity two, i.e., the secant lines to E . Similar results hold for
the homogenization of sl2 [Le Bruyn and Smith 1993].

4C7. Notation for line modules. By Theorem 4.5, the lines that correspond to line
modules for S are the secant lines to C ∪C ′. If (p)+ (p′) is a degree-two divisor
on C ∪C ′ we write Mp,p′ for the line module M` = S/S`⊥, where ` is the unique
line that meets C ∪C ′ at (p)+ (p′). Thus, up to isomorphism, the line modules for
S are

{Mp,p′ | p, p′ ∈ C ∪C ′}.

4D. Incidence relations between lines and points in Projnc(S). Let (p)+(p′) be
a degree-two divisor on C ∪C ′. There is a surjective map Mp,p′ � Mp in Gr(S)
and, by [Levasseur and Smith 1993, Lemma 5.3], the kernel of that homomorphism
is isomorphic to M`′(−1) for some `′. Our next goal is to determine `′. We do that
in Proposition 4.8 below.

First we need the rather nice observation in the next lemma.
We call a degree-three divisor on a plane cubic curve linear if it is the scheme-

theoretic intersection of that curve and a line.
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Lemma 4.6. Let C be a nondegenerate conic in P2, σ an automorphism of C
that fixes two points, and L the line through those two points. Let p, p′ ∈ C
and p′′ ∈ L. The divisor (p)+ (p′)+ (p′′) ∈ Div(C ∪ L) is linear if and only if
(σ p)+ (σ−1 p′)+ (p′′) is.

Proof. By symmetry, it suffices to show that if (p)+ (p′)+ (p′′) is linear so is
(σ p)+ (σ−1 p′)+ (p′′). That is what we will prove. So, assume (p)+ (p′)+ (p′′)
is linear.

If τ is an automorphism of P1 that fixes two points, there are nonzero scalars λ
and µ and a choice of coordinates such that τ(s, t) = (λs, µt) for all (s, t) ∈ P1.
We assume, without loss of generality, that (C, σ ) is the image of (P1, τ ) under
the 2-Veronese embedding. Thus, we can assume that C is the curve xy− z2

= 0
and σ(α, β, γ ) = (λ2α,µ2β, λµγ ). The line L is the line through (1, 0, 0) and
(0, 1, 0).

Let p = (α, β, γ ), p′ = (α′, β ′, γ ′), and p′′ = (a, b, 0). By hypothesis, these
three points are collinear. Therefore

det

 a b 0
α β γ

α′ β ′ γ ′

= 0.

I.e., a(βγ ′−β ′γ )− b(αγ ′−α′γ )= 0.
To show that (σ p)+ (σ−1 p′)+ (p′′) is linear we must show that the points

σ p= (λ2α,µ2β, λµγ ), σ−1 p′ = (λ−2α′, µ−2β ′, λ−1µ−1γ ′), and p′′, are collinear.
This is the case if and only if

det

 a b 0
λ2α µ2β λµγ

λ−2α′ µ−2β ′ λ−1µ−1γ ′

= 0.

This determinant is a(λ−1µβγ ′− λµ−1β ′γ )− b(λµ−1αγ ′− λ−1µα′γ ). It is zero
if and only if

(αγ ′−α′γ )(λ−1µβγ ′− λµ−1β ′γ )− (βγ ′−β ′γ )(λµ−1αγ ′− λ−1µα′γ )= 0.

This expression is equal to

λ−1µ(αβγ ′ 2−α′β ′γ 2)+ λµ−1(α′β ′γ 2
−αβγ 2).

But αβ − γ 2
= α′β ′− γ ′ 2 = 0 so αβγ ′ 2− α′β ′γ 2

= 0. Thus, the determinant is
zero and we conclude that σ−1 p′, σ p, and p′′, are collinear. �

Remark 4.7. For an alternative approach to Lemma 4.6, note first that the statement
can be recast as the claim that if η is the involution of C obtained by “reflection
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across p′′” meaning that

η(p)= the second intersection of the line pp′′ with C,

then π = η ◦ σ is an involution.
In turn, the involutivity of π follows from the fact that it interchanges the points

p and p′, and any automorphism of P1 that interchanges two points is, after a
coordinate change identifying said points with 0,∞, of the form z 7→ t z−1 for some
constant t . �

The next result is analogous to [Levasseur and Smith 1993, Theorem 5.5], which
shows for the 4-dimensional Sklyanin algebras that if (p)+ (p′) is a degree-two
divisor on the quartic elliptic curve E , then there is an exact sequence

0→ Mp+τ,p′−τ (−1)→ Mp,p′→ Mp→ 0,

where τ is the point on E such that σ p = p+ τ for all p ∈ E .

Proposition 4.8. If (p)+ (p′) is a degree-two divisor on C ∪C ′, there is an exact
sequence

0→ Mσ p,σ−1 p′(−1)→ Mp,p′→ Mp→ 0.

Proof. Let ` be the unique line in P3
= P(S∗1 ) such that `∩C = (p)+ (p′); i.e.,

Mp,p′=M`. By [Levasseur and Smith 1993, Lemma 5.3], there is an exact sequence
0→ M`′(−1)→ M`→ Mp→ 0 for some line module M`′ . We complete the proof
by showing that `′ ∩C = (σ p)+ (σ−1 p′); i.e., M`′ = Mσ p,σ−1 p′ . There are several
cases depending on the location of p and p′.

Case 0. Suppose `= L . Then K M`= K ′M`= 0 so M`, and consequently M`′ , is a
module over S/(K , K ′). Since S/(K , K ′) is a commutative polynomial ring on two
indeterminates it has a unique line module up to isomorphism, itself. In particular,
`′= `. Hence there is an exact sequence 0→Mp,p′(−1)→Mp,p′→Mp→ 0. But
σ is the identity on L by Theorem 4.2, so Mp,p′ = Mσ p,σ−1 p′ . Thus, the previous
exact sequence is exactly the sequence in the statement of this proposition.

Case 1. Suppose p, p′ ∈ C . Then ` meets C with multiplicity two and therefore
the plane {K ′ = 0} with multiplicity ≥ 2. Hence `⊆ {K ′ = 0}. It follows that M`

and M`′ are modules over S/(K ′). Given Case 0 treated above, for the remainder
of Case 1 we can, and do, assume that ` 6= L .

Since ` 6= L , `∩(C+L)= (p)+(p′)+(p′′), where p′′ is the point where ` and L
meet. Since S/(K ′) is a 3-dimensional Artin–Schelter regular algebra, [Artin et al.
1991, Proposition 6.24] tells us that `′ is the unique line such that `′∩(C+L) contains
the divisor (σ−1 p′)+ (σ−1 p′′).3 By Theorem 4.2, σ p′′ = p′′ so `′ is the unique

3Since [Artin et al. 1991, Proposition 6.24] is for right modules and we are working with left
modules we replaced σ by σ−1 in the conclusion of that result.
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line in {K ′ = 0} such that `′ ∩ (C + L) contains (σ−1 p′)+ (p′′). By Lemma 4.6,
σ p, σ−1 p′, and p′′, are collinear. Therefore `′∩ (C+ L)= (σ p)+ (σ−1 p′)+ (p′′).

Case 2. If p, p′ ∈ C ′, the “same” argument as in Case 1 proves the proposition.

Case 3. Suppose p ∈ C − C ′ and p′ ∈ C ′ − C . Let p = (ξ1, ξ2, ξ3, 0) and p′ =
(η1, η2, 0, η4). Since p /∈ C ′, ξ3 6= 0. Since p′ /∈ C , η4 6= 0.

By (4-1), ` is given by the equations

X := ξ3η4 E − ξ1η4K − ξ3η1K ′ = 0,

Y := ξ3η4 F − ξ2η4K − ξ3η2K ′ = 0.

The corresponding linear modules are

M` = Mp,p′ =
S

SX+SY
,

Mp =
S

SK ′+SX+SY
,

Mp′ =
S

SK+SX+SY
.

By (4-1), the line through the points σ p = (qξ1, q−1ξ2, ξ3, 0) and σ−1 p′ =
(qη1, q−1η2, 0, η4) is {X ′ = Y ′ = 0}, where

X ′ := ξ3η4 E − qξ1η4K − qξ3η1K ′,

Y ′ := ξ3η4 F − q−1ξ2η4K − q−1ξ3η2K ′.

The corresponding line module is Mσ p,σ−1 p′ = S/SX ′+ SY ′.
The image of K ′ in M` generates the kernel of M`→ Mp. Since X ′K ′ = q K ′X

and Y ′K ′ = q−1K ′Y , X ′ and Y ′ annihilate the image of K ′ in M`. It follows that
there is a map from Mσ p,σ−1 p′(−1) onto the kernel of M`→Mp. Thus, the kernel of
M`→ Mp is isomorphic to a quotient of Mσ p,σ−1 p′ . But every nonzero submodule
of a line modules has GK dimension 2, and every proper quotient of a line module
has GK dimension 1, so every nonzero homomorphism map Mσ p,σ−1 p′(−1)→M` is
injective. This shows that the kernel of M`→ Mp is isomorphic to Mσ p,σ−1 p′(−1).

Case 4. If p′ ∈ C −C ′ and p ∈ C ′−C , the “same” argument as in Case 3 proves
the proposition. �

We continue to write L for the line {K = K ′ = 0}.

Proposition 4.9. Let ` be a line in Projnc(S)
4 and suppose p′′ ∈ `∩ L.

(1) There are points p, p′ ∈ C ∪C ′ such that the scheme-theoretic intersection
`∩ (C ∪ L) contains the divisor (p)+ (p′)+ (p′′).

4This means that M` := S/S`⊥ is a line module.
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(2) There is an exact sequence

0→ Mσ−1 p,σ−1 p′(−1)→ Mp,p′→ Mp′′→ 0.

Proof. Since M` is a line module, ` meets C ∪C ′ with multiplicity two. It therefore
meets either C∪L or C ′∪L with multiplicity ≥ 2. We can, and do, assume without
loss of generality that ` meets C∪ L with multiplicity ≥ 2. Hence ` meets the plane
{K ′ = 0} with multiplicity ≥ 2. Therefore `⊆ {K ′ = 0}. By Bézout’s theorem, ` is
either equal to L or meets C ∪ L with multiplicity 3.

Suppose ` = L . Then M` is a module over the commutative polynomial ring
S/(K , K ′) and there is an exact sequence 0→ M`(−1)→ M`→ Mp′′→ 0. Let p
and p′ be the points where L meets C ∪C ′. Then M` = ML = Mp,p′ and, since σ
is the identity on L , M` = Mσ p,σ−1 p′ . Thus, (1) and (2) hold when `= L .

Suppose ` 6= L . Let p and p′ be the points in `∩C ; i.e., `∩C = (p)+ (p′). By
[Artin et al. 1991, Proposition 6.24], there is an exact sequence 0→ M`′(−1)→
M` = Mp,p′ → Mp′′ → 0, where `′ is the unique line whose scheme-theoretic
intersection with C ∪ L is ≥ (σ−1 p)+ (σ−1 p′). Hence M`′ = Mσ−1 p,σ−1 p′ . �

5. Relation to Uq(sl2)-modules

In this section, we relate our results about fat point and line modules for S to
classical results about the finite-dimensional irreducible representations and Verma
modules of Uq(sl2). Briefly, fat points in Projnc(S) correspond to finite-dimensional
irreducible Uq(sl2)-modules and lines in Projnc(S) correspond to Verma modules.

5A. Facts about Uq(sl2). First, we recall a few facts about Uq(sl2) that can be
found in [Jantzen 1996, Chapter 2].

5A1. Verma modules. For each λ ∈ C, we call

M(λ) :=
Uq(sl2)

Uq(sl2)e+Uq(sl2)(k− λ)

a Verma module for Uq(sl2), and λ its highest weight.

5A2. Casimir element. The Casimir element

(5-1) C := e f +
q−1k+ qk−1

(q − q−1)2
= f e+

qk+ q−1k−1

(q − q−1)2

is in the center of Uq(sl2) and acts on M(λ) as multiplication by

qλ+ q−1λ−1

(q − q−1)2
.
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5A3. Finite-dimensional simple modules. For each n ≥ 1, there are exactly two
simple Uq(sl2)-modules of dimension n + 1. They can be labeled L(n,+) and
L(n,−) in such a way that there are exact sequences

(5-2) 0→ M(±q−n−2)→ M(±qn)→ L(n,±)→ 0.

The module L(n,±) has basis m0, . . . ,mn with action

(5-3)

kmi =±qn−2i mi ,

f mi =

{
mi+1 if i < n,
0 if i = n,

emi =

{
±[i][n+ 1− i]mi−1 if i > 0,
0 if i = 0,

where we have made use of the quantum integers

[m] :=
qm
− q−m

q − q−1 .

5B. Lines in Projnc(S) ←→ Verma modules for Uq(sl2). First, we show that
Verma modules are “affine pieces” of line modules.

Proposition 5.1. Let λ ∈ C∪ {∞} = P1 and let ` be the line E = K − λK ′ = 0.

(1) ` lies on the quadric Q(λ).

(2) S/S`⊥ is a line module.

(3) If λ /∈ {0,∞}, then (S/S`⊥)[(K K ′)−1
]0 ∼= M(λ).

Proof. A simple calculation proves (1), and then (2) follows from Theorem 4.4.

(3) The functor j∗π∗ : Gr(S)→Mod(Uq(sl2) defined by j∗π∗M = M[(K K ′)−1
]0

is exact, so (S/S`⊥)[(K K ′)−1
]0 is isomorphic to S(K K ′)−1

]0/(S`⊥)[(K K ′)−1
]0.

Using the isomorphism given by (2-7), it is clear that (S`⊥)[(K K ′)−1
]0 is the left

ideal of Uq(sl2) generated by e and k− λ. �

5B1. “Heretical” Verma modules. Proposition 5.1 illustrates the importance of
line modules for Artin–Schelter regular algebras with Hilbert series (1− t)−4. Line
modules are just like Verma modules. Indeed, Verma modules for U (sl2) and
Uq(sl2) are “affine pieces” of line modules.

From the point of view of noncommutative projective algebraic geometry, the
line modules that correspond to Verma modules are no more special than other line
modules. One is tempted to declare that if ` is any line on any Q(λ), λ 6= 0,∞,
then (S/S`⊥)[(K K ′)−1

]0 should be considered as a Verma module.
Doing that would place Uq(sl2) on a more equal footing with U (sl2): if one varies

both the Borel subalgebra and the highest weight, then U (sl2) has a 2-parameter
family of Verma modules; if were to define Verma modules for Uq(sl2) as “affine
pieces” of line modules, then Uq(sl2) would also have a 2-parameter family of
Verma modules.
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5B2. Central (Casimir) elements. We define �(0)=�(∞)= K K ′ and, for each
λ ∈ C−{0,∞}, we define

�(λ) :=E F +
q−1K 2

+ q K ′ 2

(q − q−1)2
−

qλ+ q−1λ−1

(q − q−1)2
K K ′

=E F + κ2(q−1K − qλK ′)(K − λ−1K ′)

=F E + κ2(q K − q−1λ−1K ′)(K − λK ′).

The elements �(λ), λ ∈ P1, belong to the center of S and span a 2-dimensional
subspace of S2.

We take note that �(λ)=�(q−2λ−1) and �(µ) 6=�(λ) if µ /∈ {λ, q−2λ−1
}.

Under the isomorphism S[(K K ′)−1
]0 ∼=Uq(sl2) given in (2-7), we have

�(λ)(K K ′)−1
= C −

qλ+ q−1λ−1

(q − q−1)2
,

where C is the Casimir element defined in (5-1).
The reader will notice similarities between the pencil of central subspaces

C�(λ)⊆ S2 and the pencil of quadrics Q(λ)⊆ P(S∗1 ). For example, exactly one
�(λ) is a product of two degree-1 elements, namely �(0)=�(∞)= K K ′, and
exactly one Q(λ) that is a union of two planes, namely Q(0)= Q(∞)={K K ′= 0}.
In a similar vein, we expect that S/(�(λ)) is a prime ring if and only if λ is not
0 or∞. The precise relation between the �(λ)’s and the Q(λ)’s is established in
Proposition 5.3.

Lemma 5.2. Let λ ∈ C×. The central element �(λ) annihilates M` for all lines `
of the form

E − κs(K − λK ′)= s F + κ(K − λ−1K ′)= 0, s ∈ P1.

Proof. Let s be any point on P1. Since �(λ) equals

F E +
1

(q − q−1)2
(q K − q−1λ−1K ′)(K − λK ′)

= F(E − κs(K − λ−1K ′))+ κ(q K − q−1λ−1K ′)(s F + κ(K − λK ′)),

it belongs to the left ideal generated by E−κs(K −λ−1K ′) and s F+κ(K −λK ′).
That left ideal is S`⊥ so, since �(λ) is in the center of S, it annihilates S/S`⊥. �

Proposition 5.3. Let M` be a line module. If λ ∈ C×, then �(λ) annihilates M` if
and only if either

(1) `⊆ Q(λ) and is in the same ruling as the line E = K − λK ′ = 0, or

(2) `⊆ Q(q−2λ−1) and is in the same ruling as the line E = K − q−2λ−1K ′ = 0.
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Furthermore, �(0) = �(∞) annihilates M` if and only if ` ⊆ Q(0) = Q(∞) =
{K K ′ = 0}.

Proof. It is easy to see that the last sentence in the statement of the proposition
is true so we will assume that ` 6⊆ {K K ′ = 0}. Since M` is a line module, ` lies
on Q(µ) = Q(µ−1) for some µ ∈ C×. We fix such a λ. Since ` 6⊆ {K K ′ = 0},
µ 6= 0,∞.

(⇒) Fix λ ∈ C× and suppose that �(λ) annihilates M`. The lines on Q(µ) are
given by (4-2) and (4-3). Replacing µ by µ−1 if necessary, we can assume that `
belongs to the same ruling on Q(µ) as E = K −µK ′ = 0. Hence M` is annihilated
by �(µ). If �(µ) 6= �(λ), then M` is annihilated by K K ′. That is not the case,
so �(µ)=�(λ). Hence µ ∈ {λ, q−2λ−1

}. Hence either (1) or (2) holds.

(⇐) This implication follows from Lemma 5.2. If `⊆Q(λ) and is in the same ruling
as the line E = K − λK ′ = 0, then M` is annihilated by �(λ). If `⊆ Q(q−2λ−1)

and is in the same ruling as the line E = K −q−2λ−1K ′= 0, then M` is annihilated
by �(q−2λ−1)=�(λ). �

We only care about the ideal generated by�(λ) and the matter of which modules
are annihilated by which �(λ)’s. Thus, we only care about �(λ) up to nonzero
scalar multiples. For this reason it is often better to think of�(λ) as an element in P1.

5C. Fat points in Projnc(S) ←→ finite-dimensional simple Uq(sl2)-modules.
As the title suggests, this subsection establishes a connection between the finite-
dimensional simple Uq(sl2)-modules L(n,±) discussed in Section 5A3 and certain
fat points F(n,±) of the noncommutative scheme Projnc(S) that are defined below.
Proposition 5.6 makes this connection explicit. We have not addressed the question
of whether the F(n,±)’s are all the fat points.

5C1. Some finite-dimensional simple S-modules. We fix a square root,
√

q, of
q and adopt the convention that qn/2−i

= (
√

q)n−2i and q i−n/2
= (
√

q)2i−n . Let
V (n,±) be the vector space with basis v0, . . . , vn and define

Kvi =
√
±1 qn/2−ivi , K ′vi =±

√
±1 q i−n/2vi ,

Fvi =

{
[n− i]vi+1 if i < n,
0 if i = n,

Evi =

{
±[i]vi−1 if i > 0,
0 if i = 0.

5C2. Automorphisms of S and autoequivalences of Gr(S). Let θ : S→ S be the
algebra automorphism defined by θ(K )=−K , θ(K ′)= K ′, θ(E)= E , θ(F)= F .

If ε ∈C× let φε : S→ S be the algebra automorphism φε(a)= εna for all a ∈ Sn .
Let φ be a degree-preserving algebra automorphism of S. The functor φ∗ :

Gr(S)→ Gr(S) is defined as follows: if M ∈ Gr(S), then φ∗(M) is M as a graded
vector space and if a ∈ S and m ∈ M∗, then a ·m = φ(a)m. The functor φ∗ is an
autoequivalence.
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Proposition 5.4. Let ε =−
√
−1.

(1) V (n,±) is a simple S-module of dimension n+ 1.

(2) V (n,±) is a S[(K K ′)−1
]-module with (K K ′)−1 acting as the identity.

(3) Identifying Uq(sl2)with S[(K K ′)−1
]0 as in Proposition 2.4, V (n,±)∼= L(n,±)

as a Uq(sl2)-module.

(4) �(±qn) annihilates V (n,±).

(5) V (n,−)∼= φ∗ε θ
∗V (n,+).

Proof. (1) First we check that the action makes V (n,±) a left S-module. If v−1= 0,
then E Kvi =±

√
±1 qn/2−i

[i]vi−1 and K Evi =±
√
±1 qn/2−i+1

[i]vi−1= q E Kvi .
Hence K E − q E K acts on V (n,±) as 0. With the understanding that vn+1 = 0,
F Kvi =

√
±1 qn/2−i

[n−i]vi−1 and K Fvi =
√
±1 qn/2−i−1

[n−i]vi+1=q−1 F Kvi ,
so K F − q−1 F K acts on V (n,±) as 0. Similar calculations show that K ′E −
q−1 E K ′ and K ′F − q F K ′ act on V (n,±) as 0 also. Furthermore,

[E, F]vi =±
(
[n− i]Evi+1− [i]Fvi−1

)
=±

(
[n− i][i + 1][i][n− i + 1

)
vi

=±[n− 2i]vi

=
K 2
− K ′ 2

q − q−1 vi ,

so V (n,±) really is a left S-module.
To see it is simple, first observe that the vi are eigenvectors for K with pairwise

distinct eigenvalues. It follows that if V (n,±) is not simple, then there it has a
proper submodule that contains some vi . However, looking at the actions of E and
F on the vj , a submodule that contains one vi contains all vi . Hence V (n,±) is
simple.

(2) Since K K ′ acts on V (n,±) as multiplication by 1, the module-action of S on
V (n,±) extends to a module-action of S[(K K ′)−1

].

(3) Since e = 1
√

q
E K−1, f = 1

√
q

F(K ′)−1, and k = K (K ′)−1,

kvi =−qn−2ivi ,

f vi =


1
√
±q

qn/2−i
[n− i]vi+1 if i < n,

0 if i = n,
evi =


±1
√
±q

q i−n/2
[i]vi−1 if i > 0,

0 if i = 0.

Choose nonzero scalars λ0, . . . , λn such that

λi−1/λi =
√
±q qn/2−i

[n+ 1− i].
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The linear isomorphism φ : V (n,±) → L(n,±) defined by φ(vi ) = λi mi is a
Uq(sl2)-module isomorphism because φ(kvi )= kφ(vi ),

φ(evi )=
±1
√
±q

q i−n/2
[i]λi−1mi−1 =±[i][n+ 1− i]λi mi−1 = eφ(vi ),

and

φ( f vi )=
1
√
±q

qn/2−i
[n− i]λi+1vi+1 = λi mi+1 = f φ(vi ).

Hence V (n,±)∼= L(n,±) as claimed.

(4) By Schur’s lemma, �(λ) acts on V (n,±) as multiplication by a scalar. There-
fore, if �(λ) annihilates v0 it annihilates V (n,±). Since Ev0 = 0, �(λ)v0 =

κ2(q K − q−1λ−1K ′)(K − λK ′)v0. The result follows from (K ∓ qn K ′)v0 = 0.

(5) Let v0, . . . , vn be the basis for V (n,+) in Section 5C1 and, to avoid confusion,
write v′i for the basis element vi in V (n,−). Thus, Kv′i =−εq

n/2−iv′i .
Define ψ : φ∗ε θ

∗V (n,+)→ V (n,−) by ψ(vi ) := (−1)iεiv′i . To show ψ is an
S-module isomorphism it suffices to show it is an S-module homomorphism. To
this end, consider vi as an element in φ∗ε θ

∗V (n,+). Because θφε(K ) = −εK ,
Kvi =−εqn/2−ivi . Hence

ψ(Kvi )= ψ(−εqn/2−ivi )=−εqn/2−i (−1)iεiv′i = (−1)iεi Kv′i = Kψ(vi ).

Similarly, because θφε(K ′)= εK ′ and K ′v′i = εq
i−n/2v′i ,

ψ(K ′vi )= ψ(εq i−n/2vi )= εq i−n/2(−1)iεiv′i = (−1)iεi K ′v′i = K ′ψ(vi ).

We also have

ψ(Fvi )= ψ(ε[n− i]vi+1)= ε[n− i](−1)i+1εi+1v′i+1 = (−1)iεi Fv′i = Fψ(vi )

and

ψ(Evi )= ψ(ε[i]vi−1)= ε[i](−1)i−1εi−1v′i−1 = (−1)iεi Ev′i = Eψ(vi ). �

5C3. Fat points and fat point modules. For each n ∈ N we define

F(n,±) := V (n,±)⊗C[z]

and make this a graded left S-module according to the recipe in Lemma 2.1. It is a
fat point module. Proposition 5.6 makes the statement that the fat point (module)
F(n,±) corresponds to the finite-dimensional simple Uq(sl2)-module L(n,±)
precise.

Lemma 5.5. If θ is the automorphism in Section 5C2, then θ∗F(n,±)∼= F(n,∓).
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Proof. If V is any left S-module and φε the automorphism in Section 5C2 associated
to ε ∈ k×, then the map 8 : V ⊗ k[z] → (φ∗εV )⊗ k[z], 8(v⊗ zi ) = v⊗ (εz)i , is
an isomorphism in Gr(S). Hence

F(n,−)= φ∗ε θ
∗V (n,+)⊗ k[z] ∼= θ∗V (n,+)⊗ k[z]

∼= θ
∗(V (n,+)⊗ k[z])= θ∗F(n,+). �

Proposition 5.6. If π∗ : Gr(S) → QGr(S) and j∗ : QGr(S) → Uq(sl2) are the
functors in Section 1A2, then j∗π∗F(n,±)∼= L(n,±); i.e., there is an isomorphism
of Uq(sl2)-modules

F(n,±)[(K K ′)−1
]0 ∼= L(n,±).

Proof. The functor j∗π∗ sends M ∈ Gr(S) to M[(K K ′)−1
]0, where the latter

is made into a Uq(sl2)-module via the isomorphism Uq(sl2)→ S[(K K ′)−1
]0 in

Proposition 2.4.
Since K K ′ acts on V (n,±) as the identity, it acts on F(n,±)= V (n,±)⊗ k[z]

as multiplication by z2. Hence, F(n,±)[(K K ′)−1
]0 = V (n,±)⊗ k[z, z−2

]0 =

V (n,±)⊗ 1.
Let Ŝ = S[(K K ′)−1

]. Applying the functor Ŝ⊗S − to the surjective S-module
homomorphism F(n,±)→ V (n,±), v⊗ zi

7→ v, produces a surjective homomor-
phism

ψ : F[(K K ′)−1
] = Ŝ⊗S F(n,±)→ Ŝ⊗S V (n,±)

of Ŝ-modules. Of course, ψ is a homomorphism of Ŝ0-modules. Every homoge-
neous component of F(n,±)[(K K ′)−1

] is an Ŝ0-submodule of F(n,±)[(K K ′)−1
]

so ψ restricts to a homomorphism F(n,±)[(K K ′)−1
]0 → Ŝ ⊗S V (n,±) of Ŝ0-

modules. But Ŝ⊗SV (n,±) is isomorphic to L(n,±) as an Ŝ0-module by Proposition
5.4(3) and, by the previous paragraph, dim(F(n,±)[(K K ′)−1

]0)=dim(V (n,±))=
n+ 1= dim(L(n,±)) so the restriction of ψ to F(n,±)[(K K ′)−1

]0 is an isomor-
phism of Ŝ0-modules. �

Proposition 5.7. Let n ≥ 0. Let `± be any line on Q(±qn) that is in the same
ruling as the line E = K ∓ qn K ′ = 0.

(1) There is a surjective S-module homomorphism M`±→ V (n,±).

(2) There is a homomorphism M`±→ F(n,±) in Gr(S) that becomes an epimor-
phism in QGr(S).

(3) In Projnc(S), the fat point F(n,±) lies on the line `±.

Proof. Let s ∈ P1 be such that `± is the line

κ(K ∓ qn K ′)− s−1 E = κ(K ∓ q−n K ′)+ s F = 0.
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Thus,

M`±
∼=

S
SX±+SY±

,

where X± = κ(K ∓ q−n K ′)− s−1 E and Y± = κ(K ∓ qn K ′)+ s F .

(1) Since V (n,±) is a simple S-module it suffices to show there is a nonzero
homomorphism M`± → V (n,±). For this, it suffices to show there is a nonzero
element in V (n,±) annihilated by both X± and Y±.

If s=0, and v±=v0∈V (n,±), then X±v±= Ev0=0 and Y±v±= (K∓qn K ′)v±
= 0. If s = ∞ and v± = vn ∈ V (n,±), then X±v± = (K ∓ q−n K ′)vn = 0 and
Y±v± = Fvn = 0. Thus, (1) is true if s equals 0 or∞.

From now on, assume that s 6= 0,∞. Let λ0, . . . , λn ∈ k× be such that

λi+1/λi =±
√
±1
[n− i]
[i + 1]

sq−n/2

for all i . If

v± =

n∑
i=0

λivi ∈ V (n,±),

then

X±v± =
n∑

i=0

(
κ
√
±1(qn/2−i

∓ q−nq i−n/2)λivi − s−1(±1)[i]λivi−1
)

=

n∑
i=0

(
−q−n/2

√
±1 [n− i]λi ∓ s−1

[i + 1]λi+1
)
vi

= 0
and

Y±v± =
n∑

i=0

(
κ
√
±1(qn/2−i

∓ qnq i−n/2)λivi + s[n− i]λivi+1
)

=

n∑
i=0

(
−qn/2

√
±1 [i]λi + s[n− i + 1]λi−1

)
vi

= 0.

(2) By Lemma 2.1, the existence of a nonzero homomorphism M`± → V (n,±)
implies the existence of a nonzero homomorphism M`± → F(n,±) in Gr(S).
However, as an object in QGr(S), F(n,±) is irreducible so (2) follows.

(3) This is just terminology. �

If one of the lines `±={X±=Y±=0} in Proposition 5.7 meets C at (ξ1, ξ2, ξ3, 0),
then it meets C ′ at (q−nξ1, qnξ2, 0,±ξ3). Combining this with Theorem 4.2(5)
gives the following result.
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Corollary 5.8. Let p = (ξ1, ξ2, ξ3, 0) ∈ C and define p± = (ξ1, ξ2, 0,±ξ3). Let `±
be the secant line to C ∪C ′ passing through p and σ n

S (p±). There is a surjective
homomorphism M`±→ V (n,±) in Mod(S) and an epimorphism M`±→ F(n,±)
in QGr(S).

The analogue of (5-2) requires results from the next section, and can be found in
Theorem 6.2.

6. Relation to the nondegenerate Sklyanin algebras

We remind the reader that S(α, β, γ ) denotes one of the nondegenerate Sklyanin
algebras defined in (2-2).

In this section, we show that some of our results about S can be obtained as
“degenerations” of results in [Smith and Stafford 1992; Chirvasitu and Smith 2017;
Smith and Staniszkis 1993] about S(α, β, γ ). We also complete the characterization
of those line modules that surject onto fat point modules that we alluded to in the
last section.

6A. The point scheme of a nondegenerate Sklyanin algebra. We follow [Smith
and Stafford 1992]. The point scheme of S(α, β, γ ) embedded in P3 with coordi-
nates x0, x1, x2, x3 is

(6-1) E ′ = E ∪ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},

where E is the elliptic curve defined by

(6-2) x2
0 + x2

1 + x2
2 + x2

3 = 0= x2
3 +

1− γ
1+α

x2
1 +

1+ γ
1−β

x2
2 .

Equivalently, E is the intersection of any two of the following quadrics:

(6-3)

x2
0 + x2

1 + x2
2 + x2

3 = 0,

x2
0 −βγ x2

1 − γ x2
2 +βx2

3 = 0,

x2
0 + γ x2

1 −αγ x2
2 −αx2

3 = 0,

x2
0 −βx2

1 +αx2
2 −αx2

3 = 0.

There is an automorphism σ of E ′ that fixes the four isolated points and on E is
given by the formula

(6-4) σ :


x0

x1

x2

x3

 7→

−2αβγ x1x2x3 − x0(−x2

0 +βγ x2
1 +αγ x2

2 +αβx2
3)

2α x0x2x3 + x1(x2
0 −βγ x2

1 +αγ x2
2 +αβx2

3)

2β x0x1x3 + x2(x2
0 +βγ x2

1 −αγ x2
2 +αβx2

3)

2γ x0x1x2 + x3(x2
0 +βγ x2

1 +αγ x2
2 −αβx2

3)

 .



NONCOMMUTATIVE GEOMETRY OF HOMOGENIZED QUANTUM sl(2,C) 347

6B. Degenerate point scheme. In the degenerate case, substituting (α, β, γ ) =
(0, b2,−b2) into equations (6-1) through (6-4) yields the following results.

We will compare the point scheme of S = S(0, b2,−b2) to

(6-5) E ′deg := Edeg ∪ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},

where the curve Edeg is defined by

(6-6) x2
0 + x2

1 + x2
2 + x2

3 = 0= x2
3 + (1+ b2)x2

1 + x2
2 ,

or as the intersection of any two of the quadrics

(6-7)

x2
0 + x2

1 + x2
2 + x2

3 = 0,

x2
0 + b4x2

1 + b2x2
2 + b2x2

3 = 0,

x2
0 − b2x2

1 = 0,

x2
0 − b2x2

1 = 0.

The automorphism on E ′deg fixes the four isolated points and is defined on Edeg by

(6-8) σdeg :


x0

x1

x2

x3

 7→


x0(x2
0 + b4x2

1)

x1(x2
0 + b4x2

1)

2b2x0x1x3+ x2(x2
0 − b4x2

1)

−2b2x0x1x2+ x3(x2
0 − b4x2

1)


6C. Comparison with our results. We now compare (E ′deg, σdeg) with (PS, σS)

from Theorem 4.2. Recall our definitions of E, F, K , K ′ from (2-5):

(6-9)
E = i

2
(1− ib)(x2+ i x3), F = i

2
(1+ ib)(x2− i x3),

K = x0+ bx1, K ′ = x0− bx1.

With respect to the homogeneous coordinates E , F , K , and K ′,

PS = C ∪C ′ ∪ L ∪ {(0, 0, 1,±1)},

where C,C ′ and L are given by

C ′ : E F + κ2K ′ 2 = K = 0,

C : E F + κ2K 2
= K ′ = 0,

L : K = K ′ = 0.

The conics C and C ′ lie on the planes K ′ = 0 and K = 0, respectively, and the
line L is the intersection of those two planes. With respect to the homogeneous
coordinates E , F , K , and K ′, (6-5) becomes

E ′deg = Edeg ∪ {(0, 0, 1, 1), (0, 0, 1,−1), (q, 1, 0, 0), (−q, 1, 0, 0)}.
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The isolated points (1, 0, 0, 0) and (0, 1, 0, 0) in (6-5) remain isolated after degen-
eration, but the points (0, 0, 1, 0) and (0, 0, 0, 1) in (6-5), which are (q, 1, 0, 0) and
(−q, 1, 0, 0) in the E, F, K , K ′ coordinates, become points on the line L in PS

after degeneration.
Next, we compare Edeg with C ∪C ′ ∪ L . The equation (6-6) yields

x2
0 − b2x2

1 = (x0− bx1)(x0+ bx1)= K K ′ = 0.

Hence Edeg ⊆ {K = 0} ∪ {K ′ = 0}.
On the plane K ′ = 0, x0 = bx1 so both sides of (6-6) for Edeg become

(1+ b2)x2
1 + x2

2 + x2
3 = 0.

On the other hand, C ′ is given by

0= E F + κ2K ′ 2 =− 1
4(1+ b2)(x2

2 + x2
3)+ 4κ2b2x2

1

=−
1
4(1+ b2)(x2

2 + x2
3)−

1
4(1+ b2)2x2

1

=−
1
4(1+ b2)(x2

2 + x2
3 + (1+ b2)x2

1).

Hence Edeg ∩ {K ′ = 0} = C ′. A similar calculation yields the analogous result for
the plane K = 0. We thus conclude that

Edeg = C ∪C ′.

Finally, we compare σdeg and σS . On the plane K = 0,

σdeg :


x0

x1

x2

x3

 7→


(b2
+ b4)x2

1 x0

(b2
+ b4)x3

1
2b4x2

1 x3+ (b2
− b4)x2

1 x2

−2b4x2
1 x2+ (b2

− b4)x2
1 x3

=


(1+ b2)x0

(1+ b2)x1

(1− b2)x2+ 2b2x3

(1− b2)x3− 2b2x2

 .
Changing coordinates,

σdeg :


x2+ i x3

x2− i x3

x0+ bx1

0

 7→

(1− ib)2(x2+ i x3)

(1+ ib)2(x2− i x3)

(1+ b2)(x0+ bx1)

0

=


q(x2+ i x3)

q−1(x2− i x3)

(x0+ bx1)

0

 .
Therefore, in the E, F, K , K ′ coordinates, σdeg(ξ1, ξ2, ξ3, 0)= (qξ1, q−1ξ2, ξ3, 0)=
σS(ξ1, ξ2, ξ3, 0). Similar calculations on the plane K ′= 0 and on the isolated points
yield σdeg = σS .

6D. Degenerations of Heisenberg automorphisms. Recall (e.g., from [Chirvasitu
and Smith 2017, Proposition 2.6]) that the Heisenberg group of order 43 acts on the
Sklyanin algebra S(α, β, γ ) as follows.
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x0 x1 x2 x3

φ1 bcx1 −i x0 −ibx3 −cx2

φ2 acx2 −ax3 −i x0 −icx1

φ3 abx3 −iax2 −bx1 −i x0

Table 2. Automorphisms of S(α, β, γ ).

E F K K ′

φ1 bq F −bq−1 E −ibK ′ ibK

φ2
1
2(1− ib)K ′ 1

2(1+ ib)K 0 0

φ3
i
2(1− ib)K ′ − i

2(1+ ib)K 0 0

Table 3. Endomorphisms of S(0, β,−β).

First, fix square roots a, b and c of α, β and γ respectively. We define automor-
phisms φi of S(α, β, γ ) via Table 2.

Now fix ν1, ν2, ν3 ∈ k× such that aν2
1 = bν2

2 = cν2
3 = −iabc, and define ε1 =

ν−1
1 φ1, ε2 = ν

−1
2 φ2, ε3 = ν

−1
3 φ3, and δ = i . The subgroup 〈ε1, ε2, ε3, δ〉 ⊆Aut(S)

is isomorphic to the Heisenberg group of order 43, defined by generators and
relations as

H4 := 〈ε1, ε2, δ | ε
4
1 = ε

4
2 = δ

4
= 1, δε1 = ε1δ, ε2δ = δε2, ε1ε2 = δε2ε1〉.

The algebras we are considering are of the form S(0, β,−β). We define c = ib.
The map φ1 still extends to an algebra automorphism but φ2 and φ3 degenerate to
endomorphisms. In terms of E , F , K , and K ′, the endomorphisms φi act as in
Table 3.

Although φ2 and φ3 are not isomorphisms, there are associated endofunctors φ∗2
and φ∗3 of Gr(S). The application of φ∗2 and φ∗3 to the point modules M(0,0,1,±1) ∈

Gr(S) produces point modules. Indeed,

φ2(S)= φ3(S)= C[K , K ′] ⊆ S,

and the two point modules referred to above are cyclic C[K , K ′]-modules. With
this in hand, the next result describes how the φi act on the four S(0, β,−β)-points
obtained by degeneration from S(α, β, γ ). The proof is a direct application of the
formulas in Table 2 above.

Proposition 6.1. The endomorphisms φi of S move the four special point modules
of S as follows.

(1) φ∗1 interchanges M(0,0,1,±1) and interchanges M(±q,1,0,0);
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(2) φ∗2 M(0,0,1,±1) ∼= M(±q,1,0,0);

(3) φ∗3 M(0,0,1,±1) ∼= M(∓q,1,0,0).

6E. Degenerations of fat point–line incidences. In this section we describe reso-
lutions of fat points by line modules by degenerating the analogous statements in
[Smith and Staniszkis 1993] for the algebras S(α, β, γ ).

If `⊂ P3 is the line passing through p, p′ ∈ C ∪C ′, we will sometimes denote
the line module M` by Mp,p′ for clarity. We will also use the following notation:
if p = (ξ1, ξ2, ξ3, 0) ∈ C , then p± = (ξ1, ξ2, 0,±ξ3) ∈ C ′ is the point for which
Mp,p± surjects onto F(0,±). Similarly, in order to keep the notation symmetric, if
p ∈ C ′ then p± is the point on C for which Mp,p± surjects onto F(0,±).

Finally, we denote by σ = σS : (C ∪C ′)2→ (C ∪C ′)2 the diagonal action of
σ = σS on (C ∪C ′)2, and by ψ the automorphism

ψ := (id, σ ) : (C ∪C ′)2→ (C ∪C ′)2.

By a slight abuse of notation, we use the same symbols to refer to the induced
automorphisms on the variety of lines through pairs of points on C ∪C ′.

Theorem 6.2. Let n be a nonnegative integer, `± a line through p, p± ∈ C ∪C ′,
and `±n the line ψn(`±). In QGr(S), there is an exact sequence

(6-10) 0→ Mσ−(n+1)(`±n)
(−n− 1)→ M`±→ F(n,±)→ 0.

Proof. We will prove this for `+. To that end, let ` be the line through p and p+.
The relation {(p, p±)} on C∪C ′ is the fiber over (0, b2,−b2) of a family of rela-

tions over the space of parameters (α, β, γ ) for the Sklyanin algebras. Specifically,
let us write

(x0, x1, x2, x3) 7→ (−x0, x1, x2, x3)

for the − maps on the elliptic curves E = E(α, β, γ ) and let

(x0, x1, x2, x3) 7→ (x0, x1,−x2,−x3)

be addition by the 2-torsion point ω ∈ E .

Claim. {(p, p+)} is the limit of the graphs of the maps p 7→ ω− p.

Proof of claim. In terms of the xi coordinates, the map p 7→ ω − p amounts
to changing the sign of x0. On the other hand, the discussion at the beginning
of Section 6E shows that in (E, F, K , K ′)-coordinates the map p 7→ p+ simply
interchanges K and K ′. Since C∪C ′ is the degeneration of the family (6-2) of elliptic
curves, the truth of the claim follows from the coordinate change formulas (6-9). �

The claim implies that the resolutions

0→ Mσ(p),σ (ω−p)(−1)→ Mp,ω−p→•→ 0
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of the point modules associated to (x0, x1, x2, x3) = (1, 0, 0, 0) (e.g., from [Lev-
asseur and Smith 1993, Theorem 5.7]) degenerate to (6-10) for n = 0 in the +
case.

Similarly, for larger n we have, in the nondegenerate case, resolutions

0→ Mσ−(n+1)(p),σ−1(ω−p)(−n− 1)→ Mp,σ n(ω−p)→•→ 0

of 1-critical fat points of multiplicity n+ 1 as explained in [Smith and Staniszkis
1993, Proposition 4.4(b)]. These degenerate to a resolution of the form (6-10) of a
certain fat S-point module of multiplicity n+ 1 (denoted momentarily by the same
symbol •):

(6-11) 0→ Mσ−(n+1)(`n)
(−n− 1)→ M`n →•→ 0,

where ` is the line through p and p+ and `n = ψ
n(`); note that • is the same fat

point (up to isomorphism in QGr(S)) for all choices of p.
Finally, to argue that • ∼= F(n,+) in the present case, simply specialize to the

line ` for which (6-11) is the homogenized version of the standard BGG resolution
(5-2) of the simple Uq(sl2)-module L(n,+).

There is a similar argument for F(n,−), or one can use the observation in
Lemma 5.5 that F(n,−)∼= θ∗F(n,+). �

Remark 6.3. Incidentally, one can give a proof of Proposition 4.8 in the same spirit
as that of Theorem 6.2 by degenerating the exact sequences

0→ Mσ p,σ−1 p′(−1)→ Mp,p′→ Mp→ 0

from [Levasseur and Smith 1993, Theorem 5.5] for the Sklyanin algebras S(α, β, γ ),
where p, p′ belong to the elliptic curve component E = E(α, β, γ ) of the point
scheme of S(α, β, γ ) and σ is the translation automorphism of E . The result
then follows from the observation made above that E(α, β, γ ), together with its
translation automorphism, degenerates to C ∪C ′ equipped with our automorphism
(also denoted by σ throughout) when α→ 0. �

The next result completes the description of the fat point–line incidences.

Proposition 6.4. For n ≥ 0 the line modules M`n from Theorem 6.2 are the only
ones having F(n,±) as a quotient in QGr(S).

Proof. The only central element �(λ) annihilating F(n,±) is �(±qn). In turn,
Proposition 5.3 tells us that the only line modules annihilated by �(±qn) are the
lines M`n in question and the lines Mσ−(n+1)(`n)

appearing as the leftmost terms in
(6-10). In conclusion, it suffices to show that there are no surjections

(6-12) Mσ−(n+1)(p),σ−1(p±)→ F(n,±)

in QGr(S).
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Let us specialize to F(n,+), to fix notation. Upon localizing to S[(K K ′)−1
]0 ∼=

U =Uq(sl(2)), (6-12) becomes a surjection

(6-13) U
U X+UY

→ L(n,+),

where X =κ(1−qn+2k−1)−s−1q−1/2e and Y =κ(k−q−(n+2))+sq−1/2 f for some
s ∈ P1. If s = 0 or∞ then the left-hand side of (6-13) is the simple Verma module
of highest weight q−(n+2) (respectively lowest weight qn+2), thus contradicting
the existence of such a surjection. On the other hand, if s ∈ C×, then we obtain
surjections (6-13) for all s ∈ C× by applying the Gm-action on U given by

k 7→ k, e 7→ s−1e, f 7→ s f for s ∈ C×.

By continuity in s ∈ P1, we then get such surjections for s = 0,∞ as well, and the
previous argument applies. �

We end with the following remark on certain modules over U = Uq(sl2). In
the proof of Proposition 6.4 we showed that the modules (6-13) of the form
U/(U X±+UY±) do not surject onto the simple modules L(n,±) for

(6-14)
X± = κ(1∓ qn+2k−1)− s−1q−1/2e,

Y± = κ(k∓ q−(n+2))+ sq−1/2 f,

where s ∈ P1. In fact, we can do somewhat more:

Proposition 6.5. For X± and Y± as in (6-14) the module U/(U X± + UY±) is
simple.

Proof. As in the proof of Proposition 6.4, we focus on X = X+ and Y = Y+ to fix
notation.

Assume otherwise. Then, using the equivalence between the category of modules
over U ∼= S[(K K ′)−1

]0 and a full subcategory of QGr(S), this assumption implies
that the line module

M = Mσ−(n+1)(p),σ−1(p±)

from (6-12) has a nonobvious subobject in QGr(S). The criticality of line modules
then implies that such a subobject would be a shifted line module, and hence there
would be a surjection from M to a nonzero fat point. Localizing back to U this
would give a surjection of U/(U X +UY ) onto a nonzero finite-dimensional U -
module, which would be a contradiction as in the proof of Proposition 6.4. �

The significance of Proposition 6.5 is that it fits the simple Verma modules
of highest and lowest weights q−(n+2) and respectively qn+2 into “continuous”
P1-families of simple modules.
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A GENERALIZATION OF
“EXISTENCE AND BEHAVIOR OF THE RADIAL LIMITS OF

A BOUNDED CAPILLARY SURFACE AT A CORNER”

JULIE N. CRENSHAW, ALEXANDRA K. ECHART AND KIRK E. LANCASTER

The principal existence theorem (i.e., Theorem 1) of “Existence and behav-
ior of the radial limits of a bounded capillary surface at a corner” (Pacific
J. Math. 176:1 (1996), 165–194) is extended to the case of a contact angle γ
which is not bounded away from 0 and π (and depends on position in a
bounded domain � ∈ R2 with a convex corner at O = (0, 0)). The lower
bound on the size of “side fans” (i.e., Theorem 2 in the above paper) is ex-
tended to the case of such contact angles for convex and nonconvex corners.

1. Introduction and theorems

Consider the capillary problem

N f = κ f + λ in �,(1)

T f · ν = cos γ on ∂�,(2)

where � is a region in R2 with a corner at O, O ∈ ∂�, N f = ∇ · T f , T f =
∇ f/

√
1+ |∇ f |2, κ and λ are constants, ν is the exterior unit normal on ∂�, and

γ = γ (s) is a function of position on ∂�, 0≤ γ (s)≤ π . The surface z = f (x, y)
describes the shape of the static liquid–gas interface in a vertical cylindrical tube of
cross-section �; see [Finn 1986; Lancaster and Siegel 1996] for background.

We are interested in the behavior of solutions to (1) and (2) in a neighborhood
of a corner point of the boundary. We take the corner point to be O = (0, 0). Let
�∗ =�∩ Bδ∗(O), where Bδ∗(O) is the ball of radius δ∗ about O. Polar coordinates
relative to O will be denoted by r and θ . We assume that ∂� is piecewise smooth
and that ∂�∩ Bδ∗(O) consists of two arcs ∂+�∗ and ∂−�∗, whose tangent lines
approach the lines L+ : θ = α and L− : θ = −α, respectively, as the point O is
approached. The points where ∂Bδ∗(O) intersect ∂� are labeled A and B; also,
0∗ = ∂Bδ∗(O)∩�. Set

�∞ = {(r cos(θ), r sin(θ)) : r > 0,−α < θ < α}.

MSC2010: primary 35J93, 58E12; secondary 35J60, 53A10.
Keywords: radial limits, capillary surfaces, corners, discontinuities.
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Let (x+(s), y+(s)) be an arclength parametrization of ∂+�∗ and (x−(s), y−(s))
be an arclength parametrization of ∂−�∗, each measured from the corner at O,
so that (x±(0), y±(0)) = (0, 0). Let (x+

∗
(s), y+

∗
(s)) be an arclength parametriza-

tion of ∂+�∞ = {(r cos(α), r sin(α)) : r ≥ 0} and (x−
∗
(s), y−

∗
(s)) be an arclength

parametrization of ∂−�∞ = {(r cos(−α), r sin(−α)) : r ≥ 0}, each measured from
the corner at O. Define

γ+(s)= γ (x+(s), y+(s)) and γ−(s)= γ (x−(s), y−(s)).

For 0≤ α ≤ π
2 , the corner will be said to be convex and for π

2 < α ≤ π , the corner
will be said to be nonconvex.

In [Lancaster and Siegel 1996], the existence of radial limits of a bounded solution
f to (1) that satisfies (2) on the smooth portions of ∂� is proven provided that γ

was bounded away from 0 and π , and for a convex corner an additional condition
is satisfied coupling γ+ and γ−. In this paper, we eliminate the requirement that γ
is bounded away from 0 and π ; an additional condition must still be satisfied at a
convex corner. The radial limits of f will be denoted by

R f (θ)= lim
r→0+

f (r cos θ, r sin θ), −α < θ < α,

and R f (±α)= lim∂±�∗3x→O f (x), x= (x, y), which are the limits of the boundary
values of f on the two sides of the corner if these exist.

Theorem 1. Let f be a bounded solution to (1) satisfying (2) on ∂±�∗ \{O}, which
is discontinuous at O.

(a) If α > π
2 then R f (θ) exists for all θ ∈ (−α, α).

(b) If α ≤ π
2 and there exist constants γ±, γ ±, 0≤ γ± ≤ γ ± ≤ π satisfying

π − 2α < γ++ γ− ≤ γ ++ γ −< π + 2α

such that γ± ≤ γ±(s) ≤ γ ± for all s ∈ (0, s0), for some s0 > 0, then R f (θ)
exists for all θ ∈ (−α, α).

Furthermore, in either case, R f (θ) is a continuous function on (−α, α) which
behaves in one of the following ways:

(i) R f (θ) is a constant function of θ and f has a nontangential limit at O.

(ii) There exist α1 and α2 so that−α≤α1<α2≤α and R f is constant on (−α, α1]

and [α2, α) and strictly increasing or strictly decreasing on [α1, α2]∩ (−α, α).
Label these case (I) and case (D), respectively.

(iii) There exist α1, αL , αR, α2 so that−α≤ α1 <αL <αR <α2 ≤ α, αR = αL+π ,
and R f is constant on (−α, α1], [αL , αR], and [α2, α) and either increasing
on [α1, αL ] ∩ (−α, α) and decreasing on [αR, α2] ∩ (−α, α) or decreasing on
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[α1, αL ]∩(−α, α) and increasing on [αR, α2]∩(−α, α). Label these case (ID)
and case (DI), respectively.

In Theorem 1 of [Lancaster and Siegel 1996] and Theorem 1 above, the existence
of two intervals (−α, α1] and [α2, α) on which R f (·) is constant (i.e., “side fans”)
is established but the relationship between the sizes of these side fans and the
contact angle is unclear. Theorem 2 of [Lancaster and Siegel 1996] establishes
lower bounds on these sizes when the

lim
∂+�3(x,y)→O

γ (x, y)= γ+0 and lim
∂−�3(x,y)→O

γ (x, y)= γ−0

are assumed to exist. (In [Lancaster 2010; 2012], these lower bounds were shown
to be the actual sizes of the side fans.) What happens if the limits of γ at O do not
exist? Theorem 2 and Corollary 3 provide lower bounds in this situation.

For 0< b < 1, define

A±I (b)= lim inf
ε↓0

1
ε

∫ bε

0
cos(γ±(t)) dt and A±S (b)= lim sup

ε↓0

1
ε

∫ bε

0
cos(γ±(t)) dt.

Notice that b cos(lim supt↓0 γ
±(t))≤ A±I (b)≤ A±S (b)≤ b cos(lim inft↓0 γ

±(t)).

Theorem 2. Let f be a bounded solution to (1) satisfying (2) on ∂±�∗ \{O}, which
is discontinuous at O. Assume R f (θ) exists for all θ ∈ (−α, α). Then:

(a) R f (θ) is a continuous function on (−α, α) which behaves as described in (i),
(ii) or (iii) of Theorem 1.

(b) There exist fans of constant radial limits adjacent to each tangent direction
at O and lower bounds on the sizes of these side fans exist.

In terms of the cases labeled in Theorem 1, the sizes of the side fans β− = α1+α

and β+ = α−α2 satisfy the following conditions:

(1) A+I

(
sin(λ−β+)

sin(λ)

)
+

sin(β+)
sin(λ)

≥ 1 for all λ ∈ (β+, π) for (I) and (DI).

(2) A−I

(
sin(λ−β−)

sin(λ)

)
+

sin(β−)
sin(λ)

≥ 1 for all λ ∈ (β−, π) for (D) and (DI).

(3) 1+ A−S

(
sin(λ−β−)

sin(λ)

)
≤

sin(β−)
sin(λ)

for all λ ∈ (β−, π) for (I) and (ID).

(4) 1+ A+S

(
sin(λ−β+)

sin(λ)

)
≤

sin(β+)
sin(λ)

for all λ ∈ (β+, π) for (D) and (ID).

2. Proofs of Theorems 1 and 2

The proof of Theorem 1 follows that established in [Lancaster 1985] and [Elcrat
and Lancaster 1986] in which (i) the graph of the solution in �×R is represented
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in isothermal coordinates, (ii) comparison arguments are used to prove that the
component functions of the isothermal parametrization of the graph are uniformly
continuous and so extend to be continuous on the closure of the parameter domain,
(iii) boundary regularity theory (e.g., [Heinz 1970]) is used to prove that radial
limits exist for almost every direction, (iv) cusp solutions are excluded (e.g., [Echart
and Lancaster 2017]) and (v) the behavior of the radial limit function is determined.
The only step which does not follow from previous work is (ii) and so the proof of
Theorem 1 comes down to establishing (ii). The proof of Theorem 2 follows from
standard “blow up” arguments.

2.1. Proof of Theorem 1. When α> π
2 , Theorem 1 is a consequence of [Entekhabi

and Lancaster 2016]. Suppose now that α ≤ π
2 . Since f is bounded and the

prescribed mean curvature is H(x, y, z) = κz + λ, there exist M1 ∈ (0,∞) and
M2 ∈ [0,∞) such that

(3) sup
(x,y)∈�

| f (x, y)| ≤ M1 and sup
(x,y)∈�

|H(x, y, f (x, y))| ≤ M2.

In §2.1 of [Entekhabi and Lancaster 2017], a specific torus is constructed which
depends solely on M2 and which is used as a comparison surface; one should
compare this with, for example, [Lancaster and Siegel 1996], where several types
of comparison surfaces are used, or [Entekhabi and Lancaster 2016], where an
unduloid is used as a comparison surface. We shall use this torus as our comparison
surface here. We will denote by q the modulus of continuity of the function h−

whose graph is the set T which is the inner half of a torus with axis of symmetry
{(2, y, 0) : y ∈ R2

}, major radius R0 = 2, and minor radius r0; here

(4) r0 =

1 if M2 = 0,

1
M2
+ 1−

√( 1
M2

)2
+ 1 if M2 > 0.

Then q is also the modulus of continuity of functions (i.e., h+, h−β , h+β ) whose
graphs are obtained by rotations and translations in the horizontal plane of T (see
[Entekhabi and Lancaster 2017, p. 59]).

Let S0 = gra( f )= {(x, y, f (x, y)) : (x, y) ∈�∗} and allow S to be the closure
of S0 in R3. As in §2.2 of [Entekhabi and Lancaster 2017], there exists an isothermal
parametrization Y : E→ R3 given by

Y (u, v)= (a(u, v), b(u, v), c(u, v))

such that Y (E)=S , Y (E)=S0, and (a1)–(a5) of [Entekhabi and Lancaster 2017]
hold, where E = B1(O) = {(u, v) : u2

+ v2 < 1}. By (a2) of that paper, if we let
G(u, v) = (a(u, v), b(u, v)) for (u, v) ∈ E , then G ∈ C0(E). From (a3) of that
paper, there exists a connected arc σ ⊂ ∂E that Y maps strictly monotonically onto
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{(x, y, f (x, y)) : (x, y) ∈ ∂�∗ \ {O}}. Let the endpoints of σ be denoted o1 and o2.
There exists points a,b ∈ σ such that G(a) = A, G(b) = B, G maps the arc o2a
onto ∂−� and G maps the arc o1b onto ∂+�. We must consider the two cases:

(A) o1 = o2,

(B) o1 6= o2.

Assume first that (A) holds. Set o= o1= o2. We wish to prove that c is uniformly
continuous on E and hence c extends to be continuous on E . If so, then the existence
and behavior of the radial limits of f follows as in [Entekhabi and Lancaster 2017;
Lancaster and Siegel 1996]. There are three possible cases:

(i) γ− > 0 and γ− < π ,

(ii) γ+ > 0 and γ+ < π ,

(iii) (γ− = 0 or γ− = π) and (γ+ = 0 or γ+ = π).

Case (i). Let λ1= γ
+, λ2= γ

+, γ2= γ
−. We observe that λ2= γ

+<π+2α−γ−,
λ1 = γ

+ >π −2α−γ−, and so λ2−λ1 < 4α. We wish to use the argument in the
proof of Theorem 2 of [Entekhabi and Lancaster 2017]. Since π − 2α−λ1 < γ2 <

π + 2α− λ2, we can choose τ1, τ2 ∈ (0, π) such that τ1 ∈ (π − 2α− λ1, γ2) and
τ2 ∈ (γ2, π + 2α−λ2). Set β1 =

π
2 − τ1 and β2 = τ2−

π
2 . With these choices of β1

and β2, notice that

T (h− ◦ Tβ1)(x1, 0) · (0,−1)= cos(τ1) > cos(γ2) for 0< x1 < 2− r0

and

T (h+ ◦ Tβ2)(x1, 0) · (0,−1)= cos(τ2) < cos(γ2) for 0< x1 < 2− r0

(see [Entekhabi and Lancaster 2017, p. 59]). This implies that for δ1= δ1(β1, β2)>0
small enough and x ∈ ∂−� with |x|< δ1, we have

(5) T (h−β1
)(x) · Eν(x) > cos(γ (x)) and T (h+β2

)(x) · Eν(x) < cos(γ (x)).

Since β1, β2 6= ±
π
2 , there exists R = R(β1, β2) > 0 such that BR(O) ∩ �∗ ⊂

1β1 ∩1β2 , where 1β is as in §2.1 of [Entekhabi and Lancaster 2017]. For each
δ ∈ (0, 1), allow

(6) p(δ)=

√
8πM0

ln(1/δ)

where M0 is the area of S0.
Let ε > 0. Choose δ > 0 such that

√
δ <min{‖o− a‖, ‖o−b‖},

p(δ) < δ1(β1, β2), p(δ) < R(β1, β2), p(δ)+ q(p(δ)) < ε

2
.
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Let w0 = (u0, v0) ∈ E . From the Courant–Lebesgue lemma, there exists a ρ(δ) ∈
(δ,
√
δ) such that the arclength lρ(δ) of C ′ρ(δ) is less than p(δ), where Cδ = {w ∈ E :

‖w−w0‖= δ} and C ′δ = Y (Cδ). Set Bδ = {w ∈ E : ‖w−w0‖< δ} and B ′δ = Y (Bδ).
Then, for w ∈ C ′ρ(δ), there exist functions

b+(x, y)= f (w)+ p(δ)+ h−β1
(x, y) for (x, y) ∈1β1,(7)

b−(x, y)= f (w)− p(δ)− h+β2
(x, y) for (x, y) ∈1β2(8)

where β1 =
π
2 − τ1 and β2 = τ2−

π
2 . From (10) of [Entekhabi and Lancaster 2017],

we have that div(b+) ≤ −M2 in 1β1 and div(b−) ≥ M2 in 1β2 . So in � ∩1β1 ,
div(T b+) ≤ div(T f ). On ∂−� ∩ Bδ1(O), T b+ · ν ≥ T f · ν. As in the proof of
Theorem 2 of that paper,

(9) f (x, y) < b+(x, y) for (x, y) ∈1β1 ∩ B ′ρ(δ),

where B ′ρ(δ) = Y (Bρ(δ)). This follows since T b+ · ν ≥ T f · ν on ∂+�∩ Bδ2(O) by
(15) of that paper if τ1+ 2α ≤ π and no boundary condition on ∂+� is required if
τ1+ 2α > π .

Repeat the same argument with λ1 = γ
+, λ2 = γ

+ and γ2 = γ
−. In the same

way as above, there exist functions

b+
∗
(x, y)= f (w)+ p(δ)+ h−β1

(x, y) for (x, y) ∈1β1,(10)

b−
∗
(x, y)= f (w)− p(δ)− h+β2

(x, y) for (x, y) ∈1β2(11)

such that

(12) b−
∗
(x, y) < f (x, y)

for (x, y) ∈1β2 ∩ B ′ρ(δ) where B ′ρ(δ) = Y (Bρ(δ)). Then combining (9) and (12) we
get

(13) b−
∗
(x, y) < f (x, y) < b+(x, y)

for (x, y) ∈1β1 ∩1β2 ∩ B ′ρ(δ). As in [Entekhabi and Lancaster 2017], it follows
that c(u, v) is uniformly continuous on E .

Case (ii). Case (ii) is simply case (i) reflected about the xz-plane and the proof
follows as above.

Case (iii). Notice that

0≤ π − 2α < γ++ γ− ≤ γ++ γ− < π + 2α ≤ π

and so γ− = 0 and γ+ = 0 cannot both occur and γ+ = π and γ− = π cannot
both occur. The result follows from this, using the arguments in cases 1 and 2. In
particular, if γ− > 0, then we obtain a supersolution b+ as in case (i) (see Figure 1)
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Figure 1. The domain of a supersolution in case (i).

Figure 2. The domain of a supersolution in case (ii).

and if γ−= 0, we obtain a supersolution b+ as in case (ii) (see Figure 2); if γ−<π ,
we obtain a subsolution b−

∗
as in case (i) and if γ− = π , we obtain a subsolution as

in case (ii).

Now assume (B) holds. Let B = {(x, y) ∈R2
:
√

x2+ y2 < 1, y ≥ 0} and let B be
the closure of B in R2. Let g : B→ E be a conformal or anticonformal map taking
{(u, 0) : −1 ≤ u ≤ 1} onto ∂E \ σ such that the map X = Y ◦ g : B→ R3 has a
downward orientation (i.e., the normal Xu×Xv to S0 gives a downward orientation).
Writing X (u, v)= (x(u, v), y(u, v), z(u, v)) and K (u, v)= (x(u, v), y(u, v)), we
have K ∈C0(B) and K (u, 0)= (0, 0)while X (u, 0)= (0, 0, z(u, 0)) for u∈[−1, 1].
Then the argument follows from [Lancaster and Siegel 1996] and the previous
argument here, as explained in [Entekhabi and Lancaster 2017]. �

2.2. Proof of Theorem 2. We first note that if δ1, δ2 ∈ (−α, α) with δ1 < δ2 and
R f (δ1) and R f (δ2) both exist, then it follows from [Elcrat and Lancaster 1986]
that R f (θ) exists for all θ ∈ [δ1, δ2] and R f (θ) is a continuous function of θ on
[δ1, δ2] which behaves as described in (i), (ii) or (iii) of Theorem 1. The first part
of Theorem 2 (i.e., (a)) follows from this.

Suppose {εj } is a decreasing sequence with lim j→∞ εj = 0. Let I = (−1, 1) and
set

γ j (s)=
{
γ+(εj s) if 0< s < 1,
γ−(−εj s) if − 1< s < 0

for j ∈N; then {cos(γ j ) : j ∈N} is a subset of the unit ball in L∞(I )= (L1(I ))∗. By
the Banach–Alaoglu theorem, there exist a subsequence {εjk } of {εj } and a function
h = h{εjk }

∈ L∞(I ) such that cos(γ jk ) converges weak-star to h; that is, for each
m ∈ L1(I ),

lim
k→∞

∫ 1

−1
cos(γ jk (s))m(s) ds =

∫ 1

−1
h(s)m(s) ds.
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Let us define γ ∗ = γ ∗
{εjk }
= cos−1(h) (almost everywhere on (−1, 1)). For any

b ∈ (0, 1), by choosing m to be the characteristic function of the interval (0, b) we
see that∫ b

0
h(s) ds = lim

k→∞

∫ b

0
cos(γ jk (s)) ds = lim

k→∞

1
εjk

∫ bεjk

0
cos(γ+(t)) dt

and, by choosing m to be the characteristic function of the interval (−b, 0),∫ 0

−b
h(s) ds = lim

k→∞

∫ 0

−b
cos(γ jk (s)) ds = lim

k→∞

1
εjk

∫ bεjk

0
cos(γ−(t)) dt;

hence∫ b

0
cos(γ ∗(s)) ds = lim

k→∞

1
εjk

∫ bεjk

0
cos(γ+(t)) dt ≥ lim inf

ε→0

1
ε

∫ εb

0
cos(γ+(t)) dt

and∫ 0

−b
cos(γ ∗(s)) ds = lim

k→∞

1
εjk

∫ bεjk

0
cos(γ−(t)) dt ≥ lim inf

ε→0

1
ε

∫ εb

0
cos(γ−(t)) dt.

Thus

(14) lim inf
ε→0

1
ε

∫ εb

0
cos(γ±(t)) dt ≤ lim inf

j→∞

∫ b

0
cos(γ±(εj s)) ds.

Choose a sequence {εj } with lim j→∞ εj = 0 such that

lim
j→∞

1
εj

∫ bεj

0
cos(γ+(t)) dt = lim inf

ε→0

1
ε

∫ εb

0
cos(γ+(t)) dt;

as above, there exist a subsequence {εjk } of {εj } and γ∗ ∈ L∞(I ) such that cos(γ jk )

converges weak-star to cos(γ∗). Then

lim inf
ε→0

1
ε

∫ εb

0
cos(γ+(t)) dt = lim

k→∞

1
εjk

∫ bεjk

0
cos(γ+(t)) dt

= lim
k→∞

∫ b

0
cos(γ jk (s)) ds =

∫ b

0
cos(γ∗(s)) ds.

Case 1. Suppose case (I) or (DI) of Theorem 1 holds and α2 = α− β
+. Let us

assume there exists λ ∈ (β+, π) such that

(15) A+I

(
sin(λ−β+)

sin(λ)

)
+

sin(β+)
sin(λ)

< 1;

we shall show that this leads to a contradiction. Set

b =
sin(λ−β+)

sin(λ)
.
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Choose a sequence {εj } with lim j→∞ εj = 0 such that

(16) lim
j→∞

1
εj

∫ bεj

0
cos(γ+(t)) dt = lim inf

ε→0

1
ε

∫ εb

0
cos(γ+(t)) dt;

as before, there exist a subsequence {εjk } of {εj } and γ∗ ∈ L∞(I ) such that cos(γ jk )

converges weak-star to cos(γ∗). Then

lim inf
ε→0

1
ε

∫ εb

0
cos(γ+(t)) dt = lim

k→∞

1
εjk

∫ bεjk

0
cos(γ+(t)) dt

= lim
k→∞

∫ b

0
cos(γ jk (s)) ds =

∫ b

0
cos(γ∗(s)) ds.

Let θ0 ∈ (σ, α2), where σ = α1 if case (I) holds and σ = αR if case (DI) holds, and
z0 = R f (θ0). Set �k = {(x, y) ∈ R2

: (εjk x, εjk y) ∈�} and define fk ∈ C∞(�k) by

fk(x, y)= 1
εjk
( f (εjk x, εjk y)− z0)

for (x, y) ∈�k . Let γk be defined on ∂�k \ {O} by

γk(x, y)= γ (εjk x, εjk y)

and let νk = νk(x, y) denote the outward unit normal to ∂�k . Then fk satisfies the
capillary problem

N fk(x, y)= εjkκ f (εjk x, εjk y)+ εjkλ, (x, y) ∈�k,

T fk · νk = cos(γk) on ∂�k \ {O}.

Since R f (θ)< z0 if σ <θ <θ0 and R f (θ)> z0 if θ0<θ <α, we see (e.g., [Lancaster
2010; 2012; Simon 1980]; also see [Tam 1984; 1986]) that { fk} converges locally
to the generalized solution f∞ (in the sense of Miranda [1977] and Giusti [1980;
1984]) of the functional

F∞(g)=
∫∫
�∞

√
1+ |Dg|2 dx −

∫
∂�∞

cos(γ∗(s))g ds,

where

f∞(r cos(θ), r sin(θ))=
{
−∞ if −α < θ < θ0,

∞ if θ0 < θ < α

if case (I) holds or case (DI) holds and z0 > R f (θ) for all θ ∈ (−α, αL) and

f∞(r cos(θ), r sin(θ))=


∞ if −α < θ < θh,

−∞ if θh < θ < θ0,

∞ if θ0 < θ < α

with R f (θh)= z0 and θh < αL otherwise.
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Figure 3. The yellow region represents 6θ0 .

Let us now define the sets

P = {(x, y) ∈�∞ : f∞(x, y)=∞} and N = {(x, y) ∈�∞ : f∞(x, y)=−∞}.

These sets have a special structure which follows from the fact that P minimizes
the functional

8(A)=
∫∫
�∞

|DχA| −

∫
∂�∞

cos(γ∗)χA d H 1

and N minimizes the functional

9(A)=
∫∫
�∞

|DχA| +

∫
∂�∞

cos(γ∗)χA d H 1

in the appropriate sense (e.g., [Giusti 1980; Lancaster and Siegel 1996; Miranda
1977]). Let 6θ0 denote the (open) triangular region whose boundary is the triangle
with vertices (0, 0), B = (b cos(α), b sin(α)) and C = (cos(θ0), sin(θ0)) and set
A=P\6θ0 (see Figure 3). Simple trigonometric computations with R>2 show that

(17) 8
(
B(O, R)∩P

)
−8

(
B(O, R)∩P \6θ0

)
=
(
1− A+I (b)

)
−

(
sin(α− θ0)

sin(ω)

)
,

where π −ω is the angle 6 OBC . This holds for all θ0 < α2 = α−β
+; taking the

limit as θ0 ↑ α−β
+ and noticing that ω→ λ as θ0 ↑ α−β

+, we see that

8
(
B(O, R)∩P

)
−8

(
B(O, R)∩P \6α2

)
=
(
1− A+I (b)

)
−

(
sin(β+)
sin(λ)

)
> 0

or
8
(
B(O, R)∩P

)
>8

(
B(O, R)∩P \6α2

)
;

this contradicts the fact that P (locally) minimizes 8. Therefore (15) is false. This
completes case 1.
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Case 2. Suppose case (D) or (DI) of Theorem 1 holds and α1 =−α+β
−. Let us

assume there exists λ ∈ (β−, π) such that

(18) A−I

(
sin(λ−β−)

sin(λ)

)
+

sin(β−)
sin(λ)

< 1.

Using an argument similar to that in case 1, we reach a contradiction.

Case 3. Suppose case (I) or (ID) of Theorem 1 holds and α1 =−α+β
−. Let us

assume there exists λ ∈ (β−, π) such that

(19) 1+ A−S

(
sin(λ−β−)

sin(λ)

)
>

sin(β−)
sin(λ)

.

Set

b =
sin(λ−β−)

sin(λ)
.

Arguing as in case 1, we see that the set N = {(x, y) ∈ �∞ : f∞(x, y) = −∞}
minimizes the functional

9(A)=
∫∫
�∞

|DχA| +

∫
∂�∞

cos(γ∗)χA d H 1

in the appropriate sense (e.g., [Giusti 1980; Lancaster and Siegel 1996; Miranda
1977]). Let 6θ0 denote the (open) triangular region whose boundary is the triangle
with vertices (0, 0), B = (b cos(−α), b sin(−α)) and C = (cos(θ0), sin(θ0)) and
set A = N \6θ0 (see Figure 3). Simple trigonometric computations with R > 2
show that

9
(
B(O, R)∩N

)
−9

(
B(O, R)∩N \6θ0

)
=
(
1+ A−S (b)

)
−

(
sin(α+ θ0)

sin(ω)

)
,

where ω is the angle 6 OBC . This holds for all θ0 > α1 = −α + β
−; taking the

limit as θ0 ↓ −α+β
− and noticing that ω→ λ as θ0 ↓ −α+β

−, we see that

9
(
B(O, R)∩N

)
−9

(
B(O, R)∩N \6α1

)
=
(
1+ A−S (b)

)
−

(
sin(β−)
sin(λ)

)
> 0

or

9
(
B(O, R)∩N

)
>9

(
B(O, R)∩N \6α1

)
;

this contradicts the fact that N (locally) minimizes 9. Therefore (19) is false. This
completes case 3.
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Case 4. Suppose case (D) or (ID) of Theorem 1 holds and α2 = α− β
+. Let us

assume there exists λ ∈ (β+, π) such that

(20) 1+ A+S

(
sin(λ−β+)

sin(λ)

)
>

sin(β+)
sin(λ)

.

Using an argument similar to that in case 3, we reach a contradiction. The proof of
Theorem 2 is then complete. �

3. Corollaries and examples

Corollary 3. Suppose m ∈ [−1, 1]; set σ = cos−1(m) ∈ [0, π].

(a) If A+I (b)≤ mb and case (I) or (DI) holds, then β+ ≥ σ .

(b) If A−I (b)≤ mb and case (D) or (DI) holds, then β− ≥ σ .

(c) If A−S (b)≥ mb and case (I) or (ID) holds, then β− ≥ π − σ .

(d) If A+S (b)≥ mb and case (D) or (ID) holds, then β+ ≥ π − σ .

Proof. (a) Suppose case (I) or (DI) of Theorem 1 holds, σ ∈ [0, π], cos(σ )= m,
and β+ < σ . By Theorem 2(a), we know that

sin(σ )
(

sin(λ−β+)
sin(λ)

)
+

sin(β+)
sin(λ)

≥ A+I

(
sin(λ−β+)

sin(λ)

)
+

sin(β+)
sin(λ)

≥ 1

or
cos(σ ) sin(λ−β+)+ sin(β+)

sin(λ)
≥ 1

for all λ ∈ (β+, π). Since σ > β+, we may set λ= σ and obtain

cos(σ −β+)=
cos(σ ) sin(σ −β+)+ sin(β+)

sin(σ )
≥ 1,

which is a contradiction since σ −β+ 6= 0. Thus β+ ≥ σ .

(b) This is essentially the same as (a).

(c) Suppose case (I) or (ID) of Theorem 1 holds, σ ∈ [0, π], cos(σ ) = m, and
β− < π − σ . By Theorem 2(c), we know that

1+ sin(σ )
(

sin(λ−β−)
sin(λ)

)
≤ 1+ A−S

(
sin(λ−β−)

sin(λ)

)
≤

sin(β−)
sin(λ)

or
sin(λ)+ cos(σ ) sin(λ−β−)− sin(β−)

sin(λ)
≤ 0

for all λ ∈ (β−, π). Since β− < π − σ , we may set λ= π − σ and obtain

1+ cos(σ +β−)=
sin(σ )+ cos(σ ) sin(σ +β−)− sin(β−)

sin(σ )
≤ 0,
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which is a contradiction since σ +β− < π . Thus β− ≥ π − σ .

(d) This is essentially the same as (c). �

Example 4. Let α ∈ (0, π] and γ±1 , γ
±

2 ∈ [0, π] with γ+1 ≤ γ
+

2 and γ−1 ≤ γ
−

2 . Set

�= {(r cos(θ), r sin(θ)) : 0< r < 1,−α < θ < α}.

For each n ∈ N, let An = (2−n2
, 2−n(n−1)

] and Bn = (2−n(n+1), 2−n2
]. Define

γ (s)=
∞∑

n=1

(
γ+1 IAn (s)+ γ

+

2 IBn (s)+ γ
−

1 IAn (−s)+ γ−2 IBn (−s)
)
,

so that γ is defined on ∂�∩ B(O, 1) by

γ (r cos(θ), r sin(θ))=


γ+1 if θ = α, 2−n2

< r ≤ 2−n(n−1) for some n ∈ N,

γ+2 if θ = α, 2−n(n+1) < r ≤ 2−n2
for some n ∈ N,

γ−1 if θ =−α, 2−n2
< r ≤ 2−n(n−1) for some n ∈ N,

γ−2 if θ =−α, 2−n(n+1) < r ≤ 2−n2
for some n ∈ N.

Set

cj =

2−
j
2

(
j
2+1

)
if j is even,

2−
(

j+1
2

)2

if j is odd.

Let b ∈ (0, 1) be fixed for now. Set εj = c2 j/b ( j ∈ N); notice that c2 j+1/c2 j =

2−( j+1). Then

b cos(γ±1 )≥ A±S (b)

≥ lim
j→∞

1
εj

∫ εj b

0
cos(γ±(t)) dt

= lim
j→∞

b
∫ 1

0
cos(γ±j (sb)) ds

= lim
j→∞

b
∫ 1

0
cos(γ±(c2 j s)) ds

= lim
j→∞

b
(∫ 1

c2 j+1
c2 j

cos(γ±(c2 j s)) ds+
∫ c2 j+1

c2 j

0
cos(γ±(c2 j s)) ds

)

= lim
j→∞

b
(

cos(γ±1 )(1− 2−( j+1))+

∫ 2−( j+1)

0
cos(γ±(c2 j s)) ds

)
= b cos(γ±1 ).

Using a similar argument for A±I (b) with εj = c2 j+1/b, j ∈ N, we see that

(21) A±I (b)= b cos(γ±2 ) and A±S (b)= b cos(γ±1 ).
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Example 5. Let α ∈ (0, π] and γ±1 , γ
±

2 ∈ [0, π] with γ+1 ≤ γ
+

2 and γ−1 ≤ γ
−

2 . Set

�= {(r cos(θ), r sin(θ)) : 0< r < 1,−α < θ < α}.

For each n ∈ N, let An =

(
2
4n
,

4
4n

)
, Bn =

(
1
4n
,

2
4n

)
, and Cn =

{
4
4n

}
. Define

γ (s)=
∞∑

n=1

(
γ+1 IAn(s)+γ

+

2 IBn(s)+π ICn(s)+γ
−

1 IAn(−s)+γ−2 IBn(−s)+π ICn(−s)
)
,

so that γ is defined on ∂�∩ B(O, 1) by

γ (r cos(θ), r sin(θ))=



γ+1 if θ = α, 2/4n < r < 4/4n for some n ∈ N,

γ+2 if θ = α, 1/4n < r < 2/4n for some n ∈ N,

π if θ = α, r = 4/4n for some n ∈ N,

0 if θ = α, r = 2/4n for some n ∈ N,

γ−1 if θ =−α, 2/4n < r < 4/4n for some n ∈ N,

γ−2 if θ =−α, 1/4n < r < 2/4n for some n ∈ N,

π if θ =−α, r = 4/4n for some n ∈ N,

0 if θ =−α, r = 2/4n for some n ∈ N.

Then
lim inf

r→0
γ
(
r cos(±α), r sin(±α)

)
= 0,

lim sup
r→0

γ
(
r cos(±α), r sin(±α)

)
= π,

ess lim inf
r→0

γ
(
r cos(±α), r sin(±α)

)
= γ±1 ,

ess lim sup
r→0

γ
(
r cos(±α), r sin(±α)

)
= γ±2 .

Thus A±I (b)≥ b cos(γ±2 ) and A±S (b)≤ b cos(γ±1 ).
Let b∈ (0, 1) be fixed for now. If we set εj =1/(b4 j ) ( j ∈N), then γ j (s)=γ (s/b)

and so

A+S (b)≥ lim
j→∞

∫ b

0
cos(γ j (s)) ds= b

∫ 1

0
cos(γ (s)) ds= b

( 2
3 cos(γ+1 )+

1
3 cos(γ+2 )

)
,

and, if we set εj = 2/(b4 j ) ( j ∈ N), then γ j (s)= γ (s/(2b)) and so

A+I (b)≤ lim
j→∞

∫ b

0
cos(γ j (s)) ds=2b

∫ 1
2

0
cos(γ (s)) ds=b

( 1
3 cos(γ+1 )+

2
3 cos(γ+2 )

)
;

similar estimates hold on ∂−�. Now suppose (η j ) is any decreasing sequence
in (0, 1) converging to zero. For each j ∈ N, there exists a k ∈ N such that
1
4 ≤ 4k−1η j b < 1 and, since γ is piecewise constant, a direct calculation shows
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that
∫ b

0 cos(γ±(η j s)) ds = b
∫ 1

0 cos(γ±(η j bs)) ds equals
b
(

1
6 · 4k−1η j b

cos γ±1 +
(

1−
1

6 · 4k−1η j b

)
cos γ±2

)
if 1

4 ≤ 4k−1η j b < 1
2 ,

b
((

1−
1

3 · 4k−1η j b

)
cos γ±1 +

1
3 · 4k−1η j b

cos γ±2

)
if 1

2 ≤ 4k−1η j b < 1.

The minimum occurs when 4k−1η j b= 1
2 and the minimum of

∫ b
0 cos(γ±(η j s)) ds is

b
( 1

3 cos(γ±1 )+
2
3 cos(γ±2 )

)
. The maximum occurs when 4k−1η j b = 1

4 and the max-
imum of

∫ b
0 cos(γ±(η j s)) ds is b

( 2
3 cos(γ±1 )+

1
3 cos(γ±2 )

)
. Thus

(22) A±I (b)= b
( 1

3 cos(γ±1 )+
2
3 cos(γ±2 )

)
and

(23) A±S (b)= b
( 2

3 cos(γ±1 )+
1
3 cos(γ±2 )

)
.

In these examples, we have the same essential limits inferior and superior at
O and yet A±I and A±S behave differently. In Example 4, we have the “extreme
values” (21); the “effective” contact angles in (a) and (b) of Corollary 3 are γ±2 and
in (c) and (d) of Corollary 3 are γ±1 . On the other hand, in Example 5, we have the
“intermediate values” (22) and (23). For Example 5, the “effective” contact angles
in (a) and (b) of Corollary 3 are σ±2 and in (c) and (d) of Corollary 3 are σ±1 , where
σ±1 , σ

±

2 ∈ [0, π] satisfy

cos σ±1 =
2
3 cos γ±1 +

1
3 cos γ±2 and cos σ±2 =

1
3 cos γ±1 +

2
3 cos γ±2 .

If f is a bounded solution of (1) satisfying (2) on ∂±�∗\{O} which is discontinuous
at O and R f (θ) exists for all θ ∈ (−α, α), then bounds on the sizes β+ and β− of
side fans can be computed using Corollary 3; the lower bounds on the sizes of these
side fans differ between these two examples.

4. Comments and extensions

The last section of [Lancaster and Siegel 1996] dealt with extensions of (1) to
equations of prescribed mean curvature. Consider the prescribed mean curvature
contact angle problem

N f = 2H( · , f ) in �,(24)

T f · ν = cos γ a.e. on ∂�.(25)

Suppose f ∈C2(�) satisfies (24) and (25) and also suppose the following conditions
hold:

(i) supx∈� | f (x)|<∞ and supx∈� |H(x, f (x))|<∞.

(ii) H(x, y, t) is weakly increasing in t for each (x, y) ∈�.
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Using [Echart and Lancaster 2017], we see that Theorems 1 and 2 continue to hold
for solutions f as above; the argument is the same as that in [Lancaster and Siegel
1996].

One might ask if the case considered in Theorem 2 is of “physical interest.” Is
it possible for the contact angle to fail to have a limit at the corner O? In a sense
this is a silly question since, at a small enough scale, the macroscopic description
of a capillary surface becomes meaningless. On the other hand, one sometimes
uses devices (e.g., homogenization) to obtain useful macroscopic information from
knowledge of “small scale” properties. An experiment which might be of some
interest would be to form a vertical wedge consisting of two planes of glass which
have been coated in increasing narrow vertical strips with a nonwetting substance
(e.g., paraffin) as the edge at which the two planes meet is approached; this would
approximate the situation considered in Theorem 2 and one wonders if there is a
“effective” contact angle at the corner which is larger than that for glass and smaller
than that for paraffin.
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To Robert Steinberg, a cherished teacher, colleague, and friend

Let A be a central simple algebra over a number field K . We study the ques-
tion of which integers of K are reduced norms of integers of A. We prove that
if K contains an integer that is the reduced norm of an element of A but not
the reduced norm of an integer of A, then A is a totally definite quaternion
algebra over a totally real field (i.e., A fails the Eichler condition).

1. Introduction

Let A be a central simple algebra over a number field K. Write Norm( · ) for the
reduced norm from A to K. If x is an integer in A, then clearly Norm(x) lies in R,
the ring of integers of K. It is also clear that x must be positive at the real primes
of K at which A is ramified. Suppose that m ∈ R satisfies this property, and so m
is a norm from A (see Theorem 2). If m is not the reduced norm of an integer of A,
we call m an outlier for A (this terminology is not standard).

The main result of this paper (combining Theorem A and Lemmas 6 and 7) is that
if K contains an outlier for A, then K is totally real, A is a quaternion algebra over
K, and A is totally definite. (One says in this case that A fails the Eichler condition).

We also prove a theorem of Deligne in Section 8 (because we couldn’t find a
proof in the literature), which states that if n ≥ 2 is an integer, and E1, . . . , En and
F1, . . . , Fn are supersingular elliptic curves defined over an algebraic closure of
the finite field GF(p), the field of p elements, then

E1× · · ·× En ∼= F1× · · ·× Fn.

The main ingredient is Eichler’s theorem on the uniqueness of a maximal order
in a central simple algebra in which Eichler’s condition holds. We also exploit
the known fact that the endomorphism algebra of such an Ei is a maximal order
in the quaternion algebra Ap over the rational field Q ramified at p and ∞ and
unramified everywhere else (and every maximal order arises in this context). Using
this connection also allows one to interpret outliers in Q for Ap as positive integers

MSC2010: primary 11S45; secondary 11S15.
Keywords: central simple algebras, reduced norms, super singular elliptic curves.
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m for which no supersingular elliptic curve defined over the algebraic closure of
GF(p) has an endomorphism of degree m.

2. Notation and terminology

Throughout this paper, K is a number field, R its ring of integers, and A is a central
simple algebra over K. By definition, A is a finite-dimensional algebra over K,
the center of A is equal to K, and A has no nonzero 2-sided ideals. Equivalently,
A⊗K K is isomorphic to the matrix algebra Mn(K ), where K denotes an algebraic
closure of K. For basic facts about central simple algebras, see [Pierce 1982].

The positive integer n is the degree of A. A central division algebra D is a
central simple algebra, as is Mk(D) for any k, and conversely every central simple
algebra over K is of this form by Wedderburn’s Theorem [Weil 1967, Chapter IX,
§1, Proposition 2].

A division algebra of degree n = 2 is called a quaternion algebra.
If L is a field extension of K, then A⊗K L is a central simple algebra over L . If

A⊗K L is isomorphic to Mn(L) then L is said to split A.
Let M denote the set of places of the number field K. For each place v ∈ M,

Av := A⊗K Kv is a central simple algebra over the completion Kv . By Wedderburn’s
theorem, it is a ring of matrices over a local division ring Dv central over Kv. We
set nv = degree(Dv); nv is called the local degree. A is said to be split at v if Kv

splits A (nv = 1); otherwise it is ramified at v (nv > 1). A key fact is that a central
simple algebra over K splits at all but finitely many places v of K.

We have the following splitting criterion:

Lemma 1 [Reiner 1975]. Let A be a central simple algebra over the number field
K. A finite extension L of K splits A if and only if , for each place v of K and for
each extension w of v to L , the local dimension [Lw : Kv] is a multiple of the local
degree nv.

Note that to determine, using Lemma 1, whether a given finite extension L
over K splits A, it is enough to check the stated condition at the finite set of places
v of K where A is ramified.

The notion of reduced norms in a central simple algebra A is bound up with the
two notions of subfields and splitting fields. A field extension L of K is a subfield
of A if L embeds in A; a maximal subfield of A is a maximal such. All maximal
subfields of A have dimension n = degree(A) over K. A maximal subfield of A
is a splitting field for A, and conversely every n-dimensional splitting field for A
embeds in A as a maximal subfield [Reiner 1975, Chapter 1, Section 7]. When A is
a quaternion algebra, this translates as: maximal subfields of A are quadratic over K,
and quadratic splitting fields of A embed in A. We will use this association later.
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If A is a central simple algebra over K, L a maximal subfield of A, and x ∈ L ,
then the reduced norm Norm(x) is the ordinary field norm from L to K. This notion
is independent of the choice of L , or of the embedding of L into A. By norm we
will always mean reduced norm, and the notation will be Norm(x). In particular, for
a∈K, Norm(a)=an. The usual property holds: Norm(xy)=Norm(x)Norm(y) for
x, y ∈ A, whether or not x and y commute. It follows that Norm(ax)= an Norm(x)
for a ∈ K.

An element a ∈ A is an integer if the monic irreducible polynomial of a over K
has coefficients in R. Sums and products of commuting integers are integers, but,
as we shall see later, products of integers need not be integers.

Suppose A is central simple over K of degree n. Which elements of K are
reduced norms of elements of A? The answer is given by the theorem of Hasse,
Maass and Schilling; see [Reiner 1975, p. 289]:

Theorem 2 (Hasse–Maass–Schilling). An element m of K is a reduced norm of
an element of A if and only if m is positive at every real place of K at which A is
ramified.

For convenience we will call this the HMS theorem. Note that there is no
condition at the complex places of K, at the finite places of K, or at the real places
of K where A does not ramify.

Suppose m ∈ R and m is a norm in A. It need not happen that m is the norm of
an integer of A. We will call m ∈ R an outlier if m is a norm in A but not the norm
of an integer. Equivalently, m is not the norm of an element of any maximal order.
We will be concerned with the existence of, and properties of, outliers.

If K is a number field, we say K is totally real if Kv is real at all the infinite
places v of K. If K is totally real, m in K is totally positive if the real number mv

is > 0 at all the infinite places v of K. The m in K for which mv > 0 at the real
places of A that ramify are, by Theorem 2, the reduced norms of elements of A,
and conversely.

We recast the identification of outliers in terms of Lemma 1. Suppose A is central
simple over K of degree n, R the ring of integers of K.

Lemma 3. Suppose m ∈ R is a norm in A. Then m is not an outlier if and only if
there is a monic irreducible polynomial f (t) ∈ R[t] such that

(1) We have f (0)= (−1)nm.

(2) For each place v of K, let f (t) =
∏

fi (t) be the factorization of f (t) into
irreducible monic factors in Kv[t]. Then each di = degree( fi ) is a multiple of
the local degree nv(A).

Proof. Let L = K (α) be the root field of f . Then [L : K ] = n since f is irreducible,
and α is an integer since f ∈ R[t] is monic. The first condition says that the norm of
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α is m. The second condition, by Lemma 1, says that L splits A, and so L embeds
in A since its dimension is n. Then the reduced norm of α is m. The other direction
of Lemma 3 is clear. �

Corollary 4. Suppose A and B are central simple algebras over K of the same
degree n, and that the local degree nv(A) divides the local degree nv(B) for all
places v of K. Then any outlier m of A is a priori also an outlier of B. In particular,
if B has no outliers then A has no outliers.

Proof. The polynomial requirements of Lemma 3 for B are more restrictive than
those for A. �

In Section 3 we review maximal orders in the central simple algebra A and recall
Eichler’s condition. In Section 4 we prove that when Eichler’s condition is satisfied,
then there are no outliers. In other words, if A has outliers then A is a quaternion
algebra over a totally real number field K, and all real places of K are ramified
in A. However, this condition is sufficient but not necessary: there are definite
quaternion algebras over totally real number fields that have no outliers. We remark
that there is no logical relation between having outliers and having a unique (up
to conjugacy) maximal order; neither condition implies the other. In Section 5 we
study quaternion algebras over the field of rational numbers Q. We particularly
study definite quaternion algebras ramified at a single finite prime. We write Ar for
the definite quaternion algebra over Q unramified away from the places∞ and r .
We show, for example, that if Ar has an outlier then it has an outlier less than an
explicit bound (r2/16).

We give heuristic evidence that for infinitely many r , Ar has no outliers, as well
as examples when chosen square-free integers are outliers.

We are grateful to Joel Rosenberg for many discussions about the contents of
this paper, and for posing the questions which started us on this research.

3. Maximal orders

Let K be a number field, R its ring of integers, and A a central simple algebra
over K. A subring O of R that contains 1, is finitely generated as an R module, and
that contains a basis of A over K is called an order of A. Any order O of A is a
projective R-module of rank equal to n, the degree of A over K. A maximal order
of A is an order which is maximal with respect to containment. Maximal orders are
isomorphic if and only if they are conjugate, so we will speak of conjugacy classes
of maximal orders. All elements of a maximal order are integral over R, and every
integral element of A is contained in some maximal order.

It is known that the number of maximal orders of A, up to conjugacy by an
element of A, is finite. Let {O1, . . . , Ot } be a set of representatives.
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For any given maximal order O of A, let I (O) be the group of two-sided frac-
tional ideals of O modulo principal two-sided fractional ideals. Set i(O)= |O(I )|.
It is known that each i(O) is finite although the cardinalities i(O1), . . . , i(Ot) may
be distinct. Their sum c := i(O1)+· · ·+ i(Ot) turns out to be equal to the number
of fractional left ideals of O modulo principal fractional left ideals for any maximal
order O .

The terminology is that t is called the type number and c is called the class
number. We have just seen that the type number is at most the class number.

Let A be a CSA over a number field K. Consider the following three conditions:

(1) A is a quaternion algebra.

(2) The field K is totally real.

(3) A is ramified at every infinite place of K.

It is customary to say that A fails the Eichler condition when all three conditions
hold. For example, the quaternion algebra Ap over Q ramified at p and∞, and
unramified away from those places, fails the Eichler condition.

This description can be refined if the Eichler condition holds. Assume now that
A satisfies the Eichler condition. Then the i(O1), . . . , i(Ot) are all equal. In fact
each I (Oi ) can be identified with an abelian group I = I (A), as do the types T
and the classes C. These three abelian groups fit into an exact sequence

0→ T → C→ I → 0.

These three groups are related, via the reduced norm map to certain generalizations
of the class group of the center K of A, by results of Eichler.

The group C is isomorphic to the group C ′ of fractional ideals of K modulo
principal fractional ideals that can be generated by an invertible element a ∈ K that
is positive at all infinite places of K that ramify in A.

Let n be as usual the square root of dimK (A). If p is a prime ideal of K that
is ramified in A, then at the corresponding finite place v of K , A⊗ Kv = Mr D′

for some division algebra D′ over Kv and for some r dividing n. The group T is
isomorphic to the subgroup T ′ of C generated by nC and the class of pr for each
finite prime p (and note that this gives nothing new for the unramified primes since
r = n).

I is isomorphic to the (abelian, finite) quotient group C ′/T ′.

4. Higher degree central simple algebras

Let A be a central simple algebra of degree n over the number field K. The main
result of this section is:

Theorem A. If n > 2 then A has no outliers.
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We need first a review of the proof of the HMS theorem in order to build a variant
that works for integers. A first ingredient is:

Krasner’s Lemma. Let v be a place of K, and f (t) = tn
+ a1tn−1

+ · · · + an a
separable irreducible polynomial in Kv[t]. If g(t) ∈ Kv[t] is close enough to f (t),
then g is separable irreducible and Kv[a] = Kv[b], where a is a root of f (t) and b
is a root of g(t).

Eichler’s proof of the HMS theorem goes as follows. Let R be the integers of K,
and m ∈ R satisfy the required condition: m is positive at all places v of K which
are real and ramified in A. Let S be the set of infinite places of K at which A
ramifies. Let S′ be a finite set of finite primes of K, including those that ramify in A.
We insist that S′ be nonempty; if necessary, we include an irrelevant extra prime
where A is unramified but where the polynomial constructed below is irreducible.
We construct a polynomial

(5) f (t)= tn
+ c1tn−1

+ · · ·+ (−1)nm ∈ K [t]

so that:

• For each v ∈ S′, ci is close enough to an irreducible polynomial fv(t) =
tn
+ a1tn−1

+ · · · + (−1)nm ∈ Rv[t] to guarantee f is irreducible in Kv[t].
There is such a polynomial [Weil 1967, XI, §3, Lemma 2] but we don’t show
that here.

• For each v ∈ S, f is close to fv(t)= tn
+ (−1)nm, i.e., each ci is positive and

close to 0. (Note that if any such v exists, then n is necessarily even). This
guarantees fv has no real roots. If A is not ramified at any infinite place of K,
then this condition is vacuous.

Since S′ is nonempty, f is irreducible in K [t]. Let L = K (α) where α is a root
of f ; [L : K ] = n. The first condition on f says that L splits A at the finite primes,
and the second condition guarantees that L splits A at the ramified infinite places,
since the root field of f must be complex. The sign (−1)n guarantees that the norm
from L to K of α is m. Finally, since L is a splitting field of degree n, then L
embeds in A as a maximal subfield, and the reduced norm of α is m.

This is the proof rendered by Eichler, and is the one presented in [Reiner 1975],
[Vignéras 1980], and [Weil 1967]. Note that it made crucial use of the weak
approximation theorem.

To go further, we use the strong approximation theorem [Weil 1967, Corollary
2, page 70], which better suits our purposes. Let w be a place of K at which A is
unramified. Then we can insist that the ci are in Rv for all v 6= w. We call this the
strong proof of the HMS theorem. We conclude any m ∈ R which is positive at all
real places of K that ramify in A is the reduced norm of an element α of A that is
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integral at all places v of K not equal to w. So if K has a complex place, or a real
place that is not ramified in A, then, taking this for w shows that A has no outliers.

Lemma 6. If A has an outlier then, K is totally real, A is totally definite, i.e., A is
ramified at all the real infinite places of K.

Proof. Let m ∈ R be a norm in A. If the conditions are not satisfied, then A must
have an infinite place w at which A is unramified. We use this extra place in the
strong proof of the HMS theorem. Then the polynomial f is in R[t], α is an integer,
and m is the norm of an integer. �

Lemma 7. If A has an outlier then there is a finite place of K that ramifies in A.

Proof. Suppose A is unramified at all finite places. By Lemma 6 , we may assume
n is even. Let m ∈ R be totally positive. The polynomial tn

+m does the trick in
the strong proof of HMS. �

We finish the proof of Theorem A. By Lemma 6 we may assume that K is totally
real, A is ramified at all real places, n > 2 is even, and m is positive at all infinite
places. First we treat the finite places. By [Weil 1967, Ch. XI,§3,Lemma 2], for
each finite place v, for any n, and for any nonzero m in K there exists a monic
degree-n irreducible polynomial f (t) ∈ Kv[t] with coefficients in Rv such that
f (0)= (−1)nm.

Let M f denote the set of finite places of K that ramify in A. Note that M f is
finite, and for each v in M f we have fv(t) as required by Lemma 3, but we have
not yet treated the infinite places.

For each 1≤ k ≤ n, apply the Chinese remainder theorem to the coefficient of tk

in fv to get a monic polynomial g(t)∈ K [t] with g(0)=m and integral coefficients
so that each localization gv(t) at each Kv is close enough to fv to be irreducible by
Krasner’s Lemma. We have lifted the required polynomials at the finite primes, but
the infinite places are still at bay; there is yet no reason why g(t) has only complex
embeddings.

Each v ∈ M f lies over some rational prime pv. Let N =
∏
v∈M f

pv be their
product.

Let Minf be the set of real places of K that ramify in A. For any v ∈ Minf we
have a real polynomial gv which is positive at −∞, ∞ and 0 by construction.
Therefore, there is some integer multiple Mv of N so that gv(t)+Mvt2 is positive
everywhere. Let M be the largest of the Mv. Furthermore by replacing M by
N k M for a sufficiently large k, we can insure by Krasner’s Lemma again that
gv(t)+ N k Mt2 is irreducible at each v ∈ M f .

The polynomial f (t)= g(t)+N k Mt2
∈ K [t] does the trick: it is monic of degree

n, has no real roots, and for each place of K that ramifies in A, each irreducible
factor of fv has degree a multiple of nv(A). This finishes the proof of Theorem A. �
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Note that the coefficient of t2 was available for modification only because n > 2.
For quaternion algebras, the coefficient of t2 is constant equal to 1. We get to that
case next.

5. Quaternion algebras

We write Q for the field of rational numbers and Z for the ring of integers.
We consider definite quaternion algebras over Q with special attention to Ar =

the definite quaternion algebra ramified at the prime r and unramified at all other
finite primes. Of course Ar is also ramified at∞, and so at all infinite places. The
simplification here is that the integers which are norms in Ar are exactly the set of
positive integers, and so the only issue is whether they are norms of integers. We
now investigate how this could happen.

Let m be a positive integer. Let f (t)= t2
+ bt +m with b ∈ Z. Let L =Q(α)

with f (α)= 0. Then L splits Ar if and only if:

• f is r -adically irreducible,

• f has degree 2 at∞, i.e., d = b2
− 4m < 0.

When either of the conditions above hold, then f is irreducible and [L :Q] = 2.
When they both hold, L embeds in Ar by Lemma 1, Norm(α) = m, and so m is
the norm of an integer in Ar . Moreover, m is the norm of an integer if and only if
this search succeeds for some b ∈ Z. There are a finite number of eligible b by the
last condition; |b|<

√
4m. Furthermore, b can be assumed to be positive; if α is a

root of t2
+ bt +m then −α is a root of t2

− bt +m. Of course b = 0 is legitimate
as a possibility. We record this in:

Lemma 8. The positive integer m is the norm of an integer in Ar if and only if there
is a polynomial f (t) = t2

+ bt +m satisfying the two conditions above for some
b ∈ Z. It is sufficient to search only in the range 0≤ b <

√
4m.

For polynomials of the right shape, they are irreducible r -adically if and only if
they are irreducible mod r . So when is m = 2 an outlier in Ar ? We illustrate the
search below, where we assume r > 2:

(9)

b = 0 d =−8

b = 1 d =−7

b = 2 d =−4

Of course −8 is an r-adic square if and only if −2 is, and this happens if and
only if the Legendre symbol

(
−2
r

)
= 1. Similarly, −4 is a square if and only if

−1 is. For each of the three conditions in (9), a random prime r satisfies it with
probability 1

2 . We conclude:
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Theorem 10. The integer 2 is an outlier in Ar if and only if

(11)
(
−2
r

)
=

(
−7
r

)
=

(
−1
r

)
= 1.

By considering the value of r mod 56, it follows from the Dirichlet density
theorem [Serre 1973, Chapter VI, §4, Theorem 2] that the set of primes r for which
this holds has density 1

8 . In particular it is infinite.
We do this once more to determine when 3 is an outlier. The data gives the

following list:

(12)

b = 0 d =−12

b = 1 d =−11

b = 2 d =−8

b = 3 d =−3

There is a redundancy; −12 is a square if and only if −3 is. We conclude, for r > 3:

Theorem 13. The integer 3 is an outlier in Ar if and only if

(14)
(
−3
r

)
=

(
−11

r

)
=

(
−2
r

)
= 1.

The set of primes r for which this holds is infinite and has density 1
8 .

By similar analysis we get, for r > 6:

Theorem 15. The integer 6 is an outlier in Ar if and only if

(16)
(
−2
r

)
=

(
−3
r

)
=

(
−5
r

)
=

(
−23

r

)
= 1

The set of primes r for which this holds is infinite and has density 1
16

Suppose 6 is an outlier for Ar . It does not follow that 2 and 3 are outliers.
There may be integral α and β with Norm(α) = 2 and Norm(β) = 3, and then
Norm(α · β) = 6. It might happen that for all such occurrences α and β are in
different maximal orders, and α ·β is not integral. When 6 is minimal as an outlier,
this is what had to happen. This can be quantified; we state without proof:

Theorem 17. Ar has the property that 2 and 3 are not outliers and 6 is an outlier
if and only if −2,−3,−5,−23 are squares mod r and either

(18)
(
−1
r

)
=−1 or −1 is a square mod r and 11, 7 are nonsquares mod r

The set of primes r for which this holds is infinite and has density 5
128 =

( 1
16

)(1
2+

1
8

)
.
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We have not yet determined all outliers in Ar , nor have we answered whether
they are infinite when nonempty. We need two results to prepare for this. We take
on the second issue first. Since the next result holds more generally than for the Ar ,
we state it in full generality. In all of the following, the symbol (a, b) stands for
the quaternion algebra over some ground field generated by i and j where i2

= a,
j2
= b, i j =− j i .

Theorem 19. Let A be a definite quaternion algebra over Q ramified at the finite
prime r. If m is a positive integer, then m is an outlier for A if and only if mr2 is
also.

Proof. For the easy direction: if Norm(α) = m with α an integral element of A,
then Norm(r ·α)= mr2. We need to show conversely that when mr2 is the norm
of an integer, so is m.

Let O be any maximal order of A. It is enough to show that whenever mr2 is a
norm of an element α of O , then α/r ∈ O . The completion of O at r is the norm
form of the unique quaternion algebra D over Qr . By [Serre 1979], D has the form
(a, r) where a is an appropriate nonresidue mod r . When r is odd, any nonresidue
will do, whereas when r = 2, a = −3 will do (in all cases,

√
a determines the

unique unramified quadratic extension). The norm form for this algebra is:

(20) F = x2
− ay2

− r(z2
− aw2)

Assume that F(x, y, z, w)=mr2. It follows that x2
−ay2

≡ 0 (mod r). As a is a
nonresidue, this forces x and y to be ≡ 0 (mod r). But then x2

−ay2
≡ 0 (mod r2),

and so r(z2
−aw2) is 0 mod r2. It follows that z2

−aw2
≡ 0 (mod r), so that z and

w are 0 mod r . Now all four coefficients x, y, z, w of α are divisible by r . Thus
α/r is in O and has norm m. We conclude that whenever Norm(α) is mr2 with α
in O , then α/r is in O and has norm m. Since this holds for all maximal orders,
the lemma is established. �

Corollary 21. With A as in Theorem 19, if the set of outliers for A is nonempty,
then it is infinite; if m is an outlier for A, then so is mr2n for any positive integer n.

Remark 22. Corollary 21 allows division by r2, but not by r . In fact, if m is an
outlier for Ar and relatively prime to r , then mr is not an outlier. The polynomial
t2
+mr is irreducible at r by Eisenstein’s criterion, and also irreducible at infinity;

it satisfies the requirements of Lemma 3.

We need a bound up to which we can check for outliers not governed by
Theorem 19. We do this for Ar ; the generalizations to definite quaternion algebras
will be clear. One more preliminary is necessary.

Lemma 23. Let p > 2 be a prime and m in GF(p) nonzero. Then there exists b in
GF(p) such that b2

− 4m is a nonsquare mod p.
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Proof. Suppose not. Then, for every b, b2
−4m is a square. But then (b2

−4m)−4m
is a square and by induction b2

− 4mj is a square for all j. By our hypotheses 4m
is invertible in GF(p) so all elements of GF(p) are squares, contradiction. �

We can now establish a bound for Ar .

Theorem 24. Suppose r > 2 is prime and m is a positive integer coprime to r . Set
C(r)= r2/16. If m > C(r), then m is not an outlier for Ar .

Proof. By Lemma 23, we choose an integer b such that b2
− 4m is a nonsquare

mod r . We are free to assume of course that b < r/2. Set f = t2
+ bt +m, and

d = b2
− 4m. One checks that the bounds on b and m say that d < 0, so f is

irreducible at infinity. Since d is a nonresidue at r , f is also irreducible in Qr [t].
Then f satisfies the requirements of Lemma 3, and so m is the norm of an integer. �

Remark 25. Theorem 24 gives an effective strategy for finding all outliers in Ar .
One checks all m in the interval [0,C(r)] using Lemma 3. For m > C(r): m is not
an outlier if m is not divisible by r . If m is divisible by r to the first power, then m is
not an outlier by Remark 22. If m is divisible by higher powers of r , then successive
uses of Theorem 19 gets us to the case of first power or the range [0,C(r)].

Here is one case where all outliers can be determined:

Corollary 26. If r = 67, then the only outliers for Ar are of form 3 · r2n, n =
1, 2, 3, . . . .

Proof. One checks in the range [0,C(r)] that the only outlier is 3 using Lemma 3
for each possible m. Then Remark 25 does the rest. �

Remark 27. Note that this corollary says that division by r2 is not always possible
when r is not a ramified prime. In A67, 12= 3 · 22 is the norm of an integer, but 3
is not, so division by the square of the unramified prime 2 is not possible.

An effective bound for more general definite quaternion algebras is not difficult.
Suppose A is a quaternion algebra central over Q ramified at infinity and the finite
primes comprising a set S. Let C be the product of the finite ramified primes of A,
and M = C2/16. Then

Theorem 28. M is an effective bound for determining all the outliers for A.

Proof. The proof is exactly as in Theorem 24 and Remark 25. �

The symbol B = (−58,−17) over Q is ramified at infinity and the finite primes
S = {2, 17, 29}. Using Theorem 28 one can show:

Corollary 29. The outliers for B are the set

{10r2n
: n = 1, 2, 3, . . . ; r a product of elements of S}.
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The minimal outlier of B is 10. Therefore, there are integers α and β in B with
Norm(α) = 2 and Norm(β) = 5. Whenever this happens, the product αβ is not
integral.

The appearance of 6 and 10 in this context is general, as seen in the next theorem.

Theorem 30. Let m be a positive integer that is not a square. Then there are
infinitely many primes r such that {m · r2n

: n ≥ 1} are outliers for Ar .

Proof. For b in the range [0,C], C =
√

4m, and d = b2
− 4m, we must have the

Legendre symbol
(d

r

)
equal to 1; the Chebotarev density theorem says there are

infinitely many such primes r . In fact their density is 1/2s for some appropriate
integer s. �

6. Open questions

We begin with:

Are there infinitely many rational primes r such that Ar has no outliers?

Heuristically, the answer is yes. Computer searches for small bounds show that
Ar has no outliers a little more than half the time.

We have seen that the set of primes r for which m = 2 is an outlier for Ar has
density 1

8 . Similarly, the set of primes for which m = 3 is an outlier for Ar has
density 1

8 . Adding together these probabilities for small m appears to give something
like density 0.7; this is roughly the probability that neither 2 nor 3 is an outlier.
However for large m, the density of primes r for which m is an outlier in Ar should
be something like 2−c

√
4m , since we are asking that the floor of

√
4m+ 1 numbers

are all squares r-adically and some constant c is required because these numbers
may not be linearly independent in Q∗/(Q∗)2. However the sum

∑
m>0 2−c

√
4m

converges. Therefore we cannot distinguish whether our set is finite or infinite.
Another interesting question concerns totally definite quaternion algebras over

totally real number fields. Do they have outliers? Sometimes? Often?
We have worked out only one example. Let B = (−1,−7)K where K is the real

subfield of seventh roots of unity. Then B has no outliers. The argument is technical,
so we will not reproduce it here; it requires a detailed study of units, totally positive
units, class number, and the establishment of a bound as in Theorem 24; the bound
is 1792. However, when K =Q(

√
2), the same algebra tensored up to K does have

outliers. Thus, restriction maps may or may not preserve the property of having no
outliers.

On the other hand, let A be the algebra (−1,−67) over Q; by Corollary 26, 3
is an outlier for A. If K =Q(

√
67), then A⊗Q K is ramified at only the infinite

places of K, and so by Lemma 7 has no outliers. Thus the restriction map may also
fail to preserve the property of having outliers.
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The last remark can be generalized. From Lemma 7, if A is a quaternion algebra
over Q, then there is a real quadratic field K such that:

• A⊗Q K is a division ring,

• A⊗Q K has no outliers.

7. Application to supersingular elliptic curves and surfaces

We review the connection between supersingular elliptic curves in characteristic r
and maximal orders in Ar , where Ar , is the definite quaternion algebra ramified at
∞ and r and unramified away from these places.

Let E be a supersingular elliptic curve defined over an algebraic closure �
of GF(r), and write End(E) for its endomorphism ring. Then End(E)⊗Z Q is
isomorphic to Ar . Under this isomorphism, End(E) is a maximal order in Ar , and,
conversely, any maximal order M of Ar is isomorphic to End(E) for some E .

Furthermore the norm of an endomorphism φ : E→ E is, under this isomorphism,
equal to the reduced norm of the corresponding m ∈ M.

The statement “m is an outlier for Ar ” translates to: no supersingular elliptic
curve defined over � has an endomorphism of degree m.

So we see, for example, that for every integer m > 1 there are infinitely many
primes p such that no supersingular elliptic curve defined over � has an endomor-
phism of degree m.

Next we turn to products of supersingular elliptic curves.

Corollary 31. Let E be a supersingular elliptic curve defined over an algebraic
closure of GF(p), and set A = Eg for g ≥ 2 an integer. Then the abelian variety A
has an endomorphism of degree m for every positive integer m.

Remark 32. Here we are considering all endomorphisms of A, not just those that
preserve the obvious principal polarization.

Proof 1. End(A) (which happens to equal S =Matg(M)) is a maximal order in the
central simple algebra Matg(Ar ) of dimension 4g2 over Q. Eichler’s methods, as
outlined in Section 3, imply that S is the unique maximal order up to conjugacy since
g > 1. Therefore, by Theorem A, m is a reduced norm of an element α ∈ End(S).
However, reduced norm is in this case equal to the degree of the map α. �

Our second proof of Corollary 31 uses a well-known theorem of Deligne, which
we state below. As we have not found an adequate proof in the literature, for the
reader’s convenience we include one in the next section.

Theorem 33 (Deligne). Let p be a prime and let n ≥ 2 be an integer. If E1, . . . , En

and F1, . . . , Fn are supersingular elliptic curves defined over an algebraic closure
of GF(p), then

E1× · · ·× En ∼= F1× · · ·× Fn
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Proof 2 of Corollary 31. It turns out it is enough, using Deligne’s result, to show
that for each rational prime ` that A = En has an endomorphism of degree `.

There does exist for each ` an isogeny of supersingular elliptic curves φ : E→ E ′

of degree ` (for `= p, the Frobenius has degree p and for ` 6= p mod out by any
subgroup H of order `). However, Deligne’s theorem gives an isomorphism

ψ : En ∼= E ′× En−1.

Thus the composite ψ−1
◦ (φ × idn−1) furnishes the desired endomorphism of

degree `. �

We are grateful to Bruce Jordan for suggesting the second proof of Corollary 31.

8. Proof of Deligne’s theorem

In this section we prove Theorem 33. For p a prime, let � denote an algebraic
closure of GF(p).

Remark 34. (1) It would suffice by induction to prove the theorem for n = 2
(although we will not use this remark).

(2) It will suffice to show (by transitivity of isomorphism) that F1×· · ·× Fn ∼= En

for some particular supersingular elliptic curve E defined over �.

The remainder of this section is devoted to the proof of Theorem 33.
Note that1=End(E) is a maximal order in the quaternion algebra Ap=1⊗Z Q.

The left 1-module Hom(F1×· · ·× Fn, E) being a projective module of rank n ≥ 2
is free by [Reiner 1975][Corollary 35.11 (iv)] (by the results of Section 3 since the
Eichler condition holds for Mn(1), and since visibly any ray class field over Q is
trivial). This is the key point in the proof.

Let φ1, . . . , φn be a basis. The freeness means that any homomorphism ψ from
F1× · · ·× Fn to E is uniquely a sum

ψ = δ1 ◦φ1+ · · ·+ δn ◦φn

for some δ1, . . . , δn in 1, noting that the 1-action on Hom(A, E), is composition
of functions. Setting 8= (φ1, . . . , φn), we have constructed a homomorphism

8 : F1× · · ·× Fn→ En,

and to finish the proof of the theorem it will suffice to prove that8 is an isomorphism.
Let K be the kernel of 8. If 8 is not an isomorphism, then K is nontrivial,

and therefore some projection πi (K ) is nontrivial in Fi . Let ρ : Fi → E be a
homomorphism, and set ψ : F1× · · · × Fn → E to be ψ(x1, . . . , xn) = ρ(xi ). It
follows that ρ and therefore any homomorphism from Fi to E must kill πi (K ).

Lemma 35. There is a supersingular elliptic curve E0 defined over GF(p).
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Proof. Let E be a supersingular elliptic curve defined over �. Then there is only
one isogeny of order p from E to another elliptic curve, namely the Frobenius
isogeny Fr : E→ E (p). It follows that E has an endomorphism of degree p if and
only if E is defined over GF(p).

Consider now the element
√
−p in the quadratic number field L =Q(

√
−p). It

has norm p and is integral. As L splits Ap, it embeds in Ap. So Z[
√
−p] a fortiori

embeds and thus is contained in a maximal order O of Ap. The usual norm on
Z[
√
−p] is equal to the restriction of the reduced norm under the embedding. In

the correspondence between maximal orders of Ap and supersingular elliptic curves
over �, the elliptic curve corresponding to O is thus defined over GF(p). �

The proof of Deligne’s theorem will be completed by the following lemma.

Lemma 36. Let E and F be supersingular elliptic curves over �. Then the inter-
section, as subgroup schemes of ker(φ) as φ ranges over Hom(E, F), is trivial.

Remark 37. (1) It will suffice to find a collection of isogenies from E to F whose
degrees are coprime.

(2) It will suffice to prove the lemma for a fixed elliptic curve E0 (and F varying),
then precomposing with the dual isogenies from E0 to E coming from (1).

Proof.
First of all we know that Hom(E, F) is nonzero. If O = End(E) is the maximal

order of End(E)⊗Z Q corresponding to E , then O has an ideal whose right order is
equal to the maximal order corresponding to F and this furnishes a nonzero isogeny.
So Hom(E, F) is a finitely generated projective left module over O (and not the
zero module). Let K denote the intersection (as subgroup schemes) of ker(φ) as φ
ranges over Hom(E, F). We have just showed that K is finite. Among all isogenies
from E to F, let φ be one of least degree. Let ` be a prime dividing deg(φ), hence
also the order of K. We first treat the somewhat easier case ` 6= p. If φ(E[`])= 0
then (1/`)φ is a nonzero isogeny from E to F of smaller degree, a contradiction.
Thus W = ker(φ)∩ E[`] is one-dimensional. However, End(E) acts transitively
on the one-dimensional subspaces of E[`]. Thus there is a σ in End(E) that does
not fix W. Then φ+φ ◦ σ is an isogeny from E to F of order prime to `.

We finish the proof of the lemma in the case `= p.
It is enough by transitivity to assume (by Lemma 35) that E = E0 is defined over

GF(p). Assume that every isogeny from E0 to E has degree divisible by p. Let
φ : E0→ E be the nonzero isogeny of least degree. If φ has degree divisible by p
then φ factors through the Frobenius isogeny: φ = ψ ◦ Fr for some ψ : E (p)0 → E .
But since E (p)0 = E0, ψ : E0→ E is an isogeny of degree smaller than deg(φ). �

This finishes the proof of Lemma 36 and of Theorem 33.
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GLOBAL EXISTENCE AND BLOWUP OF
SMOOTH SOLUTIONS OF 3-D POTENTIAL EQUATIONS

WITH TIME-DEPENDENT DAMPING

FEI HOU, INGO WITT AND HUICHENG YIN

In this paper, we are concerned with the global existence and blowup of
smooth solutions of the 3-D irrotational compressible Euler equation with
time-dependent damping

∂tρ+div(ρu)= 0,
∂t(ρu)+div(ρu⊗ u+ pI3)=−α(t)ρu,
ρ(0, x)= ρ̄+ ερ0(x), u(0, x)= εu0(x),

where x ∈R3, the frictional coefficient α(t)=µ/(1+ t)λ with µ>0 and λ≥0,
ρ̄ >0 is a constant, ρ0, u0∈C∞0 (R

3), (ρ0, u0) 6≡0, ρ(0, x)>0, curl u0≡0, and
ε > 0 is sufficiently small. For 0 ≤ λ ≤ 1, we show that there exists a global
C∞([0,∞) × R3)-smooth solution (ρ, u) by introducing and establishing
some uniform time-weighted energy estimates of (ρ, u), while for λ > 1, in
general, the smooth solution (ρ, u) blows up in finite time. Therefore, λ= 1
appears to be the critical value for the global existence of small amplitude
smooth solution (ρ, u).

1. Introduction

In this paper, we are concerned with the global existence and blowup of smooth
solutions of the three-dimensional irrotational compressible Euler equations with
time-dependent damping

(1-1)


∂tρ+ div(ρu)= 0,
∂t(ρu)+ div(ρu⊗ u+ pI3)=−α(t)ρu,
ρ(0, x)= ρ̄+ ερ0(x), u(0, x)= εu0(x),
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Development of Jiangsu Higher Education Institutions. Ingo Witt was partly supported by the DFG
via the Sino-German project Analysis of Partial Differential Equations and Applications.
MSC2010: primary 35L70; secondary 35L65, 35L67, 76N15.
Keywords: compressible Euler equations, damping, time-weighted energy inequality,

Klainerman–Sobolev inequality, blowup, hypergeometric function.

389

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2018.292-2
http://dx.doi.org/10.2140/pjm.2018.292.389


390 FEI HOU, INGO WITT AND HUICHENG YIN

where x = (x1, x2, x3), ρ, u = (u1, u2, u3), and p stand for the density, velocity,
and pressure, respectively, I3 is the 3× 3 identity matrix, the frictional coefficient
α(t)= µ/(1+ t)λ with µ > 0 and λ≥ 0, and u0 = (u1,0, u2,0, u3,0),

curl u0 = (∂2u3,0− ∂3u2,0, ∂3u1,0− ∂1u3,0, ∂1u2,0− ∂2u1,0)≡ 0.

The equation of state of the gases is assumed to be p(ρ) = Aργ , where A > 0
and γ > 1 are constants. Furthermore, ρ̄ > 0 is a constant, ρ0, u0 ∈ C∞0 (R

3),
(ρ0, u0) 6≡ 0, ρ(0, x) > 0, and ε > 0 is sufficiently small. With respect to the
physical background of (1-1), it can be found in [Dafermos 1995].

For µ= 0 in α(t), (1-1) is the standard compressible Euler equation. It is well
known that C∞-smooth solution (ρ, u) of (1-1) will in general blow up in finite
time. For the extensive literature on blowup results and the blowup mechanism for
(ρ, u), see [Alinhac 1999a; 1999b; 1993; Christodoulou 2007; Christodoulou and
Miao 2014; Christodoulou and Lisibach 2016; Ding et al. 2016; Hörmander 1997;
Sideris 1997; 1985; Speck 2016; Yin and Qiu 1999; Yin 2004] and so on.

For λ = 0 in α(t), it has been shown that (1-1) admits a global C∞-smooth
solution (ρ, u) and the large time behavior of (ρ, u) is governed by a parabolic
equation derived by using Darcy’s law; see [Dafermos 1995; Hsiao and Serre 1996;
Hsiao and Liu 1992; Kawashima and Yong 2004; Nishihara 1997; Pan and Zhao
2009; Sideris et al. 2003; Tan and Guochun 2012; Wang and Yang 2001].

For µ> 0 and λ> 0 in α(t), an interesting problem arises: does the C∞-smooth
solution (ρ, u) of (1-1) blow up in finite time or does it exist globally? In this paper,
we will systematically study this problem under the assumption of curl u0 ≡ 0.
In this case it is not hard to see that curl u(t, · ) ≡ 0 for all t ≥ 0 as long as the
smooth solution (ρ, u) of (1-1) exists. Then one can introduce a potential function
ϕ = ϕ(t, x) such that u = ∇ϕ (here and below, ∇ = ∇x ), where the C∞ scalar
function ϕ has a compact support in x (as u(t, · ) has a compact support for any
fixed t ≥ 0 in view of u0 ∈ C∞0 (R

3) and admits a finite propagation speed which
holds for hyperbolic systems). Substituting u = ∇ϕ into the second equation of
(1-1), we obtain

(1-2) ∂tϕ+
1
2 |∇ϕ|

2
+ h(ρ)+

µ

(1+ t)λ
ϕ = 0,

where h′(ρ)= c2(ρ)/ρ with c(ρ)=
√

p′(ρ) and h(ρ̄)= 0.
From h′(ρ) > 0 for ρ > 0 we have that

(1-3) ρ = h−1
(
−

(
∂tϕ+

1
2 |∇ϕ|

2
+

µ

(1+ t)λ
ϕ

))
,

where ρ̄ = h−1(0) and h−1 is the inverse function of h = h(ρ).



SOLUTIONS OF 3-D POTENTIAL EQUATIONS WITH TIME-DEPENDENT DAMPING 391

Substituting (1-3) into the first equation of (1-1) yields

(1-4) ∂2
t ϕ− c2(ρ)1ϕ+ 2

3∑
k=1

(∂kϕ)∂
2
tkϕ+

3∑
i,k=1

(∂iϕ)(∂kϕ)∂
2
ikϕ

+
µ

(1+ t)λ
|∇ϕ|2+ ∂t

(
µ

(1+ t)λ
ϕ

)
= 0.

As for the initial data ϕ(0, x) and ∂tϕ(0, x) for (1-4): Obviously, ϕ(0, x) =
εϕ0(x), where

ϕ0(x)=
∫ x1

−∞

u1,0(s, x2, x3) ds.

Note that ϕ0 ∈ C∞0 (R
3) in view of curl u0 ≡ 0 and u0 ∈ C∞0 (R

3). Furthermore,
from (1-2) we infer that ∂tϕ(0, x)= εϕ1(x)+ ε2g(x, ε), where

ϕ1 =−

(
µϕ0+

c2(ρ̄)

ρ̄
ρ0

)
and

g(x, ε)=−ρ2
0(x)

∫ 1

0

(
c2(ρ)

ρ

)′∣∣∣∣
ρ=ρ̄+θερ0(x)

dθ − 1
2

3∑
i=1

u2
i,0(x).

Notice that g(x, ε) is smooth in (x, ε) and has compact support in x . Conse-
quently, studying problem (1-1) under the assumption curl u0 ≡ 0 is equivalent to
investigating the problem

(1-5)


∂2

t ϕ− c2(ρ)1ϕ+ 2
3∑

k=1

(∂kϕ)∂
2
tkϕ+

3∑
i,k=1

(∂iϕ)(∂kϕ)∂
2
ikϕ

+
µ

(1+ t)λ
|∇ϕ|2+ ∂t

(
µ

(1+ t)λ
ϕ

)
= 0,

ϕ(0, x)= εϕ0(x), ∂tϕ(0, x)= εϕ1(x)+ ε2g(x, ε).

Here we mention that

c2(ρ)= c2(ρ̄)− (γ − 1)
(
∂tϕ+

1
2 |∇ϕ|

2
+

µ

(1+ t)λ
ϕ

)
which follows by direct computation.

We now state the first main result of this paper.

Theorem 1.1 (global existence for 0≤λ≤1). Suppose that curl u0≡0. Ifµ>0 and
0≤ λ≤ 1, then, for ε > 0 small enough, (1-5) admits a global C∞-smooth solution
ϕ. As a consequence, (1-1) has a global C∞-smooth solution (ρ, u) which fulfills
ρ > 0 and which is uniformly bounded for t ≥ 0 together with all its derivatives.



392 FEI HOU, INGO WITT AND HUICHENG YIN

Remark. The principal part of the linearization of the equation in (1-5) about
(ρ, ϕ)= (ρ̄, 0) is

(1-6) L(ϕ̇)≡ ∂2
t ϕ̇− c2(ρ̄)1ϕ̇+

µ

(1+ t)λ
∂t ϕ̇−

µλ

(1+ t)λ+1 ϕ̇.

For the linear operator L0 with

L0(ϕ̇)≡ ∂
2
t ϕ̇− c2(ρ̄)1ϕ̇+

µ

(1+ t)λ
∂t ϕ̇,

which appears as part of (1-6), it is shown in [Wirth 2006; 2007] that the large-term
behavior of solutions ϕ̇ of L0(ϕ̇) = 0 depends on the value of λ. For 0 ≤ λ < 1
it is the same as the large-term behavior of solutions of the linear heat equation
∂t ϕ̇ − c2(ρ̄)1ϕ̇ = 0, while for λ > 1 it is the same as the large-term behavior of
solutions of the linear wave equation ∂2

t ϕ̇ − c2(ρ̄)1ϕ̇ = 0. In addition, precise
microlocal large-term decay properties of solutions ϕ̇ of L(ϕ̇) = 0 have been
established in [do Nascimento and Wirth 2015] for a special range of values of
λ and µ. It seems to be difficult, however, to apply these microlocal estimates
to attack the quasilinear problem (1-5). (In general, those microlocal estimates
are useful when treating semilinear damped wave equations; see [D’Abbicco and
Reissig 2014; D’Abbicco et al. 2015].)

Remark. For the 1-D Burgers equation with time-dependent damping term

(1-7)

∂tw+w∂xw =−
µ

(1+ t)λ
w, (t, x) ∈ R+×R,

w(0, x)= εw0(x),

where µ> 0 and λ≥ 0 are constants, w0 ∈C∞0 (R), w0 6≡ 0, and ε > 0 is sufficiently
small, one concludes by the method of characteristics that{

Tε =∞ if 0≤ λ < 1 or λ= 1, µ > 1,
Tε <∞ if λ > 1 or λ= 1, 0≤ µ≤ 1,

where Tε is the lifespan of the C∞-smooth solution w of (1-7). Therefore, λ= 1
again appears to be the critical value for the global existence of smooth solutions w
of (1-7) in the presence of the damping term

µ

(1+ t)λ
w.

Remark. The smallness of ε > 0 in Theorem 1.1 is necessary in order to guarantee
the global existence of smooth solution (ρ, u). Indeed, as in [Sideris et al. 2003],
large amplitude smooth solution of (1-1) may blow up in finite time even for
0≤ λ≤ 1. See also Theorem 4.1.
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Next we concentrate on the case of λ > 1. As in [Sideris 1985], introduce the
two functions

q0(l)=
∫
|x |>l

(|x | − l)2

|x |
(ρ(0, x)− ρ̄) dx,

q1(l)=
∫
|x |>l

|x |2− l2

|x |3
x · (ρu)(0, x) dx .

Before stating our blowup result for problem (1-1) with λ > 1, we require to
introduce a special hypergeometric function 9(a, b, c; z), where the constants a
and b satisfy a+ b = 1 and ab = 1

2µλ, c ∈ R+, the variable z ∈ R, and

9(a, b, c; z)=
+∞∑
n=0

(a)n(b)n
n!(c)n

zn

with (a)n = a(a+ 1) · · · (a+ n− 1) and (a)0 = 1. It is known from [Erdélyi et al.
1953] that 9(a, b, c; z) is an analytic function of z in (−1, 1) and 9(a, b, c; 0)=
9(a+1, b+1, c; 0)= 1. Therefore, there exists a small constant δ0 > 0 depending
on a and b (i.e., µ and λ) such that for − 1

2δ0 ≤ z ≤ 0,

(1-8) 1
2 ≤9(a, b, 1; z),9(a+ 1, b+ 1, 2; z)≤ 3

2 .

Theorem 1.2 (blowup for λ > 1). Suppose supp ρ0, supp u0 ⊆ {x : |x | ≤ M} and
let

q0(l) > 0,(1-9)

q1(l)≥ 0(1-10)

hold for all l ∈ (M̃,M), where M̃ is some fixed constant satisfying 0 ≤ M̃ < M.
Moreover, we assume that there exist two constants M0 ≥ M̃ and 3 ≥ 3

2µλ such
that

(1-11) q1(l)≥3q0(l),

holds for all l ∈ (M0,M), where M − M0 < δ0 and δ0 is given in (1-8). If µ > 0
and λ > 1, then there exists an ε0 > 0 such that, for 0< ε ≤ ε0, the lifespan Tε of
C∞-smooth solution (ρ, u) of (1-1) is finite.

Remark. It is not hard to find a large number of initial data (ρ, u)(0, x) such that
(1-9)–(1-11) are satisfied. For instance, choosing ρ0(x)>0 and u0(x)= xρ0(x)3/ρ̄,
then we get (1-9)–(1-11).

Remark. Sideris [1985] showed the formation of singularities in three-dimensional
compressible equations under the assumptions of (1-9)–(1-10). However, in order to
prove the blowup result of smooth solution (ρ, u) to problem (1.1) and overcome the
difficulty arisen by the time-dependent frictional coefficient µ/(1+ t)λ with µ > 0
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and λ > 1, we pose an extra assumption (1-11) except (1-9)–(1-10), which leads to
the nonnegativity of P(t, l) in (3-7) so that an ordinary typed blowup inequalities
(3-23)–(3-24) can be established. One can see more details in Section 3.

Let us indicate the proofs of Theorems 1.1 and 1.2. To prove Theorem 1.1,
we first introduce the function ψ = ϕ/(1+ t)λ which fulfills the second-order
quasilinear wave equation

∂2
t ψ −1ψ +

µ

(1+ t)λ
∂tψ +

2λ
1+ t

∂tψ −
λ(1− λ)
(1+ t)2

ψ = Q(ψ, ∂ψ, ∂2ψ),

where Q(ψ, ∂ψ, ∂2ψ) stands for an error term which is of the second order in
(ψ, ∂ψ, ∂2ψ); ∂ = (∂t ,∇). Then, in order to establish the global existence of ψ ,
we introduce the time-weighted energy

EN (ψ)(t)=
∑

0≤|a|≤N

∫
R3
((1+ t)2λ|∂0aψ |2+ |0aψ |2) dx,

where N ≥ 8 is a fixed number, 0 = (00, 01, . . . , 07) = (∂,�, S) with � =
(�1, �2, �3) = x ∧ ∇, S = t∂t +

∑3
k=1 xk∂k , and 0a

= 0
a0
0 0

a1
1 . . . 0

a7
7 . Note

that the vector fields 0 which appear in the definition of the energy EN (ψ)(t)
only comprise part of the standard Klainerman vector fields {∂,�, S, H}, where
H = (H1, H2, H3)= (x1∂t+ t∂1, x2∂t+ t∂2, x3∂t+ t∂3). This is due to the fact that
the equation in (1-5) is not invariant under the Lorentz transformations H in view
of the presence of the time-dependent damping. By a rather technical and involved
analysis of the resulting equation forψ , we eventually show that EN (ψ)(t)≤ 1

2 K 2ε2

when EN (ψ)(t) ≤ K 2ε2 is assumed for some suitably large constant K > 0 and
small ε > 0. Here we emphasize that the condition of 0≤ λ≤ 1 plays an essential
role in the process of deriving the uniform boundedness of EN (ψ)(t) (see Lemmas
2.3–2.5). This, together with the continuous induction argument, yields the global
existence of ψ and further completes the proof of Theorem 1.1 for 0≤ λ≤ 1. To
prove the blowup result of Theorem 1.2 for λ > 1, as in [Sideris 1985], we derive a
related second-order ordinary differential inequality. From this and assumptions
(1-9)–(1-11), an upper bound of the lifespan Tε is derived by making essential use of
λ> 1. In this way the proof of Theorem 1.2 is completed. In Theorem 4.1, we show
that for large data smooth solution (ρ, u) of (1-1), even in case 0≤ λ≤ 1, (ρ, u)
will in general blow up in finite time. In addition, the proof on the nonnegativity of
P(t, l), which is introduced in (3-1), is given in the Appendix.

Throughout, we shall use the following notation and conventions:

• ∇ stands for ∇x ;

• r = |x | =
√

x2
1 + x2

2 + x2
3 ;

• 〈r − t〉 =
(
1+ (r − t)2

)
1/2;
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• ‖u(t, x)‖ =
(∫

R3 |u(t, x)|2 dx
)1/2 and ‖u(t, x)‖L∞ = supx∈R3 |u(t, x)|;

• 0 denotes one of the vector fields {∂, S, �} on R+×R3, where ∂ = (∂t ,∇),
S = t∂t +

∑3
k=1 xk∂k , �= (�1, �2, �3)= x ∧∇;

• β is the solution of β ′(t)= µ

(1+t)λ
β(t) for t ≥ 0, β(0)= 1, i.e.,

(1-12) β(t)≡

{
e
µ

1−λ [(1+t)1−λ−1]
, λ≥ 0, λ 6= 1,

(1+ t)µ, λ= 1;

• c(ρ̄)= 1 will be assumed throughout (introduce X = x/c(ρ̄) as a new space
coordinate if necessary).

2. Global existence for small amplitude in case 0≤ λ≤ 1

Throughout this section, C > 0 stands for a generic constant which is independent
of K , ε, and t .

We start by recalling a Sobolev-type inequality (see [Klainerman 1987]).

Lemma 2.1. Let u = u(t, x) be a smooth function of (t, x) ∈ [0,∞)×R3. Then

(2-1) |u(t, x)| ≤ C(1+ r)−1
∑
|a|≤2

‖0au(t, x)‖.

Moreover, we shall make use of the following inequalities (see [Klainerman and
Sideris 1996, Lemma 3.1 and Theorem 5.1]).

Lemma 2.2. For u ∈ C2([0,∞)×R3),

‖〈r − t〉∇∂u(t, x)‖ ≤ C
(∑
|b|≤1

‖∂0bu(t, x)‖+ t‖�u(t, x)‖
)
,(2-2)

(1+ r)〈r − t〉|∇∂u(t, x)| ≤ C
(∑
|b|≤3

‖∂0bu(t, x)‖+ t‖�u(t, x)‖
)
,(2-3)

where �= ∂2
t −1= ∂

2
t −

∑3
k=1 ∂

2
k .

We now reformulate problem (1-5). Let ψ =ϕ/(1+ t)λ. From (1-5) and c(ρ̄)=1
we then have

(2-4) �ψ +
µ

(1+ t)λ
∂tψ +

2λ
1+ t

∂tψ −
λ(1− λ)
(1+ t)2

ψ = Q(ψ, ∂ψ, ∂2ψ),

where

Q(ψ, ∂ψ, ∂2ψ)= (c2(ρ)−1)1ψ−2(1+t)λ∂t∇ψ ·∇ψ−2λ(1+t)λ−1
|∇ψ |2

−µ|∇ψ |2−(1+t)2λ
∑

1≤i, j≤3

(∂iψ)(∂ jψ)∂
2
i jψ.
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We define a time-weighted energy for (2-4),

EN (ψ(t))=
∑

0≤|a|≤N

∫
R3

(
(1+ t)2λ|∂0aψ |2+ |0aψ |2

)
dx,

where N ≥ 8 is a fixed number. Moreover, we assume that for any t ≥ 0,

(2-5) EN (ψ(t))≤ K 2ε2,

where K > 0 is a suitably large constant. It follows from (2-1) and (2-5) that, for
all |a| ≤ N − 2,

(2-6) |∂0aψ | ≤ C(1+ r)−1
∑
|b|≤2

‖0b∂0aψ(t, x)‖

≤ C(1+ r)−1
∑
|b|≤N

‖∂0bψ(t, x)‖

≤ C(1+ r)−1(1+ t)−λ
√

EN (ψ(t))

≤ C K ε(1+ r)−1(1+ t)−λ

and

(2-7) |0aψ | ≤ C(1+ r)−1
∑
|b|≤N

‖0bψ(t, x)‖ ≤ C K ε(1+ r)−1.

In view of Lemma 2.2 and (2-5), we have

Lemma 2.3. Let ψ be a solution of (2-4). Then, for all |a| ≤ N − 3 and 0≤ λ≤ 1,
we have the pointwise estimate

(2-8) ‖∇∂0aψ‖L∞ ≤ C K ε(1+ t)−2λ.

Moreover, for 0≤ l ≤ N − 1, the weighted L2 estimate

(2-9)
∑
|b|≤l

‖〈r − t〉∇∂0bψ(t, x)‖

≤ C
∑
|c|≤l+1

‖∂0cψ(t, x)‖+C(1+ t)1−λ
∑
|c|≤l

‖∇0cψ(t, x)‖

+C(1− λ)(1+ t)−1
∑
|c|≤l

‖0cψ(t, x)‖

holds.



SOLUTIONS OF 3-D POTENTIAL EQUATIONS WITH TIME-DEPENDENT DAMPING 397

Proof. It follows from (2-3)–(2-4) and (2-6)–(2-7) that

(1+ t)
∑
|a|≤N−3

|∇∂0aψ |

≤ C
∑
|a|≤N−3

(1+ r)〈r − t〉|∇∂0aψ |

≤ C
∑
|c|≤N

‖∂0cψ‖+Ct
∑
|a|≤N−3

‖�0aψ‖

≤ C K ε(1+ t)−λ+C(1+ t)1−λ
∑
|a|≤N−3

‖∂t0
aψ‖+C(1+ t)−1

∑
|a|≤N−3

‖0aψ‖

+C(1+ t)
∑

|b|+|c|≤N−3

‖∇∂0bψ0cψ‖+C(1+ t)1+λ
∑
|a|≤N−3

‖0a(∂t∇ψ · ∇ψ)‖

≤ C K ε(1+ t)1−2λ
+C K ε(1+ t)

∑
|a|≤N−3

‖∇∂0aψ‖L∞,

which derives (2-7) in view of the smallness of ε > 0.
By (2-2), (2-6)–(2-8) and (2-4), we have that, for l ≤ N − 1,

(2-10)∑
|b|≤l

‖〈r− t〉∇∂0bψ‖

≤ C
∑
|c|≤l+1

‖∂0cψ‖+Ct
∑
|b|≤l

‖0b�ψ‖

≤ C
∑
|c|≤l+1

‖∂0cψ‖+C(1+ t)1−λ
∑
|c|≤l

‖∇0cψ‖+C(1−λ)(1+ t)−1
∑
|c|≤l

‖0cψ‖

+C(1+ t)1+λ
∑
|b|≤l

‖0b(∂t∇ψ ·∇ψ)‖

+C(1+ t)
∑

|c|≤N−3,
|b|≤l−|c|

‖〈r− t〉−10cψ‖L∞‖〈r− t〉∇∂0bψ‖

+C(1+ t)
∑

2−N≤|c|≤l,
|b|≤l+2−N

‖(1+r)∇∂0bψ‖L∞‖(1+r)−10cψ‖

≤ C
∑
|c|≤l+1

‖∂0cψ‖+C(1+ t)1−λ
∑
|c|≤l

‖∇0cψ‖+C(1−λ)(1+ t)−1
∑
|c|≤l

‖0cψ‖

+C K ε
∑
|b|≤l

‖〈r− t〉∇∂0bψ‖+C K ε(1+ t)1−λ
∑

2−N≤|c|≤l

‖(1+r)−10cψ‖.



398 FEI HOU, INGO WITT AND HUICHENG YIN

Note that 0cψ(t, x) is supported in {x : |x | ≤ t +M}. Then it follows from Hardy
inequality that

(2-11) ‖(1+ r)−10cψ‖ ≤ C‖∇0cψ‖.

Substituting (2-11) into (2-10) and applying the smallness of ε, we derive (2-9). �

Next we derive the time-weighted energy estimate for the solution ψ of (2-4).

Lemma 2.4. Let µ > 0 and λ ∈ (0, 1]. Under assumption (2-5), for all t > 0 and
N ≥ 8, it holds that

(2-12)
∑

0≤|a|≤N

∫
R3

(
(1+t)2λ|∂∂aψ |2+ψ2) dx+C

∑
0≤|a|≤N

∫ t

0

∫
R3
(1+τ)λ|∂∂aψ |2 dx dτ

≤ Cε2
+C(1+ K ε)

∫ t

0
A(τ )

∑
0≤|a|≤N

∫
R3

(
(1+ τ)2λ|∂∂aψ |2+ψ2) dx dτ,

where A( · ) stands for a generic nonnegative function such that A ∈ L1((0,∞)),
and ‖A‖L1 is independent of K but dependent on µ and λ.

Proof. First we show (2-12) in case |a| = 0. Multiplying (2-4) by m(1+ t)2λ∂tψ +

(1+ t)2λ−1ψ yields by a direct computation

(2-13) 1
2∂t
[
m(1+t)2λ|∂ψ |2+2(1+t)2λ−1ψ∂tψ+(µ(1+t)λ−1

+2λ(1+t)2λ−2)ψ2]
+ div

(
· · ·
)
+
(
µm(1+ t)λ+ (λm− 1)(1+ t)2λ−1)(∂tψ)

2

+ (1− λm)(1+ t)2λ−1
|∇ψ |2+

µ

2
(1− λ)(1+ t)λ−2ψ2

+C1(λ− 1)(1+ t)2λ−2ψ∂tψ +C2(λ− 1)(1+ t)2λ−3ψ2

=
(
m(1+ t)2λ∂tψ + (1+ t)2λ−1ψ

)
Q(ψ, ∂ψ, ∂2ψ),

where the constant m > 0 will be determined later and Ci (i = 1, 2) are suitable
constants. Note that in the square bracket of the first line in (2-13),

(2-14) m(1+ t)2λ|∂ψ |2+ 2(1+ t)2λ−1ψ∂tψ + (µ(1+ t)λ−1
+ 2λ(1+ t)2λ−2)ψ2

=m(1+t)2λ
(1

3 |∂tψ |
2
+|∇ψ |2

)
+

(
µ(1+t)λ−1

+

(
2λ− 3

2m

)
(1+t)2λ−2

)
ψ2

+

(√
2m
3
(1+ t)λ∂tψ +

√
3

2m
(1+ t)λ−1ψ

)2

.

We choose m > 0 to fulfill

λ <
1
m
<min{µ+ λ, 2λ};

together with λ≤ 1 (i.e., 2λ−2≤ λ−1≤ 0), this yields that (2-14) is equivalent to

(1+ t)2λ|∂ψ |2+ (1+ t)λ−1ψ2.
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On the other hand, the coefficients

µm(1+ t)λ+ (λm− 1)(1+ t)2λ−1

and

(1− λm)(1+ t)2λ−1

of (∂tψ)
2 and |∇ψ |2 in the left-hand side of (2-13) are both positive.

Then integrating (2-13) over [0, t]×R3 yields

(2-15)
∫

R3

(
(1+ t)2λ|∂ψ |2+ (1+ t)λ−1ψ2) dx

+C
∫ t

0

∫
R3

(
(1+ τ)λ(∂tψ)

2
+ (1+ τ)2λ−1

|∇ψ |2+ (1+ τ)λ−2ψ2) dx dτ

≤ Cε2
+

∫ t

0
A(τ )

∫
R3
(1+ τ)λ−1ψ2 dx dτ

+C
∣∣∣∣∫ t

0

∫
R3

(
m(1+τ)2λ∂tψ+(1+τ)2λ−1ψ

)
Q(ψ, ∂ψ, ∂2ψ) dx dτ

∣∣∣∣.
Next we improve the time-weighted estimate of ψ in the left-hand side of (2-15).
Multiplying both sides of (2-4) by (1+ t)λψ yields by direct computation

∂t

(
(1+ t)λψ∂tψ +

µ

2
ψ2
)
+ div

(
· · ·
)
− (1+ t)λ(∂tψ)

2
− λ(1+ t)λ−1ψ∂tψ

+ (1+ t)λ|∇ψ |2+ 2λ(1+ t)λ−1ψ∂tψ + λ(λ− 1)(1+ t)λ−2ψ2

= (1+ t)λψQ(ψ, ∂ψ, ∂2ψ).

From this and (2-15), we can choose the multiplier

m(1+ t)2λ∂tψ + (1+ t)2λ−1ψ + κ(1+ t)λψ

for (2-4) with a small κ > 0 and then obtain

(2-16)
∫

R3

(
(1+ t)2λ|∂ψ |2+ψ2) dx +C

∫ t

0

∫
R3
(1+ τ)λ|∂ψ |2 dx dτ

≤ Cε2
+

∫ t

0
A(τ )

∫
R3
ψ2 dx dτ

+C
∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂tψ)Q(ψ, ∂ψ, ∂2ψ) dx dτ

∣∣∣∣
+C

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λψQ(ψ, ∂ψ, ∂2ψ) dx dτ

∣∣∣∣.



400 FEI HOU, INGO WITT AND HUICHENG YIN

Next we derive the time-weighted estimates of ∂aψ with 1≤ |a| ≤ N . Taking
∂a on both sides of (2-4) yields

�∂aψ +
µ

(1+ t)λ
∂t∂

aψ +
2λ

1+ t
∂t∂

aψ

= ∂a Q(ψ, ∂ψ, ∂2ψ)+
∑

1≤|b|≤|a|

1
(1+ t)λ

(
1+ O((1+ t)λ−1)

)
∂bψ

− λ(λ− 1)∂a
(

1
(1+ t)2

)
ψ.

Exactly as for (2-16), multiplying this by

m(1+ t)2λ∂t∂
aψ + (1+ t)2λ−1∂aψ + κ(1+ t)λ∂aψ,

we obtain

(2-17)
∑

0≤|a|≤N

∫
R3

(
(1+t)2λ|∂∂aψ |2+ψ2)dx+C

∑
0≤|a|≤N

∫ t

0

∫
R3
(1+τ)λ|∂∂aψ |2 dx dτ

≤ Cε2
+

∫ t

0
A(τ )

∫
R3
ψ2 dx dτ

+C
∑

0≤|a|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t∂

aψ)∂a Q(ψ, ∂ψ, ∂2ψ) dx dτ
∣∣∣∣

+C
∑

0≤|a|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(∂aψ)∂a Q(ψ, ∂ψ, ∂2ψ) dx dτ

∣∣∣∣.
We now deal with the last two terms in the right-hand side of (2-17). We first
analyze the integrand (1+ t)2λ(∂t∂

aψ)∂a Q(ψ, ∂ψ, ∂2ψ) of the penultimate term.
Direct computation yields

∂a Q(ψ, ∂ψ, ∂2ψ)

= (c2(ρ)−1)1∂aψ−2(1+t)λ∇∂t∂
aψ ·∇ψ−(1+t)2λ(∂iψ)(∂ jψ)∂

2
i j∂

aψ+l.o.t.

and

(2-18) (1+ t)2λ(∂t∂
aψ)∂a Q(ψ, ∂ψ, ∂2ψ)

=div
(
(1+t)2λ(c2(ρ)−1)(∂t∂

aψ)∇∂aψ
)
−div

(
(1+t)3λ|∂t∂

aψ |2∇ψ
)

−
1
2∂t
(
(1+ t)2λ(c2(ρ)− 1)|∇∂aψ |2

)
+ (1+ t)3λ|∂t∂

aψ |21ψ + λ(1+ t)2λ−1(c2(ρ)− 1)|∇∂aψ |2

+
1
2(1+ t)2λ(c2(ρ))′∂tρ|∇∂

aψ |2

− (1+ t)4λ(∂iψ)(∂ jψ)(∂
2
i j∂

aψ)∂t∂
aψ + l.o.t.,
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where here and below l.o.t. designates lower-order terms which are of the form

(∂b1ψ)(∂b2ψ) . . . (∂blψ)

(multiplied by ∂∂aψ or ∂aψ) with l ≥ 2 and 1 ≤ |b1| + · · · + |bl | ≤ |a| + 1.
Here we are concerned with the top-order derivatives only. Note that the term
(1+ t)4λ(∂iψ)(∂ jψ)(∂

2
i j∂

aψ)∂t∂
aψ in (2-18) can be expressed as

(2-19) (1+ t)4λ(∂iψ)(∂ jψ)(∂
2
i j∂

aψ)∂t∂
aψ

=
1
2

{
∂i
(
(1+ t)4λ(∂iψ)(∂ jψ)(∂ j∂

aψ)∂t∂
aψ
)

+ ∂ j
(
(1+ t)4λ(∂iψ)(∂ jψ)(∂i∂

aψ)∂t∂
aψ
)

− ∂t
(
(1+ t)4λ(∂iψ)(∂ jψ)(∂i∂

aψ)∂ j∂
aψ
)

+ ∂t
(
(1+ t)4λ(∂iψ)∂ jψ

)
(∂i∂

aψ)∂ j∂
aψ + l.o.t.

}
.

Similarly, for the integrand of∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(∂aψ)∂a Q(ψ, ∂ψ, ∂2ψ) dx dτ

∣∣∣∣,
one has

(2-20) (1+ t)λ∂aψ∂a Q(ψ, ∂ψ, ∂2ψ)

=div
(
(1+t)λ(c2(ρ)−1)∇(∂aψ)∂aψ

)
−

1
2∂i
(
(1+t)3λ(∂iψ)∂

a(|∇ψ |2)∂aψ
)

− ∂t
(
(1+ t)λ∂a(|∇ψ |2)∂aψ

)
− (1+ t)λ(c2(ρ)− 1)|∇∂aψ |2

− (1+ t)λ(c2(ρ))′∇ρ · ∇(∂aψ)∂aψ + λ(1+ t)λ−1∂a(|∇ψ |2)∂aψ

+ (1+ t)λ∂a(|∇ψ |2)∂t∂
aψ + 1

2(1+ t)3λ(1ψ)∂a(|∇ψ |2)∂aψ

+
1
2(1+ t)3λ∇ψ · ∇(∂aψ)∂a(|∇ψ |2)+ l.o.t.

From the expression (∂b1ψ)(∂b2ψ) . . . (∂blψ) (l≥ 2, 1≤|b1|+· · ·+|bl |≤ N+1) of
the lower-order terms one readily obtains that there exists at most one b j (1≤ j ≤ l)
such that [

N + 3
2

]
< |b j | ≤ N + 1.

Moreover,
[ N+3

2

]
≤ N − 2 by N ≥ 8. Thus, applying (2-5)–(2-7) and subsequently

substituting (2-18)–(2-20) into (2-17) completes the proof of Lemma 2.4. �

Next we focus on the general time-weighted energy estimate of ∂0aψ with
0≤ |a| ≤ N and N ≥ 8.
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Lemma 2.5 (time-weighted energy estimate of ∂0aψ for |a| ≤ N ). Let µ > 0 and
λ ∈ (0, 1]. Under assumption (2-5), we have that, for t > 0,

(2-21)
∑

0≤|a|≤N

∫
R3

(
(1+ t)2λ|∂0aψ |2+ |0aψ |2

)
dx

+C
∑

0≤|α|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0aψ |2 dx dτ

≤Cε2
+C(1+K ε)

∫ t

0
A(τ )

∑
0≤|a|≤N

∫
R3

(
(1+τ)2λ|∂0aψ |2+ψ2) dx dτ,

where the function A has been defined in Lemma 2.4.

Proof. Writing 0a
= 0̃b∂c with 0̃ ∈ {�, S}, we will use induction on |b| to prove

(2-21). In view of Lemma 2.4, it is enough to assume that |c| = 0.
Suppose that (2-21) holds for |b| ≤ l − 1, where 1≤ l ≤ N . We then intend to

establish (2-21) for |b| = l.
Acting with 0̃a (where a = b and |b| = l) on both sides of (2-4) yields

(2-22) �0̃aψ +
µ

(1+ t)λ
∂t 0̃

aψ +
2λ

1+ t
∂t 0̃

aψ

=

∑
|b1|<|b|

0̃b1∂c�ψ + 0̃a Q(ψ, ∂ψ, ∂2ψ)

−

[
0̃a,

µ

(1+ t)λ
∂t

]
ψ −

[
0̃a,

2λ
1+ t

∂t

]
ψ + 0̃a((λ− 1)(1+ t)−2ψ

)
.

Starting from (2-22), as in the proof of Lemma 2.4, we can choose the multiplier

m(1+ t)2λ∂t 0̃
aψ + (1+ t)2λ−10̃aψ + κ(1+ t)λ0̃aψ

to derive (2-21). For the commutators, we see from (2-4) that∣∣∣∣∫ t

0

∫
R3

[
0̃a,

µ

(1+t)λ
∂t

]
ψ(1+t)λ0̃aψ dx dτ

∣∣∣∣(2-23)

≤C
∑
|a1|<|a|

∣∣∣∣∫ t

0

∫
R3
(1+τ)λ�0̃a1ψ0̃aψ dx dτ

∣∣∣∣
+C

∑
|a1|<|a|

∣∣∣∣∫ t

0

∫
R3
(1+τ)λ0̃a1 Q(ψ, ∂ψ, ∂2ψ)0̃aψ dx dτ

∣∣∣∣
+C

∑
|a1|<|a|

∣∣∣∣∫ t

0

∫
R3
(1+τ)λ−10̃aψ

(
∂t 0̃

a1ψ+(1−λ)(1+τ)−10̃a1ψ
)

dx dτ
∣∣∣∣
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≤Cε2
+C

∑
|a1|<|a|

∣∣∣∣∫
R3
(1+t)λ∂t 0̃

a1ψ0̃aψ dx
∣∣∣∣

+C
∑
|a1|<|a|

∣∣∣∣∫ t

0

∫
R3
(1+τ)λ0̃a1 Q(ψ, ∂ψ, ∂2ψ)0̃aψ dx dτ

∣∣∣∣
+C

∑
|a1|<|a|

∣∣∣∣∫ t

0

∫
R3
(1+τ)λ−10̃aψ

(
∂t 0̃

a1ψ+(1−λ)(1+τ)−10̃a1ψ
)

dx dτ
∣∣∣∣

+C
∑
|a1|<|a|

∣∣∣∣∫ t

0

∫
R3
(1+τ)λ∂0̃a1ψ∂0̃aψ dx dτ

∣∣∣∣.
By the finite propagation speed, we have for a > 0

(2-24) |0̃aψ | ≤ C(1+ t)
∑
|a1|<|a|

|∂0̃a1ψ |.

It follows from (2-23)–(2-24) and a direct computation that

(2-25)∑
|b|=l,
|c|≤N−l

∫
R3

(
(1+ t)2λ|∂0̃b∂cψ |2+|0̃b∂cψ |2

)
dx

+C
∑
|b|=l,
|c|≤N−l

∫ t

0

∫
R3
(1+τ)λ|∂0̃b∂cψ |2 dx dτ

≤ Cε2
+C El−1(ψ(t))+C

∑
|b1|<l,

|c1|≤N−|b1|

∫ t

0

∫
R3
(1+τ)λ|∂0̃b1∂c1ψ |2 dx dτ

+C(1+K ε)
∫ t

0
A(τ )

∑
|b1|≤l,

|c1|≤N−|b1|

∫
R3

(
(1+τ)2λ|∂0̃b1∂c1ψ |2+|0̃b1∂c1ψ |2

)
dx dτ

+C
∑
|b1|≤l,

|c1|≤N−|b1|

∣∣∣∣∫ t

0

∫
R3
(1+τ)2λ(∂t 0̃

aψ)0̃b1∂c1 Q(ψ, ∂ψ, ∂2ψ) dx dτ
∣∣∣∣

+C
∑
|b1|≤l,

|c1|≤N−|b1|

∣∣∣∣∫ t

0

∫
R3
(1+τ)λ(0̃aψ)0̃b1∂c1 Q(ψ, ∂ψ, ∂2ψ) dx dτ

∣∣∣∣.
Next we deal with the last two terms in the right-hand side of (2-25). Note that

c2(ρ)− 1=−G(ψ, ∂ψ)
∫ 1

0
(c2)′(−sG(ψ, ∂ψ)) ds,
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where G(ψ, ∂ψ)= (1+ t)λ∂tψ+(1+ t)λ−1ψ+(1+ t)2λ|∇ψ |2/2+µψ . From this,
it is readily seen that the typical terms in Q(ψ, ∂ψ, ∂2ψ) are of the form ψ1ψ ,
(1+ t)λ∂t∇ψ · ∇ψ , and (1+ t)2λ(∂iψ)(∂ jψ)∂i jψ . We analyze them separately.
Without loss of generality, we assume |c1| = 0 in the last two terms of (2-25); the
treatment of the other cases is easier.

Part A: Estimates of

∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t 0̃

aψ)0̃b1(ψ1ψ) dx dτ
∣∣∣∣

and ∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(0̃aψ)0̃b1(ψ1ψ) dx dτ

∣∣∣∣.
Note that

0̃b1(ψ1ψ)= I1+ I2+ I3,

where
I1 = ψ10̃

b1ψ,

I2 =
∑

|b1|=|b2|+|b3|,
1≤|b2|≤N−2

(0̃b2ψ)10̃b3ψ,

I3 =
∑

|b1|=|b2|+|b3|,
N−1≤|b2|≤l

(0̃b2ψ)10̃b3ψ.

In view of b1 = a and

(1+ t)2λ(∂t 0̃
aψ)ψ10̃aψ

= div
(
(1+ t)2λ(∂t 0̃

aψ)ψ∇0̃aψ
)
+

1
2∂t
(
(1+ t)2λ|∇0̃aψ |2ψ

)
−(1+t)2λ(∂t 0̃

aψ)∇ψ ·∇0̃aψ−λ(1+t)λ−1
|∇0̃aψ |2ψ− 1

2(1+t)2λ|∇0̃aψ |2∂tψ,

we have by an integration by parts and (2-6)–(2-7)

(2-26)
∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t 0̃

aψ)I1 dx dτ
∣∣∣∣

≤ Cε2
+C K ε

∑
0≤|a|≤N

∫
R3
(1+ t)2λ|∂0̃aψ |2 dx

+C K ε
∑

0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ.
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Moreover, it follows from (2-7) and (2-9) that

(2-27)
∫

R3

∣∣(1+ t)2λ(∂t 0̃
aψ)I2

∣∣ dx

≤ (1+ t)2λ‖〈r − t〉−10̃b2ψ‖L∞ · ‖∂t 0̃
aψ‖ · ‖〈r − t〉10̃b3ψ‖

≤C K ε(1+t)λ‖∂t 0̃
aψ‖

∑
|b4|≤|b3|+1

(
‖∇0̃b4ψ‖+(1−λ)(1+t)−1

‖0̃b4ψ‖
)

≤ C K ε(1+ t)λ‖∂t 0̃
aψ‖

∑
|b4|≤|b3|+1

‖∇0̃b4ψ‖+C K ε(1+ t)λ‖∂t 0̃
aψ‖2

+C K ε(1− λ)(1+ t)λ−2
∑

|b4|≤|b3|+1

‖0̃b4ψ‖2.

On the other hand, we have that by (2-6) and Hardy’s inequality

(2-28)
∫

R3

∣∣(1+ t)2λ(∂t 0̃
aψ)I3

∣∣ dx

≤ (1+ t)2λ‖(1+ r)10̃b3ψ‖L∞ · ‖∂t 0̃
aψ‖‖(1+ r)−10̃b2ψ‖

≤ C K ε(1+ t)λ‖∂t 0̃
aψ‖

∑
|b4|≤|b2|

‖∇0̃b4ψ‖.

Combining (2-26)–(2-28) together with 0 ≤ λ ≤ 1 (this means that the coeffi-
cient C K ε(1− λ)(1+ t)λ−2 of

∑
|b4|≤|b3|+1 ‖0̃

b4ψ‖2 in the last line of (2-27) is
nonnegative and in L1(0,∞)) yields

(2-29)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t0

aψ)0b1(ψ1ψ) dx dτ
∣∣∣∣

≤ Cε2
+C K ε

∑
0≤|a|≤N

∫
R3
(1+ t)2λ|∂0̃aψ |2 dx

+C K ε
∑

0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ

+C K ε
∑
|b4|≤N

∫ t

0
A(τ )

∫
R3
|0̃b4ψ |2 dx dτ.

Note that

(1+t)λ(0̃aψ)0̃b1(ψ1ψ)=
∑

|b2|+|b3|=|b1|

(1+t)λ(0̃aψ)(0̃b2ψ)10̃b3ψ

= div
( ∑
|b2|+|b3|=|b1|

(1+t)λ(0̃aψ)(0̃b2ψ)∇0̃b3ψ

)
+

5∑
i=4

Ii ,
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where

I4 =−
∑

|b2|≤N−2,
|b2|+|b3|=|b1|

(1+ t)λ(0̃b2ψ)(∇0̃aψ) · (∇0̃b3ψ),

I5 =−
∑

N−1≤|b2|≤l−1,
|b2|+|b3|=|b1|

(1+ t)λ(0̃b2ψ)(∇0̃aψ) · (∇0̃b3ψ)

−

∑
|b2|+|b3|=|b1|

(1+ t)λ(0̃aψ)(∇0̃b2ψ) · (∇0̃b3ψ).

Therefore, by (2-7) and Hardy’s inequality, we have∫
R3
|I4| dx ≤ C K ε(1+ t)λ‖∇0̃aψ‖

∑
|b1|+3−N≤|b3|≤N

‖∇0̃b3ψ‖

and ∫
R3
|I5| dx ≤ C K ε‖(1+ r)−10̃b2ψ∇0̃aψ‖L1 ≤ C K ε‖∇0̃b2ψ‖‖∇0̃aψ‖.

This yields

(2-30)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(0̃aψ)0̃b1(ψ1ψ) dx dτ

∣∣∣∣
≤ C K ε

∑
0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ.

Part B: Estimates of∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t 0̃

aψ)0̃b1
(
(1+ τ)λ∂t∇ψ · ∇ψ

)
dx dτ

∣∣∣∣
and ∑

|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(0̃aψ)0̃b1

(
(1+ τ)λ∂t∇ψ · ∇ψ

)
dx dτ

∣∣∣∣.
One has

0̃b1
(
(1+ t)λ∂t∇ψ · ∇ψ

)
= (1+ t)λ∂t∇0̃

b1ψ · ∇ψ +
∑

N−2≤|b2|≤l−1

(1+ t)λ(∂t∇0̃
b2ψ)∇0̃b3ψ

+

∑
|b2|≤N−3

(1+ t)λ(∂t∇0̃
b2ψ)∇0̃b3ψ

= II1+ II2+ II3.
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By (2-8), we have

(2-31)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t 0̃

aψ)II1 dx dτ
∣∣∣∣

≤ C K ε
∑

0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ.

In addition, it follows from (2-6), (2-9) and a direct computation that

(2-32) (1+ t)2λ‖(∂t0
aψ)II2‖L1

≤ (1+ t)3λ
∑

|b2|≤N−4

‖〈r− t〉−1
∇0b3ψ‖L∞ ·‖∂t0

aψ‖·‖〈r− t〉∂t∇0
b2ψ‖

≤ C K ε(1+ t)λ‖∂t0
aψ‖

∑
|c|≤|b2|+1

(
‖∇0cψ‖+ (1− λ)(1+ t)−1

‖0cψ‖
)

≤ C K ε(1+ t)λ‖∂t 0̃
aψ‖

∑
|b4|≤|b3|+1

‖∇0̃b4ψ‖+C K ε(1+ t)λ‖∂t 0̃
aψ‖2

+C K ε(1− λ)(1+ t)λ−2
∑

|b4|≤|b3|+1

‖0̃b4ψ‖2.

Treating II3, we obtain by (2-8)

(2-33)
∣∣∣∣∫ t

0

∫
R3
(1+τ)2λ(∂t 0̃

aψ)II3 dx dτ
∣∣∣∣≤C K ε

∫ t

0

∫
R3
(1+τ)λ|∂0̃aψ |2 dx dτ.

Collecting (2-31)–(2-33) together with 0≤ λ≤ 1 (this means that the coefficient
C K ε(1−λ)(1+ t)λ−2 of

∑
|b4|≤|b3|+1 ‖0̃

b4ψ‖2 in the last line of (2-32) is nonneg-
ative and in L1(0,∞)) yields

(2-34)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t0

aψ)0b1
(
(1+ t)λ∂t∇ψ · ∇ψ

)
dx dτ

∣∣∣∣
≤ C K ε

∑
0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ

+C K ε
∑
|b4|≤N

∫ t

0
A(τ )

∫
R3
|0̃b4ψ |2 dx dτ.

In addition, one notes that

2(1+ t)2λ(0̃aψ)0̃a(∂t∇ψ · ∇ψ)

=

∑
|c|≤|a|

∂t
(
(1+ t)2λ0̃aψ0c(|∇ψ |2)

)
− 2λ(1+ t)2λ−1(0̃aψ)0̃c(|∇ψ |2)− (1+ t)2λ(∂t 0̃

aψ)0̃c(|∇ψ |2).
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From this, (2-6) and Hardy’s inequality, we have

(2-35)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(0̃aψ)0̃b1

(
(1+ τ)λ∂t∇ψ · ∇ψ

)
dx dτ

∣∣∣∣
≤ Cε2

+C K ε
∑

0≤|a|≤N

∫
R3
(1+ t)2λ|∂0̃aψ |2 dx

+C K ε
∑

0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ.

Part C: Estimates of∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t 0̃

aψ)0̃b1
(
(1+ τ)2λ(∂iψ)(∂ jψ)∂i jψ

)
dx dτ

∣∣∣∣
and ∑

|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(0̃aψ)0̃b1

(
(1+ τ)2λ(∂iψ)(∂ jψ)∂i jψ

)
dx dτ

∣∣∣∣.
A direct computation yields

0̃b1((∂iψ)(∂ jψ)∂i jψ)

= ∂iψ∂ jψ∂i j 0̃
b1ψ +

∑
N−2≤|b2|≤|b1|−1

(∇20̃b2ψ)(∇0̃b3ψ)∇0̃b4ψ

+

∑
|b2|≤N−3

(∇20̃b2ψ)(∇0̃b3ψ)∇0̃b4ψ

= III1+ III2+ III3.

As in the treatment of II1 in Part B, we have

(2-36)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t 0̃

aψ)III1 dx dτ
∣∣∣∣

≤ Cε2
+C K ε

∑
0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ.

By (2-6) and (2-9), for the term III2, we have

(2-37) (1+t)4λ‖(∂t 0̃
aψ)(∇20̃b2ψ)(∇0̃b3ψ)∇0̃b4ψ‖L1

≤ (1+t)4λ‖〈r−t〉−1(∇0̃b3ψ)∇0̃b4ψ‖L∞ ·‖∂t 0̃
aψ‖·‖〈r−t〉∇20̃b2ψ‖

≤ C K ε(1+t)λ‖∂t 0̃
aψ‖

∑
|b4|≤|b3|+1

‖∇0̃b4ψ‖+C K ε(1+t)λ‖∂t 0̃
aψ‖2

+C K ε(1−λ)(1+t)λ−2
∑

|b4|≤|b3|+1

‖0̃b4ψ‖2.
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By (2-6) and (2-8), for the term III3, one has

(2-38) (1+ t)4λ‖(∂t 0̃
aψ)(∇20̃b2ψ)(∇0̃b3ψ)∇0̃b4ψ‖L1

≤ C K ε(1+ t)λ‖∂t 0̃
aψ‖

∑
|c|≤|b1|

‖∇0̃cψ‖.

Collecting (2-36)–(2-38) together with 0≤ λ≤ 1 (this means that the coefficient
C K ε(1−λ)(1+ t)λ−2 of

∑
|b4|≤|b3|+1 ‖0̃

b4ψ‖2 in the last line of (2-37) is nonneg-
ative and in L1(0,∞)) yields

(2-39)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)2λ(∂t 0̃

aψ)0̃b1
(
(1+ τ)2λ(∂iψ)(∂ jψ)∂i jψ

)
dx dτ

∣∣∣∣
≤ C K ε

∑
0≤|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0̃aψ |2 dx dτ

+C K ε
∑
|b4|≤N

∫ t

0
A(τ )

∫
R3
|0̃b4ψ |2 dx dτ.

In addition,

2(1+ t)3λ(0aψ)0b1
(
(∂iψ)(∂ jψ)∂i jψ

)
= div

(
(1+ t)3λ(0aψ)(∇ψ)0b1(|∇ψ |2)

)
−(1+ t)3λ(∇0aψ)(∇ψ)0b1(|∇ψ |2)

− (1+ t)3λ(0aψ)(1ψ)0b1(|∇ψ |2)

+

∑
|b2|≤|b1|−1

(1+ t)3λ(0aψ)(∇20b2ψ)(∇0b3ψ)∇0b4(|ψ |2).

Together with (2-6) and Hardy’s inequality this yields

(2-40)
∑
|b1|≤N

∣∣∣∣∫ t

0

∫
R3
(1+ τ)λ(0aψ)0b1

(
(1+ τ)2λ(∂iψ)(∂ jψ)∂i jψ

)
dx dτ

∣∣∣∣
≤ C K ε

∑
|a|≤N

∫ t

0

∫
R3
(1+ τ)λ|∂0aψ |2 dx dτ.

Therefore, substituting (2-29)–(2-30), (2-34)–(2-35), and (2-39)–(2-40) into (2-25)
and utilizing the smallness of ε > 0 gives (2-21). �

Based on Lemmas 2.4 and 2.5, we now prove Theorem 1.1.

Proof of Theorem 1.1. By Lemmas 2.4 and 2.5, one has that, for fixed N ≥ 8,

EN (t)≤ Cε2
+C(1+ K ε)

∫ t

0
A(t ′)EN (t ′) dt ′.
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Choosing the constants K > 0 large and ε > 0 small, by Gronwall’s inequality one
gets that, for any t ≥ 0,

EN (t)≤ eC(1+K ε)‖A(t)‖L1 EN (0)≤ 1
2 K 2ε2.

Thus, Theorem 1.1 is proved by the assumption that EN (t)≤ K 2ε2 and a continuous
induction argument. �

3. Blowup for small data in case λ > 1

In this section, we shall prove the blowup result of Theorem 1.2 which is valid in
case λ > 1.

Proof of Theorem 1.2. We divide the proof into two cases.

Case 1: γ = 2. Let (ρ, u) be a smooth solution of (1-1). For l > 0, we define

(3-1) P(t, l)=
∫
|x |>l

η(x, l)(ρ(t, x)− ρ̄) dx,

where

η(x, l)= |x |−1(|x | − l)2.

Employing the first equation in (1-1) and an integration by parts, we see that

∂t P(t, l)=
∫
|x |>l

η(x, l)∂t(ρ(t, x)− ρ̄) dx =−
∫
|x |>l

η(x, l) div(ρu)(t, x) dx

=

∫
|x |>l

(∇xη)(x, l) · (ρu)(t, x) dx,

where we have used the fact that η(x, l) = 0 on |x | = l and that u(t, x) = 0 for
|x | ≥ t +M .

By differentiating ∂t P(t, l) again and using the second equation in (1-1), we find
that

(3-2) ∂2
t P(t, l)=

∫
|x |>l

(∇xη)(x, l)·∂t(ρu)(t, x)dx

=−

∑
i, j

∫
|x |>l
(∂xiη)∂x j (ρui u j )dx−

∫
|x |>l
(∇xη)(x, l)·∇(p− p̄)dx

−
µ

(1+t)λ

∫
|x |>l

(∇xη)(x, l)·(ρu)(t, x)dx,
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where ∇xη(x, l)= |x |−3(|x |2− l2)x vanishes on |x | = l and p̄ = p(ρ̄). Integration
by parts implies that

(3-3) ∂2
t P(t, l)+

µ

(1+ t)λ
∂t P(t, l)

=

∑
i, j

∫
|x |>l

(∂2
xi x j
η)ρui u j dx +

∫
|x |>l

(1η)(p− p̄) dx

≡ J1(t, l)+ J2(t, l),

where we have used that p− p̄ vanishes for |x | ≥ t +M . A direct computation of
∂2

xi x j
η shows that

(3-4) J1(t, l)=
∫
|x |>l

2l2

|x |3
ρ

(
x
|x |
·u
)2

dx

−

∫
|x |>l

|x |2−l2

|x |3
ρ

(
x
|x |
·u
)2

dx+
∫
|x |>l

|x |2−l2

|x |3
ρ|u|2 dx ≥ 0.

On the other hand, notice that

(3-5) ∂2
l η(x, l)= 2|x |−1

=1xη(x, l).

Then

(3-6) J2(t, l)=
∫
|x |>l

∂2
l η(x, l)(p(t, x)− p̄) dx = ∂2

l

∫
|x |>l

η(x, l)(p(t, x)− p̄) dx,

where we have used the fact that η and ∂lη vanish on |x |= l. Combining (3-3)–(3-6),
we arrive at
(3-7)

∂2
t P(t, l)− ∂2

l P(t, l)+
µ

(1+ t)λ
∂t P(t, l)= f (t, l)≡ J1(t, l)+G(t, l)≥ G(t, l),

where
(3-8)

G(t, l)= ∂2
l

∫
|x |>l

η(x, l)(p− p̄−(ρ− ρ̄)) dx =
∫
|x |>l

2|x |−1(p− p̄−(ρ− ρ̄)) dx .

Thanks to γ = 2 and the sound speed c̄ =
√

2Aρ̄ = 1, we have

(3-9) p− p̄− (ρ− ρ̄)= A(ρ2
− ρ̄2
− 2ρ̄(ρ− ρ̄))= A(ρ− ρ̄)2.

Substituting (3-9) into (3-8) gives

G(t, l)≥ 0.

For M0 satisfying the condition (1-11), let6≡{(t, l) : t ≥ 0, t+M0≤ l ≤ t+M} be
the strip domain. By applying Riemann’s representation (see [Courant and Hilbert
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1962, §5.5]) with the assumptions (1-9)–(1-11), we see that the solution P(t, l) to
(3-7) is nonnegative in 6. We put its proof in the Appendix. Rewrite (3-7) as

∂2
t P(t, l)−∂2

l P(t, l)+
µ

(1+ t)λ
(
∂t P(t, l)−∂l P(t, l)

)
= f (t, l)−

µ

(1+ t)λ
∂l P(t, l).

By the method of characteristics we have

P(t, l)= 1
2 P(0, l+ t)+

1
2β(t)

P(0, l− t)+ 1
2

∫ t

0

1
β(τ)

µ

(1+τ)λ
P(0, l+ t−2τ) dτ

+

∫ t

0

1
β(τ)

∂t P(0, l+ t−2τ) dτ+ 1
2

∫ t

0

∫ l+t−τ

l−t+τ

β(τ)

β
( l+t+τ−y

2

) f (τ, y) dy dτ

+
1
2

∫ t

0

β(τ)

β(t)
µ

(1+τ)λ
P(τ, l− t+τ) dτ

+
1
2

∫ t

0

∫ t

τ

β(τ)

β(s)
µ2

(1+τ)λ(1+s)λ
P(τ, l+ t−2s+τ) ds dτ

−
1
2

∫ t

0

µ

(1+τ)λ
P(τ, l+ t−τ) dτ ;

see (1-12). Together with assumptions (1-9)–(1-10) and P(t, l)≥ 0 in 6 this yields,
for l ≥ t +M0,

(3-10) P(t, l)≥
1

2β(t)
q0(l − t)+ 1

2

∫ t

0

∫ l+t−τ

l−t+τ

β(τ)

β
( l+t+τ−y

2

)G(τ, y) dy dτ

−
1
2

∫ t

0

µ

(1+ τ)λ
P(τ, l + t − τ) dτ.

Define the function

(3-11) F(t)≡
∫ t

0
(t − τ)

∫ τ+M

τ+M0

P(τ, l)
dl
l

dτ.

Then, by (3-10), we have that
(3-12)

F ′′(t)=
∫ t+M

t+M0

P(t, l)
dl
l

≥
1

2β(t)

∫ t+M

t+M0

q0(l− t)
dl
l
+

1
2

∫ t+M

t+M0

∫ t

0

∫ l+t−τ

l−t+τ

β(τ)

β
( l+t+τ−y

2

)G(τ, y)dy dτ
dl
l

−
1
2

∫ t+M

t+M0

∫ t

0

µ

(1+τ)λ
P(τ, l+ t−τ)dτ

dl
l

≡ J3+ J4− J5.
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From λ > 1 and assumption (1-9), we see that

(3-13) J3 ≥
c1

t +M

∫ t+M

t+M0

q0(l − t) dl =
c1

t +M

∫ M

M0

q0(l) dl =
c2ε

t +M
,

where c1, c2 > 0 are constants independent of ε. Note that P(τ, y) is supported in
{y : y≤ τ+M} and nonnegative in6. Hence, there exists a constant C1>0 such that

(3-14) J5 ≤
C1

(1+ t)λ

∫ t

0

∫ τ+M

τ+M0

P(τ, y)
dy
y

dτ =
C1

(1+ t)λ
F ′(t).

Substituting (3-14) into (3-12) gives

(3-15) F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ J3+ J4.

To bound J4 from below, we write

(3-16) J4 =
1
2

∫ t−M1

0

∫ τ+M

τ+M0

G(τ, y)
∫ y+t−τ

t+M0

β(τ)

β
( l+t+τ−y

2

) dl
l

dy dτ

+
1
2

∫ t

t−M1

∫ 2t−τ+M0

τ+M0

G(τ, y)
∫ y+t−τ

t+M0

β(τ)

β
( l+t+τ−y

2

) dl
l

dy dτ

+
1
2

∫ t

t−M1

∫ τ+M

2t−τ+M0

G(τ, y)
∫ y+t−τ

y−t+τ

β(τ)

β
( l+t+τ−y

2

) dl
l

dy dτ

≡ J4,1+ J4,2+ J4,3,

where M1= (M−M0)/2. For t <M1, t−M1 in the limits of integration is replaced
by 0. By λ > 1, for the integrand in J4,1 we have that

(3-17)
∫ y+t−τ

t+M0

β(τ)

β
( l+t+τ−y

2

) dl
l
≥ c

y− τ −M0

t +M
≥ c

(t − τ)(y− τ −M0)
2

(t +M)2
.

Analogously, for the integrands in J4,2 and J4,3 we have that

(3-18)
∫ y+t−τ

t+M0

β(τ)

β
( l+t+τ−y

2

) dl
l
≥ c

(t − τ)(y− τ −M0)
2

(t +M)2

and

(3-19)
∫ y+t−τ

y−t+τ

β(τ)

β
( l+t+τ−y

2

) dl
l
≥ c

t − τ
t +M

≥ c
(t − τ)(y− τ −M0)

2

(t +M)2
,

where c > 0 is a constant. Substituting (3-17)–(3-19) into (3-16) yields

J4 ≥
c

(t +M)2

∫ t

0
(t − τ)

∫ τ+M

τ+M0

(y− τ −M0)
2∂2

y G̃(τ, y) dy dτ,
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where G̃(t, l)=
∫
|x |>l η(x, l)(p− p̄−(ρ−ρ̄)) dx . Note that G̃(τ, y)=∂yG̃(τ, y)=0

for y = τ +M . Thus, it follows from the integration by parts together with (3-8)–
(3-9) that

(3-20) J4 ≥
c

(t +M)2

∫ t

0
(t − τ)

∫ τ+M

τ+M0

G̃(τ, y) dy dτ

≥
c

(t +M)2

∫ t

0
(t − τ)

∫ τ+M

τ+M0

∫
|x |>y

η(x, y)(ρ(τ, x)− ρ̄)2 dx dy dτ

≡
c

(t +M)2
J6.

By applying the Cauchy–Schwartz inequality to F(t) defined by (3-11), we arrive at

(3-21) F2(t)≤ J6

∫ t

0
(t − τ)

∫ τ+M

τ+M0

∫
y<|x |<τ+M

η(x, y) dx
dy
y2 dτ ≡ J6 J7.

We estimate J7 as

(3-22) J7 =

∫ t

0
(t − τ)

∫ τ+M

τ+M0

∫
y<|x |<τ+M

(|x | − y)2

|x |
dx

dy
y2 dτ

=

∫ t

0
(t − τ)

∫ τ+M

τ+M0

∫ τ+M

y
4πl(l − y)2 dl

dy
y2 dτ

≤ C
∫ t

0
(t − τ)

∫ τ+M

τ+M0

(τ +M)(τ +M − y)3
dy
y2 dτ

≤ C
∫ t

0
(t − τ)(τ +M)

∫ τ+M

τ+M0

dy
y2 dτ

≤ C
∫ t

0

t − τ
τ +M

dτ ≤ C(t +M) log(t/M + 1).

Combining (3-13), (3-15) and (3-20)–(3-22) gives the ordinary differential inequal-
ities

F ′′(t)+
C1

(1+ t)λ
F ′(t)≥

c2ε

t +M
, t ≥ 0,(3-23)

F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ C

[
(t +M)3 log(t/M + 1)

]−1 F2(t), t ≥ 0.(3-24)

Next, we apply (3-23)–(3-24) to prove that the lifespan Tε of smooth solution F(t) is
finite for all 0<ε≤ ε0. The fact that F(0)= F ′(0)= 0, together with (3-23), yields

F ′(t)≥ Cε log(t/M + 1), t ≥ 0,(3-25)

F(t)≥ Cε(t +M) log(t/M + 1), t ≥ t1 ≡ Me2,(3-26)
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where the constant C > 0 is independent of ε. Substituting (3-26) into (3-24) derives

F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ Cε2(t +M)−1 log(t/M + 1), t ≥ t1,

which leads to the improvement

(3-27) F(t)≥ Cε2(t +M) log2(t/M + 1), t ≥ t2 ≡ Me3 > t1.

Substituting this into (3-24) derives

(3-28) F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ Cε2(t +M)−2 log(t/M + 1)F(t), t ≥ t2.

It follows from (3-25) that F ′(t)≥ 0 for t ≥ 0. Then multiplying (3-28) by F ′(t)
and integrating from t3 (which will be chosen later) to t yield

F ′(t)2 ≥ C2 F ′(t3)2+C3ε
2
∫ t

t3
(s+M)−2 log(s/M + 1)[F(s)2]′ ds.

Integrating by parts yields

(3-29)

F ′(t)2 ≥ C2 F ′(t3)2

+C3ε
2((t+M)−2 log(t/M+1)F(t)2−(t3+M)−2 log(t3/M+1)F(t3)2

)
−

∫ t

t3

(
log(s/M+1)
(s+M)2

)′
F(s)2 ds, t ≥ t3,

where (
log(s/M + 1)
(s+M)2

)′
≤ 0

for t ≥ t3 ≥ t2. On the other hand, (3-23) implies(
e−

C1
λ−1 [(1+t)1−λ−1]F ′(t)

)′
≥ 0, t ≥ 0,

which yields for 0≤ t ≤ τ

(3-30) F ′(t)≤ e
C1
λ−1 [(1+t)1−λ−(1+τ)1−λ]F ′(τ ).

Together with F(0)= 0, this yields

(3-31) F(t)=
∫ t

0
F ′(s) ds ≤ C4t F ′(t), t > 0.

Choose

(3-32) t3 = M
(
e

C2
2C3C4ε

2
− 1

)
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which satisfies 2C3C4 log(t3/M + 1)ε2
= C2. Together with (3-29) and (3-31), this

yields

(3-33) F ′(t)≥
√

C3ε(t +M)−1 log
1
2 (t/M + 1)F(t), t ≥ t3.

By integrating (3-33) from t3 to t , we arrive at

log
F(t)
F(t3)

≥ Cε log
3
2

(
t +M
t3+M

)
, t ≥ t3.

If t ≥ t4 ≡ Ct2
3 , we then have

log
F(t)
F(t3)

≥ 8 log(t/M + 1).

Together with (3-27) for F(t3), this yields

(3-34) F(t)≥ Cε2(t +M)8, t ≥ t4.

Substituting this into (3-24) derives

F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ CεF(t)

3
2 , t ≥ t4.

Multiplying this differential inequality by F ′(t) and integrating from t4 to t yields

F ′(t)2 ≥ Cε
(
F(t)

5
2 − F(t4)

5
2
)
.

On the other hand, (3-30) and (3-31) imply that, for t ≥ t4,

F(t)= F ′(ξ)(t − t4)+ F(t4)≥ C F ′(t4)(t − t4)≥ C F(t4)
t − t4

t4
,

where t4 ≤ ξ ≤ t . If t ≥ t5 ≡ Ct4, then we have

F(t)
5
2 − F(t4)

5
2 ≥

1
2 F(t)

5
2 .

Thus

(3-35) F ′(t)≥ C
√
εF(t)

5
4 , t ≥ t5.

If Tε > 2t5, then integrating (3-35) from t5 to Tε derives

F(t5)−
1
4 − F(Tε)−

1
4 ≥ C

√
εTε.

We see from (3-34) and t5 = Ct2
3 that

F(t5)≥ Cε2eC/ε2
,

which together with F(Tε) > 0 is a contradiction. Thus, Tε ≤ 2t5 = Ct2
3 . From the

choice of t3 in (3-32), we see that Tε ≤ eC/ε2
.
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Case 2: γ > 1 and γ 6= 2. Recall that the sound speed is c̄ =
√
γ Aρ̄γ−1 = 1.

Instead of (3-9) we have

p− p̄− (ρ− ρ̄)= A
(
ργ − ρ̄γ − γ ρ̄γ−1(ρ− ρ̄)

)
≡ Aψ(ρ, ρ̄).

The convexity of ργ for γ > 1 implies that ψ(ρ, ρ̄) is positive for ρ 6= ρ̄. Applying
Taylor’s theorem, we have

ψ(ρ, ρ̄)≥ C(γ, ρ̄)8γ (ρ, ρ̄),

where C(γ, ρ̄) is a positive constant and 8γ is given by

8γ (ρ, ρ̄)=


(ρ̄− ρ)γ , ρ < 1

2 ρ̄,

(ρ− ρ̄)2, 1
2 ρ̄ ≤ ρ ≤ 2ρ̄,

(ρ− ρ̄)γ , ρ > 2ρ̄.

For γ > 2, we have that (ρ̄ − ρ)γ = (ρ̄ − ρ)2(ρ̄ − ρ)γ−2
≥ C(γ, ρ̄)(ρ − ρ̄)2 for

2ρ < ρ̄ and (ρ− ρ̄)γ = (ρ− ρ̄)2(ρ− ρ̄)γ−2
≥ C(γ, ρ̄)(ρ− ρ̄)2 for ρ > 2ρ̄. Thus,

ψ(ρ, ρ̄) ≥ C(γ, ρ̄)(ρ− ρ̄)2. In this case, Theorem 1.2 can be shown completely
analogously to Case 1.

Next we treat the case 1< γ < 2. We define F(t) as in (3-11),

F(t)=
∫ t

0

∫ τ+M

τ+M0

1
l

∫
|x |>l

(|x | − l)2

|x |
(ρ(τ, x)− ρ̄) dx dl dτ.

Similarly to the case of γ = 2, we have

(3-36) F ′′(t)≥ J3+ J4− J5,

where

J3 ≥
Cε

t +M
,

J4 ≥ C(t +M)−2 J̃6,

J5 ≤
C1

(1+ t)λ
F ′(t),

and

J̃6 =

∫ t

0
(t − τ)

∫ τ+M

τ+M0

∫
|x |>y

(|x | − y)2

|x |
8γ (ρ(τ, x)− ρ̄) dx dy dτ.

Denote �1 = {(τ, x) : ρ̄ ≤ ρ(τ, x) ≤ 2ρ̄}, �2 = {(τ, x) : ρ(τ, x) > 2ρ̄}, and
�3 = {(τ, x) : ρ(τ, x) < ρ̄}. Divide F(t) into a sum of the three integrals over the
domains �i (1≤ i ≤ 3)

F(t)= F1(t)+ F2(t)+ F3(t)≡
∫
�1

· · · +

∫
�2

· · · +

∫
�3

· · · .
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Corresponding to the three parts of F(t), we define J̃6 ≡ J̃6,1+ J̃6,2+ J̃6,3. In view
of F(t)≥ 0 and F3(t)≤ 0, we have

F(t)≤ F1(t)+ F2(t).

Applying Hölder’s inequality for the domains �1 and �2, we obtain that

F(t)≤ J̃
1
2

6,1

(∫ t

0
(t − τ)

∫ τ+M

τ+M0

1
y2

∫
y<|x |≤τ+M

(|x | − y)2

|x |
dx dy dτ

)1
2

+ J̃
1
γ

6,2

(∫ t

0
(t − τ)

∫ τ+M

τ+M0

1

y
γ
γ−1

∫
y<|x |≤τ+M

(|x | − y)2

|x |
dx dy dτ

)γ−1
γ

≤ J̃
1
2

6 (t +M)
1
2 log

1
2 (t/M + 1)+ J̃

1
γ

6 (t +M)
γ−1
γ

=
(
J̃6(t +M)−1) 1

2 (t +M) log
1
2 (t/M + 1)+

(
J̃6(t +M)−1) 1

γ (t +M).

In view of 1< γ < 2, we have 1
2γ <

1
2 <

1
γ

. Applying Young’s inequality yields

F(t)≤
((

J̃6(t+M)−1) 1
2γ +

(
J̃6(t+M)−1) 1

γ
)
(t+M) log

1
2 (t/M+1), t ≥ t̃1≡Me.

Together with the fact that F(t)≥ Cε(t +M) log(t/M + 1), this yields

J̃6 ≥ C F(t)γ (t +M)1−γ log−
γ
2 (t/M + 1), t ≥ t̃1.

Substituting this into (3-36) yields

F ′′(t)+
C1

(1+t)λ
F ′(t)≥

Cε
t+M

, t ≥ 0,(3-37)

F ′′(t)+
C1

(1+t)λ
F ′(t)≥ C F(t)γ (t+M)−1−γ log−

γ
2 (t/M+1), t ≥ t̃1.(3-38)

Substituting F(t)≥ Cε(t +M) log(t/M + 1) into (3-38) yields

F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ Cεγ (t +M)−1 log

γ
2 (t/M + 1).

Integrating this yields

F(t)≥ Cεγ (t +M) log
γ+2

2 (t/M + 1).

Substituting this into (3-38) again gives

F ′′(t)+
C1

(1+ t)λ
F ′(t)

≥ Cεγ
2
(t +M)−1 log

γ (γ+1)
2 (t/M + 1)= Cεγ

2
(t +M)−1 log

γ (γ 2
−1)

2(γ−1) (t/M + 1).
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Repeating this process n times, we see that

(3-39) F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ Cεγ

n
(t +M)−1 log

γ (γ n
−1)

2(γ−1) (t/M + 1),

where n = [logγ 2]. Solving (3-39) yields

F(t)≥ Cεγ
n
(t +M) log

γ (γ n
−1)

2(γ−1) +1
(t/M + 1), t ≥ t̃2,

where t̃2> 0 is a constant only depending on γ . Substituting this into (3-38) derives

(3-40) F ′′(t)+
C1

(1+ t)λ
F ′(t)

≥ C F(t)εγ
n(γ−1)(t +M)−2 log

γ n+1
−2

2 (t/M + 1), t ≥ t̃2,

where 1
2(γ

n+1
− 2) > 0 by the choice of n = [logγ 2]. Since (3-40) is analogous

to (3-28), as in Case 1, we can choose

t̃3 = O
(

eCε
−

2γ n (γ−1)
γ n+1−2

)
such that

F ′(t)≥ Cε
γ n (γ−1)

2 (t +M)−1 log
γ n+1

−2
4 (t/M + 1)F(t), t ≥ t̃3,

which is similar to (3-33) and yields

(3-41) F(t)≥ CεCγ (t +M)
2(γ+2)
γ−1 , t ≥ t̃4 ≡ Ct̃2

3 ,

where Cγ > 0 is a constant depending on γ. Substituting (3-41) into (3-38) yields

(3-42) F ′′(t)+
C1

(1+ t)λ
F ′(t)≥ CεCγ F(t)

γ+1
2 , t ≥ t̃4.

Multiplying (3-42) by F ′(t) and integrating over the variable t as in Case 1, we have

F ′(t)≥ CεCγ F(t)
γ+3

4 , t ≥ t̃5 ≡ Ct̃4.

Together with γ > 1 and the choice of t̃3, this yields Tε <∞.
Both Case 1 and Case 2 complete the proof of Theorem 1.2. �

4. Blowup for large data

In this section, we establish a blowup result for large amplitude smooth solutions
of (1-1) which is valid for all λ≥ 0. More precisely, instead of (1-1) we consider
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the Cauchy problem

(4-1)


∂tρ+ div(ρu)= 0,

∂t(ρu)+ div(ρu⊗ u+ pI3)=−
µ

(1+ t)λ
ρu,

ρ(0, x)= ρ̄+ ρ̃0(x), u(0, x)= ũ0(x),

where ρ̃0, ũ0∈C∞0 (R
3), supp ρ̃0, supp ρ̃0⊆ B(0,M)≡{x : |x |≤M}, and ρ(0, · )>0.

Motivated by the treatment of the special case of λ= 0 in [Sideris et al. 2003], we
introduce the functions

H(t)≡
∫

R3
x · (ρu)(t, x) dx, L(t)≡

∫
R3
(ρ(t, x)− ρ̄) dx,

γ (t)≡ (t +M)2
(

L(0)+
4π2ρ̄

3
(t +M)3

)
,

and also remind the reader of the definition of the function β in (1-12).
Then we have the following result:

Theorem 4.1. Suppose that L(0)≥ 0 and

(4-2) H(0)
∫ T ∗

0

dτ
γ (τ )β(τ)

> 1.

for some T ∗ > 0. Then T < T ∗ holds for any solution (ρ, u) ∈ C1([0, T ]×R3) of
(4-1).

Proof. From the first equation of (4-1), we see that

L ′(t)=−
∫

R3
div(ρu) dx = 0,

which implies L(t)= L(0). Applying the second equation of (4-1), we find that

H ′(t)=
∫

R3
x · ∂t(ρu)(t, x) dx =

∫
R3

x ·
[
− div(ρu⊗ u)−∇ p−

µ

(1+ t)λ
ρu
]

dx .

An integration by parts gives

(4-3) H ′(t)+
µ

(1+ t)λ
H(t)=

∫
R3

(
ρ|u|2+ 3

(
p(ρ)− p(ρ̄)

))
dx .

Note that the convexity of p = Aργ for γ > 1 and c(ρ̄)= 1 imply that

(4-4)
∫

R3

(
p(ρ)− p(ρ̄)

)
dx ≥

∫
R3

Aγ ρ̄γ−1(ρ− ρ̄) dx = L(0).
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Furthermore, by applying the Cauchy–Schwartz inequality to H(t) and taking into
account supp u(t, · )⊆ B(0,M + t) for any fixed t ≥ 0, we have

(4-5) H(t)2 ≤
(∫

R3
ρ|u|2 dx

)(∫
|x |≤t+M

ρ|x |2 dx
)

≤ (t +M)2
(

L(0)+
4π2ρ̄

3
(t +M)3

)∫
R3
ρ|u|2 dx

= γ (t)
∫

R3
ρ|u|2 dx .

Substituting (4-4)–(4-5) into (4-3) yields

(4-6) H ′(t)+
µ

(1+ t)λ
H(t)≥

H(t)2

γ (t)
+ 3L(0).

Together with L(0)≥ 0 and H(0) > 0 due to (4-2), this shows that H(t) > 0 for all
t ∈ [0, T ]. Denoting G(t)≡ β(t)H(t), from (1-12) and (4-6) we then get that

(4-7) G ′(t)≥
G2(t)
γ (t)β(t)

.

Now suppose that T ≥ T ∗. Then integrating (4-7) from 0 to T yields

1
H(0)

−
1

G(T )
≥

∫ T

0

dτ
γ (τ )β(τ)

≥

∫ T ∗

0

dτ
γ (τ )β(τ)

,

which is a contradiction in view of G(T ) > 0 and (4-2). �

Appendix: Proof of the nonnegativity of P(t, l) in
6 ≡ {(t, l) : t ≥ 0, t +M0 ≤ l ≤ t +M}

We fixed a point A = (tA, lA) ∈6. In the characteristic coordinates ξ = 1+ t − l
and ζ = 1+ t + l, (3-7) can be written as

(A-1) L P̄ ≡ ∂2
ξζ P̄ +

2λ−2µ

(ξ + ζ )λ
(∂ξ P̄ + ∂ζ P̄)=

f̄
4
,

where P̄(ξ, ζ )≡ P
(
ζ+ξ

2 − 1, ζ−ξ2

)
. The adjoint operator L ∗ of L has the form

(A-2) L ∗R≡ ∂2
ξζR−

2λ−2µ

(ξ + ζ )λ
(∂ξR+ ∂ζR)+

2λ−1µλ

(ξ + ζ )λ+1R.

For the point A = (ξA, ζA) with ξA+ ζA = 2(1+ tA) ≥ 2, write B = (2− ζA, ζA)

and C = (ξA, 2− ξA), and let D the domain surrounded by the triangle ABC (see
Figure 1 below).
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B

C

D

A(ξA, ζA)

ζ

ξ

Figure 1. (ξ, ζ )-plane.

Let the numbers a and b satisfy a+ b = 1 and ab = 1
2µλ. We define

(A-3) z ≡−
(ξA− ξ)(ζA− ζ )

(ξA+ ζA)(ξ + ζ )

and

(A-4) R(ξ, ζ ; ξA, ζA)≡

[
β(ξ + ζ − 1)
β(ξA+ ζA− 1)

]2λ−2

9(a, b, 1; z);

here the definition of function β is given in (1-12) and 9 is the hypergeometric
function. From this and direct calculation, we infer

(A-5) L ∗R=
[

2λ−2µλ

(ξ + ζ )λ+1 −
µλ

2(ξ + ζ )2
−

4λ−2µ2

(ξ + ζ )2λ

]
R.

On the other hand, from (A-1)–(A-2) we arrive at

RL P̄ − P̄L ∗R= ∂ζ
(
R∂ξ P̄ +

2λ−2µ

(ξ + ζ )λ
RP̄

)
− ∂ξ

(
P̄∂ζR−

2λ−2µ

(ξ + ζ )λ
RP̄

)
.

Integrating this over D yields

(A-6) P̄(A)= 1
2R(C; A)P̄(C)+1

2R(B; A)P̄(B)

+

∫∫
D

(RL P̄−P̄L ∗R)dξ dζ+
∫

BC

(
1
2R∂ξ P̄− 1

2 P̄∂ξR+
µ

4
RP̄

)
dξ

+

(
1
2 P̄∂ζR− 1

2R∂ζ P̄−µ
4
RP̄

)
dζ.



SOLUTIONS OF 3-D POTENTIAL EQUATIONS WITH TIME-DEPENDENT DAMPING 423

t

ξ ζ
6

A

M0 C M B l

D

Figure 2. (t, l)-plane.

Returning to the variable (t, l) (see Figure 2), we find in the second line of (A-6)
that

(A-7)
∫

BC
· · · =

∫ C

B

[
1
4R(∂t − ∂l)P − 1

4 P(∂t − ∂l)R+
µ

4
RP

]
(−dl)

+

[
1
4 P(∂t + ∂l)R− 1

4R(∂t + ∂l)P −
µ

4
RP

]
dl

=

∫ lA+tA

lA−tA

[
µ

2
RP + 1

2R∂t P − 1
2 P∂tR

]∣∣∣
t=0

dl

=

∫ lA+tA

lA−tA

β(tA)
−

1
2
[
9(a, b, 1; z|t=0)

(
µ

4
q0(l)+ 1

2q1(l)
)

−
µλ

4
9(a+ 1, b+ 1, 2; z|t=0)q0(l)zt |t=0

]
dl,

where we have used the formula 9 ′(a, b, c; z)= ab
c 9(a+ 1, b+ 1, c+ 1; z) (see

[Erdélyi et al. 1953, page 58]). From the definition (A-3), we arrive at

z =−
(tA− lA− t + l)(tA+ lA− t − l)

4(1+ tA)(1+ t)

and

(A-8) zt |t=0 =
tA

2(1+ tA)
− z|t=0.

If (t, l) ∈6 ∩D , we infer

(A-9) 0≥ z ≥− 1
2(M −M0)≥−

1
2δ0,

which implies that (1-8) holds. This, together with (A-7)–(A-9) and the assumption
(1-11) of3≥ 3

2µλ, yields that the integral in the second line of (A-6) is nonnegative.
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Next we prove that P(t, l)≥ 0 for all (t, l) ∈6. Define

t̄ ≡ inf{t : ∃ l ∈ (t +M0, t +M) such that P(t, l) < 0}.

From assumption (1-9), we get t̄ > 0. If t̄ < +∞, we see that there exists l̄ ∈
(t̄ + M0, t̄ + M) such that P(t̄, l̄) = 0. Moreover, we have P(t, l) ≥ 0 for t < t̄ .
Choose A= (tA, lA)= (t̄, l̄) in (A-6). From (A-4)–(A-5) and (1-8) we infer L ∗R≤0
for λ > 1 and (t, l) ∈6 ∩D . It follows from f (t, l)≥ 0 in (3-7), (1-8), (1-9), and
(A-6) that

P(t̄, l̄)≥ 1
2R(C; A)P(0, l̄− t̄)+

∫∫
6∩D

(RL P̄− P̄L ∗R) dξ dζ ≥ 1
4q0(l̄− t̄) > 0,

which is a contradiction with P(t̄, l̄)= 0. Consequently, we conclude that t̄ =+∞
and P(t, l)≥ 0 for all (t, l) ∈6.
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We prove that a differential operator in the usual sense is formally the
limit of quantum differential operators. For this purpose, we introduce
the notion of a twisted differential operator of infinite level and prove that,
formally, such an object is independent of the choice of the twist. Our
method provides explicit formulas.

Introduction 427
1. Twisted principal parts 431
2. Twisted differential forms 439
3. Twisted binomial coefficient theorem for principal parts 445
4. Twisted differential operators of infinite level 447
5. Twisted Taylor series 453
6. Quantum differential operators 457
7. Formal deformations of twisted differential operators 461
8. Formal confluence 468
9. Formal confluence in positive quantum characteristic 472
References 477

Introduction

Classically, the finite difference operator and the q-difference operator are given by
the formulas

1h( f )(x)=
f (x + h)− f (x)

h
and δq( f )(x)=

f (qx)− f (x)
qx − x

,

and we can obtain the differentiation operator by passing to the limit

∂( f )= lim
h→0

1h( f )= lim
q→1

δq( f ).

By using any of these operators, we may consider the notions of finite difference
systems, q-difference systems and differential systems. The confluence process
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consists in using the solutions of a difference (finite difference or q-difference)
system in order to approximate the solutions of a differential system.

In the late 19th century, C. Guichard [1887] solved the problem of integration
along a finite difference operator. In the early 20th century, in a couple of articles
in the Transactions of the AMS, Georges D. Birkhoff [1911] and R. D. Carmichael
[1911] gave reasonable conditions for solving linear finite difference systems.
Shortly after, Carmichael [1912] applied the same methods to linear q-difference
systems. This was later improved by C. Raymond Adams [1928/29]. There exists
an abundant literature on these questions and we would like to jump to the present
and mention the recent paper by Anne Duval and Julien Roques [2008] where
they study Fuchsian difference systems and their confluence. More generally, the
school of Jean-Pierre Ramis produced a lot of interesting material during the last
two decades (see [Di Vizio et al. 2003] for a survey). Among them, we mention in
particular the work of Jacques Sauloy on resolution, classification and confluence of
Fuchsian differential equations (see [Sauloy 2000] for example) and on the Galois
theory of these equations [Sauloy 2003].

While these works look at equations over the complex numbers, difference
systems have also been studied over p-adic fields by Lucia di Vizio [2004], for
example, and Andrea Pulita [2008; 2017]. Pulita showed that, over a p-adic field,
confluence is a very rigid process in the sense that we can approximate a linear
differential system by a q-difference system that has exactly the same (formal)
solutions. Finally, we want to mention the work of Charlotte Hardouin [2010]
who studies q-difference Galois theory over a field of positive characteristic in the
“exotic” case in which q is a root of unity (which is also taken into account by
Pulita).

Our approach here is very general in the sense that we do not make any assump-
tion about the base field or the value of the parameter q for example. Actually,
differential systems and difference systems may be seen as particular instances
of what we called twisted differential systems in [Le Stum and Quirós 2015b]
(see also [André 2001] for a similar approach). Let us be more precise. If R is a
commutative ring, then a twisted R-algebra (or a difference R-algebra, if we name
them in the spirit of [Cohn 1965]) is a commutative R-algebra A endowed with
an R-linear ring endomorphism σ . Actually, in [Le Stum and Quirós 2015b] we
allowed more generally families of endomorphisms satisfying some relations but
we will concentrate here on the one-dimensional case and we will use either one
endomorphism or a system of roots of this endomorphism. One may then consider
the σ -derivations D of A, or more generally, the σ -derivations D of an A-module
M : R-linear maps that satisfy the twisted Leibnitz rule

D(xs)= D(x)s+ σ(x)D(s).
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A σ -differential module is then defined as an A-module M endowed with an action
by σ -derivations of all the σ -derivations of A. In the classical situation above, we
had σ(x) = x , σ(x) = qx or σ(x) = x + h, giving rise to an action of ∂ , δq or
1h respectively. In our more general setting, the confluence question amounts to
comparing twisted differential systems for different twists.

Our method is original in the sense that it relies on a generalization of the classical
notion of a ring of differential operators. In order to do that, we may first fix what
we call a σ -coordinate x ∈ A, so that there exists a basis ∂σ,A for the σ -derivations
of A such that ∂σ,A(x)= 1. We may then define the twisted Weyl algebra Dσ as the
Ore extension of A by σ and ∂σ,A (as in [Bourbaki 2012], Proposition 1.4). This is
the free A-module on the generators ∂k

σ for k ∈ N that satisfies

∂σ ◦ f = ∂σ,A( f )+ σ( f )∂σ

when f ∈ A. A σ -differential module is then the same thing as a Dσ -module. So
now, what we want to understand is the relation between Dσ and Dτ when τ is
another R-linear endomorphism of A with the same twisted coordinate x . In the
end, we will be essentially interested in τ(x)= x (the usual case where we simply
write D instead of Dτ ) and σ(x)= qx + h with q, h ∈ R (the quantum case). Note
that the condition of q being a root of unity in the quantum case below is analogous
to having a positive characteristic in the usual case and will require some care.

One may usually see a ring of differential operators as some dual of a ring
of formal functions (see the first section of [Grothendieck 1967] for example).
Doing this directly for Dσ would require understanding the notion of σ -divided
powers on the function side. This is a very interesting question that we postpone to a
forthcoming article. Here, we will actually replace the twisted Weyl algebra Dσ with
a Grothendieck ring of differential operators D(∞)

σ (so that the σ -divided powers live
naturally on the differential operator side). It so happens that the classical construc-
tion works incredibly well for this particular generalization. It is actually sufficient to
replace the usual powers of an ideal with the twisted powers introduced in [Le Stum
and Quirós 2015a]. But now we are faced with two questions: the comparison be-
tween D(∞)

σ and D(∞)
τ on one hand and the comparison of Dσ with D(∞)

σ on the other.
We will show that, if we denote by D̂(∞)

σ the completion along the divided powers
of ∂σ , then there always exists a natural isomorphism D̂(∞)

σ ' D̂(∞)
τ (the formal

deformation of Proposition 7.4) and we will be able to give very explicit formulas.
For example, in the case τ(x) = x and σ(x) = qx , we can write (over a field of
characteristic zero when q is not a root of unity):

∂σ =

∞∑
k=1

1
k!
(q − 1)k−1xk−1∂k and ∂ =

∞∑
k=1

(1− q)k

1− qk xk−1∂k
σ .
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In the quantum situation, there exists a canonical map Dσ→D(∞)
σ whose image is

exactly the ring Dσ of small (or naive) differential operators. Under some conditions
on q (R q-divisible and q -char(R)= 0, see [Le Stum and Quirós 2015b]), then all
three rings Dσ , Dσ and D(∞)

σ are actually equal. This happens for example in the
usual case when R is a Q-algebra and in the quantum case when q belongs to a
subfield K of R and q is not a root of unity. When all these conditions are satisfied,
we easily derive from the formal deformation our first confluence Theorem 8.3:
there exists a map Dσ → D̂ with dense image.

We will also consider the case where q is a primitive p-th root of unity (but still R
a Q-algebra). It is then necessary to use a complete family q of pn-th roots of q . We
can define what we call a rooted Weyl algebra Dσ by taking the limit on all Dσn and
build a map Dσ→ D̂ with dense image. This is the second confluence Theorem 9.13.

It is interesting to notice that this last theorem puts together the ring D that sup-
ports the conjecture of Jacques Dixmier [1968] (whose higher version is equivalent
to the Jacobian conjecture [Belov-Kanel and Kontsevich 2007]) and an Azumaya
algebra where the Morita equivalence could be applied. Recall that the Jacobian
conjecture (or global inversion theorem) states that an endomorphism of the complex
affine space whose Jacobian is invertible is necessarily an isomorphism. Recall also
that Dixmier’s conjecture states that any endomorphism of a complex Weyl algebra
such as D is always an automorphism. This conjecture is not valid for Dσ . However,
this last ring is a lot easier to study because it is essentially a matrix algebra.

In a forthcoming paper, we will prove an ultrametric version of the results
presented here. More precisely, we will introduce the notion of twisted differential
operator of given radius on an affinoid algebra and show that this notion is essentially
independent of the choice of the twist. This will lead to an explicit equivalence
between differential systems and difference systems, generalizing a theorem of
Pulita [2008]. Recall that the first results in this direction were already obtained by
Yves André and Lucia Di Vizio [2004].

In a forthcoming joint paper with Michel Gros, we will introduce the notion of
quantum divided power and apply our methods in order to obtain a ring of quantum
differential operators of level zero. It happens to be isomorphic to the quantum
Weyl algebra. However, this new approach also provides the notion of quantum p-
curvature. We will then use some Frobenius action and obtain an Azumaya splitting
of the quantum Weyl algebra as well as a quantum Simpson’s correspondence much
as in [Gros and Le Stum 2014].

Both authors thank Michel Gros for all the fruitful conversations that we had all
together.

For us, a ring has an associative multiplication (not commutative in general)
and a two-sided unit. Morphisms of rings are always assumed to preserve the unit.
A module always means a left module. We will essentially consider 1-twisted
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rings from [Le Stum and Quirós 2015b] and simply call them twisted rings. More
precisely, throughout the paper, R will denote a commutative ring and A a twisted
commutative R-algebra: a commutative R-algebra endowed with an R-linear ring
endomorphism σA.

1. Twisted principal parts

We will introduce here the notion of twisted principal part (functions on twisted
infinitesimal neighborhoods of the diagonal).

We will begin by ignoring the endomorphism σA and concentrating on the
commutative R-algebra A. The tensor product PA/R := A⊗R A has two A-algebra
structures, one coming from the action on the left and the other one coming from the
action on the right. Unless otherwise specified, we will use the left structure when
we see PA/R as an A-module. However, when M is an A-module, the notation
P ⊗A M will implicitly mean that we use the action of A on the right to build the
tensor product and that the resulting object will be seen as an A-module using the
action of A on the left.

In practice, we will write x := x ⊗ 1 ∈ PA/R and x̃ := 1⊗ x ∈ PA/R . In other
words, with these notations, the action on the left is multiplication by x and the
action on the right is multiplication by x̃ . Any element of PA/R can be written as
a finite sum

∑
xi ỹi . At some point, we will call the embedding on the right the

Taylor map and denote it by

θA/R : A→ PA/R, x 7→ x̃ .

We will then call x̃=θA/R(x) the Taylor expansion of x ∈ A (more on this vocabulary
later on).

We will also consider the canonical map corresponding to the projection that
forgets the middle term:

A⊗R A δA/R
−−→ A⊗R A⊗R A, x ⊗ y 7−−→ x ⊗ 1⊗ y.

It is a morphism of R-algebras that may also be seen as a map

PA/R
δA/R
−−→ PA/R ⊗A PA/R x ỹ 7−−→ x ⊗ ỹ,

where A acts on the right on the first factor and on the left on the second one in the
tensor product.

Let IA/R be the kernel of the multiplication morphism

PA/R→ A, x ỹ 7→ xy



432 BERNARD LE STUM AND ADOLFO QUIRÓS

(that corresponds to the diagonal embedding). The ideal IA/R is generated by the
image of the linear map

A dA/R
−−→ PA/R, x 7−−→ ξ := x̃ − x

(that corresponds to the difference between the projections). In practice, we will
usually drop the index A/R and simply write P, I, θ , δ and d .

Since we will make regular use of linearization, we introduce it formally now:

Definition 1.1. Let M, N be two A-modules and u : M → N an R-linear map.
Then the A-linearization of u is the A-linear map

P ⊗A M

ũ

))' // A⊗R M // N
x ⊗ s � // xu(s).

Recall that, in the tensor product, we use the action on the right on P. Therefore,
we have for all x, y ∈ A, for all s ∈ M,

ũ(x ỹ⊗ s)= xu(ys).

As an example, we see that the multiplication map P→ A is the A-linearization
of the identity of A, seen as an R-linear map.

For further use, we also mention the following result that follows immediately
from the definitions:

Lemma 1.2. If we are given two R-linear maps ϕ : M→ N and ψ : L→ M, then
the linearization of ϕ ◦ψ factors as

P ⊗A L δ⊗Id
−−−→ P ⊗A P ⊗A L Id⊗Aψ̃

−−−→ P ⊗A M ϕ̃
−−→ N .

Now we make the endomorphism σA enter the game. We will consider P :=
A⊗R A as a twisted R-algebra by using σA on the left and the identity the right: in
other words, we set σP := σA⊗R IdA. Alternatively, this is the unique structure of
twisted R-algebra on P such that for all x ∈ A,

σP(x)= σA(x) and σP(x̃)= x̃ .

In particular, we may also consider P as a twisted A-algebra, in the sense that P is
endowed with a σA-linear ring endomorphism σP . We will often drop the indexes
A and P and simply write σ for both maps (so that σ(x̃) = x̃) when there is no
ambiguity.

Before we do anything else, let us prove the following result, which is quite
elementary, but very useful:
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Lemma 1.3. If x ∈ A and ξ := x̃ − x ∈ PA/R , then

σP(ξ)= ξ + y with y := x − σA(x).

Proof. We have

σ(ξ)= σ(x̃ − x)= σ(x̃)− σ(x)= x̃ − σ(x)= x̃ − x + x − σ(x)= ξ + y. �

Lemma 1.4. The kernel of the A-linearization

PA/R
σ̃A
−→ A, x ỹ 7−→ xσA(y)

of σA is σP(IA/R).

Proof. Recall that σ(I ) denotes the ideal generated by the image of I. As a
consequence, since I is generated by the image of d, we see that ker σ̃ will be
generated by the image of

A σ◦d
−−→ P, x 7−−→ x̃ − σ(x).

Now, we have for all x ∈ A, σ̃ (x̃ − σ(x))= σ(x)− σ(x)= 0, and it follows that
σ(I )⊂ ker σ̃ . Conversely, by definition, we have for all x ∈ A,

σ(x)≡ x̃ mod σ(I ).

Therefore, if f :=
∑

xi ỹi ∈ ker σ̃ , we have

f ≡
∑

xiσ(yi )= σ̃ ( f )= 0 mod σ(I ),

and we see that ker σ̃ ⊂ σ(I ). �

Remarks. (1) It is sometimes convenient to use the bimodule language. An
A-sesquimodule M is an A-bimodule such that for all x ∈ A, s ∈ M,

σA(x) · s = s · x .

Note that we are using the reverse convention from André [2001] so that
forgetting the right action induces an equivalence (an isomorphism) between
A-sesquimodules and left A-modules (we will use this identification).

(2) The R-algebra P has a canonical A-bimodule structure which is completely
independent of the choice of σA. If we endow A with its sesquimodule structure,
then the linearization σ̃ of σA is a morphism of A-bimodules: we always have
for all x, y ∈ A, f ∈ P,

σ̃ (x · f · y)= σ̃ (x f ỹ)= x σ̃ ( f )σ (y)= x · σ̃ ( f ) · y.

It follows that ker σ̃ has a natural A-bimodule structure. Actually, since σ̃ is
a ring homomorphism, then ker σ̃ is an ideal and therefore automatically an
A-bimodule.
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Recall from [Le Stum and Quirós 2015a] that the twisted powers of I are

I (0) = P, I (1) = I, I (2) := Iσ(I ), . . . , I (n) := Iσ(I ) · · · σ n−1(I ),

where images and products of ideals are meant as ideals. We will write I (n)σA/R when
we want to make clear the dependence on σ and A/R.

Definition 1.5. The A-module of twisted principal parts of order n ∈N (and infinite
level) of A is

PA/R,(n)σ := PA/R/I (n+1)σ
A/R .

The A-module of twisted principal parts of infinite order (and infinite level) of A is
the twisted completion:

P̂A/R,σ := lim
←−−

PA/R,(n)σ .

Note that these A-modules all have natural R-algebra structures and that the
definition also makes sense for n=−1 so that PA/R,(−1)σ = 0. Again, we will often
drop the indexes A/R when we believe that there is no risk of confusion and simply
write P(n)σ and P̂σ . We will also drop the index σ when σA = IdA.

Examples. (1) When A is trivially twisted, which means that σA := IdA, this
notion of principal parts coincides with the usual one (definition 16.3.1 of
[Grothendieck 1967]), and therefore many of the basic objects we will construct
are twisted versions of those in that work.

(2) When A= R[x], we have P = R[x, ξ ] with ξ = x̃− x and I = (ξ). Moreover,
σ(ξ)= ξ + y with y = x − σ(x). It follows that

σ n(ξ)= ξ + (n)σ (y)= ξ + x − σ n(x),

with (n)σ := 1+ · · ·+ σ n−1. Therefore, we have

P(n) = R[x, ξ ]/
n∏

i=0

(ξ + (i)σ (y))= R[x, ξ ]/
n∏

i=0

(ξ + x − σ n(x)).

(a) In the case σ(x)= x , we get P(n) = R[x, ξ ]/ξ n+1 as expected.
(b) More generally, if we assume that σ(x)= x + h with h ∈ R, we obtain

P(n) = R[x, ξ ]/
n∏

i=0

(ξ − ih).

(c) On the other hand, if we let σ(x)= qx with q ∈ R, we find

P(n) = R[x, ξ ]/
n∏

i=0

(ξ + (1− q i )x).
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When R→ R′ is a homomorphism of commutative rings, we endow A′ := R′⊗R A
with σA′ := IdR′ ⊗RσA.

Proposition 1.6. Let R→ R′ be a homomorphism of commutative rings and A′ :=
R′⊗R A. Then we have for all n ∈ N,

A′⊗A PA/R,(n)σ ' PA′/R′,(n)σ .

Proof. If we let P ′ := PA′/R′ , then there exists a canonical isomorphism A′⊗A P '
R′ ⊗R P ' P ′. Moreover, if we denote by I ′ the kernel of the multiplication
morphism on P ′, we have A′⊗A I ' I ′. And finally, IdA⊗AσP corresponds to σP ′

under this isomorphism. Our assertion is therefore an immediate consequence of
right exactness of tensor product. �

Recall from [Le Stum and Quirós 2015a] that a twisted A-algebra is an A-algebra
B endowed with a σA-linear ring endomorphism σB (which simply means that for
all f ∈ A, σB( f 1B)= σA( f )).

Proposition 1.7. If B is a twisted commutative A-algebra, then there exists a
canonical morphism of B-algebras

B⊗A PA/R,(n)σ → PB/R,(n)σ .

When B is a quotient (resp. a localization) of A, this map is surjective (resp.
bijective).

Recall from Definition 1.7 of [Le Stum and Quirós 2015b] that we call such a B
a twisted quotient (resp. twisted localization) of A.

Proof. The morphism of twisted R-algebras A→ B extends naturally to a morphism
of twisted R-algebras PA→ PB . Since IA is sent into IB , we see that, for all n ∈N,
σ n(IA) is sent into σ n(IB) and the first assertion formally follows. In the case of a
quotient map, all the maps involved are surjective.

Now, if B := S−1 A is a twisted localization of A, then PB is the localization of
PA with respect to the monoid S′ generated by S and S̃, and we have IB= PB⊗PA IA.
It immediately follows that for all n ∈ N, we have σ n(IB)= PB ⊗PA σ

n(IA), and
therefore I (n)B = PB ⊗PA I (n)A . Thus we see that

PB,(n)σ = PB/(PB ⊗PA I (n+1)
A )= PB ⊗PA PA,(n) = B⊗A PA,(n)⊗A B.

We need to remove the B on the right-hand side and it is sufficient to show that x̃
is invertible in B⊗A PA,(n) whenever x ∈ S. But we have

n∏
i=0

(x̃ − σ i (x))=
n∏

i=0

σ i (x̃ − x) ∈ I (n+1)
A ,
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from which we derive that there exists f ∈ PA such that

f x̃ ≡
n∏

i=0

σ i (x) mod I (n+1)
A .

Since B = S−1 A, we must have σ(S)⊂ B× and it follows that
∏n

i=0 σ
i (x) ∈ B×.

Thus, we see f x̃ is invertible in B⊗A PA,(n) and it follows x̃ is invertible too. �

As an illustration, we can give explicit formulas in the quantum situation. Recall
that we introduced in [Le Stum and Quirós 2015a] the notion of twisted powers of
an element in a twisted ring. In particular, for f ∈ P, we will have

f (0) := 1, f (1) := f, f (2) = f σ( f ), . . . , f (n+1)
= f σ( f ) · · · σ n( f ).

Recall also that the quantum binomial coefficients are defined by induction (see
[Le Stum and Quirós 2015a] for example) as(

n
k

)
q
:=

(
n− 1
k− 1

)
q
+ qk

(
n− 1

k

)
q
.

Proposition 1.8. Assume σ(x)= qx with q ∈ R and let ξ = x̃ − x. Then we have
for all n ∈ N,

(1) ξ (n) =

n∑
j=0

(−1) j
(

n
j

)
q
q

j ( j−1)
2 x j x̃n− j

and for all n ∈ N,

x̃n
=

n∑
i=0

(
n
i

)
q
x iξ (n−i).

Proof. The first equality is essentially the quantum binomial formula (see proposition
2.14 in [Le Stum and Quirós 2015a]):

(x̃ − x)(n) =
n∑

j=0

(
n
j

)
q
(−x)( j) x̃ (n− j).

For the second one, we compute the right-hand side with the help of formula (1):

n∑
i=0

(
n
i

)
q
x iξ (n−i)

=

n∑
i=0

(
n
i

)
q
x i
(n−i∑

j=0

(−1) j
(

n− i
j

)
q
q

j ( j−1)
2 x j x̃n−i− j

)

=

n∑
k=0

( k∑
i=0

(
n
i

)
q

(
n− i
k− i

)
q
(−1)k−i q

(k−i)(k−i−1)
2

)
xk x̃n−k



FORMAL CONFLUENCE OF QUANTUM DIFFERENTIAL OPERATORS 437

after rewriting i + j = k. Now, we have (using corollaries 2.7 and 2.8 in [Le Stum
and Quirós 2015a], for example)

k∑
i=0

(
n
i

)
q

(
n− i
k− i

)
q
(−1)k−i q

(k−i)(k−i−1)
2 =

(
n
k

)
q

k∑
i=0

(
k
i

)
q
(−1)k−i q

(k−i)(k−i−1)
2 .

But the quantum binomial formula again implies that for k > 0, we have

k∑
i=0

(
k
i

)
q
(−1)k−i q

(k−i)(k−i−1)
2 =

k−1∏
i=0

(1− q i )= 0.

And it follows that
n∑

i=0

(
n
i

)
q
x iξ (n−i)

= x̃n,

as asserted. �

We will need a slightly stronger notion of coordinate than the one used in
[Le Stum and Quirós 2015b]:

Definition 1.9. Let x ∈ A and ξ := x̃ − x ∈ PA/R .

(1) Then x is a twisted coordinate for the twisted R-algebra A or a σ -coordinate for
the R-algebra A if for all n ∈N, PA/R,(n)σ is freely generated as an A-module
by the images of 1, ξ, ξ 2, . . . , ξ n.

(2) If x is a twisted coordinate such that σ(x)= qx+h with q, h ∈ R, then we will
call it a quantum coordinate or q-coordinate and call A a quantum R-algebra
or q-R-algebra.

Examples. (1) When σA = IdA, a twisted coordinate will be called a usual coor-
dinate. In the case A/R is smooth (of pure relative dimension one), then a
usual coordinate is nothing but an étale coordinate: it means that the map

R[T ] → A, T 7→ x

is étale.

(2) If A = R[x], then x is always a twisted coordinate, whatever σ is.

Proposition 1.10. (1) If R→ R′ is a homomorphism of commutative rings and x
is a twisted coordinate on A, then x becomes a twisted coordinate on A′ :=
R′⊗R A (relatively to R′).

(2) If B is a twisted localization of A and x is a twisted coordinate on A, then x
becomes a twisted coordinate on B.

Proof. Follows from propositions 1.6 and 1.7. �
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Remark. Assume A is a quantum R-algebra so that there exists a twisted coordinate
x on A and q, h ∈ R such that σ(x)= qx+h. Let us still denote by the same letter
x an indeterminate over R and by σ again the endomorphism of R[x] given by the
same formula. Then A becomes an R[x]-twisted algebra and we have a canonical
isomorphism (free A-modules of the same rank with the same generators):

A⊗R[x] PR[x]/R,(n)σ ' PA/R,(n)σ .

In the next statement, we use the letter ξ as an indeterminate over A so that A[ξ ]
denotes the polynomial ring and A[ξ ]≤n the submodule of polynomial of degree at
most n. Ultimately, this should not create any confusion due to Corollary 1.12 below.

Proposition 1.11. Let x ∈ A and y := x − σ(x). We endow A[ξ ] with the unique
σA-linear endomorphism such that σ(ξ)= ξ + y. Then x is a twisted coordinate on
A if and only if the morphism of twisted algebras

φ : A[ξ ] → PA/R, ξ 7→ x̃ − x

induces for all n ∈ N an isomorphism of A-algebras A[ξ ]/ξ (n+1)
' PA/R,(n)σ .

Proof. First of all, it follows from Lemma 1.3 that there exists such a morphism for
all n ∈ N. On the other hand,

(2) ξ (n+1)
=

n∏
0

(ξ + (x − σ i (x)))

is a monic polynomial of degree n+ 1. Then euclidean division tells us that the
composite map

A[ξ ]≤n→ A[ξ ] → A[ξ ]/ξ (n+1)

is an isomorphism of A-modules. Therefore the condition on φ is equivalent to the
fact that the map

A[ξ ]≤n→ P(n)σ , ξ 7→ x̃ − x

is bijective. And this exactly means that P(n)σ is freely generated by the n+ 1 first
powers of the images of x̃ − x . �

When the polynomial ring A[ξ ] is endowed with the structure of a σA-algebra,
we will set

A[[ξ ]]σ := lim
←−−

A[ξ ]/ξ (n+1).

Corollary 1.12. With the same hypothesis, x is a twisted coordinate on A if and
only if there exists an isomorphism of A-algebras

A[[ξ ]]σ −→∼ P̂A/R,σ , ξ 7−→ x̃ − x .
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Corollary 1.13. Let x ∈ A and ξ := x̃ − x ∈ P. Then the following conditions are
equivalent:

(1) x is a twisted coordinate on A;

(2) for all n ∈ N, the A-module P(n)σ is freely generated by the images of 1, ξ ,
ξ (2), . . . , ξ (n);

(3) for all n ∈N, the A-module I (n)/I (n+1) is free of rank one on the image of ξ (n).

Corollary 1.14. If A is a twisted localization of R[x], then x is a twisted coordinate
on A.

Proof. Using the second part of Proposition 1.10, we may assume that A = R[x],
in which case this is a trivial consequence of Proposition 1.11. �

2. Twisted differential forms

In this section, we study the module of twisted differential forms (of degree one)
and make the link with twisted derivations. We use the same notations as before.

Definition 2.1. The A-module of twisted differential forms on A/R is

�1
A/R,σ := IA/R/I (2)σA/R .

Again, we will often drop the index A/R. Since we implicitly endow P with
the action of A on the left, we will also always see �1

σ as an A-module through the
action on the left.

Examples. (1) When A is trivially twisted, then �1
σ = I/I 2 is the usual module

of differential forms of A over R.

(2) If A= R[x] is endowed with any R-algebra endomorphism σ , then �1
σ is free

of rank 1: with the notations of Lemma 1.3 (so that y = x − σ(x)), we have

�1
σ ' ξ R[x, ξ ]/ξ(ξ + y)' R[x, ξ ]/(ξ + y)' R[x].

Remarks. (1) Clearly, �1
σ has a natural A-bimodule structure as a quotient of two

ideals of P. It happens that this is identical to its A-sesquimodule structure: by
definition, if x ∈ A, then x̃ ≡ σ(x) mod σ(I ) and it follows that for all f ∈ I,

(3) f x̃ ≡ f σ(x) mod Iσ(I ).

(2) The �1
σ that appears in proposition 1.4.2.1 of [André 2001] is exactly the same

as ours (André calls k what we call R).

(3) Formula (3) is exactly the first step of the braiding described by Max Karoubi
and Mariano Suárez-Álvarez [2003].
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(4) One can define more generally the twisted de Rham complex �•σ of A as the
quotient of the noncommutative tensor algebra of I by the graded differential
ideal generated by Iσ(I ). We will not consider this complex here.

Proposition 2.2. There exists a split exact sequence

0→�1
A/R,σ → PA/R,(1)σ

σ̃A
−→ A→ 0.

Proof. There exists such an exact sequence by definition of P(1)σ and �1
σ . The

A-module structure of P provides a section of σ̃ . �

Proposition 2.3. (1) If R → R′ is a homomorphism of commutative rings and
A′ := R′⊗R A, then there exists an isomorphism

A′⊗A �
1
A/R,σ '�

1
A′/R′,σ .

(2) If B is a twisted commutative A-algebra, then there exists a canonical B-linear
map

(4) B⊗A �
1
A/R,σ →�1

B/R,σ .

When B is a quotient (resp. a localization) of A this map is surjective (resp.
bijective).

Proof. Using Proposition 2.2, this follows from propositions 1.6 and 1.7. �

Remark. This last result does not hold however if we only require A→ B to be an
étale map (and not a localization map) as the following example shows. Let R be any
field of characteristic different from 2, A := R[x]with σA := IdA and B := R[x, x−1

]

with σB(x) := −x . Then the morphism x 7→ x2 is an étale twisted morphism but
the morphism (4) is the zero map. More precisely, if ξ = x̃ − x , we have

B⊗A �
1
A,σ = (ξ)/(ξ

2) and �1
B,σ = (ξ)/(ξ

2
+ 2xξ),

where the ideals are taken inside R[x, x−1, ξ ], and the morphism (4) is induced by
ξ 7→ ξ 2

+ 2xξ .

Recall from [Le Stum and Quirós 2015b] that a twisted derivation of A is an
R-linear map into an A-module M that satisfies the twisted Leibnitz rule: for all
x, y ∈ A,

D(xy)= x D(y)+ σ(y)D(x).

They form an A-module DerR,σ (A,M).

Proposition 2.4. The canonical map A→�1
A/R,σ induced by d is a twisted deriva-

tion. It provides us with a natural isomorphism

(5) HomA(�
1
A/R,σ ,M)−→∼ DerR,σ (A,M), u 7−→ D := u ◦ d

whenever M is an A-module.
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In the future, we will also denote by d : A→�1
σ this universal twisted derivation

when there is no risk of confusion.

Proof. Using formula (3), we see that, inside P, we have

yd(x)+ σ(x)d(y)= y(x̃ − x)+ σ(x)(ỹ− y)

≡ y(x̃ − x)+ x̃(ỹ− y)

= x̃ y− xy

= d(xy) mod Iσ(I ).

It follows that the induced map d : A→ �1
σ is indeed a twisted derivation. This

also implies that the map in (5) is well defined. And it is clearly injective because
I is generated by the image of d .

We now show that it is surjective. If D is a twisted derivation of M, we can
consider its linearization

P D̃
−→M, x ỹ 7−→ x D(y).

By definition, the ideal Iσ(I ) is generated by elements of the form

f = (x̃ − x)(ỹ− σ(y))= x̃ ỹ− x ỹ− σ(y)x̃ + xσ(y),

and we have

D̃( f )= D(xy)− x D(y)− σ(y)D(x)+ xσ(y)D(1)= 0

because D is a twisted derivation (and in particular D(1)= 0). It follows that D̃
factors through P/Iσ(I ) and we may consider the induced map u :�1

σ → M. It
only remains to notice that we have for all x ∈ A,

u(d(x))= D̃(d(x))= D̃(x̃ − x)= D(x)− x D(1)= D(x). �

Remark. There exists a very elegant proof of this last result through the theory of
bimodules. It is based on the fact (see proposition 17 in [Bourbaki 1970], Chapter
III, section 10) that I is universal for bimodule derivations: there exists a natural
isomorphism

HomA -Bim(I,M)−→∼ DerR(A,M), u 7−→ D := u ◦ d,

where the right-hand side stands for bimodule derivations (see proposition 1.4.2.1
of [André 2001]).

As an immediate consequence of the proposition, writing TA/R,σ :=DerR,σ (A,A),
which we will often abbreviate to Tσ , we obtain the following:

Corollary 2.5. The A-module TA/R,σ is the dual of �1
A/R,σ .
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Proposition 2.6. Assume that �1
A/R,σ is projective of finite rank. Then if M is an

A-module we have the following:

(1) If R→ R′ is a base extension and A′ = R′⊗R A, then there exists a canonical
isomorphism

R′⊗R DerR,σ (A,M)' DerR′,σ (A′, A′⊗A M).

(2) If B is a twisted A-algebra, there exists a canonical map

B⊗A DerR,σ (A,M)← DerR,σ (B, B⊗A M).

It is injective (resp. bijective) when B is a quotient (resp. a localization) of A.

Proof. Both assertions follow from Proposition 2.3. More precisely, in the first case,

R′⊗R DerR,σ (A,M)' R′⊗R HomA(�
1
A/R,σ ,M)' HomA(�

1
A/R,σ , A′⊗A M)

because �1
A/R,σ is projective of finite rank, and then

HomA(�
1
A/R,σ ,A

′
⊗A M)' HomA′(A′⊗A �

1
A/R,σ ,A

′
⊗A M)

' HomA′(�
1
A′/R′,σ ,A

′
⊗A M)' DerR′,σ (A′,A′⊗A M).

The proof of the second assertion follows exactly the same lines with the same
arguments. We have

B⊗A DerR,σ (A,M)' B⊗A HomA(�
1
A/R,σ ,M)

' HomA(�
1
A/R,σ ,B⊗A M)

' HomB(B⊗A�
1
A/R,σ ,B⊗A M)← HomA(�

1
B/R,σ ,B⊗A M)

' DerR,σ (B ′,B⊗A M),

and the only map which is not always an isomorphism will be injective (resp.
bijective) when B is a quotient (resp. a localization) of A. �

The following immediate consequence is worth stating:

Corollary 2.7. If �1
A/R,σ is projective of finite rank, then TA/R,σ and �1

A/R,σ are
dual to each other and we have

(1) If R→ R′ is a base extension and A′ = R′⊗R A, then there exists a canonical
isomorphism

R′⊗R TA/R,σ ' TA′/R′,σ ′ .

(2) If B is a twisted localization of A, then there exists a canonical isomorphism

B⊗A TA/R,σ ' TB/R,σ .
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Definition 2.8. A twisted connection on an A-module M is an R-linear map

∇ : M 7→ M ⊗A �
1
A/R,σ

such that for all s ∈ M, for all x ∈ A,

∇(xs)= s⊗ d(x)+ σ(x)∇(s).

An A-linear map between two A-modules with twisted connections is said to be
horizontal if it is compatible with the connections.

Clearly, A-modules endowed with a connection and horizontal maps form a
category ∇σA -Mod.

Remark. This definition is compatible with definition 2.2.1 by André [2001]. In par-
ticular, all the tannakian formalism applies but this is not what we are interested in.

Recall from [Le Stum and Quirós 2015b] that if D is a twisted derivation of A,
then a twisted D-derivation of an A-module M is an R-linear endomorphism DM

of M that satisfies the twisted Leibnitz rule: for all x ∈ A, for all s ∈ M,

DM(xs)= D(x)s+ σA(x)DM(s).

One may then consider the notion of action by twisted derivations of TA/R,σ on M :
it is an R-linear action such that whenever D ∈ TA/R,σ , the map DM : s 7→ D.s is a
D-derivation.

Proposition 2.9. There exists a functor from the category of A-modules endowed
with a twisted connection to the category of A-modules endowed with a linear
action of TA/R,σ by twisted derivations. It is an equivalence (an isomorphism) when
�1

A/R,σ is free of finite rank.

Proof. If M is endowed with a twisted connection ∇ : M 7→ M ⊗A �
1
σ and D is a

twisted derivation of A, we may write uniquely D = u ◦ d with u : �1
σ → A and

consider the composite map DM := (IdM ⊗u) ◦∇ : M→ M. Then we will have

DM(xs)= (IdM ⊗u)(∇(xs))

= (IdM ⊗u)(s⊗ d(x)+ σ(x)∇(s))

= (u ◦ d)(x)s+ σ(x)(IdM ⊗u)(∇(s))= D(x)s+ σ(x)DM(s).

Conversely, assume that M is endowed with an action of Tσ by twisted derivations.
Let D1, . . . , Dn be a basis of Tσ and ω1, . . . , ωn be the dual basis in �1

σ . Then we
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can define ∇(s)=
∑

Di,M(s)⊗ωi and check that

∇(xs)=
∑

Di,M(xs)⊗ωi

=

(∑
Di (x)s+ σ(x)Di,M(s)

)
⊗ωi

= s⊗
∑

Di (x)ωi + σ(x)
∑

Di,M(s)⊗ωi = s⊗ d(x)+ σ(x)∇(s).

Clearly, this is an inverse to the previous functor. �

Proposition 2.10. If x ∈ A is a twisted coordinate on A, then �1
A/R,σ is free of

rank 1, generated by dx. Moreover, there exists a unique twisted derivation ∂x,σ of
A such that ∂x,σ (x)= 1 and we have for all D ∈ TA/R,σ ,

D = D(x)∂x,σ .

Proof. The first assertion is a particular case of Corollary 1.13. The second one
then follows from Corollary 2.5. �

In particular, we see that a twisted coordinate is also a coordinate in the sense of
[Le Stum and Quirós 2015b]. In order to lighten the notations, we will usually drop
the index x but we must not forget that ∂σ depends on the choice of x . Also, we
would rather write ∂A,σ than ∂σA when we want to make clear the dependence on A.

If x is a twisted coordinate on A, one may consider the twisted Weyl algebra
DA/R,σ,∂ (see [Le Stum and Quirós 2015b] for example), that we will usually denote
by DA/R,σ and sometimes simply by Dσ . This is the noncommutative polynomial
ring in one variable ∂σ over A with the commutation rule for all z ∈ A,

∂σ z = ∂A,σ (z)+ σA(z)∂σ .

Moreover, there exists an equivalence (an isomorphism) of categories

DA/R,σ -Mod' ∂A,σ -Mod,

where the latter denotes the category of A-modules M endowed with a ∂A,σ -
derivation.

Proposition 2.11. Assume that x is a twisted coordinate on A. Then there exists an
equivalence (an isomorphism) of categories

∇σA -Mod' DA/R,σ -Mod .

Proof. Follows from Proposition 2.9. �
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3. Twisted binomial coefficient theorem for principal parts

We prove here the main theorem that will allow us to recover twisted differential
operators from principal parts. We use the same notation as before.

In Section 1 we introduced the canonical map (it is a morphism of R-algebras)

PA/R
δA/R
−−→ PA/R ⊗A PA/R, x ỹ 7−→ x ⊗ ỹ.

We want to investigate the interaction between σA and δA/R .
Recall that we also considered in Section 1 the maps

PA/R
σP
−→ PA/R, x ỹ 7−→ σA(x)ỹ,

which is an R-linear ring homomorphism, and

A dA/R
−−→ PA/R, x 7−−→ x̃ − x,

which is only R-linear. As usual, we will drop the subscripts in order to lighten the
notation, hoping that the meaning will always be clear from the context.

Lemma 3.1. For all i = 0, . . . , n, we have in P ⊗A P for all x ∈ A,

δ(σ n(d(x)))= 1⊗ σ i (d(x))+ σ n−i (d(σ i (x)))⊗ 1.

Proof. We do the computations in A⊗R A⊗R A. The right-hand side is

1⊗ (1⊗ x − σ i (x)⊗ 1)+ σ n−i (1⊗ σ i (x)− σ i (x)⊗ 1)⊗ 1
= 1⊗ 1⊗ x − 1⊗ σ i (x)⊗ 1+ 1⊗ σ i (x)⊗ 1− σ n(x)⊗ 1⊗ 1

= 1⊗ 1⊗ x − σ n(x)⊗ 1⊗ 1.

If we develop the left-hand side, we obtain exactly the same thing:

δ(σ n(d(x)))= δ(1⊗ x − σ n(x)⊗ 1)= 1⊗ 1⊗ x − σ n(x)⊗ 1⊗ 1. �

We endow P ⊗A P with the endomorphism σP ⊗A IdP (which is the same thing
as σA⊗R IdA⊗R IdA on A⊗R A⊗R A).

Proposition 3.2. The map δ : P→ P ⊗A P is a morphism of twisted R-algebras.

Proof. This is the case n = 1 and i = 0 of Lemma 3.1. More precisely, if x ∈ A and
ξ = x̃ − x , we have

δ(σ (ξ))= 1⊗ ξ + σ(ξ)⊗ 1= σ(δ(ξ)). �

Proposition 3.3. We have in P ⊗A P for all n ∈ N,

δ(I (n))⊂
n∑

i=0

I (i)⊗ I (n−i).
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Proof. First of all, since I is generated by the image of d , it follows from Lemma 3.1
that for all i = 0, . . . , n, we have

δ(σ n(I ))⊂ P ⊗ σ i (I )+ σ n−i (I )⊗ P.

Using induction, we obtain

δ(I (n+1))= δ(I (n))δ(σ n(I )))⊂
n∑

i=0

(I (i)⊗ I (n−i))(P ⊗ σ n−i (I )+ σ i (I )⊗ P)

⊂

n∑
i=0

(I (i)⊗ I (n−i+1))+

n∑
i=0

(I (i+1)
⊗ I (n−i))

⊂

n+1∑
i=0

I (i)⊗ I (n+1−i). �

Corollary 3.4. For all m, n ∈ N, we have in P ⊗A P:

δ(I (n+m+1))⊂ P ⊗A I (m+1)
+ I (n+1)

⊗A P.

In other words, δ induces a map

P(n+m)σ
δn,m
−→ P(n)σ ⊗A P(m)σ .

Proof. If 0 ≤ i ≤ m + n + 1, we have either i > n and then I (i) ⊂ I (n+1) or else
i ≤ n so that m+ n+ 1− i > m and then I (m+n+1−i)

⊂ I (m+1).
Going to the limit, we obtain a canonical homomorphism of R-algebras

P̂σ
δ̂
−→ P̂σ ⊗̂A P̂σ ,

where the right-hand side is, by definition, the inverse limit of all the P(n)σ ⊗A P(m)σ .
In other words, we obtain a comultiplication on P̂σ that will allow us to turn its
“dual” into a ring (more on this later). �

We finish this section with the quantum binomial theorem for principal parts:

Theorem 3.5. let A be a twisted commutative R-algebra and x ∈ A such that
σ(x)= qx + h with q, h ∈ R. If we set ξ = x̃ − x , then we have

δ(ξ (n)) :=

n∑
i=0

(
n
i

)
q
ξ (n−i)

⊗ ξ (i).

Proof. The formula is proved to be correct by induction on n. First of all, since δ is
a ring homomorphism, we have

δ(ξ (n+1))= δ(ξ (n)σ n(ξ))= δ(ξ (n))δ(σ n(ξ))).
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Using induction and Lemma 3.6 below, we get

δ(ξ (n+1))=

n∑
i=0

(
n
i

)
q
(ξ (n−i)

⊗ ξ (i))(1⊗ σ i (ξ)+ q iσ n−i (ξ)⊗ 1)

=

n∑
i=0

(
n
i

)
q
ξ (n−i)

⊗ ξ (i)σ i (ξ)+

n∑
i=0

(
n
i

)
q
q iξ (n−i)σ n−i (ξ)⊗ ξ (i)

=

n∑
i=0

(
n
i

)
q
ξ (n−i)

⊗ ξ (i+1)
+

n∑
i=0

(
n
i

)
q
q iξ (n−i+1)

⊗ ξ (i)

=

n+1∑
i=1

(
n

i − 1

)
q
ξ (n−i+1)

⊗ ξ (i)+

n∑
i=0

(
n
i

)
q
q iξ (n−i+1)

⊗ ξ (i)

=

n+1∑
i=0

((
n

i − 1

)
q
+ q i

(
n
i

)
q

)
ξ (n+1−i)

⊗ ξ (i)

=

n+1∑
i=0

(
n+ 1

i

)
q
ξ (n+1−i)

⊗ ξ (i). �

Lemma 3.6. Under the hypothesis of the proposition, we have for all i = 0, . . . , n,

δ(σ n(ξ))= 1⊗ σ i (ξ)+ q iσ n−i (ξ)⊗ 1.

Proof. We have

d(σ (x))= σ̃ (x)− σ(x)= q̃x + h− (qx + h)= q(x̃ − x)= qξ.

The analogous result holds for the endomorphism σ i. It follows that d(σ i(x))=q iξ

and we finish with Lemma 3.1. �

4. Twisted differential operators of infinite level

We are now able to define the ring of twisted differential operators (of infinite level).
We keep the previous notation.

Definition 4.1. If M and N are two A-modules, then a twisted differential operator
ϕ : M → N of order at most n (and infinite level) is an R-linear map whose
A-linearization

P ⊗A M

ϕ̃

))' // A⊗R M // N
x ⊗ s � // xϕ(s)

factors through P(n)σ ⊗A M.
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Note that the condition means that the restriction of ϕ̃ to I (n+1)
⊗A M is zero.

We might still write ϕ̃ for the map induced on P(n)σ ⊗A M when there is no risk of
confusion.

We denote by Diffn,σ (M, N ) the set of all twisted differential operators of order
at most n. Thus, we have a canonical isomorphism

Diffn,σ (M, N )' HomA(P(n)σ ⊗A M, N ),

where P(n)σ is seen as an A-module for the action on the right with respect to ⊗A

and for the action on the left with respect to HomA. In particular, Diffn,σ (M, N )
has the natural structure of a P(n)σ -module given by x ỹ · ϕ := x ◦ ϕ ◦ y, where
multiplication by y takes place in M while we multiply by x in N.

We will also denote by Diffσ (M, N ) the set of all twisted differential operators
of any order so that

Diffσ (M, N )' lim
−−→

HomA(P(n)σ ⊗A M, N ).

In particular, we see that Diffσ (M, N ) has the natural structure of a P̂σ -module.
In the case N = M, we will write Diffn,σ (M) and Diffσ (M). We also set

D(∞)
A/R,σ := Diffσ (A) and we will often drop the index A/R and simply write D(∞)

σ .

Definition 4.2. Let x be a twisted coordinate on A and ξ = x̃−x . Then the standard
basis of Diffn,σ (A) is the basis ∂ [k]σ dual to the images of the ξ (k) in P(n)σ . We call
∂ [k]σ the standard twisted divided differential operator of order k associated to x .

In other words (we will come back to this in Section 7), the canonical basis is
characterized by the property that for all k, n ∈ N,

∂̃
[k]
σ (ξ

(n))=

{
1 if k = n,
0 otherwise,

where ∂̃ [k]σ denotes the A-linearization of the R-linear endomorphism ∂ [k]σ of A.
Thus, when x is a twisted coordinate, any ϕ ∈ D(∞)

σ can be uniquely written as a
finite sum

∑
zk∂
[k]
σ with zk ∈ A (and conversely, any such sum is in D(∞)

σ ).
The next proposition shows that the A-module of twisted differential operators

could have also been defined by induction on the order n (this is sometimes more
convenient and does not require one to work out the theory of principal parts).
Instead, it uses the notion of twisted bracket for all ϕ ∈HomR(M, N ), for all x ∈ A,

[ϕ, x]σ = ϕ ◦ x − σ(x) ◦ϕ,

already used in [Le Stum and Quirós 2015b]. We will need this intermediate result:
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Lemma 4.3. Let M, N be two A-modules, ϕ ∈ HomR(M, N ) and x ∈ A. If we set
ϕx := [ϕ, x]σ , then

ϕ̃x = ϕ̃ ◦ (σ (ξ)⊗A IdM) : P ⊗A M→ N .

Proof. We do the computations in A⊗R M. Let y ∈ A and s ∈ M. Then

ϕ̃(σ (ξ)(y⊗ s))= ϕ̃((1⊗ x − σ(x)⊗ 1)(y⊗ s))

= ϕ̃(y⊗ xs)− ϕ̃(σ (x)y⊗ s)

= yϕ(xs)− σ(x)yϕ(s)

= yϕx(s)= ϕ̃x(y⊗ s). �

Proposition 4.4. Let M, N be two A-modules and ϕ ∈ HomR(M, N ). Then for all
n ∈ N, we have

ϕ ∈ Diffn,σ (M, N )⇔ for all x ∈ A, [ϕ, x]σ n ∈ Diffn−1,σ (M, N ).

Note that we can start the induction process with Diff0,σ (M, N )=HomA(M, N )
or with Diff−1,σ (M, N )= 0 if we prefer.

Proof. For x ∈ A, we set ϕx := [ϕ, x]σ n . Then we consider the linearizations

ϕ̃, ϕ̃x : P ⊗A M→ N

of ϕ and ϕx , respectively, and apply Lemma 4.3 to σ n so that

ϕ̃x = ϕ̃ ◦ (σ
n(ξ)⊗A IdM).

Thus we see that ϕ̃ = 0 on I (n+1)
⊗A M = I (n)σ n(I )⊗A M if and only if ϕ̃x = 0 on

I (n)⊗A M for all x ∈ A. In other words, ϕ̃ factors through P(n)σ ⊗A M if and only
if all ϕ̃x factor through P(n−1)σ ⊗A M. �

Corollary 4.5. A twisted differential operator of order at most n (and infinite level)
from M to N is an R-linear map ϕ : M→ N such that for all x0, . . . , xn ∈ A,

[[· · · [[ϕ, xn]σ n , xn−1]σ n−1 · · · ]σ , x0] = 0.

Remarks. (1) Be careful that, with the notation of Valery Lunts and Alexander L.
Rosenberg [1997], our Diffσ (M, N ) is different from their Diff(M, Nσ ) which is
defined by the condition for all x0, . . . , xn ∈ A,

[[· · · [[ϕ, xn]σ , xn−1]σ · · · ]σ , x0] = 0.

They only coincide when n = 0, 1.

(2) Our Diffσ (M,N ) should however coincide with some flavor of the Diffβ(M,N )
of Lunts and Rosenberg. More precisely, in order to define this module, they need a
G-grading on A and a bilinear map β : G×G→ R× (they use k and R for our R
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and A). In the simplest nontrivial case A = R[x] and β(m, n)= q−mn, we believe
that their Dβ(A) coincides with our D(∞)

A/R,σ but their Dq(A) is bigger (see [Iyer
and McCune 2002] for example).

(3) Charlotte Hardouin [2010, Definition 2.4] introduces what she calls an iterative
q-difference ring or IDq-ring for short. She chooses some nonzero q ∈ K where
K is a fixed algebraically closed field and endows the field A := K (x) of rational
functions on K with the automorphism σ(x) = qx . Then if we look carefully
at her conditions, we see that an IDq-ring is a finitely generated A-algebra B
with a structure of D(∞)

A/K ,σ -module, denoted by (ϕ, y) 7→ ϕ(y), such that the map
y 7→ σ(y) is an automorphism of the ring B and for all k ∈ N, for all y, z ∈ B,

(6) ∂ [k]σ (yz)=
∑

i+ j=k

(σ i∂ [ j]σ )(y)∂
[i]
σ (z).

Note that B becomes a twisted A-algebra, that is in fact inversive (which simply
means that σ is bijective on B, a condition that is built into Hardouin’s definition),
and that condition (6) is automatic if the q-characteristic of B is zero.

Proposition 4.6. Composition of twisted differential operators gives a twisted
differential operator. Moreover, its order is at most the sum of the order of the
components.

Proof. We let ϕ :M→ N be a twisted differential operator of order n andψ : L→M
a twisted differential operator of order m and consider the factorization

P ⊗A L δ⊗Id
−−−→ P ⊗A P ⊗A L Id⊗Aψ̃

−−−→ P ⊗A M ϕ̃
−−→ N

of Lemma 1.2. The map ϕ̃ factors through P(n)σ ⊗A M and Id⊗ψ̃ factors through
P⊗A P(m)σ⊗A L . Therefore, their composite factors through P(n)σ⊗A P(m)σ⊗A L and
it follows from Corollary 3.4 that the whole thing will factor through P(n+m)σ ⊗ L .
Thus, ϕ ◦ψ is a twisted differential operator of order at most m+ n. �

It is sometimes useful to have a general formula for the commutation of twisted
differential operators with the twisted coordinate x :

Proposition 4.7. We have for all k ∈ N \ {0},

∂ [k]σ ◦ x = σ k(x)∂ [k]σ + ∂
[k−1]
σ .

Proof. In order to make the proof easier to understand, we will still write x̃ =
1⊗ x ∈ P, but we will denote the multiplication maps by

A mx
−→ A, y 7−→ xy and P m x̃

−→ P ϕ 7−→ x̃ϕ.

Then it is easy to see that m x̃ splits as

P δ
−→ P ⊗A P IdP ⊗Am̃x

−−−−−→ P,
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where m̃x denotes the linearization of mx . It then follows from Lemma 1.2 that

˜
∂
[k]
σ ◦mx = ∂̃

[k]
σ ◦m x̃ .

On the other hand, we have

ξ (n+1)
= ξ (n)σ n(ξ)= ξ (n)(x̃ − σ n(x))= x̃ξ (n)− σ n(x)ξ (n),

from which we derive x̃ξ (n) = ξ (n+1)
+σ n(x)ξ (n). Putting all these together, we get( ˜

∂
[k]
σ ◦mx

)
(ξ (n))=

(
∂̃
[k]
σ ◦m x̃

)
(ξ (n))

= ∂̃
[k]
σ (x̃ξ (n))

= ∂̃
[k]
σ (ξ

(n+1)
+ σ n(x)ξ (n))=


1 if n = k− 1,
σ k(x) if n = k,
0 otherwise.

In other words, we have

∂ [k]σ ◦mx = σ
k(x)∂ [k]σ + ∂

[k−1]
σ . �

Corollary 4.8. If x ∈ A×, then for all k ∈ N \ {0},

∂ [k]σ ◦ x−1
=

k∑
i=0

(−1)i∏i
j=0 σ

k− j (x)
∂ [k−i]
σ .

Proof. Using for a moment the convention ∂ [−1]
σ = 0, which makes Proposition 4.7

formally valid for k = 0, we compute

k∑
i=0

(−1)i∏i
j=0 σ

k− j (x)
∂ [k−i]
σ ◦ x

=

k∑
i=0

(−1)i∏i
j=0 σ

k− j (x)
(σ k−i (x)∂ [k−i]

σ + ∂ [k−i−1]
σ )

=

k∑
i=0

(−1)i∏i−1
j=0 σ

k− j (x)
∂ [k−i]
σ +

k−1∑
i=0

(−1)i∏i
j=0 σ

k− j (x)
∂ [k−i−1]
σ = ∂ [k]σ . �

Proposition 4.9. Let M, N be two A-modules.

(1) Let R → R′ be any morphism of commutative rings and A′ := R′ ⊗R A,
endowed with IdR′ ⊗RσA. Then we have

DiffσA′
(A′⊗A M, A′⊗A N )' A′⊗A DiffσA(M, N ).

(2) If A→ B is a twisted localization and M is finitely presented, then we have

DiffσB (B⊗A M, B⊗A N )' B⊗A DiffσA(M, N ).
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Proof. Follows from propositions 1.6 and 1.7 and the fact that direct limits commute
with tensor product (and localization is flat). �

Remark. (1) As a particular case, we will have

D(∞)
A′/R′,σ ′ ' A′⊗A D(∞)

A/R,σ and D(∞)
B/R,σ ' B⊗A D(∞)

A/R,σ .

(2) When A is a quantum R-algebra, we will always have (see the remark following
Proposition 1.10) a natural isomorphism of A-modules

D(∞)
A/R,σ ' A⊗R[x]D

(∞)
R[x]/R,σ .

Note however that the ring structure (or equivalently the action on A) plays a
fundamental role.

Proposition 4.10. We have Diff0,σ (A)= A and Diff1,σ (A)= A⊕TA/R,σ .

Proof. The first assertion follows from the fact that P(0)σ = A and the second one
from Proposition 2.2. �

Recall that we introduced in [Le Stum and Quirós 2015b] the ring DA/R,σ of
small twisted differential operators of A/R as the smallest subring of EndR(A)
containing both A and TA/R,σ . Again, we will simply write Dσ when we believe
that there is no risk of confusion. Then we have the following:

Corollary 4.11. The ring of small twisted differential operators is contained inside
the ring of twisted differential operators of infinite level: we have

DA/R,σ ⊂ D(∞)
A/R,σ .

When there exists a twisted coordinate, we can make the twisted Weyl algebra
enter the picture and we have:

Corollary 4.12. If x is a twisted coordinate on A, there exists an epi-mono factor-
ization

DA/R,σ � DA/R,σ ↪→ D(∞)
A/R,σ .

Proof. There exists a natural map Dσ → Dσ that sends the parameter ∂σ of Dσ,∂

to the corresponding endomorphism ∂A,σ of A. And it is surjective since ∂A,σ is a
generator of Tσ . �

None of the maps are in general bijective, even in characteristic zero. However,
as we will see in Theorem 6.3 below, there are some important cases where both
maps are bijective.

At some point, we will need to be able to compare twisted differential operators
with respect to σ and twisted differential operators with respect to the powers (or
roots) of σ .
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Proposition 4.13. For all m > 0, if M, N are two A-modules, we have

Diffσm (M, N )⊂ Diffσ (M, N ).

Proof. Since

I (mn)σ = Iσ(I ) · · · σmn(I )⊂ Iσm(I ) · · · σmn(I )= I (n)σm ,

there exists an natural surjective map

P(nm)σ → P(n)σm ,

from which we derive an inclusion Diffn,σm (M, N )⊂ Diffmn,σ (M, N ). �

Recall from [Le Stum and Quirós 2015a] that a system of roots of σ is a family
σ := {σn}n∈S , with S⊂N, of R-linear ring endomorphisms of A such that σm

n = σ
m′
n′

whenever m/n = m′/n′ and σ n
n = σ . We will always assume that S is filtering for

division in the sense that if m,m′ ∈ S, then there always exists m′′ ∈ S such that
m |m′′ and m′ |m′′. We will call the pair (A, σ ) an S-twisted R-algebra.

Definition 4.14. Let σ :={σn}n∈S be a system of roots of σ . Then the ring of twisted
differential operators (of infinite level) D(∞)

A/R,σ is the R-subalgebra of EndR(A)
generated by all σn-differential operators (of infinite level) for all n ∈ S.

Proposition 4.13 then has the following consequence:

Corollary 4.15. If σ is a system of roots of σ , we have

D(∞)
A/R,σ =

⋃
D(∞)

A/R,σn
.

Note that in section 3 of [Le Stum and Quirós 2015b] we defined in exactly the
same way the ring of small twisted differential operators DA/R,σ for any family σ
(not necessarily a root system), but we showed that the analogous statement is not
true in general.

5. Twisted Taylor series

We will develop here the formalism of twisted Taylor maps which describes the
formal solutions of twisted differential modules. Notations are as before.

Lemma 5.1. If M is a D(∞)
A/R,σ -module, then the canonical map D(∞)

A/R,σ→EndR(M)
induces, for all n ∈ N, a PA/R,(n)σ -linear map

Diffn,σ (A)→ Diffn,σ (M).

Hence, there exists a canonical P̂σ -linear map

D(∞)
A/R→ Diffσ (M).
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Proof. Since the canonical map λ : D(∞)
σ → EndR(M) is a morphism of A-algebras,

it will commute with the action of P. More precisely, for all x, y ∈ A and ϕ ∈ D(∞)
σ ,

we have (see Section 4 for the definition of the action of P on D(∞)
σ )

λ(x ỹ ·ϕ)= λ(x ◦ϕ ◦ y)= x ◦ λ(ϕ) ◦ y = x ỹ · λ(ϕ).

In particular, if ϕ̃ is zero on I (n+1), then λ̃(ϕ) will be zero on I (n+1)
⊗A M. It means

that the image of Diffn,σ (A) falls inside Diffn,σ (M). �

We will usually denote by ϕM ∈ Diffσ (M) the image of ϕ ∈ D(∞)
σ . In other

words, for ϕ ∈ D(∞)
σ and s ∈ M, we will have ϕM(s)= ϕs.

Definition 5.2. A twisted Taylor structure (of infinite level) on an A-module M is
a compatible family of A-linear maps θn : M→ M ⊗A P(n)σ (called twisted Taylor
maps) with θ0 = Id, making commutative all the diagrams

M
θm //

θn+m

��

M ⊗A P(m)σ

θn⊗Id
��

M ⊗A P(n+m)σ
Id⊗δn,m // M ⊗A P(n)σ ⊗A P(m)σ

For example, the canonical twisted Taylor structure on A is defined by the family
of composite maps

A θ //

θn !!

P

����
P(n)σ

where the upper map is the Taylor map x 7→ x̃ given by the action on the right (see
Section 1).

There exists an obvious notion of morphism of A-modules endowed with a
twisted Taylor structure and they form a category.

Proposition 5.3. Let M be an A-module endowed with a twisted Taylor structure
(θn)n∈N. Then there exists a unique structure of a D(∞)

A/R,σ -module on M such that,
for all n ∈ N, we have

(7) θn(s)=
∑

sk ⊗ fk⇒ for all ϕ ∈ Diffn,σ (A), ϕM(s)=
∑

ϕ̃( fk)sk .

This is functorial in M in the sense that any morphism of A-modules M→ N which
is compatible with some twisted Taylor structures on M and N will automatically
be D(∞)

A/R,σ -linear. Moreover, this is an equivalence (an isomorphism) of categories
if all P(n)σ are finite projective (for the left A-module structure).

Note that the last condition is satisfied if there exists a twisted coordinate on A.
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Proof. First of all, there exists for all n ∈ N a canonical morphism of A-modules

(8) M ⊗A P(n)σ → HomA(HomA(P(n)σ , A),M),

which is automatically P(n)σ -linear. Now, A-linear maps

(9) θn : M→ M ⊗A P(n)σ

correspond bijectively to P(n)σ -linear maps

εn : P(n)σ ⊗A M→ M ⊗A P(n)σ ,

and we can compose with the map (8) in order to get

P(n)σ ⊗A M→ HomA(HomA(P(n)σ , A),M),

or equivalently,

HomA(P(n)σ , A)→ HomA(P(n)σ ⊗A M,M).

In other words, we obtain P(n)σ -linear maps

(10) Diffn,σ (A)→ Diffn,σ (M), ϕ 7→ ϕM .

Formula (7) follows directly from the construction. Compatibility for various n
in (10) follows from compatibility for various n in (9). We need to show that
the corresponding map D(∞)

σ → End(M) is a morphism of rings. To do that, one
can use the description of composition of twisted differential operators given in
Proposition 4.6: we need to verify that the maps (9) are compatible with δ which is
exactly the condition in the definition of Taylor structure.

This construction is clearly functorial. Moreover, if P(n)σ is finite projective (for
the left A-module structure), then the map (8) is actually an isomorphism. And it
follows from Lemma 5.1 that a D(∞)

σ -module structure on M will provide us with a
compatible family of maps as in (10). �

Definition 5.4. Let M be an A-module endowed with a twisted Taylor structure.
Then the twisted Taylor map of M is the map

θ̂ = lim
←−−

θn : M 7→ M⊗̂A P̂σ := lim
←−−

M ⊗A P(n)σ .

The twisted Taylor series of s ∈ M is θ̂ (s) ∈ M⊗̂A P̂σ .

There exists a commutative diagram

M θ̂ //

θ̂
��

M⊗̂A P̂σ

θ̂⊗̂ Id
��

M⊗̂A P̂σ
Id ⊗̂δ̂ // M⊗̂A P̂σ ⊗̂A P̂σ

and the action of A on P̂σ on the right is given by the Taylor map of A.
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In practice, we will only consider the case of finitely presented A-modules M,
and then the completed tensor product is the usual tensor product M ⊗A P̂σ .

We just showed in Proposition 5.3 that any D(∞)
σ -module comes with a canonical

twisted Taylor structure. When there exists a twisted coordinate on A, we can
describe it explicitly as follows:

Proposition 5.5 (twisted Taylor formula). Assume that x is a twisted coordinate on
A and let ξ = x̃ − x. If M is a D(∞)

σ -module, we have for all n ∈ N,

θn(s)=
n∑

k=0

∂ [k]σ (s)⊗ ξ
(k)
∈ M ⊗A P(n)σ

and

θ̂ (s)=
∞∑

k=0

∂ [k]σ (s)⊗ ξ
(k)
∈ M⊗̂A P̂σ .

Proof. This follows from equation (7): if we write

θn(s)=
n∑

k=0

sk ⊗ ξ
(k),

we will have for all l ∈ N,

∂ [l]σ (s)=
n∑

k=0

∂̃ [l]σ (ξ
(k))sk = sl . �

In particular, we see that, if z ∈ A, then the image in P̂σ of z̃ = 1⊗ z ∈ P is the
twisted Taylor series

θ̂ (z)=
∑

k

∂ [k]σ (z)ξ
(k).

This explains why it is legitimate to call the map z 7→ z̃ the Taylor map.

Examples. (1) If x is a twisted coordinate on A, we have θ̂ (x)= x + ξ and

θ̂ (x2)= x2
+ (x + σ(x))ξ + ξ 2.

(2) Assume that x ∈ A× is an invertible twisted coordinate on A and that σ(x)=qx
with q ∈ R×. Then we have

θ̂
(1

x

)
=

∞∑
k=0

(−1)k
ξ (k)

q
k(k+1)

2 xk+1
=

1
x
−

ξ

qx2 +
ξ (2)

q3x3 − · · · .

Remark. If A is a twisted localization of R[x], then there exists at most one R-
algebra homomorphism θ̂ : A→ P̂σ such that θ̂ (x)= x̃ . It means that the twisted
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Taylor map

A θ̂
−→ P̂σ , z 7−→

∞∑
k=0

∂ [k]σ (z)ξ
(k)

is the unique such map.

6. Quantum differential operators

In the quantum situation, we can be a lot more explicit as we shall see now. Thus,
we assume in this section that A is a quantum R-algebra: we are given a twisted
coordinate x such that σ(x)= qx + h with q, h ∈ R.

Proposition 6.1. We have for all k, l ∈ N,

∂ [k]σ ◦ ∂
[l]
σ =

(
k+ l

l

)
q
∂ [k+l]
σ .

Proof. It follows from Lemma 1.2 that

˜
∂
[k]
σ ◦ ∂

[l]
σ = ∂̃

[k]
σ ◦ (Id⊗∂̃

[l]
σ ) ◦ δ.

Thus, using Theorem 3.5, we see that

(
˜
∂
[k]
σ ◦ ∂

[l]
σ )(ξ

(n))= ∂̃
[k]
σ

(
(Id⊗∂̃ [l]σ )

( n∑
i=0

(
n
i

)
q
ξ (n−i)

⊗ ξ (i)
))

=

n∑
i=0

(
n
i

)
q
∂̃
[k]
σ

(
ξ (n−i)

⊗ ∂̃
[l]
σ (ξ

(i))
)

=

(
n
l

)
q
∂̃
[k]
σ (ξ

(n−l))=

{(k+l
l

)
q if n = k+ l,

0 otherwise.
�

Recall from [Le Stum and Quirós 2015a] that if m ∈N, we write (m)q :=
(m

1

)
q =

1+ · · ·+ qm−1 and we define by induction (m)q ! := (m)q(m− 1)q !.

Corollary 6.2. We have for all k ∈ N, for all z ∈ A,

∂k
σ (z)= (k)q !∂

[k]
σ (z).

Proof. We proceed by induction on k and obtain

∂k+1
σ (z)= ∂k

σ (∂σ (z))= (k)q !∂
[k]
σ (∂σ (z))

= (k)q !(∂ [k]σ ∂σ )(z)

= (k)q !
(

k+ 1
1

)
q
∂ [k+1]
σ (z)= (k+ 1)q !∂ [k+1]

σ (z). �
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The next result is important because it describes explicitly the relations between
the different rings of twisted differential operators introduced so far. Recall from
Corollary 4.12 that there exists an epi-mono factorization

DA/R,σ � DA/R,σ ↪→ D(∞)
A/R,σ .

Recall from [Le Stum and Quirós 2015a] that the ring R is said to be q-flat
(resp. q-divisible) if (m)q is never a zero-divisor (resp. is always invertible) unless
(m)q = 0 and also that the q-characteristic of R is the smallest positive integer p
such that (p)q = 0, if it exists, and 0 otherwise.

Theorem 6.3. Assume R is q-divisible and let A be a q-R-algebra. Then:

(1) If q -char(A)= 0, we have

DA/R,σ = DA/R,σ = D(∞)
A/R,σ .

(2) If q -char(A)= p > 0, we have

DA/R,σ/∂
p
σ ' DA/R,σ ' D(∞)

A/R,σ/K [p]σ ,

where K [p]σ is the free A-module generated by all ∂ [k]σ for k ≥ p.

Note that with some extra conventions, assertions (1) and (2) could be combined.

Proof. We use the formula from Corollary 6.2.
In situation (1), all q-integers are invertible in A and the composite map sends the

canonical basis {∂k
σ }k∈N of Dσ bijectively onto a basis of D(∞)

σ . The first assertion
follows.

In situation (2), we have (p)q = 0 in A and the element ∂ p
σ ∈Dσ is therefore sent

to 0. But since R is q-divisible, we have (m)q ∈ R× for m < p, and the composite
map sends the family {∂k

σ }k<p of Dσ bijectively onto a basis of D(∞)
σ /K [p]σ . �

Remarks. (1) The hypothesis in (1) is satisfied in the classical cases of differential
equations, finite difference equations and q-difference equations.

More precisely, it is satisfied for example when
(a) q = 1 and R is a Q-algebra, or
(b) q is not equal to zero, not a root of 1 and belongs to a subfield K of R.
The hypothesis in (2) is satisfied for differential equations and finite difference
equations in positive characteristic as well as in the classical quantum case.
More precisely, they are satisfied for example when
(a) q = 1 and R is an Fp-algebra, or
(b) q is a nontrivial p-th root of 1 (p not necessarily prime) and belongs to a

subfield K of R, or
(c) q is a nontrivial p-th root of 1 with p prime (but q does not necessarily

belong to a subfield of R).
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(2) Since both DA/R,σ and D(∞)
A/R,σ commute with extensions of R (although

DA/R,σ does not), and DA/R,σ always commutes with extensions of A, we can
sometimes (see the remark following Proposition 1.10) reduce questions to
the generic case

(11) R =Q(t)[s], A = R[x], q = t and h = s,

and work as well over the latter. In this case, thanks to the theorem, we can
identify DA/R,σ with D(∞)

A/R,σ .

(3) The same proof shows that if A is a twisted R-algebra which is only q-flat
(but not necessarily q-divisible), then
(a) if q -char(A)= 0, then DA/R,σ = DA/R,σ ;
(b) if q -char(A)= p > 0, then DA/R,σ/∂

p
σ ' DA/R,σ .

The end of this section will be devoted to giving explicit formulas. They are
usually quite formal to prove in the ring of twisted differential operators of infinite
level and their analog in the twisted Weyl algebra is then easily obtained thanks to
Theorem 6.3.

Proposition 6.4. In D(∞)
A/R,σ , for all k > 0,

∂ [k]σ ◦ x = qk x∂ [k]σ + (k)qh∂ [k]σ + ∂
[k−1]
σ .

In DA/R,σ , for all k > 0,

∂k
σ ◦ x = qk x∂k

σ + (k)q(h∂
k
σ + ∂

k−1
σ ).

Proof. The first assertion is simply a reformulation of Proposition 4.7. For the
second one, after a base change, we may reduce to the generic case (11) and thus
assume that R is q-divisible and q -char(R)= 0. And we may then replace Dσ with
D(∞)
σ in which case we fall back onto the first equality. �

Note that in order to prove the second formula, we cannot use Corollary 6.2
directly: our equality takes place in the Weyl algebra and is not just an assertion
about endomorphisms of A.

We concentrate now on the case σ(x)= qx .

Proposition 6.5. Assume h = 0, q ∈ R× and x ∈ A×. Then in D(∞)
A/R,σ , for all k ∈N,

∂ [k]σ ◦ x−1
=

k∑
i=0

(−1)i q−
(2k−i)(i+1)

2 x−i−1∂ [k−i]
σ .

In DA/R,σ , for all k ∈ N,

∂k
σ ◦ x−1

=

k∑
i=0

(−1)i q−
(2k−i)(i+1)

2 (k)q · · · (k− i + 1)q x−i−1∂k−i
σ .
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Proof. The first assertion is a particular case of Corollary 4.8 and the second one
follows by the standard generic argument. �

Proposition 6.6. Assume that h = 0. Then in D(∞)
A/R,σ , for all k, n ∈ N,

∂ [k]σ ◦ xn
=

k∑
i=0

q(n−i)(k−i)
(

n
i

)
q
xn−i∂ [k−i]

σ .

In DA/R,σ , for all k, n ∈ N,

∂k
σ ◦ xn

=

k∑
i=0

q(n−i)(k−i)(i)q !
(

k
i

)
q

(
n
i

)
q
xn−i∂k−i

σ .

Proof. As usual, the second formula will follow from the first, which we prove
directly by induction on n. We have

∂ [k]σ ◦ xn
=

k∑
i=0

q(n−1−i)(k−i)
(

n− 1
i

)
q
xn−1−i∂ [k−i]

σ ◦ x

=

k∑
i=0

q(n−1−i)(k−i)
(

n− 1
i

)
q
xn−1−i (qk−i x∂ [k−i]

σ + ∂ [k−i−1]
σ )

=

k∑
i=0

q(n−1−i)(k−i)
(

n− 1
i

)
q
xn−1−i qk−i x∂ [k−i]

σ

+

k∑
i=0

q(n−1−i)(k−i)
(

n− 1
i

)
q
xn−1−i∂ [k−i−1]

σ

=

k∑
i=0

q(n−i)(k−i)
(

n− 1
i

)
q
xn−i∂ [k−i]

σ

+

k−1∑
i=0

q(n−i)(k−i+1)
(

n− 1
i − 1

)
q
xn−i∂ [k−i]

σ

=

k∑
i=0

q(n−i)(k−i)
((

n− 1
i

)
q
+ qn−i

(
n− 1
i − 1

)
q

)
xn−i∂ [k−i]

σ

=

k∑
i=0

q(n−i)(k−i)
(

n
i

)
q
xn−i∂ [k−i]

σ . �

Corollary 6.7. When h = 0, we have for all n ∈ N,

∂ [k]σ (x
n)=

{(n
k

)
q xn−k if n ≥ k,

0 otherwise,
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and

∂k
σ (x

n)=

{
(n)q · · · (n− k+ 1)q xn−k if n ≥ k,
0 otherwise.

Proof. The first assertion follows from the proposition and the second one uses the
inclusion DA/R,σ ⊂ D(∞)

A/R,σ . �

Corollary 6.8. Assume that h = 0. Then we have for all n ∈ N \ {0},

∂σ (xn)= (n)q xn−1.

If x ∈ A× and q ∈ R×, then the formula actually holds for all n ∈ Z.

Proof. Only the second part needs a proof: if x is invertible, we have for n > 0

0= ∂σ (1)= ∂σ (xnx−n)

= ∂σ (xn)x−n
+ σ(xn)∂σ (x−n)

= (n)q xn−1x−n
+ qnxn∂σ (x−n)= (n)q x−1

+ qnxn∂σ (x−n),

from which we derive, when q ∈ R×,

∂σ (x−n)=−q−n(n)q x−n−1
= (−n)q x−n−1. �

7. Formal deformations of twisted differential operators

In this section, we study the relation between twisted differential operators relative
to various endomorphisms of A. We are particularly interested in the comparison
of our twisted differential operators with usual differential operators. We assume
that there exists a twisted coordinate x , that we fix for the rest of the section, and
we write yσ := x − σ(x).

Recall that the ring D(∞)
σ of differential operators (of infinite level) comes with a

natural increasing filtration by A-submodules

D(∞)
σ = ∪

∞

m=0 Diffm,σ (A),

which is called the order filtration. The choice of the twisted coordinate determines
a splitting of this filtration. To see this, we let for all m ∈N, K [m]σ ⊂ D(∞)

σ be the
free A-module generated by all ∂ [k]σ for k ≥ m. Note that this is actually a filtration
by left ideals.

Definition 7.1. The decreasing filtration by the K [m]σ is called the ideal filtration
on D(∞)

σ . The module of twisted differential operators of infinite level and infinite
order on A is

D̂(∞)
A/R,σ = lim

←−−
D(∞)
σ /K [m+1]

σ .

We might again drop the index A/R and write D̂(∞)
σ . The decreasing filtration of

D̂(∞)
σ by the closures K̂ [m]σ of the K [m]σ will also be called the ideal filtration.
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Remarks. (1) The ideal filtration is separated, which means that ∩m K [m+1]
σ ={0}

and it follows that D(∞)
σ ⊂ D̂(∞)

σ . Actually, any ϕ ∈ D̂(∞)
σ can be uniquely

written as an infinite sum
∑
∞

0 zk∂
[k]
σ with zk ∈ A (and conversely). In other

words, we have the isomorphisms of A-modules

D(∞)
σ =

⊕
k∈N

A∂ [k]σ and D̂(∞)
σ =

∏
k∈N

A∂ [k]σ .

(2) The ideal filtration defines a splitting of the order filtration in the sense that

D(∞)
σ = Diffm,σ (A)⊕ K [m+1]

σ and D̂(∞)
σ = Diffm,σ (A)⊕ K̂ [m+1]

σ

as A-modules.

(3) D̂(∞)
σ is not a ring in general. More precisely, multiplication on D(∞)

σ is not
continuous for the ideal filtration: we always have ∂ [m]σ → 0 when m→∞
but, if σ(x)= qx and x ∈ A× for example, we can see that for all m ∈ N,

∂ [m]σ ◦ x−1
≡ ∂ [m]σ (x−1)= x−m−1

6= 0 mod K [1]σ .

If A is any ring and A[ξ ] denotes the polynomial ring in one variable ξ , then the
natural filtration on HomA(A[ξ ], A) is the decreasing filtration by the kernels of
the surjections

HomA(A[ξ ], A)→ HomA(A[ξ ]≤m, A),

where A[ξ ]≤m denotes as before the A-module of polynomials of degree at most m.
The corresponding topology will be called the natural topology of HomA(A[ξ ], A).
Note that HomA(A[ξ ], A) is separated and complete for the natural topology:

lim
←−−

HomA(A[ξ ]≤m, A)= HomA(lim−−→ A[ξ ]≤m, A)= HomA(A[ξ ], A).

Lemma 7.2 (formal density). The map

A[ξ ] → PA/R, ξ 7→ x̃ − x

induces by duality an isomorphism of topological A-modules

(12) D̂(∞)
A/R,σ −→

∼ HomA(A[ξ ], A).

More precisely, the ideal filtration corresponds to the natural filtration.

Proof. It follows from Corollary 1.13 that the cokernel of the map

A[ξ ]≤m ↪→ A[ξ ] → P � P(n)σ

is generated by ξ (k) for m < k ≤ n. Moreover, this map is injective when m ≤ n.
Dually, it means that the corresponding map

Diffn,σ (A)' HomA(P(n)σ , A)→ HomA(A[ξ ]≤m, A)
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is surjective for m ≤ n and that its kernel is exactly K [m+1]
σ ∩ Diffn,σ (A) (it is

generated by ∂ [k]σ for n ≥ k > m). Taking direct limits on the left, we see that the
map

D(∞)
σ → HomA(A[ξ ]≤m, A)

is surjective with kernel exactly K [m+1]
σ . In other words, we get a canonical isomor-

phism of A-modules

D(∞)
σ /K [m+1]

σ −→∼ HomA(A[ξ ]≤m, A).

Thus, taking inverse limits on both sides gives the result. �

Remarks. (1) By construction, there exists a commutative diagram

D(∞)
A/R,σ

� � //
� _

��

EndR(A)

'

��
HomA(P, A)

��
D̂(∞)

A/R,σ
' // HomA(A[ξ ], A)

(2) We will usually denote by ϕ̃ ∈HomA(A[ξ ], A) the image of ϕ ∈ D̂(∞)
A/R,σ . This

is compatible with the previous notation for linearization. In particular, we
have for all k, n ∈ N,

∂̃
[k]
σ (ξ

(n))=

{
1 if k = n,
0 otherwise.

(3) When A = R[x], we actually get

D(∞)
A/R,σ ↪→ D̂(∞)

A/R,σ −→
∼ HomA(A[ξ ], A)−→∼ HomA(P, A)−→∼ EndR(A),

and D̂(∞)
A/R,σ is a ring in this very special case.

(4) There exists a complex analytic analog of the density lemma (for usual differ-
ential operators) as explained by Zoghman Mebkhout and Luis Narváez [1998]:
the ring of algebraic differential operators is dense in the ring of continuous
endomorphisms of the structural sheaf.

Although it is difficult to give an explicit description of the isomorphism (12),
we can at least show the following:

Lemma 7.3. We have for all n ∈ N \ {0},

∂̃σ (ξ
n)= (σ (x)− x)n−1.
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More generally, if τ is another R-algebra endomorphism of A, we have for all
n ∈ N \ {0},

∂̃σ (ξ
(n)τ )=

n−1∏
i=1

(σ (x)− τ i (x)),

where ξ (n)τ := ξτ(ξ) · · · τ n−1(ξ) denotes the twisted power with respect to the
endomorphism τ .

Proof. By definition, ∂̃σ is the unique A-linear function on A[ξ ] such that ∂̃σ (ξ (n))=
1 for n = 1 and 0 otherwise. We consider now the unique A-linear function u on
A[ξ ] such that u(ξ n) = (σ (x)− x)n−1 for n > 0 and u(1) = 0. We want to show
that u = ∂̃σ . The map u may be seen as the composition of division by ξ on A[ξ ]
(after removing the constant term) and evaluation at σ(x)− x . But we have

ξ (n) := ξσ (ξ) · · · σ n−1(ξ),

and we know that σ(ξ) = ξ + x − σ(x). Therefore, it is clear that for n ≥ 2, we
will get u(ξ (n))= 0. Of course, for n = 0 we have ξ (n) = 1 and we also obtain 0.
Finally, for n = 1, we have ξ (n) = ξ and we get 1.

The proof of the second formula follows the same lines. From the first part,
we can interpret ∂̃σ as the composition of division by ξ on A[ξ ] and evaluation
at σ(x) − x . We want to apply this to ξ (n)τ =

∏n−1
i=0 τ

i (ξ) and we know that
τ i (ξ)= ξ + x − τ i (x). Thus, we see that

∂̃σ (ξ
(n)τ )=

n−1∏
i=1

(σ (x)− x + x − τ i (x))=
n−1∏
i=1

(σ (x)− τ i (x)). �

We can actually derive a remarkable consequence of the density lemma (recall
that when τ is an endomorphism of the R-algebra A, we call any twisted coordinate
relative to τ a τ -coordinate):

Proposition 7.4 (formal deformation). If x is a also a τ -coordinate for another
R-endomorphism τ of A, then there exists a canonical isomorphism of topological
A-modules (that depends on x)

D̂(∞)
A/R,σ −→

∼ D̂(∞)
A/R,τ .

More precisely, it is compatible with the ideal filtrations.

Recall that the hypothesis is always satisfied when A is a τ -twisted localization
of R[x].

Proof. We may just compose the isomorphism of the formal density Lemma 7.2
with the inverse of the analogous isomorphism for τ . �
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When the coordinate x is fixed, we may (and will) identify these two topological
(or even, filtered) A-modules. It is worth mentioning a particular case of this
corollary that is of great interest (this is the case τ = IdA, in which case we say
usual coordinate instead of τ -coordinate):

Corollary 7.5. Assume that x is not only a σ -coordinate, but also a usual coordi-
nate on A. Then there exists a canonical isomorphism

D̂(∞)
A/R,σ −→

∼ D̂(∞)
A/R.

Note that the hypothesis is always satisfied when A is a localization of R[x].
More generally, when A is smooth over R, a usual coordinate is the same thing as
an étale coordinate.

Remark. (1) In theorem 2 of the introduction to [Pulita 2017], Pulita shows that,
in the p-adic world, some differential modules have the natural structure of a σ -
module. The main idea is to realize a formal solution of the differential module
as formal solution of some σ -module. This is analogous to the way we derive
the formal deformation theorem from the formal density lemma. It seems that
the first result in this direction was obtained by André and Di Vizio [2004].

(2) In [Gros and Le Stum 2014], Michel Gros and Bernard Le Stum were able
to prove a quantum Simpson’s correspondence. Assume R = Z[q], where q
is a p-th root of unity with p prime, A is the polynomial ring and σ(x)= qx .
Then the category of A-modules endowed with a quasinilpotent q-derivation is
equivalent to the category of A-modules endowed with an A-linear quasinilpo-
tent endomorphism. This is derived from an isomorphism quite analogous to
(12) which reads

D̂q ' EndẐq
(Ẑq A).

(3) We want to insist on the fact that the isomorphism of Corollary 7.5 is not an
isomorphism of rings. Actually, neither side of this isomorphism is a ring. In
order to achieve this goal, it would be necessary to refine the topology. After the
remarks following Corollary 7.7, we will give some elementary but nontrivial
examples over the complex numbers, and refer the reader to forthcoming
articles for a detailed study of the ultrametric and the q-characteristic zero cases.

We give now some explicit formulas in order to express the twisted derivation
from one world as a twisted differential operator in another world:

Proposition 7.6. Assume that τ is some other R-endomorphism of A and x is also
a τ -coordinate. Then we have

∂σ =

∞∑
k=1

( k−1∏
i=1

(σ (x)− τ i (x))
)
∂ [k]τ .
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Proof. This follows directly by duality from Lemma 7.3. �

Corollary 7.7. Assume that x is also a usual coordinate on A. Then

∂σ =

∞∑
k=1

(σ (x)− x)k−1∂ [k]

and

σ =

∞∑
k=0

(σ (x)− x)k∂ [k].

Proof. The first assertion follows directly from the proposition and the other one is
deduced from the equality σ = 1− yσ ∂σ . �

Remarks. (1) In the case σ(x)= qx , the formulas read

(13) ∂σ =

∞∑
k=1

(q − 1)k−1xk−1∂ [k] and σ =

∞∑
k=0

(q − 1)k xk∂ [k].

(2) In the case σ(x)= x + h, the formulas read

(14) ∂σ =

∞∑
k=1

hk−1∂ [k] and σ =

∞∑
k=0

hk∂ [k].

Examples. (1) Consider the differential equation

ds
dz
= s

over the complex numbers. If we use the second formula of (13), we see that
the corresponding q-difference equation is given by

s(qz)= e(q−1)zs(z).

If we use (14) instead, we obtain the difference equation

s(z+ h)= ehs(z).

(2) Consider now the differential equation

ds
dz
=

a
z

s

for some a ∈ C. Then the q-difference equation will be given by

s(qz)= qas(z),

and the difference equation is

s(z+ h)=
( z+h

z

)a
s(z).
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We may also go the other way and express the usual derivation in term of twisted
derivations. We only do the classical cases:

Corollary 7.8. Assume that x is also a usual coordinate on A. Then

(1) If σ(x)= qx , we have

∂ =

∞∑
k=1

(1− q)k−1(k− 1)q !xk−1∂ [k]σ .

(2) If σ(x)= x + h, we have

∂ =

∞∑
k=1

(−1)k−1hk−1(k− 1)!∂ [k]σ .

Proof. In the formula of Proposition 7.6 we replace τ by σ and σ by Id respectively,
in order to obtain

∂ =

∞∑
k=1

k−1∏
i=1

(x − q i x)∂ [k]σ =
∞∑

k=1

k−1∏
i=1

(1− q i )xk−1∂ [k]σ

=

∞∑
k=1

(1− q)k−1
k−1∏
i=1

(i)q xk−1∂ [k]σ =

∞∑
k=1

(1− q)k−1(k− 1)q !xk−1∂ [k]σ

in the first case, and

∂ =

∞∑
k=1

k−1∏
i=1

(−ih)∂ [k]σ =
∞∑

k=1

(−h)k−1(k− 1)!∂ [k]σ

in the other one. �

We may also apply Proposition 7.6 in order to make more precise the statement
of Proposition 4.13.

Corollary 7.9. Assume that x is also a σm-coordinate for A over R, then we have

∂σm =

m∑
k=1

( k−1∏
i=1

(σm(x)− σ i (x))
)
∂ [k]σ .

One can give a more concrete formula in the quantum situation:

Corollary 7.10. Assume that x is also a σm-coordinate for A over R and that
σ(x)= qx. Then we have

∂σm =

m∑
k=1

q
k(k−1)

2 (q − 1)k−1(m− 1)q · · · (m− k+ 1)q xk−1∂ [k]σ .
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Proof. We compute the coefficient of ∂ [k]σ for 1≤ k ≤ m:

k−1∏
i=1

(qm x − q i x)=
( k−1∏

i=1

q i
)( k−1∏

i=1

(qm−i
− 1)

)
xk−1

= q
k(k−1)

2 (q − 1)k−1
( k−1∏

i=1

(m− i)q

)
xk−1. �

Example. We have ∂σ 2 = ∂σ + q(q − 1)x∂ [2]σ .

8. Formal confluence

We explain here how one can use the quantum Weyl algebra in order to approximate
a usual differential operator. We assume that A is a quantum R-algebra which
means that we are given a twisted coordinate x on A with σ(x) = qx + h with
q, h ∈ R.

Recall from [Le Stum and Quirós 2015b] that the twisted Weyl R-algebra Dσ

has an increasing filtration by free A-modules of finite rank

Film Dσ =

⊕
k≤m

A∂k
σ

that is called the order filtration. But it also has a decreasing filtration by free
A-modules (of infinite rank)

K m
σ =

⊕
k≥m

A∂k
σ

that we called the ideal filtration. We will consider the completion

D̂σ = lim
←−−

Dσ/K m+1
σ

that also comes with its ideal filtration and we have Dσ ⊂ D̂σ . Note that D̂σ is
the set of all infinite sums

∑
∞

0 zk∂
k
σ with zk ∈ A. In other words, there exists an

isomorphism of A-modules
D̂σ =

∏
k∈N

A∂k
σ .

The A-module D̂σ is not a ring in general. However, the result holds in the finite
quantum characteristic case as we can check right now:

Proposition 8.1. If A is q-flat and q -char(A) = p > 0, then multiplication is
continuous for the ideal topology on DA/R,σ and turns D̂A/R,σ into an R-algebra.

Proof. From the equality (see the remark following Theorem 6.3)

Dσ/∂
p
σ ' Dσ ,
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and the fact that Dσ is a ring, we deduce that the (left) ideal generated by ∂ p
σ is a

two-sided ideal. Since multiplication is automatically continuous for the ∂ p
σ -adic

filtration, it follows that it is also continuous for the ideal filtration (which is the
filtration by left ideals generated by the powers of ∂σ ). �

Lemma 8.2. The composite map

DA/R,σ � DA/R,σ ↪→ D(∞)
A/R,σ

is compatible with the ideal filtrations. Moreover, if R is q-divisible and if
q -char(R)= 0, then D̂A/R,σ ' D̂(∞)

A/R,σ .

This applies in particular when R is a Q-algebra and σ = Id.

Proof. The first assertion follows from Corollary 6.2 and the second follows from
Theorem 6.3. �

We can now state our fist confluence theorem (recall that a usual coordinate is
the same thing as an étale coordinate when A is smooth over R):

Theorem 8.3 (formal quantum confluence 1). Let R be a Q-algebra, A a q-R-
algebra for some q ∈ R. Assume that the quantum coordinate on A is also a usual
coordinate. Then there exists a canonical map of filtered A-modules

(15) DA/R,σ → D̂A/R.

Moreover, if R is q-divisible, we have

(1) If q -char(A) = 0, then the map (15) is injective and DA/R,σ is dense in
D̂A/R . Actually, the inclusion morphism DA/R,σ ⊂ D̂A/R is strict for the
ideal filtrations in the sense that DA/R,σ ∩ K̂ m

= K m
σ for all m ∈ N.

(2) If q -char(A)= p > 0, then the map (15) induces an isomorphism

(DA/R,σ/∂
p
σ ') DA/R,σ ' DA/R/∂

p.

Proof. The map (15) is simply the composite

Dσ → D(∞)
σ ↪→ D̂(∞)

σ ' D̂(∞)
' D̂A/R,

where the next to the last map is the formal deformation isomorphism of Corollary 7.5
and the last one comes from Lemma 8.2 applied to the case σ = Id since R is a
Q-algebra.

If we assume that R is q-divisible and that q -char(A) = 0, then Lemma 8.2
tells us that Dσ = D(∞)

σ as filtered rings (for the ideal filtrations) and we can use
Corollary 7.5 again.

Finally, when R is q-divisible but q -char(A)= p > 0, then (p)q = 0 in A and
all (m)q ∈ R× for m < p. We can use the last assertion of Theorem 6.3 and the fact
that the isomorphism of Corollary 7.5 is strictly compatible with the filtrations. �
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As in [Le Stum and Quirós 2015b], we denote by A[T ]σ the twisted polynomial
ring associated to σ : this is the noncommutative polynomial ring in T over A with
the commutation rule T x = σ(x)T. Recall also that the twisted coordinate x is said
to be strong if x − σ(x) ∈ A×.

Corollary 8.4. If R is a q-divisible Q-algebra, q -char(A)= 0, x is strong and is
also a σ n-coordinate for all n ∈ N, then the A-linear map

(16) A[T ]σ → D̂A/R, T n
7→

∞∑
k=0

1
k!
(σ n(x)− x)k∂k

has dense image.

Proof. Compose the isomorphism of theorem 6.13 of [Le Stum and Quirós 2015b]
with the map of Theorem 8.3. The formula comes from Corollary 7.7. �

Example. The theorem (and its corollary) applies in particular when q is not a
root of unity in some field K of characteristic zero, R is an algebra containing K ,
A= R[x, x−1

] and σ(x)= qx . In this situation, D :=DA/R is the noncommutative
ring R[x, x−1, ∂] with the commutation rule ∂x = x∂+1 and we may see D̂ (which
is not a ring) as the set of infinite sums R[x, x−1

][[∂]]. Also, Dσ := DA/R,σ is the
noncommutative ring R[x, x−1, ∂σ ] with the commutation rule ∂σ x = qx∂σ + 1.
The map of the theorem satisfies

∂σ 7→

∞∑
k=1

1
k!
(q − 1)k−1xk−1∂k,

and the map of the corollary is given by

T n
7→

∞∑
k=0

1
k!
(qn
− 1)k xk∂k .

In the next section, we will have to move between σ and powers of σ (or more
precisely, the other way around, between σ and roots of σ ).

Proposition 8.5. Let m ∈N\{0}. If (m)q ! ∈ R×, then there exists a unique A-linear
ring homomorphism

DA/R,σm
ισ,m
−−→DA/R,σ , ∂σm 7−→

m∑
k=1

1
(k)q !

(k−1∏
i=1

(σm(x)− σ i (x))
)
∂k
σ



FORMAL CONFLUENCE OF QUANTUM DIFFERENTIAL OPERATORS 471

Moreover, the diagram

(17) DA/R,σm //

ισ,m

��

D(∞)
A/R,σm
� _

��

� � // EndR(A)

DA/R,σ // D(∞)
A/R,σ

� � // EndR(A)

is commutative.

Proof. We may assume (see the second remark following Theorem 6.3) that we are
in the generic situation

R =Q(t)[s], A = R[x], q = t and h = s.

But then the left horizontal arrows in diagram (17) are bijective. In other words,
we can identify the twisted Weyl R-algebras with the rings of twisted differential
operators of infinite level and use Corollary 7.9 and Corollary 6.2. �

Remarks. (1) In the case h = 0, we have thanks to Corollary 7.10 the more
concrete formula:

∂σm 7→

m∑
k=1

q
k(k−1)

2 (q − 1)k−1

(k)q

(
m− 1
k− 1

)
q
xk−1∂k

σ .

(2) Assume that R is q-divisible. If q -char(R) = p > 0, then the hypothesis is
satisfied if and only if m < p. Of course if q -char(R)= 0, then the hypothesis
is satisfied for any m ∈ N.

(3) Just to give an idea of the geometric intuition, the geometric counterpart of the
twisted localization hypothesis should be the requirement to work on a Zariski
open subset of “the quantum line”.

Proposition 8.6. Let m, n ∈ N \ {0}. If (mn)q ! is invertible, then

ισ,mn = ισm ,n ◦ ισ,m .

Proof. After a base change, we may assume that all q-integers are invertible and
identify twisted Weyl R-algebras with rings of twisted differential operators of
infinite level. The assertion then becomes a triviality. �

Proposition 8.7. If (m)q ! is invertible in R, then the following diagram commutes:

T_

��

A[T ]σm //

��

DA/R,σm ,

ισ,m

��

T 7→ 1+ (σm(x)− x)∂σm

Tm A[T ]σ // DA/R,σ , T 7→ 1+ (σ (x)− x)∂σ



472 BERNARD LE STUM AND ADOLFO QUIRÓS

Proof. Again, we may assume that all q-integers are invertible in R and use the
second remark following Theorem 6.13 of [Le Stum and Quirós 2015b]. �

9. Formal confluence in positive quantum characteristic

In this section, we extend the formal confluence theorem to the case of positive
quantum characteristic. In order to do that, it is necessary to use the S-twisted
theory, where S is a filtering (for division) set of positive integers. Thus, we assume
here that A is an S-twisted R-algebra in the sense of [Le Stum and Quirós 2015b]
(it is endowed with a compatible system of n-th roots σn of σ for all n ∈ S).

We recall from [Le Stum and Quirós 2015a] that a system of roots of q ∈ R is a
compatible family q := {qn}n∈S of n-th roots of q . We call the system q admissible
if for all n ∈ S,

(n)qn ∈ R×.

This is a natural condition in order to define the q-rational number (r)q for any
r ∈ N(1/S). More precisely, if r = m/n with m ∈ N and n ∈ S, then

(r)q :=
(m)qn

(n)qn

only depends on r and not on the choice of m and n. It is convenient to introduce
the following terminology:

Definition 9.1. Let {qn}n∈S be a system of roots of q in R. Then R is said to be
q-divisible if R is qn-divisible for all n ∈ S.

When the system is admissible, there exists a nice equivalent definition:

Lemma 9.2. Let {qn}n∈S be an admissible system of roots of q. Then R is q-divisible
if and only if for all r ∈ N(1/S),

(r)q ∈ R× ∪ {0}.

Proof. If r = m/n with m ∈ N and n ∈ S, we have (r)q = (m)qn/(n)qn . It follows
that (r)q ∈ R× (resp. = 0) if and only if (m)qn ∈ R× (resp. = 0). �

Remarks. (1) If 1− q ∈ R×, then q is admissible. In particular, if q ∈ K where
K is a subfield of R and q 6= 0, then q is admissible.

(2) If q ⊂ K where K is a subfield of R, then R is q-divisible.

Lemma 9.3. For a system q := {qn}n∈S of roots of q , the following are equivalent:

(1) q is admissible and for all r ∈ N(1/S)∩ [0, 1], we have (r)q ∈ R×.

(2) For all n ∈ S, we have (n)qn ! ∈ R×.
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Proof. First of all, the second condition also implies that q is admissible and we
may therefore make this assumption. If r = m/n with m ∈ N and n ∈ S, we know
that (r)q ∈ R× if and only if (m)qn ∈ R×. Also, we have r ≤ 1 if and only m ≤ n.
Thus, the second condition, which means that (m)qn ∈ R× whenever m ≤ n, is
equivalent to the requirement that (r)q ∈ R× for r ≤ 1. �

Definition 9.4. Such a system of roots will be called strongly admissible.

Lemma 9.5. If q is an admissible (resp. a strongly admissible) system of roots, and
we write for all n ∈ S, pn := qn -char(R), then we have for all n ∈ S,

pn - n (resp. pn > n) or pn = 0.

When R is q-divisible, the converse is true.

Proof. By definition, qn is admissible (resp. strongly admissible) if and only if
(n)qn ∈ R× (resp. (n)qn ! ∈ R×). By definition also, we have pn 6= 0 and pn | n
(resp. pn ≤ n) if and only if (n)qn = 0 (resp. (n)qn ! = 0). We see that these two
conditions are mutually exclusive in general and that they are exhaustive when R is
qn-divisible. �

There usually exist strongly admissible systems as the next result shows:

Proposition 9.6. Assume that R is q-divisible and that q -char(R)= p > 0. Then
if q is a system of pn-th root of q , it is strongly admissible.

Proof. It follows from Proposition 1.16 of [Le Stum and Quirós 2015a] that for all
n ∈ S, we have qpn -char(R)= pn+1 > pn and we can apply Lemma 9.5. �

Definition 9.7. An x ∈ A is called an S-twisted coordinate, or rooted twisted
coordinate, (resp. an S-quantum coordinate, or rooted quantum coordinate,) if
x is a twisted (resp. quantum) coordinate for all (A, σn). We call it strong if
x − σn(x) ∈ A× for all n ∈ S.

Thus, by definition, x is an S-quantum coordinate if and only if for all n ∈ S,

(18) σn(x)= qnx + hn with qn, hn ∈ R.

When this is the case, we might also say q-coordinate and call A a rooted quantum
R-algebra, an S-quantum R-algebra or a q-R-algebra. We call it strong when x is
strong.

Lemma 9.8. Assume that x is simultaneously a twisted coordinate and a rooted
quantum coordinate on A so that (18) holds. Then x is a quantum coordinate on A
and if we write σ(x)= qx + h with q, h ∈ R, then q := {qn}n∈S is a system of roots
of q. If this system is admissible, we have for all n ∈ N,

hn =

(1
n

)
q
h.
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Proof. If we are given m ∈N and n ∈ S, we know that σm
n only depends on r :=m/n

and so does σm
n (x) = qm

n x + (m)qn hn . It immediately follows that q is a system
of roots. Moreover, the case m = n implies that σ(x) = qx + h with q = qn

n and
h = (n)qn hn from which we derive the other assertions. �

Examples. (1) If we are given a system q of roots in R, we can endow A := R[x]
or A = R[x, x−1

] with, for all n ∈ S,

σn(x)= qnx .

In the later case, x is a strong q-coordinate if and only if 1−q ∈ R× (and then
q is also admissible).

(2) More generally, if we are given an admissible system q of roots of q ∈ R and
some h ∈ R, we can endow R[x] with, for all n ∈ S,

σn(x)= qnx +
(1

n

)
q
h.

Definition 9.9. Assume that x is a q-coordinate on A with q strongly admissible.
A rooted twisted differential A-module is an A-module M endowed with a family
of ∂A,σn -derivations ∂M,n for all n ∈ S such that whenever n, n′ ∈ S with n | n′, we
have for all s ∈ M,

∂M,n(s)=
n′/n∑
k=1

1
(k)qn′

!

( k−1∏
i=1

(σn(x)− σ i
n′(x))

)
∂k

M,n′(s).

They form a category that we will denote by ∂A,σ -Modroot.

Definition 9.10. If A is a q-R-algebra with q strongly admissible, then the rooted
twisted Weyl algebra of A is

DA/R,σ := lim
−−→

DA/R,σn ,

with transition maps (from Proposition 8.5) for n, n′ ∈ S, with n | n′ given by

DA/R,σn

ισn′ ,n
′/n

−−−→DA/R,σn′
, ∂σn 7−−→

n′/n∑
k=1

1
(k)qn′

!

( k−1∏
i=1

(σn(x)− σ i
n′(x))

)
∂k
σn′
.

Proposition 9.11. Assume that A is a q-R-algebra with q strongly admissible. Then
the rooted twisted differential A-modules form an abelian category with sufficiently
many injective and projective objects. Actually, if M is a DA/R,σ -module, then the
maps

M ∂M,n
−−→M, s 7−−→ ∂M,ns
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turn M into a rooted twisted differential A-module and we obtain an equivalence
(an isomorphism) of categories

DA/R,σ -Mod' ∂A,σ -Modroot .

Proof. This is a consequence of proposition 5.6 of [Le Stum and Quirós 2015b]. �

Recall from the same work that A[T 1/S
]σ denotes the noncommutative Puiseux

polynomial ring with the commutation rule for all m ∈ N, for all n ∈ S,

T m/nx = σm
n (x)T

m/n.

One can also consider the notion of σ A-module: this is an A-module endowed
with a compatible family of σA,n-linear endomorphisms σM,n . There exists an
equivalence (an isomorphism) between the category of A[T 1/S

]σ -modules and the
category of σ A-modules.

Proposition 9.12. Assume that x is a q-coordinate on A with q strongly admissible.
Then there exists a unique A-linear homomorphism of rings

(19) A[T 1/S
]σ → DA/R,σ , T 1/n

7→ 1+ (σn(x)− x)∂σn

inducing a functor

(20) ∂A,σ -Mod→ σ A -Mod .

If x is a strong q-coordinate, then the map (19) is an isomorphism and the functor
(20) is an equivalence.

Proof. This will follow from Theorem 6.13 of [Le Stum and Quirós 2015b] once we
know that the various maps for the different n are all compatible. More precisely,
we have to check that the differential operators 1+ (σn(x)− x)∂σn form a system
of roots in Dσ . But this follows from Proposition 8.7. �

Theorem 9.13 (formal quantum confluence 2). Let R be a Q-algebra, q a strongly
admissible system of roots in R and A a q-R-algebra. Then there exists a canonical
A-linear map

DA/R,σ → D̂A/R.

If R is q-divisible and q is infinite, then the map (16) has dense image.

Proof. First of all, the map (16) is obtained by taking the direct limit of the maps
(15) for all the σn . Now, we set pn := qn -char(R) for all n ∈ S and we apply the
confluence Theorem 8.3 to σn . If pn = 0, we are done. Otherwise, the theorem tells
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us that the bottom map in the following commutative diagram is surjective:

Dσ
// D̂

��
Dσn

// //

OO

D/∂ pn

And we proved in Lemma 9.5 that for all n ∈ S, we have pn > n. Since q is infinite,
we have pn→∞ and we see that the image of the upper map is dense. �

Corollary 9.14. Assume moreover that x is a strong q-coordinate on A. Then the
following A-linear map has dense image:

A[T 1/S
]σ → D̂A/R, T m/n

7→

∞∑
k=0

1
k!
(σm

n (x)− x)k∂k

Proof. The formula comes from Corollary 7.7. �

Example. Theorem 9.13 (and its corollary) applies in particular when q is a primi-
tive p-th root of unity in some algebraically closed field K of characteristic zero, q
is a system of pn-th roots of q in K, R is an algebra containing K, A = R[x, x−1

]

and σn(x)= qnx (we should actually write σpn and qpn but we will try to make the
notation easier to use).

As we already saw, in this situation, D := DA/R is the noncommutative ring
R[x, x−1, ∂] with the commutation rule ∂x = x∂ + 1 and we may see D̂ (which is
not a ring) as R[x, x−1

][[∂]]. We also want to understand the left-hand side and see
that Dn :=DA/R,σn is the noncommutative ring R[x, x−1, ∂n] with the commutation
rule ∂nx = qnx∂n + 1. The transition maps are given by the rather tricky formulas

∂n 7→

pn′−n∑
k=1

q
k(k−1)

2
n′ (qn′ − 1)k−1

(k)qn′

(
pn′−n

− 1
k− 1

)
qn′

xk−1∂k
n′,

and the map of the theorem satisfies

∂n 7→

∞∑
k=1

1
k!
(qn − 1)k−1xk−1∂k .

Also, if we set qm/n
:= qm

n , the map of the corollary is given by

T r
7→

∞∑
k=1

1
k!
(qr
− 1)k xk∂k .

Remark. Alexei Belov-Kanel and Maxim Kontsevich [2007] proved that the Jaco-
bian conjecture is stably equivalent to the Dixmier conjecture [1968]. According to
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the latter, any endomorphism of a Weyl algebra over C is an automorphism. And this
is still a conjecture even in dimension one. On the other hand, when q is a primitive
p-th root of unity, then the quantum Weyl algebra Dσ does not satisfy the Dixmier
conjecture but it is an Azumaya algebra. In particular, checking that an endomor-
phism is an automorphism can be done on the center. As explained by Backelin
[2011], it is appealing to attack the Dixmier conjecture through quantum Weyl
algebras and one can hope that Theorem 9.13 might provide a tool for this quest.
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RIGIDITY OF HAWKING MASS
FOR SURFACES IN THREE MANIFOLDS

JIACHENG SUN

It is well known that Hawking mass is nonnegative for a stable sphere of
constant mean curvature (CMC) in a three-manifold of nonnegative scalar
curvature. R. Bartnik proposed the rigidity problem of the Hawking mass
of stable CMC spheres. We show partial rigidity results of Hawking mass
for stable CMC spheres in asymptotic flat (AF) manifolds with nonnegative
scalar curvature. If the Hawking mass of a nearly round stable CMC sur-
face vanishes, then the surface must be the standard sphere in R3 and the
interior of the surface is flat. Similar results also hold for asymptotic hy-
perbolic manifolds. A complete AF manifold having small or large isoperi-
metric surface with zero Hawking mass must be flat. We use the mean field
equation and monotonicity of Hawking mass as well as rigidity results of
Y. Shi in our proof.

1. Introduction

One of the most important tasks in general relativity is to understand the mass of
spacetime. The first attempt on this topic is the positive mass theorem, which says
that the mass of an asymptotic flat manifold is nonnegative if the scalar curvature
is nonnegative, and the mass vanishes if and only if the manifold is isometric to
standard Euclidean space. Another important attempt is the Penrose inequality,
which tells us that the mass is no less than

√
A/16π when there is a horizon, where

A is the area of the outmost minimal surface, and the equality holds if and only if
the manifold is isometric to Schwarzschild space. From the Penrose inequality we
see the impact of boundary behavior is also remarkable. This motivates us to study
quasilocal mass for a compact manifold with boundary.

Brown–York mass is a well defined quasilocal mass for a domain with convex
boundary, which characterizes the deviation of mean curvature compared with a
Euclidean metric, whose positivity and rigidity is proved by [Shi and Tam 2002].
Another important quasilocal mass is Hawking mass, which played a key role in
proving the Penrose inequality in [Bray 1997] and [Huisken and Ilmanen 2001].
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Because the Willmore functional of a surface can be arbitrarily large, we cannot
expect positivity for an arbitrary surface. But for a stable CMC sphere in a nonneg-
ative scalar curvature manifold, the Hawking mass is nonnegative [Christodoulou
and Yau 1988].

Bartnik [2002, p. 235] proposed the rigidity problem of Hawking mass, i.e.,
what can we say about the ambient manifold when the Hawking mass vanishes for
some surface. This paper is devoted to a partial result for the rigidity problem if the
surface is nearly round. We study the eigenvalue and eigenfunctions of the Jacobi
operator for a stable CMC surface with zero Hawking mass, then transfer the rigidity
problem to a mean field type equation with respect to the second eigenvalue 6 of
the standard S2 under some restriction. If the equation has only the zero solution,
then the rigidity of Hawking mass holds. We get the local uniqueness by studying
the spherical harmonics on S2 carefully and also iteration methods. If the solution
is small in some sense, we can get the power decay of both the kernel part of 1+6
and also the orthogonal part. But we believe that the equation has only the zero
solution with the integral restriction.

The main term in Hawking mass is the Willmore functional. In R3 the Willmore
functional is constant 4π if and only if the surface is round sphere. So we can
detect the curvature of ambient space by the Willmore functional. For this reason,
we expect that manifolds with zero Hawking mass surface may have some flatness
properties.

Theorem 1. Let (M, g) be a complete Riemannian three-manifold with scalar
curvature R(g) ≥ 0 and � ⊂ M be a domain with boundary 6 = ∂�. If 6 is
a nearly round stable CMC sphere in M with mH (6) = 0, then � isometric to a
Euclidean ball in R3. In particular, 6 is isometric to the standard S2 in R3. In this
paper, nearly round is in the sense that Gauss curvature satisfies

(1-1)
∣∣∣∣ |6|4π

K6 − 1
∣∣∣∣
C0
< ε0

for some universal constant ε0� 1.

The hyperbolic case of the above rigidity is the following:

Theorem 2. Let (M, g) be a complete Riemannian three-manifold with scalar
curvature R(g) ≥ −6 and � ⊂ M be a domain with boundary 6 = ∂�. If 6 is
a nearly round stable CMC sphere in M with mH (6) = 0, then � isometric to a
hyperbolic ball in H3.

By the examples of A. Carlotto and R. Schoen [2016] there are manifolds with
nonnegative scalar curvature which are flat in a half space of R3, so we can only
expect flatness inside the surface with zero Hawking mass for stable CMC surfaces.
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But we can get global flatness for isoperimetric surfaces of sphere type:

Theorem 3. Let (M, g) be a complete AF three-manifold with scalar curvature
R(g) ≥ 0. If there exists a nearly round isoperimetric sphere 6 with mH (6)= 0,
then (M, g) is isometric to (R3, δ).

This theorem also has a hyperbolic version:

Theorem 4. Let (M, g) be a complete AH three-manifold with scalar curvature
R(g)≥−6. If there exists a nearly round isoperimetric sphere 6 with mH (6)= 0,
then (M, g) is isometric to (H3, gH).

We already know from [Chodosh et al. 2016] that large surfaces of the canonical
stable CMC foliation in [Huisken and Yau 1996; Qing and Tian 2007] are isoperi-
metric and close to the coordinate spheres. So we can get the rigidity result for
large isoperimetric surfaces. For rigidity of small isoperimetric surfaces, we use
the monotonicity of Hawking mass and also a rigidity result of Y. Shi.

Theorem 5. Let (M, g) be a complete AF three-manifold with scalar curvature
R(g) ≥ 0 which has no compact minimal surface. If there is an small enough
isoperimetric surface6 with m+H (6)= 0 (see definition in Section 5.3), then (M, g)
is isometric to R3.

Structure of this paper. In Section 2, we give the basic definitions. In Section 3,
we prove the rigidity of Hawking mass for nearly round stable CMC spheres. We
transform the rigidity problem to a mean field-type equation, and prove the local
uniqueness of the zero solution. By doing so, we get that a surface with zero
Hawking mass must be the standard S2 and then use the rigidity of [Shi and Tam
2002; 2007] to finish the proof. In Section 4, we prove the global properties of
manifolds with nearly round isoperimetric surfaces having zero Hawking mass. This
directly implies the rigidity for large isoperimetric surfaces in the canonical stable
CMC foliation by Huisken and Yau [1996] and Qing and Tian [2007]. In Section 5,
we prove the rigidity for small isoperimetric surfaces by using the monotonicity of
Hawking mass. This relies on the fact that the topology of a small isoperimetric
surface must be a sphere. In Appendix A.1 we give the spherical harmonics and
computations for the square of second order spherical harmonics. In Appendix A.2
we sketch a proof of the existence of isoperimetric surfaces for all volumes in AF
three-manifolds. In Appendix A.3 we sketch the proof of continuity of isoperimetric
profile for AF manifolds which is important to prove the right continuity of I ′

+
.

2. Preliminaries

We give some basic notations to present our result. Let 6 ⊂ (M, g) be a surface
with unit normal vector field n, second fundamental form A and mean curvature H.
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Definition. The Willmore functional of 6 is defined by:

(2-1) W (6)=
1
4

∫
6

H 2,

when R(g)≥ 0 and

(2-2) W (6)=
1
4

∫
6

(H 2
− 4).

when R(g)≥−6.

The Willmore functional appears in various areas, such as bending energy of
elastic membranes. It appears naturally in general relativity in the form of the
Hawking mass of a surface:

Definition. The Hawking mass of 6 is defined by

(2-3) mH (6)=
|6|1/2

(16π)3/2

(
16π −

∫
6

H 2
)
,

when R(g)≥ 0 and

(2-4) mH (6)=
|6|1/2

(16π)3/2

(
16π −

∫
6

(H 2
− 4)

)
.

when R(g)≥−6.

Definition. If H is constant along 6, we say 6 is a CMC surface; the Jacobi
operator of a CMC surface 6 is the second variation of area:

(2-5) L6 =−16 − (|A|2+Ric(n, n)).

A CMC surface 6 is stable if the first eigenvalue of L6 on mean-zero functions
is nonnegative:

(2-6) 31(L6)= inf
{∫

6

f L6 f :
∫
6

f = 0,
∫
6

f 2
= 1

}
≥ 0,

i.e., it satisfies the following stability condition:

(2-7)
∫
6

(|A|2+Ric(n, n)) f 2
≤

∫
6

|∇ f |2

for all f ∈ C∞c (6) and
∫
6

f = 0.

Remark. The above definition of eigenvalue in mean-zero functions is different
from the eigenvalue defined in the ordinary way by min-max construction:

(2-8) λ1(L6)= inf
{∫

6

f L6 f :
∫
6

f u0 = 0,
∫
6

f 2
= 1

}
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where u0 is the zeroth eigenfunction of L6 . By definition we have

(2-9) 31(L6)≤ λ1(L6).

We also want to study isoperimetric surfaces in AF (resp. AH) three-manifolds.
We will always use the bracket to denote the asymptotic hyperbolic case after related
asymptotic flat situations.

Definition. A complete connected three-manifold (M, g) is called AF (resp. AH),
if there exists a constant C>0 and a compact set K such that M\K is diffeomorphic
to R3

\ BR(0) for some R > 0, and in standard coordinates the metric g has the
following properties:

(2-10) g = δ+ h (resp. g = gH+ h)

and

(2-11) |hi j | + r |∂hi j | + r2
|∂2hi j | ≤ Cr−τ

τ ∈
( 1

2 , 1
]

(resp. τ = 3), where r and ∂ denote the Euclidean distance and standard
derivative operator on R3 respectively. The region M \ K is called the end of M.
The standard hyperbolic space (H3, gH) is

(2-12) gH =
1

1+r2 dr2
+ r2gS2 .

We also need the following definition of isoperimetric surface:

Definition. Given a complete Riemannian 3-manifold (M, g), its isoperimetric
profile with volume V is defined as

(2-13) I (V )= inf
{
H2(∂∗�) :

�⊂ M is a Borel set with finite perimeter
and H3

g(�)= V

}
,

where H2 is a 2-dimensional Hausdorff measure for the reduced boundary of �
denoted by ∂∗�. A Borel set �⊂ M of finite perimeter such that H3

g(�)= V and
I (V ) = H2(∂∗�) is called an isoperimetric region of (M, g) of volume V . The
surface ∂� is called an isoperimetric surface.

3. Rigidity of Hawking mass for nearly round stable CMC surfaces

It was shown in [Christodoulou and Yau 1988] that the Hawking mass is nonnegative
for a stable CMC sphere. It is proved by using a Hersch-type test function in the
stability condition and the nonnegativity of scalar curvature. Since we need to study
the equality case, we prove it here for completeness.

Lemma 6 [Christodoulou and Yau 1988]. Let (M,g) be a Riemannian three-
manifold with scalar curvature R(g) ≥ 0, if 6 is a stable CMC sphere in M,
then mH (6)≥ 0.
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Proof. By [Li and Yau 1982] there exists a conformal ϕ : 6 → S2
⊆ R3 with∫

6
ϕ = 0. We can plug these test functions in stability condition, and using that

(3-1)
∫
6

|∇ϕi |
2
≥

∫
6

(|A|2+Ric(n, n))ϕ2
i

for a surface conformal to S2
⊆ R3,

(3-2)
∫
6

|∇ϕi |
2 dµ6 =

∫
S2
|∇xi |

2 dµS2 =−

∫
S2

xi1xi dµS2 = 2
∫

S2
x2

i dµS2 =
8
3π.

Thus we can get

(3-3) 8π ≥
∫
6

|A|2+Ric(n, n).

By Gauss’s equation

(3-4) K6 =
R
2
−Ric(n, n)+ 1

2
(H 2
− |A|2).

So we have

(3-5) |A|2+Ric(n, n)= R
2
−K6+

1
2
(H 2
+|A|2)= 1

2
(R+|A0

|
2)+

3
4

H 2
−K6,

where we have used that |A|2 = |A0
|
2
+

1
2 H 2. We get

(3-6) 8π ≥
1
2

∫
6

(R+ |A0
|
2)+

3
4

∫
6

H 2
−

∫
6

K6,

so we obtain

(3-7) 16π −
∫
6

H 2
≥

2
3

∫
6

(R+ |A0
|
2)≥ 0 �

We can get an analogous result for the hyperbolic case; see also [Chodosh 2016]:

Lemma 7. Let (M, g) be a Riemannian three-manifold with scalar curvature
R(g)≥−6. If 6 is a stable CMC sphere in M, then mH (6)≥ 0.

Now we start to study stable CMC surfaces with zero Hawking mass. First
we can get a spectral characterization of them. We need the following lemma in
[El Soufi and Ilias 1992], which gives a optimal estimate of the second eigenvalue of
the Schrödinger operator. It also gives part of the rigidity of the second eigenvalue
which is the case for a Jacobi operator on a stable CMC sphere.

Lemma 8 [El Soufi and Ilias 1992]. For any continuous function q on surface 6,

(3-8) λ1(−16 + q)|6| ≤ 2Ac(6)+

∫
6

q.
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The equality holds if and only if 6 admits a conformal map into the standard S2

whose components are the first eigenfunctions. If 6 is of genus zero, then the
equality implies that 6 is conformal to the standard S2 in R3 and q is given by the
energy density of a Möbius transform, where λ1 is the first eigenvalue of −16 + q
in the sense of (2-8), Ac(6) is the conformal volume in [Li and Yau 1982] and for
a sphere, Ac(6)= 4π .

By the above lemma we have the following characterization of zero-Hawking
mass stable CMC spheres.

Proposition 9. Let (M, g) be a complete Riemannian three-manifold with scalar
curvature R(g)≥0 (resp. R(g)≥−6). If6 is a stable CMC sphere with mH (6)=0
and area |6| = 4π , then the second eigenvalue λ1(−16 + K6) = 3, with three
eigenfunctions ϕ1, ϕ2, ϕ3,

∫
6
ϕi = 0, and

∑3
i=1 ϕi

2
= 1. In particular, |∇ϕ|2 =

3− K6 , which is independent of eigenfunctions.

Proof. From the above proof of Lemma 6 we can see if mH (6)= 0 on 6, we have∫
6

H 2
= 16π (resp.

∫
6
(H 2
−4)= 16π ), R = 0 (resp. R =−6), A0

= 0 on 6. The
area |6| = 4π , then H = 2 (resp. H = 2

√
2), the Jacobi operator becomes

(3-9) L6 =−16 + K6 − 3.

By the stability of 6 and Lemma 8, we have

(3-10) 0≤ 4π31(L6)≤ 4πλ1(L6)≤ 8π +
∫
6

(K6 − 3)= 0,

so all the equalities hold, in particular

(3-11) λ1(−16 + K6)= 3,

with three eigenfunctions ϕ1, ϕ2, ϕ3,
∫
6
ϕi = 0, and

∑3
i=1 ϕi

2
= 1, so

(3-12) −16ϕ+ K6ϕ− 3ϕ = 0.

By |ϕ|2 =
∑3

i=1 ϕi
2
= 1, we have

(3-13) 0=16|ϕ|2 = 2ϕ16ϕ+ 2|∇.ϕ|2

Taking inner product of ϕ with (3-12), we get

(3-14) |∇ϕ|2 = 3− K6. �

Remark. We see from the above lemma that the first eigenvalue and eigenfunctions
of the Schrödinger operator −16 + K6 equal those of the standard S2. We expect
that the metric is isometric to the standard metric on S2.
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In the following, we will always use 6 to denote a stable CMC surface with zero
Hawking mass. Let ϕ :6→ S2

⊆ R3 be the conformal map in Proposition 9 with∫
6
ϕ = 0. Denote the metric on 6 by g = eug0, with g0 the standard metric on S2.

By definition of the conformal map ϕ,

(3-15) e−u
=

1
2 |∇ϕ|

2.

The standard formula for Gauss curvature under a conformal change of metric gives

(3-16) K6 = e−u(1− 1
21g0u

)
.

So (3-14) gives

(3-17) 1g0u = 6− 6eu .

Also the volume-preserving variation implies

(3-18)
∫

S2
xi eu
= 0.

So for this stable CMC surface with zero Hawking mass 6,

(3-19) K6 − 1= e−u(1− 3+ 3eu)− 1= 2(1− e−u).

This means that if u is C0 close to 0, then K6 is C0 close to 1, which implies 6 is
nearly round. If we can prove (3-17), (3-18) admit only the zero solution, then the
stable CMC surface with vanishing Hawking mass is isometric to the standard S2.

Equations of the same type as (3-17) have been studied in various aspects, such
as prescribed Gaussian curvature [Kazdan and Warner 1974], the mean field model
and the Chern–Simons–Higgs model. This kind of equation may have bifurcation
when approaching the eigenvalues of S2, so it may lose compactness. Ding, Jost, Li
and Wang [Ding et al. 1997; 1998] have studied the equation at the first eigenvalue.
Li [1999] has initiated the study of the existence of solutions by computing the
Leray–Schauder topological degree. Lin [2000] computed the degree on S2 and
surface of any genus [Chen and Lin 2003], but there is little work on the uniqueness
of this kind of equation at second eigenvalue of S2. In fact, because the bifurcation
occurs after the first eigenvalue, it is hard to guarantee the uniqueness globally,
but we can get local uniqueness of the constant solution for (3-17). That’s why
we put the nearly round condition in our results. We use the Lyapunov–Schmidt
decomposition as in [Neves and Tian 2009] to estimate the kernel of 1g0 + 6 and
the orthogonal part separately.

Lemma 10. Let u satisfy

(3-20) 1g0u = 6(1− eu)

on standard S2. There exists a universal constant δ0 > 0 such that if sup |u| < δ0,
then u ≡ 0.
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Proof. In the following, the constant C is universal, and may differ from line to line.
Denote E2= ker{1g0+6}, which is the second eigenspace of −1g0 on the standard
S2. It is well known that E2 = span{Y2,−2, Y2,−1, Y2,0, Y2,1, Y2,2} (see appendix
below). Let P2 be the projection operator on E2. Consider the decomposition
u = u1+ u2, where u1 ∈ E⊥2 , and u2 ∈ E2. Then

1g0u1+ 6u1 = 6(1+ u− eu),(3-21)

1g0u2+ 6u2 = 0.(3-22)

As (1g0 + 6)−1 is bounded from L2 to W 2,2 on E⊥2 , we have

(3-23) |u1|W 2,2 ≤ C |1+ u− eu
|L2 .

We can assume

(3-24) sup |u| ≤ δ < 1.

Then from (3-23) and the Sobolev embedding, we have

(3-25) |u1|L∞ ≤ C |u2
|L2 ≤ Cδ2.

Also from equation (3-17), we know

(3-26) |1g0u+ 6u+ 3u2
|L2 = 6|1+ u+ 1

2 u2
− eu
|L2 ≤ C |u3

|L2 ≤ Cδ3.

By (3-25), we can get
|u2

1|L2 ≤ Cδ4.

By the decomposition of u2 = u− u1 we have

(3-27) |1g0u+ 6u+ 3u2
2|L2 ≤ 2|u3

|L2 + 6|u1u|L2 + 3|u2
1|L2 ≤ Cδ3.

In order to get the estimate of u2, we project the above equation to E2. Then

(3-28) |P2u2
2|L2 ≤ Cδ3.

By Lemma 11 below and (3-28) we have

(3-29) |u2|L∞ ≤ C |u2|L2 ≤ Cδ3/2

Combining (3-25) and (3-29), we improve the initial assumption (3-24):

(3-30) sup |u| ≤ C |u|L2 < Cδ3/2.

Taking δ0 =
1
2C−2 and iterate the procedure, we get

(3-31) sup |u| ≤ C0|u|L2 < C−2(C2δ0)
(3/2)k

= C−2( 1
2

)(3/2)k
,

and let k→∞, we get the desired result. �
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Lemma 11. For all u2 ∈ E2,

(3-32) |P2u2
2|L2 =

1
7

√
5
π
|u2|

2
L2 .

Proof. Let

(3-33) u2 =

2∑
i=−2

λi Y2,i ,

where Y2,i are the second-order spherical harmonics (see Appendix A.1). By
computations and projecting u2

2 to E2, we have

(3-34) P2u2
2 =

1
14

√
5
π
[2(λ2

0− λ
2
−2− λ

2
2)+ λ

2
1+ λ

2
−1]Y2,0

+
1
7

√
5
π

(√
3λ−1λ1− 2λ−2λ0

)
Y2,−2

+
1

14

√
5
π
[
√

3(λ2
1− λ

2
−1)− 4λ0λ2]Y2,2

+
1
7

√
5
π
[λ−1λ0+

√
3(λ−2λ1− λ−1λ2)]Y2,−1

+
1
7

√
5
π
[λ0λ1+

√
3(λ−2λ−1+ λ1λ2)]Y2,1.

Thus

(3-35)

|P2u2
2|

2
L2 =

( 1
7

√
5
π

)2{ 1
4(2λ

2
0− 2λ2

−2− 2λ2
2+ λ

2
−1+ λ

2
1)

2

+ (
√

3λ−1λ1− 2λ−2λ0)
2
+

1
4 [
√

3(λ2
1− λ

2
−1)− 4λ0λ2]

2

+ [λ−1λ0+
√

3(λ−2λ1− λ−1λ2)]
2

+ [λ0λ1+
√

3(λ−2λ−1+ λ1λ2)]
2}

=
( 1

7

√
5
π

)2
( 2∑

i=−2

λ2
i

)2

=
( 1

7

√
5
π

)2
|u2|

2
L2 . �

The following rigidity result is a kind of positive mass theorem in the compact
case (see [Miao 2002], [Shi and Tam 2002], and [Hang and Wang 2006]):

Lemma 12. Let (M, g) be a compact, orientable Riemannian 3-manifold with
scalar curvature R(g) ≥ 0 and ∂M isometric to a round S2 with mean curvature
H = 2. Then (M, g) is isometric to the unit ball in (R3, δ).

To prove Theorem 2 we need a rigidity result for the hyperbolic case of the
sphere; see Theorem 3.8 in [Shi and Tam 2007].

Lemma 13. Let (M, g) be a compact orientable Riemannian 3-manifold with
scalar curvature R(g)≥−6 and ∂M isometric to a round S2 with mean curvature
H = 2

√
2. Then (M, g) is isometric to the unit ball in hyperbolic space H3.
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After Lemmas 10, 12 and 13, now we are in the position to prove Theorems 1
and 2.

Proof of Theorems 1 and 2. If mH (6)= 0 on a nearly round stable CMC surface 6,
without loss of generality, assume |6| = 4π , and then H = 2 (resp. H = 2

√
2)

L6 =−16 + K − 3.

By Lemma 10 we get the nearly round stable CMC surface 6 is the standard S2

in R3. Then by Lemma 12 (resp. Lemma 13), we conclude that � isometric to a
unit ball in R3(H3

−1). �

Theorem 1 (resp. Theorem 2) and Lemma 6 (resp. Lemma 7) can help us to
understand the Willmore functional in manifolds with scalar curvature R(g)≥ 0
(resp. R(g)≥−6).

Corollary 14. Let (M, g) be a complete Riemannian three-manifold with scalar
curvature R(g) ≥ 0 (resp. R(g) ≥ −6), 6 = ∂� a stable CMC sphere. Then
W (6) ≤ 4π . If 6 is nearly round, then equality holds if and only if 6 is the
standard S2 and � isometric to unit ball in R3 (resp. H3).

4. Rigidity of Hawking mass for nearly round isoperimetric surfaces

Theorem 1 can be used to prove rigidity of isoperimetric surfaces in AF manifolds.
By the manifold constructed by A. Carlotto and R. Schoen [2016]; see also [Chodosh
et al. 2016]:

Example. There is an asymptotically flat Riemannian metric g on R3 with nonneg-
ative scalar curvature and positive mass and such that g = δ on R2

× (0,+∞).

We can only expect flatness inside the surface with zero Hawking mass for stable
CMC surface. In order to prove Theorem 3 we need the following isoperimetric
inequality of [Shi 2016], which also plays a key role in proving the existence of
isoperimetric surfaces for all volumes in AF three-manifolds. It says that if there
exists a Euclidean ball in an AF manifold with nonnegative scalar curvature, then
the AF manifold must be R3.

Lemma 15 [Shi 2016]. Suppose (M, g) is an AF manifold with scalar curvature
R(g)≥ 0. Then for any V > 0,

(4-1) I (V )≤ (36π)1/3V 2/3.

There is a V0 > 0 with

(4-2) I (V0)= (36π)1/3V 2/3
0

if and only if (M, g) is isometric to R3.



490 JIACHENG SUN

Also there is an analogous result for an isoperimetric profile on AH manifolds;
see Proposition 3.3 in [Ji et al. 2016].

Lemma 16 [Ji et al. 2016]. Suppose (M, g) is an AH manifold with scalar curvature
R(g)≥−6. Then for any V > 0,

(4-3) I (V )≤ IH(V ).

There is a V0 > 0 with

(4-4) I (V0)= IH(V0)

if and only if (M, g) is isometric to (H3, gH).

Now we can prove the rigidity of nearly round isoperimetric surfaces:

Proof of Theorems 3 and 4. If there is an nearly round isoperimetric surface 6 with
mH (6)= 0, and we assume |6|= 4π , then H = 2. By Theorem 1, the isoperimetric
region is a Euclidean ball of volume 4

3π . So we have

(4-5) 4π = I
( 4

3π
)
= (36π)1/3

( 4
3π
)2/3

.

By the rigidity part of Lemma 15, we conclude that (M, g) is isometric to R3.
Theorem 4 follows similarly from Theorem 2 and Lemma 16. �

In fact, large surfaces of the canonical stable CMC foliation in [Huisken and Yau
1996; Qing and Tian 2007] are isoperimetric and close to the coordinate spheres.

Corollary 17. Let (M, g) be an AF three-manifold with scalar curvature R(g)≥ 0.
Then the Hawking mass of all the large enough surfaces in the canonical stable
CMC foliation in [Huisken and Yau 1996; Qing and Tian 2007] are positive unless
(M, g) is isometric to R3.

5. Rigidity of Hawking mass for small isoperimetric surfaces

For rigidity of small isoperimetric surfaces, we need to prove that such a surface is
a sphere when the volume is small enough.

5.1. Topology of small isoperimetric surface. It is shown in [Ros 2005] that for
a compact manifold without boundary, the isoperimetric surface is a topological
sphere when the enclosing volume is small enough to be contained in a geodesic
ball. For AF manifolds we still have this property; the proof follows that of the
compact case in that work and relies on the behavior at infinity.

Lemma 18. If (M, g) is a complete AF three-manifold without boundary, then
there exits a δ0 > 0, such that for all volume V ≤ δ0 the isoperimetric region is
convex and contained in a small neighborhood of some point of M. In particular,

(5-1) I (V )∼ (36π)1/3V 2/3 when V → 0.
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Proof. Let {6n} be a sequence of isoperimetric surfaces with second fundamental
form An and volume Vn→ 0. There are two possibilities:

Case 1: {|An|} is unbounded. Assume rn = max |An| = |An|(xn); by scaling
6n homothetically to 6′n = rn6n with metric gn = r2

n g, also rn →∞, xn ∈ 6
′
n ,

second fundamental form of 6′n satisfies max |A′n| = |A
′
n(xn)| = 1. We have

(M, xn, gn)→ (R3, 0, δ) smoothly; the limit manifold is standard R3 because the
manifold is AF. Thus 6′n is a sequence of stable CMC surfaces with bounded
curvature, and locally 6′n consists of a certain number of sheets as in Figure 13 of
[Ros 2005]. Each one of the sheets is a graph over a bounded planar domain with
bounded derivatives.

If two of the sheets become arbitrarily close near some point when n →∞,
then we can modify the surface to get a new one with smaller area and the same
volume. For details, see page 196 of [Ros 2005]. More precisely, if the two sheets
of the surface become arbitrarily close near some point, we can reduce area without
modifying the enclosed volume, which contradicts the minimizing property of 6n .
There are three cases:

(1) if there is a thin slab, then we can cut part of the volume to one end and reduce
the area;

(2) if there is a thin defect of the region, then we can fill part of the defect with
volume gained from deforming a far-away portion of the boundary to reduce
area;

(3) if there are two close thin defects in the region, then we can reduce the area
by moving the part between two defects to one of the defects.

Hence by compactness results [Pérez and Ros 2002], up to a subsequence,
6′n→6′ smoothly with multiplicity one and 6′⊂R3 is a surface of constant mean
curvature H6′ properly embedded in R3 endowed with a standard metric δ, 0 ∈6′,
|A′(0)|2 = 1. The fact that 6n are isoperimetric surfaces implies that 6′ is a stable
CMC surface. By [da Silveira 1987] and the stability condition, we can conclude
that 6′ is either a union of planes or a sphere. That the curvature at the origin is
one implies 6′ is a unit sphere. Going back to 6n , for n large enough, the mean
curvature H6n of 6n is large enough, such that

(5-2) 1
2 H 2

6n
+Ric(n, n) > 0.

If 6n is not connected, since the mean curvature of the isoperimetric surface 6n

is the same (see Appendix A.4) for each component 6i
n , as |Ai

n|
2
≥

1
2 H 2

6i
n
,

(5-3) |Ai
n|

2
+Ric(n, n) > 0
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on every component 6i
n . On the other hand, we can construct a variation fi on 6i

n
which is constant and

∑
i

∫
6i

n
fi = 0 in the stability condition of the isoperimetric

inequality. This gives

(5-4) 0≥
∑

i

f 2
i

∫
6i

n

|An|
2
+Ric(n, n),

a contradiction. So for large n, we know 6n is connected and thus a sphere.

Case 2: {|An|} is bounded. Scale 6n to enclose volume 1. By the above argument
we get the limit consists of pairwise disjoint planes enclosing volume 1, a contra-
diction. So the lemma follows. �

By the above lemma, the rigidity follows from Theorem 3. But it can also be
proved by the monotonicity of Hawking mass with respect to the volume of the
connected isoperimetric surface. This method relies on the connectedness of isoperi-
metric surface which was used by Bray [1997]. Bray needed the connectedness of
isoperimetric surface when proving monotonicity of Hawking mass.

5.2. Properties of I . The isoperimetric profile I contains important geometric
information of the manifold. It is nondecreasing in the outside of horizon. It
is concave if the manifold has nonnegative Ricci curvature. The existence and
regularity properties of isoperimetric regions for all volumes for AF is proved by
combining [Shi 2016] with [Carlotto et al. 2016]; we sketch the proof in Appendix
A.2 for completeness.

The continuity and differentiability of I for AF manifold is proved as in [Flores
and Nardulli 2014] for manifolds with bounded geometry (Ricci curvature and
volume of unit geodesic ball bounded below):

Lemma 19. Given (M, g) is an AF manifold and V ∈ (0,∞), let � ⊂ M be an
isoperimetric region with vol(�) = V and denote ∂� by 6. The isoperimetric
profile has the following regularity:

(a) It is continuous and has left and right derivatives at V, I ′
+
(V )≤ H6 ≤ I ′

−
(V )

and I ′
+
(V ) and I ′

−
(V ) are right and left continuous respectively.

(b) The inequality I ′′(V )I (V )2+
∫
6
(Ric(n, n)+ |A6|2)≤ 0 holds in the sense of

comparison functions, i.e., for every V0≥0, there is a smooth function IV0(V )≥
I (V ), IV0(V0)= I (V0) and I ′′V0

(V )IV0(V )
2
+
∫
6
(Ric(n,n)+ |A6|2)≤ 0.

Proof. The continuity of I is proved in Appendix A.3 by adding and subtracting
a small geodesic ball to the isoperimetric regions under the condition of bounded
geometry. We only prove (b) which implies the differentiability of I. For every
V0 > 0, assume �0 is the isoperimetric region with volume V0 and 60 = ∂�0 is
the isoperimetric surface with unit outer normal n0, second fundamental form A0

and mean curvature H0. In order to get an upper bound of I ′′ we do a unit normal
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variation on 60. Let 6t denote the surface by flowing 60 out with unit speed along
the normal n0 for time t. Since 60 is a smooth embedded surface, there exits a
δ > 0 such that 6t exists for any t ∈ (−δ, δ). Let IV0(t) = area(6t). By the first
and second variational formula for area we have:

I ′V0
(t)=

∫
6t

H dµ,(5-5)

V ′(t)= IV0(t),(5-6)

H ′(t)=−|A|2−Ric(n, n).(5-7)

We can also parametrize this isoperimetric surface by its volume as 6(V ), and
IV0(V )=area(6(V )). By definition of6(V0), IV0(V )≥ I (V ), IV0(V0)= I (V0), so

(5-8) I ′V0
(V )=

∫
6(V )H dµ

IV0(V )
= H.

The second derivative of IV0 is

(5-9)

I ′′V0
(V )=

∫
6(V )(H

2
− |A|2−Ric(n, n)) dµ

I 2
V0
(V )

−
H

I 2
V0
(V )

∫
6t

H dµ

=−

∫
6(V )|A|

2
+Ric(n, n) dµ

I 2
V0
(V )

.

For an AF three-manifold, Ricci curvature is bounded blow. Thus there exists k ∈ R
such that Ric≥ kg, and it follows that

(5-10) I ′′V0
(V )≤− k

IV0(V )
.

If k ≥ 0, then IV0(V ) is concave, and by Lemma 20 below we can get the
concaveness of I (V ), and then the conclusion follows. In particular, I ′

+
, I ′
−

are
both nonincreasing functions, they are right and left continuous respectively and
I ′′ exists almost everywhere.

If k<0, let λ=λ(k, a, b) :=k/(2δ(a, b)), where δ(a, b)=min{I (V ) :V ∈[a, b]}
is strictly positive by continuity of I. For every V0 ∈ [a, b],

IV0(V )+ λV 2
≥ I (V )+ λV 2,

so we get IV0(V ) + λV 2 is concave. We can argue as above to get the same
conclusion. �

In the proof above, we used the following properties of concave functions:

Lemma 20. (a) [Morgan and Johnson 2000] Let f : (a, b)→ R be a continuous
function. Then f is concave if and only if for every x0 ∈ (a, b) there exists an
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open interval Ix0 ⊆ (a, b) of x0 and a concave smooth function gx0 : Ix0 → R
such that gx0(x0)= f (x0) and gx0(x)≥ f (x) for every x0 ∈ Ix0 .

(b) If f : (a, b)→ R is a concave function, then f ′
+

and f ′
−

are monotonic nonin-
creasing functions and also right and left continuous respectively. Moreover,
f ′′ exists almost everywhere.

Proof. (a) If f is concave, just take g to be linear. If f is not concave, then there
exists ε > 0, such that fε(x) = f (x)− εx2 is not concave. So we can choose
x1, x3 ∈ (a, b), such that the graph of fε(x) lies below line l(x) from (x1, fε(x1))

to (x3, fε(x3)). Assume fε(x)− l(x) attains its minimum at x2 ∈ (x1, x3).
By hypothesis, there is a concave smooth gx2(x)≥ f (x), and gx2(x2)= f (x2).

Then gε(x)= gx2(x)− εx2
≥ fε(x), gε(x2)= fε(x2), so we have that gε(x)− l(x)

also attain its minimum at x2 ∈ (x1, x3), which implies g′′ε (x2) ≥ 0, but g′′ε (x2) =

g′′x2
(x2)− 2ε ≤−2ε, a contradiction.

(b) It is well known that f ′
+

and f ′
−

are monotonic nonincreasing and f ′′ exists
almost everywhere, so we just prove the right continuity of f ′

+
, and left continuity

of f ′
−

follows similarly. For any x0 ∈ (a, b), by monotonicity of f ′
+

have

(5-11) lim
x→x+0

f ′
+
(x)≤ f ′

+
(x0).

On the other hand,

(5-12) f ′
+
(x0)= lim

x→x+0

f (x)− f (x0)

x − x0
= lim

x→x+0

∫ x
x0

f ′
+
(t) dt

x − x0

where we have used the stronger versions of the fundamental theorem of calculus
[Walker 1977]

(5-13) f (x)− f (x0)=

∫ x

x0

f ′
+
(t) dt

whenever f is continuous and f ′
+
∈ L1. Again by the monotonicity we have

(5-14) f ′
+
(t)≤ lim

x→x+0
f ′
+
(x).

Combining with (5-12) and (5-14), we get

(5-15) f ′
+
(x0)≤ lim

x→x+0

∫ x
x0

lim
x→x+0

f ′
+
(x) dt

x − x0
= lim

x→x+0
f ′
+
(x).

Then (5-11) and (5-15) give the right continuity of f ′
+

. �
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5.3. Monotonicity of m+

H . For differentiable points of I we have H(V )= I ′(V ),
so we can replace H with I ′ in Hawking mass in order to simplify Hawking mass
to be a function of only volume. But I may not be differentiable for every volume,
and there is a jump for H from I ′

+
to I ′
−

at volumes which are not differentiable.
By the compactness of isoperimetric surfaces, see [Meeks et al. 2014], there is a
surface which achieves the minimal (maximal) mean curvature enclosing the same
volume. So we can define the maximal Hawking mass as:

Definition. Let (M, g) be an AF three-manifold with nonnegative scalar curvature,
6 ⊂ M be a isoperimetric surface of volume V . Then the maximal Hawking mass
is m+H (V )=

√
I (V )(16π − I (V )I ′

+
(V )2).

When I is not differentiable, m+H is the maximal Hawking mass, and it reduces to
the ordinary Hawking mass at the differentiable points of I. We have the following
result on the monotonicity of m+H :

Lemma 21 [Bray 1997]. Let (M, g) be an AF three-manifold with nonnegative
scalar curvature. Assume for every V > 0 there is a connected isoperimetric surface
enclosing volume V, and also I (V ) is increasing. Then m+H (V ) is nondecreasing.

Proof. By Gauss’s equation,

(5-16) K = R
2
−Ric(n, n)+ 1

2
(H 2
− |A|2).

So we have

(5-17) |A|2+Ric(n, n)= R
2
− K + 1

2
(H 2
+ |A|2)

by |A|2 = |A0
|
2
+

1
2 H 2, and R ≥ 0, so we have

(5-18) I ′′V0
(V )=−

∫
6(V )|A|

2
+Ric(n, n) dµ

I 2
V0
(V )

≤

∫
6(V )K −

3
4 H 2 dµ

I 2
V0
(V )

.

By the connectedness of 6(V ), we have

(5-19)
∫
6(V )

K dµ= 2πχ(6(V ))≤ 4π.

Then

(5-20) I ′′V0
(V )≤

16π − 3I ′V0
(V )2 IV0(V )

4I 2
V0
(V )

.

As we have proved that I ′
+
(V ) is right continuous, so is maximal Hawking mass.

Thus it is sufficient to prove m+H (V ) is weak nondecreasing, i.e., for any [a, b] ∈
(0,∞),

∫ b
a m+H (V )φ

′(V ) dV ≤ 0 for all smooth nonnegative φ ∈ C∞c (a, b), φ ≥ 0.
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The reason to do so is that m+H (V ) has only countable jump points. Let the difference
quotient be defined by

1h F(V )= 1
h
(F(V + h)− F(V )).

Then

(5-21)
∫ b

a
m+H (V )φ

′(V ) dV

=

∫ b

a

√
I (V )(16π − I (V )I ′

+
(V )2)φ′(V ) dV

= lim
h→0+

∫ b

a

√
I (V )(16π − I (V )1h I (V )

2
)1hφ(V ) dV

=− lim
h→0+

∫ b

a
1−h
{

√
I (V )(16π − I (V )1h I (V )

2
)}φ(V ) dV

= lim
h→0+

∫ b

a

{
φ I 3/2

{
1−h(1h I )2− I ′ 16π−3I ′2 I

2I 2

}}
dV,

where we use the fact that I ′
+
= I ′
−

almost everywhere.
Since IV0(V0) = I (V0), and IV0(V ) ≥ I (V ), also I (V ) is increasing, we get

1−h(1h I )2(V0)≤1
−h(1h IV0)

2(V0), and I ′V0
≥ 0, so

(5-22)
∫ b

a
m+H (V )φ

′(V ) dV

≤ lim
h→0+

∫ b

a

{
φ I 3/2

V0
{1−h(1h IV0)

2
− I ′V0
}
16π − 3I ′2V0

IV0

2I 2
V0

}
dVV0

=

∫ b

a
2φ I 3/2

V0
I ′V0

{
I ′′V0
−

16π − 3I ′2V0
IV0

4I 2
V0

}
dVV0 ≤ 0,

where we used (5-20) and Fatou’s lemma for the last equality. Hence, m+H (V ) is
nondecreasing. �

Remark. (1) Hawking mass is also monotonic along the stable CMC foliation as
long as the area is nondecreasing; the proof is the same as above.

(2) We can see that the monotonicity of maximal Hawking mass relies heavily on
the connectedness of the isoperimetric surface. If the isoperimetric surface has
more than one components, Bray [1997] considers the sum of three halves of
the area of the components

F(V )= inf
{∑

i

area(6i )
3/2
: {6i } enclose volume V outside the horizons

}
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under the condition the components are disjoint with each other. Then he
proved the mass

m+(V )= F(V )1/3(36π − F ′
+

2
)/144π3/2

is nondecreasing. In fact, for F he got the estimate

(5-23) F ′′(V )≤ 36π−F ′(V )2

6F(V )
,

and then the proof follows as above. The minimizing surfaces are CMC
generally with different mean curvatures on each component. When the
minimizer of F has only one component it must be an isoperimetric surface. We
already know that for large enough volume in AF manifolds the isoperimetric
surfaces are spheres close to coordinate spheres and m+(V )= m+H (V ); their
limits are the ADM mass of the manifold when volume goes to infinity.

Now we are in a position to prove the rigidity of small isoperimetric surfaces:

Proof of Theorem 5. First we claim that

(5-24) lim
V→0

m+H (V )= 0.

In fact, by Lemma 18 we know the isoperimetric surface is of sphere type when the
volume is small enough. Combined with Lemma 6, we get

(5-25) lim
V→0

m+H (V )≥ 0.

By definition,

(5-26) m+H (V )=
√

I (V )(16π − I (V )I ′
+
(V )2)≤ 16π

√
I (V ),

which implies

(5-27) lim
V→0

m+H (V )≤ 0.

Thus the claim follows by (5-25) and (5-27).
If there exists an isoperimetric surface 6 with volume 0 < V0 ≤ δ0, such that

m+H (V0)= 0, then by monotonicity of Lemma 21 for m+H and (5-24), we get

(5-28) m+H (V )≡ 0, for any V ∈ [0, V0].

Thus

(5-29) I (V )I ′
+
(V )2 ≡ 16π on [0, V0].

Since I is continuous by Lemma 19, we get

(5-30) I ′
+
(V )= I ′(V ) on [0, V0].
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Since there are no compact minimal surfaces, I is increasing, and

(5-31) I ′ =

√
16π

I
.

Since I (0)= 0, we have

(5-32) I (V )= (36π)1/3V 2/3 on [0, V0].

Then by Lemma 15 above we conclude that (M, g) is isometric to R3. �

Appendix

A.1. Spherical harmonics on S2. Write

1S2 =
1

sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2 .

The eigenvalues of −1S2 are λ= l(l + 1), l = 0, 1, 2, . . . ; the eigenfunctions are

Y m
l (θ, ϕ)=

√
2l + 1

4π
(l − |m|)!
(l + |m|)!

sin|m| θ P |m|l (cos θ)eimϕ,

where m = −l, . . . , l, and the Pl(x) are the Legendre polynomials, P0(x) = 1,
P1(x)= x , P2(x)= 1

2(3x2
− 1). The reduction formula is

(n+ 1)Pn+1(x)= (2n+ 1)x Pn(x)− n Pn−1(x)

The real form of spherical harmonics are

l = 0

Y0,0 =
1
2

√
1
π
,

l = 1

Y1,0 =
√

3
4π cos θ, Y1,−1 =

√
3

4π sin θ sinϕ, Y1,1 =
√

3
4π sin θ cosϕ,

l = 2

Y2,−2 =
1
4

√
15
π

sin2θ sin2ϕ, Y2,−1 =
1
4

√
15
π

sin2θ sinϕ, Y2,0=
1
4

√
5
π
(3cos2θ − 1),

Y2,1 =
1
4

√
15
π

sin2θ cosϕ, Y2,2 =
1
4

√
15
π

sin2θ cos2ϕ,
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l = 4

Y4,−4 =
3

16

√
35
π

sin4θ sin4ϕ, Y4,−3 =
3
4

√
35
2π sin3θ cosθ sin3ϕ,

Y4,−2 =
3
8

√
5
π

sin2θ(7cos2θ−1)sin2ϕ, Y4,−1 =
3
8

√
10
π

sinθ cosθ(7cos2θ−3)sinϕ,

Y4,0 =
3

16

√
1
π
(35cos4θ−30cos2θ+3), Y4,1 =

3
8

√
10
π

sinθ cosθ(7cos2θ−3)cosϕ,

Y4,2 =
3
8

√
5
π

sin2θ(7cos2θ−1)cos2ϕ, Y4,3 =
3
4

√
35
2π sin3θ cosθ cos3ϕ,

Y4,4 =
3

16

√
35
π

sin4θ cos4ϕ.

To compute u2
2, we need to decompose the following terms into different order

spherical harmonics:

Y 2
2,0 =

3
7

√
1
π

Y4,0+
1
7

√
5
π

Y2,0+
1

4π ,

Y 2
2,−2 =−

1
2

√
5

7π Y4,4+
1

14

√
1
π

Y4,0−
1
7

√
5
π

Y2,0+
1

4π ,

Y 2
2,2 =

1
2

√
5

7π Y4,4+
1
14

√
1
π

Y4,0−
1
7

√
5
π

Y2,0+
1

4π ,

Y 2
2,−1 =−

1
7

√
5
π

Y4,2−
2
7

√
1
π

Y4,0−
1
14

√
15
π

Y2,2+
1
14

√
5
π

Y2,0+
1

4π ,

Y 2
2,1 =

1
7

√
5
π

Y4,2−
2
7

√
1
π

Y4,0+
1
14

√
15
π

Y2,2+
1
14

√
5
π

Y2,0+
1

4π ,

Y2,−2Y2,2 =
1
2

√
5

7π Y4,−4, Y2,−2Y2,0 =
1
14

√
15
π

Y4,−2−
1
7

√
5
π

Y2,−2,

Y2,2Y2,0 =
1
14

√
15
π

Y4,2−
1
7

√
5
π

Y2,2, Y2,−1Y2,0 =
1
7

√
15
2π Y4,−1+

1
14

√
5
π

Y2,−1,

Y2,1Y2,0 =
1
7

√
15
2π Y4,1+

1
14

√
5
π

Y2,1, Y2,−1Y2,1 =
1
7

√
5
π

Y4,−2+
1

14

√
15
π

Y2,−2,

Y2,−2Y2,−1 =−
1
2

√
5

14π Y4,3−
1
14

√
5

2π Y4,1+
1
14

√
15
π

Y2,1,

Y2,2Y2,1 =
1
2

√
5

14π Y4,3−
1
14

√
5

2π Y4,1+
1
14

√
15
π

Y2,1,

Y2,−2Y2,1 =
1
2

√
5

14π Y4,−3−
1
14

√
5

2π Y4,−1+
1

14

√
15
π

Y2,−1,

Y2,2Y2,−1 =
1
2

√
5

14π Y4,−3+
1
14

√
5

2π Y4,−1+
1

14

√
15
π

Y2,−1.

A.2. Existence of isoperimetric surface for all volumes.

Lemma 22 [Carlotto et al. 2016]. Let (M, g) be a three-manifold with nonnegative
scalar curvature, maybe with horizon. Then the isoperimetric surface for all volumes
exists.
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Proof. By Theorem 2.1 of [Ritoré and Rosales 2004], we can prove this in the
same way as in [Eichmair and Metzger 2013]; for every V > 0, there exists an
isoperimetric region � and a radius r ≥ 0 such that

(A-1) |�|g +
4
3πr3

= V, |∂�|g + 4πr2
= I (V ).

By the isoperimetric inequality of Shi [2016] on nonnegative scalar curvature
manifolds, we get for every r > 0 that there is a bounded region �′ with finite
perimeter |∂�′|g lying arbitrary far out in the asymptotic flat region of (M, g) such
that

(A-2) |∂�′|g = 4πr2, |�′|g >
4
3πr3.

If r > 0 in (A-1), then there is an �′ that satisfies (A-2). We consider the region
�∪�′. Then

(A-3) |�|g + |�
′
|g > V, |∂�|g + |∂�′|g = I (V ).

But by the definition of I and the above equality we get

(A-4) I (|�|g + |�′|g)≤ |∂�|g + |∂�′|g = I (V ).

By the fact that I is strictly increasing [Chodosh 2016], we have

(A-5) I (|�|g + |�′|g) > I (V ),

a contradiction. Thus r = 0, which implies that � is the isoperimetric region of
volume V. �

A.3. Continuity of I .

Lemma 23. I is continuous on AF three-manifold.

Proof. The proof is from [Flores and Nardulli 2014] for bounded geometry, where
they don’t have existence of isoperimetric surfaces. We need to prove the upper
semicontinuity and lower semicontinuity for I, i.e., for any V0 > 0,

lim sup
V→V+0

I (V )≤ I (V0), lim sup
V→V−0

I (V )≤ I (V0),(A-6)

I (V0)≤ lim inf
V→V+0

I (V ), I (V0)≤ lim inf
V→V−0

I (V ).(A-7)

Upper semicontinuity of I : Given V0 > 0, there is isoperimetric region �0 such
that vol(�0) = V0, area(∂�0) = I (V0). For any V ↑ V0, we can subtract a small
geodesic ball Br (p) such that vol(Br (p))= V0− V, vol(�0\Br (p))= V. Thus

(A-8) I (V )≤ area(∂�0)+ area(∂Br (p))= I (V0)+ area(∂Br (p)).



RIGIDITY OF HAWKING MASS FOR SURFACES IN THREE MANIFOLDS 501

This implies

(A-9) lim sup
V→V+0

I (V )≤ area(∂�0)+ lim
V→V+0

area(∂Br (p))= I (V0).

For any V ↓ V0, we can add a small geodesic ball Br (p), such that vol(Br (p))=
V − V0, vol(�0

⋃
Br (p))= V. Thus

(A-10) I (V )≤ area(∂�0)+ area(∂Br (p))= I (V0)+ area(∂Br (p)).

This implies

(A-11) lim sup
V→V−0

I (V )≤ area(∂�0)+ lim
V→V−0

area(∂Br (p))= I (V0).

So we get the upper semicontinuity of I from (A-9) and (A-11).

Lower semicontinuity of I : for V ↑V0, there exists an isoperimetric region� such
that vol(�)=V. Adding a small geodesic ball Br (p) such that vol(Br (p))=V0−V,

(A-12) I (V0)≤ area(∂�)+ area(∂Br (p))= I (V )+ area(∂Br (p)).

This implies

(A-13) I (V0)≤ lim inf
V→V−0

I (V )+ lim
V→V−0

area(∂Br (p))≤ lim inf
V→V−0

I (V ).

For V ↓ V0, subtract a small geodesic ball Br (p) such that vol(Br (p))= V − V0,
so that

(A-14) I (V0)≤ area(∂�)+ area(∂Br (p))= I (V )+ area(∂Br (p)).

This implies

(A-15) I (V0)≤ lim inf
V→V−0

I (V )+ lim
V→V−0

area(∂Br (p))≤ lim inf
V→V−0

I (V ).

The lower semicontinuity follows from (A-13) and (A-15). �

A.4. Mean curvature of isoperimetric surface.

Lemma 24. The mean curvatures of all the components for an isoperimetric surface
are the same.

Proof. We know that an isoperimetric surface is stable CMC and the mean curvature
is same on each component. This follows by the stability condition when choosing a
piecewise constant variation function on each component. Assume 6 =61

⋃
62 is

an isoperimetric surface with disjoint components 61 and 62. If the mean curvature
of 61 and 62 are constants H1 and H2, respectively, let

(A-16) f =
{
−|62| on 61

|61| on 62.
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As 6 is an isoperimetric surface, so the first variation formula

(A-17)

0=
∫
6

f H =
∫
61
⋃
62

f H

=−|62|H1|61| + |61|H2|62| = |61||62|(H2− H1).

So H1 = H2, which implies mean curvature on each component is the same. �
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A STRONG MULTIPLICITY ONE THEOREM FOR SL2

QING ZHANG
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We remove the restrictions on the residue characteristic in the strong mul-
tiplicity one theorem proved by Chai and Zhang (2016). Similar considera-
tions can remove the restrictions on the residue characteristic in the stability
and local converse theorem for unitary groups considered by Zhang (2017).

Introduction

This is an addendum to the paper [Chai and Zhang 2016]. In this addendum, we
remove the residue characteristic 2 restriction in the strong multiplicity one theorem
for SL2 [Chai and Zhang 2016, Theorem 4.8]. Following the proof of [Chai and
Zhang 2016, Theorem 4.8], it suffices to remove the residue characteristic 2 restric-
tion in the local converse theorem [Chai and Zhang 2016, Theorem 3.10]. The idea
is to lift an irreducible representation of SL2(F) to GL2(F). Similar considerations
can remove the residue characteristic 2 restrictions in the stability and local converse
theorem for unitary groups considered by Zhang [2017a; 2017b; 2017c].

1. Strong multiplicity one theorem for SL2

We start from the following stability and local converse theorem for SL2.

Theorem 1.1. Let F be a p-adic field and ψ be a nontrivial additive character
of F , which is also viewed as a character of N (F). Let π and π ′ be two irreducible
ψ-generic representations of SL2(F) with the same central character:

(1) There exists an integer l = l(π, π ′) such that if η is a quasicharacter of F×

with cond(η) > l, then

γ (s, π, η, ψ)= γ (s, π ′, η, ψ).

(2) If γ (s, π × η,ψ)= γ (s, π ′× η,ψ) for all quasicharacters η, then π ∼= π ′.

MSC2010: primary 11F70; secondary 22E50.
Keywords: strong multiplicity one, stability, local converse theorem.
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Here the gamma factor γ (s, π, η, ψ) is defined in [Chai and Zhang 2016, §2].
If the residue characteristic of F is not 2, Theorem 1.1 is [Chai and Zhang 2016,
Theorem 3.10]. As noted in that paper, the difficulty in the proof when the residue
characteristic is 2 comes from the fact that [Chai and Zhang 2016, Lemma 3.3]
does not hold in that case. To remedy this, in the following, we lift a representation
of SL2(F) to GL2(F) and give a proof of Theorem 1.1 uniformly. In the following
F is p-adic field, O is the ring of integers of F and P is the maximal ideal of O.

Before the proof, we recall some facts related to representations of SL2 and GL2.
All of these facts can be found in [Gelbart and Knapp 1982]. Let π̃ be an irreducible
smooth representation of GL2(F), then π̃ |SL2(F) is a finite direct sum of irreducible
representations of SL2(F)with multiplicity one. Here the multiplicity one statement
can be found in [Adler and Prasad 2006]. Moreover, for any irreducible smooth
representation π of SL2(F), there exists an irreducible smooth representation π̃ of
GL2(F) such that π is a direct summand of π̃ |SL2(F).

For a representation π of SL2(F) (or GL2(F)), denote its central character by ωπ .

Lemma 1.2. Let π and π ′ be two irreducible representations of SL2(F) with
the same central character. Then there exist irreducible smooth representations
π̃ and π̃ ′ of GL2(F) with the same central character such that π and π ′ are direct
summands of π̃ |SL2(F) and π̃ ′|SL2(F), respectively.

Proof. Let π̃ and π̃ ′ be two representations of GL2(F) such that π and π ′ are direct
summands of π̃ |SL2(F) and π̃ ′|SL2(F), respectively. For any quasicharacter χ of F×,
we have χ⊗ π̃ |SL2(F) = π̃ |SL2(F). Thus π is also a direct summand of χ⊗ π̃ . Since
the central character of χ ⊗ π̃ is χ2ωπ , it suffices to find a quasicharacter χ of F×

such that χ2
= ωπ̃ ′ω

−1
π̃

. Denote η = ωπ̃ ′ω−1
π̃

. Since ωπ = ωπ ′ by assumption, we
get η(±1) = 1. Thus there exists a character χ1 of F×2 such that η = χ2

1 . Any
extension χ of χ1 to F× satisfies the desired property. �

We now fix π̃ and π̃ ′ as in Lemma 1.2. We repeat part of the notations from
[Chai and Zhang 2016, §3]. Let λ ∈ HomN (F)(π, ψ) be a nonzero ψ-Whittaker
functional of π . Since π is a direct summand of π̃ , λ can also be viewed as a
ψ-Whittaker functional of π̃ . Let v be a vector in the space Vπ . We consider the
Whittaker function

Wv(g)= λ(π̃(g)v), g ∈ GL2(F).

We fix a vector v ∈ Vπ such that Wv(1)= 1. Similarly, we consider a Whittaker
functional λ′ of π ′ and fix a vector v′ ∈ Vπ ′ such that Wv′(1)= 1. Let C =C(v, v′)
be a positive integer such that v and v′ are fixed by KC under the action of π̃ and π̃ ′,
respectively, where KC = I2+Mat2×2(PC) is the standard congruence subgroup
of GL2(F) with level C . Recall that we have defined Howe vectors vm, v

′
m,m ≥ C

associated with v and v′ [Chai and Zhang 2016, (3-1)].
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Denote by B the upper triangular Borel subgroup of GL2(F).

Lemma 1.3. For m ≥ C , we have

Wvm (b)=Wv′m
(b), ∀b ∈ B.

Proof. This is proved in [Baruch 1995, Corollary 6.2.11]. We give a sketch here.
Since π̃ and π̃ ′ are bothψ-generic and have the same central character by Lemma 1.2,
it suffices to show that Wvm (diag(a, 1))=Wv′m

(diag(a, 1)) for all a ∈ F×. As in the
proof of [Chai and Zhang 2016, Corollary 3.4], we can check that Wvm(diag(a, 1))=1
if a ∈ 1+Pm and Wvm (diag(a, 1)) = 0 if a /∈ 1+Pm . The same is true for Wv′m

.
The assertion follows. �

After Lemma 1.3, all of the proof in [Chai and Zhang 2016, §3C] goes through.
Part (1) of Theorem 1.1 is proved in this way. From the proof of [Chai and Zhang
2016, Theorem 3.10], if we assume the condition γ (s, π, η, ψ) = γ (s, π ′, η, ψ)
for all quasicharacter η of F×, we can obtain that

Wvm (h)=Wv′m
(h), ∀h ∈ SL2(F).

Since π̃(h)vm = π(h)vm and π̃ ′(h)v′m = π̃
′(h)v′m , we get

λ(π(h)vm)= λ
′(π ′(h)v′m), ∀h ∈ SL2(F).

Then by the uniqueness of the Whittaker models, we get π ∼= π ′. This proves
Theorem 1.1.

From the proof of the strong multiplicity one theorem given in [Chai and Zhang
2016], one can see that the restriction on the residue characteristic 2 in [Chai
and Zhang 2016, Theorem 4.8] can be removed. We record the theorem for
completeness.

Theorem 1.4. Let F be a number field and A be its ring of adeles. Let N be
the upper triangular unipotent subgroup of SL2. Let ψ be a nontrivial additive
character of F \AF which is also viewed as a character of N (F) \ N (A). Let S be
a finite set of finite places of F. Let π =⊗vπv and π ′ =⊗vπ ′v be two irreducible
cuspidal automorphic representations of SL2(AF ) with the same central character.
If π and π ′ are both generic with respect to ψ and πv∼=π ′v for all v /∈ S, then π =π ′.

2. Stability and local converse theorem for unitary groups

Using the same trick as the SL(2) case in §1, one could remove the restrictions of
the residue characteristic in the local converse theorem for U(1, 1) and U(2, 2) in
[Zhang 2017a; 2017b] and the stability results for U(n, n) in [Zhang 2017c]. To be
more precise, we introduce the following notations. Let F be a p-adic field and
E/F be a quadratic field extension. Let UE/F (n, n) be the unitary group defined
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by the skew-Hermitian form Jn =
(
−In

In
)
, where In is the n× n identity matrix.

Let π be an irreducible smooth generic representation of UE/F (n, n) and τ be an
irreducible smooth generic representation of GLk(E) with k ≤ n. Then one can
define a local gamma factor γ (s, π × τ, ψ), where ψ is a fixed additive character
of F . These local gamma factors come from the local functional equations of the
local zeta integrals considered in [Ben-Artzi and Soudry 2009]. See [Zhang 2017a;
2017b] for some details when n = 1, 2 and [Zhang 2017c] for some details for the
gamma factors for UE/F ×GL1(E).

Theorem 2.1. (1) Suppose that n = 1, 2. Let π and π ′ be two irreducible smooth
generic representations of UE/F (n, n) with the same central character and

γ (s, π × τ, ψ)= γ (s, π ′× τ, ψ)

for all irreducible smooth generic representations of GLk(E) for all k ≤ n.
Then π ∼= π ′.

(2) Suppose that n is an arbitrary positive integer. Let π and π ′ be two irreducible
smooth generic representations of UE/F (n, n) with the same central character.
Then there exists a positive integer l := l(π, π ′) such that for all quasicharacters
η of E× with cond(η) > l, one has

γ (s, π × η,ψ)= γ (s, π ′× η,ψ).

If E/F is unramified, or E/F is ramified but the residue characteristic of F is
not 2, part (1) of the above theorem is proved in [Zhang 2017a; 2017b] and part (2)
is proved in [Zhang 2017c]. To prove the general case, one can embed the repre-
sentation π of UE/F (n, n) into the similitude unitary group GUE/F (n, n), where

GUE/F (n, n)= {g ∈ GL2n(E) : tḡ Jng = λJn, λ ∈ F×}.

Here x 7→ x̄ is the nontrivial element in the Galois group of E/F . Note that the
center of GUE/F is E× and the center of UE/F (n, n) is E1, where E1 is the norm
one element in E×.

The theory in [Gelbart and Knapp 1982] also works for the pair GUE/F (n, n),
UE/F (n, n). In particular, the restriction of an irreducible smooth representation
π̃ of GUE/F (n, n) to UE/F (n, n) is semisimple; on the other hand, for any irre-
ducible smooth representation π of UE/F (n, n), there exists an irreducible smooth
representation π̃ of GUE/F (n, n), such that π is a constituent of π̃ |UE/F (n,n). As in
Lemma 1.2, one has:

Lemma 2.2. Let π and π ′ be two irreducible smooth representations of UE/F (n, n)
with the same central character. Then there exist irreducible smooth representations
π̃ and π̃ ′ of GUE/F (n, n) with the same central character such that π and π ′ are
constituents of π̃ |UE/F (n,n) and π̃ |UE/F (n,n), respectively.
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Proof. Let Sim : GUE/F (n, n) → F× be the similitude character of the group
GUE/F (n, n). Via the composition χ ◦Sim, a quasicharacter χ of F× can be viewed
as a character of GUE/F (n, n). Let π̃ be an irreducible smooth representation of
GUE/F (n, n) with central character ωπ̃ . Then we can consider the representation
χ ⊗ π̃ . Note that χ ⊗ π̃ |U(n,n) = π̃ |U(n,n) and the central character of χ ⊗ π̃ is
(χ ◦NmE/F )ωπ̃ . Denote η = ωπ̃ ′ω−1

π̃
. As in the proof of Lemma 1.2, it suffices to

show that there is a character of χ of F× such that χ ◦NmE/F = η. This follows
from the fact that η|E1 = 1. �

To proceed, we need the following multiplicity one property.

Proposition 2.3. Let π be an irreducible generic representation of UE/F (n, n) and
let π̃ be an irreducible representation of GUE/F (n, n). Then

dim HomUE/F (n,n)(π̃, π)≤ 1.

Remark. For the pairs (GL,SL), (GSp,Sp) and (GO,O) (similitude orthogonal
group and orthogonal group), similar results were proved in [Adler and Prasad
2006] without the genericity assumption.

Proof. Let U be the maximal unipotent subgroup of a fixed Borel subgroup
of UE/F (n, n) and let ψ be a generic character of U . We assume that π is ψ-
generic. Since U is also the maximal unipotent subgroup of a Borel subgroup of
GUE/F (n, n), we have dim HomU (π̃, ψ)≤ 1 by the uniqueness of Whittaker model
for π̃ . If π appears as a constituent of π̃ |UE/F (n,n), a Whittaker functional of π
gives a Whittaker functional of π̃ . Now the assertion follows from the uniqueness
of Whittaker model of π̃ . �

After Lemma 2.2 and Proposition 2.3, the proof of Theorem 2.1 reduces the
cases considered in [Zhang 2017a; 2017b; 2017c] as in the SL2 case sketched in §1.

Finally, we remark that Theorem 2.1 also holds for symplectic groups with the
same proof.
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